
 
 

 
  

Copyright  CUBIST Consortium 2010-2013 
 

Combining and Uniting Business Intelligence with Semantic Technologies 
Acronym: CUBIST  
Project No: 257403 

Small or Medium-scale Focused Research Project 
 FP7-ICT-2009-5 

Duration: 2010/10/01-2013/09/30 
 
 
 

 
 
 
 

Semantic ETL from structured data sources v.2 
Abstract: This deliverable will provide approaches for automated or semi-automated 
mapping of structured enterprise data sources (databases) to the RDF conceptual 
model, so that they can be integrated with the RDF triple store. 

Type   Report 

Document ID: CUBIST  D2.2.2. 

Work package: WP2 

Leading partner: SAP 

Author(s): Katja Pfeifer (SAP) 

Dissemination level:  PU 

Status:  final 

Date:  26 October 2012 

Version:  1.0 

 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 2 / 18 
                

Versioning and contribution history 
 
Version 1. Description Contributors 

0.1 Draft (Introduction, Semantic ETL, Semantic ETL from 
structures data sources in CUBIST) 

Katja Pfeifer (SAP)  

0.2 RDB2RDF + tools update  Alex Simov (ONTO) 

0.3 Moved general Semantic ETL into Introduction, 
Extended information on Semantic ETL in CUBIST 

Katja Pfeifer (SAP) 

0.4 Conclusion Katja Pfeifer (SAP) 

0.5 Overall reading + minor corrections Alex Simov (ONTO) 

1.0 Full Review  Axel Schröder (SAP)  
Cassio Melo (CRSA) 

 
  



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 3 / 18 
                

Table of contents 
TABLE OF CONTENTS ................................................................................................................................ 3 
1 INTRODUCTION ................................................................................................................................. 4 
2 W3C RDB2RDF UPDATE .................................................................................................................... 6 

2.1 DIRECT MAPPING................................................................................................................................. 6 
2.1.1 Example ..................................................................................................................................... 6 

2.2 R2RML .............................................................................................................................................. 7 
2.2.1 Mapping Overview ..................................................................................................................... 7 
2.2.2 Examples ................................................................................................................................... 8 

3 RDB2RDF IMPLEMENTATIONS ..................................................................................................... 11 
3.1 DB2TRIPLES (UPDATE) ........................................................................................................................ 11 
3.2 ULTRAWRAP ...................................................................................................................................... 11 
3.3 D2RQ PLATFORM (UPDATE) ............................................................................................................... 12 

4 SEMANTIC ETL FROM STRUCTURED DATA SOURCES IN CUBIST ...................................... 13 
4.1 WP7 HWU ........................................................................................................................................ 13 

4.1.1 Summary of ETL process .......................................................................................................... 13 
4.2 WP8 SAS .......................................................................................................................................... 14 

4.2.1 Summary of ETL process .......................................................................................................... 14 
4.3 WP9 INN .......................................................................................................................................... 16 

4.3.1 Summary of ETL process .......................................................................................................... 16 

5 CONCLUSION .................................................................................................................................... 18 

 
 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 4 / 18 
                

1 Introduction 
This deliverable gives updates on the Semantic Extract-Transfer-Load (ETL) process from structured 
sources with respect to deliverable D2.2.1. It focuses on updates of techniques and implementation for 
the Semantic ETL process. Furthermore, it motivates the tools used for the Semantic ETL process for 
the three CUBIST use cases based on the use case specific data sets (see use case specific data 
interface design documents D7.2.1, D8.2.1 and D9.2.1) and the specific requirements. Additionally, 
the deliverable will give a short summary of the concrete Semantic ETL processes for the three 
CUBIST  use  cases.  Practical  details  of  how  data  is  extracted  from  sources  and  loaded  into  the  
integrated triple store have been provided in D2.3.1 for M18 of CUBIST, and will be provided in 
D2.3.2 for M30 of CUBIST. 

The  term  Semantic  ETL  refers  to  the  ETL  term  used  in  “classical”  BI.  It  recaps  the  process  of  
federating data from various sources into a data warehouse by extracting (i.e. pulling the data from the 
sources), transforming (i.e. cleansing and enriching the data –e.g. with time stamps- and transforming 
it in order to suit the overall schema of the data warehouse) and loading the data (i.e. finally storing 
the transformed data in the data warehouse).  

