

Combining and Uniting Business Intelligence with Semantic Technologies

Small or Medium

 FCA Integration in the Triple Store, Version

This document describes the FCA Service component, which is part of the 1

Type:

Document ID:

Workpackage:

Leading partner:

Author(s):

Dissemination level:

Status:

Date:

Version:

1

Combining and Uniting Business Intelligence with Semantic Technologies

Acronym: CUBIST

Project No: 257403

Small or Medium-scale Focused Research Project

 FP7-ICT-2009-5

Duration: 2010/10/01-2013/09/30

FCA Integration in the Triple Store, Version

the FCA Service component, which is part of the 1

CUBIST integrated prototype.

Prototype

CUBIST D3.3.1

WP3

SHU

Constantinos Orphanides (SHU)

Public

Final

12 April 2012

0.7

Combining and Uniting Business Intelligence with Semantic Technologies

FCA Integration in the Triple Store, Version #1

the FCA Service component, which is part of the 1
st
 version of the

Constantinos Orphanides (SHU)

Versioning and contribution history

Version Description

0.1 Draft

0.2 Feedback / Review

0.3 Incorporation of feedback from Cassio Melo

0.4 Feedback / Review

0.5 Incorporation of feedback from Alex Simov

0.6 Final Draft

0.7 Finalized Document

Reviewers

Name

Cassio Melo

Alex Simov

2

Versioning and contribution history

Contributors

Constantinos Orphanides (SHU)

Cassio Melo (CRSA)

Incorporation of feedback from Cassio Melo Constantinos Orphanides (SHU)

Alex Simov (Ontotext)

Incorporation of feedback from Alex Simov Constantinos Orphanides (SHU)

Constantinos Orphanides

Constantinos Orphanides (SHU)

Affiliation

CRSA

Ontotext

Contributors

Constantinos Orphanides (SHU)

Melo (CRSA)

Constantinos Orphanides (SHU)

Alex Simov (Ontotext)

Constantinos Orphanides (SHU)

Constantinos Orphanides (SHU)

Constantinos Orphanides (SHU)

Contents

1 Introduction

2 Overview

2.1 Installation and Binaries

2.2 Architecture

2.2.1 Web-Methods

3 An Example

3

..

..

Installation and Binaries ..

..

..

..

... 4

... 5

................................... 5

.. 5

.. 5

.. 7

1 Introduction

This document provides an

component is used to create

component issues a request to the FCA Service to create a formal context,

as a concept lattice by the CUBIX Visual Analytics

4

This document provides an overview of the FCA Service component in CUBIST. This

 formal contexts out of a triple store. The NowaSearch front

component issues a request to the FCA Service to create a formal context,

as a concept lattice by the CUBIX Visual Analytics component.

ew of the FCA Service component in CUBIST. This

The NowaSearch front-end

component issues a request to the FCA Service to create a formal context, to be then visualised

2 Overview

2.1 Installation and Binaries

For instructions on how to install the FCA

refer to D1.3.1.

2.2 Architecture

The FCA service is built using C# on the Microsoft .NET 4 Framework

REpresentational State Transfer

2.2.1 Web-Methods

The FCA service exposes two web

of a triple store. The two web

JavaScript Object Notation

Resource

POST

formalcontext

http://cubist.hallam.shu.ac.uk/Fca

Bedrock.svc/formalcontext

1
 http://en.wikipedia.org/wiki/Representational_state_transfer

2
 http://en.wikipedia.org/wiki/JSON

5

and Binaries

For instructions on how to install the FCA Service and to gain access to the binary file

The FCA service is built using C# on the Microsoft .NET 4 Framework

State Transfer
1
 (REST) architecture.

Methods

The FCA service exposes two web-methods which are used to create a formal context out

. The two web-methods accept input and return output using the

JavaScript Object Notation
2
 (JSON) format. The web-methods are explained below:

URL Description

http://cubist.hallam.shu.ac.uk/Fca

Bedrock.svc/formalcontext

This method is an HTTP POST

accepts the following parameters:

• repositoryConnection: the information

needed to connect to a particular triple

store.

• repositoryId: The ID of the repository in

the triple store.

• sparqlQuery: The SPARQL query that

the FCA service will execute

triple store to fetch data.

• minSuppObjs: The minimum

for objects that the High Performance

Concept Miner (In

should apply to the formal context

created by the FCA Service.

http://en.wikipedia.org/wiki/Representational_state_transfer

http://en.wikipedia.org/wiki/JSON

and to gain access to the binary file please

The FCA service is built using C# on the Microsoft .NET 4 Framework, using the

methods which are used to create a formal context out

methods accept input and return output using the

methods are explained below:

Description

This method is an HTTP POST method which

accepts the following parameters:

repositoryConnection: the information

needed to connect to a particular triple

repositoryId: The ID of the repository in

sparqlQuery: The SPARQL query that

the FCA service will execute on the

triple store to fetch data.

