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Abstract

We review a number of multi-population mortality models: variations of the Li and Lee (2005)
model, and the common-age-effect (CAE) model of Kleinow (2014). Model parameters are es-
timated using maximum likelihood. Although this introduces some challenging identifiability
problems and complicates the estimation process it allows a fair comparison of the different
models. We propose to solve these identifiability problems by applying two dimensional con-
straints over the parameters. Using data from six countries, we compare and rank, both visually
and numerically, the models’ fitting qualities and develop forecasting models that produce non-
diverging, joint mortality rate scenarios.

It is found that the CAE model fits best. But we also find that the Li and Lee model

potentially suffers from robustness problems when calibrated using maximum likelihood.
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1. Introduction

Recent decades have seen significant improvements in mortality in most de-
veloped countries. It is natural to take the view that changes over time between
different countries will, in some way, be correlated. Worsening mortality can be a
consequence of epidemics and war which can easily cross national borders. More
importantly, improving mortality is the result of improvements in public health,
medical advances, lifestyle changes and government regulation, and, whenever im-
proved practice develops in one country, that best practice will rapidly spread
to other countries, causing correlated falls in mortality rates. We acknowledge
this fact developing multi-population mortality models that are able to assimi-
late those relationships by modelling simultaneously more than one population.
The application of such models is extensive in areas such as reinsurance and risk
hedging.

A variety of different models have been considered previously, such as the Li
and Lee (2005) model: a multi-population generalisation of the Lee and Carter
(1992) model. Li and Lee propose an additional common factor between the mul-
tiple populations, and is one of the models considered here.Other authors have
also carried out further work on the Li and Lee model, a notable example be-
ing Li (2013), who reviews a variation on the original model. Recent work that
considers different models from those in this paper include the extensive analyses
of Haberman et al. (2014), Li et al. (2015) and Danesi et al. (2015). Haber-
man et al. (2014) consider a range of two-population mortality models and assess
these against a variety of criteria including the coherence of forecasts.1 Li et al.
(2015) consider two-population variants of seven of the models first considered by
Cairns et al. (2009). Their analysis aims for balance between historical quality
of fit, qualitative model selection criteria and coherence of forecasts. Danesi et al.
(2015) consider ten generalisations of the Lee-Carter model and focus more or a
detailed discussion of the historical fit. However, their choice of stochastic mor-
tality models and time series models means that forecasts are not coherent. The
model Kleinow (2014) proposes - a common age effect (CAE) multi-population
model, we examine in this paper more thoughtfully.

As a whole, research on multi-population mortality models, especially at higher
ages, above 65 is pretty limited and there is considerable room for further work in
this area. We aim to complement this research by reviewing four multi-population
mortality models. To compare and order their value, based on their fitting and
forecasting qualities, we need to regard a number of points.

Each of the models was fitted under the assumption that the number of deaths

1 Coherence, in the sense of Li and Lee, 2005, means that, in the long run, mortality rates at
the same age in different populations do not diverge.
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in a certain population follows a conditional Poisson distribution. For each model
we derived a single global likelihood function, maximised using a Newton-Raphson
scheme to obtain the maximum likelihood estimate (MLE). In contrast to a sin-
gular value decomposition (SVD) or a multi-step MLE, the solution we apply is
highly flexible and can be applied to a variety of models. It also provides a consis-
tent framework for further analysis and comparison of models. Nevertheless, this
complicates the iterative estimation process and some non-standard identifiability
problems arise. We solve this problem by proposing a set of new constraints over
the parameters.

Finally, we develop models for forecasting mortality rates in different popula-
tions under which future mortality rates in different populations are non-diverging
in the long run. In developing these forecasting models, we allow for the use of
different time series processes for each of the mortality models under considera-
tion, to ensure that the most appropriate random process is used for each mortality
model. Thus we consider a variety of processes including multivariate random walk
with drift, multivariate random walk with a common drift, vector autoregressive
process and a variation of the vector autoregressive process.

2. Data

We perform our analysis based on data obtained from the Human Mortal-
ity Database, University of California, Berkeley (USA), and Max Planck Insti-
tute for Demographic Research (Germany). Available at www.mortality.org or
www.humanmortality.de (data downloaded on [October 15, 2014]). The typical
data set consists of the numbers of deaths and the central exposure. The age/time
period range considered is from 60 up to 89 years (30 consecutive ages in total)
and from 1961 up to year 2010 (50 years in total).

Table 1 specifies the six countries that were chosen. They were explicitly se-
lected to have similar population sizes and close geographical location. All six
countries have experienced significant mortality improvements since 1961.

Exposure to risk at the age of 60 in 2010
i Country Male Female

1 Austria 47023.17 49526.5
2 Belgium 65344.67 66434.33
3 Czech Republic 71575.69 71575.69
4 Denmark 34420.17 35132.33
5 Sweden 59759.83 59742.67
6 Switzerland 46527.67 47078.67

Table 1: Countries considered
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3. Notation

Throughout this paper we will adopt the following notation:

• D(x, t, i) is the number of deaths, and

• E(x, t, i) is the central exposed to risk

at age x last birthday in calendar year t in country i. We then define the crude
death rates m̂(x, t, i) as

m̂(x, t, i) =
The number of deaths at specific age, time and population

The central exposed to risk
=
D(x, t, i)

E(x, t, i)
.

The crude death rates are assumed to be roughly equal to the underlying force
of mortality denoted by µ(x, t, i), assuming that the force of mortality remains
approximately constant over each age x and during each year t.

The set of parameters that we seek to estimate for each model is denoted by the
vector θ. The components of θ depend on the particular model under investigation
and will be specified when we introduce the models.

Furthermore, we will use the following notation:

• N is the total number of data points that we use in the model (only the
number of deaths are included, so N is the number of ages × number of
years × number of countries);

• T the final year in the time range;

• k the total number of elements in θ;

• keffective is the total number of parameters k minus the number of model-
specific constraints, which will be specified when the models are introduced
in section 4.

4. Models

4.1. Model specification

We consider parametric models for the logarithm of the underlying death rates,
logm(x, t, i). All models have global parameters which are common to all six
populations and local parameters which are specific for each population. This
allows us to identify the global characteristics of death rates over age and time
across all countries. Using country-specific parameters, we can adapt the estimated
global mortality curve to each country’s specific mortality data. In that way we
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are able to identify relationships between the mortality of populations of different
countries.

We propose, test and compare four models: the Li and Lee model introduced
by Li and Lee (2005), two variations of this model, and the common age effect
model introduced by Kleinow (2014). The two variations of the Li and Lee model
provide a significant reduction in the number of parameters k, which results in
a considerable reduction of computing time and, also, potentially result in more
robust forecasts. The Kleinow model (2014) is the most challenging to deal with,
due to its different form. Compared to the other models it does not have a common,
global period effect, but rather two country specific ones.

