
PeerAccess: A Logic for Distributed Authorization

Marianne Winslett
University of Illinois at
Urbana-Champaign

Urbana, IL 61801, USA

winslett@cs.uiuc.edu

Charles C. Zhang
University of Illinois at
Urbana-Champaign

Urbana, IL 61801, USA

cczhang@cs.uiuc.edu

Piero A. Bonatti
Università di Napoli

FEDERICO II
Napoli, Italy

bonatti@na.infn.it

ABSTRACT
This paper introduces the PeerAccess framework for reasoning about
authorization in open distributed systems, and shows how a param-
eterization of the framework can be used to reason about access
to computational resources in a grid environment. The PeerAc-
cess framework supports a declarative description of the behavior
of peers that selectively push and/or pull information from certain
other peers. PeerAccess local knowledge bases encode the basic
knowledge of each peer (e.g., Alice’s group memberships), its poli-
cies governing the release of each possible piece of information to
other peers, and information that guides and limits its search pro-
cess when trying to obtain particular pieces of information from
other peers. PeerAccess proofs of authorization are verifiable and
nonrepudiable, and their construction relies only on the local infor-
mation possessed by peers and their parameterized behavior with
respect to query answering, information push/pull, and informa-
tion release policies (i.e., no omniscient viewpoint is required). We
present the PeerAccess language and peer knowledge base struc-
ture, the associated formal semantics and proof theory, and exam-
ples of the use of PeerAccess in constructing proofs of authoriza-
tion to access computational resources.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; D.4.6 [Operating Systems]: Security and
Protection - Access Control

General Terms
Security, Languages, Theory

Keywords
P2P systems, distributed authorization, logical signature, sticky poli-
cies, release policies, proof hints

1. INTRODUCTION AND RELATED WORK
Authorization approaches for distributed systems where resources

are accessed across organizational boundaries have become a topic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

of industrial and research interest in recent years, with reputation
systems and trust negotiation emerging as two particularly interest-
ing research directions ([3, 5, 6, 9, 11, 12, 13, 16, 17, 20, 22, 23, 24,
25], to mention just a few). In attempting to build and deploy an au-
thorization system based on trust negotiation for a particular open
system (shared access to high-performance computing resources),
we found that the theory developed for authorization in open sys-
tems did not include all the features that we needed to reason about
the runtime behavior of the system, or to account for all the actions
that parties in the system needed to take at run time. The need was
particularly acute in the area of reasoning about helpful third par-
ties at run time, such as information brokers, credential and policy
repositories, and third-party authorization services. A peer Alice
may need to contact several such parties as she attempts to con-
struct a proof that she is authorized to use a particular service, and
she needs a principled way to determine who to contact, what to ask
for, what kind of answers to expect, and when to give up. She needs
a way to explain who she is and why she is asking for help, as her
intended purpose may determine whether a third party is willing to
help her, or may influence the answer that it gives her. Alice also
needs a way to set limits on what can be done with the personal in-
formation that she gives out, and to determine what she is allowed
to do with the information that others give to her. She also needs
to be able to filter out incoming information and queries that are of
no interest to her (e.g., spam and porn). She needs to be able to
interact successfully with parties that push information to her, and
with parties that she must query to get information.

Other researchers have examined many of the separate aspects
of this problem. For example, [2] studies the problem of creating
distributed proofs under an information pull paradigm, when all
peers cooperate to the maximum extent possible. The authors of
[18] study the problem of finding needed credentials at run time,
and propose a solution based on credential typing (e.g., query the
issuer to find a certain kind of credential). Other papers [1, 10]
present a runtime system for constructing distributed proofs of au-
thorization, given authoritative information on where to go to find
needed credentials. In a similar way, in [3, 4, 13, 14] policies en-
code information about where to go to find certain needed facts.

These and the other works cited above study useful pieces of the
picture, but we found that the separate pieces often did not fit to-
gether to form a solution to our real-world situation. For example,
real-world peers do not exhaustively try to answer all queries they
receive, as in [2]. A peer may behave quite differently depend-
ing on who is asking for help and why they are asking for help.
We wanted a way to talk about sticky policies [15] (release poli-
cies that are permanently attached to the information they protect),
but also wanted to be able to describe non-sticky policies within
the same open system. In [1], credentials have sticky release poli-

cies, and those policies are propagated to all conclusions derived
using those credentials. This interesting approach will be too re-
strictive for many situations, and it is embedded into the syntax of
the language, making it hard to change. A type-based credential
discovery system, as in [18], is not flexible enough to model the
evolving behavior of credential and authorization servers in compu-
tational grids, where there is often no visible relationship between
the party whose signature Alice wishes to have on a fact and the
party Alice must go to to obtain that signature. In [3, 4, 10, 13],
information on where to obtain each credential is expressed by la-
beling each credential occurrence in a policy with exactly one peer.
Credential location hints are affixed inside the policy and must be
replicated in each rule, although the strategy for finding a creden-
tial often depends on the credential class and not on the rule where
the credential is referred to—a kind of replication that may intro-
duce errors. In general, decoupling access control policies from
negotiation-related decisions such as credential fetching strategies,
release policies, etc., seems a good policy engineering principle,
and a step towards declarative negotiation control. Close to our
work, [21] proposes a logic based formulation that supports dele-
gatable authorizations; [7] adopts a metapolicy-based approach as
in our paper. However, neither of them considers such features
as sticky policies, credential discovery, or exposure issues. We
know of no preexisting approach that allows one to reason about
the runtime behavior of a very diverse set of peers, some of whom
push information, some pull information, and some mix the two
paradigms. Further, preexisting work did not consider potential in-
teractions between various features (e.g., sticky policies on hints
about where to go to obtain information about sticky policies).

In this paper, we propose the PeerAccess framework, which pro-
vides an infrastructure and language to model and reason about dis-
tributed authorization in open systems. As the framework is broad
and generic, we only present an instantiation of it that is suitable
for use in reasoning about access to a grid of computational re-
sources. We introduce the architecture and describe the language
in section 2, then present PeerAccess knowledge bases in section
3, release policies in section 4, semantics and fixpoint characteriza-
tion in section 5, proof theory in section 6, proof hints and queries
in section 7, and finally conclude in section 8.

2. FRAMEWORK AND LANGUAGE
The PeerAccess framework supports a possibly infinite set of

peers, each with its own separate knowledge base (KB) of policy-
related information (figure 1). Peers communicate with one an-
other by pushing information in messages, or by pulling informa-
tion through queries. The high-level behavior of each peer (i.e.,
what information it pushes and to whom, whose queries it tries to
answer, how hard it tries to answer them, and the kinds of answers it
gives) is determined by declarative event-condition-action rules for
that peer. The lower-level behavior of each peer is determined by
the contents of its KB, which include its own local knowledge and
information that it has received from others. Its KB includes tight
controls on what information it can send out or receive in messages,
and hints regarding what peers to contact for help if it is trying to
prove certain types of conclusions. At a high level, the language
for KBs and messages can be thought of as logic programs with
an open-world semantics, plus two modal operators related to the
says operator of BAN logic [8] (to provide nonrepudiation for mes-
sage contents and justification of proof results), plus a sprinkling of
second-order constructs to allow declarative specification of infor-
mation release policies and hints about how to construct proofs (but
without introducing high runtime complexity).

The PeerAccess policy language consists of a modal language—

called the base language—and a modal metalanguage, each with a
separate countable pool of variables. Roughly speaking, the base
language specifies basic access control policies and related rules;
the metalanguage specifies metapolicies that determine the dynamic
behavior of the system.

The base policy language is based on standard Datalog atoms,
built from a countably infinite supply of constants (to model open
domains). A distinguished subset of the constants, N , contains all
possible peer names. The set of predicates is application depen-
dent. We italicize variable names, to distinguish them from con-
stants, functions, and predicate names. At the base level, modal
atoms, called facts, are expressions of the form “P signsα” or
“P lsignsα”, where P ∈ N and α is a Datalog atom. A rule is
an expression f0 ← f1 ∧ · · · ∧ fn, where each fi is a fact and
n ≥ 0. Facts are special cases of rules, where n = 0. If f0 is
of the form “P signsα”, then the rule or fact is directly signed by
P ; otherwise, f0 has the form “P lsignsα” and the rule or fact is
logically signed by P . (We will omit the signatures on equality and
inequality atoms, since all peers agree on the truth of such atoms.)

In the metalanguage, the set of terms includes the metavariables
plus a distinct function name s̄ for each symbol s of the two lan-
guages (variables, constants, and logical connectives), satisfying
¯̄s = s̄. In this way, each base or metaexpression e can be repre-
sented by a metaterm ē built with the naming functions. To enhance
readability, we shall simply write ē as e; the context will always
make clear whether e is playing the role of a term or a rule. The
(nonmodal) atoms of the metalanguage are built in the usual way
from metaterms and metapredicates. Facts are defined as above,
i.e., as modal metalanguage atoms. Rules have the same form
as above; their bodies may contain both base facts and metafacts,
while the head f0 must belong to the metalanguage. Variable in-
stantiations must map each variable to a term of the same level, so
that every instance of a well-formed expression is well-formed, too.

