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Chapter 1

Introduction

The work package A1 focuses on three different areas, which eventually will grow together to
a powerful support system for understanding and manipulating geotemporal, geospacial and
topical information. With geotemporal information we mean temporal notions from everyday
life, and from web pages. This is in contrast to temporal logics, which deal with abstracted and
simplified temporal phenomena, and which is mainly used for specifying and verifying state
transition systems of any kind. Similarly, with geospacial information we mean information
about locations and relations between locations, as we use them in every day life, and in Web
pages. Both, geotemporal and geospacial notions may need to refer to named entities. ‘during
the reign of James II’ is a temporal notions, which refers to the named entity ‘James II’. ‘at
James II’s birthplace’ is a geospacial notion which refers to the same named entity ‘James II’.
Therefore, in order to understand such kinds of notions, we need a representation of named
entities, or, more general, topics. Therefore this is the third area of research in A1.

In this first deliverable we address in depth a number of aspects of our approach to geotem-
poral information processing. This part of research is of course not yet finalized. Future
deliverables will contain more material.

We also address in this deliverable a first approach for representing named entities. With
the schema described in Chapter 5 we built up a database with 2000 entries. Currently we
are revising the underlying knowledge representation scheme to make it more formal and to
improve its expressiveness. The details will be presented in deliverable D5.

1.1 The WebCal System

WebCal is a computer program which provides advanced calendrical calculations for Web
services. WebCal has an international dimension: it provides most of the calendar systems
world-wide in use, with timezones, daylight savings time regulations, leap years, leap seconds
etc. It also has an historical dimension: it models historical sequences of calendrical regulations,
for example sequences of calendar systems, sequences of daylight savings time regulations,
timezones changing over time etc. It has an application oriented dimension, i.e. one can
define new application specific temporal notions, for example school holidays, financial years,
ecclesiastical calendars, Mary’s birthday, my own working hours, and a lot more. WebCal can
deal with fuzzy notions like ‘late night’ or ‘around noon’, because it represents time intervals as
fuzzy sets. The program is based on an algebraic model of basic temporal notions, which gives
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all the operations a very precise semantics. The main idea behind WebCal is to provide a
few powerful data structures, and to offer applications as many operations as possible on these
data structures.

A prototype of WebCal can be accessed via the Unix command ‘telnet puka-
puka.pms.ifi.lmu.de 1952’. The different parts of WebCal are currently being revised and
documented. Figure 1.1 gives a rough overview of the system.

�

�

�

�

Mixed Functions Calendar Systems

Context Control

Databases

Specification Language

Fuzzy Intervals Partitionings

The WebCal System

Figure 1.1: The WebCal System

The basic data structures in WebCal are time points, fuzzy time intervals, labelled parti-
tionings for representing periodic temporal notions, calendars, and various kinds of operations,
which can be combined in a user specified way.

Fuzzy time intervals are implemented in the FuTIRe library, which is described in Chapter
2. A short version of this part was published in [41]. Labelled partitionings are needed for
representing all kinds of periodic temporal notions, from the basic time units, years, months
etc., until user defined notions like ‘my weekend’. They are implemented in the PartLib library,
which is described in Chapter 3. A very short version of this chapter was published in [42].

A layer above the fuzzy intervals and the partitionings contains all the functions which
involve both, an interval and a partitioning. The details are described in Chapter 4 (see also
[39]).

Another part is the implementation of the calendar systems as collections of partitionings.
The algorithms from Dershowitz and Reingold’s book ‘Calendrical Calculations’ [16] are needed
here. This part is implemented in the prototype, but not yet revised and documented.

The third layer contains a specification language for user defined temporal notions. A very
first version of such a language was published in [37, 38, 44]. Most of the concrete details for
the WebCal system are worked out already, but not yet documented.

The ‘Context Control’ module is also yet to be developed. It will contain mappings from con-
text information to control parameters for WebCal. An example is a mapping from countries
to timezones. WebCal needs timezones as offset from UTC time. The context information
may, however, be, for example: the timezones for Greece is needed. The actual timezones has
now to be taken from a database.

Many parts of WebCal need access to databases. The mapping from countries to timezones
is one example. Other examples are the daylight savings time regulations, the list of leap
seconds, the use of calendar systems in the various countries, the dates of events to which one
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might refer (for example, ‘after the Olympic Games in Athens’). All this is comprised in a
database module, which is yet to be developed.

The Chapters 2 and 3 are the main parts of this deliverable. Chapter 2 is about fuzzy time
intervals and Chapter 3 is about the representation of periodical temporal notions by means of
labelled partitionings of the time axis. Since the chapters contain all the technical details, they
are quite large. Therefore we give a very brief overview here.

Fuzzy Temporal Intervals in the FuTIRe Library

The real numbers serve in FuTIRe as the time axis. A fuzzy time interval is therefore a fuzzy
interval over the real numbers. Examples are:

-

6

R
0

1

Crisp and Fuzzy Intervals

The fuzzy intervals can also be infinite. For example the term ‘after tonight’ may be repre-
sented by a fuzzy value which rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm and
then remains 1 ad infinitum.

FuTIRe contains a collection of classes and methods for measuring and manipulating these
kinds of intervals. There are basically four different kinds of operations, which are available:

• basic construction and measurement functions for fuzzy time intervals;

• set operations like fuzzy union, intersection, set difference, which work with so-called
T-norms and T-conorms;

• point-interval relations like before, starts, finishes, during, after, in the middle, in the gap
etc. These relations are very natural for crisp intervals. Their definition is, however, not
clear at all for proper fuzzy intervals. Therefore FuTIRe allows one to customize the
relations by parameterizing them in different ways;

• interval-interval relations like before, meets, overlaps, starts during, finishes, after, until
etc. In the crisp case these are Allen’s standard interval relations. In the fuzzy case there
are again different possibilities to define such relations. FuTIRe provides three schemes
for the relations:

1. Allen’s relations between crisp approximations for the fuzzy sets;

2. the interval-interval relations are generated from the corresponding point-interval
relations by integrating the point-interval relations over one of the two intervals;

3. Nagypál and Motik’s scheme of fuzzy interval-interval relations, where the front and
back parts of the fuzzy intervals are taken for the computation [33].

The fuzzy interval operations are not just functions or methods, which can be called in the
usual way. FuTIRe provides them as first-class objects, which can be combined and manipulated
in different ways. For example, one can specify new operations in a particular specification
language by stating how the existing operations are to be composed to yield the new operation.
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Labelled Partitionings in the PartLib Library

Periodical temporal notions like years, months etc. are the building blocks of calendar systems.
Other temporal notions where periodicity is an essential feature are timetables, school holidays,
individual notions like ‘my weekend’ etc. Periodicity means that the time axis is partitioned into,
usually finite, partitions. Quite often these partitions have names. For example, the months are
named January, February etc. In the PartLib library one can specify partitionings of the time
axis in different ways, and one can attach labels (names) to the partitions. A particular label is
‘gap’. With ‘gap’, and the possibility to use the same label at different positions, one can specify
groups of partitions with the same semantic meaning. In the literature they are usually called
granules. For example, one can specify ‘working hours’ as the collection of partitions starting
with a partition in the morning, labelled ‘working hours’, followed by a partition labelled ‘gap’
(the lunch break), followed bay another partition in the afternoon also labelled ‘working hour’,
and then followed by a partition which is again labelled ‘gap’ (evening and night). The first
three partitions make up the granule ‘working hours’.

PartLib provides various functions for navigating through partitions and granules.
The partitionings can be specified in PartLib either algorithmically or symbolically. Algo-

rithmic specifications make it easier to take into account irregular phenomena like leap seconds,
daylight savings time schemes, leap years etc. Some partitionings can in fact only be specified
algorithmically, for example the ecclesiastical calendar with the Easter date, which follows the
moon cycle. Sunrise and sunset can also only be specified algorithmically. Many other peri-
odic temporal notions are much easier specified symbolically. Examples are the seasons, school
holidays etc. PartLib allows one to specify these notions by taking the relevant dates from a
database. For the application interface, however, it makes no difference how the partitioning is
defined.

Another important concept, which is implemented in PartLib, is the notion of durations. A
duration is something like ‘3 months + 1 week’. It is a sequence of pairs (number, partitioning).
Durations can be used to measure intervals (3.5 months long), or to specify time shifts (in 3.5
months).

Operations which involve partitionings or durations on one side, and intervals on the other
side are implemented at the mixed function layer, which is a separate component of the WebCal

system. A typical example is the shift operation for intervals (e.g. shift the holiday by one month
and one week). Since the length of partitions (months) can vary, this is a nontrivial operation.
Chapter 4 contains the details.

1.2 Named Entities

In Chapter 5 we describe the systematics and architecture of an experimental resource that
contains a thematic-geographic-temporal hierarchy for classifying named entities of various
kinds with respect to the hierarchy, lists synonyms, and gives formal descriptions of these entities
and their relations. The resource should offer a general basis for semantic annotation, indexing,
retrieval, querying, browsing and hyperlinking of (semi-)textual web documents, structured
documents and flat texts. The text was published in [47].

The following four chapters are self contained papers. They describe systems which can also
be used independently of WebCal.
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Chapter 2

Fuzzy Time Intervals and

Relations – The FuTIRe Library

Hans Jürgen Ohlbach

Abstract

The FuTIRe library is a collection of classes and methods for representing and manipulating
fuzzy time intervals and relations between them. Time intervals like ‘tonight’, which are usually
not very precise, can be modeled as fuzzy sets. But this causes the problem that the relations
between points and intervals and between two intervals, which are usually very trivial, become
very complex when the intervals are fuzzy sets. Moreover, there are many different possibilities
to define such relations. In FuTIRe it is not only possible to represent fuzzy time intervals, but
one can define customized fuzzy point–interval and interval–interval relations. These relations
can even yield fuzzy values when the intervals are in fact crisp. As an example for an application,
consider a database with, say, a cinema timetable, and you query the timetable “give me all
performances ending before midnight”. The usual ‘before’ relation will exclude the performances
ending a second after midnight. With the fuzzy before relation in FuTIRe you can get instead
of a sharp drop to 0 at midnight decreasing fuzzy values after midnight, and these can be used
to order the results of the query. FuTIRe is an open source C++ library.

2.1 Motivation and Introduction

Many temporal notions used in everyday life have a deliberate imprecise meaning. For example,
if I say in the morning “tonight I’ll go to the disco”, and somebody asks me “will you go to
the disco at 8 pm?” I may neither want to say“yes” nor may I want to say “no”. One may
argue whether in this case any precise mathematical model of “tonight” is useful at all. There
are other cases, however, where a fuzzy logic model of imprecise notions is definitely helpful.
Consider, for example, a database with, say, a cinema timetable. If you query the timetable
“give me all performances ending before midnight”, do you really want to exclude a performance
ending just one minute after midnight? I think, not. One could solve this problem by giving the
‘before’ relation a fuzzy meaning, such that performances ending before midnight get a fuzzy
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value 1, and performances ending after midnight get a fuzzy value which decreases the later the
performance ends. The fuzzy value could then be used to order the answers to the query such
that the performances ending after midnight come late in the list.

In this chapter I describe the FuTIRe-system (Fuzzy Temporal Intervals and Relations),
a library of datastructures and algorithms for representing and manipulating fuzzy temporal
notions.

In FuTIRe one can

• represent finite and infinite fuzzy time intervals;

• combine and manipulate these intervals in various ways;

• define customized point–interval relations like ‘before’, ‘starts’, ‘during’ etc. between time
points and crisp as well as fuzzy intervals in a fuzzy way;

• define customized interval–interval relations similar to Allen’s interval relations, but be-
tween fuzzy intervals, and with fuzzy values as result.

In the first part of the chapter I describe the components of the FuTIRe-system in a purely
mathematical way, without any commitment to concrete datastructures and algorithms. In the
second part I present a representation of the fuzzy intervals as polygons with integer coordinates.
All algorithms in FuTIRe work on these polygons. Finally the concrete interface to the library
is listed and explained. The library is a component of the WebCal-system [12], a program for
evaluating temporal expressions like ‘three weeks after Easter’. WebCal is currently under
development.

The fuzzy intervals in FuTIRe are fuzzy subsets of the real values. Therefore they can
represent all kinds of things. The main motivation for most of the operations in FuTIRe,
however, comes from their interpretation as temporal intervals and relations; and this is the
reason for the ‘T’ in FuTIRe.

2.2 The Mathematics of Fuzzy Time Intervals and Rela-

tions

The mathematics of general fuzzy sets [53] has been investigated in great depth. The particular
fuzzy sets in FuTIRe are subsets of the real numbers. On the one hand, this makes things
easier, on the other hand, however, it offers a very rich algebraic structure with many different
operations and relations. Therefore it is useful to start with an overview of the basic ideas and
definitions about fuzzy sets. Some, but not all of them can be found in textbooks about fuzzy
sets (see e.g. [17]).

Since FuTIRe is designed as a library to be used in many different applications, we need to
provide a broad spectrum of quite different concepts and operations. I tried to organize them
in a meaningful way and to motivate them with temporal notions and operations.

Definition 2.2.1 (Basic Notions and Notations) We define some notions and notations
about numbers and intervals.

N are the integers, R are the real numbers and R
+=def

R ∪ {−∞,+∞}.
sup(s) is the supremum of the set s ⊆ R and inf(s) is the infimum of the set s ⊆ R.
For an interval i = [a, b] ⊆ R let |i|=defb−a be the length of i. If i consists of several subintervals
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let |i| be the sum of the length of the subintervals. The same definitions apply if i consists of
open or half-open intervals.

2.2.1 Fuzzy Time Intervals

Fuzzy Intervals are usually defined through their membership functions. A membership function
maps a base set to a real number between 0 and 1. This “fuzzy value” denotes a kind of degree
of membership to a fuzzy set S. For example the base set may consist of all people on earth,
and S may be the set of ‘large persons’. If for the person John the fuzzy value for ‘large persons’
is 1 then John is definitely a large person. If the fuzzy value is 0 then John is definitely not a
large person. If, instead, the fuzzy value is, for example, 0.8, then John is quite tall, but not as
tall as really large persons.

The base set for fuzzy time intervals is the time axis, in FuTIRe represented by the set R

of real numbers. Real numbers allow us to model the continuous time flow which we perceive
in our life. A fuzzy time interval in FuTIRe is now a fuzzy subset of the real numbers.

Definition 2.2.2 (Fuzzy Time Intervals) A fuzzy membership function in FuTIRe is a to-
tal function f : R 7→ [0, 1] which need not be continuous, but it must be integratable.

The fuzzy interval if that corresponds to a fuzzy membership function f is

if =def{(x, y) ⊆ R × [0, 1] | y ≤ f(x)}.

Given a fuzzy interval i we usually write i(x) to indicate the corresponding membership function.

Let FR be the set of fuzzy time intervals.

This definition comprises single or multiple crisp intervals like this:

-

6

R
0

1

Crisp Fuzzy Intervals [0,20],[50,80]

0 20 50 80

It also comprises finite fuzzy intervals like this one:

-

6

R
0

1

Party Time

6 7 10 12 2 3

This set may represent a particular party time, where the first guests arrive at 6 pm. At
7 pm all guests are there. Half of them disappear between 10 and 12 pm (because they go to
the pub next door to watch an important soccer game). Between 12 pm and 2 am all of them
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are back. At 2 am the first ones go home, and finally at 3 am all are gone. The fuzzy value
indicates in this case the number of people at the party.

Fuzzy intervals may also be infinite.

-

6

R
0

1

Dangour Time: Caused by Radioactive Decay

More realistic examples of infinite fuzzy time intervals are intervals where the fuzzy value
remains constant after a while. For example, the term ‘after tonight’ may be represented by a
fuzzy value which rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm and then remains
1 ad infinitum.
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After Tonight

6 8

The more general case are infinite fuzzy intervals which may be infinite at one or two sides,
but where the membership function becomes constant, but not necessarily 1, after a while.
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Infinite Fuzzy Interval with Mostly Constant Membership Function

Remark 2.2.3 The representation of a fuzzy interval as a subset of R × [0, 1] means that one
can apply the standard set operators ∩ (union), ∪ (intersection) and \ (set difference) to fuzzy
intervals.

Fuzzy time intervals may be quite complex structures with many different characteristic
features. The simplest ones are core and support. The core is the part of the interval where the
fuzzy value is 1, and the support is subset of R where the fuzzy value is non-zero. In addition we
define the kernel as the part of the interval where the fuzzy value is not constant ad infinitum.

Definition 2.2.4 (Core, Support and Kernel)
The core C(i) of a fuzzy set i is the subset of R where the membership function is 1:

C(i)=def{x ∈ R | i(x) = 1}.
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The core of i can be empty even if i itself is not empty.

The support S(i) of i is the subset of R where the membership function is nonzero:

S(i)=def{x ∈ R | i(x) 6= 0}.

If S(i) = ∅ then i = ∅.
The kernel K(i) of i is the smallest interval [a, b] ⊆ R

+ such that there are i1 ∈ [0, 1] and
i2 ∈ [0, 1] with i(x) = i1 for all x < a and i(x) = i2 for all x > b.

K(i) can be empty, finite or infinite. If K(i) = ∅ then i is either empty or infinite and crisp.

For O ∈ {C, S,K} let Ou(i) be the (crisp) fuzzy interval such that C(Ou(i)) = S(Ou(i)) =
K(Ou(i)) = Ou(i).
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Core and Support

Support

Core
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Kernel
i1 i2

Finite Kernel

The next picture shows the kernel of the same interval i as crisp set Ku(i).
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Ku(i)

i Ku(i)
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Fuzzy time intervals with finite kernel are of particular interest because although they may
be infinite, they can easily be implemented with finite datastructures. Therefore we give them
an extra name.

Definition 2.2.5 (Fuzzy Time Intervals with Finite Kernel) Let F f
R

be the set of fuzzy
time intervals (Def. 2.2.2) with finite kernel (Def. 2.2.4).

Fuzzy time intervals which are in fact crisp intervals can now be characterized very easily
as intervals where core and support are the same.

Definition 2.2.6 (Crisp Interval) A crisp interval is a fuzzy interval i (Def. 2.2.2) such that
C(i) = S(i) (Def. 2.2.4).

Remark 2.2.7 (Openness and Closedness) Ordinary intervals can be open or closed. A
similar distinction can also be made for fuzzy intervals. As an example consider the following
fuzzy interval i:
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Half Open Fuzzy Interval

i

a b c d

If we have i(a) = 0.5, i(b) = 1, but i(c) = 0.5 and i(d) = 0 then i is closed at a and b and open
at c and d.

We sometimes indicate the open sides of fuzzy intervals with dashed lines.

Half-open intervals are of particular interest for time intervals. Consider, for example, the
two intervals ‘this week’s Monday’ and ‘this week’s Tuesday’. If both intervals are represented
as closed intervals then midnight belongs to Monday and Tuesday. This is not what we usually
want. Therefore it is more realistic to represent the intervals as half-open intervals such that
midnight belongs to either Monday or Tuesday, but not to both days. As a convention, we
assume that (finite) time intervals are half open at the positive side: their structure is [a, b[.
Midnight would then belong to Tuesday. This has some consequences for the algorithms (cf.
Remark 2.4.24).

2.2.2 Scalar Properties of Fuzzy Time Intervals

Fuzzy time intervals can be measured in various ways. Besides the size, which is the integral
over the membership function, one can locate the position of the core, support and kernel. One
can also measure the maximal fuzzy value. This should, but need not be 1. Furthermore, one
can split the interval into parts of equal size (the first half and the second half etc.), and locate
their boundaries. Let us start with the size of the interval.

Definition 2.2.8 (Size) For a, b ⊆ R
+ and a fuzzy time interval i let

|i|ba=def

∫ b

a

i(x) dx. |i|=def|i|+∞−∞ is the size of i.
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If i is a crisp interval then |i| yields the length of i in the usual sense.

Definition 2.2.9 (First and Last Points) For an operator O ∈ {C, S,K} and a fuzzy time
interval i with O(i) 6= ∅ let

ifO =def inf(O(i))

be the first O-point of i and let
ilO =def sup(O(i))

be the last O-point of i.

ifC is the first core point, ifS is the first support point, and ifK is the first kernel point.
ilC is the last core point, ilS is the last support point, and ilK is the last kernel point.
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First and Last Core and Support Points
ifS ilSifC ilC
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First and Last Kernel Points
ifK ilK

Definition 2.2.10 (Height of a Fuzzy Interval) For a fuzzy interval i ∈ FR let

î =def sup
x
{i(x)}

be the height of i.

î is usually, but not necessarily, 1 for nonempty fuzzy time intervals. If î = 0 then, however, i
must be empty.

Definition 2.2.11 (First and Last Maximal Point) If i ∈ FR let

ifm=def

{
sup{x | ∀y < x : i(y) < î } if the supremum exists
+∞ otherwise

be the first maximum, and

ilm=def

{
inf{x | ∀y > x : i(y) < î } if the infimum exists
+∞ otherwise

be the last maximum.
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The next picture shows an example where ifm = ilm and where î is really the supremum,
and not the maximum because i(ifm) = 0.
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First and Last Maximal Points
ifm = ilm

If î = 1 then ifm = ifC and ilm = ilC (Def. 2.2.9). If, however, î < 1 then ifm and ilm

have nothing to do with the core of i.

Center Points
The n,m-center points defined below are used to express temporal notions like ‘the first half of
the year’, or ‘the second quarter of the year’ or more exotic expressions like ‘the 25th 49th of
the weekend’ etc. The notion of n,m-center points makes only sense for finite intervals.

Definition 2.2.12 (n,m-Center Points) Let i ∈ FR with |i| < ∞. For two integers m > 1
and 0 ≤ n ≤ m we define the n,m-center points
in,m=defxn where xn is a minimal R-value in a sequence ifS = x0, . . . , xm = ilS with |i|x1

x0
=

|i|x2
x1

= . . . = . . . |i|xm
xm−1

= |i|/m.

Examples: i1,2 splits i in two halfs of the same size. i1,3 indicates a split of i into three
parts of the same size. i1,3 is the boundary of the first third, i2,3 is the boundary of the second
third.
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n, 3-Center Points
i0,3 i1,3 i2,3 i3,3
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n, 2-Center Points
i0,2 i1,2 i2,2

Middle Points:
The middle point between the center points in,m and in+1,m is just i2n+1,2m. For example, the
middle point in the first half of i is i1,4 and the middle point in the second half is i3,4.
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Components
Fuzzy time intervals can consist of several different components. A component is a sub-interval
of a fuzzy interval such that the left and right end is either infinity, or the membership function
drops down to 0. Let Cmp(i) be the list of components of i. nComponents(i) is the number
of components of i. Component(i, k) is the kth component of i.

Definition 2.2.13 (Components) Let i ∈ FR. The components i0, . . . , in of i are fuzzy
time intervals such that: (i) ik(x) = i(x) for all x ∈ S(ik) and 0 ≤ k ≤ n, and (ii) for
all k ∈ {1, . . . , n − 1}: (limx→ifS

k

i(x) = 0 or limifS

k
←x i(x) = 0) and (limx→ilS

k
i(x) = 0 or

limilS
k
←x i(x) = 0).

Let nComponents(i) be the number of components of i.
Let Component(i, k) be the kth component of i.

The definition is quite complicated because we want to count as separate components parts
of fuzzy time intervals where the membership function drops down to 0 at just one single point.

Example:
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Components

i0 i1 i2

2.2.3 Functions operating on Fuzzy Time Intervals

Time intervals usually don’t appear from nowhere, but they are constructed from other time
intervals. We distinguish two ways of constructing new fuzzy time intervals, first by means of
y-functions and then by means of interval operators. Y-functions map fuzzy values to fuzzy
values. They can therefore be used to construct a new interval from a given one by applying
the y-function point by point to the membership function values.

Interval operators are more general construction functions. They take one or more fuzzy
time intervals and construct a new one out of them.

Definition 2.2.14 (Y-Functions)
Y-FCTn=def{f : [0, 1]n 7→ [0, 1]} is the set of n-place y-functions.
They map fuzzy values to fuzzy values.

Y-FCT=def
⋃

n≥0 Y-FCTn.

Definition 2.2.15 (Interval Operators)
I-OPsn=def{g : FR

n 7→ FR} is the set of n-place interval operators.
They map fuzzy intervals to fuzzy intervals.

I-OPs=def
⋃

n≥0 I-OPsn.

13



Every y-function can be used to construct a new fuzzy time interval from given ones by
applying the y-function to the fuzzy values.

Definition 2.2.16 (Associated Interval Operators) If f ∈ Y-FCTn is a y-function then
gf ∈ I-OPsn defined by gf (i1, . . . , in)(x)=deff(i1(x)), . . . , in(x)) is the associated interval operator.

Linear Y-Functions
A small, but important class of y-functions are linear y-functions. They are important firstly
because very natural operators, like standard complement, intersection and union of fuzzy time
intervals can be described with linear y-functions. Secondly they are important because they
allow us to transform intervals represented by polygons in a very efficient way: only the vertices
of the polygons need to be transformed.

The main characterization of linear y-functions is therefore that they map non-intersecting
straight line segments to straight line segments, and not to curves.

Definition 2.2.17 (Linear Y-Function) A y-function f ∈ Y-FCTn is linear if the mapping
f ′((x, y1), . . . , (x, yn))=def(x, f(y1, . . . , yn)) maps non-intersecting line segments (x1, z11) –
(x2, z12), . . ., (x1, zn1) – (x2, zn2) to a line segment (x1, f(z11, . . . , zn1)) – (x2, f(z12, . . . , zn2)).

One-place linear y-functions can be characterized in the following way:

Proposition 2.2.18 (Characterization of One-Place Linear y-Functions) A one-place
y-function f is linear if and only if f(y) = f(0) + (f(1) − f(0)) · y holds.

Proof: Suppose f is linear. We take the straight line segment between (0, 0) and (1, 1). The
mapping f ′(x, y)=def(x, f(y)) maps this line segment to a line segment between (0, f(0)) and
(1, f(1)). Therefore

f(y) = f(0) + f(1)−f(0)
1−0 · (y − 0) (line equation)

= f(0) + (f(1) − f(0)) · y
The other direction of the proof is trivial.

An example for a one-place linear y-function is the standard negation n(y) = 1 − y.

The characterization of two-place linear y-functions is a bit trickier.

Proposition 2.2.19 (Characterization of Two-Place Linear y-Functions) A two-place
y-function f is linear if and only if the following condition holds:

f(y1, y2) =

{
f(0, 0) + (f(y1/y2, 1) − f(0, 0)) · y2 if y1 ≤ y2
f(0, (y1 − y2)/(1 − y2)) + (f(1, 1) − f(0, (y1 − y2)/(1 − y2))) · y2 otherwise

Proof: Suppose f is linear.
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We consider the case y1 ≤ y2 first. To this end we take the
straight line segment between (0, 0) and (1, 1). The line equation
for this line is just y = x. Now take an arbitrary y2 ∈ [0, 1] and an
arbitrary y1 ≤ y2. The line equation for the line segment starting
at (0, 0) and crossing (y2, y1) is y = (y1 − 0)/(y2 − 0) ·x. For x = 1
we get z = y1/y2.

Since f is linear we have

f(y1, y2) = f(0, 0) + f(z,1)−f(0,0)
1−0 · y2

= f(0, 0) + (f( y1

y2
, 1) − f(0, 0)) · y2

Now consider the case y1 ≥ y2.
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The line starting at (1, 1) and crossing (y2, y1) crosses the y-axis
at z = (y1 − y2)/(1 − y2).

Since f is linear we have

f(y1, y2) = f(0, z) + f(1,1)−f(0,z)
1−0 · y2

= f(0, y1−y2

1−y2
) + (f(1, 1) − f(0, y1−y2

1−y2
)) · y2

The other direction, showing that the two conditions imply linear-
ity, is again straightforward.

Simple examples for linear two-place y-functions are the minimum and maximum function.
The minimum function is used to realize standard intersection of two fuzzy time intervals, and
the maximum function is used to realize standard union of two fuzzy time intervals.

2.2.4 Set Operators for Fuzzy Intervals

For ordinary intervals there are the standard Boolean set operators: complement, intersection,
union etc. These are uniquely defined. There is no choice. Unfortunately, or fortunately,
because it gives you more flexibility, there are no such uniquely defined set operators for fuzzy
intervals. Set operators are essentially transformations of the membership functions, and there
are lots of different ones. One has tried to classify them such that essential properties of the
Boolean set operators are preserved.

Complement of Fuzzy Time Intervals
The complement operator for fuzzy time intervals is to be understood in the following sense: if
for a particular point x the probability to belong to a set S is y then the probability to belong
to the complement of S is n(y) where n is a so called negation function.

Definition 2.2.20 (Negation Function) A function n ∈ Y-FCT1 satisfying the conditions

• n(0) = 1 and n(1) = 0;

• n is non-increasing, i.e. ∀x, y ∈ [0, 1] : x ≤ y ⇒ n(x) ≥ n(y)

is called a negation function.

Let NF be the set of all negation functions.
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Example 2.2.21 (Standard Negation and λ-Complement) The function

n(y)=def1 − y

is the standard fuzzy negation.

For any λ > −1 the so called λ-complement is the function

nλ(y)=def 1 − y

1 + λy
.

Both functions n and nλ are negation functions in the sense of Def. 2.2.20.

N(i)(x)=defn(i(x)) is the standard complement operator.
Nλ(i)(x)=defnλ(i(x)) is the λ-complement operator.

If i is a crisp interval then N(i) = Nλ(i)

Proposition 2.2.22 (Idempotency of the negation functions) For every y ∈ [0, 1] we
have for the standard negation n(n(y)) = y and for the λ-complement: nλ(nλ(y)) = y.

The proof is straightforward.

This property need not hold for other negation functions.

We give some examples for standard and λ-complement. The dashed lines indicate the
complement.
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Standard Complement and λ-Complement for a Crisp Interval
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Standard Complement for a Fuzzy Interval

If we define ‘tonight’ as a fuzzy interval, rising from 0 at 6pm to 1 at 8pm, we could use
the standard complement for ‘before tonight’. The term ‘long before tonight’ must of course be
represented differently to ‘before tonight’. A λ-complement version with λ = 2 looks as follows:
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λ-Complement for λ = 2

6 8

If λ is increased then the descend from 6 pm till 8 pm becomes steeper. A suitable λ could
then in fact mean ‘long before tonight’.