The Semantic  ETL process for  structured data  sources differs  from traditional  ETL in the following 
points: 

 The data is not transformed and mapped to database tables, but to a graph structure. 
 The federated data is not stored in a Data Warehouse, but in a Triple Store instead. 

The general process of Semantic ETL is illustrated in Figure 1. The extraction and transformation step 
differs depending on the data sources and the target structure. We will present this two steps separated 
for all three use cases. Outcome of this two steps are triple files of different formats (RDF/XML, N3, 
N-Triple, etc.) that have to be loaded into the triple store afterwards.  

 
Figure 1: Semantic ETL Process 

 

In Deliverable D2.2.1 we analysed techniques and tools for the Semantic ETL process – especially for 
the extraction and transformation process. In this deliverable, we will give an update on such tools and 
discuss the application for the Semantic ETL process for the three CUBIST use cases. 

This deliverable is structured as follows: In Section 2 we review the updates on Relational Databases 
to RDF (RDB2RDF) techniques especially in context with W3C recommendations. Section 3 provides 
updates on specific tools/ implementations for Semantic ETL from structured data sources with 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 5 / 18 
                

respect to D2.2.1. The application and the proper selection of the right tools for each CUBIST use case 
is discussed in Section 4. Finally, Section 0 concludes the document. 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 6 / 18 
                

2 W3C RDB2RDF Update 
By the time of preparing this document, two W3C RDB2RDF1 documents became official 
recommendations. This means that the specifications have gone through extensive community review 
and revision and that R2RML2 and Direct Mapping3 are now considered stable enough for wide-spread 
distribution. In the following two sections we give an overview and examples of those two standards. 

2.1 Direct Mapping 

The direct mapping defines an RDF Graph representation of the data in a relational database. The 
direct mapping takes as input a relational database (data and schema), and generates an RDF graph 
that is called direct graph. 

Foreign keys in relational databases establish a reference from any row in a table to exactly one row in 
a (potentially different) table. The direct graph conveys these references, as well as each value in the 
row. Note that the direct graph structure is predefined by the database schema and cannot be adjusted 
for custom RDF Graph structures. The latter is supported by the R2RML mapping language described 
in the next section. 

2.1.1 Example 
A simple database of two tables will demonstrate how direct (RDF) graph is generated. The two tables 
have private key column ID and one of them (People) refers the other one (Addresses) via foreign key 
(addr) 
 

People 

PK   Address(ID) 

ID fname addr 
7 Bob 18 

8 Sue NULL 

 

Addresses 
PK   

ID city state 

18 Cambridge MA 

 

Given a base IRI http://foo.example/DB/, the direct mapping of this database produces a direct graph: 
 

@base <http://foo.example/DB/> . 

                                            
 
1 http://www.w3.org/2001/sw/rdb2rdf/ 
2 http://www.w3.org/TR/r2rml/ 
3 http://www.w3.org/TR/rdb-direct-mapping/ 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 7 / 18 
                

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 
 
<People/ID=7> rdf:type <People> . 
<People/ID=7> <People#ID> 7 . 
<People/ID=7> <People#fname> "Bob" . 
<People/ID=7> <People#addr> 18 . 
<People/ID=7> <People#ref-addr> <Addresses/ID=18> . 
<People/ID=8> rdf:type <People> . 
<People/ID=8> <People#ID> 8 . 
<People/ID=8> <People#fname> "Sue" . 
 
<Addresses/ID=18> rdf:type <Addresses> . 
<Addresses/ID=18> <Addresses#ID> 18 . 
<Addresses/ID=18> <Addresses#city> "Cambridge" . 
<Addresses/ID=18> <Addresses#state> "MA" . 

 

In this expression, each row, e.g. (7, "Bob", 18), produces a set of triples4 with a common subject. The 
subject is an IRI formed from the concatenation of the base IRI, table name (People), primary key 
column name (ID) and primary key value (7). The predicate for each column is an IRI formed from 
the  concatenation  of  the  base  IRI,  table  name  and  the  column  name.  The  values  are  RDF  literals  
formed from the lexical form of the column value. In the example each foreign key produces a triple 
with a predicate composed from the foreign key column names, the referenced table, and the 
referenced column names. The object of these triples is the row identifier (<Addresses/ID=18>) for the 
referenced triple. Note that these reference row identifiers must coincide with the subject used for the 
triples generated from the referenced row. The direct mapping does not generate triples for NULL 
values.  