Each peer has a separate knowledge base (figure 1) of facts,
rules, and received messages. Each KB contains the following fi-
nite sets of formulas, each described in detail in a later section:

1. Its base policies, which are rules over the base language.

2. All messages it ever received from other peers. Each mes-
sage is a finite set of rules. (In this paper, we will not make
use of the set of messages sent by a peer.)

3. Its release policies, containing rules about release predicates.

4. Its hints for finding proofs, containing rules about the ‘find’
metapredicate.

5. Its exposure policies, which act as a firewall to restrict in-
coming and outgoing information. To conserve space, we
will not discuss exposure policies in this paper.

DEFINITION 1 (KB). A PeerAccess global KBP contains one
local KB for each peer:

P = {(j,Pj) | j ∈ N}

where Pj is peer j’s local KB, i.e., the set of all messages it has
received and its base, release, and proof hint policies; andN is the
set of all peer names in the language.

We will omit “global” and “local” when referring to a KB, when
the context is clear.

Figure 1: PeerAccess architecture and KB structure. Unidirectional arrows indicate information pushed from one peer to another.
Bidirectional arrows indicate queries and responses.

3. BASE POLICIES
Intuitively, the directly signed fact “Alice signs α” in Bob’s KB

means that Alice has asserted in a non-repudiable manner that α
holds at Alice—e.g., Alice has digitally signed α and sent out a
message whose contents have eventually made their way to Bob.
The logically signed fact “Alice lsigns α” in Bob’s KB means that
Bob has nonrepudiable evidence that leads to the conclusion that
Alice would be willing to digitally sign α, if shown this evidence.
The meaning of directly and logically signed rules is similar: Alice
sends her directly signed rule to Bob to convince him that the logi-
cally signed counterpart of the rule (created by replacing “signs” by
“lsigns” in the rule head) is true at Alice. We assume that whenever
Alice wants to send a message to Bob, she succeeds in sending the
message, Bob receives it successfully, and Bob is able to verify that
its contents have not been tampered with and were actually signed
by their reputed signers.

We present the formal semantics for signs and lsigns in Section
5; for the moment, it suffices to explain the three major character-
istics of signs and lsigns that must hold in every KB interpretation
at every peer:

1. If a directly signed rule is true at a peer Alice, then its logi-
cally signed counterpart is also true at Alice.

2. If facts f1 through fn and the logically signed rule f ←
f1 ∧ · · · ∧ fn are all true at a peer Alice, then f is also true
at Alice.

3. If a rule logically signed by Alice is true at Alice, then so is
its directly signed counterpart.

Before any peer has sent out any message, we require that each
local KB contain only self-signed statements. This ensures that if
Alice’s KB eventually contains a fact directly signed by Bob, then
Bob’s KB does also.

Our running example models the behavior of the Community
Authorization Service (CAS) [19] under several different possi-
ble trust assumptions. CAS is a third-party authorization service
that simplifies the task of making a resource available on a high-
performance computing grid, by offloading authorization reason-
ing from the resource manager to CAS. For example, consider the
shake table, an earthquake simulation device that is managed by
Bob, under the following possible scenarios.1

Example 1a. In this example, Bob owns and brokers all access
to the shake table, and makes and directly signs his own authoriza-
tion decisions. In particular, Alice will be able to access the shake
table if “Bob signs auth(shaketable, Alice)” is true at Bob. Bob
may store a list of authorized users/groups internally, or he may
delegate his reasoning to CAS as follows:

Bob:
Bob lsigns auth(shaketable, X)← CAS signs auth(shaketable, X)

Bob’s base policy says that he will give Alice access if he has a
statement directly signed by CAS, saying that Alice is authorized.
If Bob’s KB interpretation satisfies “Bob lsigns auth(shaketable,
Alice)”, then it also satisfies “Bob signs auth(shaketable, Alice)”.

Example 2a. Let us change Bob’s KB by one letter:

Bob:
Bob lsigns auth(shaketable, X)← CAS lsigns auth(shaketable, X)

Now Bob wants a logical signature on CAS’s proof of authoriza-
tion, rather than requiring a direct signature from CAS. In other
1The examples will only be fully meaningful to the reader after
we have presented the PeerAccess formal semantics. Conversely,
the formal semantics will be very hard to follow unless the reader
has an intuition about what PeerAccess is trying to accomplish.
We resolve this impasse by presenting simple examples before the
semantics.

words, Bob is now asking for a proof that would convince CAS
that Alice is authorized to access the shake table. The pieces of the
proof need not come directly from CAS. For example, for greater
protection against attack, CAS could pre-sign its authorization-related
rules and facts off line, and push them to a repository CAS-DB that
does not have access to CAS’s private keys. Then CAS-DB’s base
policies and received messages can be as follows:

CAS-DB:
CAS signs auth(shaketable, X)←

CAS signs authgroup(shaketable, G) ∧ CAS signs member(G, X)
CAS signs authgroup(shaketable, earthquake)
CAS signs member(earthquake, Alice)

To convince Bob that Alice can access the shake table, it suffices
to send Bob a message containing CAS-DB’s rule and facts. Once
Bob receives this message and incorporates its contents into his
KB, the three principles outlined earlier guarantee that CAS lsigns
auth(shaketable, Alice) is true at Bob.

Example 3a. If the body of CAS-DB’s rule uses ‘lsigns’ instead
of ‘signs’, then we have the possibility that the proof of group mem-
bership is defined by other rules:

CAS-DB:
CAS signs auth(shaketable, X)←

CAS lsigns authgroup(shaketable, G) ∧ CAS lsigns member(G, X)
CAS signs member(G, X)←
O lsigns member(G, X) ∧ CAS lsigns owner(G, O)

CAS signs authgroup(R, G)←
O lsigns authgroup(R, G) ∧ CAS lsigns owner(R, O)

Here CAS is not responsible for maintaining the lists of current
group members or authorized groups. Instead this task is delegated
to the owners of each group and resource. The group owners may
have cached their signed group membership lists at CAS-DB, or
may provide them on demand to CAS-DB or to the group members,
as discussed later.

4. RELEASE POLICIES
In PeerAccess, peers exchange information by sending messages

to one another. Every fact and rule that a peer Alice sends out in
a message must be true at Alice and must also be releasable. A
release policy signed by peer P gives the conditions under which
P thinks that it is permissible for a fact or rule φ to be sent in a
message from peer S to peer R. In this paper, we will consider
release policies over the srelease (sticky-release) predicate, which
take the following form, and its logically signed counterpart:

P signs srelease (φ, S,R)← f1 ∧ · · · ∧ fn,

where P , S, and R are peer names or variables; φ is a term over
the release policy language (e.g., a base rule or a proof hint (de-
fined later)); and f1 through fn are facts, with n ≥ 0. Intuitively,
srelease semantics stipulate that a peer Alice can send peer Carla a
fact or rule φ directly signed by Bob if (1) φ is true at Alice, and (2)
“Bob lsigns srelease(φ, Alice, Carla)”, “Carla = Alice”, or “Carla
= Bob” is true at Alice. In other words, Alice can only send out
a formula signed by Bob if she is sending it to herself or to Bob,
or she can prove that Bob thinks that it is okay for her to send the
message out. Further, Alice can only send out facts and rules that
she believes to be true.

The srelease policies are sticky: the signer of a particular piece
of information retains control over its future dissemination to other

peers. (Of course, a malicious peer can choose to violate the con-
ditions in a sticky policy, if it is not afraid of the potential legal
and social ramifications of doing so.) Sticky policies are desir-
able and even legally mandated in many situations, but other sit-
uations may require a graceful approach to declassification of in-
formation, or even stronger control over the use of released infor-
mation (e.g., control over the dissemination of conclusions reached
by using that information). In the PeerAccess framework, addi-
tional release predicates can be defined to fit the needs of a par-
ticular set of peers, including limited forms of declassification and
the ability to spread rumors (lsigned and unsigned formulas) and
lies (formulas not true locally). For example, a direct but unsigned
communication “auth(Alice, shaketable)” from CAS might con-
vince Bob that “CAS lsigns auth(Alice, shaketable)” is true, but
CAS could repudiate such a statement, and Bob would be unable
to use CAS’s message to convince a third party that “CAS lsigns
auth(Alice, shaketable)” is true. While these variations are inter-
esting in their own right, in this paper we confine our attention to
the release of directly signed rules.

