

Copyright  CUBIST Consortium 2010-2013

Combining and Uniting Business Intelligence with Semantic Technologies

Acronym: CUBIST

Project No: 257403

Small or Medium-scale Focused Research Project

 FP7-ICT-2009-5

Duration: 2010/10/01-2013/09/30

OLAP extensions to SPARQL

Abstract:

Type: Report

Document ID: CUBIST D3.1.2

Workpackage: WP3

Leading partner: ONTO

Author(s): Marin Dimitrov (ONTO)

Alex Simov (ONTO)

Barry Bishop (ONTO)

Dissemination level: PU

Status: Final

Date: 21 October 2011

Version: 1.0

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 2 / 18

Versioning and contribution history

Version Description Contributors

0.1 Initial version Alex Simov

0.2 Introduction and conclusion sections Marin Dimitrov

0.3 Initial proof reading & review Marin Dimitrov

1.0 Internal review comments taken into consideration Alex Simov

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 3 / 18

Table of contents

TABLE OF CONTENTS .. 3

1 INTRODUCTION ... 4

2 SUMMARY OF THE USE CASE REQUIREMENTS .. 6

2.1 REQUIREMENTS FROM HWU (WP6) .. 6
2.2 REQUIREMENTS FROM SAS (WP7) .. 6
2.3 REQUIREMENTS FROM INNOVANTAGE (WP8).. 8

3 OVERVIEW OF SPARQL 1.1 FEATURES ... 9

3.1 AGGREGATION FUNCTIONALITY .. 9
3.2 NEGATION ... 9

3.2.1 Detection of (not) matching patterns ... 9
3.2.2 Removing possible solutions ... 10

3.3 SUB-QUERY SUPPORT .. 10
3.4 EXPRESSIONS IN THE SELECT CLAUSE ... 10
3.5 AN EXPANDED SET OF FUNCTIONS AND OPERATORS .. 10
3.6 ASSIGNMENT ... 11

4 EXTENDED FEATURES SUPPORTED BY OWLIM ... 12

4.1 GEO-SPATIAL SUPPORT .. 12
4.1.1 Implementation details .. 12
4.1.2 Geo-spatial query syntax ... 12

4.2 FULL-TEXT INDEXING AND SEARCH ... 14
4.3 RDF PRIMING .. 15

5 REQUIRED EXTENSIONS ... 17

5.1 3D/2D SPATIAL QUERYING ... 17

6 CONCLUSION .. 18

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 4 / 18

1 Introduction

The purpose of this deliverable is to outline – based on the input from the project use cases –

extensions to the SPARQL 1.0 language that will make it suitable for use in a Business Intelligence

context. At the time of planning this deliverable the plans of the SPARQL Working Group at W3C

regarding potential extensions of the first version of the query language were still not clear, so this

deliverable was expected to fill a gap between what was available in SPARQL 1.0 and what was

needed by the CUBIST use cases. Meanwhile (after the project proposal has been officially

submitted), the SPARQL WG resumed its work and outlined a roadmap for extending the query

language, which significantly overlapped with the scope and purpose of this deliverable.

Since the new features in the SPARQL extension roadmap were prioritized on a “time permitting”

basis (e.g. the WG would scope out some features during its work), we decided to not completely drop

D3.1.2 from the CUBIST project plan, but to narrow down its scope, so that we will directly

incorporate extensions from the SPARQL WG when available, but also propose extensions which

were out of the scope of the SPARQL 1.1 work, but were still needed by the CUBIST use cases. The

reported effort for D3.1.2 will also be significantly reduced from the original plan, in order to correctly

reflect the fact that some work was not to be done by the CUBIST partners, but would be directly

reused from the SPARQL WG.

