
Driving and Monitoring Provisional Trust Negotiation with Metapolicies

Piero Bonatti
Universit̀a di Napoli Federico II

Napoli, Italy
bonatti@na.infn.it

Daniel Olmedilla
L3S Research Center and Hanover University

Hanover, Germany
olmedilla@l3s.de

Abstract

We introduce the provisional trust negotiation framework
PROTUNE, for combining distributed trust management
policies with provisional-style business rules and access-
control related actions. The framework features a powerful
declarative metalanguage for driving some critical nego-
tiation decisions, and integrity constraints for monitoring
negotiations and credential disclosure.

1 Introduction

The term “policy is used in the literature in a broad sense
that encompasses the following notions.

Security Policiespose constraints on the behaviour of a
system. They are typically used to control permissions of
users/groups while accessing resources/services.

Trust Management policy languagesare used to collect
user properties in open environments, where the set of po-
tential users spans over the entire web.

Action Languagesare used in reactive policy specifi-
cation to execute actions like event logging, notifications
etc. Authorizations that involve actions and side effects are
sometimes calledprovisional.

Business Rulesare ”statements about how a business is
done” [2] and are used to formalize and automatize business
decisions as well as for efficiency reasons. They can be
formulated asreaction rules, derivation rules, andintegrity
constraints[12, 13].

All these kinds of specification interact tightly with each
other: Credential-based user properties are typically used to
assign access control permissions; logging, monitoring, and
other actions are part of the high-level security specification
documents of many organizations; many business rules—
say, for granting discounts or special services—are based
on the same kind of user properties that determine access
control decision; moreover, this kind of business decisions
and access control decisions are to be taken more or less
simultaneously—e.g. immediately before service access.

Although many approaches have been described to ad-
dress the above points, there is no a common solution, inte-
grating them all in a single framework.

One technical difficulty to be addressed is that the dif-
ferent notions of policy are naturally described by different
computational models [5], including materialization tech-
niques (inherited from the research on deductive databases);
partial evaluation, abduction, and distributed logic program-
ming (especially for trust management); event-condition-
action (ECA) rules (esp. reactive business rules).

We believe that some policies would be more naturally
described under ECA, and in the long run we plan to in-
tegrate this paradigm with the popular ones for automated
trust negotiation (ATN). However, in this first paper, we ex-
plore the expressiveness of the actions that can be associ-
ated to provisional predicates. Intuitively, given a rule such
as “allow(Service) ← A,B,C” where conditionsA and
B are satisfied butC is not, a cooperative system may try
to satisfyC by executing suitable actions (e.g. asking the
client for more credentials, directing the client to a registra-
tion service etc.)

The advantage of this approach—that we callprovisional
approach—is that it fits nicely some of the current ATN
frameworks, and allows to combine smoothly trust nego-
tiation and business rules in a single policy.

A second technical problem to be addressed is related to
flexibility. Automated negotiators have to make a number
of decisions (e.g. How should a request for credentials be
formulated? Which credentials should be disclosed among
those that match a server’s request?) As the optimal choices
are typically application dependent, the negotiators should
adapt their behavior to the given scenario.

In this paper we introduce PROTUNE (PROvisional
TrUst NEgotiation): an approach at integrating the above
aspects into a coherent and flexible framework. PROTUNE’s
rule language extends two previous languages: PAPL [4],
that until 2002 was one of the most complete policy lan-
guages for trust negotiation [10], and PEERTRUST [6], that
supports distributed credentials and a more flexible policy
protection mechanism. In detail, the main contributions of

this paper are (i) A trust management language supporting
general provisional-style actions (possibly user-defined),
(ii) An extendible declarative metalanguage for driving de-
cisions about request formulation, information disclosure,
and distributed credential collection, (iii) A parameterized
negotiation procedure, that gives a semantics to the meta-
language and provably satisfies some desirable properties
for all possible metapolicies, (iv) Integrity constraints for
negotiation monitoring and disclosure control, and (v) Gen-
eral, ontology-based techniques for importing and export-
ing metapolicies and for smoothly integrating language ex-
tensions (with an example based on theRT family of cre-
dential languages [7]).

We assume the reader to be familiar with the basics of
logic programming, as illustrated in [9]. In particular, we
shall use the notions of atoms and literals, most general uni-
fier (mgu), least Herbrand model, and negation as failure.

2 Negotiations

Trust negotiation in PROTUNE is directly inspired by
PAPL [4] and PeerTrust [6], that build on ideas intro-
duced in [14]. In summary, each party (client and server)
makes decisions based on a set of rules that entail deci-
sion atoms such asallow(X), based on conditions over
currently available credentials and declarations (sent by the
other party) and a time-dependent state, covering the ne-
gotiation state, user profiles, etc. (see [4] for further de-
tails). On the server,X is typically a service; on the client
X may denote credential release, declaration release and
actions execution. At each party, credential and declara-
tion requests are automatically derived from the local rules
by identifying the sets of credentials and declarations that
entailallow(X). In PROTUNE, requests may also contain
more general actions, basically remote service invocations.

In general there may be multiple ways of entailing
allow(X), therefore multiple alternative requests. It is de-
sirable to send them out in parallel, because the conditions
that can be fulfilled by the other party cannot be known
in advance; simultaneous requests may significantly reduce
the number of messages in the negotiation.