The three principles given earlier regarding the meaning of sig-
natures on base facts and rules also apply directly to release facts
and rules. We also have two additional principles to govern the re-
lease of srelease policies. In general, release policies may contain
sensitive information and should not be indiscriminately released.
We do not allow the user to define explicit KB policies governing
the releasability of srelease policies, because srelease is intended to
be so simple to use that peers will never have to define such poli-
cies. Instead, the releasability of srelease formulas is defined by
two principles, which will be formalized later on. Oversimplifying
slightly, the first principle allows Alice to send Carla an srelease
rule φ that is directly signed by Bob if φ is true at Alice and φ’s
head is of the form “Bob signs srelease(α, Carla, -)”, where α is di-
rectly signed by Bob. The intuition is that if Bob authorizes Carla to
disseminate a piece of information, Bob should allow Carla to find
out that she is authorized to disseminate the information. A second
principle helps with longer dissemination chains: David can send
φ to Alice if φ is true at David, φ’s head has the form given above,
and David knows that Alice can send φ to Carla.

When a peer Alice receives a message, she checks to see whether
her exposure policies (not discussed in this paper) allow her to re-
ceive each rule in the message. She adds each receivable directly
signed rule to her set of received messages SAlice, and she adds the
logically signed counterpart of that rule to the appropriate section
of her knowledge base.

Let us revisit examples 1-3 to see the effect of release policies.

Example 1b. (Bob makes and signs his own authorization deci-
sions for the resource he owns.) For Bob to be able to tell Alice
that she is authorized, Bob can use rules of the form:

Bob:
Bob lsigns srelease(Bob signs auth(X , Y), Bob, Y)
Bob lsigns srelease(Bob signs auth(X , Y), Y , X)

Bob’s first release fact says that he will release an authorization
decision to the principal who is authorized by that decision. This
allows Bob to tell Alice that she is authorized to access the shake
table. However, this may not be enough for Alice to be able to use
that authorization, e.g., if she has to present that authorization to
the shake table herself. To do so, Alice must know that Bob says
that it is okay for her to release his authorization decision to the
shake table. Bob’s second release fact accomplishes this goal. By
the principles given above, Bob can send a directly signed version
of his second release fact to Alice. If he sends her his authorization

decision and the release policy, her KB will contain:

Alice:
Bob signs auth(shaketable, Alice)
Bob signs srelease(Bob signs auth(X , Y), Y , X)

At this point, Alice can access the shake table by sending it “Bob
signs auth(shaketable, Alice)”, because that formula is satisfied in
her interpretation and “Bob lsigns release(auth(shaketable, Alice),
Alice, shaketable)” is also.

While Bob’s proposed release rules are a good start, they are in-
sufficient for use on the computational grids that CAS is designed
for. The problem is that on those grids, Alice delegates her author-
ity to a subjob, which in turn delegates its authority to a subjob, and
so on, until eventually a subjob accesses the shake table. The rules
given above only allow Alice to give her decision directly to one
party, who cannot release it further. To allow Alice to release the
authorization to someone who could in turn release it again, Bob
can add the following rule to his release policies:

Bob lsigns srelease(Bob signs auth(X , Y), Z, W)← Z 6= Bob

The principles outlined earlier imply that Bob can release this new
release policy to anyone. If the policy is too generous for Bob’s
tastes, he could add restrictions on the recipient W to the body of
the rule, e.g., W must be a member of NeesGrid, a friend of Bob,
a proxy of Alice, etc. He could even require that he himself certify
the property in question, e.g., Bob lsigns member(NeesGrid, W).
Any such restrictions in the policy will also limit the set of peers
that Bob can disclose the policy to.

One weakness of this version of Bob’s release policies is that
he does not allow Alice to impose her own additional controls on
who is allowed to see “Bob signs auth(shaketable, Alice)”. If the
shake table were a sensitive resource, Alice might not want her
authorization to be released to just anyone. To fix this problem,
Bob can replace his third release policy by the following:

Bob:
Bob lsigns srelease(Bob signs auth(X , Y), Z, W)←
Z 6= Bob ∧ Y lsigns condRelease(Bob signs auth(X , Y), Z,W)

Here Bob’s original srelease condition, Z 6= Bob, has been aug-
mented with a second condition that says that the authorized prin-
cipal (e.g., Alice) must also agree that Bob’s statement can be re-
leased from peer Z to peer W . With this additional restriction,
“Bob signs auth(shaketable, Alice)” can only be sent to additional
peers when both Bob and Alice agree that it can be sent.

Even this new version of Bob’s release policies might not satisfy
Alice, who might wish to unilaterally impose additional release
constraints of her own on the information from Bob that passes
through her hands. For example, if Bob is a child and Alice is his
mother, Bob might be willing to pass his own information on to
anyone. To protect her family’s privacy, however, Alice may wish
to limit the further disclosure of Bob’s information, at least in the
case where that information has passed through her hands. Peers
can impose such controls if we employ a release predicate with
more restrictive semantics than srelease.

Let us now loosen the restriction that Bob makes his own autho-
rization decisions, and have Bob delegate part of that task to CAS.
To accomplish this, we add two additional rules to Bob’s KB:

Bob:
Bob lsigns auth(shaketable, X)← CAS signs auth(shaketable, X)
Bob lsigns srelease(Bob signs auth(shaketable, X)←

CAS signs auth(shaketable, X), Z, W)

Bob publicly declares that he relies on CAS for his authorization
decisions. His first release policy allows him to send his rule to
Alice when she wants to access the shake table. When Alice ob-
tains releasable evidence from CAS that she is authorized to access
the shake table (i.e, “CAS signs auth(shaketable, Alice)”, along
with “CAS signs srelease (CAS signs auth(R,X), Y, Z)”), she can
present the fact “CAS signs auth(shaketable, Alice)” to Bob along
with his delegation rule. (She can present the rule to him because
he signed it. So, she can send the rule back to Bob even though he
does not send her a copy of his release policy for the rule.) CAS’s
fact and Bob’s rule together imply that Bob lsigns auth(shaketable,
Alice), so Bob should be convinced that Alice can access the shake
table. At this point, “Bob lsigns auth(shaketable, Alice)” is true at
Bob, from which it follows that “Bob signs auth(shaketable, Al-
ice)” is also true at Bob. Further, Bob’s original release policy
shows that the authorization “Bob signs auth(shaketable, Alice)”
can be released to Alice. Bob can also send Alice his conditional
release rule, which lets Alice do anything she likes with the autho-
rization that he gives her.

Example 2b. In this case, CAS has delegated its authorization
tasks to CAS-DB, and Bob wants to see a proof from CAS that
Alice can access the shake table:

Bob:
Bob lsigns auth(shaketable, X)← CAS lsigns auth(shaketable, X)
Bob lsigns srelease(Bob signs auth(shaketable, X)←

CAS lsigns auth(shaketable, X), Y , Z)
CAS-DB:

CAS signs auth(shaketable, X)←
CAS signs authgroup(shaketable, G) ∧ CAS signs member(G, X)

CAS signs authgroup(shaketable, earthquake)
CAS signs member(earthquake, Alice)

If we adopt the same approach to release rules as in Example 1b,
then CAS-DB would have the release policy “CAS signs srelease(CAS
signs auth(R,X), Y, Z)”. This is not helpful, as CAS-DB cannot
derive any facts of the form “CAS signs auth(R,X)”; CAS-DB can
only derive logically signed authorizations. CAS needs to authorize
CAS-DB to release all the details of the proof, so that CAS-DB can
convince others that it is faithfully mirroring CAS’s reasoning:

CAS-DB:
CAS signs srelease(CAS lsigns auth(shaketable, X)← CAS signs

authgroup(shaketable, G) ∧ CAS signs member(G,X), Y, Z)
CAS signs srelease(CAS signs authgroup(X,G), Z,W)
CAS signs srelease(CAS signs member(G, Y), Z,W)

For brevity, we have set up these three release policies so that ev-
erything is publicly releasable. In practice, CAS would probably
prefer to be less trusting of CAS-DB, and only authorize CAS-DB
to release Alice’s membership credential to Alice, while still al-
lowing Alice to release it to anyone she chooses. Similarly, CAS
might choose to limit the initial release of authgroup(shaketable,
earthquake) to members of the earthquake group. CAS could also
limit the initial release of its delegation rule so that CAS-DB can
only give it to authorized shake table users, if desired. We will not
write out these more restrictive rules here, because Example 1b has
already shown how to write such policies.

To convince Bob that Alice can access the shake table, it suffices
for Alice to send Bob a message containing CAS-DB’s base rule
and base facts, from which it follows that CAS lsigns auth(shaketable,
Alice). Alice does not need to send release policies for CAS-DB’s
rules and facts, because Bob does not release them further. Because

Bob directly signs his own conclusions, he can send out that con-
clusion regardless of the sticky policies on the information he used
to reach that conclusion.

