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Abstract

This paper examines the connection between loss networks without controls and
Markov random field theory. The approach taken yields insight into the structure
and computation of network equilibrium distributions, and into the nature of spatial
dependence in networks. In addition, it provides further insight into some commonly
used approximations, enables the development of more refined approximations, and
permits the derivation of some asymptotically exact results.

1 Introduction

Loss networks have been widely studied, primarily as models for telecommunication sys-
tems, although other applications have also been discussed. One of the major aims in
modelling such networks is to obtain good estimates of performance measures such as
blocking probabilities. In this paper we consider simple loss networks without controls
(for example on routing or admissions) and examine the connection between such net-
works and Markov random field theory. The benefits of this approach are several. It gives
insight into the structure and computation of network equilibrium distributions, and into
the nature of spatial dependence in networks. In addition, it provides further insight into
the reduced load approximation (see below) commonly employed when exact computation
of equilibrium distributions is impossible, and enables the development of more refined
approximations. Finally, for some highly symmetric networks this approach yields asymp-
totically exact results. For excellent introductions to loss networks see Kelly [12], and also
Ross [14].

A general loss network without controls can be described as follows. Denote by J the
finite collection of resources in the network and let C = {Cj , j ∈ J} where Cj is the
capacity of resource j. Let R denote the finite set of possible call (or customer) types
in the network. Calls of each type r ∈ R arrive as a Poisson process with rate νr and
have identically distributed holding (or service) times, which we assume, without loss of
generality, to have mean 1 (see Burman et al. [3]). Each call of type r requires (integer)
capacity Ajr from resource j ∈ J for the duration of its holding time. If one or more of
these resources does not have sufficient free capacity to carry the call then it is blocked and
considered lost. Otherwise the call is accepted. All arrival processes and holding times
are independent of one another. The traditional example is that of a circuit-switched
network, in which resources correspond to links in the network, each of a given capacity.
In this case a call of any type is assumed to require a single unit of capacity from each
link on the route over which it travels, so that call types may effectively be identified with
routes. However, there are many other examples and applications, such as cellular radio
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networks and modern ATM networks. In the latter, capacity (or bandwidth) requirements
for different call types (for example, voice and video) may vary very greatly, even over the
same routes in the network.

Let nr be the number of calls of type r in progress, and for any R′ ⊆ R, let nR′ =
(nr, r ∈ R′). Let SR′ = {nR′ :

∑
r∈R′ Ajrnr ≤ Cj for all j ∈ J}. Then, under the

conditions outlined above, it is now very well-known that the stationary distribution π of
nR is given by

π(nR) = G(C)−1
∏
r∈R

νnrr
nr!

, nR ∈ SR, (1)

where G(C)−1 is a normalising constant; that is, π has a truncated product form. Unfor-
tunately, for networks of realistic size, this expression is of little help in the calculation of,
for example, the stationary blocking probability that a call of any given type is rejected.
This is due to the difficulties of calculating the normalising constant. However, a number
of relatively fast and efficient methods have been suggested which do permit exact calcula-
tions to be made in certain circumstances. Dziong and Roberts [7] (see also Zachary [19])
give an exact recurrence based on consideration of the reduced state space which records
only the total occupancy of each resource. Refinements of Buzen’s convolution algorithm
[4] for closed queueing networks have also been applied to loss networks. Of particu-
lar interest are Choudhury et al. [5], who invert the generating function of the partition
function, and Bean and Stewart [1], who apply refined dimension reduction techniques to
Buzen’s algorithm, and thus obtain considerable efficiency gains.