Table 2 summarises the proposed models, with differences between them high-
lighted in bold.

Model 0 logm(x, t, i) = α(x, i) +B(x)K(t) + β(x, i)κ(t, i)

Model 1 logm(x, t, i) = α(x, i) +B(x)K(t) + β(x)κ(t, i)

Model 2 logm(x, t, i) = α(x, i) +B(x) (K(t) + κ(t, i))

Model 3 logm(x, t, i) = α(x, i) + β1(x)κ1(t, i) + β2(x)κ2(t, i)

Table 2: The proposed models

Model 0 is a generalisation of the Lee and Carter (1992) model. The country
specific parameters, α(x, i), β(x, i) and κ(t, i), form two-dimensional arrays, while
the global age and period effects, B(x) and K(t), are vectors. The common K(t)
explains the evolution of global mortality rates over time. The age effect B(x) tells
us which rates decline rapidly and which rates decline slowly in response to changes
in K(t). The country specific α(x, i) determine the baseline shape of the mortality
curve in each country. The country specific parameters β(x, i) and κ(t, i) have the
same interpretation as the commonB(x) andK(t), but they are applied specifically
to each population. Li and Lee (2005) proposed that the parameters should be
estimated using a two step singular value decomposition, firstly estimating the
common parameters B(x) and K(t) from the combined data for all countries, and
secondly estimating the rest of the country specific parameters.

The purpose of considering models 1 and 2 is to investigate if the number of
parameters in the Li and Lee (2005) model can be reduced without significantly
compromising the quality of the fit.

Model 1 is a simplified version of Li and Lee in which we are changing the matrix
β(x, i) into a common parameter vector β(x). Although the fit of the model will
be compromised, the reduction in the number of parameters is considerable: 150
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fewer elements for the 30 ages considered in this paper.
Model 2 is a further simplification as we propose to reduce the parameter space

even more. β(x, i) is again turned into a common parameter vector, but now it is
set to be equal to the common age effect, B(x). In comparison to Model 1, the
reduction is by further 30 elements for the 30 ages considered in this paper.

Model 3, the common age effect (CAE) model, is quite different from the other
three models. It has two sets of parameters: one of common age dependent param-
eters, β1(x) and β2(x); and another of country-specific time-dependent parameters,
κ1(t, i) and κ2(t, i). For our time period (50 years), this model has more parame-
ters to estimate than the Li and Lee (2005) model, but the difference between the
two depends on the balance between the age and year ranges: if the age range was
longer than the time period this model would have fewer parameters.

Table 3 reports the number of parameters in each of the models before allowance
for identifiability constraints.

Model 0 Model 1 Model 2 Model 3

Number of parameters in θ 740 590 560 840

Table 3: The total number of parameters to estimate in θ for each model

4.2. Identifiability problems

Each of the models presented in Table 2 exhibits identifiability problems: that
is, knowledge of the underlying or theoretical death rate does not uniquely identify
the values of the various age and period effects. For example, suppose that the
true parameters in Model 0 are α(x, i), B(x), K(t), β(x, i) and κ(t, i). Then for
any scalars a, b 6= 0, c and d 6= 0 the alternative parameter set (1) gives identical
death rates.

α̃(x, i) = α(x, i) + aB(x) + cβ(x, i),

B̃(x) =
B(x)

b
,

K̃(t) = b(K(t)− a),

β̃(x, i) =
β(x, i)

d
,

κ̃(t, i) = d(κ(t, i)− c),

(1)

Therefore K(t) and κ(t, i) are determined only up to a linear transformation,
B(x) and β(x, i) are determined only up to a multiplicative constant, and α(x, i) is
determined only up to an additive constant. From the reparametrisation (1), it is
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clear that it is not possible to uniquely determine the parameters in model 0, and
similar issues are found for the other three models. This is known as an identifi-
ability problem, which is very common for mortality models. Such issue normally
would not be a problem, because a strict relationship between two parameterisa-
tions always exists, therefore we can transfer one set of estimated parameters into
another. Usually those relations can even visually be noticed as two parameter
sets are slightly tilted or even reversed. The possibility of identifiability, neverthe-
less, gives rise to two potential problems. First, the parameter estimation process
might experience convergence problems if identifiability is not addressed. Second,
even if θ and θ̃ are parameterisations that give identical historical fits, forecast
distributions of mortality rates might be different. The second point means that
we need to take care when fitting, e.g., a time series model to the period effects to
ensure that models allow in a consistent way for the identifiability problem.

The parametrisation (1) is standard in the sense that it is a straightforward
extension from the one previously proposed for the Lee and Carter (1992) model.
Furthermore, the identifiability problems in Model 0 are completely covered by
(1). This is not the case for the other three models, as they are still undetermined.

Due to the more complex form of the models, the period effects, K(t) and
κ(t, i), are still indistinguishable only up to an additive time dependent constant.
This issue can be best seen in Model 2. In addition to the parametrisation (1) we
can add a scalar, C(t), that would not affect the estimated fitted crude mortality
rates, but only the parameter estimates.

Ultimately we can write Model 2 in the form

logm(x, t, i) = α(x, i) +B(x)[K(t) + C(t)︸ ︷︷ ︸
K̃(t)

+κ(t, i)− C(t)︸ ︷︷ ︸
κ̃(t, i)

]. (2)

Note that for models 0, 1 and 3 such relationships do not exist.
In what follows, we derive and implement constraints for the parameters that

allow us to solve the identifiability issues. To address (1) we normalise the sums of
the common age parameter to equate to unity. Additionally, the country specific
age dependent parameters should also equate to unity for every population (i.e. the
summation of each column i of the matrix should equate to one). Furthermore,
the common time dependent parameter K should sum to zero and finally the
country specific time dependent parameters κ(., i) should also sum to zero for each
population i (i.e. the summation of each row i of the matrix κ(t, i) should equate
to zero). For (2) the only normalisation we apply is over the country specific time
dependent parameter as we set the summation over each year t to be equal to zero
(i.e. the summation of each column t of the matrix κ(t, i) should equate to zero).

Table 4 summarises all of the constraints applied over the models’ parameters.
Those constraints fully identify the parameters in the models, but there are some
specifics in the application process, which we discuss next.
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Model 0 does not require any restrictions over time t for its country specific
time dependent parameter κ(t, i) and is fully determined. Nevertheless, referring
to Table 5, it is evident that the estimation time for this model is considerable.
This might mean that this model is close to an identifiability problem, that is, the
likelihood function is nearly, but not exactly, flat in some directions. Therefore, it
might be possible to derive some additional constraints that would speed up the
estimation process.