Example 3b. In this example, CAS does not maintain the lists of
current group members. CAS-DB has the three base rules defined
earlier, a sprinkling of cached facts, and release policies from CAS
authorizing public dissemination of the rules:

CAS-DB:
CAS signs auth(shaketable, X)←

CAS lsigns authgroup(shaketable, G) ∧ CAS lsigns member(G, X)
CAS signs member(G, X)←
O lsigns member(G, X) ∧ CAS lsigns owner(G, O)

CAS signs authgroup(R, G)←
O lsigns authgroup(R, G) ∧ CAS lsigns owner(R, O)

CAS signs owner(earthquake, earthquakeOwner)
CAS signs owner(shaketable, Bob)
earthquakeOwner signs member(earthquake, Alice)
Bob signs authgroup(shaketable, earthquake)
CAS signs srelease(CAS signs auth(shaketable, X)← CAS lsigns

authgroup(shaketable, G) ∧ CAS lsigns member(G, X), Y , Z)
CAS signs srelease(CAS signs member(G, X)←
O lsigns member(G, X) ∧ CAS lsigns owner(G, O), Y , Z)

CAS signs srelease(CAS signs authgroup(R, G)←
O lsigns authgroup(R, G) ∧ CAS lsigns owner(R, O), Y , Z)

To convince Bob that she can access the shake table, Alice will
need to convince him that CAS lsigns auth(shaketable, Alice). From
CAS-DB’s facts and rules, it follows that “CAS lsigns auth(shaketable,
Alice)” is true at CAS-DB. However, CAS-DB can only send di-
rectly signed atoms and rules in messages, and “CAS signs auth(shaketable,
Alice)” is not true at CAS-DB. Thus, if CAS-DB wants to be help-
ful, it must give Alice a set of atoms and rules from which it fol-
lows that CAS lsigns auth(shaketable, Alice). The release policies
given above authorize CAS-DB to release all relevant information
except “earthquakeOwner signs member(earthquake, Alice)” and
“Bob signs authgroup(shaketable, earthquake)”. To release these
atoms, “earthquakeOwner lsigns srelease(earthquakeOwner signs
member(earthquake, Alice), CAS-DB, Alice)” and “Bob lsigns sre-
lease(Bob signs authgroup(shaketable, earthquake), CAS-DB, Al-
ice)” must be true at CAS-DB. Further, for Alice to make use of
the information CAS-DB gives her, she must be able to release it as
well. This need implies that CAS-DB should have cached release
policies from earthquakeOwner and Bob, because it will need these
policies every time it receives a query about access, and it will re-
ceive such queries constantly. If for some reason such policies are
not already cached at CAS-DB, CAS-DB can query for them au-
tomatically using the proof hints mechanism described in section
7. The same is true of the release policies that Alice will need for
those same atoms.

The PeerAccess framework can be instantiated with a release
predicate different from srelease if CAS should have the author-
ity to override the wishes of the group and resource owner in re-
leasing group membership lists and lists of authorized groups, or
if CAS-DB’s release of “O signs authgroup(R, G)” should require
the permission of R’s owner as well as O.

5. PEERACCESS SEMANTICS

DEFINITION 2 (POSSIBLE WORLD). A possible world W is
a set of logically signed ground facts that satisfies the Herbrand
domain assumption, i.e., “X = X” ∈ W for every ground choice

of X , and “X 6= Y ” ∈ W for every pair of distinct choices of X
and Y .

The fact “CAS lsigns srelease(CAS signs auth(X , Y), Alice,
Bob)” is not ground: variables and metavariables cannot occur any-
where in a ground formula or in a possible world.

DEFINITION 3 (INTERPRETATION). A PeerAccess interpreta-
tion I is a set containing one local interpretation for each peer, i.e.,
I = {(j, Ij) | j ∈ N}. Peer j’s interpretation is Ij = (Wj , Sj),
whereWj is a set of possible worlds and Sj is a set of rules directly
signed by other peers.

Wj is a set of possible worlds because correct local reasoning
about authorization in an open system requires an open world as-
sumption.2

We define the truth of a formula in I as follows, where A is the
name of an arbitrary peer:

DEFINITION 4 (|=, MODEL).

1. I |=A φ, for a logically signed ground rule φ of the form
f ← f1 ∧ · · · ∧ fm, iff for each world W in WA, either
f ∈W or for some 1 ≤ j ≤ m, fj 6∈ W .

2. I |=A φ, for a logically signed non-ground rule φ, iff for
every ground instance φ′ of φ, I |=A φ′.

3. I |=A φ, for a directly signed rule φ, iff both of the following
hold:

• φ ∈ SA iff φ is directly signed by A;

• I |=A φ′, where φ′ is the logically signed counterpart
of φ.

4. I |=A Φ, for a set Φ of rules, iff for all φ ∈ Φ, I |=A φ. In
this case, we say that I is a model of Φ at A and Φ is true
in IA.

5. I |= P , for a global KB P , iff for all peers A ∈ N , I |=A

PA. In this case, we say that I is a model of P and P is true
in I .

The preceding definition of an interpretation holds for any in-
stantiation of the PeerAccess framework. For this paper’s instanti-
ation, each interpretation must also satisfy three requirements that
are specific to the srelease predicate. In the statements of these re-
quirements, A and B are arbitrary peers; C,D, and E are arbitrary
peers or variables; φ is a rule directly signed by B; and f1 through
fn are arbitrary facts, with n ≥ 0. Note that the truth of an srelease
rule does not depend on whether the formula to be released is true
or false.

2With a closed world assumption, we could have the following sce-
nario: A university U delegates all responsibility to its registrar R
for determining who is a student: “U lsigns student(X)← R lsigns
student(X)”. U does not maintain any lists of students itself. Un-
der a closed world assumption, “U lsigns student(Alice)←U lsigns
student(Bob)” is true at U, because U does not know that Bob is a
student. If U signs and sends this true rule to Alice, and Alice ob-
tains proof that Bob is a student, then Alice will have a proof of
U lsigns student(Alice), which U never intended. An open world
assumption prevents this rule from ever being true at U (because U
has possible worlds where Bob is a student), thereby preventing its
dissemination in messages.

1. (A peer can send any directly signed rule to itself or to the
rule’s signer.) If I |=A φ, where φ is directly signed by B,
then I |=A B lsigns srelease(φ,A,B) and I |=A B lsigns
srelease(φ,A,A). The former condition guarantees that B
cannot repudiate a proof provided by A, by claiming that he
does not have φ. The latter condition avoids certain awkward
theoretical situations.

2. (If Bob authorizes Carla to disseminate a piece of informa-
tion under certain conditions, Bob should allow Carla to find
out that she is authorized to do so.) Recall that we prohib-
ited the user from writing srelease rules for srelease rules,
because they are hard to write and understand; our intent is
that such rules should be generated automatically, using this
principle and the one that follows. If I |=A φ, where φ is of
the form “B lsigns srelease(ψ,C,D)← f1∧· · ·∧fn”, then
I |=A B lsigns srelease(φ, A,C). Here Alice is allowed to
release Bob’s release rule φ to Carla, because φ authorizes
Carla to release information under certain conditions.

3. (If Bob authorizes Carla to release a piece of information to
Doug, and Bob also authorizes Doug to release it to Edward,
then Carla is allowed to know that Doug can release this info
to Edward, and the release policy itself can be forwarded
from Carla to Doug.) If I |=A B lsigns srelease(φ,C,D)←
f1 ∧ · · · ∧ fn and I |=A ψ, where ψ is of the form “B lsigns
srelease(φ,D, E) ← f1 ∧ · · · ∧ fn”, then I |=A B lsigns
srelease(ψ,A,C).

One can view the evolution of a global KB over time as being
represented by a sequence I1, I2, . . ., where each evolution step
corresponds to a set of messages being sent in parallel between
peers. Each such message can add formulas to the local KBs, but
the contents of the local KBs are bounded above: there are only
so many new messages that can be sent. As a result, for each le-
gal initial global KB there is exactly one canonical model, written
P , which is the interpretation representing the maximal attainable
state of knowledge across all peers. (In this paper, we do not allow
peers to delete formulas from their KBs, or to insert formulas other
than those that arrive in messages.) Each KB also has one unique
isolated model, written P, which represents each peers’ maximal
local knowledge before receiving any message from others. The
following definitions present fundamental operations on interpreta-
tions, along with theorems and proofs regarding their properties.

DEFINITION 5 (UNION OPERATOR ⊕). For two interpretations
I and I ′ and peer A, we define

IA ⊕ I
′

A = ((WA ∪W
′

A) , (SA ∩ S
′

A))

I ⊕ I ′ = {(B, IB ⊕ I
′

B) | B ∈ N}.

PROPOSITION 1 (MODEL CLOSURE UNDER UNION). The
union I ⊕ I ′ of any two models of P is still a model of P .