Due to the difficulties of calculating the normalising constant, various approximations
to quantities of interest, such as blocking probabilities, have been developed. In particular
the (multiservice) reduced load approximation (Dziong and Roberts [7], see also Ross [14])
may be described briefly as follows. For each j ∈ J , let Ljr be the (stationary) probability
that resource j has fewer than the Ajr units of free capacity needed to accommodate a
call of type r at that resource (with Ljr = 0 whenever Ajr = 0). Each Ljr is calculated by
reference to an easily analysed model of resource j in isolation. In this, calls of each type r
are assumed to arrive at resource j as a Poisson process with rate νr

∏
k 6=j(1− Lkr). The

capacity of the resource and call holding times are unchanged. The assumption underlying
this approximation is that resources block “as if” independently of each other. We are thus
led to a set of fixed point equations in the probabilities Ljr, for which the existence—but
not always the uniqueness, see Chung and Ross [6]—of a solution is guaranteed. In the
same spirit, the probability Br that a call of type r is blocked is then taken to be given by

1−Br =
∏
j∈J

(1− Ljr). (2)

The reduced load approximation is of course exact in the case of a single-resource network.
The well-known Erlang fixed point approximation (EFPA) differs from the multiservice

reduced load approximation by assuming a simplified model of each resource j in which,
in particular,

1− Ljr = (1− L′j)Ajr (3)

where L′j is the probability that the resource j has no free capacity. The approximation (3)
reduces the number of variables in the fixed point equations referred to above. However,
these may again have multiple solutions, see, for example, Ziedins and Kelly [20]. Blocking
probabilities are calculated using (2) as before. In general the EFPA is not exact for a
single-resource network. The reduced load and Erlang fixed point approximations coincide
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in the case where the capacity requirements Ajr can only take the values 0 or 1. Here the
fixed point equations do have a unique solution, see Kelly [11], and also Ross [14].

The use of the EFPA has been justified by considering two limiting regimes. Kelly [11]
(see also Hunt and Kelly [8]) shows that the EFPA is asymptotically exact in the Kelly
limiting regime in which the network topology, defined by J , R and the matrix (Ajr), is
held fixed, while both the arrival rates νr, r ∈ R, and the capacities Cj , j ∈ J , increase in
proportion. Whitt [16], and Ziedins and Kelly [20] consider what has come to be known
as the diverse routing limit; here the numbers of resources and call types increase while
the capacity of each resource and the total traffic offered to it is held constant. Again,
under appropriate conditions, the EFPA is asymptotically exact. (Further, in this case
the EFPA may continue to perform well even when controls, such as trunk reservation or
alternative routing are added to the network; see, for example, Hunt and Laws [9], and
MacPhee and Ziedins [13].) All these results extend easily to the more refined reduced
load approximation.

However, for networks with small capacities and/or highly linear topologies (see below),
neither of the above approximations performs so well. In this paper we examine the
problem from a different perspective. We think of the stationary distribution π defined
by (1) as a finite random field on the set R of call types. This is Markov with respect to
the relation in which two call types r, r′ are considered to be neighbours if they utilise a
common resource, that is, there exists j ∈ J such that Ajr > 0, Ajr′ > 0. This neighbour
relation induces a graph in which R is the set of nodes and two nodes are connected by
an edge if and only if they are neighbours. In the special case where this graph is a
tree, that is, a connected graph which becomes disconnected when any edge is removed,
an exact analysis of the stationary distribution π is relatively straightforward. For the
general technique here (in the context of general Markov random fields on trees) see, for
example, Zachary [17], and for an application to a simple linear cellular radio network, see
Kelly [10].

We now show that this idea may be extended to a considerably more general class
of network topologies by considering an appropriate neighbour relation between (possibly
overlapping) groups of call types. When each such group is the set of call types which
share a given resource and two such groups are defined to be neighbours if and only
if they share a common call type, then this generalisation is particularly fruitful. We
show in Section 2 that if the corresponding induced graph is here a tree then an exact
analysis is again straightforward. In other circumstances we may construct approximations
which considerably refine the reduced load approximation described above. (Additionally
they provide further insight into this approximation.) We give examples of both these
situations in Sections 3 and 4 respectively. Finally, in Section 5 we consider a ring network
where, although the induced graph is not a tree, the Markov random field approach once
more permits an exact analysis. The expressions obtained in Section 5 for the blocking
probabilities are suggested as approximations by Bebbington et al. [2]. The analyses we
give also illustrate the exponential decay of spatial correlation in such networks.