Deliverable D3.1.1 gathered the use case requirements with respect to potential queries of interest for

each use case. We can distinguish between several different types of requirements:

1. Requirements that can be satisfied with SPARQL 1.0 (requirements HWU01-04, HWU06)

2. Requirements that can be satisfied only with SPARQL 1.1 (requirements HWU01-04,

HWU06-07, HWU09, SAS03, SAS05, SAS09-12, SAS22, INN03-04)

3. Requirements that can be satisfied with custom OWLIM extensions, but fall out of the current

scope of SPARQL 1.0 and 1.1 (SAS09, SAS16, SAS18, SAS21, SAS30-31, INN01-02,

INN04-06)

4. Requirements that need new functionality extensions, not available in SPARQL 1.1 and

OWLIM at present (HWU05)

5. Requirements which technically are not query language requirements but require some

preliminary analytical pre-processing or complex workflows. These fall out of scope for this

deliverable (HWU08, HWU10-13, SAS01-02, SAS04, SAS07-08, SAS13-15, SAS17,

SAS23-28, SAS32-36, INN07)

Note: some requirements might fall in more than one category, as they either represent several classes

of queries (query + negated query) or implementations benefit from different sets of features

(expressiveness and efficiency aspects).

This deliverable is organised as follows:

 Section 2 provides a summary of the CUBIST use case requirements (as described in D3.1.1)

together with the reference to the corresponding SPARQL query features or extensions that

provide support for each requirement

 Section 3 provides a summary of the SPARQL 1.1 features (as defined by the SPARQL WG

at W3C), which are overlapping with the initial plan for D3.1.2 and are directly incorporated

in the deliverable. As already explained above, no effort from the CUBIST partners is reported

for this work, since it was done outside of the project.

 Section 4 provides a summary of extensions to the SPARQL language which fall out of the

scope of SPARQL 1.1 (as defined by the SPARQL WG), but are still required for the CUBIST

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 5 / 18

use cases. We have provided references to such extended functionality available in the

OWLIM database (which will be used as the RDF data warehouse in the project). All of these

features use extension mechanisms which do not break SPARQL standard compatibility.

 Finally, section 5 outlines extensions to the SPARQL language, which are neither available in

the 1.1 version of the standard, nor available as custom extensions in the OWLIM database, so

these will be implemented as part of Task 3.2 in order to support the respective use case

requirements.

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 6 / 18

2 Summary of the use case requirements

This section is based on the requirements for extending the SPARQL query language, which were

provided by the CUBIST use cases within deliverable D3.1.1. Here we provide implementation

guidelines, aligned with the latest achievements in the field of triple store query language (a.k.a.

SPARQL) and its implementation in OWLIM. Certain requirements which cannot be covered by the

query language are met by specific extensions of the implementation (not breaking the general query

syntax).

The following sections list the requirements from the use case partners, each having its original ID

(from deliverable D3.1.1), description and related section(s) concerning its implementation. Some of

the requirements are already satisfied by SPARQL 1.0 (pre CUBIST) and some requirements do not

concern the query language but require more complex analytical pre-processing or complex workflows

– for such requirements no relevant reference section is provided in this document, since these fall out

of the scope of this deliverable.

2.1 Requirements from HWU (WP6)

ID Requirement Content Related Section

HWU01 Where is gene G (not) detected? 3.2.1 (negation)

HWU02 Where is gene G (not) detected in developmental stages S1 to S2? 3.2.1 (negation)

HWU03 What genes are (not) detected in anatomy term T? 3.2.1 (negation)

HWU04 What genes are (not) detected in anatomy term T in developmental

stages S1 to S2?

3.2.1 (negation)

HWU05 What genes are (not) detected in 3D spatial region R ? 3.2.1 (negation),

5.1 (3D support)

HWU06 Where are the genes involved in biological process P (not)

detected?

3.2.1 (negation)

HWU07 Detection of possible inconsistencies and errors in the gene

expression information

3.2.1 (negation),

3.3 (sub-query),

3.5 (functions)

HWU08 How does the level of expression for gene G change from

developmental stage S1 to stage S2?

-

HWU09 How does the pattern of expression for gene G change from

developmental stage S1 to stage S2?

3.2.1 (negation)

HWU10 Which genes have similar expression patterns in stages S1 to S2? -

HWU11 What do the genes involved in biological process P have in

common?

-

HWU12 What pathways does expression pattern cluster C correspond to? -

HWU13 Based on expression pattern EP from experiment E, which stage in

the pathway was E performed at?