Proof. Let I and I ′ be two of P’s models, and φ be any rule inPA.
It immediately follows that φ is true in both I and I ′. Consider the
following cases.

1. If φ is a ground logically signed rule, then φ is satisfied in
every possible world in WA and in W ′

A; thus φ is satisfied
in every possible world in WA ∪W

′
A; therefore φ is true in

I ⊕ I ′ at A.

2. Consequently, if φ is a logically signed rule, all its ground
instances will be true in I ⊕ I ′ at A; thus φ is true in I ⊕ I ′

at A.

3. If φ is a directly signed rule, its logically signed version is
true in I ⊕ I ′ at A; if φ is not self-signed, then it is also in
both SA and S′

A, which means φ ∈ SA ∩ S
′
A; therefore φ is

true in I ⊕ I ′ at A.

We conclude that I ⊕ I ′ is a model for P .

DEFINITION 6 (INTERSECTION OPERATOR �). For two in-
terpretations I and I ′ and peer A, we define

IA � I
′

A = ((WA ∩W
′

A) , (SA ∪ S
′

A))

and further define

I � I ′ = {(B, IB � I
′

B) | B ∈ N}.

PROPOSITION 2 (MODEL CLOSURE UNDER INTERSECTION).
The intersection I � I ′ of any two models of P is still a model of
P .

This proposition can be proved using the arguments in the proof of
the previous proposition.

DEFINITION 7 (� RELATION). For two interpretations I and
I ′ and an arbitrary peer A, we define

IA � I
′

A iff (WA ⊇ W
′

A) and(SA ⊂ S
′

A).

Then we define I � I ′ iff for all B ∈ N , IB � I ′B. We call I ′ an
upper bound for I .

The relation� is reflexive, transitive, and anti-symmetric, hence
it is a partial order on interpretations. As examples, we have (I ⊕
I ′) � I , and I � (I�I ′). The partial order has a maximal element
I∞, in which each peer has no possible worlds and a set containing
all directly signed non-self-signed rules. We further define I ≺ I ′

iff I � I ′ and I 6= I ′.

DEFINITION 8 (ISOLATED MODEL). The union of all models
of KB P is its isolated model, written P .

The isolated model reflects the viewpoint of each peer, consid-
ering only that peer’s local knowledge. A peer’s local reasoning is
performed with respect to its portion of an isolated model.

DEFINITION 9 (RELEASABILITY). A rule φ directly signed
by peer B is releasable from peer A to C in interpretation I iff φ
is true at IA and I |=A B lsigns srelease(φ, A,C).

DEFINITION 10 (STABILIZED INTERPRETATION). An inter-
pretation I is stabilized iff for all peers A, B, and C and all rules
φ that are directly signed by B, if φ is releasable fromA to C, then
φ is true in I at C.

Intuitively speaking, every interesting message has already been
sent in a stabilized interpretation.

DEFINITION 11 (MESSAGES). We define global, local, (max-
imum) legal, and new messages as follows:

1. A global message M = {(A,MA) | A ∈ N}, where MA

is a finite set of directly signed rules. A rule m in MA is a
local message for peer A. We omit the terms “global” and
“local” when the intent is clear from the context.

2. M is a new message for interpretation I iff there exists a peer
A and rule φ ∈MA, such that I 6|=A φ.

3. M is a legal message for interpretation I iff for all peers A
and all rules φ ∈ MA, there exists a peer B such that φ is
releasable in I from B to A.

4. M is the maximum legal message for I iff for every legal
message M ′ for I and for all peers A, M ′

A ⊆MA.

A global message is also a PeerAccess KB.

DEFINITION 12 (TRANSITION AND SUCCESSORS). We define
immediate successor relation ⇒ (leads to), transition sequence,
fairness and eagerness as follows.

1. Interpretation I ′ is an immediate successor of I , denoted
I ⇒ I ′, iff there exists a legal message M for I such that
(I �M) = I ′. In this case, we say I leads to I ′ by mes-
sage M , and M sends m to I ′ at A when m ∈MA. I ′ is a
non-trivial successor of I if M is a new message for I .

2. A sequence I1, I2, . . . of interpretations is a transition se-
quence iff I1 ⇒ I2 ⇒ · · · .

3. A transition sequence is fair iff for each choice of j > 0,
each legal message M j for Ij , every peer A, and every
rule m ∈ M

j
A, there exists an interpretation I l in the se-

quence that leads to I l+1 by sending legal message M l, and
m ∈ M l

A. The intuition is that every possible local mes-
sage gets sent during the sequence, within a finite number of
transitions.

An interpretation can have more than one immediate successor.
Note that if I ⇒ I ′, then I � I ′.

DEFINITION 13 (UPPER BOUND). Let Seq be an infinite se-
quence of interpretations I1, I2, . . . such that I1 � I2 � I is
an upper bound of Seq iff for all j, Ij � I .

PROPOSITION 3 (UPPER BOUND UNION CLOSURE WITH �). 1.
If I � Ia and I � Ib, then I � (Ia ⊕ Ib).

2. The union L � L′ of two upper bounds for an interpretation
sequence Seq is still an upper bound for Seq.

Proof. (Part 1) LetW ,Wa, andWb be the corresponding sets of
possible worlds and let S, Sa, and Sb be the corresponding sets
of directly signed formulas. For all choices of peers A, I � Ia

and I � Ib imply that W ⊇ W a and W ⊇ W b; thus W ⊇
(W a ∪W b). We obtain S ⊆ (Sa ∩ Sb) similarly, and conclude
that I � (Ia⊕ Ib). (Part 2) The desired result follows by applying
Part 1 to all interpretations in the sequence.

DEFINITION 14 (FIXPOINT). LetSeq be an infinite sequence
of interpretations I1, I2, . . . such that I1 � I2 � The union
I∗ of all upper bounds for Seq is Seq’s fixpoint.

For every upper bound I for Seq, I∗ � I . Note that Seq does not
necessarily include the fixpoint.

Let Seq be an infinite transition sequence P, I1, I2, We say
that Seq is a transition sequence for P .

DEFINITION 15 (CANONICAL MODEL). P’s canonical model,
written P , is the intersection of the fixpoints of all the transition se-
quences for P .

THEOREM 1 (PEERACCESS CONFLUENCE THEOREM). For
each infinite transition sequence Seq for P and its fixpoint I∗, we
have:

1. I∗ � P.

2. I∗ = P iff Seq is a fair transition sequence.

Proof. (Part 1.) By definition, P is the intersection of I∗ and
others, thus I∗ � P .

(Part 2.) Represent any two of these fair sequences E and F as
E1 = P , E2, ..., and F 1 = P , F 2,

Let m be a member of the set of directly signed formulas in
sequence E’s fixpoint E∗ at peer A. Then m has to be in some
Ei’s set of directly signed formulas at A. Otherwise, we can have
an upper bound E+ that has the same possible worlds and set of
directly signed formulas as E∗, except that m is not in E+’s set
of directly signed formulas at A. In that case E+ � E∗, which
contradicts the fact that E∗ is the fixpoint. So we can assume m
first appears in E at Ei and is sent from B at Ei−1.

Let the tuple (x, P , A), called a message delivery, represent the
fact that that peer P sent a local message x toA at transitionEi−1.
Let S be an empty stack, and push (m, B, A) onto S. Then for
each peer P that sent B a message during stage Ei−2, push a tuple
(x, P , B) onto the stack. Repeat the process for each message that
a peer P ′ sent to P or B at stage Ei−3. Continue the process back
through each stage, pushing messages sent by (potentially more
and more) peers, until all relevant messages from the first stage
have been pushed.

The resulting stack shows how m came to be delivered to A.
Each message in the stack is legal (releasable) if all messages above
it in the stack have already been sent. If we pop messages off the
stack one by one, we get a finite sequence of legal message deliv-
eries, (m1, B1, A1), (m2, B2, A2), . . ., (m, B, A.) Because F1
equals E1, m1 must be releasable at F 1 from A1 to B1. Under
the fairness assumption, this legal message must be sent at some
point in F ; say it happens at F r . After that point, m2 is releasable
from A2 toB2, and the same argument as used form1 implies that
m2 is eventually sent in F . Repeating this argument, we find that
eventually m is sent in F ; say this happens in F k at A. Then m is
also in F ∗ at A, as otherwise we would have a fixpoint F+ � F ∗.
We conclude that E∗ and F ∗ have the same sets of directly signed
formulas.
E and F start with the same set of possible worlds at A, and

every time a message is received at A, the elimination of possible
worlds (by intersecting with all possible worlds implied by the re-
ceived messages at A) is determined by the set of messages in A.
If a possible world w is in E1 at A, but not in E∗ at A, then it
must be eliminated from some Ei at A because of a message m
received by Ei at A. As we have proved, m also gets delivered to
some F j , which eliminates w from F j at A and all F j’s succes-
sors. Thus w is not in F ∗ at A either. We conclude that E∗ = F ∗,
which means that all of P’s fair transition sequences have the same
fixpoint, written F .

