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The asymptotic behaviour of large loss networks
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Abstract

We study the limit behaviour of controlled loss networks as capacity and
offered traffic are allowed to increase in proportion, reviewing and extend-
ing recent work based on the functional law of large numbers of Hunt and
Kurtz. We consider in detail single and two-resource networks.

1 Introduction

In this paper we study large loss networks in which the offered traffic is subject
to acceptance controls. We review recent work of Hunt and Kurtz (1994), who
established rigorous results for the asymptotic dynamics of such networks as
capacity and offered traffic are allowed to increase in proportion, and we relate
these results to asymptotic equilibrium behaviour. We further study the detailed
behaviour of networks with at most two resources, extending results of Bean et
al. (1994b, 1995), and giving some additional results.

The asymptotic results considered here have important applications to the
control of modern communications networks, which are typically large and which
may simultaneously carry traffic with very different capacity requirements and
holding times. A failure to apply effective controls in such networks can lead to
a serious degradation in performance.

The results also remain qualitatively correct for smaller capacity networks.
Bean et al. (1994a, 1995) and Moretta (1995) derive refinements which permit
more accurate modelling of the quantitative behaviour of networks of all capac-
ities.

The mathematical framework is the same as that of Hunt and Kurtz (1994).
Consider a sequence of loss networks, indexed by a scale parameter N. All
members of the sequence are identical except in respect of capacities and call
arrival rates (which, as defined more precisely by eqn (1.1) below, are essentially
proportional to N), and are identically controlled. Resources (or links) are in-
dexed in a finite set 7 and call types in a finite set R. For the Nth member
of the sequence, each resource j € J has integer capacity C;(INV), and calls of
each type r € R arrive as a Poisson process of rate k,(N). Each such call, if
accepted, simultaneously requires an integer Aj, units of the capacity of each
resource j for the duration of its holding time, which is exponentially distributed
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with mean 1/p,. All arrival streams and holding times are independent.

Let n™N(t) = (nN(t), r € R), where nlY (t) is the number of calls of type r in
progress at time ¢, and let m™ (t) = (m} (t), j € J) where m} (t) = C;(N) —
doreR AjnN(t) is the free capacity of resource j at time t. A call of type r
arriving at time t is accepted if and only if m” (t—) belongs to some acceptance
region A,, which we formally regard as a subset of the space E = (Z U {oo})”,
where J = |7|. (Of course, the process m” (-) only takes values in Z7.) We
further require that each set A, is well-behaved in the sense that its indicator
function I 4, is continuous, where the topology of E is the product of the topology
of the one-point compactification of Z..

This framework permits the modelling of a wide variety of control mech-
anisms, including most of those, such as fixed routing, trunk reservation and
alternative routing, employed in practical applications to communications net-
works. For details see Hunt and Kurtz (1994).

Suppose that, as N — oo, for all j € J, r € R,

1

1
N —kp(N) = Ky (L.1)

Ci(N) = Cyy

Then, under appropriate initial conditions, the normalized process z™N(:) =
n™¥(-)/N might reasonably be expected to converge to a ‘fluid limit’ process z(+)
taking values in the space X = {z € RF: Y Aj.z, < Cj for all j € J}, where
R = |R]. (See, for example, Kelly, 1991.)

To make this idea precise, for each x € X, let m.(-) be the Markov process
on E with transition rates given by

m— A, atrate k.l{nea,}
m= {m + A, at rate p,x,, (12)

where A, denotes the vector (4,7 € J) and co £ a = oo for any a € Z.
Note that the process m,/(-) is reducible, and so does not always have a unique
invariant distribution. Hunt and Kurtz (1994, Theorem 3) show that, provided
the distribution of #V(0) converges weakly to that of #(0), the sequence of pro-
cesses 7V (+) is relatively compact in Dyr[0,00) and any weakly convergent sub-
sequence has a limit z(-) which obeys the relation

z.(t) = 2,.(0) +/0 (Krmu(Ar) — prxr(u))du, (1.3)

where, for each ¢, 7; is some invariant distribution of the Markov process mg;)(+)
and additionally satisfies, for all j,

m{m: m; = o0} =11if Z Az (t) < C. (1.4)
reR

Thus, at each time ¢, the invariant distribution 7; acts as a control for the
asymptotic process z(-), corresponding to a limiting acceptance rate for calls of
each type. For a discussion of this result, which involves a separation, in the
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limit, of the time scales of the processes 2™V () and m” (-), see Hunt and Kurtz
(1994) and Bean et al. (1995).