2.2 R2RML 
R2RML is a language for expressing customized mappings from relational databases to RDF datasets. 
Such mappings provide the ability to view existing relational data in the RDF data model, expressed in 
a structure and target vocabulary of the mapping author's choice. With R2RML a mapping author can 
define highly customized views over the relational data. 

Every R2RML mapping is tailored to a specific database schema and target vocabulary. The input to 
an R2RML mapping is a relational database that conforms to that schema. The output is an RDF 
dataset5, as defined in SPARQL, which uses predicates and types from the target vocabulary. The 
mapping is conceptual; R2RML processors are free to materialize the output data, or to offer virtual 
access through an interface that queries the underlying database, or to offer any other means of 
providing access to the output RDF dataset. 

R2RML mappings are themselves expressed as RDF graphs and written down in Turtle syntax6. 

2.2.1 Mapping Overview 

An R2RML mapping refers to logical tables to retrieve data from the input database. A logical table 
can be one of the following: 

                                            
 
4 A triple is composed by a subject, a predicate and an object. 
5 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#rdfDataset 
6 http://www.w3.org/TR/turtle/ 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 8 / 18 
                

 A base table; 
 A view; or 
 A valid SQL query (called an R2RML view because it emulates a SQL view without 

modifying the database). 

Each logical table is mapped to RDF using a triples map (Figure 2). The triples map is a rule that 
maps each row in the logical table to a number of RDF triples. The rule has two main parts: 

1. A subject map that generates the subject of all RDF triples that will be generated from a 
logical table row. The subjects often are IRIs that are generated from the primary key 
column(s) of the table. 

2. Multiple predicate-object maps that consist of predicate maps and object maps (or referencing 
object maps). 

Triples are produced by combining the subject map with a predicate map and object map, and 
applying these three to each logical table row. For example, the complete rule for generating a set of 
triples might be: 

 Subjects: A template http://data.example.com/employee/{empno} is used to generate 
subject IRIs from the empno column. 

 Predicates: The constant vocabulary IRI ex:name is used. 
 Objects: The value of the ename column is used to produce an RDF literal. 

By default, all RDF triples are in the default graph of the output dataset. A triples map can 
contain graph maps that place some or all of the triples into named graphs instead. 

 
Figure 2. R2RML overview diagram 

2.2.2 Examples 
 

The following example database will be used in the following simplified examples. It consists of two 
tables, EMP and DEPT, with one row each: 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 9 / 18 
                

 

Extracting Records From a Single Table 
The following R2RML mapping document will produce triples describing employees from the EMP 
table. The example below covers a subset of the table fields: 

@prefix rr: <http://www.w3.org/ns/r2rml#>. 
@prefix ex: <http://example.com/ns#>. 
<#TriplesMap1> 
    rr:logicalTable [ rr:tableName "EMP" ]; 
    rr:subjectMap [ 
        rr:template "http://data.example.com/employee/{EMPNO}"; 
        rr:class ex:Employee;  
]; 
rr: predicateObjectMap [ 
        rr:predicate ex:name; 
        rr:objectMap [ rr:column "ENAME" ]; 
]. 

 
The resulting RDF contains two statements: one introducing a single entity of type ex:Employee and a 
second statement assigning it a name property. 
 

<http://data.example.com/employee/7369> rdf:type ex:Employee. 
<http://data.example.com/employee/7369> ex:name "SMITH". 

 

Computing a Property with an R2RML View 
The following example defines a R2RML View (outside the database) pre-calculating certain 
properties (STAFF) and then refers this view from a triples map: 

<#DeptTableView> rr:sqlQuery """ 
SELECT DEPTNO, 
       DNAME, 
       LOC, 
       (SELECT COUNT(*) FROM EMP WHERE EMP.DEPTNO=DEPT.DEPTNO) AS STAFF 
FROM DEPT; 
""". 
 
<#TriplesMap2> 
    rr:logicalTable <#DeptTableView>; 
    rr:subjectMap [ 
        rr:template "http://data.example.com/department/{DEPTNO}"; 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 10 / 18 
                

        rr:class ex:Department; 
    ]; 
    rr:predicateObjectMap [ 
        rr:predicate ex:name; 
        rr:objectMap [ rr:column "DNAME" ]; 
    ]; 
    rr:predicateObjectMap [ 
        rr:predicate ex:location; 
        rr:objectMap [ rr:column "LOC" ]; 
    ]; 
    rr:predicateObjectMap [ 
        rr:predicate ex:staff; 
        rr:objectMap [ rr:column "STAFF" ]; 
    ]. 