-

2.2 Requirements from SAS (WP7)

ID Requirement Content Related Section

SAS01 Console Logs: go through all console logs since previous shifts to

check for open issues, actions to follow up, general awareness, ...

-

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 7 / 18

SAS02 TM archive: Check for completeness of the archive -

SAS03 TM Displays: during periods of „data connection‟ monitoring of

the on-going activities by telemetry monitoring of the

housekeeping data of the instruments and payload (temperatures,

modes, command schedule tracking, ...)

3.2.1 (negation)

SAS04 ISS ATL: check for possible reboots of the station which requires a

special SOLAR configuration

-

SAS05 SOLAR Mission Tool: check for upcoming activities: Files needed

are indeed available onboard

3.2.1 (negation)

SAS07 SOLAR Mission Tool: check for upcoming activities: Timeline

coherence

-

SAS08 CEFN : Timeline review: check OSTPV and SOLAR Mission

Tool, provide input through CEFN where needed

-

SAS09 CEFN : Requests for Powerdown: Check for payload developer‟s

MEMO for minimal required SOLAR power consumption +

provide into CEFN

3.1 (aggregation),

4.2 (fts)

SAS10 CEFN : IPV review: Check whether PODF related to B.USOC

Payloads are correctly uplinked into new IPV+ provide approval

(or approval with modification)

3.2.1 (negation)

SAS12 CEFN : Open ARs : check AR that may affect the payload, if

needed report to COL FCT

3.1 (aggregation),

3.2.1 (negation)

SAS13 CEFN : Ground Segment operations, Check for CEFNs regarding

ground segment maintenance or so, check impact on the SOLAR

operations and inform Ground Controller

-

SAS14 CEFN : Older CEFNs: check previous inputs -

SAS15 MDB: check command stack for upcoming activities -

SAS16 IPV/PODF: retrieve correct PODF for execution activities 4.2 (fts)

SAS17 IOT-AR/IOT-SPR: check open actions on B.USOC side -

SAS18 SOLAR Documentation: used as background information to

successfully operate SOLAR

4.2 (fts)

SAS21 BUSOC Mail: check for PIs input, files that have been provided,

requests from other operations

4.2 (fts)

SAS22 Displays: check which parameters were off nominal 3.1 (aggregation),

3.2.1 (negation),

3.5 (functions)

SAS23 Archive: Retrieve specific parameters of the occurrence / period to

insert in an Excel file

-

SAS24 Archive: Replay the occurrence using the displays -

SAS25 MDB/Command History: Check which commands have been sent -

SAS26 IPV/PODF: check which procedure has been used -

SAS27 IOT-AR: check whether the anomaly has occurred before and the

analysis or CARTs disposition, if so:

a) CEFN: If Anomaly has occurred before check recovery

procedure used back then

b) IOT-SPRs: check the offline analysis if the anomaly has

occurred before

c) Check Console logs of previous occurrence

-

SAS28 Console Log: Check the logs of all involved parties during the

occurrence

-

SAS30 COL DMS: retrieve engineering documentation to support the

analysis or recovery actions (Safety DP, User Manuals, ...)

4.2 (fts)

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 8 / 18

SAS31 SOLAR Documentation: check reference documentation for

analysis

4.2 (fts)

SAS32 SOLAR operations Documentation: check reference on the agreed

operations concept

-

SAS33 SOLAR shiftplanner Tool (JMW tool) : check which ground

controller is on call

-

SAS34 SOLAR POC list: check numbers of PI/Payload Developer/.. to

contact them for support

-

SAS35 SOLAR Mission Tool: retrieve current planning to update it -

SAS36 SOLAR Mission Tool: retrieve filenames to be uploaded -

2.3 Requirements from Innovantage (WP8)

ID Requirement Content Related Section

INN01 Job Vacancy search by title, description, advertiser organization

name or type (agency or direct employer), location hierarchy,

category hierarchy, date posted, business sector, salary, job type,

source(job boards or company website)

4.2 (fts)

INN02 Quick Vacancy search through keywords using Lucene text

search facility

4.2 (fts)

INN03 Statistics from search results such as % of jobs from various

sources, locations, job categories, industry sector etc.