On the other hand, the number of alternative requests
may be exponentially larger than the policy, due to com-
binatorial explosion in compound requests. To avoid this, it
is preferrable to send out therulesthemselves, as a compact
request. First, however, the rules should be suitably filtered
to protect the sensitive parts of the policy (the policy itself
may be confidential). In PROTUNE rules can be hidden until
the other peer fulfils enough requests.

Another reason for filtering is that the other party has no
access to the local state and hence it is not able to give a
meaning to state conditions in the rules. Then, state condi-
tions should be evaluated before sending out the rules (par-
tial rule evaluation). However, this procedure must be con-

trolled to avoid sensitive information leakage. For example,
consider the simple rule

allow(enter site())← (1)

declaration(usr = U, passwd = P), has passwd(U, P)

describing an old-fashioned but still very common authen-
tication procedure based on login and password. If the state
predicatehas passwd were evaluated before sending the
policy to the client, then the client would receive all the
ground rules

allow(enter site())← declaration(usr=U , passwd=P)

whereU andP are bound to all legal (user,password) pairs.
In [4] this is avoided by a combination ofguarded rulesand
a rigid two-phase negotiation protocol. Here we adopt a
more flexible protocol based onpolicy blurring (Section 6).
As an additional level of complexity, in PROTUNE the ne-
gotiator must decide when the actions associated to provi-
sional atoms are to be dispatched to the execution handler
for execution.

The architecture of the system is described in [3].

3 The rule language

The rule language is based on normal logic program
rules “A← L1, . . . , Ln” whereA is a standard logical atom
(called theheadof the rule) andL1, . . . , Ln (the bodyof
the rule) are literals, that is,Li equals eitherBi or¬Bi, for
some logical atomBi.

A policy is a set of rules, such that negation is applied
neither toprovisional predicates(defined below), nor to any
predicate occurring in a rule head. This restriction ensures
that policies aremonotonicin the sense of [10], that is, as
more credentials are released and more actions executed,
the set of permissions does not decrease. Moreover, the
restriction on negation makes policiesstratified programs;
therefore negation as failure has a clear, PTIME computable
semantics that can be equivalently formulated as the perfect
model semantics, the well-founded semantics or the stable
model semantics [1].

The vocabulary of predicates occurring in the rules is
partitioned into the following categories:

• Decision predicates: Currrently this class comprises
predicatesallow andsign. These predicates are de-
fined in the policy, that is, they occur in the head of some
policy rules.

The unary predicateallow is queried by the negotiator
for access control decisions. The argument ofallow
can denote a service call (for access control decisions)
or it can berelease(credential) or execute(action)
(for privacy protection). In response to a service request
s, the negotiatior looks for a (partial) proof ofallow(s),

and handles it as sketched in the previous section. Sim-
ilarly, in response to a credential request or an action
requestr, the negotiator looks for a proof ofallow(r)
and processes it appropriately.

Predicatesign is described in [3].

• Abbreviation/abstraction predicates: These are predi-
cates defined in the policy. They have many purposes
ranging from the definition of high-level client proper-
ties (e.g. by combining low-level data and/or different
credentials, cf. [4]) to the specification of new creden-
tial semantics (see Section 11).

• Constraint predicatescomprise the usual equality and
disequality predicates.

• State predicates: Policy decisions have to be taken with
respect to a time-dependent systemstate, encoding the
current negotiation state, legacy data, user profiles, and
so on. State predicates are further partitioned into the
following subclasses.

• State query predicates: These predicates read the cur-
rent state without modifying it. They comprise both
built-in and application dependent predicates. Built-in
state predicates model the state of the negotiation, and
provide a uniform interface to external packages in the
style of HERMES [11]. An example of negotiation state
atom isrequest(n, R); it holds if R is the n-th re-
quest in the negotiation. External packages (including
databases and other data sources) can be queried with
atoms of the form:

in(X , package name : function(arg list)) (2)

where the variable X ranges over the set
of objects returned by the external code call
package name : function(arg list).
• Provisional predicates: These are predicates that may
be made true by means of appropriateactionsthat may
modify the current state. Such actions may be carried
out by the server, by the client, or both.

An important example iscredential. An atom
credential(C,K) is true when the current negoti-
ation state contains a verified credential matchingC
and signed by the principal whose public key isK.
If this condition is not satisfied, still (an instance of)
credential(C,K) can be made true by searching for
the credential (either directly or by asking the peer to
provide it) and loading it into the negotiation state after
verification.

Similarly, the declaration predicate is satisfied
if the peer releases a declaration matching the
predicate arguments. Thedeclaration predicate
is generalized by thedo predicate. Intuitively,
do(uri or service request) can be made true if the
peer connects touri or invokesservice request , and

then carrys out some application dependent procedure.
If the procedure is successfully completed, then the
atomdo(uri or service request) becomes true in the
negotiation state.

Sometimes, the actions associated to provisional pred-
icates are to be executed locally, by the negotiator.
A common example islogged(X, logfile name) that
may be made true by recordingX into logfile name [3].

Provisional predicates may be used to encode business
rules. For instance, the next rule enables discounts on
low selling articles in a specific session:

allow(Srv)← . . . , session(ID),

in(X , sql:query(′select ∗ from low selling
′),

enabled(discount(X), ID) .

Intuitively, if enabled(discount(X), ID) is not yet
true but the other conditions are verified, then
the negotiator may execute the action associated
to enabled and the rule becomes applicable (if
enabled(discount(X), ID) is already true, no action
is executed). The action associated toenable in this
case is application dependent. In the next section we
shall see how to define such application-specific provi-
sional predicates.