The minimum-support

for objects that the High Performance

Concept Miner (In-Close) component

should apply to the formal context

created by the FCA Service.

GET

formalcontext?i

d={FormalCont

extID}&format

=json

http://cubist.hallam.shu.ac.uk/Fca

Bedrock.svc/formalcontext?id=03

0412225657&format=json

6

• minSuppAtts: The minimum

objects that the High Performance

Concept Miner (InClose) component

should apply to the formal context

created by the FCA Service.

The web-method creates a formal context

based on parameters 1

unique formal context ID (which represents

the formal context created) to the consumer

of the service. The formal context ID can be

then used to retrieve the actual formal

context

http://cubist.hallam.shu.ac.uk/Fca

Bedrock.svc/formalcontext?id=03

0412225657&format=json

This method retrieves the formal context having

the FormalContextID issued with the request

null if the particular ID does not exist.

The minimum-support for

the High Performance

Concept Miner (InClose) component

should apply to the formal context

created by the FCA Service.

method creates a formal context

based on parameters 1-5 and returns a

unique formal context ID (which represents

text created) to the consumer

of the service. The formal context ID can be

then used to retrieve the actual formal

he formal context having

issued with the request, or

if the particular ID does not exist.

3 An Example

Following is an example scenario demonstrating how the FCA Service can be used to create

formal contexts out of a triple store.

Let us say that we are querying the

finding which Tissues exist in Theiler Stage 7 and which Genes (if any) are expressed, in each of

the Tissues, during that Theiler Stage.

The following HTTP POST JSON request is issued on

http://cubist.hallam.shu.ac.uk/FcaBedrock.svc/formalcontext

{

 "sparqlQuery":"PREFIX rdfs:<

schema#> PREFIX rdf:<http://www.w3.org/1999/02/22

ns#> PREFIX hwu:<http://www.cubist_project.eu/HWU#

t.eu/HWU#> PREFIX owl:<http://www.w3.org/20

g/2001/XMLSchema#> SELECT

?o1 . ?x1 hwu:has_theiler_stage

label ?a1 . ?x2 rdf:type hwu:

olved_gene ?x3 . ?x2 hwu:has_strength

 "repositoryId":"CUBISTHWU"

 "repositoryConnection":"http://cubist.hallam.shu.ac.uk:8080/openrdf

 "minSuppObjs":"0",

 "minSuppAtts":"0"

}

Based on the request above, the FCA Service does the following:

1) Connects to triple store located at

2) Sets CUBISTHWU as the repository to be queried

3) Executes the following SPARQL query on repository

PREFIX rdfs:<http://www.w3.org/2000/01/rdf

PREFIX rdf:<http://www.w3.org/1999/02/22

PREFIX hwu:<http://www.cubist_project.eu/HWU#>

PREFIX :<http://www.cubist_project.eu/HWU#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?o1 ?a1 WHERE {

7

Following is an example scenario demonstrating how the FCA Service can be used to create

formal contexts out of a triple store.

Let us say that we are querying the data from the HWU Use-Case and we are interested in

which Tissues exist in Theiler Stage 7 and which Genes (if any) are expressed, in each of

the Tissues, during that Theiler Stage.

The following HTTP POST JSON request is issued on

http://cubist.hallam.shu.ac.uk/FcaBedrock.svc/formalcontext:

rdfs:<http://www.w3.org/2000/01/rdf-

http://www.w3.org/1999/02/22-rdf-syntax-

http://www.cubist_project.eu/HWU#> PREFIX :<http://www.cubist_projec

http://www.w3.org/2002/07/owl#> PREFIX xsd:<

SELECT DISTINCT ?o1 ?a1 WHERE { ?x1 rdf:type

hwu:has_theiler_stage hwu:theiler_stage_07 . OPTIONAL { ?x3

hwu: Textual_Annotation . ?x2 hwu:in_tissue ?x1

hwu:has_strength hwu:level_detected .} } ORDER BY

"CUBISTHWU",

http://cubist.hallam.shu.ac.uk:8080/openrdf-sesame

Based on the request above, the FCA Service does the following:

Connects to triple store located at http://cubist.hallam.shu.ac.uk:8080/openr

as the repository to be queried

Executes the following SPARQL query on repository CUBISTHWU

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

http://www.cubist_project.eu/HWU#>

PREFIX :<http://www.cubist_project.eu/HWU#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?o1 ?a1 WHERE {

Following is an example scenario demonstrating how the FCA Service can be used to create

Case and we are interested in

which Tissues exist in Theiler Stage 7 and which Genes (if any) are expressed, in each of

http://www.cubist_projec

xsd:<http://www.w3.or

rdf:type :Tissue ; rdfs:label

?x3 rdf:type :Gene ; rdfs:

?x1 . ?x2 hwu:has_inv

BY ?o1 ? a1",

sesame",

http://cubist.hallam.shu.ac.uk:8080/openrdf-sesame

CUBISTHWU:

?x1 rdf:type hwu:Tissue ; rdfs:label ?o1 .