3.1 (aggregation),

3.4 (complex select)

3.5 (functions)

INN04 Company lookup for the advertisers from 3
rd

 party directories

such as Market Location or DNB, jobs associated and various

recruitment statistic about an advertiser

3.1 (aggregation),

4.2 (fts)

INN05 Yahoo news articles relevant to a particular advertiser by

keyword match

4.2 (fts)

INN06 Radius job search around a town, county or postcode or part of a

postcode by number of miles using the geo-spatial extension of

SPARQL

4.1 (geo-spatial),

4.2 (fts)

INN07 Skill, qualifications, company information within job description -

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 9 / 18

3 Overview of SPARQL 1.1 features

This section focuses on the new features in the SPARQL 1.1 version of the standard, as specified by

the latest W3C SPARQL Working Group draft
1
.

3.1 Aggregation functionality

Aggregates apply expressions over groups of solutions. Grouping may be specified using the GROUP

BY syntax. Aggregates defined in version 1.1 of SPARQL are:

 COUNT

 SUM

 MIN/MAX

 AVG

 GROUP_CONCAT

 SAMPLE

The aggregated solution sets can be filtered by using the HAVING operator (similar to the standard

SQL query syntax).

Example:

SELECT (AVG(?size) AS ?asize)

WHERE {

 ?x :size ?size

}

GROUP BY ?x

HAVING (AVG(?size) > 10)

This query will return average sizes, grouped by the subject, but only where the mean size is greater

than 10.

3.2 Negation

The SPARQL 1.1 query language incorporates two styles of negation, one based on filtering results

depending on whether a graph pattern does or does not match in the context of the query solution

being filtered, and one based on removing solutions related to an additional query pattern.

3.2.1 Detection of (not) matching patterns

Filtering of query solutions is done within a FILTER expression using NOT EXIST and EXISTS. The

(NOT) EXISTS filter expression tests whether a graph pattern does (not) match the dataset, given the

values of variables in-scope. It does not generate any additional bindings.

Example: select all persons without a name provided

SELECT ?person

WHERE {

 ?person rdf:type foaf:Person .

 FILTER NOT EXISTS { ?person foaf:name ?name }

}

1 By the time of writing the deliverable, the working draft has a status Last Call Working Draft

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 10 / 18

3.2.2 Removing possible solutions

The other style of negation provided in SPARQL 1.1 is the MINUS operator, which evaluates both its arguments,

then calculates solutions in the left-hand side that are not compatible with the solutions on the right-hand side.

Example: select persons which have a name other than ”Bob”

SELECT DISTINCT ?person

WHERE {

 ?person rdf:type foaf:Person .

 MINUS {

 ?person foaf:name "Bob" .

 }

}

3.3 Sub-query support

Sub-queries are a way to embed SPARQL queries within other queries, such as limiting the number of

results from some sub-expression within the query.

Due to the bottom-up nature of the SPARQL query evaluation, subqueries are evaluated logically first,

and the results are projected up to the outer query.

Example: return a name (the one with the lowest sort order) for all the people that know Alice and

have a name.

SELECT ?y ?minName

WHERE {

 :alice :knows ?y .

 {

 SELECT ?y (MIN(?name) AS ?minName)

 WHERE {

 ?y :name ?name .

 }

 GROUP BY ?y

 }

}

3.4 Expressions in the SELECT clause

In SPARQL 1.1 the SELECT clause can also introduce new variables. The rules of assignment in the SELECT

expression are the same as for assignment in a BIND clause (see Assignment section). The expression combines

variable bindings already in the query solution, or defined earlier in the SELECT clause, to produce a binding in

the query solution.

Example:

SELECT ?title (?p * (1 - ?discount) AS ?price)

WHERE {

 ?x ns:price ?p .

 ?x dc:title ?title .

 ?x ns:discount ?discount

}

3.5 An expanded set of functions and operators

A summary of the major improvements of the functions and operator sets in SPARQL 1.1 is provided

below:

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 11 / 18

 Conditional constructs IF-THEN-ELSE

 Set test operators (IN, NOT IN)

 String processing functions (STRLEN, SUBSTR, CONTAINS, etc.)