Sometimes actions should be executedbefore asking
the peer for credentials. In the next rule the log ac-
tion is meant to record the incoming request, and must
be executed immediately and independently from the
peer’s response. Predicatetime is a state query pred-
icate, whileunlogged allow is an abbreviation predi-
cate, encoding the actual access control decision for ser-
viceSrv :

allow(Srv)← time(T),

logged(Srv + ′
requested at

′ + T , req.log),

unlogged allow(Srv) .

The following sections will show how to specify the ex-
ecution time of provisional atoms with metapolicies.

Remark 1 For simplicity, we assume in this paper that pro-
visional atoms are orthogonal, in the sense that the action
associated to any ground atomA cannot change the truth
value of any other ground provisional atom.

The rule language supports object-oriented dot syntax, com-
patible with semantic web standards such as RDF and
OWL. Dot notation is actually syntactic sugar, e.g. term
X.attr : v abbreviates the standard atomattr(X, v). See
[3] for the translation of general O.O. terms.

Declarative Rule Semantics

Policies are interpreted in the context of a time-
dependentstate, that determines at each instant the exten-
sion of state predicates. In the abstract setting, a state is

simply a consistent set of ground state literalsΣ (i.e. the
set of all literals that hold in the current state). In practice,
of course, state predicates are evaluated on demand with a
variety of techniques, as explained before.

Semantics is formulated in two stages: first, the notion of
reductspecifies how state predicates are evaluated against
the current state; then we can define thecanonical modelof
the policy.

Thereductof a policyPol w.r.t. Σ, denoted byPolΣ , is
obtained from the ground instantiation ofPol by

• removing all rules whose body contains a literalL 6∈ Σ;

• removing all state literals from the remaining rules.

Note that the reduct is logically equivalent to the set of rules
obtained by replacing each state literal with its truth value
specified byΣ.

Let H denote the Herbrand base, that is, the set of all
ground atoms. Thecanonical model ofPol w.r.t. Σ is

cmodel(Pol , Σ) = {A ∈ H | PolΣ |= A} . (3)

Note that the reduct is a positive program. Then—by stan-
dard results—it holds that the canonical model is the least
Herbrand model of the reduct.

4 Metapolicies

Metapolicies consist of rules with a shape similar to
object-level rules. The main differences are:

• The syntactic material of the object-level rule language
(i.e. predicate names, constant names, variable names,
rule names etc.) may occur as terms in the metapolicy.
In the following, for all rulesR we shall denote bŷR
the name ofR.

• The built-in predicates comprise Prolog-style metapred-
icates for inspecting terms, checking groundness, etc.
Moreover, a predicateholds(G) allows to call an
object-level goalG against the current state, using the
object-level policy. These predicates are illustrated be-
low.

• A set of reserved attributes associated to predicates, lit-
erals and rules is used to drive the negotiator’s decisions.

Here are a few examples. Ifp is a predicate, then
p.sensitivity : private means that the extension of the
predicate is private and should not be disclosed. An asser-
tion p.type : provisional declaresp to be a provisional
predicate; thenp can be attached to the corresponding ac-
tion α by assertingp.action :α. If the action is to be ex-
ecuted locally, then assertp.actor : self, otherwise assert
p.actor : peer.

In most cases, the attributes of a predicatep should be
inherited by all the literals withp. By default, PROTUNE

handles attribute propagation for standard attributes; alter-
natively, attribute propagation may be expressed and con-
trolled with simple metarules such as:

L.attr :Val ← literal(L), L.predicate.attr :Val

whereliteral andpredicate are built-ins for metaterm
inspection. Many of these rules do not depend on the cur-
rent state and can be precompiled to improve performance
(metaattribute materialization).

Metarules allow fine-grained tuning of state predicate
evaluation. For example, for performance reasons, it may
be useful to delay predicates with a large extension until
argument instantiation restricts the number of answer sub-
stitutions. Here is a simple example: the next rule enables
immediate evaluation of a predicate only if the key argu-
ment is specified.

table(Key, Data).evaluation : immediate (4)

← ground(Key) .

As we pointed out before, metarules and metaattributes
may be used to attach provisional predicates to the corre-
sponding actions. The language for local actions should be
flexible and powerful, to facilitate the integration of trust
management in the surrounding environment. Script lan-
guages are good candidates; multiple action languages may
coexist in the same policy.

As an example, recall the predicatelogged introduced
in the previous section. It can be associated to its action by
a simple metafact:

logged(Msg ,File).action : ′echo′ + Msg + ′>′ + File .

The exit status of the action determines whether the corre-
sponding provisional atom is asserted.

Specifying actions for other actors is a more delicate
matter. Peers cannot be assumed to execute arbitrary for-
eign scripts. Currently, the provisional predicatedo is the
most general way to ask peers to execute actions. This pred-
icate accepts only URIs and performs only remote service
invocation or web page downoload in a controlled way (in-
cluding user approval) to prevent the use of this mechanism
as a tool for DoS attacks.

5 Semantics-preserving policy filtering

We parameterize policy filtering in order to be able to
modify the filtering process using metadata. For the filter-
ing techniques reported in this section, we shall prove that
the choice of the filtering criteria does not affect correct-
ness/completeness.

5.1 Removing Irrelevant Rules

This is an instance of theneed to know principle. The
relevant subsetof a policyPol w.r.t. an atomA is the least
setS such that:

• If the head of a ruleR ∈ Pol unifies withA, thenR ∈
S;

• If the head of a ruleR ∈ Pol unifies with an atomB
occurring in the body of some rule inS, thenR ∈ S.