Model 0 Model 1 Model 2 Model 3

∑
x
B(x) = 1

Common constraints∑
x
B(x) = 1

∑
x
B(x) = 1

∑
x
β1(x) = 1∑

t
K(t) = 0

∑
t
K(t) = 0

∑
t
K(t) = 0

∑
x
β2(x) = 1

-
∑
x
β(x) = 1 - -

For each i:

Country specific constraints

∑
x
β(x, i) = 1 - -

∑
t
κ1(t, i) = 0∑

t
κ(t, i) = 0

∑
t
κ(t, i) = 0

∑
t
κ(t, i) = 0

∑
t
κ2(t, i) = 0

For each t:

Time specific constraints

-
∑
i

κ(t, i) = 0
∑
i

κ(t, i) = 0
∑
i

κ2(t, i) = 0

- Quasi identifiability True identifiability Quasi identifiability

constraint constraint constraint

Table 4: Identifiability constraints for models 0, 1, 2 and 3.

The time specific constraint in Model 2 for κ(t, i) is noted as a “True identi-
fiability constraint”. The reason for this is that applying the constraint does not
change the value of the log-likelihood function.

For models 1 and 3 the time specific constraints in Table 4 are noted as “Quasi
identifiability constraint”, since they do not solve exact identifiability issues. The
optimal set of parameters for those models is unique without imposing the time
specific constraints. However, the likelihood function seems to be so flat that the
applied Newton-Raphson algorithm converges to different optimal parameter sets
depending on the starting value for the algorithm. To address this issue we decided
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to impose those “quasi constraints”. Therefore, we find a constrained maximum
of the likelihood function rather than the optimal solution.

Although this reduces the attained maximum value of the log-likelihood func-
tion, the reduction (by around 80) is considered small relative to the differences of
the log-likelihood values between the models, see Table 8. The Newton-Raphson
algorithm now converges to the same maximum when different starting values are
chosen, and therefore, the estimation procedure is numerically more stable. For
those reasons we have chosen to incorporate the “quasi-constraints” for models 1
and 3. For the complete implementation of the constraints, see 8.

4.3. Fitting the models

As mentioned earlier, Li and Lee (2005) propose a two-step singular value
decomposition for Model 0 to estimate parameters. For the other three models,
this method cannot be applied. The main reason for this is the existence of the
bilinear terms: common parameters multiplied by country specific parameters (the
first is a vector and the second is a matrix). In contrast, maximum likelihood based
estimation can be applied to all four models and, therefore, gives consistent results.
Additionally, it comes with a variety of tools to compare the models such as the
Bayesian Information Criterion (BIC) or the likelihood ratio test (for the nested
models 0, 1 and 2 only). Using the conditional Poisson assumption, we propose to
use single step maximum likelihood.

More precisely, we assume that the number of deaths, D(x, t, i), has a Poisson
distribution:

D(x, t, i)|θ ∼ Poisson(E(x, t, i)m(x, t, i)).

The log-likelihood function: l(θ|D(x, t, i), E(x, t, i)), for all of the models has the
form

l =
∑
x,t,i

[D(x, t, i) log(m(x, t, i))− E(x, t, i)m(x, t, i)] + constant. (3)

The constant term in (3) is independent of θ and therefore it does not influence
the estimation of the parameters, but it is used in the calculations of the BIC. Its
form is

constant =
∑
x,t,i

[D(x, t, i) log(E(x, t, i))− log(D(x, t, i)!)] .

The function (3) is optimised for θ using a standard Newton-Raphson method
with appropriate starting points for the parameters. The process iterates to the
optimal values until the log–likelihood value converges. Each iteration cycles se-
quentially through each element of a model’s parameter vector, θ, subject to each
model’s identifiability constraints.
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The calculation time is an important consideration. Since the Newton-Raphson
algorithm is an iterative method, it is highly dependent on the chosen starting
points. The further they are from the optimal solution the longer it takes to
converge. Distant starting values might cause convergence to be slow, whereas
a well chosen, close starting value could result in much faster convergence. In
general, though, the choice of model has a much bigger influence on the speed of
convergence (see Table 5).

Using the constraints in Table 4, we tested a range of different starting points
and Table 5 provides the typical observed number of iterations until the conver-
gence level was reached for each model.

Model 0 Model 1 Model 2 Model 3

Number of iterations 500 10 5 40

Table 5: Typical number of iterations until the convergence level was reached from different
initial values of θ for each model.

Comparing the number of iterations in Table 5 with the number of elements to
estimate in Table 3, it is evident that the size of θ is not the determinant factor for
the speed of convergence, since Model 3 has the highest number of elements and
Model 2 the smallest. The most likely reason for the slow convergence of Model
0 is that its log-likelihood function is flat or almost flat in certain dimensions and
since the Newton-Raphson method is based on the tangent, it takes considerably
higher number of iterations to reach the maximum. This issue could be addressed
by implementing “quasi-constraints” for model 0.
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5. Comparison of the fitted models

Several aspects of the parameter estimates and the model fits are of interest: the
shape of the parameters, the quality of the fit, patterns in the residuals, calculation
speed (number of iterations until convergence) and robustness of the models. In
the following, we compare the four models based on those properties.

The fitted parameter shapes strongly depend on the constraints imposed, which
becomes more obvious in the graphs that follow. This implies that the constraints
are a determining factor when deciding what time series process to use for gener-
ating mortality scenarios.

In a multi-population model, we expect a certain behaviour from its parame-
ters. In a perfect situation the common parameters should be able to capture the
true global mortality trend, in both age and time, amongst the populations as a
whole. If the underlying philosophy of the model is correct, then we would expect
that the country specific period effects all fluctuate around some constant level
in the long term. Significant differences from this level, in either range or shape
would mean that this particular population is somehow different from the other
populations and there should be a reason for this behaviour. The maximum likeli-
hood estimation is highly influenced by the population size and the countries with
bigger size should have a higher impact when estimating the common mortality
parameters.

The estimated parameters are shown in Figure 1. Due to the different magni-
tude of the parameters, we did not try to apply the same scale for every graph.

We notice in Figure 1 that the parameters for models 1 and 2 look similar: there
are some differences between the common β(x) in Model 1 and B(x) in Model 2,
but not enough to give rise to significant differences between the κ(t, i). Evidently
the proposed change for Model 2 is not significant in comparison to Model 1 and
it hardly effects the estimated parameters. Essentially this would lead to small
differences in the log-likelihood values between the models.

In all four models, due to the constraints applied (e.g.
∑

xB(x) = 0), the
country specific parameter α(x, i) is approximately equal to the average over time
of the crude mortality rates i.e.