Intersection and Union of Fuzzy Time Intervals
The two figures below show standard union and intersection of fuzzy intervals. Union is obtained
by taking the maximum of the two member functions. The minimum of the two member
functions yields intersection.
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Standard Union of Fuzzy Sets

i j

i ∪ j
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Standard Intersection of Fuzzy Sets

i
j

Standard union and intersection, however, is only one particular form of union and inter-
section. Instead of minimum and maximum one could think of other functions for computing
union and intersection. These other functions, so called triangular norms and conorms, must
obey certain axioms in order to satisfy our intuition about union and intersection.

Definition 2.2.23 (Triangular Norms and Conorms) A function T : [0, 1]
2 7→ [0, 1] is

called a triangular norm or t-norm for short iff it satisfies the laws T1-T4 below. A function
S : [0, 1]

2 7→ [0, 1] is called a triangular conorm or t-conorm for short iff it satisfies the laws
S1-S4 below.
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Identity law: T1: ∀x T (x, 1) = x,
S1: ∀x S(x, 0) = x

Commutativity: T2: ∀x, y T (x, y) = T (y, x),
S2: ∀x, y S(x, y) = T (y, x)

Associativity: T3: ∀x, y, z T (x, T (y, z)) = T (T (x, y), z),
S3: ∀x, y, z S(x, S(y, z)) = S(S(x, y), z)

Monotonicity: ∀x, y, u, v ∈ [0, 1] x ≤ u, y ≤ v :
T4: T (x, y) ≤ T (u, v),
S4: S(x, y) ≤ S(u, v)

Triangular norms and conorms are y-functions in Y-FCT2 (Def. 2.2.14).

Let TNorm be the set of triangular norms and
let TCoNorm be the set of triangular conorms.

The triangular norms and conorms are now turned into interval operators ∩T and ∪S :

Definition 2.2.24 (Intersection and Union) Let i, j ∈ FR be two fuzzy intervals. If T is a
triangular norm and S a triangular conorm (Def. 2.2.23) then

(i ∩T j)(x)=
defT (i(x), j(x))

(i ∪S j)(x)=
defS(i(x), j(x))

are the intersection and union operators on the fuzzy intervals.

Example 2.2.25 (Standard Fuzzy Intersection and Union) The function min is a tri-
angular norm and the function max is a triangular conorm. Therefore

(i ∩min j)(x)=
def min(i(x), j(x))

(i ∪max j)(x)=
def max(i(x), j(x))

are the standard fuzzy intersection and union operators.

A particular class of triangular norms and conorms, together with a negation function, is
the Hamacher family.

Example 2.2.26 (Hamacher Family) The Hamacher family consists of the following pa-
rameterized families of triangular norms and conorms, and negation functions (λ-complement):

Tγ(x, y) =def xy

γ + (1 − γ)(x+ y − xy)
γ ≥ 0

Sβ(x, y) =def x+ y + (β − 1)xy

1 + βxy
β ≥ −1

nλ(x) =def 1− x

1 + λx
λ > −1

18



-

6

R
0

1

Hamacher Intersection and Union with β = γ = 0.5

Set Difference of Fuzzy Time Intervals Set difference i \ j can also be defined by means
of y-functions. The following versions are derived from corresponding implication functions:

Definition 2.2.27 (Set Difference)
Kleene: (i \ j)(x)=defmin(i(x), 1 − j(x))
Lukasiewicz: (i \ j)(x)=defmax(0, i(x) − j(x))
Goedel: (i \ j)(x)=def0 if i(x) ≤ j(x) and 1 − j(x) otherwise

Example 2.2.28 (Set Difference) The following picture shows the difference between the
three versions of set difference.
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Set Difference

Kleene

Lukasiewicz

Goedel

The Kleene version corresponds to the crisp definition of set difference: i\ j = i∩ jc where jc is
the complement of j. This can be generalized by replacing ∩ with ∩T and jc with a complement
operator.

Definition 2.2.29 (Generalized Set Difference) Let N be a complement function and T a
t-norm. We define the set difference operator \N,T between two fuzzy intervals i and j as

(i \N,T j)=
defi ∩T N(j)
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Fuzzy Set Difference i \N0.5,T0.5 j

i

ji \N0.5,T0.5 j
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Splitting an interval into two intervals is the worst that can happen for the set difference
of two crisp intervals. In the case of fuzzy intervals, the set difference operator can produce
arbitrary many disjoint intervals, as the next figure shows.
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Set Difference Splits into Three Polygons

i

j

i \n,min j

2.2.5 Hull Operators for Fuzzy Intervals

Except for the closed hull of an open interval there is no meaningful notion of a ‘hull’ for a
single crisp time interval. It turns out, however, that there are various hulls for fuzzy intervals.
We define them in the order of information loss. The first notion of a hull, the crisp hull looses
most information about the interval, whereas the last notion, the monotone hull looses the least
information. All these notions of a hull coincide for crisp intervals.

Definition 2.2.30 (Crisp Hull) For an interval i ∈ FR let CrH(i) be the smallest crisp
interval containing i.
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Crisp Hull of a Finite Interval
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Crisp Hull of an Infinite Interval

Definition 2.2.31 (Convex Hull) The convex hull CoH(i) of a fuzzy set i is the smallest
convex set containing i.
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Convex Hull of a Finite Set
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Convex Hull of an Infinite Set

Finally we define the monotone hull which looses the least of the structural information
about the interval.

Definition 2.2.32 (Monotone Hull) The monotone hull MoH(i) of a fuzzy set i is the
smallest monotone fuzzy interval containing i. Monotone means that from left to right the
fuzzy values MoH(i)(x) are rising monotonically to î , and then falling monotonically again.
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Monotone Hull
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Monotone Hull of a Fuzzy Interval with Three Components

2.2.6 Basic Unary Transformations

The main purpose of FuTIRe is to provide fuzzy point–interval and interval–interval relations.
As we shall see, these relations can also be parameterized, this time with interval operators.
Therefore we first introduce a little library of interval operators, which can be used to build the
point–interval and interval–interval relations.
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Definition 2.2.33 (Basic Unary Transformations) Let i ∈ FR be a fuzzy interval. We
define the following (parameterized) interval operators:

identity(i) =def i

extend+(i)(x) =def

{
supy≤x i(y) if x ≤ ifm

1 otherwise

extend−(i)(x) =def

{
supy≥x i(y) if x ≥ ilm

1 otherwise

scaleup(i)(x) =def

{
i(x)/î if î 6= 0
0 otherwise

cutx1,x2(i)(x) =def

{
0 if x < x1 or x ≥ x2

i(x) otherwise

cutx1,+(i)(x) =def

{
0 if x < x1

i(x) otherwise

cutx1,−(i)(x) =def

{
0 if x ≥ x1

i(x) otherwise

shiftn(i)(x) =def i(x− n)

timesa(i)(x) =def min(1, a · i(x)) a ≥ 0

expe(i)(x) =def i(x)e e ≥ 0

integrate+(i)(x) =def lim
a7→∞

∫ x

−a i(y)dy
∫ +a

−a i(y)dy

integrate−(i)(x) =def lim
a7→∞

∫ +a

x i(y)dy
∫ +a

−a i(y)dy

negateoffset(i)(x) =def 1 − i(x− offset)

invert(i)(x) =def







1 − i(x) if ifm
k ≤ x < ilmk+1

where i0, . . . im are the components of i
0 otherwise.

extend
extend+(i) follows the left part of the monotone hull of the interval until the left maximum ilm

is reached and then stays at fuzzy value 1. extend−(i) is the symmetric version of extend+(i).
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extend+ and extend−
ifm ilm

i i

extend+(i) is useful for implementing a ‘before’-relation because only the left part of i is relevant
for evaluating ‘before’. extend−(i), on the other hand, can be used for an ‘after’-relation.

scaleup
The scaleup-function is different to the identity function only if the hight î is not 1. In this
case it scales the membership function up such that scaleup(i)̂ = 1.
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scaleup

cut
cutx1,x2(i) just cuts the piece between x1 and x2 out of the interval i. The resulting interval is
closed at x1 and half open at x2.
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cutx1,x2

x1 x2

cutx1,+(i) cuts the part out of i before x1 whereas cutx1,−(i) cuts the part out of i after x1.

shift
shiftn just moves the interval by n time units.
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shift20
0 20
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times
timesa multiplies the membership function by a, but keeps the result smaller or equal 1. timesa

has no effect on crisp intervals.
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times2

exp
expe takes the membership function to the exponent e. It can be used to damp increases or
decreases. expe has also no effect on crisp intervals. expe is non-linear in the sense that straight
lines are turned into curved lines.
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exp3

integrate
This operator integrates over the membership function and normalizes the integral to values
≤ 1. The two integration operators integrate+ and integrate− can be simplified for finite
fuzzy time intervals.

Proposition 2.2.34 (Integration for Finite Intervals) If the fuzzy interval i is finite then

integrate+(i)(x) =

∫ x

−∞
i(y)dy

|i| and integrate−(i)(x) =

∫ +∞

x
i(y)dy

|i|

The proofs are straightforward.

Example for integrate+ and integrate−:
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integrate+ and integrate−

integrate+(i) integrate−(i)

The integration operator for infinite intervals i with finite kernel turns the interval into a
constant function which does no longer depend on the finite part of i.
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Proposition 2.2.35 (Integration for Intervals with Finite Kernel) If the infinite fuzzy
interval i has a finite kernel with i1=defi(−∞) and i2=defi(+∞) then

integrate+(i)(x) =
i1

i1 + i2
and integrate−(i)(x) =

i2
i1 + i2

Proof:

integrate+(i)(x) = lima7→∞

R

x

−a
i(y)dy

R

+a

−a
i(y)dy

= lima7→∞
|i|i

fK

−a +|i|x
ifK

|i|i
fK

−a
+|i|i

lK

ifK
+|i|a

ilK

= lima7→∞
|i|i

fK

−a

|i|i
fK

−a
+|i|a

ilK

= lima7→∞
(ifK+a)·i1

(ifK+a)·i1+(a−ilK )·i2

= lima7→∞
a·i1

a·i1+a·i2
= i1

i1+i2

integrate−(i)(x) = lima7→∞

R +a

x
i(y)dy

R

+a

−a
i(y)dy

= lima7→∞
|i|i

lK

x +|i|a
ilK

|i|i
fK

−a
+|i|i

lK

ifK
+|i|a

ilK

= lima7→∞
|i|a

ilK

|i|i
fK

−a
+|i|a

ilK

= lima7→∞
(a−ilK )·i2

(ifK+a)·i1+(a−ilK )·i2

= lima7→∞
a·i2

a·i1+a·i2

= i2
i1+i2

invert
The invert function is almost like the standard negation function, except that invert(i) is
nonzero only in the gaps between the components of i. The interval i in the next picture
consists of three components. The maximal fuzzy value of the middle component is not 1.
Nevertheless invert(i) drops down to 0 between the first and last maximum of the middle
component. invert is needed for the in the gap operator.
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invert(i)

Fuzzification
Fuzzy time intervals could be defined by specifying the shape of the membership function in
some way. This is in general very inconvenient. Therefore FuTIRe provides an alternative.
The idea is to take a crisp interval and to ‘fuzzify’ the front and back end in a certain way.
For example, one may specify ‘early afternoon’ by taking the interval between 1 and 6 pm and
imposing, for example, a linear or a Gaussian shape increase from 1 to 2 pm, and a linear
or a Gaussian shape decrease from 4 to 6 pm. Technically this means multiplying a linear or
Gaussian function with the membership values.

The fuzzification functions can be defined with absolute coordinates and with relative coor-
dinates. We define the absolute version first.

Definition 2.2.36 (Linear Fuzzification Function) Let i ∈ FR, x1, x2 and offset be x-
coordinates.
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We define the ‘front’ linear fuzzification function with zero offset first:

FALfx1,x2,0(x)=
def







0 if x < x1

i(x) if x ≥ x2

i(x) x−x1

x2−x1
otherwise

If the offset is nonzero we have

FALfx1,x2,offset(x)=
def







FALfx1,x2,0(x+ offset) if x < x2 − offset
FALfx1,x2,0(x2) if x2 − offset ≤ x < x2

i(x) otherwise

The ‘back’ linear fuzzification function is:

FALbx1,x2,0(x)=
def

{
0 if x ≥ x2

i(x) if x < x1i(x)
x2−x
x2−x1

otherwise

If the offset is nonzero we have

FALbx1,x2,offset(x)=
def







FALbx1,x2,0(x − offset) if x ≥ x1 + offset
FALbx1,x2,0(x2) if x1 ≤ x ≤ x1 + offset
i(x) otherwise

In the picture below we fuzzify a crisp interval with a linear increase from 0 – 10, and a linear
decrease from 20 – 30, which is shifted by an offset of 10.
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Linear Fuzzification:

0 10 25 35

FALf0,10,0(i)

FALb20,30,10(i)

The next example shows the linear fuzzification of an already fuzzy interval. The dotted lines
show the linear increase and decrease. The dashed line is the result of the fuzzification operator.
Since the two polygons are multiplied, we get quadratic curves.
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Linear Fuzzification of an Already Fuzzy Interval

Besides linear fuzzification, FuTIRe offers the fuzzification with a Gaussian shape. The

Gaussian function is e−(
x−x0

σ
)2 . x0 is the symmetry point and σ determines the increase and

decrease.
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Gaussian Shape

x0

The Gaussian fuzzification function is determined by the parameters x0 and xh. xh is the x-
coordinate where e−((xh−x0)/σ)2 = 0.5. This condition determines σ =

√

(−1/ln(0.5))·(xh−x0).
Since the Gauss function does not become 0, we must cut it off at some x-coordinate. The

heuristic is to cut it off at a distance 3(x0 − xh) from x0.

Definition 2.2.37 (Gaussian Fuzzification Function) Let i ∈ FR, xh, x0 and offset be
x-coordinates.

We define the ‘front’ Gaussian fuzzification function with zero ‘offset’ first:

FAGfxh,x0,0(x)=
def







0 if x < 3xh − 2x0

i(x) if x ≥ x0

i(x)e−((x−x0)/σ)2 otherwise

If the offset is nonzero we have

FAGfxh,x0,offset(x)=
def







FAGfxh,x0,0(x+ offset) if x < x0 − offset
FAGfxh,x0,0(x0) if x0 − offset ≤ x < x0

i(x) otherwise

The ‘back’ Gaussian fuzzification function is:

FAGbx1,x2,0(x)=
def

{
0 if x > 3xh − 2x0

i(x) if x < x0i(x)e
−((x−x0)/σ)2 otherwise

If the offset is nonzero we have

FAGbxh,x0,offset(x)=
def







FAGbxh,x0,0(x− offset) if x ≥ x0 + offset
FAGbxh,x0,0(x2) if x0 ≤ x ≤ x0 + offset
i(x) otherwise

Example 2.2.38 We fuzzify ‘early afternoon’ by taking the interval between 1pm and 6pm,
imposing a Gaussian rise between 1pm and 2pm and a Gaussian decrease between 4 and 6pm.
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Early Afternoon

1pm 2pm 4pm 6pm

Fuzzification functions with absolute coordinates are not that useful because usually one does
not know the coordinates in advance. Therefore FuTIRe also provides fuzzification functions
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where the parameters are percentage values. FRLf10,5, for example, means linear fuzzification
where the linear increase is 10% of the kernel size and the offset is 5% of the kernel size (cf.
Ex. 2.2.50). FRLf10 means a Gaussian increase where x0 is 10% of the kernel size past ifK ,
xh is 1/2 the distance between ifK and i0 and the offset is such that xh coincides with ifK .

Definition 2.2.39 (Fuzzification with Relative Coordinates) For an interval i, percent-
age numbers r and o between 0 and 100 we define the relative fuzzification functions.

Let d = (ilK − ifK)/100.

FRLfr,o(i) =def FALfifK ,ifK+d·r,ifK−d·o(i)
FRLbr,o(i) =def FALfilK−d·r,ilK ,ilK+d·o(i)
FRGfr(i) =def FAGfifK+d·r,ifK+1/2·d·r,2/3·d·r(i)
FRGbr(i) =def FAGfilK−d·r,ilK−1/2·d·r,2/3·d·r(i)
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Relative Gaussian Fuzzification FRGf20 ◦ FRGb20

Classification of Interval Operators
Interval operators which turn fuzzy time intervals into infinite intervals which rise until 1 and
then stay constant are of particular interest for the definition of certain point–interval relations
(Sect. 2.2.7 below). Therefore we define rising (and falling) fuzzy time intervals and interval
operators.

Definition 2.2.40 (Rising and Falling Fuzzy Intervals and Interval Operators) A
Fuzzy set i is rising iff for its membership function i(x) = 1 for all x > ifm. i is falling iff for
its membership function i(x) = 1 for all x < ilm.

An interval operator f is rising iff f(i1, . . . , in) is rising for all tuples i1, . . . , in of intervals. f
is falling iff f(i1, . . . , in) is falling for all tuples i1, . . . , in of intervals.
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Rising and Falling Intervals

Proposition 2.2.41 The basic unary transformations extend+ and int+ are rising interval
operators and the unary transformations extend− and int− are falling interval operators.
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Any composition f1 ◦ . . . ◦ fn ◦ f where f is a rising (falling) interval operator is again a
rising (falling) interval operator.

The proofs are straightforward.

2.2.7 Point–Interval Relations

There are five basic relations between a time point and a crisp interval i:

Definition 2.2.42 (Crisp Point–Interval Relations)

before

starts

during

finishes

after

i

If the intervals possess a metric, which is the case for time intervals over the real numbers, there
are infinitely many more point–interval relations. Examples are ‘during the first half’ or ‘in the
middle of the third quarter’. For lists of intervals there are even more point–interval relations,
for example ‘between the intervals’ or ‘between the second and third interval’ etc.

If we want to ‘fuzzify’ such relations we face two problems:
1. How should a relation like ‘before’ work for a fuzzy time interval? For example, what does
‘before early afternoon’ mean, where ‘early afternoon’ is represented by a fuzzy set?
2. How can we fuzzify a point–interval relation even for crisp intervals. Can we, for example,
obtain a non-zero fuzzy value for the expression ‘the party starts after midnight’, even if the
party starts, say, one minute before midnight?

There are no general solutions to these problems. Therefore FuTIRe provides a framework
where application specific versions of such relations can be defined and used. Point–interval
relations are in this framework represented by (parameterized) interval operators. This may
be a bit surprising because relations are in general not functions. The relations are therefore
represented indirectly as functions. Consider a point p and an interval i. As the result of the
relation p before i we want a fuzzy value. To get this fuzzy value, we can turn i into another
interval before(i) such that before(i)(x) is the desired fuzzy value.

Since before(. . .) can operate on any fuzzy time interval we have also solved the problem to
get a before relation between points and fuzzy time intervals.

Unfortunately there is no unique definition for before(i). One way is to parameterize before
and all the other relations such that application specific relations can be defined very easily.
The parameters are again interval operators.

The general definitions are presented first, and then explained in detail.

Definition 2.2.43 (Point–Interval Relations as Unary Transformations)
Let i ∈ FR be a fuzzy interval, and let T be a triangular norm (Def. 2.2.23). n,m, k are
non-negative integers.

We define the following point–interval relation operators:
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beforeN,E+(i) =def

{
∅ if i = ∅
N(E+(i)) otherwise

where N is a complement operator
and E+ a rising operator (Def. 2.2.40).

afterN,E−(i) =def

{
∅ if i = ∅
N(E−(i)) otherwise

where N is a complement operator
and E− a falling operator (Def. 2.2.40).

startsE+,B,T (i) =def scaleup(E+(i) ∩T B(i))
where E+ is a rising operator and B a before operator

finishesE−,A,T (i) =def scaleup(E−(i) ∩T A(i))
where E− is a falling operator and A an after operator

duringU,O(i) =def Ul∈Cmp(i)O(l)
where U is a union operator and O any unary transformation

duringD,n,m(i) =def D(cutin,m,in+1,m(i))
where D is a during operator

in the middleD,k,n,m(i) =def D(cuti2k(2n+1)−1,2k2m,i2k(2n+1)+1,2k2m(i))

where D is a during operator
in the gapD(i) =def D(invert(i))

where D is a during operator
in the kthgapD,k(i) =def D(Component(invert(i), k))

where D is a during operator

For a particular point x one can get the fuzzy value of the relation xri by applying the corre-
sponding relation operator Or to i and then calculating Or(i)(x).

Before and After
The definition of before is beforen,E+(i)=defN(E+(i)), where E+ is a rising interval operator (Def.
2.2.40) and N is a negation interval operator. E+ projects the rising part of i out and hides all
the rest of i. N complements the rising part.

Example 2.2.44 (before with Standard Negation and E+ = extend+) The first exam-
ple gives us the standard before-relation. For crisp sets it is the usual before relation. For
fuzzy sets it is essentially complements the front part of the interval.
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before with Standard Negation and extend+

i E+(i)N(E+(i))

j E+(j)N(E+(j))

Example 2.2.45 (More Fuzzy before) In this example we want to make the before-relation
a bit more fuzzy, such that points after the start of the interval i get a non-zero fuzzy value. To
this end we distort the interval i with linear fuzzification functions F = FALf0,5,0 (left graph)
and F = FALf80,85,0 (right graph). E+=defF ◦ extend+ and N is standard complement.
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before with Linear Fuzzification

i E+(i)N(E+(i))

0 5

j E+(j)N(E+(j))

80 85 90

The fuzzification function has not much of an effect on the second interval because the linear
increase ends already in the middle of the ascend from 0 at 80 to 1 at 90.

Example 2.2.46 (Gaussian before) This example is similar to the previous one, but instead
of a linear fuzzification function we use Gaussian fuzzification functions F = FAGf5,10,0 and
F = FAGf85,90,0 to fuzzify the before relation. E+ = F ◦ extend+ and N is the standard
complement.
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before with Gaussian Fuzzification Function

i E+(i)N(E+(i))

0 10

j E+(j)N(E+(j))

80 85 90

The after-relation is just the symmetric variant of the before-relation. Therefore no further
explanation is necessary.

Starts and Finishes:
The finishes relation is the symmetric variant of the starts-relation. Therefore it is sufficient to
discuss the starts-relation.

The standard starts-relation x starts i for crisp intervals i is 1 if x is the starting point of
i, and 0 everywhere else. This corresponds to an almost empty fuzzy set, with a single peak
right at the start of i. The basic idea of a fuzzy starts-relation is to widen this single peak a
little bit. For crisp intervals there are some minor technical problems here. Therefore we first
explain it with a fuzzy interval.

The definition is startsE+
1 ,E+

2 ,T (i)=defscaleup(E+
1 (i) ∩T N(E+

2 (i))).

The rising function E+
1 extracts the front part of i. N(E+

2 (i)) extracts the same or another
front part of i and complements it with the complement function N . The first extracted front
part and the complemented extracted front part are then intersected. Since the intersection
may yield a fuzzy set with maximum fuzzy value < 1 it is scaled up to 1.

Example 2.2.47 (Simple starts-Relation) In the first example we take E+
1 = E+

2 =
extend+, the standard complement for N , and min for the t-norm T .
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starts

E+
1 (i)N(E+

2 (i)) i

E+
1 (i) ∩min N(E+

2 (i))
︸ ︷︷ ︸

The dashed line indicates the scaled up intersection.

It is now easy to imagine that the steeper the ascend of the front part of I is, the narrower
the peak of the starts-relation will be. Unfortunately, in the extreme case where i is a crisp
interval, there is no singular starts-peak anymore, but the result is just the empty set. If
E+

1 = E+
2 = extend+ then E+

1 (i) and N(E+
2 (i)) are complementary sets, and their intersection

is empty. To overcome this problem, FuTIRe just shifts E+
1 (i) by a small amount.

Example 2.2.48 (starts-Relation for a Crisp Interval) The dashed line indicates the
starts-peak.
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starts for a Crisp Interval

E+
1 (i)N(E+

2 (i))

We can now fuzzify the starts-relation for crisp intervals by widening the starts-peak again.

Example 2.2.49 (starts-relation for a Crisp Interval) We choose E+
1 =defextend+ ◦

FALf0,10,−10 and E+
2 =defextend+ ◦ FALf0,10,0.
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fuzzy starts for a Crisp Interval

E+
1 (i)N(E+

2 (i)) i

0 10

During:
The simplest version of the during operator is just the identity: x during i = identity(i)(x) =
i(x). This returns 0 for all x outside i and the fuzzy membership value for all x inside i. In
particular for crisp intervals this is a very strict interpretation of ‘during’. We can weaken
this strict interpretation by fuzzifying the interval i and taking the membership function of the
fuzzified interval. If i consists of one single component, we get then during(i)=defO(i) where O
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fuzzifies i in some way. If i consists of several components, we must fuzzify each component
separately and then take the union of all fuzzified components. The final definition is then
duringO(i)=def

⋃

l∈Cmp(i)O(l).

Example 2.2.50 (during for Crisp Intervals) We choose O = FRLf10,10 ◦ FRLb10,10
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during for a Crisp Interval with two Components

5 10 30 35 45 50 60 65

Duringn,m:
The relation ‘during the first half’ or ‘during the second third’ or in general ‘during the
nth mth’ is very similar to the basic during-relation. The only difference is that the cor-
responding part – the first half or the second third etc. – has to be cut out of the
fuzzy interval i before the basic during operator is applied. The definition is therefore just
duringO,n,m(i)=defduringO(cutin,m,in+1,m).

Example 2.2.51 (during1,3) We choose again O = FRLf10,10 ◦ FRLb10,10.
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during1,3

i0,3 i1,3 i2,3 i3,3

i

The dashed line indicates during1,3(i).

In the middle:
This relation focuses on the middle point of the interval between in,m and in+1,m. The middle
point is i2n+1,2m. The idea is to cut a slice around this middle point out of i and apply a during
operator to this slice. The size of the slice is determined by the parameter k. The larger k the
smaller the slice. This yields the definition

in the middleD,k,n,m(i)=defD(cuti2k(2n+1)−1,2k2m,i2k(2n+1)+1,2k2m(i))

In the gap:
The in the gap operator is sensitive to the gaps between different components of the fuzzy
interval i. For example, if i is the time of a soccer game, then in the gap detects the break
between the two halfs of the game. The operator is quite simple: the first step is to invert the
interval i in order to make the gaps visible. Then we apply a during operator to the inverted i.

in the gapD(i)=defD(invert(i))
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Example 2.2.52 (in the gap) with D = identity
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in the gapid

The in the gap operator does not distinguish between the different gaps in the fuzzy interval
i. Therefore we introduced the operator in the kthgapD,k with the extra parameter k to select

the particular gap. in the kthgapD,0 chooses the first gap, in the kthgapD,1 chooses the second
gap etc.

The definition is in the kthgapD,k(i)=defD(Component(invert(i), k)).

Until

The ‘Until’ operator is known from temporal logics [22]. ϕ Until ψ in a temporal logic usually
means ‘eventually ψ holds and ϕ holds until this time point. FuTIRe also provides an ‘Until’
operator, but ϕ and ψ are not formulae, but fuzzy time intervals. With FuTIRe’s Until operator
we can model expressions like ‘from early morning until late night’, where ‘early morning’
and ‘late night’ are concrete fuzzy intervals. An expression like this is ambiguous. It can
be interpreted as ‘from the beginning of early morning until the end of late night’ or ‘from
the beginning of early morning until the beginning of late night’, and there are two more
possibilities. FuTIRe provides all four combinations.

Definition 2.2.53 (Until) Let E+ be a rising function (Def. 2.2.40), E− a falling function,
C a complement operator, and T a t-norm (Def. 2.2.23). For two fuzzy sets i and j we define
UntilbbE+,T,C(i, j) =def E+(i) ∩T C(E+(j))

UntilbeE+,E−,T (i, j) =def E+(i) ∩T E
−(j)

Untileb
E+,E−,T,C(i, j) =def C(E−(i)) ∩T C(E+(j))

Untilee
E−,T,C(i, j) =def C(E−(i)) ∩T E

−(j).

The next four figures show the four cases for the Until operator when two single non-
overlapping fuzzy intervals are involved. We choose E+ = extend+, E− = extend−, C is the
standard complement and T = min.
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UntilbbE+,T,C(i, j)

i j
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UntilbeE+,E−,T (i, j)

i j
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Untileb
E+,E−,T,C(i, j)

i j
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Untilee
E−,T,C(i, j)

i j

Example 2.2.54 (Birthday Party Time) The Until operator can be used in more sophisti-
cated ways. Consider a database about, say, the institute’s birthday parties. It may contain the
entry that the birthday party for the director took place ‘from around noon until early evening’
of 20/7/2003. ‘Around noon’ is a fuzzy notion and ‘early evening’ is a fuzzy notion. Suppose,
we have a formalization of ‘around noon’ and ‘early evening’ as the following fuzzy sets:
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Around Noon and Early Evening
11 12 13 20 21 2422

What is now the duration of the birthday party? It must obviously also be a fuzzy set. The
fuzzy value of the birthday party duration at a time point x is 1 if the probability that the party
started before x is 1 and the probability that the party ended after x is also 1. Therefore the
fuzzy value at point x is computed by integrating over the probabilities of the start points and
the end points. Therefore we choose E+ = integrate+ and E− = integrate− (Def. 2.2.33).
The resulting fuzzy set is:
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Birthday Party Time: Untilbeintegrate+,integrate− ,N (i, j)
11 12 13 20 21 2422

i j

The dashed curve may, for example, represent the percentage of people at the party at a give
time.

2.2.8 Interval–Interval Relations

Allen’s seven interval relations [5] are the basic relations between two crisp intervals.

Definition 2.2.55 (Allen’s Interval–Interval Relations)

i

i

i

i

i

i

i

..............................................................................................................................................................................................

..............................................................................................................................................................................................

j

j

i before j

i finishes j
j finished-by i

j after i

i meets j
j met-by i

i overlaps j

i starts j
j started-by i

i during j
j contains i

j overlapped-by i

i equals j

We want to generalize these relations in two ways:

1. even for two crisp intervals we want a fuzzy value as result. The result should of course
be 1 if the classical relation yields true, but it should not necessarily jump to 0 when the
classical relation yields 0;

2. the relations should work for fuzzy time intervals regardless if they consist of one or more
components or if they are finite or infinite.