The relevant subset ofPol w.r.t A will be denoted by
relevant(Pol ,A) .

The relevant subset ofPol w.r.t A suffices to determine
which instances ofA are entailed by the policy in the given
state:

Lemma 1 For all ground atomsAθ (θ is a substitution),
Aθ ∈ cmodel(Pol , Σ) iff Aθ ∈ cmodel(relevant(Pol , A), Σ) .

5.2 Evaluating State Predicates

Next we define partial evaluation. LetE be a set of
(possibly nonground) state literals. Intuitively,E speci-
fies which literals can be evaluated. For all rulesR, let

R
Σ,E−→1 S iff

• R = (A← L1, . . . , Li−1, Li, Li+1, . . . , Ln)

• Li ∈ E

• S = {(A ← L1, . . . , Li−1, Li+1, . . . , Ln)θ | for someL ∈
Σ, θ = mgu(Li, L)}.

This evaluation relation is extended to policies in the natural

way: For all policiesPol , definePol
Σ,E−→1 Pol ′ iff

• there existsR ∈ Pol andS such thatR
Σ,E−→1 S

• Pol ′ = (Pol \ {R}) ∪ S .

Finally, we denote with
Σ,E−→ the reflexive transitive closure

of
Σ,E−→1.
Partial evaluation preserves the semantics of a policyPol

in all contextsPol ′′:

Lemma 2 If Pol
Σ,E−→ Pol ′, then for allPol ′′

cmodel(Pol ∪ Pol ′′, Σ) = cmodel(Pol ′ ∪ Pol ′′, Σ) .

The partial evaluation of a policy is a converging and non-
ambiguous (confluent) process (regardless of the choice of
the rule and literal to be rewritten at each step). To formalize
this property, we introduce the notion of trace.

A trace for Pol w.r.t. Σ and E is
a (possibly infinite) sequence of policies

Pol1
Σ ,E−→ Pol2

Σ ,E−→ · · · Σ ,E−→ Poli
Σ ,E−→ · · ·. A trace is

complete if it is infinite or for the last elementPoln
in the sequence, there exists no policyPol ′ such that

Poln
Σ ,E−→ Pol ′.

Theorem 1 For all policiesPol , statesΣ and setsE,

1. (termination)Pol has no infinite traces w.r.t.Σ andE,

2. (confluence) all complete traces ofPol w.r.t. Σ andE
have the same last element.

The unique result of partial evaluation (i.e., the last
element of each complete trace) will be denoted by
partEval(Pol ,Σ ,E) .

As a consequence of the above results, in order to evalu-
ate the answer substitutions of an atomA, it suffices to use
the partial evaluation of the relevant part of the policy:

Theorem 2 For all ground atomsAθ, and for all Pol , Σ,
andE of the appropriate type,Aθ ∈ cmodel(Pol ,Σ) iff

Aθ ∈ cmodel(partEval(relevant(Pol , A), Σ, E), Σ) .

5.3 Compiling Private Policies

The immediate consequencesof a ruleR w.r.t. Pol and
Σ are the heads of the (ground) rulesR′ ∈ {R}Σ whose
body is true incmodel(Pol ,Σ). The set of all imme-
diate consequences ofR w.r.t. Pol and Σ is denoted by
cons(R,Pol ,Σ) . This operator is extended to policies in
the natural way:

cons(Pol ′,Pol , Σ) =
S

R∈Pol′ cons(R,Pol , Σ).

Intuitively, cons compilesthe subpolicyPol ′ and re-
places it with its immediate consequences. In this way, the
results of the policy may be released to the peer without
disclosing the internal structure of the rules.

This transformation preserves the semantics of the given
policy, no matter what rules are compiled:

Theorem 3 cmodel(Pol ∪ Pol ′,Σ) =

cmodel(Pol ∪ cons(Pol ′,Pol ∪ Pol ′,Σ),Σ) .

6 Filtering with information loss

Policies and states are both sensitive resources. In gen-
eral it may be necessary to hide part of them, which neces-
sarily causes some information loss.

Some rulesR may have to be hidden and blocked until
the client is trusted enough. This is accomplished by means
of suitable metastatements:

R̂.sensitivity : not applicable←

(whereR̂ is R’s name). As more credentials arrive,R may
become visible and extend negotiation opportunities. In this
framework, policy disclosure has a reactive flavour, as op-
posed to the predefined graph structure adopted in [15].

Similarly, sensitive state predicates may have to be
blocked until their evaluation does not disclose confidential
information.

However, they cannot simply be left in the policy and
sent to the client1 because

1Hereafter by “client” we mean the peer that submitted the last request,
and by “server” we denote the peer that is evaluating its local policy to de-
cide whether the request should be accepted and whether a counter-request
is needed.

• the client does not know how to evaluate them, since it
has no access to the server’s state, and

• the syntax of protected conditions may suffice to dis-
close some confidential information about the structure
of the policy.

Removing these occurrences from the rules is not a good
solution either, because then the client would not be aware
that some conditions that lie beyond its control shall be
checked later by the server. The client should be able to
see that even if all credentials occurring in the policy were
supplied, still the requested access might be denied. More
precisely, the client should be able to distinguish the creden-
tial sets that satisfy the server’s request with no additional
checks, from the credential sets that are subject to further
verification.

The solution adopted here consists inblurring the state
conditions that cannot be evaluated immediately and cannot
be made true by the other party. Such conditions are blurred
by replacing them with a reserved propositional symbol.