α(x, i) ≈ log

∑
tD(x, t, i)∑
tE(x, t, i)

.

Differences exist, because of the non-linear form of the log-likelihood function, but
these are not easily visible.
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Figure 1: The estimated parameters for all of the models 0 - 3 [Males]
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The common time parameter K(t) for models 0, 1 and 2 is strictly decreasing
after 1970, showing consistent improvement in the global mortality of the pop-
ulations. Model 3 does not have a common time dependent parameter, but the
country specific κ1(t, i) evidently behave in a similar way to K(t). Comparing
models 0 and 3, we also note that B(x) in Model 0 and β1(x) in Model 3 are quite
similar. Alongside this, the country-specific period effects κ2(t, i) in model 3, while
individually different, have a similar shape and trend to the common period effect,
K(t) in model 0. We conclude, therefore, that K(t) in Model 0 picks up most of
the improvements in the six countries.

Additionally, the shape of B(x) and β1(x) in the models is consistent with
the empirical observation that the mortality rates have declined more rapidly at
younger ages than older ages.

Models 1, 2 and 3 have another common age parameter, decreasing over the
ages. For Model 1, β1(x) is quite similar in shape to B(x). However, the “value
added” through having the additional age effect relative to Model 2 comes through
the difference in the shape of the second age effect below age 70. Also, Model 3’s
β1(x) is negative after the age of 72 indicating that the mortality at those ages
tends to increase when falling at other ages. In this sense, therefore, β1(x) in
Model 3 is associated with changes in the overall level of mortality, while β2(x)
links in to changes in the slope of the mortality curve.

As expected, all of the common parameters behave similarly, which is an indi-
cation that the models capture the true global trend.

For Model 0, we see a country-specific behaviour of the β(x, i). Austria and
Belgium have country specific age effects that change sign and exhibit much more
variability than the other four countries. However, the latter is an artefact of the
constraint that

∑
x β(x, i) = 1 which acts in a different way if the β(x, i) change

sign. Indeed, we see that the κ(t, i) are less variable for Austria and Belgium to
compensate.

More generally, we can note that the country-specific period effects are all
varying around zero in all four models, in part reflecting the choice of identifiability
constraints.

We also find for model 3 that the κ2(t, i) exhibit the typical behaviour of an
autoregressive mean reverting process for each country i. The scale is considerably
smaller in comparison to the other model’s κ(t, i) and to compensate for this its
β2(x) parameter is substantially bigger than β(x, i), β(x) and B(x) for models 0,
1 and 2.

5.1. Explanation ratios

We compare the quality of the fit numerically by calculating, for each popula-
tion, in percentage the common explanation ratio – RC and the country specific
explanation ratio – RAC , defined by Li and Lee (2005) and shown in Table 6.

13



RC 100

[
1−

∑
x,t

[log m̂(x,t,i)−α(x,i)−B(x)K(t)]2∑
x,t

[log m̂(x,t,i)−α(x,i)]2

]

RAC 100

[
1−

∑
x,t

[log m̂(x,t,i)−α(x,i)−B(x)K(t)−β(x,i)κ(t,i)]2∑
x,t

[log m̂(x,t,i)−α(x,i)]2

]

Table 6: Explanation ratios for model 0.

The notation used in Table 6 is only for Model 0, but it is easy to derive the
formulas for the other models.2 The better the quality of the fit the better the
models explain the historical mortality data. We aim for a high explanatory per-
centage and values below 90% might be considered weak. Such populations, with
weak explanation ratios, are very specific and they should be reviewed separately.
Additionally we do not try to correct the jump-off bias at the end of the fit, as
Lee and Miller (2001) did for example, because this would mean re-estimating the
time dependent parameters and this would drift from the assumption of Poisson
distributed deaths.

In Table 7 we show the calculated explanation ratios for all models. The denom-
inator (Table 6) already includes the baseline, country-specific age effect, α(x, i),
so RC and RAC provide us with information on how much of an improvement there
is in the fit of the model over all years relative to a static age-dependent mortality
model.

Model 0 Model 1 Model 2 Model 3

RC RAC RC RAC RC RAC RC RAC

Austria 96 97 92 96 92 96 96 97

Belgium 95 97 94 96 86 94 96 97

Czech Republic 57 94 81 93 73 81 92 95

Denmark 5 89 58 88 42 88 89 91

Sweden 87 97 96 97 93 96 97 97

Switzerland 95 97 91 97 91 97 97 97

Table 7: The explanation ratios (%) for the models

2 Specifically, RC includes in the numerator the common age-period effect for models 1 and
2, and the first factors, β1(x)κ1(t, i), for model 3. RAC includes all country specific effects
in the numerator.
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We can see from Table 7 that Model 3 performs best across all countries. In
some countries, the inclusion of the country-specific component does not seem to
add much (e.g. Austria). However, for others, the country-specific component is
essential for getting a good fit.

Specifically, through all of the models, the explanation ratios for Denmark are
smaller than the rest of the countries. One reason for this could be the smaller
exposure (see Table 1). Additionally, although its mortality rates have been de-
creasing over time, the pace of improvement has been much slower in comparison
to the other populations. A major reason for this slow mortality improvement
might be the excessively high number of deaths from non-transmissible disease
such as cancer and heart disease, see for example the Health at a Glance 2011:
OECD Indicators (2011).

Also note that the explanation ratios RC for models 1 and 2 would be identical
if a two step estimation method had been used to find the optimal parameters.
However, since we maximise the full likelihood function, the changes made to the
second term in those models has an effect on the estimated values of B(x) and
K(t).

5.2. Standardized residuals

We also compare the quality of fit visually, by calculating the standardized
residuals Z(x, t, i)

Z(x, t, i) =
D(x, t, i)− E(x, t, i)m(x, t, i)√

E(x, t, i)m(x, t, i)

and plotting their heat maps. As stated by Cairns at al., (2011), if the model fits
the data well, then the standardized residuals should be independent of each other,
meaning that the heat plot should exhibit a high degree of randomness, with no
discernible patterns.

Heat plots of the residuals for each model and country are shown in Figure
2. We find that Switzerland and Sweden come the closest to what we hope to
find as noted above. In particular, Model 3 gives a very random looking plot for
Switzerland. However, in contrast to what we would hope to see, we can observe
patterns in most of the heat plots. Most obviously there is a significant cohort
effect present in several countries: Austria, Belgium and Czech Republic.

Additionally, less visible patterns can also be recognised. As a whole, the
models produce very robust, very similar heat plots. We can also note that, where
patterns can be detected, they tend to be more pronounced in models 1 and 2,
which have fewer parameters than the other two models. As noted above, Sweden
and Switzerland produce the most random plots, and it is not surprising, therefore,
that these two countries also have a lower empirical variance for the standardized
residuals.
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Figure 2: The standardized residuals heat plots for models 0 - 3 [Male]
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5.3. Model selection

Finally, we rank the models based on their Bayesian Information Criterion
value defined as

BIC value = -2[log-likelihood value] + log(N)keffective.