 

The result RDF (note the staff property computed in the view): 

<http://data.example.com/department/10> rdf:type ex:Department. 
<http://data.example.com/department/10> ex:name "APPSERVER". 
<http://data.example.com/department/10> ex:location "NEW YORK". 
<http://data.example.com/department/10> ex:staff 1. 

 

Linking Two Tables 
The following fragment builds a bridge between the two tables expressed as an object property in RDF: 

<#TriplesMap1> 
    rr:predicateObjectMap [ 
        rr:predicate ex:department; 
        rr:objectMap [ 
            rr:parentTriplesMap <#TriplesMap2>; 
            rr:joinCondition [ 
                rr:child "DEPTNO"; 
                rr:parent "DEPTNO"; 
            ]; 
        ]; 
    ]. 

 

It performs a join between the EMP table and the R2RML view defined in the previous example, on 
the DEPTNO columns. The objects will be generated from the subject map of the parent triples map, 
yielding the desired triple: 

<http://data.example.com/employee/7369> ex:department 
<http://data.example.com/department/10>. 

 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 11 / 18 
                

3 RDB2RDF Implementations 
This section provides an update on the current implementations of the W3C RDB2RDF standards. It 
does not cover all the tools listed as accepted RDB2RDF implementations7 due to various reasons – 
insufficient information, limited reusability, etc. 

3.1 db2triples (update) 
The db2triples8 implements the latest versions of both Direct Mapping and R2RML. It was introduced 
in the previous version of this document (D.2.2.1). However, it was neither aligned with the latest by 
versions of the DM and R2RML at that time, nor was it stable enough to be used in CUBIST. The 
latest release of db2triples shows significant improvement and it was successfully deployed for the 
ETL in one of the use cases. Details on the actual ETL process can be found in section 4.3. 

In a nutshell, db2triples accepts as input RDBMS connection parameters and a R2RML transformation 
document (and no mapping in case of Direct Mapping mode). The output is the RDF dump of the 
database data based on the transformation mode used. The tool manages the memory efficiently, 
which in turn enables it to process large amounts of data. 

Supported RDBMS: MySQL, PostgreSQL 

License: LGPL 

3.2 Ultrawrap 
Ultrawrap9 is a RDB2RDF wrapper system that automatically directly maps relational database 
schema into an OWL ontology and exposes the relational database contents as RDF and through a 
SPARQL endpoint using the W3C Direct Mapping. Additionally, users can manually create custom 
mappings using the R2RML mapping language.  

Ultrawrap's unique architecture enables SPARQL queries to be optimized by the SQL engine. 
Therefore, a SPARQL query’s execution time is comparable to its semantically equivalent SQL 
queries execution time.  

 
Figure 3. Ultrawrap’s architecture scheme. 

 

                                            
 
7 http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations 
8 https://github.com/antidot/db2triples/ 
9 http://www.capsenta.com/product.html 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 12 / 18 
                

Ultrawrap (Figure 3) comprises of two components: Ultrawrap Compile and Ultrawrap Server. 
Ultrawrap Compile only runs at the beginning of the execution and then Ultrawrap Server continues 
and sets up the SPARQL endpoint on a Jetty Server. 

The following diagram (Figure 4) illustrates the workflow of these two components: 

 
Figure 4. The workflow of Ultrawrap Compile and Ultrawrap Server. 

At compile time, an OWL ontology is extracted based on the database schema definition, along with a 
Direct Mapping expressed in R2RML. This mapping serves as a backbone for customized RDF graph 
mappings. On the base of this mapping, a triple view is generated to display a logical RDF 
representation of the relational data. 

At runtime, the incoming SPARQL requests are rewritten in SQL without any optimisation. It is 
responsibility of the specific RDBMS optimiser to build optimal query plan for the SQL queries. 

Supported RDBMS: Oracle, IBM DB2, Microsoft SQL Server, PostgreSQL 

License: commercial 

3.3 D2RQ Platform (update) 
This tool was described in the previous version of this document (D.2.2.1) as one of the candidates to 
transform relational data into RDF triples. Some updates regarding the W3C specification advances: 

 Direct Mapping support – Announced as experimental feature, Direct Mapping can now be 
used instead of the native D2RQ mapping. 

 R2RML – It is still not supported in the current version, although it was initially scheduled for 
Q2 of 2012. 

 SPARQL 1.1 – Preliminary support announced in version 0.8 (12 March, 2012). 