For example, consider again the login policy (1). To
avoid information leakage we postpone the evaluation of
user(U, P) and send the client a modified rule:

allow(enter site())←
declaration(usr = U, passwd = P), blurred

wherer is the name of rule (1). From this rule, a machine
may realize that sending the declaration does not suffice to
enter the site; first the server is performing a check of some
sort. Blurring is formalized below.

Let B be a set of literals, specifying which literals have
to be blurred. For all rulesR = (A← Body) with namer,
let blur(R,B) = (A← Body ′) where

• Body ′ = Body if Body ∩ B = ∅, and

• Body ′ = (Body \ B) ∪ {blurred} otherwise.

Then for all policiesPol , define

blur(Pol , B) =
[

R∈Pol

blur(R, B) .

To prove the effectiveness of blurring in protecting the
internal state, we show that under suitable conditions, the
blurred partial evaluation of any given policyPol is invari-
ant across all possible contents of the protected part of the
state. As a consequence, from the result of the blurring one
cannot deduce any protected state literal.

To formalize this, say two states are equivalent if they
have the same non-blurred (public) part:

Σ ≡B Σ′ iff Σ \B = Σ′ \B .

Theorem 4 (Confidentiality) For all Pol , Σ, Σ′, E andB
of the appropriate type, ifE ∩B = ∅ andΣ ≡B Σ′ then

blur(partEval(Pol , Σ, E), B) = blur(partEval(Pol , Σ′, E), B) .

The preconditionE ∩ B = ∅ is very important; if it were
violated, then some protected literal might be evaluated dur-
ing filtering. If this happens, one can find counterexamples
to the above theorem where some protected state literals can
be deduced from the filtered policy.

Moreover, for a correct negotiation,E ∪B should cover
all state literals that cannot be made true by the client. This
guarantees that the result of the filtering contains only pred-
icates that can be understood and effectively handled by the
client. This discussion gives us a method for determining
B:

Let LSL be the set of alllocal state literals, that is, those
with a predicatep such that

• p.type is state predicate,

• p.actor is notpeer

(a more formal definition is given in the next section.)
Then letB = LSL \ E.

Note that bothLSL andE are determined by the meta-
data, and henceB is, as well.

Another important question is: are there any pieces
of certain information that the client may extract from a
blurred program? More concretely:

• Can the client ever be sure that some credentials fulfill a
request expressed as a blurred program? Then the client
may prefer to send immediately such credentials, in or-
der to minimize useless disclosure.

• Can the client detect when its credentials do not suf-
fice to satisfy the server’s request? Then the client may
immediately abort the transaction, without any further
unnecessary disclosure.

Fortunately, the answer to such questions in many cases is
yes, and the reasoning needed to carry out this kind of anal-
ysis has the same complexity as plain credential selection,
because reasoning boils down to computing two canonical
models.

Theorem 5 For all blurred policies Bl , let
Blmax = Bl ∪ {blurred} and Blmin = Bl . Then,
for all statesΣ and all sets of state predicatesB,

cmodel(Blmax, Σ) =
[
{cmodel(P , Σ) | blur(P , B) = Bl} ,

cmodel(Blmin, Σ) =
\
{cmodel(P , Σ) | blur(P , B) = Bl} .

Informally speaking, this theorem says thatBl containsall
the information that does not depend on blurred conditions.
More precisely, the policiesP such thatblur(P , B) = Bl
are those that might have originatedBl ; Blmin captures the
consequences that are true in all these possible policiesP ,
and the complement ofBlmax contains the facts that are
false in all possibleP .

As a corollary of the above theorem, every consequence
of Blmin is also a consequence of the original non-blurred
policy, and every atom that cannot be derived withBlmax,

cannot be derived from the non-blurred policy either. This
is what the client can deduce fromBl .

Blurring is used also to deal with delayed actions. De-
layed provisional predicates must be evaluated after the re-
sponse of the client, and in general cannot be understood
by the client, just like private predicates. Therefore it is ap-
propriate to treat delayed state predicates like private pred-
icates. Nonetheless, distinguishing the two classes of pred-
icates is useful to keep track of why their evaluation is de-
layed.

7 Driving filtering with metapolicies

On each party, the policy filtering process is determined
by several parameters: (i) a requestReq from the client,
requiring a decision about access control, or portfolio in-
formation release, (ii) an access control or portfolio release
policy Pol , (iii) a metapolicyMpol , (iv) the current state
Σ. With the exception ofReq , all the parameters are local
to the peer which is to make the decision. The metapolicy
is evaluated against the current state, yielding thecurrent
canonical metamodelMM :

MM = cmodel(Mpol , Σ)

which is inspected to read the metaproperties of rules and
predicates. Policy filtering is carried out in several phases,
based on the theoretical transformations introduced in Sec-
tion 5 and Section 6:

1. First, all non-applicable rules and all irrelevant rules
(w.r.t. the current requestReq) are discarded. The re-
maining rulesR are those that belong to

relevant(Pol , allow(Req))

and such thatR̂.sensitivity : not applicable
doesnot hold, that is,

R̂.sensitivity : not applicable 6∈ MM .

Denote the result of the first phase withP1.

2. Applicable, non-public rules are compiled. Let

P prv
1 = {R ∈ P1 | R̂.sensitivity : private ∈ MM } ,

P pub
1 = P1 \ P prv

1 .

The result of this phase is then

P2 = P pub
1 ∪ cons(P prv

1 , P1,Σ) .