The basic idea for the generalized relations is very simple: since we have the point–interval
relations, we can extend the point to an interval in the relation by integrating over the interval’s
membership function. Take for example the point–interval relation before. We get the fuzzy
value for a point x and an interval j by evaluating before(j)(x). If we extend the point x to an
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interval i, we can obtain an average value for i before j by integrating over i and normalizing
the result with |i|: before(i, j) =

∫
i(x) · before(j)(x) dx/|i|.

The exact definition below is a bit more complicated because it takes into account that i
may be empty or infinite.

We summerize the interval–interval relations in the definition below and then explain them
in detail one by one.

Definition 2.2.56 (Interval–Interval Relations)
Let i and j be two fuzzy time intervals. We need the following point–interval operators:
B is a Point–interval before operator (Def. 2.2.43),
E+ is a rising transformation (like extend+) (Def. 2.2.40),
D is a Interval–interval during operation (defined below)
Dp is a point–interval during operator (Def. 2.2.43),
S, S1 and S2 are point–interval starts operators (Def. 2.2.43),
F, F1 and F2 are point–interval finishes operators (Def. 2.2.43).
For all 6 starts and finishes operators O it is assumed that |O(i)| <∞ for all fuzzy time intervals
i.

The interval–interval relations are defined as follows:

beforeB(i, j)=def







0 if i is empty or positive infinite or j is empty
1 if i is negative infinite and i ∩min j = ∅
∫
(i ∩min j)(x) ·B(j)(x) dx/|i ∩min j| if i is negative infinite

∫
i(x) · B(j)(x) dx/|i| otherwise

meetsF,S(i, j)=def

{
0 if i or j are empty or i is positive infinite or j is negative infinite
∫
F (i)(x) · S(j)(x) dx/N(F (i), S(j)) otherwise

duringDp
(i, j)

=def







1 if i is empty
0 if j is empty
(i(−∞) · j(−∞) + i(+∞) · j(+∞))/(i(−∞) + i(+∞)) if i is infinite

∫
i(x) ·Dp(j)(x) dx/|i| otherwise

overlapsE+,D(i, j)=def







0 if i or j is empty or j is negative infinite
ifS < jfS if i is positive infinite (as Boolean result)
ilS < jfS if j is positive infinite (as Boolean result)
(1 −D(i, E+(j))) ·D(i, j)/N ′(i, j) otherwise

where N ′(i, j)=defmaxa((1 −D(shifta(i), E+(j))) ·D(shifta(i), j))

startsS1,S2,D(i, j)=def







0 if i or j are empty or one of i and j is negative infinite
D(i, j) if both i and j are negative infinite
R

S1(i)(x)·S2(j)(x) dx
N(S1(i),S2(j))

·D(i, j) otherwise

finishesF1,F2,D(i, j)=def







0 if i or j are empty or one of i or j is positive infinite
D(i, j) if both i and j are positive infinite
R

F1(i)(x)·F2(j)(x) dx
N(F1(i),F2(j)))

·D(i, j) otherwise

equalsD(i, j)=defD(i, j) ·D(j, i)

where the normalization factor is N(i, j)=defmin(|i|, |j|) or N(i, j)=defmaxa

∫
i(x− a) · j(x) dx

37



Notice that the first factor in the integrals above always denotes a finite interval. This guarantees
that the integrals are finite, even if the second term denotes an infinite interval.

The Normalization Factor
The integrals for the relations meets, starts and finishes are normalization by a factor N(i, j).
The optimal choice is N(i, j)=defmaxa

∫
i(x−a)·j(x) dx because this normalizes the integral such

that the value 1 is a possible result. The intuition behind this is that for meets(i, j) there should
be a position of i relative to j where meets(i, j) = 1. For starts(i, j) and finishes(i, j) there
should be a position of i where at least the first factor which determines whether the left/right
end of i and j coincide, is 1. maxa

∫
i(x− a) · j(x) dx as normalization factor guarantees this.

Unfortunately, this causes a nontrivial search problem (Sec. 2.2.9). Therefore there is a second
choice for the normalization factor: N(i, j)=defmin(|i|, |j|). This avoids the search problem, but
it means that the value of meets(i, j) etc. may be always smaller than 1.

We examine the interval–interval relations now in detail.

Before for Finite Intervals
The definition for finite intervals is: beforeB(i, j)=def

∫
i(x) · B(j)(x) dx/|i| where B is a point–

interval before-relation. The idea of this definition is to average the point–interval before-relation
over the interval i. The normalization factor is just |i|. The rationale behind this is the following:
if j is finite then B(j)(x) = 1 if x is small enough. If we move the interval i into the area where
B(j)(x) = 1 then the integral becomes

∫
i(x) · B(j)(x) dx =

∫
i(x) · 1 dx = |i|, such that

before(i, j) = 1. Thus, |i| as normalization factor yields the right result.

Example 2.2.57 (before) The next picture illustrates the fuzzy before relation for two finite
crisp intervals. B is the standard point–interval before operator of Example 2.2.44. For this
particular operator B and crisp intervals i and j beforeB(i, j) yields the percentage of points
in i which are before j (in the usual sense). The upper dashed line indicates the fuzzy value
at position x if the end of interval i is at this position. The fuzzy value has dropped to 0 only
if the interval i is moved completely into j. A steeper decrease can be enforced if the result of
beforeB(i, j) is, for example, exponentiated with an exponent > 1. The lower dashed line in
the figure therefore indicates beforeB(i, j)3.
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beforeB(i, j) and beforeB(i, j)3

i j

One may argue whether it is desirable to have a ‘before’ relation where the standard parameters
force the fuzzy value down to 0 only when the interval i is completely contained in j. The counter
argument is that a smooth decrease can reveal more information about the structure of i and j
than a steep drop. A steep drop to 0 can always be achieved by exponentiating the result with
a large exponent.
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Example 2.2.58 (before for Fuzzy Intervals) The next picture shows the before-relation
for real fuzzy intervals. The upper dashed line indicates the result of the before-relation at
position x if the positive end of the interval i is moved to x. The lower dashed line is the upper
dashed line exponentiated with the exponent 10. The dotted line represents the position of the
interval i when the result value is dropped to 0.
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before for Fuzzy Intervals

i j

Before for Infinite Intervals
If the interval i is positive infinite, then nothing can be after i. Therefore the relation before(i, j)
must yield 0. If the interval j is negative infinite, then nothing can be before j. Therefore the
relation before(i, j) must also yield 0.

If i is negative infinite and j is finite or positive infinite then before(i, j) may well be not
false. The problem is how to measure the degree of ‘beforeness’ in this case. Since i is infinite,
∫
i ·B(j) dx will always be infinite. An alternative is to take instead of i only the intersection

between i and j and to measure the degree of ‘beforeness’ of i ∩ j. Since j is not negative
infinite, i ∩ j is finite. The formula is then

beforeB(i, j)=def

∫

min

(i ∩ j)(x) · B(j) dx/|i ∩min j|.

Example 2.2.59 (before for Infinite Intervals) This picture shows the development of
beforeB(i, j) when i is negative infinite and its positive end is moved along the x-axis. The
fuzzy value drops down, but not to 0. It remains constant after a while.
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before for Infinite Intervals
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Properties of the before relation for Finite Intervals: The crisp relation on crisp sets is
irreflexive: ¬before(i, i) holds for all i. beforest(i, i) = 0 holds also for crisp sets. beforest(i, i) = 0
means in this case that 0% of i is before i itself. This does not longer hold if i is fuzzy. The
following picture illustrates the phenomenon:
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Counterexample for Irreflexivity

iB(i)

The intersection of B(i) with i is before i to a certain degree. Therefore beforest(i, i) > 0.

The crisp before relation is asymmetric: ∀i, j before(i, j) ⇒ ¬before(j, i). A similar property
also holds for the beforest relation on crisp sets: if a non-zero fraction of i is before j then
nothing of j can be before i. beforest(i, j) > 0 ⇒ beforest(j, i) = 0.
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Counterexample for Asymmetry
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j

B(i)

B(i) has a non-zero intersection with j and B(j) has a non-zero intersection with i. Therefore
beforest(i, j) > 0 and beforest(j, i) > 0.

The fuzzy version of transitivity relates before(i, j) and before(j, k) with before(i, k)
in some way. There is such a relation for the standard before relation and crisp sets: if
beforest(i, j) = a (a · 100% of i is before j) and beforest(j, k) = b (b · 100% of j is before
k) then one can show that beforest(i, k) = min(1, a+ b · |i|/|j|). Nothing of this kind holds for
fuzzy sets.

Meets
The classical ‘meets’ relation yields ‘true’ if the end of the first interval i touches the beginning
of the second interval j. The back end of i and the front end of j are therefore relevant for
evaluating meets(i, j). We can get the back end of i in our fuzzy setting with the point–interval
finishes operator, and the front end of j with the point–interval starts operator (cf. Example
2.2.47). The fuzzy meets-relation measures how many points in the back end F (i) of i are in the
front end S(j) of j and normalizes the value with the maximum possible overlap between F (i)
and S(j). Notice that this works only if |F (i)| and |S(j)| are finite. The definition is therefore

meetsF,S(i, j)=def
∫ +∞

−∞ F (i)(x) · S(j)(x) dx/N(F (i), S(j)).

The normalization factorN(F (i), S(j))=def maxa

∫
F (i)(x−a)·S(j)(x) dx amounts to a search

problem where F (i) is moved along the x-axis to find the position for i where the integral
becomes maximal. This guarantees that there is a position for i where meets(i, j) = 1.

Example 2.2.60 (meets for Crisp Intervals)
The first picture shows the meets-relation where for crisp intervals the operators F and S have
a singular peak. Consequently the meets-relation has also a singular peak when the interval i
meets j in the crisp sense.
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Crisp meets for Crisp Intervals
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The next picture shows the result of the meets-relation when the finishes- and starts operators
fuzzify the crisp sets. The dotted lines show the fuzzified crisp sets (with Gaussian fuzzification).
The dashed line is again the result of meets when the endpoint of i is moved along the x-axis.
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Fuzzy meets for Crisp Intervals

i j

Example 2.2.61 (meets for Fuzzy Intervals) We illustrate the fuzzy meets-relation with
two fuzzy time intervals and the simple point–interval finishes and starts operators of Example
2.2.47. The dashed line shows the results of the meets-relation when the interval i is moved
along the x-axis. The dotted figure is the position of i where meets(i, j) is maximal.

-

6

R
0

1

meets for Fuzzy Intervals
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If the operators F and S have a singular peak then meets behaves for crisp relations like the
classical crisp meets relation. Therefore the properties of the crisp meets relation hold as well:
irreflexivity, asymmetry holds, and transitivity does not hold. If F and S widen the peaks then
nothing of this can be predicted any more.

During for Finite Intervals
The interval–interval during-relation averages the point–interval during relation Dp by integrat-
ing over the interval i. The basic formula is therefore

duringDp
(i, j)=def

∫
i(x) ·Dp(j)(x) dx

|i|
during(i, j) measures to what degree i is contained in j. The normalization factor is |i| because
if i is larger than j then during(i, j) should definitely be smaller than 1.
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Example 2.2.62 (during for Crisp Intervals)
The dashed line in the picture below shows the result of the during-relation for a coordinate x
when the middle point of the interval i is moved to x.
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during for Crisp Intervals
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The interval i in the next picture is larger than j such that before(i, j) never rises to 1.
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during for Crisp Intervals
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Example 2.2.63 (during for Fuzzy Intervals)
The dashed line shows again the result of the during-relation when the middle point of i is moved
along the x-axis. The dotted figure indicates the position of i where during(i, j) is maximal.
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during for Fuzzy Intervals
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During for Infinite Intervals
The formula

∫
i(x) ·Dp(j)(x) dx/|i| cannot be evaluated if i is an infinite interval. Instead one

can compute lima→∞

∫ +a

−a
i(x) ·Dp(j)(x) dx/

∫ +a

−a
i(x) dx. If the limes is calculated analytically

we obtain (i(−∞) · j(−∞) + i(+∞) + j(+∞))/(i(−∞) · i(+∞)). This formula is used for the
during relation on infinite intervals i.

Overlaps for Finite Intervals
The classical relation i overlaps j has two requirements:
1. a non-empty part i1 of i must lie before j, and
2. another non-empty part i2 of i must lie inside j.

The first condition is encoded in the factor 1 − D(i, E+(j)) where D is a during operator.
E+(j) extends the rising part of j to infinity. Therefore D(i, E+(j)) measures the part of i
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which is after the front part of j. 1 −D(i, E+(j)) then measures the part of i which is before
the front part of j. This factor is multiplied with D(i, j) which corresponds to the second
condition. It measures to which degree i is contained in j. The product is normalized with
maxa((1 − D(shifta(i), E+(j))) · D(shifta(i), j)) which corresponds to the maximal possible
overlap when i is shifted along the x-axis. This guarantees that there is a position for i where
overlaps(i, j) = 1.

Example 2.2.64 (overlaps for Fuzzy Intervals) This example shows the result of the
overlaps relation where the standard during operator is used (with the identity function as
point–interval during operator).
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Example: Overlaps Relation

i j

The dashed line represents the result of the overlaps relation for an x-coordinate x where the
positive end of the interval i is moved to x. The dotted figure indicates the interval i moved to
the position where overlaps(i, j) becomes maximal.

The normalization factor maxa((1 −D(shifta(i), E+(j))) ·D(shifta(i), j)) causes again a
search problem. As one can see in the above example the search space is usually very simple
(if the intervals are not too exotic). There is only one global maximum and no local maxima.
Therefore standard hill climbing is an efficient search method in this case.

Overlaps for Infinite Intervals
If the interval j is negative infinite then there cannot be anything before j. Therefore
overlaps(i, j) = 0. In the other infinite cases we compute the crisp overlaps relation for the
crisp hulls of i and j.

Properties of the overlaps relation: The crisp overlaps relation is irreflexive, asymmetric
and not transitive. For the standard overlapsst relation and finite fuzzy sets i which are crisp
at the left side we have Dst(i, E

+(i)) = 1. Therefore, overlapsst(i, i) = (1 − Dst(i, E
+(i)) ·

Dst(i, i)/N
′(i, j) = 0 holds. If i is fuzzy at the left side then Dst(i, E

+(i)) < 1 and Dst(i, i) > 0,
and therefore overlapsst(i, i) > 0.
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overlapsst(i, i) = 0 and overlapsst(j, j) > 0

i j
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For crisp intervals i and j we have a property which corresponds to asymmetry:
overlapsst(i, j) > 0 ⇒ overlapsst(j, i) = 0. This is because overlapsst(i, j) > 0 means that
a part of i is before j. Therefore no part of j can be before i. If i and j are fuzzy, we can have
overlapsst(i, j) > 0 and overlapsst(j, i) > 0.

Starts and Finishes
The fuzzy finishes-relation is the symmetric variant of the fuzzy starts-relation. Therefore we
need to consider only the starts-relation. The crisp i starts j-relation has two conditions:

1. the start point of i and the start point of j are identical, and

2. i is a subset of j.

This led to the basic definition of the fuzzy starts-relation as a product of the overlap between
the two starting sections of i and j, and the during(i, j)-relation:

starts(i, j)=def

∫
S1(i)(x) · S2(j)(x) dx

N(S1(i), S2(j))
·D(i, j)

The first factor checks the first condition: the starting part S1(i) of i should coincide with the
starting part S2(j) of j. This value is normalized to the maximal possible overlap of the starting
parts. The assumption here is that if I move i along the R-axis, there should be a position of i
where i definitely starts j, and where therefore the fuzzy value should be 1. The second factor
checks whether i is a subset of j. This factor need not be 1 if i is larger than j. Therefore the
result of starts(i, j) can be < 1 regardless of the position of i.

The extreme cases are:

• if i or j are empty then starts(i, j) must be 0;

• if one of i and j is negative infinite then they can’t have the same starting point. Therefore
starts(i, j) must be 0 again;

• if both are negative infinite then we can assume that they have the same starting point,
and therefore only the second condition during(i, j) must be checked;

• it does not matter whether i or j are positive infinite because only the finite starting
sections of i and j count.

Example 2.2.65 starts for Crisp Intervals
The first picture shows the case where a during operator D is used with Dd = identity. If
the front end of i is moved along the x-axis we get a single peak when it meets j. The peak,
however, is only 0.5 high because i is twice as large as j.
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Crisp starts-Relation
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The next picture shows a fuzzified starts-relation. The dashed line shows the value of
starts(i, j) for a position x where the front end of i is moved to x. The crisp intervals are
fuzzified in the same way as in Example 2.2.60. The peak is broader, but the maximum is still
at 0.5 because i is twice as large as j.
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Fuzzified starts-relation
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Example 2.2.66 (starts-Relation for Fuzzy Intervals) The next figure shows the applica-
tion of the same starts-relation as in the first picture of the above example to fuzzy intervals.
The dashed line is again the result of the starts-relation. The dotted figure shows the position
of the interval i where starts(i, j) is maximal.
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Example: Starts Relation
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Properties of the starts relation: The classical starts relation for crisp intervals is reflexive,
antisymmetric and transitive. If we consider only the cases startsst(i, j) = 0 or startsst(i, j) = 1
where i and j are crisp intervals then it behaves like the classical starts relation. The same prop-
erties hold, in particular reflexivity. For fuzzy intervals, however, we have 0 < startsst(i, i) < 1.
No kind of fuzzy antisymmetry holds for startsst on fuzzy intervals. A fuzzy version of tran-
sitivity does also not hold. The reason is that, although the starting sections of i and j may
overlap, and the starting sections of j and k may overlap, this does not imply that the starting
sections of i and k overlap.

Equals:
An interval i equals an interval j if i is a subset of j and vice versa. Therefore we get

equalsD(i, j)=defD(i, j) ·D(j, i)

where D is an interval–interval during operator.

Example 2.2.67 (equals for Crisp Intervals)
The first picture shows the equals-relation for similar intervals. If i is moved on top of j then
equals(i, j) = 1
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equals for Similar Intervals
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i and j in the next figure are not equal. Therefore equals(i, j) never rises to 1.
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equals for Different Intervals
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Properties of the equals relation: The classical equals relation is an equivalence relation.
equalsst(i, j) = 1 implies i and j are crisp and moreover i = j (see the corresponding remark
about duringst(i, j) = 1). Therefore if we consider only the case equalsst(i, j) = 1 then equalsst

is also an equivalence relation.

Since duringst(i, i) > 0 we also have equalsst(i, i) > 0 for non-empty fuzzy sets. By the
very definition of equalsD we have equalsD(i, j) = equalsD(j, i), the strongest form of fuzzy
symmetry. Any form of fuzzy transitivity does not hold. It is easy to construct examples
where equalsst(i, j) > 0 and equalsst(j, k) > 0 and equalsst(i, k) = 0. This is because although
equalsst(i, j) > 0 requires an overlap between i and j, and equalsst(j, k) > 0 requires an overlap
between j and k, there need not be an overlap between i and k.

Transitivity Table? Allen’s interval relations for crisp intervals are related in particular
ways. For example, if i starts j holds then i during j must hold as well. All the relationships
between the different interval relations can be collected in a transitivity table. The transitivity
table can then be used for constraint propagation algorithms. A systematic investigation of
the relationships between fuzzy interval–interval relations has not been done yet. The guess is
that not many relationships hold, and therefore the transitivity table may not help much for a
constraint propagation algorithm.

2.2.9 The Search Problem

The normalization factorN(i, j) = maxa

∫
i(x−a)·j(x) dx, where i is finite, amounts in general

to a nontrivial search problem with unpredictable solutions. Consider the following example:
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Maximizing the Overlap
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If we move i into the left component of j we get maximal overlap as long as i is completely
contained in this part of j. The same holds for the right part of j.

For the parameter a to be maximized in the integral we get two plateaux as solutions.

There seems to be no easy analytical solution to this problem. Fortunately there are im-
portant classes of fuzzy time intervals, where this problem is extremely easy to solve.

The first class is when j is infinite and j(−∞) = 1 or j(+∞) = 1, and, of course j has a finite
kernel. In this case one can move i to the infinite part where j is constant 1.

∫
i(x−a)j(x) dx =

|i| in this case, i.e. maxa

∫
i(x− a) · j(x) dx = |i|,

The other class are the the symmetric and monotone fuzzy intervals.

Definition 2.2.68 (Symmetric and Monotone Intervals) A fuzzy time interval i is sym-
metric if there is a time point t such that i(t− x) = i(t+ x) for all x holds. t is the symmetry
axis.

A fuzzy time interval i is monotone if with increasing time coordinate x, i(x) is monotoni-
cally increasing until a maximal value and then it is monotonically decreasing again.

Crisp intervals are in particular monotone and symmetric. Maximal overlap is achieved for
monotone and symmetric intervals if the symmetry axes of both intervals coincide.
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Maximal Overlap

i j

Proposition 2.2.69 If i and j are two monotone and symmetric fuzzy intervals then
∫ +∞

−∞
i(x)j(x) dx is maximal if the symmetry axis of i and j coincide.

The proof is very technical. We therefore sketch only the basic idea. First i and j are discrete-
sized into step functions with finite step size. The limit ‘step size 7→ 0’ is then the original
problem. The discretesized integral then becomes a sum stepsize · Σkik · jk

One must show that moving the interval i away from the position where the two symmetry
axes coincide, decreases the sum.
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Discretesized Maximization Problem
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shifted i

As one can see in this picture, shifting i to the right hand side, decreases the parts of the sum
ik · jk on the left side of the symmetry axis of j, and increases the parts of the sum on the right
side of the symmetry axis. The important observation is, that because j is monotone falling
at the right hand side, the parts ik on the right side, which cause the sum to increase again,
are multiplied with smaller jk than the corresponding parts on the left hand side. Therefore
the sum gains less on the right hand side than it looses on the left hand side. The overall sum
therefore decreases or remains constant.

A General Search Procedure
We want to find a value for a such that

∫ +∞

−∞ i(x − a)j(x) dx is maximal. If i or j are not
monotone and symmetric a general search procedure has to be applied. The search procedure
which is implemented in FuTIRe is a combination of an iterated binary local search with a
randomized global search. It is optimized for search spaces with little structure and terminates
quickly. 100% success, however, is not guaranteed.

The first problem to be solved is to find good starting points for the search. Reasonable
choices are the middle points of the local maxima of i and j. For the examples in the picture
below the search starts by matching the four combinations of ak with bl.
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Starting Points for the Local Search

i j

a1 a2 b1 b2

Since all these combinations may miss the global maximum, random start points are also
generated.

The second problem is to choose an initial step size for the search. The initial step size is
∆ = min(jlS − b0, b0 − jfS)/2, i.e. half way between the start point b0 of the search in the
interval j and the closest end of j.

If, for example, the value for the integral increases for a0+∆ then the local search procedure
is called recursively for the initial value a0 + ∆ and step size ∆/2. The other cases are similar.
This way ∆ is decreased exponentially until it reaches a certain threshold. The new value for a
is now the start point of another local search with the same ∆ as before. This is iterated until
the changes in the integral falls under another threshold (1% seemed to be a good choice).

Definition 2.2.70 (The Search for Maximizing the Overlap) Let i and j be two finite
fuzzy intervals. We define a local search function and then a global search procedure for maxi-

48



mizing the integral

Int(a)=def

∫ +∞

−∞

i(x− a)j(x) dx.

Let a be the start value for the search and ∆ the step size. ‘threshold’ is threshold for ∆.

localSearch(a,∆)

=def







(a, Int(a)) if ∆ ≤ threshold
localSearch(a+ ∆,∆/2) if Int(a+ ∆) > Int(a) and Int(a+ ∆) ≥ Int(a− ∆)
localSearch(a− ∆,∆/2) if Int(a− ∆) > Int(a) and Int(a− ∆) ≥ Int(a+ ∆)
localSearch(a,∆/2) otherwise

iteratedLocalSearch(a,∆): iterate (a, Int) := localSearch(a,∆) until the changes in Int falls
under a threshold. return Int.

The global search procedure maximizeOverlap(i, j) is described procedurally:

For all combinations mi and nj of middle points of local maxima of i and j:
let ∆ = min(jlS − nj , nj − jfS)/2, call Int = iteratedLocalSearch(nj −mi,∆) and choose the
maximal Int-value.

Repeat this k times with randomly chosen mi and nj and choose again the maximal Int-value.
(k = 5 seemed to be enough.)

return the maximal Int-value.

2.3 Nagypál and Motik’s Interval–Interval Relations

An alternative approach to fuzzy interval–interval relations has been proposed by Nagypál and
Motik [33]. They define interval–interval relations directly, and not via point–interval relations.
The basic idea is to extend the requirements for the crisp interval–interval relations, which are
mostly conditions on the end points of the intervals, to conditions on the starting and finishing
sections of the fuzzy intervals.

Since these relations are also implemented in the FuTIRe library, we briefly describe how
they work. More details are given in the original paper [33].

Definition 2.3.1 (Nagypál and Motik’s Interval–Interval Relations) Let i and j be
two fuzzy intervals.
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before(i, j) =def supx(((1 − extend−(i)) ∩min (1 − extend+(j)))(x))
meets(i, j) =def min(infx((extend−(i) ∪max extend

+(j))(x)),
infx(((1 − extend−(i)) ∪max (1 − extend+(j)))(x)))

overlaps(i, j) =def min(supx((extend+(i) ∩min (1 − extend+(j)))(x)),
supx((extend−(i) ∩min extend

+(j))(x)),
supx(((1 − extend−(i)) ∩min extend

−(j))(x)))
starts(i, j) =def min(infx(((1 − extend+(i)) ∪max extend

+(j))(x)),
infx((extend+(i) ∪max (1 − extend+(j))(x))),
supx(((1 − extend−(i)) ∩min extend

−(j))(x)))
during(i, j) =def min(supx(((1 − extend+(i)) ∩min extend

+(j))(x)),
supx(((1 − extend−(i)) ∩min extend

−(j))(x)))
finishes(i, j) =def min(infx((extend−(i) ∪max (1 − extend−(j))(x))),

infx(((1 − extend−(i)) ∪max extend
−(j))(x)),

supx((extend+(i) ∩min (1 − extend+(j)))(x)))
equals(i, j) =def min(infx((extend−(i) ∪max (1 − extend−(j))(x))),

infx(((1 − extend−(i)) ∪max extend
−(j))(x)),

infx(((1 − extend+(i)) ∪max extend
+(j)))(x))

infx((extend+(i) ∪max (1 − extend+(j)))(x)).

The relations give quite intuitive results for finite fuzzy intervals consisting of one component
only, and without much internal structure. The definitions work also for infinite intervals, but
the results may not be very intuitive. In contrast to the operator based definitions, the Nagypál
and Motik relations behave on crisp intervals just like the classical interval–interval relations.

In the next examples we compare the operator version of the interval–interval relations with
the Nagypál and Motik version. The operator version uses always the default parameter setting.
Because the Nagypál and Motik version is designed mainly for finite intervals consisting of one
component only, we present only examples of this kind.

before:
The first picture shows the result of the before relation when the interval i is moved along the
x-axis. A point (x, y) at the dashed and dotted curves is the result of the before relation when
the positive end of the interval i is moved to position x.
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In this example the operator version has non-zero fuzzy values even beyond the positive end of
j. This is because even if the positive end of i is behind j, there is still some part of i before j.

The next picture shows that the Nagypál and Motik version can have a similar effect.
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The examples demonstrate that the Nagypál and Motik version of the before relation reveals
more about the fine structure of the back end of the first interval i and the front end of the
second interval j, but the precise relation is not very clear. The operator version, on the other
hand, has a more global meaning: the resulting fuzzy value stands for fraction of the first
interval which is before the second interval.

meets:
The next two figures illustrate that the differences between the operator version of the meets
relation and the Nagypál and Motik version are minor. The operator version yields a smoother
curve, and the fuzzy values are normalized to 1 as peak value. This would be possible for the
Nagypál and Motik version either, but it causes a similar search problem as for the operator
version.
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The dashed and dotted curves indicate again the resulting value of the meets relation at
coordinate x if the interval i is moved such that its positive end is at x.
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overlaps:
The first example for the overlaps relation shows a structural similarity between the operator
version and the Nagypál and Motik version. Again, the Nagypál and Motik version is not
normalized.
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The next example demonstrates that the Nagypál and Motik version of the overlaps relation
is not sensitive to the internal structure of the intervals. The interval j is treated like its crisp
hull.

-

6

R
0

1

overlaps relation: standard operator version and
Nagypál and Motik version

i j
Operator

NM

starts:
The operator version and the Nagypál and Motik version of the starts relation show close
structural similarities if the left sides of the intervals are not too exotic.
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The dashed and dotted lines in this picture show the resulting values of starts relation at a
point x if the left end of the interval i is moved to x.
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The Nagypál and Motik starts relation in the next picture has a singular peak of maximal
high for the case that the left end of the interval i coincides with the left end of the interval
j, although i is not contained in j. The operator version with standard parameters has also a
singular peak there, but its hight is only 0.55, which indicates that only 55% of i are contained
in j. The dashed line in the picture shows the results of the operator version of starts, where
the starting sections of i and j are widened by a fuzzification operator.
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during:
The next two pictures show a comparison of the during relation. The dashed and dotted lines
indicate the values of the during relation at x-coordinate x if the middle point of the interval i
is moved to x. Compared to the operator version, the Nagypál and Motik version has a much
narrower graph and it is less smooth.
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The interval j in the next example is treated like its crisp hull by the Nagypál and Motik
version. Therefore there is quite a difference to the operator version.
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equals:
The behaviour of the equals relations are quite similar to the behaviour of the during relations
because they essentially consist of two during relations. The two curves in the first example
below do not rise to 1, although the shapes of the two intervals are identical. This is, because
the relations do not compare the shapes of the intervals, but the rely on the meaning of the
during relation.
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The Nagypál and Motik version of the equals relation in the next example has a singular
peak when the two intervals match exactly. The reason is again that the Nagypál and Motik
version treat the intervals in this case like their crisp hulls.
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Summary of the Comparison:
The resulting values of the operator version (with standard parameters) and the Nagypál and
Motik version of the different relations show a similar structure if the intervals are ‘crisp like’
intervals, i.e. if they consist of a single component which is more or less monotonic, and has no
internal structure. The Nagypál and Motik version follows the rising and falling parts of the
intervals more directly, whereas the operator version smoothes the curves. Since the operator
versions integrate over the corresponding point-interval relations, they have a more intuitive
meaning than the Nagypál and Motik version.