We can use the same arguments to show that every local message
sent to A in an unfair transition sequence is also present in the set
of directly signed formulas at A in the fixpoint of a fair transition
sequence, but not the other way around. Thus any unfair transition
sequence’s fixpoint F ′ ≺ F , which means F � F ′ = F . As P
is defined as the union of all transition sequences’ fixpoints, we
conclude that P = F .

For the other direction, we have already proved that for any un-
fair sequence for P and resulting fixpoint F ′, we have F ′ � P . It
follows that if a sequence’s fixpoint is P , then this sequence must
be a fair sequence.

6. PROOF THEORY

We now turn our attention from what is true in the interpretations
of PeerAccess knowledge bases to what is provable.

DEFINITION 16 ((LOCAL) DERIVATION). We have the follow-
ing local derivation rules to derive new information inside a par-
ticular peer A’s KB, PA:

• Instantiation. From a logically signed rule φ in PA, derive
an instance of φ.

• Modus ponens. From the logically signed rule f ← f1 ∧
· · · ∧ fm and facts f1 through fm, derive f .

• Signature. From a rule logically signed by A, derive its di-
rectly signed counterpart.

• Self-release. From a rule φ directly signed by B, derive “B
lsigns srelease(φ, A,B)” and “B lsigns srelease(φ,A,A)”.

• srelease-1. From a rule φ of the form “B lsigns srelease(ψ, C,D)←
f1 ∧ · · · ∧ fn”, derive “B lsigns srelease(φ, A,C)”, where
B, C, and D are arbitrary peers.

• srelease-2. From a rule of the form “B lsigns srelease(φ,C,D)
← f1 ∧ · · · ∧ fn” and a rule ψ of the form “B lsigns
srelease(φ,D, E)← f1 ∧ · · · ∧ fn”, derive
“B lsigns srelease(ψ,A,C)”, where B, C, D, and E are
arbitrary peers.

A sequence P1
A, . . . ,P

n
A of peer A’s KBs is a (local) derivation

sequence for peer A if Pi+1

A can be obtained from Pi
A by applying

at most one derivation rule, for all 1 ≤ i < n.

DEFINITION 17 ((GLOBAL) DERIVATION). For peersA and
B with KBs PA and PB respectively, we have the following global
derivation rule.

• Message. From a set Φ ⊆ PA of rules such that for each
φ ∈ Φ, φ is directly signed by some peer C and “C lsigns
srelease(φ, A, B)” ∈ PA, derive Φ in PB .

A sequence P1, . . . ,Pn of global KBs is a (global) derivation se-
quence if for all peers A and all 1 ≤ i < n, either (1) the sequence
Pi

A,P
i+1

A is a local derivation sequence for A, or (2) P i+1

A can be
obtained from Pi

B , for some peer B, through an application of the
message derivation rule.

DEFINITION 18. A KB P derives a rule φ at peer A, written
P `A φ, iff there exists a derivation sequence P1, . . . ,Pn such
that φ ∈ Pn

A. Then P1, . . . ,Pn is a proof for φ at A. When only
local derivation rules are used in this proof, we write PA `A φ.

Proofs that use only local derivations describe the access con-
trol process from a particular peer’s point of view. Proofs that use
global derivations describe what could happen in the system, so are
useful for analyzing safety and liveness. We next argue that each
KB’s local proofs are sound and complete for the isolated modelP;
and accordingly, so are the global proofs for the canonical model
P .

THEOREM 2 (LOCAL SOUNDNESS). For any KB P , rule φ,
and peer A, if PA `A φ, then P |=A φ.

Proof. When only the local derivation rules are used, derivation
in PeerAccess becomes similar to derivation in an ordinary logic
program. We prove its local soundness by arguing for the sound-
ness of each derivation rule.

• Instantiation. If a logically signed rule φ is true in P at A,
then every instance of it is present in every possible world of
P at A, so every instance of it is also true in P at A.

• Modus ponens. For every logically signed rule φ of the form
f ← f1 ∧ · · · ∧ fm and facts f1 through fm, let f ′

1 through
f ′

m be corresponding ground instances. For every worldw of
P at A, as all f ′

1 through f ′
m are present in w, if f ′ is not in

w, then the rule φ is not true in w, which is a contradiction.
We conclude that f ′ is in w and f is true in P at A.

• Signature. If a ground rule φ logically signed by A is true
in P at A, the model theoretic definition of directly signed
rules tells us that φ’s directly signed counterpart is also true
at A.

• Release. The remaining local derivation rules are for the
srelease predicate, and their soundness follows immediately
from the model theoretic constraints on srelease.

Thus φ is also true in P at A, and we conclude that P |=A φ.

THEOREM 3 (LOCAL COMPLETENESS). For any KB P and
ground rule φ, if P |=A φ, then PA `A φ.

Proof. Since peer A has a finite set of local rules at each point,
this completeness result can be shown in the same way as the com-
pleteness results for general logic programs, with the exception of
proofs regarding the srelease predicate. For that predicate, each
point of its model-theoretic definitions corresponds directly to a
proof-theoretic counterpart, so the completeness of reasoning about
srelease follows immediately from the definition of `.

THEOREM 4 (GLOBAL SOUNDNESS). For any KB P , peer
A, and rule φ, if P `A φ, then P |=A φ.

Proof. We prove this theorem by induction on the number of
steps of the proof. If the proof has one step, then φ ∈ P , and
the theorem holds. Otherwise, assume that it holds for all proofs
of length less than n, and now consider the nth and final step in
deriving φ at peer A.

1. When a local derivation rule is used to derive φ, the Local
Soundness Theorem tells us that φ is true in P at A. As
P � P , we know φ is true in P at A.

2. When a global derivation rule is used to derive φ, peer A
gets a message m containing φ. In this case, P becomes P ′

after the message is received. Let M be a global message
with MA = {m}, and with the empty set for all other local
messages. Then P ′ becomes P �M after M is received,
andm is true in P ′ atA. By the Fixpoint Theorem, we know
that P ′ � P , so m is also true in P at A.

By the induction hypothesis, we conclude that the theorem holds
for proofs of all lengths.

THEOREM 5 (GLOBAL COMPLETENESS). For any KBP and
ground rule φ, if P |=A φ, then P ` φ.

Proof. Suppose that φ is true in the canonical modelP. Consider
a fair transition sequence Seq = I1, I2, . . . with fixpoint P; such
a sequence must exist, because φ is ground and P is finite. Let j
be the first point in Seq in which φ is true in Ij

A. If j = 1, then
we have φ in the initial local interpretation of PA, and by the Local
Completeness Theorem, the current theorem follows. Otherwise,
by the induction hypothesis, let us assume that for every rule ψ

that is true at some peer B in Ik, for 1 ≤ k < j, the theorem
holds; in other words, we have a proof of ψ at B in the canonical
model. By the definition of a transition sequence, a finite set of
rules must have been sent to peerA in a new legal message, causing
the transition from Ij−1 to Ij . Consider any member r of this set
that was not already in the set of directly signed non-self-signed
rules in Ij−1. Recall that B can only send r to A if r is directly
signed and releasable, i.e., r is true at B and either A signed r,
A = B, or “C lsigns srelease(r, B,A)” is true at B. In the current
situation, A 6= B, because r is not in the set of directly signed non-
self-signed rules in Ij−1. Similarly, A cannot be the signer of r.
Thus it must be the case that “C lsigns srelease(r, B,A)” is true at
B in Ij−1. By the induction hypothesis, we have a proof for r atB
in the canonical model of P . By the induction hypothesis, we also
have a proof in the canonical model for every rule r that was true
at A in Ij−1.

Consider the set m of all new directly signed non-self-signed
rules that arrived at A during the transition between Ij−1 and Ij .
Given that φ is true in Ij but not in Ij−1, one possibility is that φ
is in m. In that case, by the induction hypothesis, we have a proof
of φ at B in the canonical model. By the message derivation rule,
we also have a proof of φ at A in the canonical model.

Otherwise, we have φ 6∈ m, so φ must not be directly signed
by another peer. Consider the KB K that consists of the initial KB
P , plus every legal new message sent in the transitions up to and
including the transition to Ij . The Local Completeness Theorem
tells us that if φ is true at A in the isolated model of K, then there
is a proof of φ at A for K. φ must be true in the isolated model of
K, because K captures all the messages sent to any peer since the
first transition of the system. Further, by the induction hypothesis,
we have a proof of every formula that is in K but is not in P . We
can take the proof of φ in K, and extend it by prefacing it with the
proofs of all the formulas inK that are used in the proof of φ in the
isolated model of φ but are not present in P (by the definition of a
proof, this set of formulas must be finite), to create a proof of φ in
the canonical model of P .