3. The selected public rules are partially evaluated. The
result of this phase isP3 = partEval(P2,Σ, E), where
E (the set of literals to be evaluated) consists of all
the literalsL such that all the following conditions
hold:

• L.type : state predicate ∈ MM ,

• L.type : provisional 6∈ MM ,

• L.sensitivity : private 6∈ MM ,

• L.evaluation : immediate ∈ MM .

Note that if L occurs in a rule R and
L.sensitivity : not applicable ∈ MM , thenR
is not applicable; therefore there can be no such literal
at this stage.

The metapropertiessensitivity and evaluation
associated to predicates are handled implicitly (recall
that they are inherited by literals).

4. The immediate actions occurring inP3 are exe-
cuted. More precisely, letE′ be the set of all
literals A such thatMM contains the atoms: (i)
A.type : provisional, (ii) A.actor : self, (iii)
A.evaluation : immediate.

Collect and execute all actionsα such that, for some
literal L ∈ E′ occurring inP3, L.action : α ∈ MM .
As a result, the current state may change. Denote the
new state withΣ′.

Immediate actions may fail, that is, they are not guar-
anteed to make true all the provisional literals occur-
ring in P3. Then we need the next evaluation phase.

5. The local provisional literals ofP3 are evaluated
against the new stateΣ′. The result is

P5 = partEval(P3, Σ
′, E′)

(E′ is defined in the previous step.)

6. All state conditions whose evaluation must be deferred
are blurred:

P6 = blur(P5, B) .

B is determined as specified in Section 6 as a function
of E andLSL. HereLSL is the set of all literalsL
such that: (i)L.type : state predicate ∈ MM , (ii)
L.actor : peer 6∈ MM .

7. Provisional state predicates that may be satisfied by
the other peer are replaced with the corresponding ac-
tion. More precisely, for each literalL occurring in
P6 such that: (i)L.type : provisional ∈ MM , (ii)
L.actor : peer ∈ MM , (iii) L.action : α ∈ MM ,
replaceL with do(α). Let P7 denote the result of this
transformation.

8. Finally, all abbreviation predicates are anonymized by
renaming them, as in [4]. Denote byP8 the result of
this last phase.

The final policyP8 can be sent to the peer. The important
properties ofP8 are:

• It contains only standard predicates (such as
credential, declaration, do, constraint predi-
cates, etc.), (renamed) abbreviation predicates and
blurred. With the exception ofblurred (whose
semantics is deliberately obfuscated), the client knows
how to handle all these predicates. The only non
standard predicates are the abbreviation predicates that,
however, come with their (filtered) definition.

• Its rules do not contain any instance of a private rule, nor
any values computed from a private predicate. Delayed
predicates are not evaluated, either.

• Evaluatingallow(Req) in P5 is equivalent to evaluat-
ing it in the currently applicable subset of the “true” pol-
icy Pol , by the theorems in Section 5.

Phase 7 preserves the meaning of the policy, too, to
the extent that the successful execution of the actionsα
makes the corresponding literalsL true. Morever, phase
8 preserves the derivability ofallow(Req).
Phase 6 (blurring) may lose information. However, all
the information that does not depend on blurred predi-
cates is preserved and can be recovered from themin
andmax versions of the policy, as stated by Theorem 5.

As a consequence, the final policyP8 carries all the ac-
cess control information that depends neither on non-
applicable rules nor on private or delayed predicates.

After the client returns a set of credentials and/or exe-
cutes a set of actions associated to the goalallow(Req),
the private and delayed predicates occurring inP5 can be
evaluated in the new stateΣnew . If

allow(Req) ∈ cmodel(P5, Σnew) , (5)

then the requestReq is permitted (be it a request for ser-
vices, credentials, or actions).

Remark 2 Here the assumption of policy monotonicity
w.r.t. the provisional predicates whose actor is the client
turns out to be important. The reason is that between the
release ofP8 and the corresponding answer there may be
other interactions. This happens because in general there
are multiple open requestsallow(Req) in the current state,
and the two parties are free to deal with any of them in any
order. Due to interleaved request handling,Σnew might be
a strict superset ofΣ′∪∆, whereΣ′ is the state produced in
phase 4 and∆ is the set of provisional atoms made true by
the client to deriveallow(Req). Policy monotonicity guar-
antees that any condition derivable inΣ′ ∪ ∆ is derivable
also in the extended stateΣnew .

8 Metapolicies for credential and action se-
lection

When a party receives a (filtered) policyP with a goal
G, it should look for a way of proving goalG usingP and

whatever credentials and actions (registration procedures,
challenges, etc.) the party is willing to apply. For each
proof of G, the set of credentials and actions occurring in
the proof will be called acandidate set.

In general,G may have several proofs, hence multiple
candidate sets. Then the party should choose one candidate,
as privacy issues suggest to minimize the amount of infor-
mation disclosed, and in particular the number of creden-
tials released. In practice, the number of executed actions
should be minimized, too, as many of the common actions
in trust negotiation involve information disclosure.

Minimizing the number of disclosed credentials and the
number of action executions is not the only criterion in this
framework. Clearly, different credentials have different sen-
sitivity, depending on the information they encode, and dis-
closing two “safe” credentials may be preferrable to disclos-
ing a sensitive one.

Note that attaching privacy-related information to indi-
vidual credentials and actions is just the first step. The pref-
erences over individual entities must be extended to candi-
date sets.