Although all the examples that we consider here have Ajr ∈ {0, 1}, there is no difficulty
in implementing the method in the more general situation. In addition, for ease of pre-
sentation the examples we consider are highly symmetric, and again there is no difficulty
in implementing the ideas we consider here for asymmetric networks.

2 A refined approximation

We require some additional notation. For any R′ ⊆ R, let πR′ denote the marginal
stationary distribution on SR′ of nR′ . For each j ∈ J , let Rj = {r ∈ R : Ajr > 0}, that is,
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the set of call types which utilise the resource j. For each K ⊆ J , let RK =
⋃
j∈K Rj and

let ∂RK = RK ∩RJ\K . Finally, for j, k ∈ J , define j ∼ k if and only if Rj ∩Rk 6= ∅. The
relation ∼ defines a graph (J,∼) with the set of resources J as the set of nodes and two
nodes j, k connected by an edge if and only if j ∼ k.

It follows from (1) that, for each K ⊆ J ,

πRK (nRK ) = θK(n∂RK )
∏
r∈RK

νnrr
nr!

, nRK ∈ SRK , (4)

for some function θK on S∂RK . This result is easily established by induction: the result
is trivially true when K is replaced by J , and we may successively eliminate resources
j ∈ J \K to obtain the general result. In particular the function θK determines θK′ for
all K ′ ⊂ K. For many network topologies this forms the basis of an efficient recursion,
enabling easy determination of exact blocking probabilities.

Consider first the case where the graph (J,∼) is a tree. Note that this can only be the
case when each call type requires capacity from at most two resources. If, in the inductive
argument which establishes (4), resources are successively eliminated so that at each step
the graph associated with those remaining is connected, then it further follows that, for
any connected subset K of J , θK has a product form, so that

πRK (nRK ) ∝
∏

j∈K,l/∈K
j∼l

λjl(nRj∩Rl)
∏
r∈RK

νnrr
nr!

, nRK ∈ SRK . (5)

Here, for each ordered pair (j, k) such that j ∼ k, λjk is a function on SRj∩Rk which
we take to be defined only up to a multiplicative constant, and we therefore, here and
elsewhere, use the proportionality symbol ∝ to denote equality up to such a constant.
With this convention the functions λjk are uniquely determined by (5) and conversely,
given these functions, the relation (5) determines πRK since the latter is a probability
measure. Further, comparison of (5) for K = {j, k}, where j ∼ k, and for K = {j} shows
that the functions λjk satisfy the recursion

λjk(nRj∩Rk) ∝
∑

n
′
Rk
∈SRk :

n
′
Rj∩Rk

=nRj∩Rk

∏
l∼k
l 6=j

λkl(n′Rk∩Rl)
∏

r∈Rk\Rj

ν
n′r
r

n′r!
, nRj∩Rk ∈ SRj∩Rk , (6)

where, for ordered pairs (j, k) such that l ∼ k implies l = j, the first product in (6) is taken
over the empty set. Hence the recursion (6) provides an efficient method of determining
the functions λjk, and thus also marginal distributions and blocking probabilities (see the
examples below).

For networks where the graph (J,∼) is not a tree, the relation (5) fails to hold precisely.
In some cases exact computation remains tractable by employing the general relation (4)
and its associated recursion—see Section 5 for an example. However, in the case where each
call type requires capacity from at most two resources the relation (5) may be regarded
as an attractive approximation which, in particular, is very much less restrictive in its
assumptions than the reduced load approximation described in Section 1. The latter
assumes the relation (5) for sets of the form K = {j}, with the functions λjk being given
by

λjk(nRj∩Rk) =
∏

r∈Rj∩Rk

(1− Lkr)nr
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and with the probabilities Lkr calculated as described in that section. Note also that in
this case the application of (5) to the sets K = {j, k} and K = {j} continues to imply
precisely the recursion (6) as before. Once this recursion has been solved, which may
now require repeated substitution, the functions λjk can be estimated, and quantities of
interest can once more be calculated. The asymptotic results of Section 5 provide further
insight into the validity of this approximation.