 Mathematical functions (ABS, ROUND, FLOOR, CEIL, RAND, etc.)

 Date and time functions

 Hash functions (MD5, SHA1, etc.)

3.6 Assignment

The value of an expression can be added to a solution by binding a new variable to the value of the

expression, which is an RDF term. In SPARQL, this binding within a query solution is never changed.

The new variable must not already be in-scope in the query at that point it is used. The variable can

then be used in the query and also can be returned in results.

Three syntax forms allow this: the BIND keyword, expressions in the SELECT clause and expressions

in the GROUP BY clause. The assignment form is (expression AS ?variable).

The BIND form allows a value to be assigned to a variable in a group graph pattern. The use of BIND

is a separate element of a group graph pattern and it ends any basic graph pattern.

Example:

SELECT ?title ?price

WHERE {

 ?x ns:price ?p .

 ?x ns:discount ?discount .

 ?x dc:title ?title

 BIND (?p * (1 - ?discount) AS ?price)

 FILTER(?price < 20)

}

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 12 / 18

4 Extended features supported by OWLIM

4.1 Geo-spatial support

OWLIM provides support for querying of 2-dimensional geo-spatial data based on the WGS84 Geo

Positioning RDF vocabulary
2
 (World Geodetic System 1984).

Special indices can be used for this data that permit the efficient evaluation of special query forms and

extension functions that allow:

 locations to be found that are within a certain distance of a point, i.e. within the specified

circle on the surface of the sphere (Earth), using the NEARBY construct;

 locations which are within rectangles and polygons, where the vertices are defined using

spherical polar coordinates, using the WITHIN construct.

4.1.1 Implementation details

 Spherical Earth – the current implementation treats the Earth as a perfect sphere

 Only 2 dimensional points are supported, i.e. latitude and longitude but no altitude

 All latitude and longitude values must be specified using decimal degrees, where East and

North are positive and the latitude is between (-90, +90) while longitude is between (-180,

+180).

 Distances must be in units of kilometres (suffix „km‟) or statute miles (suffix „mi‟)

4.1.2 Geo-spatial query syntax

The special syntax used to query geo-spatial data makes use of SPARQL's RDF Collections syntax.

This syntax uses round brackets as a shorthand for the statements connecting a list of values using

rdf:first and rdf:rest predicates with terminating rdf:nil. Statement patterns that use one of the special

geo-spatial predicates supported by OWLIM are treated differently by the query engine. The following

special syntax is supported when evaluating SPARQL queries (the descriptions all use the namespace

omgeo:<http://www.ontotext.com/owlim/geo#>):

4.1.2.1 NEARBY pattern

Syntax: ?point omgeo:nearby(?lat ?long ?distance)

This statement pattern will evaluate to true if the following constraints hold:

 ?point geo:lat ?plat .

 ?point geo:long ?plong .

 Shortest great circle distance from (?plat, ?plong) to (?lat, ?long) <= ?distance

Such a construct will use the geo-spatial indices to find bindings for the ?point variable, which are

within the defined circle.

Constants are allowed for any of the parameters (latitude, longitude, and distance), where latitude and

longitude are specified in decimal degrees and distance is specified in either kilometres ('km' suffix) or

miles ('mi' suffix).

2 http://www.w3.org/2003/01/geo/wgs84_pos

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 13 / 18

Example: Find the names of airports that are within 50 miles of Seoul

SELECT DISTINCT ?airport_name

WHERE {

 ?city geo-ont:name "Seoul" .

 ?city geo-pos:lat ?latCity .

 ?city geo-pos:long ?longCity .

 ?airport omgeo:nearby(?latCity ?longCity "50mi") .

 ?airport geo-ont:name ?airport_name .

 ?airport geo-ont:featureCode geo-ont:S.AIRP .

}

4.1.2.2 WITHIN pattern (rectangle)

Syntax: ?point omgeo:within(?lat1 ?long1 ?lat2 ?long2)

This pattern is used to find points that lie within the rectangle specified by diagonally opposite corners

(?lat1, ?long1) and (?lat2, ?long2). The corners of the rectangle must be either constants or bound

values.