In Table 8 we estimate the BIC and rank the models.

N k keffective log-likelihood BIC rank

Model 0 9000 740 726 -46716.43 100043.08 ( 2 )

Model 1 9000 590 531 -48396.82 101628.38 ( 4 )

Model 2 9000 560 502 -48477.21 101525.12 ( 3 )

Model 3 9000 840 776 -46369.96 99805.38 ( 1 )

Table 8: The rank of the models based on their BIC value

Based on the BIC definition, the smaller its value the higher we rate the model.
Therefore the best model, based on the fitting qualities, is Model 3. Additionally,
as noted previously, the log-likelihood value of Model 1 and Model 2 is close and
this confirms the results from the parameter plots in Figure 1. We have tested
the four models with different data (for females and with an extra country that is
significantly different from the rest). The results were consistent and conclusive
as the ranks of the models never changed.

Note that the values of the log-likelihood function for models 1 and 3 are
reduced due to the “quasi-constraints” applied for those models as we mentioned
in section 4.2. Without the “quasi-constraints” the BIC values for those models
would be even lower showing that the common age effect model (model 3) has
indeed a significantly lower BIC value than the Li and Lee model (Model 0) for
the data in this study.

6. Forecasting mortality

Ultimately, we aim to generate joint scenarios for the mortality rates of all
six countries by extrapolating both the common and the country specific time
dependent parameters of the models. Models 0, 1 and 2 are very similar in those
terms as they all have a common K(t) parameter and another country specific
κ(t, i) parameter. Model 3 presents a different challenge, due to its two country
specific parameters κ1(t, i) and κ2(t, i).
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6.1. Initial investigation

Li and Lee propose to extrapolate the common and the country specific pe-
riod parameters in Model 0, respectively with a random walk with drift and an
autoregressive process. Our initial analysis is focused on whether those processes
are appropriate for the models considered in this paper (Table 2). More precisely,
in the next Table 9, we summarise the applied initial time series processes for each
model and their parameters.

Model Parameter Formula Process

Model 0

Model 1

Model 2

K(t) K(t) = d+K(t− 1) + E(t) Random walk with drift

κ(t, i) κ(t, i) = ϕ(i)κ(t− 1, i) + Z(t, i)
Autoregressive process

reverting to 0

Model 3

κ1(t, i) κ1(t, i) = ϕ(i)κ2(t− 1, i) + Z1(t, i)
Autoregressive process

reverting to 0

κ2(t, i) κ2(t, i) = ϕ(i)κ2(t− 1, i) + Z2(t, i)
Autoregressive process

reverting to 0

Table 9: The initial time series processes used for the common and the country specific time
dependent parameters for models 0, 1, 2 and 3.

In an ideal world there would be no correlations between those processes residu-
als structure. In other words we expect that the correlations ofA=corr(E(t),Z(t, i))
for models 0, 1 and 2 and B=corr(Z1(t, i),Z2(t, i)) for Model 3 should be very weak.
This, in practice, is not the case – for our data we observe a considerable linear
dependence – and the possibility of correlation between the random innovations is
potentially important in terms of its impact on the correlations in the short and
long term between mortality improvements in different countries. For Model 0 the
correlations A are very high – above 80%, for Model 1 and Model 2 they are at an
average level – around 50% and finally for Model 3 the correlations B are below
30%, which is considered weak.

6.2. Scenarios for Period Effects

Choosing a suitable time series process, is an essential step in the forecasting.
Clearly, we wish to use time series models that are strongly influenced by the
historical shape of the parameter estimates. However, the shape (Figure 1) is
highly influenced by the constraints that we have applied, see Table 4.

Clearly, from Figure 1, the common K(t) parameters for models 0, 1 and 2
exhibit a significant downwards trend after 1972 pointing to strong improvements
in mortality in all of the populations. Therefore we do not expect that there
would be any appreciable changes in the improvement rate (consistent, for example,
with the ideas of Oeppen and Vaupel (2002)),although some researchers state that
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future improvement rates might be weaker (see, for example, Olshansky et al.,
(2005) ).

For models 0, 1 and 2 we model the K(t) process as a random walk with drift,
meaning that the central forecast would be defined by this strong historical trend.
For Model 3 the country specific κ1(t, i) processed seem, in general, to follow
the trend observed in the other models. Therefore we model it as a multivariate
random walk, which, additionally, has a common drift parameter to ensure that
the different populations do not diverge too quickly.

Modeling the multivariate country specific time dependent parameters presents
a more interesting challenge for all of the models. We want to ensure that forecasts
are coherent between the populations and do not diverge significantly over time.
We can achieve this by applying multivariate time series processes, that are able
to capture the correlations between the countries. After some initial investigation,
the time series processes chosen for the models are specified in Table 10.

Model Parameter Formula Process

Model 0

K(t) K(t) = d+K(t− 1) + σE(t) Random walk with drift

κ(t, i) κ(t) = Φκ(t− 1) + CZ(t)
Vector Autoregression process

reverting to 0

Model 1

K(t) K(t) = d+K(t− 1) + σE(t) Random walk with drift

κ(t, i) κ(t) = dκ + κ(t− 1) + CZ(t)
Multivariate random walk

with drift

Model 2

K(t) K(t) = d+K(t− 1) + σE(t) Random walk with drift

κ(t, i) κ(t) = dκ + κ(t− 1) + CZ(t)
Multivariate random walk

with drift

Model 3

κ1(t, i) κ1(t) = dc + κ1(t− 1) + CZ1(t)
Random walk with

common drift term

κ2(t, i) κ2(t) = Φκ2(t− 1) + CZ2(t)

Vector Autoregression process

reverting to 0

(Φ is a diagonal matrix)

Table 10: The final time series processes used for the common and the country specific period
effects for models 0, 1, 2 and 3. κ(t) = (κ(t, 1), . . . , κ(t, 6))′ is a vector of country-specific period

effects, Φ is an autoregression matrix, C is a volatility matrix, d is the scalar drift for the
common period effect, dκ is a vector of drifts, dc is a vector of common drifts (i.e. all

components are equal), E(t) is a scalar sequence if i.i.d. standard normal innovations, and Z(t)
is a sequence of i.i.d. standard multivariate normal innovations that are independent of the

E(t).

In Figure 3 we plot for each model the extrapolated country specific time
dependent parameters using the specified time series processes.

19



Model 0
-0

.5
0.

0
0.

5
1.

0

Austria

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-1

.0
-0

.5
0.