Of particular interest is the case where there exists a function 7’ on X (each
value of which is a probability distribution on E) with the property that, for all
convergent subsequences, we may take m, = 7, (1) in eqn (1.3). We may then
define a velocity field v = (v., 7 € R) on X by

vr(7) = K1y (Ar) — pr e, (1.5)

so that eqn (1.3) becomes

zp(t) = z,(0) +/0 vp(z(u))du. (1.6)

It will then generally be the case that, for all ¢, z,.(¢) is uniquely determined by
z,(0), so that the convergence asserted above takes place in the entire sequence
of networks.

Further, when such a velocity field may be defined, it is usually possible to
show that, for all ¢, z(t) is a continuous function of (0). Since X is compact, the
argument of Theorem 3.3 of Bean et al. (1995) then applies equally to the present,
more general, situation to show that there is at least one fized point T € X such
that v(Z) = 0; that is, satisfying the fixed point equations

kel (Ap) = przr, rER. (1.7)

It is scarcely surprising (but for a formal proof see Bean et al., 1994b) that
when this fixed point Z is unique, and further is such that all trajectories of
x(-) converge to it, then the invariant distribution of the process =™V (-) converges
weakly to the distribution concentrated on the single point Z, while the invariant
distribution of the ‘free capacity’ process m®(-) converges weakly to m%. In
particular, for each r, 75 (A;) is the limiting equilibrium acceptance probability
for calls of type 7.

When the process z(-) possesses more than one fixed point, each may be
associated, for any large N, with some ‘quasi-equilibrium’ regime of the pro-
cess 2™V (+), maintained over some extended period of time—as in the example
which we discuss in Section 2.

Where there does not exist a function 7’ on X such that m, = 7/, (t)7 SO that it
is impossible to define a velocity field on X, then behaviour in the associated se-
quence of networks is typically highly pathological. Examples of such behaviour
are given by Hunt (1995).

The remainder of this paper is primarily concerned with the identification of
conditions under which a velocity field may be defined, and with the determina-
tion of the resulting dynamics and fixed points of the process z(-). In Section 2
we review results for single resource networks (where a velocity field may al-
ways be defined), and in Section 3 we study two-resource networks. Finally, in
Section 4 we discuss briefly the general case.

However, it is convenient to make a number of further definitions at this point.
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Partition the set X by defining, for each S C J, Xs ={zr € X: > A 2.(t) =
Cj if and only if j € S}. We shall find it convenient to write X; for X;y, and
shall make similar obvious notational simplifications elsewhere.

For each subset S of J, let Es = {m € E: m; < oo if and only if j € S}.
We assume that the matrix of capacity requirements (A4;,.) and the acceptance
regions A, are such that, for each z € X and § C 7, there is at most a single
invariant distribution 7S of the Markov process m,(-) on E which assigns prob-
ability one to the set Es. (The distribution 75 may also be thought of as the
invariant distribution of the obvious projection of the process m.(-) onto Z<.)
There is no loss of generality in this irreducibility assumption—for a discussion
see again Hunt and Kurtz (1994). Note that the distribution 72 exists for all
x € X, assigning probability one to the single point (0o,...,00) of the set Ep.

Then, from the above results of Hunt and Kurtz, it follows that there exist
nonnegative functions A%(+), S C 7, summing to one, such that, for almost all ¢,

m=y Ay (1.8)
scg
where, from (1.4),
XS(t) =0if Y Ajpa,(t) < Cj for any j € S, (1.9)
r€ER

and where additionally we make the convention that A (t) = )\S(t)wf(t) =0if
wf(t) does not exist. Identification of 7y, t > 0, thus reduces to identification of
the functions A (-).
Finally, define also, for each z, each S C 7 such that 75 exists, and each
j € j)
af(m) = Z AJ'T{RTW;S‘(AT) - ,urmr}- (110)

r€ER

The quantity af (z) will play an important role in subsequent analysis. Note in
particular that
af(x)=0if j €S. (1.11)

J

This follows from the observation that, in equilibrium, the jth component of the
restriction of the process m, () to Es has zero drift for each j € S. A formal
proof may be given analogously to that of Lemma 4 of Hunt and Kurtz (1994).

2 Single resource networks

We now consider further the single resource case J = {1}. It is convenient to
write C for Cy, A, for Ay,, and o (z) for af (z).

Here the compactified space E = Z U {oo} and the requirement that, for
each r, the indicator function I 4, of the acceptance region A, be continuous at
oo implies that there is some finite M € E such that, again for each r, either
m € A, for all m > M (including m = oo) or m ¢ A, for all m > M. Define
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R* ={r e R: oo € A.}. Thus R* is the set of call types which are accepted for
all sufficiently large values of the free capacity in the network.