The differences between the two version are more obvious for crisp intervals, where the
Nagypál and Motik versions deliberately behave like the pure crisp relations. The operator
versions return non-trivial fuzzy values is these cases. The differences become also more obvious
when the intervals have an internal structure, or when they consist of several components. The
internal structure is completely ignored by the Nagypál and Motik versions. This is not the
case for the operator version.

Since the FuTIRe library offers both versions of the relations, the application has to choose
the appropriate version.

2.4 Datastructures and Algorithms

The algorithms presented in this document need to deal with five basic datatypes: time points,
fuzzy values, fuzzy temporal intervals, y-functions and interval operators.

Time Points
The time points are points on the R-axis. Arbitrary real numbers cannot be represented on
computers. The choice is therefore between floating point numbers and integers as represen-
tation of time points. The range of floating point numbers is much higher than the range of
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integers. Unfortunately, algorithms operating on floating point numbers are prone to uncontrol-
lable rounding errors. Another argument for using integers instead of floating point numbers
is that the real time measurements on earth give you always integers. The very definition of
exact time measurement already uses integers: in 1967 one second was defined as 9.192.631.770
cycles of the light emitted when an electron jumps between the the two lowest hyperfine levels
of the Cesium 133 atom. Therefore the most precise time measurement available at all depends
on counting integers (cycles of light).

Therefore the FuTIRe-library represents time with integer coordinates. There is no assump-
tion about the meaning of these integers. They may be years, seconds, picoseconds or even
cycles of the Cesium 133 light.

Fuzzy Values
Fuzzy values usually are real numbers between 0 and 1. A first choice would therefore be to
use floating point numbers for the fuzzy values. Again, floating point numbers are prone to
rounding errors. Moreover, computation with floating point numbers is more expensive than
computation with integers. Therefore I decided again to use integers instead of floating point
numbers. This means of course that one cannot represent the fuzzy value 1 as the integer 1. We
could then use just 0 and 1 and no other fuzzy value. Instead one better represents the fuzzy
value 1 as a suitable unsigned integer of a certain bit size. Since fuzzy values are estimates only
anyway, 16 bit unsigned integer (unsigned short int in C) are precise enough for fuzzy values.

Definition 2.4.1 (Largest Fuzzy Value) Let > be the maximal fuzzy value in the imple-
mentation.

To make the examples more easy to understand, we use > = 1000 in this chapter. > is a
compiler option in the actual implementation and can be changed easily.

Fuzzy Time Intervals
Fuzzy intervals are usually implemented by a representation of their membership functions.
Arbitrary membership functions are almost impossible to represent precisely on a computer. A
natural choice for realizing approximated fuzzy time intervals over integer time and integer fuzzy
values is the representation with envelope polygons over integer coordinates. This has a number
of advantages: the representation is compact and can nevertheless approximate the membership
functions very well; simple structures, like crisp intervals, have a simple representation; we
can use ideas and algorithms from Computational Geometry [45, 24]; there are very efficient
algorithms for most of the problems, and it is clear where rounding errors can occur, and where
not.

Coordinates and Integer Datatypes
The implemented fuzzy intervals are independent of their interpretation as fuzzy time intervals.
Therefore we shall speak of the x-axis instead of the time axis and of the y-axis instead of the
fuzzy value axis.
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Definition 2.4.2 (x-Integers and y-Integers) FuTIRe may use integers of different size for
the x-coordinates and the y-coordinates. Therefore we shall speak of the x-integers and of the
y-integers. The default for x-integers is 64 bit long long integers, and the default for y-integers
is 16 bit short integers. The library has also been tested with multiple-precision x-integers.

Notation for Algorithms
We shall write most algorithms in a functional notation which is as mathematical as possible,
but still concrete enough that they can be implemented straight away. It turned out that the
object oriented paradigm is not only very good for getting modularized and easy to understand
implementations, but it also makes the mathematical notation clearer. Therefore we shall use
the notion o.v and o.m(p1, . . . , pn) where o is an object, v is an instance variable, and m is a
method (function) with arguments p1, . . . , pn.

The expression min(i ≥ 0 | ϕ(i)) denotes a loop: starting with i = 0, increase i by 1 until
ϕ(i) becomes true. In this case return the i with ϕ(i) = true. Notice that the loop may in
general not terminate. We use similar expressions with the obvious meaning.

The expression

a=def







s1 if ϕ1

s2 if ϕ2

. . . . . .
sn otherwise

is a case analysis. It means:
a=defs1 if ϕ1 is true
a=defs2 if ϕ1 is false and ϕ2 is true
. . .
a=defsn if ϕ1, . . . , ϕn−1 are all false.

The notation Σm
n=0s(n) is well known in mathematics. In the same style we define a notation

V m
n=0s(n). The V operator causes the values s(n) to be collected in a list. For example,

V 20
n=0

{
(n) if n is a prime number
() otherwise

yields the list (1,3,5,7,11,13,17,19).

We may also use the keyword break to stop the V -loop. For example,

Vn>0







break if n > 20
(n) if n is a prime number
() otherwise
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yields the same list (1,3,5,7,11,13,17,19).

Sometimes it is necessary to include a value in a list and then stop the loop. We specify this
with an expression ‘s and break’.

Vn>0







(n) and break if n > 20
(n) if n is a prime number
() otherwise

yields the list (1,3,5,7,11,13,17,19,21).

Partial Functions and Error Handling
Most of the functions defined in this chapter are partial functions. Therefore the preconditions
the arguments must meet when these functions are called need to be stated very clearly. This
means for an implementation that the functions should only be called when the preconditions
are guaranteed. An error handling mechanism treats the cases where the preconditions are not
met.

Special Functions
We use the following functions:

roundX(a) rounds the floating point number a to the closest x-integer (time value).

roundY (a) rounds the floating point number a to the closest y-integer (fuzzy value).

The two functions are almost identical. The only difference is the bit length of the resulting
integer values.

2.4.1 Points

We need 2-dimensional points with coordinates (x, y) as the representation of points on the
envelope polygon. The x-coordinate is the time coordinate and the y-coordinate is the fuzzy
value coordinate. x-coordinates are represented with x-integers and y-coordinates are repre-
sented with y-integers (Def. 2.4.2).

Notation
If p = (x, y) is a point then p.x denotes the x-coordinate (time coordinate) of p and p.y denotes
the y-coordinate (fuzzy coordinate) of p.

Collinearity
The collinearity check for three points p1, p2 and p3 is a standard method from Computational
Geometry [45]. The doubled area of the triangle p1, p2 and p3 is computed. With integer
coordinates this can be done without any error at all. If the doubled area is 0 then the three
points are collinear.

Definition 2.4.3 (Collinear) The method p1.colinear(p2, p3) returns true if the three points
p1, p2 and p3 are collinear.

Left turn
Another important operator is the ‘left turn test’.
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Definition 2.4.4 (Left Turn) The method p1.leftturn(p2, p3) returns true if the three points
p1, p2 and p3 make a left turn.

The leftturn method computes the doubled area of the triangle p1, p2 and p3 and checks its
sign. Left turns and right turns yield opposite signs.

Intersection
Testing whether line segments intersect and computing the intersection point are also standard
methods from Computational Geometry.

Definition 2.4.5 (IntersectsProper) The method p1.intersectsProper(p2, q1, q2) returns
true if the line segment (p1, p2) intersects properly, and not only touches the line segment
(q1, q2).

Definition 2.4.6 (Intersection) The method p1.intersection(p2, q1, q2) returns the rounded
x-coordinate of the intersection point of the two intersecting line segments (p1, p2) and (q1, q2).

LineY
The function p.LineY (q, x) considers the line crossing the points p and q, and computes for a
given x-value the corresponding y value at the line.
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Definition 2.4.7 (LineY) Let p and q be the two points which define a line, and let x be an
x-coordinate.

p.LineY (q, x)=def

{

undefined if p.x = q.x

p.y + (q.y−p.y)·(x−p.x)
q.x−p.x otherwise

The result is floating point number.

LineX
This method computes for a line and a y-value the corresponding x-value.

Definition 2.4.8 (LineX) Let p and q be the two points which define a line, and let y be a
y-coordinate.

p.LineX(q, y)=def

{

undefined if p.y = q.y

p.x+ roundX( (q.x−p.x)·(y−p.y)
q.y−p.y ) otherwise

The result is an x-coordinate.
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Area
We provide two methods for computing the area between a line and the x-axis. The first
function p.Area2(q) computes for two points p and q twice the area below the line segment
between p and q. When p and q are points with integer coordinates then twice the area yields
also an integer, and no rounding is necessary.

The second method p.Area2(q, x1, x2) computes twice the area between x1 and x2 below
the line segment between p and q.

Definition 2.4.9 (Area2) Let p and q be the two points which define a line, let x1 and x2

x-coordinates.
p.Area2(q) =def (q.x− p.x) · (q.y + p.y)
The result is an x-integer.

p.Area2(q, x1, x2) =def







undefined if p.x = q.x and p.x 6= x
0 if p.x = q.x = x
(x2 − x1) · (p.LineY (q, x2) − p.LineY (q, x1)) otherwise

The result is a floating point number.

The next method, p.Area2X(q, a) computes for two points p and q and for a doubled area
a the x-coordinate x such that twice the area below the line segment between p and q from p.x
till x is a. The function is undefined if the line is vertical, or the line is just the coordinate axis
and a > 0, or the slope of the line is negative and there is not enough area available between
p.x and the point where the line crosses the coordinate axis.

Definition 2.4.10 (Area2X) Let p and q be the two points which define a line. Let a ≥ 0 be
an integer or floating point number.

p.Area2X(q, a)=def







undefined if p.x = q.x
or p.y = q.y = 0 and a > 0
or p.y2 < −slope · a

p.x if p.y = q.y = 0 and a = 0
p.x+ roundX( a

2p.y ) if p.y = q.y

p.x+ roundX(

√
p.y2+slope·a−p.y

slope ) otherwise

where slope=defq.y−p.y
q.x−p.x

The result is a rounded x-integer.

Proposition 2.4.11 (Soundness of Area2X) Let p and q be two points and a a doubled area
(non-negative number). Then p.Area2X(q, a) returns the (rounded) x-coordinate x such that
the doubled area below the line crossing p and q and between p.x and x equals a.

Proof: The doubled area below the line crossing p and q and between p.x and x is
(x− p.x) · (p.y + (p.y + slope · (x− p.x))) = a
where slope = q.y−p.y

q.x−p.x

Case 1: q.x− p.x = 0, i.e. p.x = q.x.
The equation is not solvable in this case.

Case 2: slope = 0, i.e. p.y = q.y:
Case 2a: p.y = 0: the equation is only solvable for a = 0, in which case p.x is a solution.
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Case 2b: p.y > 0: The equation simplifies in this case to
(x − p.x) · 2p.y+ = a with solution
x = p.x+ a

2p.y .

Case 3: slope 6= 0:
The equation is normalized to
slope · (x− p.x)2 + 2p.y(x− p.x) − a = 0 with solution

(x − p.x) =
−2p.y±

√
4p.y2+4slope·a

2slope

x = p.x+
−p.y+

√
p.y2+slope·a

slope
The −√

. . .-case yields a point left of p.x, which is not what we want. The square root has

a real number solution only if p.y2 + slope · a ≥ 0. Otherwise the function is undefined.

Integration
The Interval–interval relations (Section 2.4.2) are defined as an integral over two multiplied
polygons. A building block for the integration algorithm is a method which integrates the
product of two lines.

Definition 2.4.12 (Integration of Multiplied Lines) Let p1, p2 and q1, q2 be the two pairs
of points which define two lines. Let x1 and x2 be two x-coordinates.

p1.Integrate(p2, q1, q2, x1, x2) =def







undefined if (p1.x = p2.x or q1.x = q2.x) and x1 6= x2

0 if x1 = x2

a · b · (x2 − x1) + (m2a+m1b) · (x2
2 − x2

1)/2 +m1 ·m2 · (x3
2 − x3

1)/3 otherwise

where a =def p1.y −m1p1.x, b =def q1.y −m2q2.x,

m1 =def p2.y − p1.y

p2.x− p1.x
and m2 =def q2.y − q1.y

q2.x− q1.x
.

The result is a floating point number.

Proposition 2.4.13 (Soundness of Integration of Multiplied Lines) Let p1, p2 and
q1, q2 be the two pairs of points which define two lines. Let x1 and x2 be two x-coordinates.
Then

p1.Integrate(p2, q1, q2, x, y) =
∫ x2

x1
l1(x) · l2(x) dx

where l1 is the line crossing p1 and p2 and l2 is the line crossing q1 and q2.

Proof:
l1(x) =def p1.y +m1(x− p1.x)
l2(x) =def q1.y +m2(x− q1.x)

where m1=defp2.y − p1.y

p2.x− p1.x
and m2=defq2.y − q1.y

q2.x− q1.x
.

∫ x2

x1
l1(x) · l2(x) dx

=
∫ x2

x1
(p1.y +m1(x− p1.x))(q1.y +m2(x − q1.x)) dx

= [(p1.y −m1p1.x)(q1.y −m2q2.x) + (m2(p1.y −m1p1.x) +m1(q1.y −m2q2.x))x +m1m2x
2]x2

x1

= [ab+ (m2a+m1b)x+m1m2x
2]x2

x1

= ab(x2 − x1) + (m2a+m1b)(x
2
2 − x2

1)/2 +m1m2(x
3
2 − x3

1)/3

where a=defp1.y −m1p1.x and b=defq1.y −m2q2.x.
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2.4.2 Fuzzy Time Intervals

In this section we introduce a concrete representation of fuzzy time intervals and present the
algorithms implemented in FuTIRe.

Definition 2.4.14 (Infinity) We use +∞ and −∞ with the same meaning as before. How-
ever, since infinity cannot be represented properly on a computer, +∞ stands in fact for a
sufficiently large positive representable x-integer, and −∞ stands for a sufficiently large neg-
ative representable x-integer. If the bitsize of the integers is fixed, these can be the largest
representable integers at all. For multiple-precision integers one can choose an arbitrary very
large number.

The finite representation of +∞ and −∞ could in principle cause errors if the time values
become extremely large. Therefore one has to check in the application how large the numbers
could become and then choose a large enough x-integer datatype.

Representation and Construction

Fuzzy intervals are represented by their envelope polygons. These polygons represent the mem-
bership functions.

Definition 2.4.15 (Envelope Polygon) The envelope polygon I of a fuzzy time interval is
a finite sequence of points p0, . . . , pn such that pi.x ≤ pi+1.x holds for all i.

In most cases we can assume that the coordinates in I are not redundant, i.e. there are no
collinear triples (pi, pi+1, pi+2) of points.

We usually identify the envelope polygon with the fuzzy set itself.

Example 2.4.16 (Envelope Polygon) The picture below shows the envelope polygon

I = (0, 0)(10, 500)(20, 500)(30, 1000)(60, 1000)(60, 500).

Since p5.y = 500 > 0 it represents a positive infinite fuzzy interval.
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Example 2.4.17 (Crisp Intervals) The representation of finite crisp intervals consists al-
ways of four points: I = ((x0, 0)(x0,>)(x1,>)(x1, 0).
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Infinite crisp intervals can of course also be represented. For example, [10,+∞[ can be
represented by (10, 0)(10,>). [−∞, 10[ can be represented by (10,>)(10, 0).

An envelope polygon is constructed from the empty list of points by adding new points to the
back of the list. The push back method defined below ensures that the condition pi.x ≤ pi+1.x
holds and that collinear triples of points are avoided.

Definition 2.4.18 (push back and pop back) Let I = (p0, . . . , pn) be an envelope polygon
and p a new point.

I.push back(p)=def







undefined if I 6= () and p.x < pn.x
(p) if I = () or I = (p0) and p.y = p0.y
(p0, p) if I = (p0)
(p1, . . . , pn−1, p) if p.colinear(pn−1, pn) = true (Def. 2.4.3)
(p1, . . . , pn, p) otherwise

I.pop back() removes the last element.

The method I.close() defined next ‘closes’ a polygon in the sense that it assumes that all points
have been added with the push back-method and some further redundancies can be removed.
For some of the other algorithms it is important that these redundancies are in fact removed.

Definition 2.4.19 (Close) Let I = (p0, . . . , pn) be an envelope polygon.

I.close()=def







() if I = ((x, 0))
(p1, . . . , pn).close() if p0.y = p1.y
(p0, . . . , pn−1) if pn−1.y = pn.y
I otherwise

The method Index defined below can be used to locate for a given x-coordinate x and an
envelope polygon I the line segment which is above x. MaxIndex(true) locates the index of
the leftmost polygon point with maximum y-value (Ifm), whereas MaxIndex(false) locates
the index of I lm.

Definition 2.4.20 (Index and MaxIndex) For an envelope polygon I = (p0, . . . , pn) let

I.Index(x)=def

{
−1 if I = () or x < p0.x
max(k ≤ n | xk ≤ x) otherwise

be the index of the rightmost polygon point that is left of x. The index is actually obtained with
binary search in O(log2(n)) time.
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I.MaxIndex(front)=def







−1 if I = ()
min(i ≥ 0 | pi.y = > or ∀j : 0 ≤ j < i : pj .y < pi.y) if front = true
max(i ≤ n | pi.y = > or ∀j : i < j ≤ n : pj .y < pi.y) if front = false

MaxIndex requires linear search. Fortunately the search can be stopped as soon as a point pi

is reached with pi.y = >. Therefore for the important case of crisp polygons, the search stops
always at the second point.

Example 2.4.21 (Index and MaxIndex) For the envelope polygon

I = (0, 0)
︸ ︷︷ ︸

p0

(10, 500)
︸ ︷︷ ︸

p1

(10, 1000)
︸ ︷︷ ︸

p2

(50, 1000)
︸ ︷︷ ︸

p3

(50, 0)
︸ ︷︷ ︸

p4

we have
I.Index(0) = 0, I.Index(9) = 0, I.Index(10) = 2, I.Index(11) = 2, I.Index(50) = 4,
I.MaxIndex(true) = 2, I.MaxIndex(false) = 3.
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The envelope polygon contains only the vertices of a piecewise linear membership function.
Therefore we need a Member method which interpolates for a given x the corresponding y-value
of the membership function.

Definition 2.4.22 (Member Function) Given a fuzzy interval (envelope polygon) I =
(p0, . . . , pn) the Member function is defined:

I.Member(x)=def







0 if I = ()
p0.y if x < x0

pn.y if x ≥ xn

pi.y if p.x = pi.x
pi.lineY (pi+1, x) otherwise
where i = I.Index(x)

The result is converted to a floating point number, if necessary.

The usual membership function (Def. 2.2.2) is then I(x) = I.Member(I, x)/>

Remark 2.4.23 (Extrapolation and Infinite Intervals) The Member method extrapo-
lates the membership function to x-coordinates below p0.x and above pn.x. The y-value for
x-coordinates below p0.x is constant p0.y. The y-value for x-coordinates above pn.x is con-
stant pn.y. Therefore envelope polygons always represent fuzzy intervals with finite kernel (Def.
2.2.4).
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Remark 2.4.24 (Half-open Intervals) The Index method (Def. 2.4.20) which is used in the
Member method returns for a given x the largest index i such that pi.x ≤ x. This causes that
the envelope function is interpreted as a half-open interval which is closed at the left hand side
and open at the right hand side.

To see this, consider the following example:

I = (0, 0)
︸ ︷︷ ︸

p0

(0, 500)
︸ ︷︷ ︸

p1

(10, 500)
︸ ︷︷ ︸

p2

(10, 1000)
︸ ︷︷ ︸

p3

(50, 1000)
︸ ︷︷ ︸

p4

(50, 500)
︸ ︷︷ ︸

p5

(60, 500)
︸ ︷︷ ︸

p6

(60, 0)
︸ ︷︷ ︸

p7

-

6

x

>

0

y

Half-Open Interval

0 10 50 60

We have I.Member(0) = 500, I.Member(10) = 1000, I.Member(50) = 500, I.Member(60) =
0.

Remark 2.4.25 (Extreme Cases) There are a number of extreme cases of envelope polygons
I:

• I = () represents the empty set;

• I = ((a, 0)) also represents the empty set;

• I = ((a, y)) with y > 0 represents the infinite fuzzy interval with constant membership
function I(x) = y;

• I = ((a, y1)(a, y2)) represents the fuzzy interval with membership function

I(x) =

{
y1 for x < a
y2 for x ≥ a.

• ((0, 0)(0,>)) = [0,+∞[

• ((0,>)(0, 0)) =] −∞, 0[

Basic Features of Fuzzy Intervals

We start with some simple predicates for checking whether the intervals are infinite.

Definition 2.4.26 (Infinity Predicates) Let I = (p0, . . . , pn) be an envelope polygon.
I.isNegInfinite() =def I 6= () and p0.y > 0
I.isPosInfinite() =def I 6= () and pn.y > 0
I.isInfinite() =def I 6= () and p0.y > 0 or pn.y > 0
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Using the MaxIndex-method (Def. 2.4.20) we can define I.Max() for computing the height
Iˆ(Def. 2.2.10) of the fuzzy interval. We also define MaxX(front) to compute the x-coordinate
of the first maximal point ifm (Def. 2.2.11) if front = true and MaxX(false) which computes
the last maximum ilm (Def. 2.2.11).

Definition 2.4.27 (Min and Max Values) Let I = (p0, . . . , pn) be an envelope polygon.
I.Min() =def min0≤i≤npi.y

I.Max() =def

{
0 if I = ()
pI.MaxIndex(true).y otherwise

I.MaxX(true) =def

{
−∞ if I = () or I.MaxIndex(true) = 0 and p0.y > 0
pI.MaxIndex(true).x otherwise

I.MaxX(false) =def

{
+∞ if I = () or I.MaxIndex(false) = n and pn.y > 0
pI.MaxIndex(false).x otherwise

The result of Max is an y-integer value and the result of MaxX is an x-integer value.

The complexity of Max and MaxX is in general linear because MaxIndex requires linear
search. It is constant for crisp intervals.

Proposition 2.4.28 (Soundness of Max and MaxX) For an envelop polygon I we have
I.Max()/> = I ,̂ I.MaxX(true) = Ifm and I.MaxX(false) = I lm.

The proofs are straightforward.

Size of Fuzzy Intervals
The size of a fuzzy interval is the integral over its membership functions (Def. 2.2.8). We define
now three methods for computing the (doubled) size of a fuzzy interval. Size2() computes the
overall size, i.e. I.Size()/> = 2|I |. I.Size2(k, l) computes the size between two vertices of
the envelope polygon, i.e. I.Size2(k, l)/> = 2|I |pl.x

pk.x. Finally I.Size2(a, b) computes the size

between two arbitrary x-coordinates a and b: I.Size2(a, b)/> = 2|I |ba.

Definition 2.4.29 (Size) Let I = (p0, . . . , pn) be an envelope polygon. Let k and l be two
indices.

I.Size2I(k, l) =def







undefined if k < 0 or l > n
−I.Size2(l, k) if l < k
0 if k = l or I = ()

Σl−1
m=kpm.Area2(pm+1) otherwise (Def.2.4.9)

I.Size2() =def







0 if I = ()
+∞ if p0.y > 0 or pn.y > 0
I.Size2(0, n) otherwise

Both versions of Size2 return x-integers.

Now let a and b be two x-coordinates:

I.Size2(a, b)=def







0 if I = () or a = b
−I.Size2(b, a) if b < a
2 · (b− a) · pn.y if a ≥ pn.x
2 · (b− a) · p0.y if b ≤ p0.x
(b− a) · (pi.LineY (pi+1, a) + pi.LineY (pi+1, b)) if pi−1.x ≤ a ≤ b ≤ pi.x

where i = I.Index(a)
head+middle+ tail otherwise
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where

head =def







2 · (p0.x− a) · p0.y if a ≤ p0.x
0 if pi.x = a
pi.Area2(pi+1, a, pi+1.x) otherwise

where i = I.Index(a) and

middle =def I.Size2(I.Index(a), I.Index(b)) and

tail =def







2 · (b− pn.x) · pn.y if b ≥ pn.x
0 if pi.x = b
pi.Area2(pi+1, pi.x, b) otherwise

where i = I.Index(b)

The method returns a floating point value.

The next two methods compute the center and middle points for a fuzzy interval (Def.
2.2.12).

Definition 2.4.30 (Center Points) Let I = (p0, . . . , pn) be an envelope polygon.

I.CenterPoint(k,m)=def







undefined if I = () or I.isInfinite()
p0.x if k = 0
pn.x if k = m
pi−1.Area2X(pi,

s2·k
m − I.Size2(0, i− 1)) otherwise

where s2=defI.Size2(0, n) and
i = min(i | m · I.Size2(0, i) > s2 · k)

I.MiddlePoint(n,m)=defI.CenterPoint(2n+ 1, 2m).

Both functions return a (rounded) x-integer.

The search for the index i in CenterPoint causes linear complexity for both methods.

The CenterPoint method needs to locate the x-coordinate such that |I |x−∞ = k
m |I |. To

this end it first locates the index i with pi−1 ≤ x ≤ pi. Then it calls the Area2X-method to
calculate the x-coordinate x with |I |pi−1.x

−∞ + |I |xpi−1.x = k
m |I |.

Example 2.4.31 (Center Point Computation)
Let I = (0, 0)

︸ ︷︷ ︸

p0

(0, 500)
︸ ︷︷ ︸

p1

(4, 500)
︸ ︷︷ ︸

p2

(4, 1000)
︸ ︷︷ ︸

p3

(6, 1000)
︸ ︷︷ ︸

p4

(6, 0)
︸ ︷︷ ︸

p5

-

6

x

>

0

y

Center Point Computation

04 14 24 34 44

We have |I | = 4000, i.e. s2 = 8000, and we want to compute CenterPoint(1, 4). The search
for i = min(i | 4 · I.Size2(0, i) > 8000 · 1) yields i = 2 because 4 · 4000 > 8000 · 1.
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Since |I |p1.x
−∞ = 0 there is still an area the size of 2000 to be covered by |I |xp1.x.

The call to p1.Area2X(p2,
8000·1

4 − 0) = p1.Area2X(p2, 2000) yields 2, such that x = 2 is in
fact the correct result for I1,4.

Components of Fuzzy Intervals
The nComponents-method can be used to count the number of components of an interval. It
counts the number of times the envelope polygon drops down to an y-value 0 and adds 1 if it
is positively infinite.

Definition 2.4.32 (Number of Components) Let I = (p0, . . . , pn) be an envelope polygon.

I.nComponents()=def







0 if I = () or n = 0 and p0.y = 0
1 if n = 0 and p0.y > 0

Σn
i=1

{
1 if pi.y = 0 and pi−1.y > 0
0 otherwise

+

{
1 if pn.y > 0
0 otherwise

The method Component(k) below extracts from an envelope polygon the kth component as
a new envelope polygon.

Definition 2.4.33 (Component) Let I = (p0, . . . , pn) be an envelope polygon.

I.Component(k)=def







() if I = ()

V n
i=I.skipComponent(k−1)

{
(pi) and break if pi.y = 0 and pi−1.y > 0
(pi) otherwise

where I.skipComponent(k) returns the first index of the k + 1st component.
It is described procedurally.

If k = 0 return 0.
If n = 0 return 1.
Let l=def0.
Forn

i=1 {if(pi.y = 0 and pi−1.y > 0) l = l+ 1; // next component
if(l = k){ if(i = n) return n+ 1 // last component skipped

if(pi+1.y > 0) return i // the two components meet at pi.x
else return i+ 1.}}

return n+ 1 // last component skipped

Core, Support and Kernel (Def. 2.2.4)
The FuTIRe-library provides for each of these three concepts the following 5 methods:

1. Size() measures the size in x-coordinates;

2. List() yields an ordered list ((i0, j0), . . .) of indices of start and endpoints of the compo-
nents;

3. Crisp() yields a new envelope polygon with the crisp versions of the components.

4. First() returns the first x-coordinate of the concept

5. Last() returns the last x-coordinate of the concept.
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Size(), First() and Last() return x-coordinates, Crisp() returns an envelope polygon and
List() returns a list of index pairs.

Definition 2.4.34 (Algorithms for the Core) Let I = (p0, . . . , pn) be an envelope polygon.

I.CSize() =def







0 if I = ()
+∞ if p0.y = > or pn.y = >
Σn−1

i=0

{
pi+1.x− pi.x if pi.y = pi+1.y = >
0 otherwise

otherwise

I.CList() =def







() if I = ()

V n
i=0







((0, 0)) if i = 0 and p0.y = >
((n, n)) if i = n and pn.y = >
(i, i+ 1) if i < n and pi.y = pi+1.y = >
() otherwise

otherwise

I.CCrisp() =def







() if I = ()

V n
i=0







((p0.x,>)(p0.x, 0)) if i = 0 and p0.y = >
((pn.x, 0)(pn.x,>)) if i = n and pn.y = >
((pi.x, 0)(pi.x,>)(pi+1.x,>)(pi+1.x, 0)) if i < n and pi.y = pi+1.y = >
() otherwise

I.CF irst() =def







undefined if I = ()
−∞ if p0.y = >
min(pi.x | pi.y = >) if this is defined
undefined otherwise

I.CLast() =def







undefined if I = ()
+∞ if pn.y = >
max(pi.x | pi.y = >) if this is defined
undefined otherwise

Definition 2.4.35 (Algorithms for the Support) Let I = (p0, . . . , pn) be an envelope poly-
gon.

I.SSize() =def







0 if I = ()
+∞ if I.isInfinite()
Σn−1

i=0 (pi+1.x− pi.x) if pi.y > 0 or pi+1.y > 0
0 otherwise

I.SList() =def







() if I = ()

(V n−1
i=1

{
((s, i)) and s := i+ 1 if pi.y = pi+1.y = 0 and pi−1.y > 0
() otherwise

(s, n)) otherwise
where s := 0 initially
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I.SCrisp() =def







() if I = ()












{
((p0.x, 0)(p0.x,>)) if p0.y = 0
((p0.x,>)) otherwise

,

V n−1
i=1







((pi.x,>)(pi.x, 0)) if pi.y = pi+1.y = 0 and pi−1.y > 0
((pi.x, 0)(pi.x,>)) if pi.y = pi−1.y = 0 and pi+1.y > 0
() otherwise

,

{
((pn.x,>)(pn.x, 0)) if pn.y = 0
((pn.x,>)) otherwise













otherwise

I.SF irst() =def







undefined if I = ()
−∞ if p0.y > 0
p0.x otherwise

I.SLast() =def







undefined if I = ()
+∞ if pn.y > 0
pn.x otherwise

Definition 2.4.36 (Algorithms for the Kernel) Let I = (p0, . . . , pn) be an envelope poly-
gon.