Another important aspect arises from blurring: a proof
from Pmin guarantees that the credentials and actions in the
proof suffice to satisfy the server’s conditions, while the cre-
dentials and actions in a proof fromPmax are subject to fur-
ther verification on the server (the details of this verification
are not known to the client). Choosing a proof fromPmax

may lead to unnecessary information disclosure; then, in
some cases, a proof fromPmin can be preferred to a proof
from Pmax .

In order to increase flexibility in candidate selection, the
metalanguage of PROTUNEsupports a few attributes for de-
riving preferences over credential and action sets.

For example, a credentialc can be associated to a sen-
sitivity level l (e.g. low, medium, high) with assertions
of the formc.sensitivity : l . Similarly, actions can be
given a cost with assertions likeaction.cost : value . More
attributes relevant to candidate selection may be added if
needed.

To compute the sensitivity and the cost of asetof cre-
dentials and actions, the above attributes must be combined
using appropriate functions. The aggregation method can
be specified with assertions like

credential().sensitivity.aggregation method : max

do().cost.aggregation method : sum .

Then a few standard selection methods can be selected with
the attributes of a reserved entitynegotiator, e.g.:

negotiator.selection method:order(sensitivity, cost)

negotiator.selection method : certain first

The first assertion states that the main preference ordering
is by sensitivity, and the secondary is cost (the list of param-
eters may be longer if needed). The second assertion forces

the negotiator to try the candidates extracted fromPmin be-
fore trying those extracted fromPmax (because the former
are guaranteed to satisfy the conditionG).

This works for the simplest cases. In general, since the
nature of sensitivity and costs is application dependent, it
may be necessary to define ad-hoc comparison criteria us-
ing the rule language. The standard selection method can
be replaced with an ad-hoc predicateP by means of the as-
sertion:negotiator.selection method : adopt(P) .

Another important feature of PROTUNE is the support of
metalevel constraints. They are like metapolicy rules with-
out head, like← L1, . . . , Ln .

Such constraints aresatisfiedw.r.t. a (meta)policyPol
and a stateΣ, iff no ground instance of{L1, . . . , Ln} is
contained incmodel(Pol ,Σ).

Constraints are very useful in identity protection. It
is well known that simple combinations of individual at-
tributes (such as birth date and zip code) may disclose a
user’s identity. In the framework of trust negotiation, this
means that some combinations of credentials,{c1, . . . , cn},
should never be disclosed.

Such directives can be expressed with constraints of the
form:← credential(c1,), . . . , credential(cn,) .

More precisely, the disclosure decision procedure, given
a candidate set∆ of credentials and actions (sufficient to
proveG) checks whether all the release constraints are sat-
isfied w.r.t. the local metapolicyMpol and the stateΣ ∪∆.
If some constraint is violated in this context, then the can-
didate∆ is discarded.

9 Monitoring policies with constraints

Metalevel constraints may also be used to monitor poli-
cies and metapolicies at runtime. By checking contraints
at each state change, one can detect conflicts and inconsis-
tencies in the specification. This is particularly important
when metapolicies consist of nontrivial rules; then statically
checking that forall states the consequences of the metapol-
icy are meaningful may be computationally too hard.

Below is an example of a monitoring constraint. It veri-
fies that no action is associated to more than one actor:

← X.action : A, A.actor : Y, A.actor : Z, Y 6= Z .

If ad-hoc actions (e.g. logging) are to be executed upon
constraint violations, then it suffices to include suitable pro-
visional atoms in the constraint

10 Distributed credentials

Credentials need not be stored at their owner’s site nor at
their issuer’s. Moreover, there is no unique way of search-
ing for a credential, and the responsibility of the search may
be of the server, of the client, or even shared [8]. Therefore,

in general, the following entities are distinct: (i) the creden-
tial issuer, (ii) the credential repository, (iii) the credential
owner, and (iv) the actor(s) responsible for fetching the cre-
dential.

The issuer is encoded in the credential, and ownership
can be checked via challenges. The remaining two proper-
ties are encoded with suitable metaattributes:

• Credential .location : URI
• Credential .actor : X

whereX can beself, peer, or a reference to a third party
credential collection service.

If the actor ispeer, then the credential is not evaluated;
it is sent to the other peer who shall decide whether to fetch
it (if necessary) and disclose it.

If the actor isself, then the local engine has to fetch and
verify the credential. Search may be nontrivial, in general it
may require navigation through several servers [8].

Finally, if the actor is a reference to a third party service,
then the local engine has to call the service and verify the
returned credential (if any).

Note that whenever the actor is notpeer, the local en-
gine has to perform some actions. Their execution time can
be immediate or delayed, like the execution of any other
local provisional predicate. Credential collection, however,
may be significantly slow, because it involves internet nav-
igation. PEERTRUST optimizes such distributed computa-
tions by sending out credential requests in parallel and then
using the results as they arrive. In PROTUNEwe enable par-
allelized search for specific credentialsC by asserting

credential(C,).evaluation : concurrent .

More precisely, for all credentials whose actor is not
peer,

• if the evaluation attribute isimmediate, then the
credential is fetched and verified in phase 5; the filter-
ing process is suspended until all immediate credentials
have been fetched and verified;

• if the evaluation attribute isdelayed, then the cre-
dential is fetched and verified after the client’s response;
this procedure has the advantage of focussing search
only on those credentials that together with the client’s
credentials prove the server’s request;

• if the evaluation attribute isconcurrent, then cre-
dential search starts at phase 5 and proceeds in paral-
lel with filtering; credentials are verified as they are re-
ceived.