For more general networks, where call types may require capacity from more than two
resources, the relation (5) requires some modification, the straightforwardness of which
depends on the topology of the network.

3 A linear network

Consider a simple network in which the set J = {1, . . . , l} of resources may be thought of
as being arranged linearly and in which Cj = C for all j ∈ J . Calls require capacity from
either a single or two adjacent resources. Single-resource calls of type j, j = 1, . . . , l arrive
at rate ν1 and each requires a single unit of the capacity of resource j. Two-resource calls
of type (j, j + 1), j = 1, . . . , l − 1, arrive at rate ν2 and each requires a single unit of the
capacity of each of resources j and j + 1.

Let Λ be the set of non-negative functions on NC = {0, 1, . . . , C} which are not
identically zero and which are defined up to a multiplicative constant. We define conver-
gence in Λ to correspond to pointwise convergence under the normalisation, for example,∑

n∈NC λ
′(n) = 1 for all λ′ ∈ Λ. Exponentially fast convergence is similarly defined. Let

the matrix Q = (Q(m,n), m, n ∈ NC) be given by

Q(m,n) =
νn2
n!

C−m−n∑
p=0

νp1
p!
, (7)

with Q(m,n) = 0 whenever m+n > C. Hence, regarding Q as a transformation Q : Λ→
Λ, we have

(Qλ)(m) ∝
∑
p,n≥0,

m+p+n≤C

νp1
p!
νn2
n!
λ(n), m ∈ NC . (8)

For j ≥ 0, define λj ∈ Λ by

λ0(m) ∝ 1, m ∈ NC ,

λ1(m) ∝
C−m∑
p=0

νp1
p!
, m ∈ NC ,

λj ∝ Qλj−1, j ≥ 2

(9)

(note that we do not have λ1 ∝ Qλ0 here). Let Rik =
⋃k
j=iR{j} denote the set of call

types requiring capacity from any of resources i, i+ 1, . . . , k where 1 ≤ i ≤ k ≤ l. It now
follows from (5) and the recursion (6) that

πRik(nRik) ∝ λi−1(ni−1,i)λl−k(nk,k+1)
min(k,l−1)∏

j=max(1,i−1)

ν
nj,j+1

2

nj,j+1!

k∏
j=i

ν
nj
1

nj!
, nRik ∈ SRik , (10)

where, for all j, nj = n{j}, nj,j+1 = n{j,j+1}. Hence marginal distributions and blocking
probabilities are readily computed.
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In particular let Bi, i = 1, . . . , l, and Bi,i+1, i = 1, . . . , l − 1, be the blocking proba-
bilities associated with the single- and two-resource call types. It follows from (10) and
further use of (8) that, for 2 ≤ i ≤ l−1, the probability that the ith resource has occupancy
less than or equal to m is given by∑

ni−1,i,ni,ni,i+1≥0,
ni−1,i+ni+ni,i+1≤m

πRi(ni−1,i, ni, ni,i+1)

∝
m∑

ni−1,i=0

λi−1(ni−1,i)(Qλl−i)(C −m+ ni−1,i)
ν
ni−1,i

2

ni−1,i!

∝
m∑

ni−1,i=0

λi−1(ni−1,i)λl−i+1(C −m+ ni−1,i)
ν
ni−1,i

2

ni−1,i!

(the constant of proportionality being independent of m), and so

Bi = 1−
∑C−1

n=0 λi−1(n)λl−i+1(n+ 1)νn2 /n!∑C
n=0 λi−1(n)λl−i+1(n)νn2 /n!