I.KSize() =def

{
0 if I = ()
pn.x− p0.x otherwise

I.KList() =def

{
() if I = () or p0.x = pn.x
(0, n) otherwise

I.KCrisp() =def

{
() if I = () or p0.x = pn.x;
((p0.x, 0)(p0.x,>)(pn.x,>)(pn.x, 0)) otherwise

I.KFirst() =def

{
undefined if I = ()
p0.x otherwise

I.KLast() =def

{
undefined if I = ()
pn.x otherwise

Hull Operators

The method I.CrispHull() implements the CrH()-function (Def. 2.2.30).

Definition 2.4.37 (Crisp Hull) Let I = (p0, . . . , pn) be an envelope polygon.

I.CrispHull()=def







() if I = ()
({

((p0.x,>)) if p0.y > 0
((p0.x, 0)(p0.x,>)) otherwise

,

{
((pn.x,>)) if pn.y > 0
((pn.x,>)(pn.x, 0)) otherwise

)

otherwise
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The method I.MonotoneHull() implements the MoH()-function (Def. 2.2.32). The algorithm
scans the envelope polygon first from 0 to the first maximal element and skips all vertices
which destroy monotonicity. Then it scans the envelope polygon from the last element to
the last maximal element and skips again all vertices which destroy monotonicity. Finally it
appends the first lists with the reversed second list.

Definition 2.4.38 (Monotone Hull) Let I = (p0, . . . , pn) be an envelope polygon. We de-
scribe the algorithm I.MonotoneHull() procedurally:

If I = () return ();

Let newI1=def(p0, V
I.F irstMax()
i=0







((pi−1.LineX(pi,max),max), pi)
if i > 0 and pi.y ≥ maxand pi−1.y < max

(pi) if pi.y ≥ max
() otherwise

)

where max is the current largest y-coordinate in newI1:

Let newI2=def(pn, V
I.LastMax()
i=n







((pi−1.LineX(pi,max),max), pi)
if i < n and pi.y ≥ maxand pi−1.y < max

(pi) if pi.y ≥ max
() otherwise

)

where max is now the current largest y-coordinate in newI2:
Let newI2 = (q0, . . . , qm);
For0i=m newI1.push back(qi).
return newI1.

Finally we implement the convex hull function CoH (Def. 2.2.31). The algorithm is a special
version of the Graham Scan algorithm for arbitrary polygons. It goes from left to right through
the envelope polygon and pushes all candidates for the convex hull on a stack. Wrong candidates
are later popped from the stack. Since the points are already sorted, its complexity is linear.

Definition 2.4.39 (Convex Hull) Let I = (p0, . . . , pn) be an envelope polygon. We describe
the algorithm I.ConvexHull() procedurally:

If I = () return ().

Let if =def

{
I.F irstMax() if p0.y > 0
0 otherwise

Let il=
def

{
I.LastMax() if pn.y > 0
n otherwise

Let newI=def(pif
).

Foril

i=if
while(m ≥ 1 and qm−1.leftturn(qm, pi)) newI.pop back();

newI.push back(pi);
where qm is the current last element of newI.
return newI.

Basic Unary Transformations

A number of basic unary transformations (Def. 2.2.33) can be implemented by just manipulating
the vertices of the envelope polygons.

Definition 2.4.40 (Extend, Scaleup, Shift) Let I = (p0, . . . , pn) be an envelope polygon.
The three functions return () if I = (). Let M=def(q0, . . . , qk)=defI.MontoneHull().
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I.Extend(true) =def (V j
i=0(qi), (qj .x,>))

where j = I.MaxIndex(true)

I.Extend(false) =def ((qj .x,>), V k
i=j(qi))

where j = I.MaxIndex(false)

I.ScaleUp() =def V n
i=0(pi.x, roundY ((pi.y · >/I.Max())))

I.Shift(a) =def V n
i=0(pi.x+ a, pi.y)

Extend(true) implements extend+, Extend(false) implements extend−, ScaleUp implements
scaleup and Shift implements shift (Def. 2.2.33). ScaleUpD is a destructive version of
ScaleUp and ShiftD is a destructive version of Shift.

Cut
We provide three Cut-methods. The first one cuts an envelope polygon between two given x-
coordinates x1 and x2. The second one cuts it between the x-coordinates of two given vertices.
The third one cuts the interval after or before an x-coordinate.

Definition 2.4.41 (Cut) Let I = (p0, . . . , pn) be an envelope polygon. x, x1 and x2 are x-
coordinates.

I.Cut(x1, x2)=
def







() if x2 ≤ x1

((x1, 0), (x1, I.Member(x1)), (V
I.Index(x2)

i=I.Index(x1)pi), (x2, I.Member(x2)), (x2, 0))

otherwise

where the list is formed with the push back operator (Def. 2.4.18). This removes certain
redundancies.

Let i1 and i2 be two indices.

I.CutI(i1, i2)=
def

{
() if i2 ≤ i1
V i2

i=i1
(pi) otherwise.

I.Cut(x, true) =def ((x, 0), (x, roundY (I.Member(x))), V n
i=I.Index(x)pi)

I.Cut(x, false) =def (V
i=I.Index(x)
0 pi, (x, roundY (I.Member(x))), (x, 0))

Times
The times operator, which multiplies the membership function with a constant, is not so easy
to implement. Since y · a > > is possible, one has to cut the multiplied envelope polygon at
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y = >. The picture below illustrates the problem.

-

6

x

>

0

y

Times

In order to cut the multiplied polygon at y = > the intersection points between the dotted
and dashed lines have to be computed. The T imes function defined below follows the line
segments of the envelope polygon I and checks whether the multiplied line segments cross the
y = > line. In this case the intersection points are computed and inserted into the transformed
polygon.

Definition 2.4.42 (Times) Let I = (p0, . . . , pn) be an envelope polygon and a a non-negative
floating point number.

I.T imes(a)=def







() if I = ()










(p0.x,min(1, p0.y · a)),

V n
i=1







() if pi−1.y · a ≥ > and pi.y · a > >
((x,>)) if pi.y · a < > and pi−1.y · a > >
((x,>), (pi.x, pi.y · a)) if pi.y · a > > and pi−1.y · a < >

where x = pi−1.LineX(pi,>)
((pi.x, pi.y · a)) otherwise











otherwise

Interpolation
Some of the transformations of fuzzy time intervals are non-linear in the sense that they trans-
form straight lines into curved lines. These transformations cannot be implemented by simply
transforming the vertices of the envelope polygons. Since the result of the transformations must
be envelope polygons, we need to approximate curved lines by polygons. To this end we define
a method Interpolate which interpolates curved lines between vertices of polygons.

Definition 2.4.43 (Interpolation) Let I = (p0, . . . , pn) be a non-empty envelope polygon, x
an x-coordinate, f a function from x-coordinate 7→ y-coordinate and ∆ a threshold value (e.g.
∆ = 0.1).

I.Interpolate(x, f,∆) =def
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I if x ≤ pn.x
I.Interpolate(roundX((pn.x+ x)/2), f,∆).Interpolate(x, f,∆)

if |2y1 − y2| > ∆′y2
where y1 = f(roundX((pn.x+ x)/2)) and y2 = pn.y + f(x) and ∆′ = ∆/(1 + 2y2/>)

I.push back((x, f(x))) otherwise

The Interpolate-method starts with an envelope polygon I = ((x0, y0)) and fills up I with
interpolated values. Suppose I = (p0, . . . , pn). For a given x > pn.x it checks whether the
relative difference between the middle point (pn.x + x)/2 of the straight line between pn and
(x, f(x)), and f((pn.x+ x)/2) is larger than ∆. If this is not the case then the approximation
is good enough and the point (x, f(x)) is pushed onto I . If this is the case, better interpolation
is necessary. Therefore it calls itself recursively with x = middle point to fill up I until the
middle point, and then with x itself to fill up I from the middle point until the actual x. The
threshold ∆ is only a basic threshold for very small y-values. The threshold ∆’ causes that the
interpolation becomes denser for larger y-values.

-

6

x

>

0

y

Interpolation

pn.x

pn.y

x(pn.x+ x)/2

f(x)
f((pn.x+ x)/2)

} > ∆′?

Integration
The integrate+-function (Def. 2.2.33) is implemented by the Integrate(true)-method below
and the integrate−-function is implemented by the Integrate(false)-method. Integrate(true)
goes from left to right through the envelope polygon I and calls for each line segment the
Area2-function for points (Def. 2.4.9). Integrate(false) goes from right to left through the
polygon. Therefore the resulting list has to be reversed. Since line segments are linear, their
integration yields a quadratic curve. Therefore interpolation is necessary.

Definition 2.4.44 (Integration) Let I = (p0, . . . , pn) be an envelope polygon and ∆ the
threshold. We write the function again in a procedural style.

I.Integrate(true):
if I = () then return ()
Let newI=def(p0.x, 0)
Forn

i=1 newI.Interpolate(pi.x, λ(x)(qm.y + pi−1.Area2(pi, x, true)/2),∆)
where newI = (q0, . . . , qm)

return newI.

I.Integrate(false):
if I = () then return ()
Let newI=def(pn.x, 0)
For1i=n newI.Interpolate(pi−1.x, λ(x)(qm.y + pi−1.Area2(pi, x, false)/2),∆)

where newI = (q0, . . . , qm)
return newI reversed.
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Y-Function Based Unary Transformations

For unary transformations of fuzzy intervals which can be generated by applying a y-function
to the membership values, there is a simple algorithm scheme: if the y-function is linear, apply
it to the y-coordinates of the envelope polygon; if the function is not linear, use the Interpolate
method.

Definition 2.4.45 (Unary Transformation) Let I = (p0, . . . , pn) be an envelope poly-
gon and let f be a unary y-function and ∆ a threshold value. We describe the method
I.UnaryTransformation(f,∆) procedurally:

If I = () return ();
If f is linear then return V n

i=0(pi.x, f(pi.y)).
Otherwise:
Let newI=def(p0.x, f(p0.y));
Forn

i=1 newI.Interpolate(pi.x, λ(x)f(pi−1.LineY (pi, x)),∆);
return newI;

Exponentiation
The exponentiation operator expe(i) (Def. 2.2.33) is the first non-linear transformation we
consider here.

Definition 2.4.46 (Exponentiation) Let I = (p0, . . . , pn) be an envelope polygon, e a non-
negative number (the exponent) and ∆ the threshold.

I.Exp(e)=defI.UnaryTransformation(λ(y)ye,∆).
λ(y)ye is not linear.

Complement Operator
Another point-based transformation is the complement operator.

Definition 2.4.47 (Complement) Let I = (p0, . . . , pn) be an envelope polygon, n a negation
function (Def. 2.2.20). and ∆ the threshold.

I.Complement(n,∆)=defI.UnaryTransformation(n,∆).

Y-Function Based Binary Transformations

Y-Function based binary transformations of fuzzy intervals are more complicated to implement
because besides the vertices of the two envelope polygons their intersection points are relevant
for the transformation. The intersection points my become vertices of the transformed enve-
lope polygons. Therefore the first thing the binary transformation algorithm must do is to
compute the intersection points of the two polygons. Fortunately, since the two polygons are
unimonotone, this can be done with a sweep line algorithm in linear time. The result of the
IntersectionPoints-algorithm defined below is a list ((p0, q0), . . .) of pairs of points. The pi are
the vertices of I1 and the intersection points between I1 and I2. The qi are the vertices of I2
and also the intersection points between I1 and I2. pi.x = qi.x holds for all i.

In order to simplify the presentation of the algorithm a little bit we assume that I1 and I2
start at the same x-coordinates, and that both polygons have a redundant extra point pn+1

and qm+1 at the end. This saves some case distinctions at the beginning and at the end of the
sweep.
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Definition 2.4.48 (Intersection Points) Let I1 = (p0, . . . , pn+1) and I2 = (q0, . . . , qm+1) be
two envelope polygons such that p0.x = q0.x and pn.y = pn+1.y and qm.y = qm+1.y. We define
the method I1.IntersectionPoints(I2). It returns a list of pairs ((p0, q0), . . .).

Let IntP=def().
Let i=def0 and j=def0
Let x=defp0.x (x is the position of the sweep line).

while(x ≤ max(pn.x, qm.x)){
if(i < n and pi.x = pi+1.x)

if(x = qj .x){
IntP.push back(pi, qj); i := i+ 1; }
if(j < m and qj .x = qj+1.x)j := j + 1; }

else{IntP.push back(pi, (x, roundY (qj .LineY (qj+1, x)))); i := i+ 1; }
continue; }

if(j < m and qj .x = qj+1.x){
IntP.push back(pi, qj);
IntP.push back(pi, qj+1); j := j + 1
continue; }

if(x = qj .x)IntP.push back(pi, pj)
else IntP.push back(pi, (x, roundY (qj .LineY (qj+1, x))));

if(i < n){
if(j < m){

if(pi.intersectsProper(pi+1, qj , qj+1)){
xint := pi.intersection(pi+1, qj , qj+1);
IntP.push back((xint, roundY (pi.LineY (pi+1, xint))),

(xint, roundY (qj .LineY (qj+1, xint))); }

if(pi.x < qj .x){x = pi+1.x; i := i+ 1; continue; }
if(pi.x = qj .x){x = pi+1.x; j := j + 1; continue; }
x = qj+1.x; continue; }

x = pi+1.x; continue; }

if(j < m){x := qj+1.x; continue; }
x := x+ 1; }

return IntP.

We can now define the BinaryTransformation-method. It works much like the
UnaryTransformation-method. The differences are that BinaryTransformation first needs
to compute the intersection points, and that the call to the Interpolate-method gets as input
a function which is parameterized with two line segments instead of one.

Definition 2.4.49 (Binary Transformation) Let I1 = (p0, . . . , pn1) and I2 = (q0, . . . , qn2)
be envelope polygons. Let f be a binary y-function and ∆ a threshold value.
We describe the method I1.BinaryTransformation(I2, f,∆) procedurally:

Let I=def((p0, q0), . . . , (pn, qn)) = I1.IntersectionPoints(I2)
If I = () return ();
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If f is linear then return V n
i=0(pi.x, f(pi.y, qi.y)).

Otherwise:

Let newI=def(p0.x, f(p0.y, q0.y));

Forn
i=1 newI.Interpolate(pi.x, λ(x)f(pi−1.y.LineY ((pi.y, x), qi−1.x.LineY ((qi.x, x)),∆);

return newI;

Interval–Interval Relations

Most formulae for interval–interval relations contain integrals over products of membership
functions. The corresponding algorithms are listed in this section. All other algorithms for
interval–interval relations have already been explained or they are trivial.

Definition 2.4.50 (Integration over Multiplied Intervals) Let I = (p0, . . . , pn) and J =

(q0, . . . , qm) be envelope polygons. The integral I.Integrate(J, a)=def
∫ +∞

−∞
I(x − a)J(x) dx is

computed as follows:

If I = () or J = () then return 0;

If (I.isInfinite() and J.isInfinite()) then undefined;

Let Int = 0;

If (p0.x + a ≤ q0.x) then {j = 0, i = I.Index(q0.x − a), x = q0.x, Int = q0.y ·
I.Size2(p0.x, q0.x− a)/2;}

}
else {i = 0, j = J.Index(p0.x); x = p0.x+ a, Int = p0.y · J.Size2(q0.x, p0.x+ a)/2;} }
while (i < n and j < m)

Int = Int+ p′i.Integrate(p
′
i+1, qj , qj+1, x,min(pi+1.x+ a, qj+1.x)); //Def.2.4.12

where p′i=
def(pi.x+ a, pi.y) and p′i+1=def(pi+1.x+ a, pi+1.y)

x = min(pi+1.x+ a, qj+1.x)
if(x = pi+1.x+ a) i = i+ 1;
if(x = qj+1.x) j = j + 1;

if(pn.x+ a ≤ qm.x)Int = Int+ pn.y · J.Size2(pn.x+ a, qm.x)/2
else Int = Int+ qm.y · I.Size2(qm.x− a, pn.x)/2
return Int;

The next method calls Integrate and normalizes the result.

I.IntegrateAsymmetric(J)=def roundY (
2 · I.Integrate(J, 0)

I.Size2()
)

Definition 2.4.51 (Symmetric Integration) Let I and J be two envelope polygons.

The function I.IntegrateSymmetric(J, simple) computes
∫ +∞

−∞ I(x) · J(x) dx/N

where N =

{
min(|I |, |J |) if simple = true

maxa(
∫ +∞

−∞
I(x − a) · J(x) dx) otherwise

I.IntegrateSymmetric(J, simple)
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=def







undefined if I.isInfinite() or J.isInfinite()

roundY (
2 · I.Integrate(J, 0)

min(I.Size2(), J.Size2)
) if simple = true

roundY (
> · I.Integrate(J, 0)

maximizeOverlap(I, J)
otherwise (Def. 2.2.70)

2.5 The FuTIRe Interface

The FuTIRe interface consists of the classes Point, Interval, YFunction, and lots of subclasses of
the class Operation. For each of these classes we list the constructor methods, the main public
methods and explain briefly what they do. The syntax we use in this section is simplified C++
or Java. The precise syntax is of course in the corresponding header or class files.

CX is the datatype of the x-coordinates (for example long long integers) and CY is the
datatype of the y-coordinates (typically unsigned short integers). CX and CY are compiler
options.

Many of the methods represent partial functions. FuTIRe has a DEBUG mode (compiler
option) where the necessary preconditions are checked and an error is thrown when the precon-
ditions are not met. If the DEBUG mode is turned off, only the errors which can be caused by
data and not by program errors are still caught.

2.5.1 Points

This class represents 2-dimensional points with coordinates of type CX and CY.

Constructors

Point(CX x, CY y)

constructs a point from x and y-coordinates.

Point(string s)

reconstructs a point from a string representation ”x,y”.

Predicates

bool p.leftturn(Point q, Point r)

true if p→ q → r is a left turn or colinear. (Def. 2.4.4)

bool p.leftturnProper(Point q, Point r)

true if p→ q → r is a proper left turn.

bool p.rightturn(Point q, Point r)

true if p→ q → r is a right turn or colinear.

bool p.rightturnProper(Point q, Point r)

true if p→ q → r is a proper right turn.

bool p.colinear(Point q, Point r)

true if p→ q → r is colinear (Def. 2.4.3)

bool p.colinear(Point q, Point r, Point s)

true if the line segment (p, q) is colinear with the line segment (r, s).
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bool p.between(Point q, Point r)

true if p is between q and r.

bool p.betweenProper(Point q, Point r)

true if p is between q and r, but different to q and r.

bool p.intersects(Point q, Point r, Point s)

true if the line (p, q) intersects the line (r, s).

bool p.intersectsProper(Point q, Point r, Point d)

true if the line (p, q) intersects the line (r, s), but does not only touch it. (Def. 2.4.5)

Computations

CX p.intersection(Point q, Point r, Point s)

computes the intersection point for the line segments (p, q) and (r, s). An error is thrown
if the line segments do not intersect! (Def. 2.4.6)

float p.LineY(Point q, CX x)

computes for the line crossing p and q the y-value at point x. An error is thrown if the
line is vertical. (Def. 2.4.7)

CX p.LineX(Point q, CY y)

computes for the line crossing p and q the x-value at point y. An error is thrown if the
line is horizontal. (Def. 2.4.8)

CX p.Area2(Point q)

computes the area below the line segment (p, q). (Def. 2.4.9)

float p.Area2(Point q, CX x1, CX x2)

computes the area below the line segment (p, q) from x1 until x2. It throws an error of
the line is vertical and x1 6= x2 (Def. 2.4.9)

CX p.Area2X(Point q, float a)

computes the x-coordinate x such that the area below the line segment (p, q) from p
until x is just a. An error is thrown if there is not enough area below the line segment.

(Def. 2.4.10)

float p1.Integrate(Point p2, Point q1, Point q2, CX x1, CX x2)

computes
∫ x2

x1 l1(x) · l2(x) dx where l1 is the line crossing p1 and p2 and l2 is the line
crossing q1 and q2. It throws an error if one of the lines is vertical. (Def. 2.4.12)

2.5.2 Intervals

The Intervals class manages and manipulates fuzzy temporal intervals (Sec. 2.4.2). The intervals
are represented by their envelope polygons (Def. 2.4.15).

Constructors

Interval()

constructs an empty interval.

Interval(Point p)

constructs an interval with a single point p.

Interval(CX x, CY y)

constructs an interval with a single point (x, y).
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Interval(CX a, CX b)

constructs a crisp interval [a, b[.

Interval(vector<Point> points)

constructs an interval with a vector of points.

Interval(string s)

constructs an interval from a string representation [x1, y1 x2, y2 ...[.

void close()

declares the polygon as finished and removes some redundancies. (Def. 2.4.19)

Adding and Removing Points.

void I.push back(Point p)

adds the point p to the end of the polygon. It throws an error if p.x is before the last
point in the polygon. (Def. 2.4.18)

void I.push back(CX x, CY y)

adds the point x, y to the end of the polygon. It throws an error if x is before the last
point in the polygon. (Def. 2.4.18)

void I.pop back()

removes the last point from the polygon. It does nothing on empty polygons.
(Def. 2.4.18)

Simple Properties of the Intervals

Point I.front()

returns the leftmost point and throws an error if I = ().

Point I.back()

returns the rightmost point and throws an error if I = ().

CX I.frontX()

returns the leftmost x-coordinate and throws an error if I = ().

CX I.backX()

returns the rightmost x-coordinate and throws an error if I = ().

CY I.frontY()

returns the leftmost y-coordinate and throws an error if I = ().

CY I.backY()

returns the rightmost y-coordinate and throws an error if I = ().

bool I.isNegInfinite()

returns true if the interval is negative infinite.

bool I.isPosInfinite()

returns true if the interval is positive infinite.

bool I.isInfinite()

returns true if the interval is infinite.

bool I.isEmpty()

return true if the polygon is empty.

bool I.isNonempty()

returns true if the polygon is not empty.
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int I.nPoints()

returns the number of points in the polygon.

bool I.isConvex()

returns true if the polygon is convex.

bool I.isMonotone()

returns true if the polygon is monotone. (Def. 2.2.68)

bool I.isSymmetric()

returns true if the polygon is symmetric. (Def. 2.2.68)

CX I.SymmetryAxis()

returns the x-coordinate of the symmetry axis and throws an error if I is not symmetric.

int I.Index(CX cx)

returns the index of the rightmost polygon point that is left of x, or -1 if there is no
such point. (Def. 2.4.20)

int I.MaxIndex(bool front)

if front=true it returns the index of the leftmost point with maximal y-value, otherwise
it returns the index of the rightmost point with maximal y-value. If the polygon is
empty it returns -1. (Def. 2.4.20)

CY I.Min()

returns the smallest y-value of the polygon. (Def. 2.4.27)

CY I.Max()

returns the hight Iˆof the polygon. (Def. 2.4.27)

CX I.MaxX(bool front)

returns the x-coordinate of the leftmost / rightmost point with maximal y-value. It
throws an error if the polygon is empty (Def. 2.4.27)

float I.Member(CX x)

returns the membership value for the x-coordinate x. (Def. 2.4.22)

CX I.Size2I(int k, int l)

returns 2 * the area below the polygon from vertex k to vertex l. (Def. 2.4.29)

CX I.Size2()

returns 2 * the area below the polygon. (Def. 2.4.29)

CX I.Size2(CX a, CX b)

returns 2* the area below the polygon from x-coordinate a to x-coordinate b.
(Def. 2.4.29)

CX I.CenterPoint(int k, int m)

returns the x-coordinates of the k,m-center point. (Def. 2.4.30)

int I.nComponents()

returns the number of components of the interval. (Def. 2.4.32)

Interval I.Component(int k)

returns the kth component of I . It throws an error if k < 0. (Def. 2.4.33)

The Core of the Interval (Def. 2.4.34)

CX I.CSize()

returns the size of the core.
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vector<<int,int>> I.CList()

returns the list of indices of the core boundaries.

Interval I.CCrisp()

returns the core as crisp interval.

CX I.CFirst()

returns the x-coordinate of the leftmost point of the core.

CX I.CLast()

returns the x-coordinate of the rightmost point of the core.

The Support of the Interval (Def. 2.4.35)

CX I.SSize()

returns the size of the support.

vector<<int,int>> I.SList()

returns the list of indices of the support boundaries.

Interval I.SCrisp()

returns the support as crisp interval.

CX I.SFirst()

returns the x-coordinate of the leftmost point of the support. It throws an error if the
polygon is empty.

CX I.SLast()

returns the x-coordinate of the rightmost point of the support. It throws an error if the
polygon is empty.

The Kernel of the Interval (Def. 2.4.36)

CX I.KSize()

returns the size of the kernel.

vector<<int,int>> I.KList()

returns the list of indices of the kernel boundaries.

Interval I.KCrisp()

returns the kernel as crisp interval.

CX I.KFirst()

returns the x-coordinate of the leftmost point of the kernel. It throws an error if the
polygon is empty.

CX I.KLast()

returns the x-coordinate of the rightmost point of the kernel. It throws an error if the
polygon is empty.

Hull Calculations

Interval I.CrispHull()

returns the crisp hull of I . (Def. 2.4.37)

Interval I.MonotoneHull()

returns the monotone hull of I . (Def. 2.4.38)

Interval I.ConvexHull()

returns the convex hull of I . (Def. 2.4.39)
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Simple Predicates

bool I.isSubset(CX t1, CX t2)

returns true if [t1,t2[ is a subset of I ’s support.

bool I.overlaps(CX t1, CX t2)

returns true if [t1,t2[ overlaps with I ’s support.

bool I.biggerPartInside(CX t1, CX t2)

returns true if the bigger part of [t1,t2[ is inside I ’s support.

Basic Unary Transformations (Def. 2.2.33)

Interval I.Extend(true)

returns the rising part of I . (Def. 2.4.40)

Interval I.Extend(false)

returns the falling part of I . (Def. 2.4.40)

Interval I.ScaleUp()

scales the y-values of the interval up to >. (Def. 2.4.40)

Interval I.ScaleUpD()

is the destructive version of ScaleUp.

Interval I.Shift(CX a)

shifts the interval by a units. (Def. 2.4.40)

Interval I.ShiftD(CX a)

is the destructive version of Shift.

Interval I.Cut(CX x1, CX x2)

cuts the part of the interval between x1 and x2. (Def. 2.4.41)

Interval I.CutI(int i1, int i2)

cuts the part of the interval between the points with index i1 and i2. (Def. 2.4.41)

Interval I.Times(float a)

multiplies the y-values of the interval by a. (Def. 2.4.42)

Interval I.Exp(float e)

exponentiates the y-values of the interval with e. (Def. 2.4.46)

Interval I.Integrate(true)

computes
∫ x

−∞
I(y)dy/|I |. I may be infinite. (Def. 2.4.44)

Interval I.Integrate(false)

computes
∫ +∞

x I(y)dy/|I |. I may be infinite. (Def. 2.4.44)

Interval I.Negate()

inverts the y-values. (Def. 2.2.33)

Interval I.Invert()

inverts the y-values of the gaps in the interval. (Def. 2.2.33)

CY I.IntegrateAsymmetric(Interval J)

computes
∫
I(x) · J(x) dx/|I |. I and J may be infinite. (Def. 2.4.50)

CY I.IntegrateSymmetric(Interval J,bool simple)

computes
∫

(x) · J(x) dx/N(I, J). It throws an error if both I and J are infinite.
(Def. 2.4.51)
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Fuzzification

Interval I.FuzzifyLinear(bool front, CX x1, CX x2, CX offset)

linear fuzzification of the front/end part of the interval with absolute coordinates.
(Def. 2.2.36)

Interval I.FuzzifyLinear(bool front, float percent, float offset)

linear fuzzification of the front/end part of the interval with relative coordinates.
(Def. 2.2.39)

Interval I.FuzzifyGaussian(bool front, CX xh, CX x0, CX offset)

Gaussian fuzzification of the front/end part of the interval with absolute coordinates.
(Def. 2.2.37)

Interval I.FuzzifyGaussian(bool front, float percent)

Gaussian fuzzification of the front/end part of the interval with relative coordinates.
(Def. 2.2.39)

General Transformations

Interval I.UnaryTransformation(UnaryYFunction f)

applies the unary y-function f to I . (Def. 2.4.45)

Interval I.BinaryTransformation(Interval J, BinaryYFunction f)

applies the binary y-function f to I and J . (Def. 2.4.49)

2.5.3 Y-Functions

The unary and binary transformation methods (Def. 2.4.45, 2.4.49) expect a function f which
is to be applied to one or two y-coordinates. Some of these functions, however, depend on
extra parameters. For example the λ-Complement (Def. 2.2.21) nλ(y)=def 1−y

1+λy depends on the
parameter λ. This would not be a problem in most functional programming languages. One
can define n(λ, x) and then get nλ through currying. The solution in object oriented languages
is a bit different. One defines a class “lambdaComplement” with instance variable “lambda”.
The class can be instantiated with a corresponding value for lambda. This instance can now
be used like any other data object in the language. The trick which allows one to use the
instance like a function depends on the programming language. In C++ one can define a ()
operator for this class, which realizes the function application. If the instance is bound to the
variable f , and x is another variable then f(x) is now a legal expression and yields the function
value. In Java one would define an apply-method and write f.apply(x). The class-approach has
many advantages: the parameters can be changed at any time, which is not so easy for curried
functions; a class hierarchy can structure the functions according to their semantics, and not
their types; further methods can be defined which do other kinds of computations and return
meta-information, for example whether the function is linear.

FuTIRe realizes y-functions with the class hierarchy in Fig. 2.1.
The top class, ‘Operator’, manages the mapping of function names to the functions (in-

stances of the other classes). Each instance can get a name, for example ‘myFavorite-
LambdaComplement’, and one can retrieve the corresponding instance with the method
Operator::getByName(string name). The name is optional. Instances without names are
not accessible via getByName.