Roughly speaking, the concurrent method is a sort of
prefetch strategy that may shorten the response time in
some applications. A general treatment of theconcurrent
modality (extended to user-defined predicates) can be easily
integrated in the negotiator. It is not described here due to
lack of space.

11 Libraries and language extensions

Untrained users may find it difficult to formulate au-
tonomously appropriate metapolicies. Such users would
benefit from a library of standard metapolicies that protect
their access control policy from the most common forms of
information leakage.

Abbreviation libraries constitute also a means for lan-
guage extensions, which is of great importance in a grow-
ing field like trust management. In [3] it is shown how to
encode the semantics of the four types ofRT0 credentials
[7] with a small, simple PROTUNE library.

Note that libraries of this kind consist of logical axioms
defining predicates and credential meaning with a small
set of shared symbols. In fact, such libraries are nothing
but ontologies. The fact that shared symbols are few and
well identified makes the task of building shared ontologies
much easier; consider that plain X.509 credentials suffice to
define an incredibly rich set of policies and user categories.

Abbreviations and credentials can be linked to the on-
tologies that specify their meaning by means of a suitable
metaattribute:Obj .ontology : URI .

12 Related and Future Work

The Ponder system [16] has metapolicies but their pur-
pose is different as there are no negotiations. Ponder’s
metapolicies restrict the kind of rules that may occur in a
policy, thereby addressing issues such as static separation
of duties and conflict avoidance. LGI [17] has action predi-
cates. However, while LGI actionsmustbe executed, PRO-
TUNE’s actionsmay; whether an action is executed or not
depends on the overall decision making process behind ne-
gotiations.

Our metalanguage is currently very effective in speci-
fying policy filtering and credential search. It should be
extended to cover other important negotiation decisions,
namely, the choice of the open requests to be handled at
each step. Moreover, ECA rules should be integrated in this
framework, to extend the set of business rules that can be
directly supported. We are working at an implementation
based on PEERTRUST.

Acknowledgements.Research partially supported by the net-
work of excellence REWERSE , IST-506779.

References

[1] C. Baral. Knowledge representation, reasoning and declara-
tive problem solving. Cambridge University Press, 2003.

[2] Bell, J., Brooks, D., Goldbloom, E., Sarro, R., Wood, J.:
Re-Engineering Case Study Recommendsations to Applica-
tion Developers. US West Information Technologies Group.
Bellevue Golden (1990)

[3] P.A. Bonatti, D. Olmedilla. Policy Language Specifica-
tion. REWERSE Deliverable I2-D2, Feb. 2005.http:
//rewerse.net/deliverables.html

[4] P.A. Bonatti, P. Samarati. Regulating Service Access and
Information Release on the Web,Proc. of the Seventh
ACM Conference on Computer and Communications Secu-
rity, 2000.

[5] P.A. Bonatti, P. Samarati. Logics for authorizations and se-
curity. In J. Chomicki, R. van der Meyden, G. Saake (eds.)
Logics for Emerging Applications of Databases, Springer-
Verlag, August 2003

[6] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, M.
Winslett. No Registration Needed: How to Use Declarative
Policies and Negotiation to Access Sensitive Resources on
the Semantic Web. 1st First European Semantic Web Sym-
posium, 2004

[7] N. Li, J.C. Mitchell, W. Winsborough. Design of a Role-
based Trust-management Framework. IEEE Symposium on
Security and Privacy, 2002

[8] N. Li, W. Winsborough, J.C. Mitchell. Distributed Credential
Chain Discovery in Trust Management. Journal of Computer
Security, 11(1), 2003

[9] J.W. Lloyd. Foundations of logic programming, Springer-
Verlag, 1984

[10] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacob-
sen, H. Mills and L. Yu. Requirements for Policy Languages
for Trust Negotiation. 3rd International Workshop on Poli-
cies for Distributed Systems and Networks, 2002

[11] V.S. Subrahmanian, Sibel Adali, Anne Brink, James J. Lu ,
Adil Rajput, Timothy J. Rogers, Robert Ross, Charles Ward.
HERMES: Heterogeneous Reasoning and Mediator System.
http://www.cs.umd.edu/projects/hermes

[12] Taveter, K., Wagner, G.: Agent-oriented enterprise modeling
based on business rules. In: Proc. of 20th Int. Conf. on Con-
ceptual Modeling (ER2001). LNCS, Springer-Verlag (2001)

[13] Wagner, G.: How to design a general rule markup lan-
guage? In: XML Technologien für das Semantic Web -
XSW 2002, Proceedings zum Workshop, 24.-25 Juni 2002,
Berlin. (2002)

[14] M. Winslett and N. Ching and V. Jones and I. Slepchin. As-
suring Security and Privacy for Digital Library Transactions
on the Web: Client and Server Security Policies. Proceed-
ings of ADL ’97 — Forum on Research and Tech. Advances
in Digital Libraries, 1997

[15] T. Yu, M. Winslett and K. Seamons. Interoperable Strate-
gies in Automated Trust Negotiation. ACM Conference on
Computer and Communication Security, 2001

[16] N. Damianou, N. Dulay, E. Lupu, M. Sloman. The Ponder
Policy Specification Language, In Proc. ofIEEE ComSoc
Workshop on Policies for Distributed Systems and Networks
(Policy 2001), LNCS 1995, p.18-38, Springer, 2001

[17] N. Minsky, V. Ungureanu. Law-Governed Interaction: A
Coordination & Control Mechanism for Heterogeneous Dis-
tributed Systems.ACM Transactions on Software Engineer-
ing and Methodology(TOSEM) 9(3):273-305, 2000