0
0.

5
1.

0

Belgium

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-6

-4
-2

0
2

4

Czech Republic

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-6

-4
-2

0
2

4
6

Denmark

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-4

-2
0

2

Sweden

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-2

-1
0

1
2

3

Switzerland

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
Model 1

-1
0

-5
0

Austria

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-8

-6
-4

-2
0

2
4

Belgium

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-5

0
5

10
15

Czech Republic

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
0

5
10

15

Denmark

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-6

-4
-2

0
2

4
6

Sweden

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-1

5
-1

0
-5

0
5

Switzerland

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)

Model 2

-1
0

-5
0

Austria

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-8

-6
-4

-2
0

2
4

Belgium

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-5

0
5

10
15

Czech Republic

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
0

5
10

15

Denmark

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-6

-4
-2

0
2

4
6

Sweden

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)
-1

0
-5

0
5

Switzerland

Calendar Year
1961 1981 2001 2021 2041 2061

k(
t, 

i)

Model 3

-0
.0

05
0.

00
0

0.
00

5
0.

01
0 Austria

Calendar Year
1961 1981 2001 2021 2041 2061

k2 (t,
 i)

-0
.0

10
0.

00
0

0.
00

5
0.

01
0

Belgium

Calendar Year
1961 1981 2001 2021 2041 2061

k2 (t,
 i)

-0
.0

10
0.

00
0

0.
01

0

Czech Republic

Calendar Year
1961 1981 2001 2021 2041 2061

k2 (t,
 i)

-0
.0

10
0.

00
0

0.
01

0

Denmark

Calendar Year
1961 1981 2001 2021 2041 2061

k2 (t,
 i)

-0
.0

06
-0

.0
02

0.
00

2

Sweden

Calendar Year
1961 1981 2001 2021 2041 2061

k2 (t,
 i)

-0
.0

04
0.

00
0

0.
00

4

Switzerland

Calendar Year
1961 1981 2001 2021 2041 2061

k2 (t,
 i)

Figure 3: Forecasted country specific time dependent parameters for 50 years for Model 0 - Vector
autoregression process, Model 1 - Multivariate random walk with drift, Model 2 - Multivariate

random walk with drift, Model 3 - Vector autoregression process (Φ is diagonal matrix)
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In Figure 3, the first column represents individually the country specific pa-
rameters for each population under Model 0. We observe a lot of variation between
the historical country-specific period effects, with no strong common trends. The
choice of time series model (a multivariate mean reverting VAR(1) process) means
that we, in a simple way, achieve the desired property that the period effects fluc-
tuate around zero in the future. Specifically, it allows us to produce coherent
non-diverging mortality rate forecasts for all of the populations. Additionally, if
we calculate the eigenvalues for the Φ matrix in the VAR(1) process we can see
that all are less than one, so the process is stationary. Therefore, the evolution
over time of the individual variances in the forecast mortality rates, will mainly
be dominated in the long run by the random walk for the common period effect,
K(t). Those properties and the fairly easy implementation of the VAR(1) process
makes it a natural choice for our data.

The central line forecasts for some countries, like Denmark, Czech Republic or
Switzerland are significantly curved, reflecting the structure of the autoregressive
matrix, Φ, and the consequent interaction of the other country effects. The 95%
confidence intervals reflect the interaction between Φ and the volatility matrix, C.

The focus is now on the second and third column on Figure 3. As we mentioned
before, Model 1 and Model 2 behave in a very similar way and this is why we
review them together in this section. Going back to Figure 1 we notice that the
most significant difference between the parameter estimates for those models are
observed for the age parameters β(x) and B(x) and, even those roughly follow the
same trend. Therefore, the forecasted mortality rates will look very similar.

In figure 3 we find that all of the curves historically seem to follow a specific
trend, which is an important factor when considering the suitable time series pro-
cess. In comparison to Model 0, where the curves were just fluctuating around the
zero, this behaviour is very different. The trend is strongly down for Austria and
Switzerland; and strongly up for the Czech Republic and Denmark. It is these
differences that led to the use of a multivariate random walk with country specific
drifts rather than the VAR(1) model and this is reflected in the central trends and
wider fans in the long run. The model, therefore, allows for diverging mortality
rates, conflicting with the usual criterion (see, for example, Li and Lee, 2005, or
Cairns et al., 2011) the mortality rates in different populations should not diverge
over time.

Finally, the time specific constraints that we applied for those models (Table
4) mean that for any country i the country-specific period effect κ(t, i) is a linear
combination of the κ processes of the other five countries, which reduces the rank
of the 6 × 6-dimensional variance-covariance matrix of the joint κ(t) process to
five. Therefore one of its eigenvalues is always close to zero, so the Cholesky
decomposition applied in the estimation process might fail due to some rounding
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errors. We do not want to give any special treatment to a single country and to be
consistent, we propose to always use a variation of the Cholesky decomposition. We
decompose the covariance matrix(6×6) into the product of a unique lower triangular
matrix(6×5) and its transpose in contrast to the original Cholesky decomposition
where the unique lower triangular matrix is 6× 6. More details are provided in 8.

For Model 3, the historical κ2(t, i) (Figure 3, right hand column) exhibit more
consistent mean reversion in all countries compared to Model 0. This means
that the model can capture effectively the main improving trend in each coun-
try using the first set of parameters, β1(x) and κ1(t, i). The second bilinear term,
β2(x)κ2(t, i), then captures the small variations around that trend. We have chosen
a VAR(1) process, since it can account for those factors and ensures coherent fore-
casts between the populations. Additionally, we propose to simplify the VAR(1)
process by reducing the number of parameters to estimate. More precisely, we
set the Φ matrix to be diagonal and the values on the diagonal are not all equal.
Effectively, this reduces the parameters to estimate by 30 for this process. The
extrapolated curves closely resemble those we would obtain when applying indi-
vidual AR(1) processes for each country, but due to the covariance matrix in the
VAR(1) process we can preserve the coherent forecast. This process is stationary.
The eigenvalues of the variance-covariance matrix, for this model and for our data,
are all higher than zero, therefore it has full rank of 6. The “Quasi identifiability”
constraints do not lead to problems like those encountered in Model 1 and Model
2, but if for a different data set the rank is lower, the partial case of the Cholesky
decomposition will effectively solve this issue.

6.3. Mortality Scenarios

Based on the scenarios for the period effects we can now generate scenarios for
future mortality rates. In Figure 4 we plot forecast intervals for the log-mortality
rates for each model and each country. The future mortality forecasts are plotted
from the end of the fitted curves rather than the historical mortality values. For all
four models we find that the higher the age the narrower is the forecast confidence
interval. This reflects the age effects B(x), β(x, i) etc., which all tend to decrease
in magnitude as a function of age x.