Constructors
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Operation

UnaryYFunction

NegationYFunction standard negation, linear

lambdaComplement Def.2.2.21

BinaryYFunction

TNorm min, linear

HamacherNorm Ex. 2.2.26

TCoNorm max, linear

HamacherCoNorm Ex. 2.2.26

SDLukasiewicz max(0, y1 − y2), linear Def. 2.2.27

SDGoedel if(y1 ≤ y2) then 0 else >− y2, linear, Def. 2.2.27

Figure 2.1: Class Hierarchy for Y-Functions

NegationYFunction(string name)

constructs the standard negation function λ(y)(1 − y). (Def. 2.2.21)

lambdaComplement(float lambda, string name)

constructs the lambda complement λ(y) 1−y
1+λy . (Def. 2.2.21)

TNorm(string name)

Constructs the min t-norm.

HamacherNorm(float gamma, string name)

Constructs the Hamacher t-norm λ(x, y) xy
γ+(1−γ)(x+y−xy) . (Def. 2.2.26)

TCoNorm(string name)

Constructs the max t-conorm

HamacherCoNorm(float beta, string name)

Constructs the Hamacher t-conorm λ(x, y)x+y+(β−1)xy
1+βxy . (Def. 2.2.26)

Parameter Modification
The parameters lambda, gamma, beta are public instance variables and can therefore be
changed by direct assignment.

2.5.4 Interval Operators

The interval operators transform one or two given intervals into a new interval. Some of them
are implemented as methods of the Interval class. Since methods are in most programming
languages not first-class objects, this has some disadvantages. The main disadvantages are
that it is not possible to have methods as parameters of other methods, and to construct new
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methods at run time by composing existing ones. Interval operators in FuTIRe are therefore
represented as instances of corresponding classes. This way it is no problem to have an interval
operator which has another interval operator as parameter, and to combine them in various
ways. The class ‘IntervalOperator’ is a subclass of the class ‘Operator’ which we have met
already. The full class hierarchy is presented in Fig. 2.2.

A very specific class is the class UIODefined. Its constructor function allows one to de-
fine paramterized compositions of unary interval operators. The syntax of the definitions is
presented in Section. 2.5.5 below.

Operation

IntervalOperator
UnaryIntervalOperator

UIOComposeUnary
UIOComposeBinary
UIODefined
UIObyYFunction

UIOComplement
UIOBasic

UIOExtend,UIOScaleUp,UIOShift,UIOCut,UIOCutI,UIOTimes
UIOExp,UIOIntegrate,UIOInvert,UIOComponent,UIOFuzzify,UIOHull

PIRelation
PIRBefore

PIRFuzzyBefore
PIRAfter

PIRFuzzyAfter
PIRStarts

PIRFuzzyStarts
PIRFinishes

PIRFuzzyFinishes
PIRDuring

PIRDuring
PIRInTheMiddle

PIRFuzzyInTheMiddle
PIRInTheGap

PIRFuzzyInTheGap
BinaryIntervalOperator

BIObyYFunction
BIOUnion
BIOIntersection
BIOSetdiffernce

BIOFuzzySetdiffernce
BIOUntil

Figure 2.2: Class Hierarchy for Interval Operators
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General Methods for Unary Interval Opertors:

operator()(Interval I)

If f is an instance of one of the unary interval operator classes and I an interval then
f(I) yields the transformed interval.

apply(CX x, Interval I, float e)

If f is an instance of one of the unary interval operator classes below and I and interval
then f.apply(x, I, e) yields f(I)(x)e.

General Methods for Binary Interval Opertors:

operator()(Interval I, Interval J)

If f is an instance of one of the unary interval operator classes and I and J are intervals
then f(I, J) yields the transformed interval.

apply(CX x, Interval I, Interval J, float e)

If f is an instance of one of the binary interval operator classes and I and J are intervals
then f.apply(x, I, J, e) yields f(I, J)(x)e.

Constructors
All constructors below have an optional ‘string name’ argument as last argument.

UIOComposeUnary(UnaryIntervalOperator U1, UnaryIntervalOperator U2)

realizes the composition U1 ◦ U2 of two unary interval operators.

UIOComposeUnary(vector<(UnaryIntervalOperator> Ops)

realizes the composition of all unary interval operators in Ops.

UIOComposeBinary(UnaryIntervalOperator U1, UnaryIntervalOperator U2,

BinaryIntervalOperator B)

realizes the composition B(U1(I), U2(I)) of two unary and one binary interval operator.

UIODefined(string definition)

parses the definition and creates a parameterized unary interval operator. The definition
is parsed by the parser generated from the files Parser.y and Scanner.l, which contain
the grammar in flex/bison notation. (Def. 2.5.1)

UIObyYFunction(UnaryYFunction F)

generates an operator which just calls I.UnaryTransformation(F ). (Def. 2.4.45)

BIObyYFunction(BinaryYFunction F)

generates an operator which just calls I.UnaryTransformation(J, F ). (Def. 2.4.49)

UIOComplement()

Generates the standard Complement Operator λ(y)(1 − x).

UIOComplement(float lambda)

Generates the λ-Complement Operator λ(y) 1−y
1+λy . (Def. 2.2.21)

UIOExtend(bool rising)

generates an operator which returns the rising part of an interval, if rising = true,
otherwise it generates the falling part (see I.Extend(rising)). (Def. 2.4.40)

UIOScaleUp()

generates an operator which scales the y-values of the interval up to >. (Def. 2.4.40)
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UIOShift(CX a)

generates an operator which shifts the interval by a units (see I.Shift(a).) (Def. 2.4.40)

UIOCut(CX x1, CX x2)

generates an operator which cuts the part of the interval between x1 and x2 (see
I.Cut(x1, x2)). (Def. 2.4.41)

UIOCut(CX x1, bool positive)

generates a cut operator which, if positive = true, works like UIOCut(x1,+∞), otherwise
works like UIOCut(−∞,x1) (Def. 2.4.41)

UIOCutI(int i1, int i2)

generates an operator which cuts the part of the interval between the points with index
i1 and i2 (see I.CutI(i1, i2). (Def. 2.4.41)

UIOTimes(float a)

generates an operator which multiplies the y-values of the interval by a (see I.T imes(a)).
(Def. 2.4.42)

UIOExp(float e)

generates an operator which exponentiates the y-values of the interval with e (see
I.Exp(e)). (Def. 2.4.46)

UIOIntegrate(bool rising)

generates an operator which integrates the membership function, from −∞, if rising =
true, otherwise from +∞ (see I.Integrate(front)). (Def. 2.4.44)

UIOInvert()

generates an operator which inverts the y-values (see I.Invert()) (Def. 2.2.33)

UIOComponent(int k)

generates an operator which extracts the kth component from the interval (see
I.Component(k).) (Def. 2.4.33)

UIOFuzzify(true, bool front, CX x1, CX x2, CX offset)

generates a linear fuzzify operator with absolute coordinates (Def. 2.2.36)

UIOFuzzify(true, bool front, float percent, float offset)

generates a linear fuzzify operator with relative coordinates (Def. 2.2.39)

UIOFuzzify(false, bool front, CX x1, CX x2, CX offset)

generates a Gaussian fuzzify operator with absolute coordinates (Def. 2.2.37)

UIOFuzzify(false, bool front, float percent)

generates a Gaussian fuzzify operator with relative coordinates (Def. 2.2.39)

The name of the first parameter in the UIOFuzzify-method is ‘linear’.

UIOHull(version)

generates an operator which generates the corresponding hull. The following versions
are avaiable: crisp (Def. 2.4.37), monotone (Def. 2.4.38), convex (Def. 2.4.39), core (Def.
2.4.34), support (Def. 2.4.35) and kernel (Def. 2.4.36).

BIOUnion()

generates an operator which computes the union of two fuzzy intervals using the max-
norm (Def. 2.2.24)

BIOUnion(TCoNorm S)

generates an operator which computes the union of two fuzzy intervals using the t-
conorm S. (Def. 2.2.24)

87



BIOIntersection()

generates an operator which computes the intersection of two fuzzy intervals using the
min-norm (Def. 2.2.24)

BIOIntersection(TNorm T)

generates an operator which computes the union of two fuzzy intervals using the t-norm
T . (Def. 2.2.24)

BIOSetdifference(SDVersion Version)

generates an operator which computes the Kleene, Lukasiewicz, Goedel set difference of
two fuzzy sets. SDVersion is an enumeration type with elements (Kleene, Lukasiewicz,
Goedel) (Def. 2.2.29)

BIOFuzzySetdifference(BIOIntersection T, BIOComplement C)

generates an operator which computes the generalized Kleen set difference of two fuzzy
sets: I \ J=defT (I, C(J)). (Def. 2.2.27)

BIOUntil(bool begin, bool end)

generates an Until operator with E+ = UIOExtend(begin), E− = UIOExtend(end),
standard intersection and standard complement. (Def. 2.2.53)

BIOUntil(bool begin, bool end, UnaryIntervalOperator* E1,

UnaryIntervalOperator* E2,

BIOIntersection* Ints, UIOComplement* Cmpl)

generates a general Until operator (Def. 2.2.53)

Constructors for the Point–Interval Relation Operators
The point–interval relation operators come in two versions, for example PIRBefore and PIR-
FuzzyBefore. The first version works like the corresponding standard crisp relations. As bound-
aries of the intervals one can choose either the support, the core or the kernel. PIRFuzzyBefore
is the operator version N(E+(I)).

CrVersion is an enumeration type with values (Support,Core,Kernel)

PIRBefore(CrVersion Version)

generates a crisp before operator x before I iff x < IfV where V is determined by the
V ersion parameter. (Def. 2.2.42)

PIRFuzzyBefore()

generates a before operator N(E+(I)) with E+ = UIOExtend(true) and standard
complement N . (Def. 2.2.43)

PIRFuzzyBefore(UnaryIntervalOperator Ep, Complement N)

generates a before operator N(Ep(I)). (Def. 2.2.43)

PIRAfter(CrVersion Version)

generates a crisp after operator x after I iff x > I lV where V is determined by the
V ersion parameter. (Def. 2.2.42)

PIRFuzzyAfter()

generates an after operator N(E−(I)) with E− = UIOExtend(false) and standard
complement N . (Def. 2.2.43)

PIRFuzzyAfter(UnaryIntervalOperator Em, Complement N)

generates an after operator N(Em(I)). (Def. 2.2.43)

PIRStarts(CrVersion Version)

generates a starts operator x starts I iff x = IfV where V is determined by the V ersion
parameter. (Def. 2.2.42)
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PIRFuzzyStarts()

generates a starts operator scaleup(Ep(I) T B(I)) where Ep = UIOExtend(true),
T = BIOIntersection() and B = PIRFuzzyBefore(). (Def. 2.2.43)

PIRFuzzyStarts(UnaryIntervalOperator Ep, PIRBefore B, BIOIntersection T)

generates a starts operator scaleup(Ep(I) T B(I)). (Def. 2.2.43)

PIRFinishes(CrVersion Version)

generates a finishes operator x finishes I iff x = I lV where V is determined by the
V ersion parameter. (Def. 2.2.42)

PIRFuzzyFinishes()

generates a finishes operator scaleup(Em(I) T A(I)) where Em = UIOExtend(false),
T = BIOIntersection() and A = PIRAfter(). (Def. 2.2.43)

PIRFuzzyFinishes(UnaryIntervalOperator Em, UIOAfter A, Intersection T)

generates a finishes operator scaleup(Ep(I) T A(I)). (Def. 2.2.43)

PIRDuring()

generates the identity operator as the standard during operator.

PIRDuring(int n, int m)

generates a duringn,m operator x during I iff x ∈ I.cutIn,m,In+1,m .

PIRFuzzyDuring(UnaryTransformation O, BIOUnion U)

generates the during operator Ul∈CMP (I)O(I). (Def. 2.2.43)

PIRFuzzyDuring(PIRDuring D, int n, int m)

generates the during operator D(cutIn,m,In+1,m). (Def. 2.2.43)

PIRInTheMiddle(int n, int m)

generates an in the middle operator xin the middlen,m(I) iff x = I2n+1,2m

PIRFuzzyTheMiddle(PIRDuring D, int n, int m, int k)

generates the in the middle operator D(cuti2k(2n+1)−1,2k2m,i2k(2n+1)+1,2k2m(I)).

(Def. 2.2.43)

PIRInTheGap(CrVersion Version)

generates an in the gap operator xin the gap(I) iff x ∈ V (Invert(I)) where V is deter-
mined by the V ersion parameter.

PIRInTheGap(CrVersion Version, int k)

generates an in the kthgap operator xin the kthgap(I) iff x ∈
V (Component(Invert(I), k)) where V is determined by the V ersion parameter.

PIRFuzzyInTheGap(PIRDuring D)

generates an in the gap operator D(invert(I)) (Def. 2.2.43)

PIRFuzzyInTheGap(PIRDuring D, int k)

generates an in the kthgap operator D(Component(invert(I), k)) (Def. 2.2.43)

2.5.5 Specification of Unary Interval Operators

The class UIOComposeUnary allows one to create the composition U1◦ . . .◦Un of unary interval
operators. This is a very primitive kind of composition because the implicit parameters of the
component operators are fixed then.

A much more flexible way of composition is provided by the class UIODefined. Its con-
structor function accepts a specification of a composition of unary interval operators with free
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variables. When the variables are bound to corresponding values then the specified abstract
composition is instantiated to a concrete unary interval operator.

As an example, suppose we want a flexible operator which fuzzifies an interval at both sides.
A suitable definition would be:

UIODefined("fuzzify2sides(Keyword version, Float percent) =

fuzzify(version,front,percent) * fuzzify(version,back,percent)")

This defines a function with two parameters. The first parameter version can be linear or
gaussian. The second parameter percent represents a floating point number which determines
the increase of the membership function. The constructed instance of UIODefined understands
an instantiate method which binds the two parameters version and percent to concrete
values. This turns the function into a valid unary interval operator which can be applied to a
fuzzy interval.

Definition 2.5.1 (Syntax of Defined Operators) The definitions which are accepted by
the UIODefined constructor have the following structure:

name(type1 variable1, ...typen variablen) = term1 * ...* termk

The variablei are variable names (strings). The typei are names of basic data types. The
following names can be used here: integer, float, bool, time, keyword. Integer and Float
and Bool stand for the usual data types. time stands for x-coordinates. The concrete data
type, e.g. long long int, or multiple precision integer is determined by the compiler. keyword

represents keywords (strings) like ‘linear’ or ‘forward’ etc.
The termi have the form name or name(parameter1,..., parameterj). name is the name

of a concrete unary interval operator. The parameteri are either variable names, a the string
representation of concrete data of the corresponding data types, or again terms term1 * . . . *
terml which determine a unary interval operator.

The following terms are allowed:

• complement generates the standard complement operator UIOComplement().

• complement(lambda) generates the lambda complement operator
UIOComplement(lambda) (Def. 2.2.21). The type of lambda must be float.

• extend(rising) generates the UIOExtend(rising) operator. rising is a keyword which
is either ‘rising’ or ‘falling’ (Def. 2.4.40).

• scaleup generates the UIOScaleUp() operator (Def. 2.4.40).

• shift(a) generates the UIOShift(CX a) operator which shifts the interval by the amount
a. a is of type time (Def. 2.4.40).

• invert generates the UIOInvert() operator which inverts the y-values (Def. 2.2.33).

• cut(x1,x2) generates the UIOCut(x1,x2) operator which cut the piece between x1 and
x2 out of the interval. x1 and x2 are of type Time (Def. 2.4.40).

• cut(x,direction) generates the UIOCut(x,positive) operator. x is of type time,
and direction is one of the keywords ‘forward’ or ‘backward’. cut(x,forward) =
cut(x,+∞) and cut(x,backward) = cut(-∞,x) (Def. 2.4.41).
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• times(a) generates the UIOTimes(a) operator which multiplies the fuzzy values of the
interval by a. a is of type float (Def. 2.4.46).

• integrate(rising) generates the UIOIntegrate(rising) operator which integrates the
membership function. rising is a keyword which is either ‘rising’ or ‘falling’ (Def.
2.4.44).

• component(k) generates the UIOComponent(k) operator which extracts the kth component
from the interval. The type of k is integer (Def. 2.4.33).

• hull(version) generates the UIOHull(version) operator. version is one of the key-
words ‘crisp’ (Def. 2.4.37), ‘monotone’ (Def. 2.4.38), ‘convex’ (Def. 2.4.39), ‘core’ (Def.
2.4.34), ‘support’ (Def. 2.4.35) or ‘kernel’ (Def. 2.4.36). The operator computes the cor-
responding hull.

• fuzzify(version,side,percent,offset) generates the (relative) UIOFuzzify operator.
version is one of the keywords ‘linear’ or ‘gaussian’. side is one of the keywords ‘front’
or ‘back’. It determines the side of the interval to be fuzzified. percent is a float value
which determines the fraction of the interval (in %) to be fuzzified. offset is also a float
value and determines a shift (in %) of the fuzzified part of the interval (Def. 2.2.39).

• fuzzify(version,side,x1,x2,offset) generates the (absolute) UIOFuzzify operator.
version and side are the same as above. x1 and x2 are of type time and determine the
part of the interval to be fuzzified. offset determines the shift of the fuzzified part of the
interval in absolute coordinates (Def. 2.2.36, 2.2.37).

• before(version) generates the crisp point-interval before relation PIRBefore(version).
version is one of the keywords ‘support’, ‘core’ or ‘kernel’ and determines the crisp hull
of the interval for the crisp before relation (Def. 2.2.42).

• before is an abbreviation for before(support).

• fuzzyBefore(operators,complement) generates a fuzzy before operator PIRFuzzyBe-
fore (operators, complement) (Def. 2.2.43). operators = term1 * ... is the specifi-
cation of a unary interval operator. Typically operators = extend. complement deter-
mines the complement operator. It is either just complement, for the standard complement
operator, or complement(lambda) for the lambda complement operator.

• fuzzyBefore is a shortcut for fuzzyBefore(extend(rising),complement).

• after(version) (Def. 2.2.42) corresponds to before(version).

• after is an abbreviation for after(support).

• fuzzyAfter(operators,complement) corresponds to fuzzyBefore(operators,complement).

• fuzzyAfter is a shortcut for fuzzyBefore(extend(falling),complement).

• starts(version) generates a crisp point-interval starts operator. version is one of the
keywords ‘support’, ‘core’ or ‘kernel’ and determines the crisp hull of the interval for the
crisp before relation (Def. 2.2.42).
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• starts is a shortcut for starts(support).

• fuzzyStarts(Extend,Before,gamma) generates a fuzzy before operator. Extend can be
the specification of an extend operator, e.g. extend(rising), or the specification of an
arbitrary unary interval operator. Before is the specification of a crisp or fuzzy before
operator like before(support). gamma is the parameter of the Hamacher intersection.
The generated operator is scaleup(Extend(I) Tgamma Before(I)) (Def. 2.2.43).

• fuzzyStarts generates a standard fuzzy starts operator where Extend =
UIOExtend(true), Before = PIRFuzzyBefore() and standard intersection (Def.
2.2.43).

• finishes(version) corresponds to starts(version).

• finishes is a shortcut for finishes(support).

• fuzzyFinishes(Extend, After, gamma) corresponds to fuzzyStarts(Extend,

Before, gamma) (Def. 2.2.43).

• fuzzyFinishes corresponds to fuzzyStarts.

• during generates the identity operator as the standard during operator.

• during(n,m) generates a duringn,m operator x during I iff x ∈ I.cutIn,m,In+1,m . n and m

are of type integer.

• fuzzyDuring(operator,beta) generates a fuzzy during operator. operator is the spec-
ification of a unary interval operator and beta (of type float) is the parameter of the
Hamacher union. The operator is applied to the components of the interval and the
results are joined together with the union operator (Def. 2.2.43).

• fuzzynmDuring(operator,n,m) generates an operator which applies operator to
cutIn,m,In+1,m) (Def. 2.2.43).

• inTheMiddle(n,m) generates a PIRInTheMiddle(n, m) operator which is 1 for an inter-
val I and a point x if x = I2n+1,2m, i.e. x is in the middle of the nth mth.

• fuzzyInTheMiddle(n,m,k,during) generates a fuzzyInTheMiddle operator
during(cuti2k(2n+1)−1,2k2m,i2k(2n+1)+1,2k2m(I)) (=def. 2.2.43).

• fuzzyInTheMiddle(n,m,k) is like the previous operator with the standard during operator
as default.

• inTheGap(Version) generates an ‘in the gap’ operator V (Invert(I)) where V is deter-
mined by the Version parameter. Version is one of the keywords ’support’, ‘core’ or
‘kernel’.

• inTheGap(Version,k) generates an ‘in the gap’ operator V (Component(Invert(I), k))
where V is determined by the Version parameter. Version is one of the keywords ’sup-
port’, ‘core’ or ‘kernel’.

• fuzzynTheGap(during) generates a ‘fuzzy in the gap’ operator during(Invert(I))
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• fuzzynTheGap(during,k) generates a ‘fuzzy in the gap’ operator
during(component(invert(I), k)).

• 〈name〉(parameter1,...,parametern) invokes a previously defined UIODefined instance
with the given name and the given parameters.

The UIODefined class provides a method instantiate(vector<WCvalue>) for instantiating
the free variables of the defined unary interval operator. WCvalue is a union type an consists of
the types int, float, bool and void* (pointer). The pointer type void* can be used to point to
string objects (for the keywords) or to CXWrapper objects for x-coordinates. (The CXWrapper
class is a wrapper class for CX values. This technical trick makes it possible to exchange the
data structures for CX values, and to use for example long long int or alternatively multiple
precision integers.) The vector of WCvalue must contain the actual values of the free variables
in the same order as in the definition. After the instantiate method is applied to a defined
interval operator, one can use it as a unary interval operator in the same way as all the other
operators.

2.5.6 Interval–Interval Relations

The interval–interval relation operators are also implemented as subclasses of the class Op-
eration. They come in three versions. For example, IIRBefore(V ersion) generates a crisp
relation where either the support, the core or the kernel of the two intervals is compared.
The subclass IIRFuzzyBefore(. . .) generates the operator version of the before-relation (Def.
2.2.56). Finally the class IIRFuzzyNMBefore(. . .) generates the Nagypál and Motik version
of the before relation.

Methods:

operator()(Interval I, Interval J, float e)

If, for example, r is an instance of one of the IIRelation classes and I and J are intervals
then r(I, J)e yields the resulting fuzzy value.

Constructors for the Interval–Interval Relation Operators
All constructors have an optional ‘string name’ parameter as last argument.

IIRBefore(CrVersion Version)

generates a before operator I before J iff I lV < JfV where V is determined by the
V ersion-parameter. (Def. 2.2.55)

IIRFuzzyBefore(PIRBefore B)

generates a before operator which is essentially
∫
I(x) · B(J)(x) dx/|i| (Def. 2.2.56)

IIRFuzzyBefore()

generates a before operator with B = newPIRFuzzyBefore()

IIRNMBefore()

generates the Nagypál and Motik before operator.
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Operation

IIRelation
IIRBefore

IIRFuzzyBefore
IIRNMBefore

IIRMeets
IIRFuzzyMeets
IIRNMMeets

IIROverlaps
IIRFuzzyOverlaps
IIRNMOverlaps

IIRStarts
IIRFuzzyStarts
IIRNMStarts

IIRFinishes
IIRFuzzyFinishes
IIRNMFinishes

IIRDuring
IIRFuzzyDuring
IIRNMDuring

IIREqual
IIRFuzzyEqual
IIRNMEqual

Figure 2.3: Class Hierarchy for Interval–Interval Relations

IIRMeets(CrVersion Version)

generates a meets operator I meets J iff I lV = JfV where V is determined by the
V ersion-parameter. (Def. 2.2.55)

IIRFuzzyMeets(PIRFinishes F, PIRStarts S, bool simple)

generates a meets operator which is essentially
∫
F (I)(x) · S(I)(x) dx/N(F (I), S(J))

where N(I, J) = min(|I |, |J |) if simple = true and N = maxa

∫
I(x − a) · J(x) dx

otherwise (Def. 2.2.56)

IIRFuzzyMeets(bool simple)

generates the meets operator with F = newPIRFinishes() and S =
newPIRFuzzyStarts()

IIRNMMeets()

generates the Nagypál and Motik meets operator.

IIROverlaps(CrVersion Version)

generates a overlaps operator I overlaps J iff some part I1 ⊆ V (I) is before JfV and for
the rest I2 = V (I) \ I1: I2 ⊆ V (J) holds. V is determined by the V ersion-parameter.

(Def. 2.2.55)

IIRFuzzyOverlaps(UnaryIntervalOperator* Ep, IIRDuring D, bool simple)
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generates an overlaps operator which is essitially (1 −D(I, E+(J))) ∗D(I, J). If sim-
ple = false then this result is nomalized with maxa(1 − D(I.shiftD(a), E+(J))) ∗
D(I.shiftD(a), J). (Def. 2.2.56)

IIRFuzzyOverlaps()

generates an overlaps operator with Ep = newUIOExtend(true) and
D = newIIRFuzzyDuring()

IIRNMOverlaps()

generates the Nagypál and Motik overlaps operator.

IIRStarts(CrVersion Version)

generates a starts operator I starts J iff IfV = JfV and V (I) ⊆ V (J). V is determined
by the V ersion-parameter. (Def. 2.2.55)

IIRFuzzyStarts(PIRStarts S1, PIRStarts S2, PIRDuring D, bool simple)

generates a starts operator which is essentially
∫
S1(I)(x)·S2(I)(x) dx/N(S1(I), S2(I))·

D(I, J) where N(I, J)=defmin(|I |, |J |) if simple = true and N(I, J)=def maxa

∫
I(x − a) ·

J(x) dx otherwise. (Def. 2.2.56)

IIRFuzzyStarts(bool simple)

generates a starts operator with S1 = S2 = newPIRFuzzyStarts() and
D = newIIRFuzzyDuring()

IIRNMStarts()

generates the Nagypál and Motik starts operator.

IIRFinishes(CrVersion Version)

generates a finishes operator I finishes J iff I lV = J lV and V (I) ⊆ V (J). V is deter-
mined by the V ersion-parameter. (Def. 2.2.55)

IIRFuzzyFinishes(PIRFinishes F1, PIRFinishes F2, PIRDuring D, bool simple)

generates an finishes operator which is essentially
∫
F1(I)(x) ·

F2(I)(x) dx/N(F1(I), F2(I)) · D(I, J) where N(I, J)=defmin(|I |, |J |) if simple = true
and N(I, J)=defmaxa

∫
I(x− a) · J(x) dx otherwise. (Def. 2.2.56)

IIRFuzzyFinishes(bool simple)

generates a finishes operator with F1 = F2 = newPIRFuzzyF inishes() and
D = newIIRFuzzyDuring()

IIRNMFinishes()

generates the Nagypál and Motik finishes operator.

IIRDuring(CrVersion Version)

generates a during operator I during J iff V (I) ⊆ V (J). V is determined by the
V ersion-parameter. (Def. 2.2.55)

IIRFuzzyDuring(PIRDuring D)

generates a during operator which is essentially
∫
I(x) ·D(J)(x) dx|I | (Def. 2.2.56)

IIRFuzzyDuring()

generates an during operator with D = newPIRFuzzyDuring().

IIRNMDuring()

generates the Nagypál and Motik during operator.

IIREquals(CrVersion Version)

generates a equals operator I equals J iff V (I) = V (J). V is determined by the V ersion-
parameter. (Def. 2.2.55)
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IIRFuzzyEquals(IIRDuring D)

generates an equals operator: D(i, j) ·D(j, i) (Def. 2.2.56)

IIRFuzzyEquals()

generates an equals operator with D = newIIRFuzzyDuring().

IIRNMEquals()

generates the Nagypál and Motik a equals operator.

2.6 Summary

This report is a detailed description of the FuTIRe-library. So far this library is a C++-package
for representing and manipulating fuzzy time intervals and for generating customized point–
interval and interval–interval relations for fuzzy intervals (a Java version is planned). The
mathematical background, the concrete datastructures and algorithms, and the interface to the
library are described.

There are quite different schemes for fuzzy point–interval and interval–interval relations.
Besides a crisp approximation for these relations I proposed and implemented in FuTIRe an
operator-based scheme which is very flexible and easy to adapt to the needs of concrete appli-
cations. The architecture of FuTIRe is open to add other schemes, and to use them together
with the crisp and operator-based schemes.
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Chapter 3

Modelling Periodic Temporal

Notions by Labelled

Partitionings of the Real

Numbers – The PartLib Library

Hans Jürgen Ohlbach

Abstract

The key notion for modelling calendar systems and many other periodic temporal notion is the
mathematical concept of a partitioning of the real numbers. A partitioning of R splits the time
axis into a sequence of intervals. Basic time units like seconds, minutes, hours, days, weeks,
months, years etc. can all be represented by partitionings of R with finite partitions. Besides
the basic time units in calendar systems, there are a lot of other temporal notions which can
be modelled as partitions: the seasons, the ecclesiastical calendars, financial years, semesters
at universities, the sequence of sunrises and sunsets, the sequence of the tides, the sequence
of school holidays etc. In this chapter a formalization of periodic temporal notions by means
of labelled partitionings of R is presented. The formalism is implemented as the C++ library
PartLib (Partitioning Library). The interface to PartLib is presented in the appendix.

3.1 Motivation and Introduction

The basic time units of calendar systems, years, months, weeks, days etc. are the prototypes of
periodic temporal notions. Because time is one of the most important parameters of our life,
the representation of temporal notions, and in particular periodic temporal notions, is necessary
in many computer applications. There have been quite intensive studies of periodic temporal
notions from various points of view. One can distinguish at least three approaches.

First of all, there is the important work of Dershowitz and Reingold [16] who analyzed
existing calendar systems and came up with algorithms for converting time information from

97



one system to another. These algorithms are the basis for the implementation of concrete
calendar systems in computer programs.