The pattern expression will evaluate to true if the following constraints hold:

 ?point geo:lat ?plat .

 ?point geo:long ?plong .

 ?lat1 <= ?plat <= ?lat2

 ?long1 <= ?plong <= ?long2

Constants are allowed for any of the parameters, where latitude and longitude are specified in decimal

degrees. If ?point is unbound then bindings for all points within the rectangle will be produced.

Example: Find tunnels lying within a rectangle enclosing Tirol, Austria

SELECT DISTINCT ?name

WHERE {

 ?tunnel omgeo:within(45.85 9.15 48.61 13.18) .

 ?tunnel geo-ont:featureCode geo-ont:R.TNL .

 ?tunnel geo-ont:name ?name .

}

4.1.2.3 WITHIN pattern (polygon)

Syntax: ?point omgeo:within(?lat1 ?long1 ... ?latn ?longn)

This pattern is used to find points within the polygon whose vertices are specified by three or more

latitude/longitude pairs. The polygon is closed automatically if the first and last vertices do not

coincide.

Example: Find caves lying within the polygon approximating the shape of England:

SELECT ?name ?lat ?long

WHERE {

?cave omgeo:within("51.45" "-2.59" "54.99" "-3.06" "55.81" "-2.03" "52.74" "1.68" "51.17" "1.41") .

?cave geo-ont:featureCode geo-ont:S.CAVE .

?cave geo-ont:name ?name .

?cave geo-pos:lat ?lat .

?cave geo-pos:long ?long .

}

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 14 / 18

4.1.2.4 DISTANCE function

Syntax: double omgeo:distance(?lat1, ?long1, ?lat2, ?long2)

This SPARQL extension function computes the distance between two points (in kilometres) and can

be used in FILTER and ORDER BY clauses.

Example: Find all the airports within 80 miles of Bournemouth and filter out those that are more than

80 kilometres from Brize Norton, order the results with the closest to Brize Norton first:

SELECT DISTINCT ?airport_name

WHERE {

 ?city1 geo-ont:name "Bournemouth" .

 ?city1 geo-pos:lat ?lat1 .

 ?city1 geo-pos:long ?long1 .

 ?airport omgeo:nearby(?lat1 ?long1 "80mi") .

 ?airport geo-ont:name ?airport_name .

 ?airport geo-ont:featureCode geo-ont:S.AIRP .

 ?airport geo-pos:lat ?lat .

 ?airport geo-pos:long ?long .

 ?city2 geo-ont:name "Brize Norton" .

 ?city2 geo-pos:lat ?lat2 .

 ?city2 geo-pos:long ?long2 .

 FILTER(omgeo:distance(?lat, ?long, ?lat2, ?long2) < 80)

}

ORDER BY ASC(omgeo:distance(?lat, ?long, ?lat2, ?long2))

4.2 Full-text indexing and search

Full-text search (FTS) provides the means for retrieving text documents out of a large collection by

keywords or, more generally, by tokens (represented as sequences of characters). Generally, the full-

text query represents an unordered set of tokens and the result is set of documents, relevant to the

query.

FTS and structured queries, like those in database management systems (DBMS), provide different

information access methods based on different query syntax and semantics. FTS and databases usually

require different types of indices too. The ability to combine these two types of information access

methods is very useful for a wide range of applications.

Many RDBMS provide custom FTS extensions (which are integrated into the standard SQL querying

syntax) and maintain additional indices that allow efficient evaluation of FTS constraints. Typically,

RDBMS allow the user to define a query, which requires specific tokens to appear in a specific

column of a specific table.

In SPARQL 1.1 there is no standard way for the specification of FTS constraints (further versions of

the specification may provide such standardization). Nevertheless, several RDF database vendors have

already implemented some sort of FTS extensions into their databases. This section describes the FTS

supported by the OWLIM database. FTS extensions from other vendors are conceptually similar.

OWLIM provides full text search capabilities based on the popular open source Lucene
3
 platform,

with a variety of indexing options and the ability to simultaneously use multiple indices in the same

query.