. (11)

It is straightforward to verify that this result also holds for i = l. However, in this
case we also have, more simply and again by elementary calculation, that Bl = B1 =
1−λl(1)/λl(0). Similar calculations show that the two-resource call blocking probabilities
are given, for i = 1, . . . , l − 1, by

Bi,i+1 = 1−
∑C−1

n=0 λi(n+ 1)λl−i(n+ 1)νn2 /n!∑C
n=0 λi(n)λl−i(n)νn2 /n!

. (12)

We now consider what happens as the length l of the network tends to infinity.

Theorem 3.1. We have λi → λ in Λ as i → ∞, where λ is the unique solution in Λ of
the equation λ ∝ Qλ. Further the convergence is exponentially fast.

Proof. The matrix Q = (Q(m,n);m,n ∈ NC) has entries which are strictly positive for
m,n such that m+n ≤ C and are zero otherwise. It follows that the matrix Q2 has entries
which are all strictly positive. The result is now immediate from, for example, Theorem
1.2 of Seneta[15].

It follows that the blocking probabilities exhibit similar exponential convergence. In
particular, as l, i and l − i tend to infinity, the single- and two-resource call blocking
probabilities Bi and Bi,i+1 converge to B(1) and B(2) respectively, where

B(1) = 1−
∑C−1

n=0 λ(n)λ(n+ 1)νn2 /n!∑C
n=0 λ(n)2νn2 /n!

(13)

and

B(2) = 1−
∑C−1

n=0 λ(n+ 1)2νn2 /n!∑C
n=0 λ(n)2νn2 /n!

. (14)

Some of the expressions found here have been seen before. Zachary[18] obtains the
result (6) for the Markov random field which models the above network in the case ν1 =
0—corresponding to the presence of two-resource calls only. This latter model is also
considered by Kelly[10] for a linear cellular radio network. He obtains an expression for
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the blocking probability—as the length of the network tends to infinity—which is the same
as B(2) above with (again) ν1 = 0. (Indeed, in that particular case, the argument of this
section is essentially the same as his.) More recently, Bebbington et al. [2] propose the
above expressions for B(1) and B(2) as approximations to the blocking probabilities in a
ring network (see also Section 5)—these are obtained from a two-resource approximation
with state-dependent arrival rates.

Note that a probability model exists directly for the infinite network corresponding
to l = ∞, for which the single- and two-resource call blocking probabilities are given
exactly by B(1) and B(2). Here the reduced load approximation yields a single-resource call
blocking probability B̃(1) which is equivalent to that obtained by applying the result (10)
to any of the sets R{i}, but with λi−1(n) = λl−i(n) ∝ αn, where α = 1 − B̃(1). The
two-resource call blocking probability B̃(2) is then given by B̃(2) = 1− (1− B̃(1))2.

4 A symmetric network

Consider a network where, as in Section 3, each resource j ∈ J has capacity Cj = C and
each call type requires capacity from at most two resources. Again single-resource calls
of each type arrive at rate ν1 and each requires a single unit of the capacity of a single
resource, while two-resource calls of each type arrive at rate ν2 and each requires a single
unit of the capacity of each of two resources. Each resource j is offered one stream of
single-resource traffic and a + 1 streams of two-resource traffic. No two streams of two-
resource traffic utilise the same pair of resources. Examples are the fully-connected circuit-
switched network (see Kelly [11]—this example possesses a higher degree of symmetry than
is actually required by the present model) and the ring network of which we give an exact
analysis in Section 5. The latter analysis is also applicable to the infinite linear network
considered briefly in the preceding section.

We apply the approximation of Section 2. As in Section 3, let Λ be the set of non-
negative functions on NC = {0, 1, . . . , C}, not identically zero and defined up to a multi-
plicative constant. The equations (6) are satisfied by λjk = λ for all j, k such that j ∼ k
where λ is the solution in Λ of

λ(m) ∝
∑

n,n1,... ,na≥0,
m+n+n1+...na≤C

νn1
n!

a∏
l=1

νnl2

nl!
λ(nl), m ∈ NC . (15)

Since (under the normalisation
∑

n∈NC λ
′(n) = 1 for all λ′ ∈ Λ) the space Λ is compact

and convex, Brouwer’s fixed point theorem implies that the equation (15) does have a
solution.