In most applications we might expect R* = R. However, there are practical
circumstances where this might not be the case—for example, a call type which
was to be allocated less resource when the network was nearly full might be
modelled as two call types with disjoint acceptance regions.

Now note that, for all z,

70 A) = Itperey (2.1)

(where again I is the indicator function) and so, from eqn (1.10), a®(z) =
> Ar{krIfrer=y — mrx, . This quantity is also the drift rate towards the origin
of the process m(-) while in the set [M + 1,00) and so elementary Lyapounov
techniques for such processes (see, for example, Fayolle et al., 1995) show that the
restriction of this process to Z is ergodic—and so the distribution 72 (= wil})
exists—if and only if a?(z) > 0.

Let X;" = {z € X;1: o®(2) > 0} and let X; = X; \ X;". It is then straight-
forward to show that a velocity field for the limit process z(-) may be defined
everywhere on X, the function 7!, being given by

D ifre XyUX,,
= 0 VX (22)

T, = .
v T 1f:n€X1+.

In the case © € Xp this result follows from eqn (1.4) (or equivalently from
eqn (1.9)), while in the case z € X it is immediate from the above criterion
for the existence of w1. To prove the remaining case note, from eqns (1.3), (1.8),
(1.10), and (1.11), together with the condition A?(¢) + A'(t) = 1, we have easily
that

S A (t) = 3 A (0) + /0 2 (w)a® (2 (u))du. (2.3)

reER reER

Since necessarily " A,z,(t) < C for all t, it follows that A?(¢) = 0 for (almost)
all t with x(t) € X,

The simple idea underlying this argument—that the process z(-) must remain
within X—is due to Hunt (1990). Hunt and Kurtz (1994) prove the above result
in the case R* = R. A slightly more formal version of the present argument is
given by Bean et al. (1994b).

It is now readily verified that, for each r, 7, (A,) is Lipschitz continuous
on Xy U X (trivially) and also on the set X; (see Bean et al., 1995). Hence
trajectories of the process z(-) are well-defined functions of their positions at
time 0 and discontinuities in the velocity of any trajectory occur only at times
of passage from Xy to X; . (Passage from X;" to Xj is impossible by the
continuity of the function o on X and the relation (2.3)). Tt follows from
standard arguments for dynamical systems that, for each ¢, x(t) is a continuous
function of z(0) and so, as indicated earlier, the process x(-) has at least one
fixed point.
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FiG. 1. Analytical and simulation results for numerical example

In the case where
Z AvkirIrer-y /i < C, (2.4)

reR

define # € X by &, = k. I{per-}/tr- Then a®() = 0 and so & € Xy U X .
It follows from eqns (1.7), (2.1), and (2.2) that & is the unique fixed point of
the process z(-) in the set Xy U X . If R* = R then it follows easily from the
eqns (1.7) that there is no further fixed point in X .

When the condition (2.4) holds but R* # R, then there may be more than
one fixed point. Bean et al. (1994b) give a numerical example with two call types.
All calls require a single unit of resource and C' = 1000, k; = 500, ks = 700,
u1 = 1.0, pa = 0.1. The acceptance regions are given by A; = {m: m > 0}
and A, = {m: 0 < m < 5} (so that here R* = {1}). They show that the
process z(-) possesses three distinct fixed points =, 22 203) Every trajectory
of the process z(-) tends to one of these points, although the point z3) is unstable
in the sense of possessing a domain of attraction of Lebesgue measure zero in
X. The limit behaviour of the corresponding sequence of networks is therefore
essentially bistable. The left panel of Fig.1 shows sample trajectories of the
process z(-)—the thick line separates the domains of attraction of (') and z(?)
and is of course itself a trajectory of the system, tending to (3. The right panel
shows simulated trajectories of the process z'(-) (= n'(:)) in the associated
sequence of networks. Here C' is sufficiently large that the process z'(-) should
be reasonably well-approximated by z(-) and indeed the bistable behaviour of
x(+) is clearly evident. However, this process is of course ergodic, so that, over
sufficiently long time periods, it alternates between typically lengthy residences
in the neighbourhoods of z(*) and z(?).

In the case where the relation (2.4) does not hold the fixed points of the
process z(-) necessarily lie in X;". Where, additionally, A, = 1 for all r, an
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argument of Bean et al. (1995) for the case R* = R extends unchanged to the
present case to show that there is a unique fixed point Z € Xf. Provided only
that all trajectories of z(-) then converge to Z (this is difficult to show formally
except in the case R = 2), identification of this point via the equations (1.7) per-
mits the determination of limiting equilibrium behaviour—in particular limiting
call acceptance probabilities—for the associated sequence of networks.