On a more abstract level there is all the work about the mathematical representation of
periodic temporal notions as time granularities, or similar kind of mathematical objects. A
good overview is given in the book of Bettini, Jajoda and Wang [10]. This work is particularly
motivated by the need to represent time in temporal databases. A selection of papers about the
abundant work in this area is [8, 35, 29, 48, 30, 34, 18, 9, 19, 11, 25]. Since time granularities
are the most important objects in this area, we introduce them already at this early place in
the chapter. A time granularity is usually defined as a mapping of a subset of the integers to
sets of intervals in the time domain, the granules. This mapping must have certain properties in
order to count as time granularity. Another way to explain time granularities is: a granule is a,
possibly non-convex finite subinterval of the time domain. A time granularity is a sequence of
such granules. One can require that this sequence is consecutive, i.e. the rightmost time point
of a granule n comes before the leftmost time point of the granule n+ 1. Sometimes, however,
overlapping granules are also considered [19]. The simplest time granularities are in fact par-
titionings of the time domain. All basic time units, years, months etc., are of this type. The
granules consist of one single interval, and there are no gaps between them. Granules consisting
of one single interval only, but with gaps between them, can, for example, be used to model
‘weekend’. The time spans between the weekends are the gaps between the granules. Granules
consisting of several intervals are useful to model notions like ‘my working day’, where there
is a lunch break which should not count as part of ‘my working day’. Overlapping granules
might be used to model, for example, the union of ‘my working day’ and ‘my wife’s working
day’. The ‘time granularity community’ has developed ways for constructing time granulari-
ties, usually as algebraic operations on previously constructed time granularities. Conversion
operations between different granularities have been defined. Relations between different time
granularities have been developed, and applications, mainly in the area of temporal databases,
have been considered.

An even further abstraction is possible by axiomatizing temporal notions in an expressive
enough logic, for example in first order predicate logic. The SOL time theory (SOL for Struc-
tured Temporal Object) of Diana Cuckierman with a first order formalization of time loops is
a prominent example for this approach [13, 14, 15].

This chapter presents an alternative to the granularities approach. We represent periodic
temporal notions as partitionings of the real numbers, which is the simplest form of granulari-
ties. To compensate for this, we introduce names (labels) for the partitions. The labels carry
information about the meaning of the partitions. As we shall see, this separation of structure
and meaning has a number of algorithmic advantageous. A built-in label is ‘gap’. It can be used
to denote a partition which logically does not belong to a given partitioning. For example, the
time between two subsequent school holidays in a school holiday partitioning can be labelled
‘gap’. The label ‘gap’ allows one to simulate the granules of time granularities and nevertheless
keep the algorithmic advantages.

The work on partitionings for modelling periodic temporal notions is part of the WebCal-
project. WebCal [12] is a system for understanding, representing and manipulating complex
temporal notions from everyday life. It can represent and manipulate fuzzy time intervals [40]
to deal with fuzzy notions like ‘early today’ or ‘in the late 20s’. It can deal with different
calendar systems, even with historical sequences of calendar systems. Other components are
a specification language for specifying application specific temporal notions like ‘my weekend’
[37, 38]. A prototype of the WebCal system is currently being tested.
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The guidelines for the particular approach presented in this chapter, and realized in the
PartLib library were:

1. The reality should be taken serious:
This means that all phenomena in real calendar systems and realistic periodic temporal notions
should be taken into account. The consequences of this can be illustrated with the following
definition of month taken from [35]: The authors defined day first, then
pseudomonth = Alter1211,−1(day,Alter

12
9,−1(day,Alter

12
6,−1(day,Alter

12
4,−1(

day,Alter122,−3(day,Group31(day))))))
and finally
month = Alter12·4002+12·399,1(day,Alter

12·100
2+12·99,−1(day,Alter

12·4
2+12·3,1(day, pseudomonth))).

The last definition takes leap days into account. Alter is the alternating tick operator and
Group is the grouping operator. It is not necessary here to understand these operators. The
point is that in a user friendly implementation of these operators an evaluator for arithmetic
expressions like 2 + 12 · 3 is needed. This should be be no problem as long as the expressions
are simple enough. For more complex temporal notions, however, the expressions become also
more complex, and eventually a full size programming language is needed here. For example,
for modelling ecclesiastical calendars, one needs to calculate the Easter date, and the algorithm
for this is too complex to be expressed as a simple arithmetic formula.

The consequence for the PartLib library was to introduce a partitioning type algorithmic
partitionings, which is specified by providing concrete algorithms in a concrete programming
language (C++ in this case). Nevertheless, this is an exception. The general guideline is ‘as
algorithmic as necessary, as symbolic as possible’. The algorithmic partitionings can be used
to define what some authors call basic calendars [31, 19].

2. Separation of structure and meaning:
An infinite sequence of non-overlapping granules is in principle also a partitioning of the time
domain, if the gaps between the granules and within the granules are considered as part of
the partitioning. Therefore one can turn a partitioning into a granularity by labelling certain
partitions as gaps, and labelling the partitions which should belong to a granule with a common
name. This has the advantages that the algorithms can be separated into a part which deals
with the structure of the partitions, and a part which deals with the labels. Moreover, the
labels can be used for other purposes. For example, the labels of a bus timetable can be the
bus identifiers, and these can be keys for a bus database.

Notice that the notion of a ‘label’ in this chapter is different to the notion of a ‘label’ in
the literature about granularities. Labels in this chapter are names, i.e. strings like ‘Monday’,
‘Tuesday’ etc. The ‘labels’ in the literature about granularities correspond to coordinates in
this chapter.

PartLib provides no means for representing overlapping granularities as a single object.
They must be represented as two separate partitionings.

3. Compact data structures and efficient algorithms:
The partitionings must be represented with finite data structures which support a number
particular algorithms. This excludes certain problematic operators for constructing new parti-
tionings (granularities) from existing ones. An example is the union operator. To understand
this, consider a representation of, say, ‘Tom’s working day’ and ‘Jane’s working day’. If Tom’s
working day is every day from 8 am until 5 pm, and ‘Jane’s working day’ is every day from
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9 am until 6 pm, then the union operation on these two partitionings is unproblematic. The
resulting partitioning is easily representable in a compact way. If, however, Tom’s job is to
watch the moon in an observatory, then his working day may need to follow the moon phases,
which can be represented with an algorithmic partitioning. The union of the two partitionings
‘Tom’s working day’ and ‘Jane’s working day’ is now a really complicated object, and not eas-
ily represented. Therefore we exclude operations like union, intersection etc. in PartLib itself.
Instead we provide such operations in the WebCal system at another level. What is easy to
realize is an operation which cuts ‘Tom’s working days’ and ‘Jane’s working day’ out of a given
finite interval and then applies the set operation to the two intervals. Therefore ‘Tom’s and
Jane’s working day’ would not be represented as a partitioning, but as a function that takes
a time interval I and returns the subintervals of I which corresponds to the union of Tom’s
working days and Jane’s working days. A prototype language for defining such functions is
published in [37, 38]. The concrete language to be included in the WebCal system, however,
has jet to be defined. The basic building blocks for it, however, are contained in [40, 39], and
in this chapter.

4. Intuitive specification of user defined partitionings:
Most basic time units of calendar systems have a non-trivial algorithmic component. In Web-

Cal they are therefore realized as built-in partitionings. Many others, however, are application
specific or user defined. Therefore various authors have come up with algebraic operations for
constructing new partitionings (granularities) from given ones [19]. The art is to find a basic
set of operations which allows one to define new partitionings in a way which is intuitive to
the user, and which provides good data structures for the algorithms. This set should be as
small as possible in order to reduce the burden to develop the corresponding algorithms. On
the other hand, it should be powerful and expressive enough that most real world examples for
periodic temporal notions can be specified.

Besides the algorithmic partitionings, PartLib provides two more basic types of specifica-
tions: ‘duration partitionings’ and ‘folded partitionings’. Duration partitionings are specified
by an anchor time and a sequence of ‘durations’. A duration is something like ‘1 month + 3
day’, where ‘month’ and ‘day’ represent previously defined partitionings. For example, I could
define ‘my weekend’ as a duration partitioning with anchor time 2004/7/23, 4 pm (Friday July,
23rd, 2004, 4 pm) and durations: (‘8 hour + 2 day’, ‘4 day + 16 hour’). The first interval
would be labelled ‘weekend’, and the second interval would be labelled ‘gap’.

Notice that this specification is different to (‘56 hour’, ‘112 hour’). The difference is that
when standard time changes to daylight savings time then the day is only 23 hours long, and
when daylight savings time changes to standard time then the day is 25 hours long. A proper
representation of ‘day’ as an algorithmic partitioning can take this into account, such that ‘8
hour + 2 day’ would be the correct time shift even in this case. The specification of ‘weekend’
with a duration of ‘56 hour’, however, would become wrong during the daylight savings time
period.

PartLib provides three specializations of duration partitionings. They allow for faster al-
gorithms, and they are more intuitive in certain cases. The first specialization, the regular
partitionings covers the case that the durations are all of the same kind ‘n P ’ where P is always
the same partitioning. For example, ‘semester’ could be defined this way. The anchor time is
the start of, say, the winter semester. The durations are (‘6 month’, ‘6 month’). The first par-
tition would be labelled ‘winter semester’, and the second partition would be labelled ‘summer
semester’. The algorithms for this simple kind of duration partitioning are more efficient than
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in the general case.

Another specialization are date partitionings. The partitions are in this version specified
by concrete dates. In many countries, for example, people used to count the years from the
beginning of the reigns of their emperors, and these are concrete dates. At a first glance, this
specifies a partitioning of only a finite part of the time domain. This would require all the
algorithms to check whether the time points under consideration are in the valid part of the
time line, where the partitioning is specified, or not. With a simple trick, however, one can
turn this finite partitioning into an infinite partitioning, and thus avoid these special cases.
The trick is to turn the difference between two consecutive dates into durations. For example,
the two dates 2004/5/10 and 2006/8/15 can be turned into a duration ‘2 year + 3 month + 5
day’. This way a date partitioning is turned into a duration partitioning. The finite part of the
date partitioning is then automatically extrapolated into the infinite future and past. PartLib
provides means to define boundaries for the partitionings, but these boundaries are not checked
by the algorithms. It is up to the application of PartLib to check the boundaries.

Duration partitionings are the second basic type of partitionings. The third type are folded
partitionings. Consider a bus timetable, which changes from season to season. The best way
to specify this, would be to specify the seasons first, and for each season to specify the par-
ticular bus timetable. The ‘folded partitioning’ specification operation takes as input a frame
partitioning, for example the seasons, and a sequence of folded partitionings, for example the
four different bus timetables. It maps the folded partitionings automatically to the right frame
partition, such that from the outside the whole thing looks like an ordinary partitioning.

5. Support for certain key operations with partitionings:
A very natural operation is to measure the distance between two time points in terms of a
given time unit. ‘The distance between t1 and t2 is 3.5 weeks’, could, for example, be a useful
information. Measuring the distance between two time points in terms of partitions of fixed
length, for example seconds, is no point. It becomes more difficult if the time units have varying
lengths. ‘The distance between t1 and t2 is 3.5 months’ is a nontrivial statement, because it
depends on the location of t1 and t2 on the time line.

PartLib provides two length functions. The first one measure the distance between two
time points in partitions of a given partitioning, and the second one measures the distance in
granules. ‘The distance between t1 and t2 is 1 working day’, for example, is a possible outcome,
even if ‘working day’ is defined not as a partitioning, but as a granule with a gap in it (for
lunch time).

The second very natural operation is a shift operation, also in terms of partitions or granules.
For example, one can ask a PartLib method to shift a time point t by, say 3.5 months, or 3.5
working days into the future. Since the lengths of the partitions and granules may vary, the
concrete amount, t is shifted depends on the location of t on the time line. It turns out that the
notion of a time shift by some partitions is ambiguous. There are at least two different ways to
do this, with more or less intuitive results. This problem is discussed in detail in Section 3.4.

PartLib offers some further operations. They are presented in the corresponding sections of
this chapter.

After a brief review of PartLib’s time domain we present the formal definitions of the
PartLib’s basic concepts and then discuss the specification mechanisms and the operations on
partitionings. The interface to the PartLib implementation is presented in the appendix.
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Time Measurements and the Semantics of Computer Time

The backbone of our time representation is a reference time line, measured in seconds. The
relation between the artificial counting of seconds in the computer and the real flow of time
on our planet is determined by the physics of time measurement. Before the adoption of the
UTC standard (Coordinated Universal Time) in 1972, a second was just the 86400th fraction
of a day, measured between two subsequent zeniths of the sun. Since the rotation of the
earth is not perfectly stable over the year, and, moreover, slows down from year to year, these
seconds corresponded to varying time intervals. After the adoption of the UTC standard, a
second corresponds to exactly 9.192.631.770 cycles of the light emitted when an electron jumps
between the two lowest hyperfine levels of the Cesium 133 atom (measured and coordinated
by the ‘Bureau International des Poids et Mesures’ in Paris, URL: http://www.bipm.fr/). The
synchronization with the rotation of the earth is achieved by inserting a leap second almost every
year by the International Earth Rotation Service (URL: http://hpiers.obspm.fr/). Therefore
the seconds in our modelling of partitionings for the time before 1972 correspond to a fraction
of the day. For the time after 1972 they correspond to the atomic seconds of the TAI standard
(Temps Atomique International).

In this chapter it is assumed that there is a global reference time GRT , measured in seconds
or some fraction of a second. GRT is actually isomorphic to the real numbers, but the number
0 corresponds to a particular point in time. As it is common in Unix systems, the origin of the
reference time in our examples is the beginning of the year 1970 at the 0-meridian.

Remark 3.1.1 Since the real numbers R are used as the time axis, we speak of the earliest or
leftmost number, time point or interval if we mean the one closest to −∞. We speak of the
latest or rightmost number, time point or interval if we mean the one closest to +∞.

3.2 Partitionings

A partitioning of the real numbers R may be for example (..., [−100, 0[, [0, 100[, [100, 101[,
[101, 500[, ...). The intervals in the partitionings considered in this chapter need not be of the
same length (because time units like years are not of the same length either). The intervals
can, however, be enumerated by natural numbers (their coordinates). For example, we could
have the following enumeration

... [−100 0[ [0 100[ [100 101[ [101 500[ ...

... −1 0 1 2 ...

It is not by chance that half open intervals are used in this example. Since the partitions in a
partitioning do not overlap, one cannot use closed intervals because the endpoints of the closed
intervals would be in two different partitions. Open intervals can not be used either because
then the infima and suprema of the intervals would not be in any partition at all. Therefore
only half open intervals can be used, either of the type [a, b[, or of the type ]a, b]. In most cases
there is no preference for either of the two types, but both types should not be used together.
In this chapter we therefore use the first type [a, b[.

Since all time measurements are done in discrete units (seconds, ticks of a clock, hyperfine
transitions in a Cesium atom etc.) it makes sense to take integers as boundaries of the partitions.
In the examples they represent seconds. Any other fraction of a second is possible as well.
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Multiples of seconds are not possible without loosing precision because the leap seconds are
ignored in this case.

The formal definition for partitionings of R which is used in this chapter is:

Definition 3.2.1 (Partitioning) A partitioning P of the real numbers R is a sequence

. . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .

of non-empty half open intervals in R with integer boundaries.

Some useful notations for partitionings are defined:

Definition 3.2.2 (Notations) Let P be a partitioning.

1. For a partition p = [s, t[ in P let p[ s be left boundary of p and let p] t be the right boundary
of p.

2. For a time point t and a partitioning P , let tP be the partition in P which contains t.

A sequence of finite partitions of the real numbers is in fact isomorphic to the integers. This
can be exploited to give the partitions addresses or coordinates. The coordinates are very useful
for navigating through sequences of partitions. Therefore we introduce coordinate mappings.
In principle, there are many different coordinate mappings for a given partitioning, but for the
intended application of the partitioning concept described in this chapter, one single coordinate
mapping is sufficient. Therefore this unique coordinate mapping becomes an integral component
of a partitioning.

Definition 3.2.3 (Coordinate Mapping) A coordinate mapping of a partitioning P is a
bijective mapping between the intervals in P and the integers. Since we usually use one single
coordinate mapping for a partitioning P , we can just use P itself to indicate the mapping.

Therefore let pP be the coordinate of the partition p in P .

For a coordinate i let iP be the partition which corresponds to i.

For a time point t let P.pc(t) (tP )P be the coordinate of the partition containing t. (pc stands
for ‘partition coordinate’).
Let P.sopT (t) tP [ be the start of the partition containing t.
Let P.eopT (t) tP [ be the end of the partition containing t.

For a coordinate i let P.sopC(i) iP [ be the start of the partition with coordinate i.
Let P.eopC(i) iP [ be the end of the partition with coordinate i.

For a time point t we define

P.lopT (t) P.eopT (t) − P.sopT (t)

as the length of the partition containing t.

For a coordinate i we define

P.lopC(i) P.lopT (P.sopC(i))

as the length of the partition with coordinate i.
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The two pictures below illustrate the transitions between time points, coordinates and par-
titions:

-?

t
P.sopT (t)P.eopT (t)

Rpartition tP with coordinate P.pc(t)

-
Rpartition i

P.sopC(i) P.eopC(i) = P.sopC(i+ 1)

Example 3.2.4 (Seconds and Minutes) The partitioning for seconds consists of the se-
quence of intervals . . . [−i,−i+ 1[. . . [0, 1[. . . [k, k + 1[. . .. The interval [0, 1[ represents the first
second in January 1st 1970, and its coordinate is 0.

The partitioning for minutes is

1970/1/1
↓

ref.time : ... [−60, 0[ [0, 60[ [60, 120[ [120, 180[ ...
coordinate : ... −1 0 1 2 , ...

Remarks:
1. Partitions are not explictly represented in PartLib, only time points and coordinates. The
functions which map time points to coordinates and back are therefore the important ones.
Thus, the formulations of the algorithms below do not refer to partitions, but use these func-
tions.

2. We use the notation P.pc(t) for the function that maps a time point t to the coordinate of
its partition in the partitioning P . Alternative notations would be pc(P, t) or pcP (t) or pcP (t).
The notation P.pc(t) comes from object oriented programming. P is an object (instance of
a class), and pc is a method in this class. This notation has two advantages. First of all, it
is a bridge to the actual implementation where the program code looks just so. Secondly, it
emphasizes the special role of P as the context for the pc function as well as a number of other
functions. Therefore we shall use the dot notation ‘P.’ for most of the functions which depend
on partitionings and other objects. If it is clear from the context, which object is meant, we
may omit this object, and just use the function name.

3.2.1 Length of Intervals in Partitions

It is very common to measure the length of intervals or the distance between time points in
terms of time units. Examples are ‘The train A arrives in the station 5 minutes before the train
B leaves it’. ‘Tomorrow I go on a business trip and will be back in 3 months time’.

A very useful function is therefore P.length(t1, t2), which measures the length of the distance
between t1 and t2 in terms of partitions of the partitioning P . For example, month.length(t1, t2)
measures the length of [t1, t2[ in months. Since partitions may have different lengths, this is a
nontrivial operation.

The idea for the method can be illustrated with the following picture
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The distance between t1 and t2 is the sum of the relative length of f1, measured as a fraction
of the length of partition 3, + the relative length of f2, measured as a fraction of the length of
partition 6, + the number of partitions in between.

Definition 3.2.5 (Length in Partitions) Let P be a partitioning.

For two time points t1 and t2 with t1 ≤ t2 we define

P.lengthP (t1, t2)







t2 − t1
P.lopT (t1)

if P.pc(t1) = P.pc(t2)

P.pc(t2) − P.pc(t1) − 1 +
P.eopT (t1) − t1
P.lopT (t1)

+
t2 − P.sopT (t2)

P.lopT (t2)
otherwise

If t2 < t1 then P.lengthP (t1, t2) −P.lengthP (t2, t1).

P.lengthP (t1, t2) is continuous. That means if t1 is kept fixed and t2 is moved, or the other
way round, then P.lengthP (t1, t2) makes no jumps. It is, however, not differentiable at the
points where t2 crosses the boundaries of neighbouring partitions with different length.

P.lengthP (t1, t2) can be used to measure the absolute length of the interval [t1, t2[ if P is
the partitioning for seconds or smaller time units. If P is the partitioning for minutes we can
get the effect that an interval of 60 seconds length is smaller than one minute. This is the
case for those minutes which contain leap seconds. Similar things happen for the coarser time
units. We may get day.length(t1, t2) < 1 even if hour.length(t1, t2) = 24. This happens when
daylight savings time is disabled just during the interval [t1, t2[ and the day is 25 hours long.

Definition 3.2.6 (modulo, remainder, b...c and | . . . |)
The mod and remainder functions are used to map integers to non-negative indices 0, . . . , n−1.
Therefore we need versions where the resulting values are between 0 and n−1, even for negative
numbers. mod and remainder are defined for positive numbers as usual. For the negative
numbers there are two different possibilities. We need the version where the resulting value is
positive.

That means, k mod n is chosen such that for example 4 mod 3 = 1 and −4 mod 3 = 2.

m/n = k remainder l is chosen such that for example 4/3 = 1 remainder 1 and −4/3 =
−2 remainder 2.

Let bmc be the integer part of m such that b3.5c = 3 and b−3.5c = −3.

For an interval s let |s| be the length of the interval.
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3.2.2 Labels

For many periodic temporal notions there are standard names for the partitions. For example,
days are named ‘Monday’, ‘Tuesday’ etc., months are named ‘January’, ‘February’ etc., seasons
are named ‘winter’, ‘spring’ etc. If these names are attached as labels at the partitions, temporal
notions like ‘next summer’ etc. can be modelled in an elegant way.

Definition 3.2.7 (Labelled Partitionings) A Labelling L is a finite sequence of labels
(strings) l0, . . . , ln−1.

A labelling L = l0, . . . , ln−1 is turned into a labelling function L(i) for a coordinate i:

L(i) li mod n

A labelling L can now be very easily attached to a partitioning: the partition with coordinate
i gets label L(i).

Example 3.2.8 (The Labelling of Days) The origin of the reference time is again January
1st 1970. This was a Thursday. Therefore we choose as labelling for the day partitioning

L Th, Fr, Sa, Su,Mo, Tu,We.

The following correspondences are obtained:

ref.time : . . . [−86400, 0[ [0, 86400[ [86400, 172800[ . . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, L(−1) = We, i.e. December 31 1969 was a Wednesday.

In order to support internationalization, PartLib offers the possibility to use different names
for the same label. The different names are distinguished by realms, which are also just strings.
For example, one can define two realms ‘en’ and ‘de’ (for English and German). A label l can
now have the name ‘Monday’ in the realm ‘en’ and ‘Montag’ in the realm ‘de’. This way all
labels change their names when the realm is changed. Since for the rest of this chapter, this
extra feature is not important, we can assume that labels are just strings.

3.2.3 Granules

The label ‘gap’ is reserved for a special purpose. It can be used to denote gaps between
semantically related partitions. For example, if the partitions represent school holidays then
the periods between the school holidays can be named ‘gap’. Gaps, together with the possibility
to use the same label at different positions in a labelling makes it possible to define granules,
with the same effect as in the original definitions of granularities. As an example, consider
again the definition of ‘working day’ as a period of time between 8 o’clock am and 5 o’clock
pm, interrupted by a lunch break between 1 o’clock pm and 2 o’clock pm. This could be
defined in two stages. First, we define a partitioning with an anchor time at some particular
Monday 8 o’clock am, and durations ‘5 hour’, ‘1 hour’, ‘3 hour’, ‘16 hour’. The ‘1 hour’
period is the lunch break and the ‘16 hour’ period is the time between two ‘working days’.
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A suitable labelling is ‘working day, gap, working day, gap’. A granule is characterized as a
maximally long subsequence of a labelling such that the non-gap labels in the granule are the
same. ‘working day, gap, working day’ in the above labelling is a granule, and the only granule.

Notice that we include gaps in this definition of a granule. Gaps are, however, excluded for
most of the computations which involve granules.

If a labelling is attached at a partitioning, we get granules as subsets of the time line. The
next picture illustrates this for the ‘working day’ example. ‘wd’ stands for ‘working day’.
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gap wd gap wd gapwd gapwd

first granule second granule

Only the partitions 0-2, 4-6 etc. represent granules. The partitions 2-4 are not a granule,
although they are also labelled ‘working day, gap, working day’. This is prevented because the
definition of granule is based on the initial labelling, in this case ‘working day, gap, working day,
gap’.

Definition 3.2.9 (Granule) Let L = l0, . . . , ln−1 be a labelling. A granule of the labelling L
is a maximal subsequence G = lk . . . lm of L such that
(i) lk 6= gap and lm 6= gap, and
(ii) all non-gap labels in G are the same.

A granule of a labelling function L(i) (Def. 3.2.7) is an interval [k,m] of coordinates, such
that lk mod n, . . . lm mod n is a granule of the labelling L.

A labelling like ‘Monday, Tuesday, . . . ’ without gaps and with the labels all being different
has granules consisting of a single label each. A labelling may of course also have several non-
trivial granules. To see this, let us take our ‘working day’ example a bit further. The underlying
partitioning partitions also the weekends. If we want to specify that ‘working days’ are only
from Monday till Friday, we could do this with the following labelling: ‘wdMo, gap, wdMo,
gap, wdTu, gap, wdTu, gap, wdWe, gap, wdWe, gap, wdTh, gap, wdTh, gap, wdFr, gap, wdFr,
gap, gap, gap, gap, gap, gap, gap, gap, gap’. This labelling has five different granules ‘wdMo,
gap, wdMo’, ‘wdTu, gap, wdTu’, ‘wdWe, gap, wdWe’, ‘wdTh, gap, wdTh’, ‘wdFr, gap, wdFr’,
one for each day. The last 8 gaps exclude the weekend.

Each partition in a labelled granule can either be part of a granule or not be part of granule.
If it is not part of a granule, then it is gap-labelled, but the neighbour non-gap labels are
different.

A partitioning without an explicit labelling defines of course also granules: each partition is
a granule consisting just of this single partition.

We define a function closestGranule which returns the coordinates of the closest granule.
It comes in two versions. The version closestGranuleC(i) takes a coordinate as argument, and
the version closestGranuleT (t) takes a time point as argument.

Definition 3.2.10 (Closest Granule) Let L be a labelling of a partitioning P , i a coordinate
and t a time point.

The function L.closestGranuleC(i) returns a pair [k,m] of coordinates, such that
(i) [k,m] is a granule of the labelling function L(i), and
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(ii) either i is within a granule, i.e. k ≤ i ≤ m, or i is not within a granule, but it is closer to
the granule [k,m] than to any other granule. That means precisely, if [a, b] are the coordinates
of another granule, and b ≤ i ≤ k then k − i ≤ i− b, and if m ≤ i ≤ a then a− i ≤ i−m.

The function L.closestGranuleT (t) returns a pair [k,m] of coordinates, such that
(i) [k,m] is a granule of the labelling function L(i), and
(ii) either t is within a granule, i is not within a granule, but it is closer to the granule [k,m]
than to any other granule. That means precisely, if [a, b] are the coordinates of another granule,
and P.eopC(b) ≤ t ≤ P.sopC(k) then P.sopC(k) − t ≤ t− P.eopC(b), and if P.eopC(m) ≤ i ≤
P.sopC(a) then P.sopC(a) − t ≤ t− P.eopC(m).

Notice that closestGranule prefers granules which lie in the future of i or t. That means,
if i or t is exactly in the middle between two granules then the future one is chosen.

Length of intervals in granules:
Once the notion of ‘working day’ is defined by means of granules, it is quite natural to measure
intervals in terms of the length of a ‘working day’. For example, you may want to say that
‘these four hours are half a working day’. This is not much of a problem, if the granules all
have the same length. If not, it depends on the position of the interval. ‘Half a working day’
may mean something different if I measure it on a Monday where I work 8 hours, or on a
Friday, where I work, say, only 4 hours. Even worse, what if the interval lies on a weekend, and
therefore outside any granules. It may still make sense to say that ‘these four hours are half a
working day’, if I consider to shift the interval into a working day.

The function lengthG(t1, t2) measures the distance between t1 and t2 in terms of granules. It
deals with the problem that part of the interval [t1, t2[ or even the whole interval may lie outside
any granule. The basic idea is to split the interval [t1, t2[ according to the given partitioning,
determine for each subinterval the closest granule, and measure the subinterval in terms of this
closest granule. The arrows in the next picture show which granules are used to measure the
different parts of the interval.
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Definition 3.2.11 (Length in Granules) Let P be a partitioning which is labelled with a
labelling L. The function P.lengthG(t1, t2) measures the distance between t1 and t2 in terms of
granules as follows:

Step 1: The interval [t1, t2[ is partitioned into subintervals s1, . . . such that the subinterval
boundaries are aligned with the partition boundaries of P .

Step 2: The middle point ti for each subinterval si is computed, and the coordinates [l,m]
of the granule closest to ti is determined by the closestGranuleT function (Def. 3.2.10). Let
li be the length of the non-gap partitions in this granule.

Step 3: The relative lengths |si|/li are added together to give the result of P.lengthG(t1, t2).
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The lengthG function yields intuitively correct results if the interval [t1, t2[ is a subset of the
gap or non-gap partitions of a granule. For intervals lying outside any granule, it is questionable
whether the closest granule is the right reference granule. It may always be the next future
granule, or it may be a very particular reference granule. These options are not built-in in
PartLib, but they can easily be programmed using its interface functions.

3.2.4 Relations Between Partitionings

PartLib supports four different relations between partitionings.

Definition 3.2.12 (Relations Between Partitionings) Let P and Q be two partitionings.
We define the following four relations between P and Q.

1. P has shorter partitions than Q if the largest partition of P is shorter than the shortest
partition of Q (P is finer grained than Q.)

2. P has shorter granules than Q if the largest granule of P is shorter than the shortest
granule of Q.

3. P includes the partitions of Q if each partition of P is a subset of a partition of Q.

4. P includes the granules of Q if each granule of P is a subset of a granule of Q.

These four relations are easy to define, but difficult to compute because for algorithmic
partitionings it is not possible to compute the minimal or maximal partition length. Therefore
PartLib uses an approximation. It generates random time points and computes the partition
and granule length for these random points and certain points in their neighbourhood. How
many points in the neighbourhood are to be checked is controlled by the ‘repetition’ parameter.
For example, for the partitioning ‘month’ one would check 12 subsequent months for each
random time point. This way, the ‘local structure’ of the partitionings is checked completely,
whereas only finite samples check the ‘global structure’, in the ‘month’ example, the leap years.