7. HINTS FOR PROOFS AND QUERIES
The preceding sections have talked about what is true and prov-

able at peers, without considering whether the peers are willing to
construct the proofs or determine the truths. If Alice needs to de-
termine whether φ is true and is unable to do so on her own, in
some applications Alice could ask every other peer in the system
for help. However, in the real world there are typically so many
peers that Alice would not want to take the time to ask all of them
for help, and most peers would be unwilling to help her anyway.
Alice uses her proof hints to restrict her search to peers where she
has a reasonable chance of getting help. For this purpose, each
PeerAccess peer’s knowledge base contains a section devoted to
proof hints, which are metalevel facts and rules that suggest which
peers Alice should ask for help as she tries to determine whether
certain atoms and rules are true.

Each proof hint takes the form “A signs find(φ,B,C) ← f1 ∧
· · · ∧ fn,” or its logically signed counterpart, where A is a peer
name, B and C are peer names or variables, “find” is a metalevel
proof hint predicate, φ is a rule, and f1 through fn are base or
proof hint facts. Intuitively, if a peer Alice is trying to prove φ,
the hint “Bob signs find(φ, Alice, Carla)← f1 ∧ · · · ∧ fn” means
that Bob suggests that Alice ask Carla about φ, under conditions f1
through fn. Much as we disallowed srelease policies for srelease
policies, we disallow proof hints for finding proof hints, because
the additional layer of indirection adds no interesting expressive
capability and complicates execution at run time.

Alice can define broker predicates and use them to describe how
to use them to find proof hints:

Alice:
Alice lsigns NeesGridBrkr(David)
Alice lsigns NeesGridBrkr(Edith)
Alice lsigns find(O lsigns auth(R, X), Alice, B)←

Alice lsigns NeesGridResource(R) ∧ Alice lsigns NeesGridBrkr(B)

These formulas say that when Alice is trying to prove that she or
her proxy is authorized to access a NeesGrid resource, she should
ask one of the NeesGrid brokers for help, by sending the broker
her query. If Alice asks David whether Alice can access the shake
table (using the query ?O lsigns auth(shaketable, Alice), as defined
in the next section), David could in theory respond with a yes or no
answer. However, if David really is a broker, he will not answer the
query directly. Instead David will give Alice a new proof hint, e.g.,
“David signs find(Bob signs auth(shaketable, Alice), Alice, Bob)”.

As another example, for CAS-DB to ask resource owners for
permission to release atoms about their authorized groups, CAS-
DB could use the following proof hint:

CAS-DB lsigns find(
O signs srelease(O signs authgroup(R, G), CAS-DB,X),

CAS-DB, O)
← CAS lsigns owner(R, O)

If David sends Alice a proof hint, then the proof hint must have
been releasable. The releasability of proof hints is determined ex-
actly as for base predicates, and the semantics and derivation rules
presented in the previous sections remain unchanged; the truth of
a proof hint formula does not depend on whether the formula to
be proved is true or false. The impact of proof hints lies in their
effect on a peer’s run-time behavior, which is a tunable feature of
the PeerAccess framework. For example, proof hints can be used
to encode a more modular version of the credential discovery type
system of [18], as rules that say that if a credential is of type issuer-
traces-all, we should ask by asking the prospective signer for the
credential; if it is of type subject-traces-all, we should start by ask-
ing the prospective owner for it; and so on. Whether and how a
peer makes use of proof hints is governed by the event-condition-
action rules for that peer in the PeerAccess framework. For the
purposes of this paper, we will use a single such rule for all peers:
when Alice is unable to make headway on determining the truth of
a fact, she does not give up until she has asked for help by querying
each peer recommended by any proof hint in her local knowledge
base. More precisely, if Alice is trying to determine whether φ is
true and is unable to do so using her local knowledge base, she will
send the query ?φ to each peer P such that P ′ lsigns find(φ, Alice,
P) is true at Alice, for any peer P ′. In this paper, Alice will not ask
other peers for additional proof hints for φ if the hints that she has
do not lead to proofs of φ.

In even the smallest examples, proof hints of the form “Alice
lsigns find(P lsigns Φ, Alice, P)”, where Φ is a metavariable,
would cause Alice to issue a huge number of queries whenever
she got stuck during proof construction—queries not only about
each leaf of the proof tree under construction, but also about each
interior node. To protect Alice from a denial of service attack by
purveyors of proof hints that instruct Alice to ask all peers, Alice
should use her exposure policies to limit the set of proof hints she
allows into her KB, and she should use ECA rules that require the
signer of a proof hint that she acts upon to have a good rating from
a reputation service that she trusts (modeled as an additional peer
or peers who sign ratings). Even in the small examples used in this

paper, we cannot allow Bob to have a proof hint that directs him
to always ask the signer of a fact for help when trying to prove the
fact—this would cause him to contact CAS or CAS-DB himself,
rather than having Alice do the work for him. We will show how
to use proof hints in the CAS examples once we have discussed the
format and handling of queries.

In PeerAccess, peer ECA rules control the choice of “pull” or
“push” paradigms of information dispersal. For the pull paradigm,
a query takes the form ?f1 ∧ · · · ∧ fn, where each fi is a fact or
a rule delimited by parentheses, for 1 ≤ i ≤ n. The meaning of
a ground conjunctive formula is defined in the traditional manner:
the formula is true at a peer if all conjuncts are true at that peer.
In this paper, we will assume that all queries are releasable, i.e., A
lsigns srelease(?Φ, X , Y) is true at every peer A, and we will omit
the definition of query releasability.

The conjunctive form of a query allows Alice to ask CAS-DB
whether CAS signs a particular fact, and include a statement about
the purpose that she intends to use that signed fact for (in the form
of a proposed release policy for the fact). For example, Alice
may query CAS-DB with ?(CAS lsigns auth(shaketable, Alice) ∧
(CAS lsigns srelease(CAS lsigns auth(shaketable, Alice), Alice,
shaketable))). A more voluminous set of rules in the query would
allow Alice to explain that she will only give CAS’s authorization
statement to her proxies and to the shaketable. Because PeerAc-
cess peers can choose to ignore queries, a peer may choose not to
respond to a query that lacks an acceptable purpose. If it is impor-
tant to support nonrepudiation of queries (e.g., for legal purposes),
then we can require that queries be signed; in this paper, we do not
consider that option.

The run-time behavior of a set of peers, as encoded in their proof
hints, exposure policies, and ECA rules, depends on the peers’ de-
signers’ choice of run-time strategies, such as the proposals put
forth by [2, 4, 14, 25]. Different strategies have different conven-
tions for what the acceptable responses are to a query. For example,
SD3 adopts the convention that Bob’s response must be such that
Alice never has to ask Bob the same query again as she continues to
work on getting all the answers to her query [14]. The proposal of
[2] guarantees complete query answers, under an assumption that
peers are fully cooperative. We intend PeerAccess to be customiz-
able to support all of these proposed strategies and the many others
that will be proposed in the future; each such proposal can guaran-
tee (or not) properties such as termination, safety, and liveness in
its own way. Thus the only query answer requirement PeerAccess
imposes is that every answer must be an ordinary message (directly
signed, releasable, and true at the sender). This allows Bob’s query-
answering behavior to range from non-response to sending back all
releasable information already in his KB plus everything he can
glean from other peers, whether or not it is relevant to the query. In
our remaining space, we cannot investigate any strategy in detail,
but we will revisit example 1 to see the effect of proof hints and
queries on an SD3-like run-time strategy.

Example 1c. (Bob makes and signs his own authorization de-
cisions, relying on directly signed CAS statements in his internal
reasoning.) Alice starts the interaction by sending Bob the query
?Bob lsigns auth(shaketable, Alice). Bob’s KB contains the fol-
lowing, plus three additional release rules for the auth predicate:

Bob:
Bob lsigns auth(shaketable, X)← CAS signs auth(shaketable, X)
Bob lsigns find(CAS signs auth(shaketable, X), X , CAS)
← X 6= Bob

Bob lsigns srelease(
Bob signs find(CAS signs auth(shaketable, X), X , CAS)

← X 6= Bob, Y , Z)

Bob’s exposure policies allow him to receive queries about shake
table authorizations from individual parties who would like to be
authorized. Bob is configured so that he tries to prove “Bob signs
auth(shaketable, Alice)” when he receives Alice’s query.

Bob checks to see if “Bob lsigns auth(shaketable, Alice)” is al-
ready in his KB (signature derivation rule), and finds that it is not.
Next he looks for rules that will allow him to expand the lsigned
version of his goal (modus ponens derivation rule), and finds his
CAS delegation rule. Then his effort shifts to proving “CAS signs
auth(shaketable, Alice)”, which is not in his KB. It is not a self-
signed formula, so an lsigned version of the formula would not
help. He has no rules that allow him to expand this proof goal. Bob
is stuck, and there are no other rules that allow him to expand his
original proof goal.