3 Two-resource networks

We now study the two-resource case J = {1,2}. Here some distinctly patho-
logical behaviour is possible, as is shown by the example of Hunt (1995), which
we discuss briefly below. We require conditions under which such pathological
behaviour may not occur.

For any « and j, the restriction of the process m.(-) to E; is essentially one-
dimensional and it follows, as in the previous section, that the distribution 77
exists if and only if oz? (x) > 0. It again follows as there, and using the condi-
tion (1.4), that when z(t) ¢ X5 then m; = w;(t) where 7, is given by
) {n? ifze XpUX, UX,, (3.1)
m ifz e Xj+, )

and where, for each j, Xf ={reX; a?(a:) >0} X; =X; \X;r It remains
to consider the identification of 7; in the case where z(t) € X;2. The key here
is again given by the functions a5 .

For either j € 7, let j' denote its complement in 7. For each j, define the

function 8; on X by

_[a]@ ifad@) >0,
Bi(z) = {a?(x) if a?, (z) <0. 42

Recall that oz;’ (z) is defined if and only if CK?, (z) > 0. The quantity 3;(z) also
has an informal interpretation in terms of the restriction of the process m,(-) to
Es = Zi. In the case oz?, (z) > 0, suppose that the component j of this restricted
process is far from 0 but the component j' is in equilibrium; then §;(x) is the
averaged (negative) drift rate of the component j. In the case a?, (z) <0, a
similar but simpler interpretation holds. These ideas may be formalized as, for
example, by Fayolle et al. (1995), but for our purposes a formal definition is more
easily made as above in terms of the invariant distributions associated with the
restrictions of the process m,(-) to E;» or Ey as appropriate.

Define subsets of X5 as follows. Let,

U = {x€ Xia2: Bi(z) A B2(z) > 0},
Vji = {Z’ € X12: ﬁ](m) > 07 ﬁj’ (Z’) S 0}) ] = ]-72>
W = {Z’ S X122 ﬁ (1‘) \Y ﬁ2(1’) S 0},

W = {zeW: d)Vvaliz) <0},
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Wt = {zeW: d(z)Add(x) >0}

Note that it follows from the definition (3.2) that W = W= U W, so that the
above sets form a partition of Xy,.
Bean et al. (1994b) show that, under the condition

(00,0) € A, for all r € R, (3.3)

for (almost) all ¢,

Ty ifz(t) €U,
m={ m, fzt)eV;, j=12, (3.4)
. ifx(t) e W,

a(t)
We shall discuss below the necessity of the condition (3.3) for the result (3.4), and
also the remaining case, z(t) € W+. However, note that when the result (3.4)
holds and W is empty (as will usually be the case in applications), it is again
possible to define a velocity field for the process z(-) everywhere on X.

The result (3.4) is proved using essentially the same arguments as those used
to establish the result (2.2) in the single resource case. We give here an outline.
Note first that, under the condition (3.3), it follows from the definitions (1.10)
and (3.2), that, for all z,

Bi(z) < al(z), j=1,2. (3.5)

J

Further, again under this condition (3.3), standard results for Markov chains on
Zi with partial spatial homogeneity (see Fayolle et al., 1995, or Zachary, 1995)
show that, for all x,

7l? exists if and only if 81 (z) A B2(z) > 0. (3.6)

Note also that, analogously to eqn (2.3), and by again using in particular the
result (1.11), we have that for each j,

S Ajan(t) = 3 Ajyn (0) + / X (u)al (e(u) + N (u)ed (2(w)}du. (3.7)

reER reER

From eqn (3.5), for t with (t) € U and each j, a2(z(t)) > 0 and o (z(#)) > 0.
It follows from eqn (3.7), arguing as in the single resource case, that, for (almost)
all t with z(t) € U, A\°(t) = A'(t) = X\2(t) = 0 and so 7, = Totr) as required.

The remaining cases of the result (3.4) are proved similarly, on making use
also of the result (3.6).

It seems likely that the result (3.6) continues to hold in the absence of the
condition (3.3) (here the only doubt in the existing literature lies with the bound-
ary case (31 (x) AB2(x) = 0) in which case a relatively straightforward variation of
the above argument may be used to show that the result (3.4) also continues to
hold. Thus, under what are at worst mild regularity conditions, and certainly in
the case where the condition (3.3) does hold, a velocity field for the process z(-)
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may be defined everywhere on the set X \ W*. When W is empty, again only
mild regularity conditions are required to show that the trajectories of the pro-
cess z(-) are well-defined and that, for each ¢, z(t) is a continuous function of
z(0). It follows that, in this case, there exists at least one fixed point for the
process ().