Supported RDBMS: MySQL, PostgreSQL, MS SQL Server, Oracle, HSQLDB 

License: Apache License v.2.0 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 13 / 18 
                

4 Semantic ETL from Structured Data Sources in CUBIST 
The following Section gives an update on the semantic ETL from structured data sources in CUBIST. 
Deliverable D2.2.1 and the previous sections analysed the state of the art of existing tools for this task. 
Furthermore, D2.3.1 already discussed preliminary semantic ETL processes for the three use cases. 
We will now recall the structured data sources for each use case and discuss the proper tools. The final 
Semantic ETL process for each use case will be discussed in deliverable D2.3.2. 

4.1 WP7 HWU 
The  structured  data  for  this  use  case  mainly  exists  in  the  two  databases  EMAP and  EMAGE being  
described in detail in the Data and interface design document D7.2.1. The data is complemented by a 
comma-separated values file containing Theiler stage information. 

Due to the involvement of different types of structured data and the request to map this data, we 
identified Talend Open Studio10 for Data Integration as the best candidate tool for the semantic ETL 
process in CUBIST. On the one hand, it offers a great variety of components to integrate all popular 
types of RDBMS, different types of local files (CVS, XML, and TXT) and different kinds of data 
processing (aggregation, filtering, sorting, mapping, etc.). On the other hand, it provides additional 
RDF components to parse and serialize RDF data. Its graphical user interface makes it easy to use and 
the application of contexts allows an easy adaption of the ETL process to different environments. 
Moreover, the viral GPL license does not imply any restrictions on the usage and the outcomes of the 
tool. 

4.1.1 Summary of ETL process 
The ETL process is split into sub-jobs responsible for specific input data (Gene, Theiler Stage, Tissue, 
Textual Annotations and Experiment data). Each sub-job consists of the following major processing 
steps: 

1. Fetching the data from a database or a file; 

2. Cleaning and Normalizing the input data; 

3. Generating the RDF graph structure; 

4. Serialization to a set of files. 

The first step is relatively trivial in case of fetching data from a tabular file, as it only covers reading 
the file with a suitable Talend Open Studio component and passing the data through. When data is 
retrieved from the databases EMAGE and EMAP it is filtered with the help of corresponding SQL 
queries and then passed to the next step. Step 2 covers cleaning the data - especially removing 
whitespaces and special characters (e.g., dots) that cause problems when directly transforming to the 
triple data. Furthermore, uniform identifiers (URI) are generated. In step 3 triple data is generated 
according to the classes and properties defined in the ontology and based on the input data. Finally, in 
step  4  all  generated  triples  are  written  into  temporary  files  in  N-Triple  format.  This  file  format  was  
chosen  as  it  is  eminently  suitable  for  streaming  the  data.  The  temporary  N-Triple  files  generated  
during the sub-jobs are collected and united in a post procedure (post-job) and written to one single 
output file to facilitate bulk loading of the data into the triple store (Figure 5). 

 

                                            
 
10 http://de.talend.com/products/talend-open-studio 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 14 / 18 
                

 
Figure 5. Talend Open Studio Post-job to summarize the output of the sub-jobs 

 

An example of a sub-job – the one responsible for the transformation of Tissue data – is depicted in 
Figure 6. The processing steps 2 and 3 are executed in one step, as the data cleaning and normalization 
task is not too heavy. First the relevant data is read from the database. The retrieved data is then 
cleaned and mapped onto triples. Finally, the triples are written into temporary files. 

 

 

Figure 6. Talend Open Studio Sub-job for the transformation of tissue data. 

 

4.2 WP8 SAS 
The structured data provided by Space Applications Services is the CUBIST Space Data Pack – a TSV 
file including 30 days of pre-processed telemetry data. Telemetry measurements are taken each second 
for more than 200 parameters. From this it follows that a huge amount of data has to be transformed 
and more than 200 parameters have to be described/named for the transformation process. As a 
manual handling of this task is impractical and error-prone Talend Open studio for Data Integration 
was again chosen as the proper tool for the semantic ETL process. As already mentioned, it offers a 
great variety of components and it is easy to use. It provides a programming interface to automate the 
description of the more than 200 parameters. Furthermore, it scales well to large amounts of data. 

4.2.1 Summary of ETL process 
The transformation expects as input a TSV file or a set of TSV files (if the input is split into smaller 
pieces). The result is one or more RDF files corresponding to the input files. The representation format 
of  the  resulting  RDF  is  TURTLE  which  is  one  of  the  most  efficient  storage  formats  and  has  the  
advantage of being relatively human readable.  