?x1 hwu:has_theiler_stage hwu:theiler_stage_07 .

OPTIONAL

{ ?x3 rdf:type hwu:Gene ; rdfs:label ?a1 .

 ?x2 rdf:type hwu:Textual_Annotation .

 ?x2 hwu:in_tissue ?x1 .

 ?x2 hwu:has_involved_gene ?x3 .

 ?x2 hwu:has_strength hwu:level_detected

}

ORDER BY ?o1 ?a1

4) Creates a formal context out of the data returned by the SPARQL query on step 3

applies minimum-support to the formal context, using In

5) Assigns a unique formal context ID to the formal context

6) Returns the formal context ID to the consumer, e.g.

The consumer can then issue

http://cubist.hallam.shu.ac.uk/FcaBedrock.svc/formalcontext?id={id}&format=json

replacing {id} with the actual formal context ID)

of what the output the FCA Service produces looks like

[

 "B",

 "",

 "15",

 "19",

 "",

 "11685",

 "11682",

 "11684",

 "707",

 "5209",

 "5630",

 "5126",

 "11683",

 "5631",

 "2012",

 "6592",

 "774",

 "773",

 "5328",

 "5327",

 "Gene-Bmp4",

 "Strength-detected",

 "Theiler_Stage-

 "Theiler_Stage-

 "Theiler_Stage-

8

?x1 rdf:type hwu:Tissue ; rdfs:label ?o1 .

_theiler_stage hwu:theiler_stage_07 .

{ ?x3 rdf:type hwu:Gene ; rdfs:label ?a1 .

?x2 rdf:type hwu:Textual_Annotation .

?x2 hwu:in_tissue ?x1 .

?x2 hwu:has_involved_gene ?x3 .

ength hwu:level_detected .}

Creates a formal context out of the data returned by the SPARQL query on step 3

support to the formal context, using In-Close.

Assigns a unique formal context ID to the formal context.

rmal context ID to the consumer, e.g. 100412163045

can then issue an HTTP GET request on

http://cubist.hallam.shu.ac.uk/FcaBedrock.svc/formalcontext?id={id}&format=json

{id} with the actual formal context ID) to retrieve the formal context.

the FCA Service produces looks like is shown in Figure 1 below.

detected",

-20",

-19",

-18",

Creates a formal context out of the data returned by the SPARQL query on step 3 and

http://cubist.hallam.shu.ac.uk/FcaBedrock.svc/formalcontext?id={id}&format=json (by

to retrieve the formal context. An example

is shown in Figure 1 below.

 "Tissue-epithelium",

 "Tissue-inner ear",

 "Strength-strong",

 "Tissue-embryo",

 "Tissue-telencephalon",

 "Tissue-mesenchyme",

 "Tissue-medial-

 "Tissue-mandibular

 "Tissue-apical

 "Tissue-otocyst",

 "Tissue-eye",

 "Tissue-handplate",

 "Tissue-latero-

 "Tissue-footplate",

 "XXX...............X",

 "X.X....X.........X.",

 "XXX.............X..",

 "XX..X..........X...",

 "XX..X.........X....",

 "XX.X.........X.....",

 "XX..X.......X...

 "X.X....X...X.......",

 "XX.X......X........",

 "XXX......X.........",

 "XX.X....X..........",

 "XX.X..X............",

 "XX.X..X............",

 "XXX..X.............",

 "XXX..X............."

]

Figure 1: A formal context returned (in JSON format) by issuing the

Consumers of the request (e.g. CUBIX) can then use the formal context to build a formal concept

lattice (Figure 2).

9

epithelium",

ear",

strong",

embryo",

telencephalon",

mesenchyme",

-nasal process",

mandibular component",

 ectodermal ridge",

otocyst",

handplate",

-nasal process",

footplate",

"XXX...............X",

"X.X....X.........X.",

"XXX.............X..",

"XX..X..........X...",

"XX..X.........X....",

"XX.X.........X.....",

"XX..X.......X......",

"X.X....X...X.......",

"XX.X......X........",

"XXX......X.........",

"XX.X....X..........",

"XX.X..X............",

"XX.X..X............",

"XXX..X.............",

"XXX..X............."

A formal context returned (in JSON format) by issuing the

HTTP GET request above.

of the request (e.g. CUBIX) can then use the formal context to build a formal concept

A formal context returned (in JSON format) by issuing the

of the request (e.g. CUBIX) can then use the formal context to build a formal concept

Figure 2: The formal context in Figure 1,

10

The formal context in Figure 1, visualised in CUBIX.

visualised in CUBIX.