The case a = 1 corresponds to the ring network that we study in more detail in
Section 5. We will see that in this case the recursion of the equations (6) is that given by
the matrix Q defined in Section 3 and the equation (15) reduces to the equation λ ∝ Qλ
of that section. Hence not only is λ unique in this case, but the convergence established in
Theorem 3.1 also shows that λjk = λ for all j, k is the unique solution of the equations (6).

In the case a ≥ 2 we conjecture that the equation (15) again always has a unique
solution. The methods described by Zachary [18] gives a sufficient condition for this to
be the case: attempt to solve (15) by repeated substitution, starting with λ ∈ Λ given
by λ(m) = 0 for all m ≥ 1; convergence to a fixed point ensures uniqueness of the
solution, and indeed—at least for most network topologies—uniqueness of the solution of
the equations (6).

We now assume that the equation (15) does have a unique solution λ and apply the
approximation (5) to sets of the form K = {j} and K = {j, k} with j ∼ k (and with λ re-
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placing each of the functions λjk) to calculate blocking probabilities. Calculations entirely
analogous to those used to obtain equations (11) and (12) show that the corresponding
single- and two-resource call blocking probabilities B(1) and B(2) respectively are again as
given by (13) and (14) where the function λ is now the solution of (15).

Note that these blocking probabilities are independent of the number of resources
in the network. However, the exact blocking probabilities (and so the quality of these
approximations) do in general depend on this number, and more generally on the details
of the network topology. We show below that for the ring network these approximations
become asymptotically exact as the number of resources is allowed to tend to infinity.

We now compare the above blocking probabilities with those obtained by the use of
the reduced load approximation (here also the EFPA). For the stated model, the latter
are once more independent of the number of resources and more detailed topology of the
network. The example that we consider is given by a fully-connected circuit-switched
network with four nodes and a link of capacity C between each pair of nodes, so that
there are six links or resources in the network. Single-resource calls arrive at each link
at rate ν1, and two-resource calls arrive at each pair of links which possess a common
node at rate ν2. All calls require a single unit of capacity from each link utilised. We
thus have the model of this section with a = 3. We look in detail at the case C = 5,
and consider a sequence of increasing arrival rates with ν2 = ν1/4, so that the proportion
of the load on each resource due to each of the two types of call remains the same as
the arrival rates increase. Let B1, B2 denote the exact blocking probabilities for single-
and two-resource calls respectively (the network considered here is sufficiently small to
permit these to be calculated), and let B̃(1), B̃(2) be the corresponding probabilities as
determined by the reduced load approximation. The left panel of Figure 1 relates to the
single-resource call blocking probability and plots, as ν1 increases from 0 to 10, the relative
error (B(1) − B1)/B1 of the random field approximation of this section (given by (13)),
together with the relative error (B̃(1) − B1)/B1 of the reduced load approximation. The
right panel similarly plots the relative errors of the two approximations for two-resource
calls. In both cases the random field approximation is seen to be very much more accurate
than the reduced load approximation (although the latter is of course already good).
Similar behaviour, in particular in relation to the quality of the two approximations, is
observed for other values of C.

Arrival rate for single-resource calls
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Figure 1: C = 5: relative errors in blocking probabilities using the random field approxi-
mation (solid line) and the reduced load approximation (dashed line).
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5 A ring network

The case a = 1 of the model of Section 4 above corresponds to a ring network, and for
this case an exact analysis is again possible. The model is identical to that in Section 3,
except that there is an additional class of two-resource calls—of type (l, 1)—which also
arrive at rate ν2 and for which each call requires one unit of capacity from each of the
resources l and 1. Thus the model is cyclically symmetric. Although the graph (J,∼)
defined in Section 2 is here not a tree, it turns out that similar techniques to those used
in Section 3 can be used to give an analysis which is both exact and tractable. We also
show that the approximate blocking probabilities of Section 4 are asymptotically exact as
l tends to infinity.