The mortality forecasts for Model 1 and Model 2, unsurprisingly, are very
similar. The future log-mortality rates they predict are strongly influenced by the
country specific parameters. The strong local upward trend in κ(t, i) (Figure 3) for
countries like Denmark and the Czech Republic are affecting the forecast shifting it
up, worsening the mortality improvements over time, while for the other countries
the opposite can be observed. As a whole Model 1 and Model 2 forecasts are very
wide and do not seem to follow the general in sample mortality trend.
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Figure 4: Male log-mortality rates - logm(x, t, i) for Austria, Belgium, Czech Republic,
Denmark, Sweden and Switzerland forecasted into the future using Model 0 (40 years period),

Model 1 (50 years period), Model 2 (45 years period) Model 3 (35 years period)
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In contrast to models 1 and 2, Model 0 produces forecasts that seem to follow
the in sample mortality trend better, and its confidence intervals are smaller due
to the stationary VAR(1) process. It can be seen for Denmark and the Czech
Republic that the log-mortality rates are a bit curved due to the irregular shape
of its country specific parameters.

Model 3’s forecasts also seem to follow the in sample mortality trend, but in
comparison to Model 0, it tends to predict more conservative mortality improve-
ments in the future. The major reason for this is the common drift applied in the
multivariate random walk (Table 9), when extrapolation the κ1(t, i) parameter.
Its cumulative value is higher when for example using country specific drifts. This
effectively shifts up the future parameter estimates resulting in more conservative
mortality forecasts. The forecasts reflect the structure of the diagonal autoregres-
sive matrix, Φ, and, since there is no interaction of the other country effects, they
are very straight. Also the 95% confidence intervals are typically bigger than the
forecast intervals for Model 0.

7. Robustness

In this section we discuss how robust the estimates of the parameters are in
relation to changes in the time period used to fit the models. Our analysis is
based on data for the countries in Table 1 with the time period being reduced by
10 years. Therefore we now fit the models to data of 30 ages (from 60 to 89) and
40 years (from 1961 to 2000). Figures 6, 7 and 8 present the estimated parameters
from the full data set and the reduced data set.

For all models we have estimated the following cases outlined in more detail in
8:

(A) one step MLE using the complete (non–reduced) dataset,

(B) one step MLE using the reduced dataset,

(C) one step MLE using the reduced dataset where the initial parameter val-
ues are the final estimates from 2 step based MLE.

One characteristic of a robust model is that estimates of historical age and
period effects should not be too sensitive to changes in the range of ages or years
used to calibrate the model. Parameter estimates should change a bit because
we have different amounts of data to work with, but they should not jump to a
solution that is qualitatively quite different. Based on this limited experiment,
Models 1, 2 and 3 appear to be robust (Figures 7 and 8). Due to the similarities
between Model 1 and Model 2, their robustness plots are very similar and they
can not be visually distinguished. Therefore we only consider ones the plot for
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both of them - Figure 7. For Model 3, for example, (Figure 8) when we compare
the full dataset (solid line) with the reduced dataset (dots) we see that all of
the estimated age and period effects qualitatively have a similar shape. Some
systematic differences can be seen that are, in reality, the consequences of the
identifiability constraints being applied over a different range of years (e.g. the
κ1(t, i)). Also, it needs to be noted that the estimated β2(x) has been rescaled in
the plot with a counterbalancing rescaling of the κ2(t, i). The reason for this is
that, because β2(x) changes sign, the constraint that the β2(x) sum to 1 makes
it more sensitive to small changes in the underlying shape. A different constraint
could be applied (e.g.

∑
x (β2(x))

2
= 1) that might be less sensitive, but this was

not felt to be necessary and does not affect the quality of fit or have any impact
on the forecasts of mortality rates.

In contrast, Model 0 did exhibit robustness problems. First, focus on the solid
and dashed lines in each on the sub-plots in Figure 6: Cases A and B using the
same one-step MLE algorithm. Apart from the α(x, i), all of the plots exhibit
significantly and qualitatively different shapes for the parameter estimates based
on the two datasets.

One notable feature is that, for Case B, the β(x, i) are all quite similar to the
global B(x) plot. If, in fact, the β(x, i) were all equal to B(x) we would have
a troubling identifiability problem: we could take an arbitrary function ε(t) and
replace κ(x, i) by κ̃(t, i) = κ(t, i) + ε(t), and K(t) by K̃(t) = K(t)− ε(t) with no
impact on the fitted values of logm(x, t, i). Thus we see that the distinctive shape
of K(t) for the reduced dataset is almost cancelled by the shapes of the κ(t, i).

To investigate this robustness problem further we tried estimating the Model
0 parameters using an alternative 2-step approach (see 8). The second step of
this maximises the same log-likelihood function as Case B and so should converge
to the same solution. However, for the reduced dataset it does not, it converges
to a quite different solution (Figure 6, dotted curves) that is much more like the
solid curve (Case A, full dataset).3 A possible explanation for this is that the full
likelihood function for the Li and Lee model has a problem with multiple maxima:
a global maximum in Case B that has a log-likelihood that is 155 higher than the
alternative local maximum in Case C.

To investigate the multiple maximum question further, let θB and θC be the
two vectors of parameter estimates and define

l(ρ) = log-likelihood (θB + ρ(θC − θB)) . (4)

We then plot the log-likelihood as it evolves along a straight line between the

3 Note that, we also applied the 2-step procedure to the full dataset, but this produced the
same parameter estimates as Case A.
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two local maxima. l(ρ) is shown in Figure 5, and we can see a very substantial
difference in the likelihood between θB and θC . The shape observed is consistent
with the function having multiple maxima, although it does not prove it. But it
does point to the need for additional quasi-identifiability constraints for Model 0.
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-1
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l(r)

-0.3 0 0.49 1 1.3
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Figure 5: The log-likelihood function for Model 0, l(ρ) along the straight line connecting θB
(Case B) and θC (Case C).
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Figure 6: Estimated parameters for Model 0: Case (A) – the solid line;
Case (B) – the dashed line; Case (C) – the dotted line. No scaling is applied.
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Figure 7: Estimated parameters for Model 1: Case (A) – the solid line;
Case (B) – the dotted line. No scaling is applied.
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Model 3
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Figure 8: Estimated parameters for Model 3: Case (A) – the solid line;
Case (B) – the dotted line, where κ2(t, i) is multiplied

by -1/26 and β2(x) multiplied by -26.
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8. Conclusion

We compared the multi-population mortality model by Li and Lee (2005) and
two of its variants with the Common Age Effect (CAE) model by Kleinow (2014)
using mortality data from six countries. All models have identifiability problems
that have been addressed by applying exact and quasi identifiability constraints.
The use of maximum likelihood estimation allows a fair comparison of the models
on the basis of the Bayesian Information Criterion as well as graphical diagnostics.
We find that the simplified special cases of the Li and Lee model do not perform
well in sample, while the full Li and Lee and CAE models produce reasonable
results, with the CAE model performing in a more satisfactory way against several
of the criteria. Plots of residuals point to a need for additional cohort effects in
some countries.