Since his local proof attempts have failed, Bob looks for proof
hints in his KB that will tell him how to prove any of his proof
goals, or that suggest sources for new rules to use in expanding
his current set of proof goals. He has only one proof hint, and its
preconditions are not satisfied. Bob is not configured to look for
additional proof hints at run time, so his proof attempts have ended
in failure. This is exactly the desired outcome: Bob wants Alice
to do the work of querying CAS. In accordance with SD3’s princi-
ples, Bob sends Alice sufficient information that she will not have
to ask him the same query again (except to get his direct signature
on his authorization); he sends her “Bob signs auth(shaketable, X)
← CAS signs auth(shaketable, X)”, after proving that this formula
is releasable (signature rule). Bob is configured to send along all re-
leasable proof hints that are possibly relevant to his answers, so he
also sends his proof hint. (It would not be unreasonable in this case
for Bob to be configured to send Alice every releasable formula in
his KB. Or Bob might respond with the counterquery ?CAS signs
auth(Alice, shaketable).)

Alice is configured with an exposure policy that allows her to ac-
cept Bob’s query and his associated proof hint, which she adds to
her KB. In attempting to answer Bob’s query, her local knowledge
immediately fails her and she makes use of Bob’s proof hint, which
tells her to query CAS. CAS accepts queries from parties who are
asking whether they are authorized to access resources that CAS
knows about. Thus CAS accepts Alice’s query, and tries to prove
“CAS signs auth(shaketable, Alice)” using local inference. If CAS
answers the query by sending Alice “CAS signs auth(shaketable,
Alice)”, then Alice can push that fact to Bob and repeat her earlier
query. (If CAS does not give Alice a suitable release policy for
her to push that fact to Bob, she can query CAS for the policy she
needs: ?CAS signs srelease(CAS signs auth(shaketable, Alice), Al-
ice, Bob).) This time, Bob can use the instantiation, modus ponens,
and signature derivation rules to prove “Bob signs auth(shaketable,
Alice)”. Bob is configured to send this signed fact to Alice, after
proving that it is releasable (instantiation and modus ponens deriva-
tion rules). If he is also configured to send her all associated release
policies, then she will be able to send the authorization fact to any-
one. If he does not automatically send her the release policy, she
and her proxies will have to query him for release permission each
time they send out the authorization fact.

8. CONCLUSIONS
We have presented a brief overview of the PeerAccess frame-

work, concentrating on its handling of base and release policies,
and shown how it can be used in reasoning about the behavior of
resource owners, their clients, and the Community Authorization
Service deployed on supercomputing grids. We have also presented

a formal semantics and proof theory for PeerAccess, and shown
their equivalence in the Appendix.

The features of PeerAccess were motivated by our need to model
certain run-time authorization activities supported in the Grid Se-
curity Infrastructure. To meet these needs, PeerAccess allows one
to model the local reasoning of individual peers who are unaware
of the internal state of other peers. PeerAccess also allows one to
reason about possible future global evolution of the system (e.g.,
for safety or liveness analysis). PeerAccess supports peer auton-
omy in choice of run-time behavior; this behavior is encoded in
individual peers’ ECA rules, exposure policies, and proof hints,
and expressed in a peer’s choice of pushing or pulling information,
its willingness to accept pushed information and queries, and how
hard it will work to answer the queries it accepts (i.e., what other
peers it is willing to contact for help). Peers can easily describe
their purpose in asking a query, and the answering peer can eas-
ily limit the purposes for which the answers will be used (subject
to voluntary compliance). PeerAccess offers an extensible set of
features, including the ability to model a variety of kinds of infor-
mation release policies (including the sticky release policies used
in the CAS examples); non-repudiable, verifiable communications
between peers; easy ways to limit a peer’s effort to prove a con-
clusion, and to direct its efforts in the most promising directions,
through the use of proof hints; modeling of the interface a peer ex-
poses to the outside world, through exposure policies; and potential
easy extension of the underlying language for particular scenarios,
such as constraint Datalog, simple forms of negation, or additional
types of policies, such as audit policies. Total freedom in peer be-
havior can lead to total chaos in run-time results, and PeerAccess
offers an excellent base for modeling, comparing, and experiment-
ing with different proposals for controlling peer run-time behavior
through multi-party trust negotiation strategies and credential dis-
covery algorithms.

9. ACKNOWLEDGMENTS
Winslett’s research was supported by NSF under grants CCR-

0325951 and IIS-0331707 and by an NCSA Fellowship. Bon-
atti’s research was partially supported by the EU FP6 Network of
Excellence REWERSE (IST-2004-506779). Zhang is also associ-
ated with Cisco Systems Inc., USA. We thank W. Nejdl and D.
Olmedilla for discussions leading to the creation of PeerAccess.

10. REFERENCES
[1] J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and

M. Winslett. Negotiating trust on the Grid. In 2nd Workshop
on Semantics in P2P and Grid Computing, New York, 2004.

[2] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in
access-control systems. In Proceedings of the IEEE
Symposium on Security and Privacy, Berkeley, May 2005.

[3] M. Y. Becker and P. Sewell. Cassandra: distributed access
control policies with tunable expressiveness. In 5th IEEE
International Workshop on Policies for Distributed Systems
and Networks, Yorktown Heights, June 2004.

[4] M. Y. Becker and P. Sewell. Cassandra: flexible trust
management, applied to electronic health records. In IEEE
Computer Security Foundations Workshop, 2004.

[5] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures (position
paper). Lect. Notes in Computer Science, 1550:59–63, 1999.

[6] P. Bonatti and P. Samarati. Regulating Service Access and
Information Release on the Web. In Conference on Computer
and Communications Security, Athens, Nov. 2000.

[7] P. A. Bonatti and D. Olmedilla. Driving and monitoring
provisional trust negotiation with metapolicies. In Workshop
on Policies for Distributed Systems and Networks, 2005.

[8] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Trans. on Comp. Systems, 8(1), 1990.

[9] J. Camenisch and E. V. Herreweghen. Design and
implementation of the idemix anonymous credential system.
In Computer and Communications Security, 2002.

[10] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and
M. Winslett. No registration needed: How to use declarative
policies and negotiation to access sensitive resources on the
semantic web. In European Semantic Web Symposium, 2004.

[11] A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and Y. Ravid.
Access control meets public key infrastructure, or: assigning
roles to strangers. In Symp. on Security and Privacy, 2000.

[12] A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E. Seamons,
and B. Smith. Advanced client/server authentication in TLS.
In Network and Dist. Systems Security Symp., 2002.

[13] T. Jim. SD3: A trust management system with certified
evaluation. In IEEE Symp. on Security and Privacy, 2001.

[14] T. Jim and D. Suciu. Dynamically distributed query
evaluation. In Principles of Database Systems, 2001.

[15] G. Karjoth, M. Schunter, and M. Waidner. Platform for
enterprise privacy practices: Privacy-enabled management of
customer data. In Workshop on Privacy Enhancing
Technologies, 2002.

[16] H. Koshutanski and F. Massacci. Interactive trust
management and negotiation scheme. In Workshop on
Formal Aspects in Security and Trust, Aug. 2004.

[17] N. Li and J. Mitchell. RT: A role-based trust-management
framework. In Third DARPA Information Survivability
Conference and Exposition, Apr. 2003.

[18] N. Li, W. Winsborough, and J. Mitchell. Distributed
credential chain discovery in trust management. Journal of
Computer Security, 11(1), Feb. 2003.

[19] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
C. Tuecke. A community authorization service for group
collaboration. In Workshop on Policies for Distributed
Systems and Networks, 2002.

[20] B. Pfitzmann and M. Waidner. Federated
identity-management protocols–where user authentication
protocols may go. In 11th Cambridge International
Workshop on Security Protocols, Apr. 2003.

[21] C. Ruan, V. Varadharajan, and Y. Zhang. Logic-based
reasoning on delegatable authorizations. In Foundations of
Intelligent Systems, ISMIS 2002, Lyon, June 2002.

[22] S. Staab, B. Bhargava, L. Lilien, A. Rosenthal, M. Winslett,
M. Sloman, T. S. Dillon, E. Chang, F. K. Hussain, W. Nejdl,
D. Olmedilla, and V. Kashyap. The pudding of trust. IEEE
Intelligent Systems, 19(5):74–88, Sep./Oct. 2004.

[23] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In Workshop on
Formal Methods in Security Engineering, Oct. 2004.

[24] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu. The TrustBuilder architecture
for trust negotiation. IEEE Internet Computing, 6(6), 2002.

[25] T. Yu, M. Winslett, and K. E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust negotiation. ACM
Trans. on Info. and System Security, 6(1), 2003.