Hunt (1995) gives an example in which the set W is nonempty. Here, and
in general, for ¢ such that z(t) € W7,

Ty = A (D)) + X (DT, (3.8)

where as usual \!(¢) and A2(¢) are positive and sum to one. However, beyond
this, the behaviour of the process x(-) within the set W is indeterminate, corre-
sponding to the fact that here the sequence of processes 2™V (-) may have different
limits in different subsequences. Trajectories of two such limits may agree up to
the time of entrance into W+, but behave quite differently thereafter.

It is therefore important for the control of networks to have conditions which
ensure that the set W+ is empty. For each r € R, let J. = {j € J: A;. > 0}.
Extend the definition of R* given in the previous section to two- (and more)
resource networks by letting

R*={reR: Es C A, for all § with SN J, = 0}. (3.9)

Thus, using also the continuity of I4,, calls of type r € R* are accepted for all
sufficiently large values of the free capacities of those resources in J,—regardless
of the state of the remaining resources. In a variation of Conjecture 5 of Hunt
and Kurtz (1994) we conjecture that a sufficient condition for W+ to be empty
is given by R* = R. (This of course implies in particular the condition (3.3).)
The following theorem shows this to be the case where A;,. = A, for those
call types r such that Ay, A A2, > 0. It generalizes a result of Moretta (1995).

Theorem 3.1 Suppose that R* = R and that
Ay, = As, for all r with J, = J. (3.10)
Then W is empty.
Proof Suppose there exists © € W+. Then, for each j, a?(:v) > 0 and so the
distribution 7 exists. Thus, again for each j, a;’ (x) = Bj(z) <0, and since also
(by the result (1.11)) o (z) =0, it follows that
> Ajere{r] (Ay) = 7l (A} <0 (3.11)
reR

For r such that A;. > 0, either 7, = {j} or J, = J. In the former case the
condition R* = R implies that 7J (A,) = 1, while 7/ (A,) < 1 (since necessarily
E; Z A,). Hence

> Ajer{rl (A) = (A} <0 (3.12)
r: Jr=T
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with strict inequality if 7. = {j} for at least one 7.

The irreducibility assumption of Section 1 implies that there is at least one
call type r such that J. = {1} or J,. = {2}. It follows, on interchanging j
and j' in eqn (3.12), and using the condition (3.10), that the eqn (3.12) is self-
contradictory. a

As usual the fixed points of the process z(-) are determined by solution of
the equations (1.7). In the case where, for either j, > A k./pr < Cj, we
may in effect replace C; by oo and consider the single resource j'. Otherwise,
and when the set U is nonempty, the analysis may be more complicated, in-
volving in particular the (nontrivial) determination of two-dimensional invariant
distribution 712 for z € U.

We know of no example in which R* = R and there is more than one fixed
point. Moretta (1995) considers the case where R* = R and the matrix (4;,, j €

J, r € R) is given by
1 0 1
AJ”“‘(O 1 1)'

He uses a coupling argument to show that here, if there is more than one fixed
point, then all fixed points necessarily lie in U. If therefore an (essentially
straightforward single resource) analysis identifies a fixed point outside this set,
there will be no further fixed point within it. Moretta also presents compelling
evidence that, for this model, there is only ever one fixed point.

Moretta also considers the problem of the determination of the invariant
distribution 712 for z € U, and that of determining more refined approximations
to call acceptance probabilities in networks whose capacities are insufficiently
large to justify direct application of the above asymptotic theory.

4 General networks

In the previous two sections we have outlined an essentially complete theory for
the identification of the ‘driving’ distribution 7; of eqn (1.3) in the case of single
and two-resource networks. This has used little more than Hunt’s elementary
observation that the process z(-) must remain within the set X. (Only for ¢
such that x(t) belongs to the set W, defined in the previous section, is a more
careful argument required, and this too is due to Hunt (1995).)

For networks with more than two resources, the identification of 7 is very
much more complex. For z € X, define aset S C J to be blocking with respect to
zif 78 exists and 3, Aj,z(t), = C; forall j € S. One very reasonable conjecture
is that, for any t, m; = wf(t) whenever there exists a ‘maximal’ blocking set S
with respect to z(t) containing every other such blocking set.

Again as remarked earlier, we are particularly interested in the identification
of conditions under which a velocity field may be defined for the process z(-).
We hesitate to make any conjectures here, but merely observe that for none of
the ‘pathological’ examples of Hunt (1995) is the condition R* = R satisfied.
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