To provide further readability and data storage, the transformation process uses namespaces (mdb, 
xsd, rdf) to abbreviate repeating URIs. The ETL job – depicted in Figure 7 consists of a pre-job and 
the following main transformation. The pre-job takes the input files (TSVFiles) and produces for each 
a result file containing the namespaces definition only (component CreateFilesAndNamespaces). The 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 15 / 18 
                

new file names are derived from the corresponding original ones (004-ready.dump -> 004-
ready.dump.n3). 

The main transformation then reopens each of these files, generates the RDF triples (using the 
namespaces definitions) and prints the generated data into files. The RDF triples are generated as 
follows by iterating the elements of each row from the input files: 

1. Detecting the timestamp property (column ’Time’) and producing the corresponding triples in 
RDF. The type of the time literal (xsd:dateTime) is explicitly stated. 

2. For the remaining parameters: 

a. Constructing the corresponding predicate URI from the parameter name, 

b. Determining the data type (integer, float, string) from the parameter value and 
constructing the RDF value with the type explicitly stated (xsd:integer, xsd:float, 
xsd:string),  

c. Producing the triple: <packet-uri> <parameter-uri> <data value>. 

 

 
Figure 7. Talend Open Studio Job for SAS use case 

 

Figure 8 shows a fragment of the generated triple data.  



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 16 / 18 
                

 
Figure 8. Triple data for SAS use case (fragment)  

 
To run the Talend job for the Space Applications use case two parameters should be provided as 
context values for the job: input_dir and result_dir. 
 

4.3 WP9 INN 
The structured data of the Innovantage use case is delivered as MySQL database dumps. It is the only 
data  that  has  to  be  converted  to  RDF  and  R2RML  mappings  are  the  proper  techniques  for  the  
Semantic ETL process. The tool of choice applied therefore is db2triples from Antidot (see Section 
3.1). It has passed the official R2RML compliance tests and is thus a W3C-validated implementation. 
Moreover, the LGPL license does not imply any restrictions on the usage and the outcomes of the tool 
for CUBIST. 

4.3.1 Summary of ETL process 
The tool db2triples was successfully used to convert the Innovantage use case data from the relational 
MySQL representation to RDF data (triples dump). The conversion used entirely R2RML mapping. 

The mapping is split into multiple mappings that divide the data into logical blocks: 

 jadvertiser.n3: Mapping of advertisers and their links to other data. 

 jcategory.n3: Mapping of disciplines and sub-disciplines. 

 jcontact.n3: Mapping of contacts. 

 jjobboard.n3: Mapping of job boards.  

 jlocation.n3: Mapping of locations. 

 jml.n3: Mapping of company profiles (presently unused as company data is not available to 
the project due to licensing issues). 

 jvacancy.n3: Mapping of vacancies and their links to other data. 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 17 / 18 
                

Each of the above mappings has to be run independently with db2triples. It does not matter in what 
order the various mappings are processed. Db2triples is invoked on the command line (presuming the 
class path was set properly): 

java net.antidot.semantic.rdf.rdb2rdf.main.Db2triples -m r2rml -b 
<db> -u <user>\ 

-p <password> -t N3 -r <input-name> -o <output-name> 

Where <db>, <user> and <password> are respectively the database name, user and password, while 
<input-name> and <output-name> are respectively the input R2RML mapping filename (e.g. 
jadvertiser.n3) and a convenient output filename where the converted RDF data will be written (e.g. 
Advertiser.n3). 

Once all of the mappings have been processed, the resultant RDF files (one for each input mapping) 
can be used for further processing where RDF data is needed, e.g. populating an RDF store. 



 
<Confidential> 

 
 

Copyright  CUBIST Consortium 2010-2013 Page 18 / 18 
                

5 Conclusion 
This deliverable provides the second version of the analysis of CUBIST use case requirements for 
extracting information from structured data sources, an update of existing solutions to support these 
requirements, as well as an update on the Semantic ETL processes within the three use cases. The 
changes since D2.2.1 focus on updates on RDB2RDF techniques especially in context with W3C 
recommendations. This document identifies the most appropriate tools for the semantic ETL processes 
for each of the three use cases. A more detailed technical description of the semantic ETL processes 
along with the upload process will be included in the second integrated prototype of the CUBIST Data 
Integration and Federation Platform (D2.3.2). 