The Li and Lee model fitted the data for the six countries quite well, but exhib-
ited robustness problems along with associated problems with slow convergence.
This points to a need for caution in the use of that model and, potentially, for the
introduction of some quasi identifiability or other constraints.

We also developed forecasting models with satisfactory results for both the
Li and Lee and CAE models. The different models produced somewhat different
forecasts in terms of central trajectories and the amount of uncertainty, pointing to
model risk as an important consideration in an overall assessment of future levels
of mortality.
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Appendix A

Calculation notes on the models

I step MLE
Initial values
The starting points chosen for B(x), β(x), β(x, i), β1(x, i) and β2(x, i) should be
different from zero. Any other set of values, close to the solution is acceptable for
the rest of the parameters.

Using the Newton-Raphson method Model

1. Estimate α(x, i) [ All ]
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2. Dependent on the model • Estimate the global time parameter K(t) [ 0,1,2 ]

• Estimate the time/country-specific κ1(t, i) [ 3 ]

3. Dependent on the model • Estimate the global age parameter B(x) [ 0,1,2 ]

• Estimate the global age parameter β1(x) [ 3 ]

4. Dependent on the model • Estimate the time/country-specific κ(t, i) [ 0,1,2 ]

• Estimate the time/country-specific κ2(t, i) [ 3 ]

5. Dependent on the model • Estimate the age/country-specific β(x, i) [ 0 ]

• Estimate the global β(x) parameter [ 1 ]

• Estimate the age/country-specific β2(x, i) [ 3 ]

Apply the constraints for the country specific parameters

6. Update the values of α(x, i) [ All ]

7. Dependent on the model • Apply the constraints for κ(t, i) [ 0,1,2 ]

• Apply the constraints for κ1(t, i) [ 3 ]

• Apply the constraints for κ2(t, i) [ 3 ]

8. Dependent on the model • Apply the constraints for β(x, i) [ 1 ]

Apply the time specific constraints

9. Dependent on the model • Apply the new constraints for κ(t, i) [ 1,2 ]

• Apply the constraints for κ2(t, i) [ 3 ]

Note: Every time a constraint is applied we remove or divide by something, but to preserve
the same model, we need to multiply or add immediately by the same thing. Up to this point
those changes were absorbed by the other parameters in the models. The new constraint
does not require to correct the change occurred by dividing or removing value to preserve
the model. In fact it has no effect whether we add those values to the other parameters
(Model 2) or it is not possible to add them (models 1 and 3).

Apply the constraints for the global parameters (only once)

10. Dependent on the model • Apply the constraints for K(t) [ 0,1,2 ]

• Apply the constraints for B(x) [ 0,1,2 ]

• Apply the constraints for β(x) [ 1 ]
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• Apply the constraints for β1(x) [ 3 ]

• Apply the constraints for β2(x) [ 3 ]

11. Return to step 1 until the log-likelihood value converges.

• Convergence is deemed to have occurred when the change in
the log-likelihood is less than 0.0001.

Note: Also the order of the steps is essential and it does matter.

Two Step MLE
The two step based maximum likelihood estimation can be applied only for
Model 0 and it is impossible for the other models due to the presence of the
bilinear terms: common parameter multiplied by a country specific one.

1. Using the Lee and Carter model, define:

logm(x, t) = A(x) +B(x)K(t)

and then estimate the parameters A(x), B(x) and K(t) for the combined data set of all
of the populations. The log-likelihood function l of the model is

l =
∑
x,t

[D(x, t) log(m(x, t))− E(x, t)m(x, t)] + constant

which is then optimised using the Newton-Raphson iterative scheme. The A(x) parameter
is used only for the estimation process and it does not affect the estimation any further.
Also the standard constraints are imposed i.e. B(x) should sum to unity and K(t) to zero.

2. Using the estimated B(x) and K(t) as fixed, constant values, we apply MLE for Model 0
Using the Newton-Raphson method

2.1 Estimate α(x, i)

2.2 Estimate κ(t, i)

2.3 Estimate β(x, i)

Apply the constraints for the country specific parameters

2.4 Update α(x, i)

2.5 Apply the constraints for κ(t, i)

2.6 Apply the constraints for β(x, i)

Return to step 2.1 until the log-likelihood value converges (threshold level is set to 0.0001).
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Appendix B

Cholesky decomposition (partial case)
The time specific constraints (Table 4) over the local κ(t, i) parameter for Model
1 and Model 2 diminishes the rank of the variance–covariance matrix by one,
and, therefore, one of the eigenvalues is zero. Therefore, the standard Cholesky
decomposition can not be applied. For our data we have a 6× 6
variance–covariance matrix, but its rank is 5. The solution that we apply is a
partial Cholesky decomposition as we decompose the variance–covariance matrix
into a product of a unique lower triangular matrix of dimension 6× 5 and its
transpose. In the general case (matrixn×n) we have:

Vn×n =


v1,1 v1,2 . . . v1,n

v2,1 v2,2 . . . v2,n
...

...
. . .

...

vn,1 vn,2 . . . vn,n

 = Ln×n−1L
t
n−1×n ≡

≡



l1,1

l2,1 l2,2 0
l3,1 l3,2 l3,3
...

...
...

. . .

ln−1,1 ln−1,2 ln−1,3 . . . ln−1,n−1

ln,1 ln,2 ln,3 . . . ln,n−1





l1,1 l2,1 l3,1 . . . ln−1,1 ln,1

l2,2 l3,2 . . . ln−1,2 ln,2
. . .

...
...

...

0 ln−2,n−2 ln−1,n−2 ln,n−2

ln−1,n−1 ln,n−1

 .

Therefore by multiplying Ln×n−1L
t
n−1×n and equating the result to V , we can

derive relationships for the elements of the L matrix.
We can see that for the diagonal elements (li,i) there is a calculation pattern:

li,i =

√√√√vi,i −
i−1∑
j=1

l2i,j,

for the elements below the diagonal (li,k, where i > k) there is also a calculation
pattern:

li,k =
1

lk,k

(
vi,k −

k−1∑
j=1

li,jlk,j

)
.

The only different calculation pattern is for the ln,n−1-th element:

ln,n−1 =
√
vn,n − (l2n,1 + l2n,2 + . . .+ l2n,n−2).
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