Let Θ be the set of non-negative functions on N2
C = NC × NC , again defined up to

a multiplicative constant. The matrix Q given by (7) can now be regarded as defining a
transformation Q : Θ→ Θ, so that, for θ ∈ Θ,

(Qθ)(m,n) ∝
∑
p,q :

m+p+q≤C

νp1
p!
νq2
q!
θ(q, n), (m,n) ∈ N2

C (16)

(where the constant of proportionality in this expression is independent of both m and n
and where the product Qθ is given by matrix multiplication). The result (16) follows on
recalling that Q(m, q) = 0 whenever m+ q > C.

For j ≥ 1, define θj ∈ Θ by

θ1(m,n) ∝
∑
p :

m+p+n≤C

νp1
p!
, (m,n) ∈ N2

C ,

θj ∝ Qθj−1, j ≥ 2.

(17)

As in Section 3, let Rik =
⋃k
j=iR{j} where 1 ≤ i ≤ k ≤ l. Then, it follows straightfor-

wardly by induction on i that, for all i ≥ 2,

πRil(nRil) ∝ θi−1(ni−1,i, nl,1)
l∏

j=i−1

ν
nj,j+1

2

nj,j+1!

l∏
j=i

ν
nj
1

nj!
, nRil ∈ SRil (18)

(where nl,l+1 = nl,1). For other sets of the form Rik the marginal stationary distribution
of nRik follows from the cyclical symmetry of the model. It also follows from (18) and
the above symmetry that, for all j ≥ 1, θj is invariant under interchange of its arguments.
Hence marginal distributions and blocking probabilities can again be easily calculated.
Note that, for this model, the single-resource call blocking probabilities are all the same,
as are the two-resource call blocking probabilities.

We again examine the behaviour of the network as l→∞.

Theorem 5.1. We have θi → θ in Θ as i→∞, where θ(m,n) ∝ λ(m)λ(n). Here, as in
Section 3, λ is the unique solution in Λ of the equation λ ∝ Qλ. Further the convergence
is exponentially fast.

Proof. It follows as in the proof of Theorem 3.1 that, for each fixed n ∈ NC , the function
θi(·, n) converges exponentially fast in the space Λ to the function λ. Hence θi similarly
converges in the space Θ to θ where θ(m,n) ∝ λ(m)φ(n) for some function φ ∈ Λ. The
result now follows from the symmetry of the functions θj.
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It follows in particular that we once more have exponential convergence of the single-
and two-resource call blocking probabilities to B(1) and B(2) respectively, where these are
again as given by equations (13) and (14) and λ is as above.

Now note that, since the equation (15) here reduces to λ ∝ Qλ, for any l the single-
and two-resource call blocking probabilities as determined by the random field approxi-
mation of Section 4 are also B(1) and B(2) as above. Hence this approximation is here
asymptotically exact as l →∞.

We now present a numerical example with l = 5 and C = 5. As in Section 4 we compare
relative errors in blocking probabilities as determined by the random field approximation
of that section and by the reduced load approximation. As in Section 4, we let the
arrival rates increase with ν2 held proportional to ν1, but in this case we have ν2 = ν1/2.
Figure 2 gives plots of these relative errors: the left and right panels once more correspond
respectively to the single-resource and two-resource call blocking probabilities. We see that
the errors associated with the random field approximation are negligible on the scale of
these plots, and in particular are again very much less than those of the reduced load
approximation (which is again good). If instead we consider the worst-case example l = 3
(not shown here) the relative errors of the random field approximation are detectably non-
zero, but always considerably less than those of the reduced load approximation. Thus,
the rate of convergence to the correct blocking probability as l increases is very fast.
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Figure 2: C = 5, l = 5: relative error in blocking probabilities using the random field
approximation (solid line) and the reduced load approximation (dashed line).
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