In order to use the full-text search in OWLIM a Lucene index must first be created. Each index can be

parameterised in a number of ways using SPARQL ASK queries. This provides the ability to:

3 http://lucene.apache.org/

http://lucene.apache.org/

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 15 / 18

 select what kinds of nodes in the RDF graph are indexed (URIs/literals/blank-nodes)

 select what is included in the 'molecule' (adjacent nodes in the graph) associated with each

node

 select literals with certain language tags

 choose the size of the RDF 'molecule' to index

 select from various content analysers

 select various resultset scorers

To embed a full-text search query within SPARQL query with OWLILM, a special triple pattern is

used, where the Lucene index name is the predicate and the Lucene query itself is the object of the

statement.

The following query will produce bindings for ?s from entities in the repository, where the RDF

molecule associated with that entity (for the given index) contains terms that begin with "United".

Furthermore, the bindings will be ordered by relevance (with any boosting factor):

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>

SELECT ?s

WHERE {

 ?s luc:myIndex "United*" .

}

4.3 RDF priming

RDF Priming is a technique that selects a subset of available statements for use as the input to query

answering. It is based upon the concept of 'spreading activation' as developed in cognitive science.

RDF Priming is a scalable and customisable implementation of the popular connectionist method on

top of RDF graphs that allows for the "priming" of large datasets with respect to concepts relevant to

the context and to the query.

Various parameters of the spreading activation process can be configured according to the specific

application or use case needs:

 Statement weight (for statements with a specific predicate)

 Activation threshold (guarantees that the activation value of a node won‟t grow beyond a

certain value)

 Filter threshold (specifies whether a statement is visible depending on the activation level of

its Subject, Predicate and Object)

 Firing threshold (the threshold above which a node will activate its neighbours)

 Decay factor (control how much a node's activation level is transferred to nodes that it affects)

 Number of cycles (the number of activation spreading cycles to perform when the process is

initiated)

 Default/initial activation value, default activation weight

The RDF Priming feature and its underlying spreading activation process provide a very powerful way

to customize the results returned by a SPARQL query, based on a user-defined context (e.g. important

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 16 / 18

statements, weights and thresholds). Implementation details and usage example are available in

OWLIM‟s advanced features documentation
4
.

4 http://owlim.ontotext.com/display/OWLIMv42/OWLIM-SE+Advanced+Features#OWLIM-SEAdvancedFeatures-

RDFPriming

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 17 / 18

5 Required Extensions

5.1 3D/2D Spatial Querying

Although certain effort has been invested in spatial indexing/querying (see section 4.1) its usage is

restricted to the domain of geo-spatial querying and indexing, which does not cover all of the use case

requirements (in particular the 3D spatial requirements from the HWU use case). In CUBIST, this

functionality will be extended to cover broader range of use cases.

The extension should have the following features:

 Support for arbitrary 2D and 3D (orthogonal) coordinate systems

 Indexing locations with respect to certain coordinate system

 Efficient searching within regions

The querying mechanism in SPARQL will not change essentially from what was already described in

section 4.1. New statement patterns will be introduced for matching entities in certain distance from a

certain location or in regions delimited by lines/planes.

<Confidential>

Copyright  CUBIST Consortium 2010-2013 Page 18 / 18

6 Conclusion

This deliverable builds upon the aggregated use case requirements for extending the SPARQL

language outlined in D3.1.1. The requirements were analysed and the proper recommendation for

satisfying these requirements were provided:

 Features already available in SPARQL 1.0

 Features available in the latest SPARQL 1.1 drafts

 Features which are out of the scope of the current SPARQL standards, but are nonetheless

available in the OWLIM database which will provide the infrastructure for the RDF data

warehouse in CUBIST

 New features which need to be developed within WP3

Additionally, we have identified several use case requirements which need more complex workflow or

analytic pre-processing, e.g. these will not be reflected directly in the query language extensions but

will be satisfied by other means.

As already clarified, the scope of this deliverable was narrowed down due to the unforeseen (at the

time of the project proposal submission) overlap with activities in the W3C SPARQL Working Group

towards extending the SPARQL language. We have directly adopted these W3C extensions in our

recommendation and since this work was performed outside of the CUBIST project, the consortium

partners have reduced their reported resource spending accordingly.