The relations ‘includes the partitions of’ and ‘includes the granules of’ are also checked with
finitely many randomly generated time points and their neighbourhoods.

3.3 Date Formats

In the subsequent section various notions are introduced in a recursive way: date formats, shifts,
durations, and different types of partitionings.

We start with the definition of date formats.

Definition 3.3.1 (Date Format) A date format DF is a sequence P0/ . . . /Pk of partition-
ings.

A date in a date format DF is a sequence d0/ . . . /dn of integers with n ≤ k.

In principle, the date formats can consist of arbitrary partitionings. In most calendar
systems there are, however, a few particular date formats. The Gregorian calendar, for example,
has the two date formats year/month/day/hour/minute/second (where the names stand for the
corresponding partitions), and year/week/day/hour/minute/second.
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There are, however, two big differences between common date formats and the particular
interpretation of the numbers in the dates we need in this chapter. Consider the date format
year/month/day/hour/minute/second. The first difference is the interpretation of the year.
The number 30, for example, for the ‘year’ part in the date format is the coordinate of the
year. If the year 1970 has coordinate 0 then ‘30’ is the coordinate of the year 2000. The next
difference has to do with the way we count months, weeks and days. Usually these are counted
from 1. That means, January is month 1, the first week in a year is week 1, and Monday is day
1. In contrast to this, we count hours, minutes and seconds from 0. The first hour in a day is
hour 0, the first minute in an hour is minute 0 etc. Our interpretation of date formats like the
above is that months, days etc. denote shifts, instead of absolute values. In this interpretation
the date 30/1 denotes a shift of 1 month from the beginning of the year with coordinate 30 (i.e.
the year 2000). This is the beginning of February. Thus, all time units are counted from 0.

By interpreting the numbers as shifts, there is no problem to deal with arbitrary big num-
bers, and even with negative numbers. The date 30/200/-50, for example, in the date format
year/month/day/hour/minute/second denotes a time point t which is obtained from the be-
ginning s of the year 2000 (30 years after 1970), by shifting s 200 months into the future, and
from there 50 days into the past.

With these ideas in mind we can define a function date, which turns a time point into a
date of the given format.

Definition 3.3.2 (date) Let DF = P0/ . . . /Pk be a date format, and t a time point.
Let d0/ . . . /dk DF.date(t) where

d0 P0.pc(t) and
ti Pi.sopT (Pi−1.sopT (t)) and
di bPi.lengthP (ti, t)c for i = 1 . . . k.

d0 is the absolute coordinate of the P0 partition containing t. t1 is the starting point of the P1

partition containing t. The di are then calculated as Pi increments compared to ti where ti is
the beginning of the pi partition containing t.

For example, in the date format year/week/day/... d0 is the coordinate of the year containing
t. t1 is the beginning of the first week overlapping with the year d0. d1 is then the integer part
of the number of weeks between t1 and t. t2 is the beginning of the first day in the week
containing t etc.

The date function is exact only if the last partitioning Pk corresponds to the integers of the
time axis, usually seconds, or fractions of a second.

It is also possible to turn a date d = d0/ . . . /dn in a date format DF = P0/ . . . /Pk into a time
point. The function T imePoint(d) gives the dates a precise semantics.

Definition 3.3.3 (Time Point DF.T imePoint(d)) Let DF = P0/ . . . /Pk be a date format
and let d = d0/ . . . /dn be a date in this format. The corresponding time point is defined:

DF.T imePoint(d) tn where
t0 P0.sopC(d0) and
ti Pi.sopC(Pi.pc(ti−1) + di) for i = 1 . . . n.

In the date format year/week/day/..., for example, t0 is the beginning of the year with coor-
dinate d0. week.pc(t0) is the coordinate of the week containing t0. week.pc(t0) + d1 is the
coordinate of the week which is d1 weeks into the year. t1 = week.sopC(week.pc(t0) + d1) is
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the beginning of this week. t2 is then the beginning of the day which is d2 days into this week
etc. Finally, tk is the coordinate of the second denoted by the given date.

By induction on the length of a date, one can prove that turning a time point t into a date
and the date back into a time point then we end up at the same time point t.

Proposition 3.3.4 For a date format DF whose last partitioning corresponds to the integers
in the time axis, and a time point t:

DF.T imePoint(DF.date(t)) = t.

The other direction, DF.date(DF.T imePoint(d)) = d. need not hold, because there may
be quite different dates which represent the same time point. For example, February 1st 2000
may be represented by 30/1/0 or by 30/0/31.

3.4 Shift Functions

Notions like ‘in two weeks time’ or ‘three years from now’ etc. denote time shifts. They can be
realized by a function which maps a time point t to a time point t′ such that t′ − t is just the
required distance of ‘two weeks’ or ‘three years’ etc.

3.4.1 Length Oriented Shift Function

We define a function P.shiftPL(t,m) which shifts a time point t to a time point t′ =
P.shiftPL(t,m) such that P.lengthP (t′− t) = m. (‘shiftPL’ stands for ‘shift Partitions Length
oriented’, in contrast to ‘shiftPD’, which stands for ‘shift Partitions Date oriented’).

Example 3.4.1 (for shiftPL) The algorithm for this function can be best understood by the
following example:

-? ?

� - � -
2 6 73 4 5

t t′

f1
f2

Suppose we want to shift the time point t by 3.5 partitions. First, the relative distance f1 between
t and the end of the partition containing t is measured. Suppose it is 0.75. That means from
the end of the partition we need to move forward still 2.75 partitions. We can move forward 2
partitions by just adding the 2 to the coordinate 4. We end up at the start of partition 6. From
there we need to move forward 0.75 partitions, which is just 75% of the length of partition 6.

Definition 3.4.2 (shiftPL) Let P be a partitioning, t a time point, and m a real number.
If m ≥ 0 then

shiftPL(t)







t+m ∗ lopT (t) if t+m · lopT (t) ≤ eopT (t)
sopC(pc(t) + bmc) + (m− bmc) · lopC(pc(t) + bmc) if sopT (t) = t
sopC(pc(t) + bm′c + 1)
+ (m−m′) · lopC(pc(t) + bm′c + 1) otherwise
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where m′ m− (eopT (t) − t)/lopT (t).
If m < 0 then

shiftPL(t)







t+m ∗ lopT (t) if sopT (t) ≤ t+m · lopT (t)
sopC(pc(t) + bmc) + (m− bmc) · lopC(pc(t) + bmc − 1) if sopT (t) = t
sopC(pc(t) + bm′c)
+(m−m′) · lopC(pc(t) + bm′c − 1) otherwise

where m′ m+ (t− sopT (t))/lopT (t).

It is not so difficult to see that the shiftPL function shifts a time point t by m partitions to
a time point t′ such that the distance t′ − t is just m.

Proposition 3.4.3 (Soundness of shiftPL) For any time point t:
shiftPL(t,m)− t = lengthP (t, shiftPL(t,m)) = m

Furthermore
shiftPL(shiftPL(t,m1),m2) = shiftPL(t,m1 +m2)

The proof is technical and gives no new insight. It is therefore omitted.

Unfortunately the shiftPL function does not always give intuitive results. Suppose the time
point t is noon at March, 15th, and we want to shift t by 1 month. March has 31 days. Therefore
the distance to the end of March is exactly 0.5 months. Thus, we need to move exactly 0.5
times the length of April into April. April has 30 days. 0.5 times its length is exactly 14 days.
Thus, we end up at midnight April, 14th.

This is not what one would usually expect. We would expect to shift t to the same time
of the day as we started with. With the above definition of shiftPL this is happens only by
chance, or when the partitions have the same length.

3.4.2 Date Oriented Shift Function

PartLib provides another shift function, shiftPD which avoids the above problems and gives
more intuitive results. The idea is to do the calculations not on the level of reference time
points, but on the level of dates. If, for example, t represents 2004/1/15, then ‘in one month
time’ usually means 2004/2/15. That means the reference time must be turned into a date,
the date must be manipulated, and then the manipulated date is turned back into a reference
time. This is quite straight forward if the partitioning represents a basic time unit of a calendar
system (year, month, week, day etc.), and this calendar system has a date format where the
time unit occurs. In the Gregorian calendar this is the case, even for the time unit ‘weeks’. ‘In
two weeks time’ requires to turn the reference time into a date format which uses weeks. The
corresponding date format uses the counting of weeks in the year (ISO 8601). For example,
2004/42/1 means Tuesday1 in week 42 in the year 2004. In two weeks time would then be
2004/45/1.

The next problem is to deal with fractional shifts. How can one implement,
say, ‘in 3.5 months time’? The idea is as follows: suppose the date format
is year/month/day/hour/minute/second, and the reference time corresponds to, say,
34/1/20/10/5/1. First we make a shift by three months and we end up at 34/4/20/10/5/1.

1According to ISO 8601, the first day in a week is Monday. In the standard notation this is day number 1.

Since we count days from 0, Monday is day 0 and Tuesday is day 1.
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This is a day in May. From the date format we take the information that the next finer grained
time unit is ‘day’. May has 31 days. 0.5 ∗ 31 = 15.5. Therefore we need to shift the date first
by 15 days, and we end up at 34/4/34/10/5/1. There is still a remaining shift of half a day.
The next finer grained time unit is hour. One day has 24 hours. 0.5 ∗ 24 = 12. Thus, the last
date is shifted by 12 hours, and the final date is now 34/4/34/22/5/1. This is turned back into
a reference time.

This version of ‘shift’ gives more intuitive results. The drawback is that shiftPD(t,m)−t =
lengthP (t, shiftPD(t,m)) = m is usually no longer true. shiftPD has in fact not much to do
with lengthP .

The concrete definition of shiftPD depends on the partitioning type. Therefore, we give
them in the corresponding sections below (see Def. 3.7.5).

3.4.3 The Shift Function for Granules

A statement like ‘we must move this task by three working days’ refers to a shift of time points
which is measured in granules. PartLib contains a ‘shiftGranules’ function, which does just
this, it shifts time points by m granules, where m can be an integer or a fractional positive or
negative value.

First of all, this function does not shift time points between two granules. I found no
intuitive way to measure such a shift. The time point to be shifted must therefore be within a
granule. It can, however, also be in a gap partition within a granule. The result may, however,
in this case be quite unintuitive.

A formal definition of the algorithm, with all its special cases, is quite complex. Therefore
we only explain it with an example, and omit the formal definition.

Example 3.4.4 (for shifting granules) Suppose we want to shift the time point t in the
picture below by m = 1.5 granules.

? ? ?

� - � -

t t1 t2

...

granule 1 granule2

Step 1: we determine the target granule into which the time point is to be shifted by moving
from the granule containing t bmc granules forward. In this example, it is just one granule
further.

Step 2: we determine the position t1 in the target granule which corresponds to a shift of
bmc granules, in the example 1 granule. This is done in two steps:

Step 2a: we count the number of non-gap partitions from the start of the granule 1 until the
partition containing t. In the example, t is in the third non-gap partition. Therefore t1 must be
in the third non-gap partition of the target granule. Let us call this the target partition.

Step 2b: we measure the relative distance d between the start of the partition containing t,
and t itself, and move t1 forward from the start of the target partition by d times the length of
the target partition.

Step 3: in the example we must now move t1 forward another 0.5 granule length. To this
end we count the number n of non-gap partitions in the target granule. In the example it is
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n = 8. 8 · 0.5 = 4. Therefore we must move t1 forward by 4 non-gap partitions. This can be
done by first skipping 3 non-gap partitions and then moving d times the length of the new target
partition into it. We end up at position t2.

Shifts by negative granule numbers are analogous.

3.5 Durations

The partitionings are the mathematical model of periodic time units, such as years, months etc.
This offers the possibility to define durations. A duration may for example be ‘3 months + 2
weeks’. Months and weeks are represented as partitionings, and 3 and 2 denote the number of
partitions in these partitionings. The numbers need not be integers, but can be arbitrary real
numbers.

A duration can be interpreted as the length of an interval. In this case the numbers should
not be negative. A duration, however, can also be interpreted as a time shift. In this inter-
pretation negative numbers make perfectly sense. d = (−2 week), (−3 month), for example,
denotes a backward shift of 2 weeks followed by a backward shift of 3 months.

Definition 3.5.1 (Duration) A duration d = (d0, P0), . . . , (dk, Pk) is a list of pairs where the
di are real numbers and the Pi are partitionings.

If a duration is interpreted as a shift of a time point, it may be necessary to turn the shift
around, in the backwards direction. Therefore the inverse of a duration is defined:

−d (−dk, Pk), . . . , (−d0, P0)

For example, if d = (3 month), (2 week) then −d = (−2 week), (−3 month).

In Def. 3.7.5 below a shift function for algorithmic partitionings is introduced. It shifts a
time point by a number of partitions in a given partitioning. Any such shift function can be
lifted to operate on durations.

Definition 3.5.2 (shift for Durations) Given a function P.shift(t,m), which shifts a time
point t by m partitions of the partitioning P , we define a corresponding shift function for
durations:

D.shift(t) Pk.shift(. . . P1.shift(P0.shift(t, d0), d1) . . . , dk)

where t is a time point and D = (d0, P0), . . . , (dk, Pk) is a duration.

For example, if D = (3 month), (2 week) then

D.shift(t) = week.shift(month.shift(t, 3), 2),

i.e. t is shifted by 3 months first, and the resulting time point is then shifted by 2 weeks.

3.6 Global and Local Reference Time

The global reference time GRT corresponds directly to UTC time. With the introduction of a
local reference time LRT for each partitioning it is possible to deal with leap seconds and time
zones. The purpose is that the algorithms for the different partitions can just use the local
reference time, and do not need to deal with leap seconds and time zones.
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The transition from GRT to LRT is done in two steps. The first step deals with the leap
seconds and the second step deals with time zones. The transition from LRT to GRT goes the
other way round.

A correction function for leap seconds is defined first. The function lsG(t) defined below
(‘G’ for ‘global’) computes the accumulated leap seconds until the global reference time point
t. The function lsL(t) (‘L’ for ‘local’) also computes the accumulated leap seconds, but until
the ‘local’ reference time point t. lsG(t) is used for the transition from GRT to LRT, whereas
lsL(t) is used for the other direction. Unfortunately, it is computationally difficult to derive
one version from the other. It is much more efficient when both functions are generated from
a table of leap second corrections. (see http://www.ptb.de/de/org/4/43/432/ssec.htm).

Definition 3.6.1 (Correction Function for Leap Seconds ) If t is a time point in the
global reference time then lsG(t) computes the accumulated number of leap seconds until t.

If t is a time point in a reference time where the leap second corrections have already been
done then lsL(t) computes the accumulated number of leap seconds until t.

Example 3.6.2 (Correction Function for Leap Seconds) The first 10 leap seconds were
introduced for the last minute in 1971. The reference time for the regular end of this minute
is 63072000. Therefore lsG(t) = 0 for all t ≤ 63072000 and lsG(63072000 + n) = n for
0 ≤ n ≤ 10.

lsG(t) remains constant with value 10 from t = 63072010 until t = 94694410.
lsG(94694411) = 11, because another leap second was introduced in the last minute of 1972.

lsL(t) = 0 for all t ≤ 63072000 as well, but lsL(63072001) = 10. lsL(94694400) = 10 and
lsL(94694401) = 11 etc.

Time zones are characterized by an offset between the local time and the time at the 0-
meridian. For example, if at the 0-meridian it is 0 o’clock then the offset to the time zone of
Germany is 1 hour, i.e. in Germany it is already 1 am. The time zone offset is in this case
+3600 seconds, and the local reference time is 3600 seconds ahead of the global reference time.

Definition 3.6.3 (Transition between GRT and LRT) Given the correction functions
lsG and lsL for leap seconds (Def. 3.6.1) and a time zone offset tzo, we define

LRT (t) t− lsG(t) + tzo.

for a global reference time t. LRT (t) computes the local reference time from the global reference
time.

The function

GRT (t) t− tzo+ lsL(t)

computes the global reference time from the local reference time.

3.7 Specification of Partitionings

A partitioning is usually an infinite sequence of intervals, and these intervals need not be of the
same length. Therefore it is not possible to specify such a partitioning by just enumerating its
partitions.
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Three basically different ways to specify partitionings are presented, and it is shown how a
specification corresponds to a partitioning and an associated coordinate mapping. Since parti-
tions themselves are not explicitly represented in PartLib, but only time points and coordinates,
it is sufficient to give for each type of specification of a partitioning P corresponding definitions
of the ‘start of partition’ function sopC(i) and the ‘partition coordinate’ function pc(t). sopC(i)
maps a coordinate i to the starting point of the corresponding partition and pc(t) maps a time
point t to the coordinate of the partition containing t. The two functions are fundamental for
various service functions.

The ‘start of partition’ function determines the partitioning completely because

pi [sopC(i), sopC(i+ 1)[.

The ‘partition coordinate’ function pc(t) is then derivable:

P.pc(t) min
i

(P.sopC(i) ≤ t < P.sopC(i)). (3.1)

This way, however, pc(t) can only be computed through search, which is extremely inefficient.
Therefore we give a more efficient definition of pc(t) in each case. In most cases the algorithm
for pc(t) tries at first a good guess i′ for the coordinate, and then searches in the neighbourhood
of i′ until the condition (3.1) is satisfied.

3.7.1 Algorithmic Partitionings

The first type of partitionings is mainly used for modelling the basic time units of calendar
systems, years, months etc. The specification consists of an average length of the partitions, a
correction function and an offset against time point 0.

Definition 3.7.1 (Specification of Algorithmic Partitionings)
Algorithmic partitionings are specified by a the components (avl, po, cf,DF ) where

1. avl is the average length of a partition, given in the finest time unit;

2. po is an offset for the partition with coordinate 0, also given in the finest time unit,

3. cf(i) is a a correction function, and

4. DF is a date format. The date format is needed for the shiftPD function.

The correction function cf(i) computes for a partition with coordinate i the difference be-
tween the reference time of the beginning of the partition with coordinate i, and the estimated
beginning i · avl.

Definition 3.7.2 (The Function sopC for Algorithmic Partitionings)
The algorithmic partitioning P which is specified by the triple (avl, po, cf) (Def. 3.7.1) has the
following ‘start of partition’ function:

P.sopC(i) GRT (i · avl + cf(i) + po).

Partitionings whose partitions have constant length in the local reference time only need a
correction function that returns the constant 0. This is the case for seconds, minutes, and
hours. It is no longer the case for days if daylight saving time regulations are taken into
account.
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Example 3.7.3 (Basic Time Units for the Gregorian Calendar)
The specification of the basic time units as algorithmic partitionings for the Gregorian Calendar
are:

second: average length: 1, offset: 0, correction function: λ(n)0.

minute: average length: 60, offset: 0, correction function: λ(n)0.

hour: average length: 3600, offset: 0, correction function: λ(n)0.

day: average length: 86400, offset: 0, correction function: −3600 · h if the day i is during the
daylight saving time period, 0 otherwise.
The number h is usually 1 (for 1 hour). Exceptions are, for example, the year 1947 in Germany,
where in the night of 1947/5/11 the clock was set forward a second time by 1 hour such that
the offset against standard time was 2 hours.

week: average length: 604800, offset -259200, correction function: again, this function has to
return an offset of −3600 · h for the weeks during the daylight saving time periods.

month: average length: 2592000 (30 days), offset 0, correction function: this function has to
deal with the different length of the months and the daylight saving time regulations.

year: average length: 31536000 (365 days), offset 0, correction function: this function has to
deal with leap years only. The effects of daylight saving time regulations are averaged out over
the year.

The ‘partition coordinate’ function pc(t) maps a reference time point t to the coordinate
of the partition containing t. For algorithmic partitionings this function is more complicated
than sopC(i) because it needs to use the correction function cf(i), which takes a coordinate
as input, and this is the coordinate which is yet to be computed. Therefore the basic idea
for the algorithm is to use a fixed point iteration which calls sopC(i) for guessed coordinates
until the resulting time point matches the given time point. The algorithm is described rather
informally, but the key steps should become clear.

Definition 3.7.4 (The Function pc(t) for Algorithmic Partitionings) Let t be a local
reference time point for the given partitioning P = (avl, po, cf). The algorithm for pc(i) starts
with a first guess i t/avl for the coordinate of the partition containing t. Since this guess is
wrong in general, there is a first iteration which brings i closer to the correct solution:

Starting with an initial value for i′, a fixed point iteration is performed until i′ falls under
a certain threshold2: Let r sopC(i). If r ≥ t let r′ sopC(i− 1) and compute i′ (r − t)/(r − r′)
to get a better estimate i i − i′ for the correct coordinate. If r < t, i is increased in a similar
way3.

The second phase of the algorithm is simpler: the correct coordinate is searched by just
decreasing or increasing i by 1, until sopC(i) ≤ t < sopC(i + 1) holds. The result of the
function pc(t) is then the coordinate i for which this condition holds.

During the first phase, the algorithm performs big jumps to get very close to the correct
solution. In the second phase it does the fine tuning by searching in the neighbourhood of the
coordinate which was computed in the first phase. This phase guarantees that the result is

2The threshold in the implementation is 3. The initial value for i
′ can be any number greater than the

threshold. i
′ = 10 is fine.

3This version of the fixed point iteration is slightly simplified. It can happen that i
′ oscillates around the

correct i. If this happens, the iteration is immediately stopped.
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correct, i.e. it satisfies the condition (3.1) for pc(t). The algorithm is very efficient even if the
average length of the partitions is quite different to their individual length.

We can now define the date oriented shift function for algorithmic partitionings. The idea
of it was already explained in Section 3.4.2.

Definition 3.7.5 (Date Oriented shiftPD for Algorithmic Partitionings)
The function P.shiftPD(t,m) where t is a GRT time point, m is a real number and P is an
algorithmic partitioning (sec. 3.7.1) with date format DF = P0, . . . performs the following steps:

1. Let d = d1/ . . . /dk DF.date(t) (Def. 3.3.2);

2. i, d and m are now modified destructively:
while(m 6= 0 and i ≤ k)

(a) di di + bmc
(b) if(i < k)

t DF.T imePoint(d) (Def. 3.3.3)
m (m− bmc) · Pi+1.lengthP (Pi.sopT (t), Pi.eopT (t))
i i+ 1.

3. the result of P.shiftPD(t,m) is now DF.T imePoint(d).

Although the shiftPD function gives intuitive results in most cases, it has a number of draw-
backs. One of them was already mentioned: shiftPD has not much to do with the lengthP
function. Measuring the shifted distance with the lengthP function does usually not give the
expected results.

Another drawback is that shifting a time point t first by m1 partitions, and then by m2

partitions may not be the same as shifting t by m1 +m2 partitions. This holds only if m1 and
m2 are integers. A counter example for the case that m1 and m2 are factional values is:

Example 3.7.6 (Counterexample) Suppose we want to shift the time point 0 twice by 1.5
months. The date for 0 is 0/0/0. Since February 1970 has 28 days, a shift by 1.5 months ends
up at 0/1/14. Another shift by 1 month yields 0/2/14. This is in March. March has 31 days.
Therefore a shift by 0.5 months means a shift by 15.5 days. We end up at 0/2/29/12. This is
different to the result of a direct shift by 3 months: 0/3/0.

Nevertheless, the shiftPD is usually preferable. A striking example which illustrates the
difference between shiftPD and shiftPL is such a simple thing as a shift by 1 day. If it is 5 pm,
a shift by 1 day should end up at 5 pm next day. This is the case with the shiftPD function,
even if during the night, standard time has been changed to daylight savings time. In contrast,
the shiftPL function yields a very odd result in this case.

Other periodic temporal notions which can be modelled by algorithmic partitionings are,
for example, sunrises and sunsets, moon phases, the church year which starts with Easter,
etc. The specification for the western version of Easter would be: average length: 31536000
(1 year), offset: 7516800 (1970/3/29) and a correction function which actually computes the
precise date of Easter (see for example [16]). The specification of all these partitionings must
be accompanied by an appropriate shiftPD function.
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The specification of the algorithmic partitionings requires the correction function cf(i),
and this is a piece of code. Therefore algorithmic partitionings are usually hard coded in the
application program. This is different for the remaining three partitioning types. They can
be specified purely symbolically. Therefore one can read their specification from a file or a
database at run time. This makes the system very flexible.

3.7.2 Duration Partitionings

Duration partitionings are specified by an anchor time and a sequence of ‘durations’. For
example, I could define ‘my weekend’ as a duration partitioning with anchor time 2004/7/23, 4
pm (Friday July, 23rd, 2004, 4 pm) and durations: (‘8 hour + 2 day’, ‘4 day + 16 hour’). The
first interval would be labelled ‘weekend’, and the second interval would be labelled ‘gap’.

Definition 3.7.7 (Specification of a Duration Partitioning)
A duration partitioning is specified by the tuple (tA, (D0 . . . Dn−1)) where

1. tA is the anchor time point (in the global reference time),

2. D0 . . .Dn−1 is a list of durations (Def. 3.5.1).

The coordinates for a duration partitioning are such that the first partition after the anchor
time point has coordinate 0. The next picture illustrates the situation.

-
tA tA +D0 tA +D0 +D1tA −Dn−1

0 1 2-1

The durations in the specification of a duration partitioning can be very irregular. Therefore
there is not much of a chance to realize a ‘start of partition’ function sopC other than by just
looping i times over D0 . . . Dn−1.

Definition 3.7.8 (The Function sopC for Duration Partitionings)
The duration partitioning P which is specified by the data (tA, (D0 . . . Dn−1)) (Def. 3.7.7) has
the following ‘start of partition’ function:

sopC(i) ti

where ti is determined by shifting the anchor time point tA i times:
Let t0 tA.
if(i ≥ 0): for j = 1, . . . , i: tj D(j−1) mod n

.shift(tj−1). (Def. 3.5.2)

if(i < 0): for j = 1, . . . ,−i: tj −D(n−j) mod n.shift(tj−1).

Notice that the shift function for durations uses the shiftPD function (Sec. 3.4.1). Because
two shifts by m1 and m2 partitions are not necessarily the same as one shift by m1 + m2

partitions (Ex. 3.7.6) , this has an effect on the meaning of duration partitionings. A duration
partitioning with a duration ‘1.5 month + 1.5 month’ is not the same as a duration partitioning
with a duration ‘3 month’.
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Because there is no further assumption about the durations in the specification of duration
partitionings, there is not much chance to optimize the ‘partition coordinate’ function pc either.
Therefore the definition (3.1) is taken as algorithm for pc.

The shiftPD function cannot be optimized either. It also loops over the duration
D0 . . . Dn−1 and calls the shift function for durations as often as necessary.

Definition 3.7.9 (shiftPD for Duration Partitionings)
Let P = (tA, (D0 . . .Dn−1)) be a duration partitioning. The P.shiftPD(t,m) function for a
time point t and a real number m performs the following steps:

Let (k remainder l) m/n.

If m ≥ 0:

if (m ≥ 1): for i = 0, . . . , bmc − 1 let t Di mod n.shift(t)

let t t+ (m− bmc) · (Dbmc mod n).shift(t) − t).

If m < 0:

for i = 0, . . . ,−bmc − 1 let t −Dn−1−(i mod n).shift(t)

let t t+ (m− bmc) · (t−D(bmc mod n).shift(t).

The result of P.shift(t,m) is now the modified t.

3.7.3 Regular Partitionings

A special case of a duration partitioning is when all durations are of the form ‘n P ’ and the
partitioning P is the same in all durations. For this case there are more efficient ways than
looping over lists of durations. Therefore, and because many partitionings are of this type, it
makes sense to treat them in a special way.

A typical example is the notion of a semester at a university. In the Munich case, the
dates could be: anchor time: 970358431 (October 2000). The shifts are: 6 months (with label
‘winter semester’) and 6 months (with label ‘summer semester’). This defines a partitioning
with partition 0 starting at the anchor time, and then extending into the past and the future.
The partition with coordinate 0 in this example is the winter semester 2000/2001.

Definition 3.7.10 (Specification of Regular Partitionings) A regular partitioning is
specified by the triple (tA, U, (s0 . . . sn−1)) where

1. tA is the anchor time point (in the global reference time)

2. U is a partitioning, the time unit for the shifts,

3. s0 . . . sn−1 is a list of real numbers, the shifts.

The partitions of regular partitionings are obtained by shifting the anchor point tA first by s0
time units U , and then by s+ 0 + s1 time units U etc.

-
tA

0 1 2-1

tA − sn−1U tA + s0U tA + (s0 + s1)U
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This picture illustrates a subtle, but important difference to duration partitionings. The parti-
tion boundaries for duration partitions are computed by successively applying the shift function
for the corresponding durations. The shift function for durations uses internally the date ori-
ented shiftPD function, for which shiftPD(shiftPD(t,m1),m2) 6= shiftPD(t,m1 +m2) may
be the case.

In contrast to this the partition boundaries for regular partitions are computed by first
adding the shifts together, and then shifting the anchor time in one single step. Both versions
yield the same results for integer shifts. This is not guaranteed if the shifts are fractional.

Definition 3.7.11 () The regular partitioning P which is specified by the data
(tA, U, (s0 . . . sn−1)) (Def. 3.7.10) has the following ‘start of partition’ function:

sopC(i) U.shiftPD(tA, s(i))

where s(i) k · Σn−1
j=0 sj +

{
Σl

j=0sj if i ≥ 0

Σl−1
j=0sj otherwise

and (k remainder l) i/n.

Example 3.7.12 Let the anchor date be 2000/1, and let the shifts be 3,4,5 months.

sopC(5) is calculated as follows:
5/3 = 1 remainder 2.
i′ = 1 · (3 + 4 + 5) + (3 + 4) = 19.
This means 2000/1 is to be shifted by 19 month, and we end up at the beginning of 2001/7.

sopC(−5) is calculated as follows:
−5/3 = −2 remainder 1.
i′ = −2 · (3 + 4 + 5) + 3 = −21.
This means 2000/1 is to be shifted by -21 month, and we end up at the beginning of 1998/3.

The ‘partition coordinate’ function pc turns the reference time into a coordinate i of the time
unit U and then uses the difference between i and the coordinate of the anchor time to compute
the number of shifts which are necessary to get from the anchor time to the reference time.
This is the coordinate of the partition containing t.

Definition 3.7.13 (The Function pc for Regular Partitionings)
Let (tA, U, (s0 . . . sn−1)) be the specification of a regular partitioning. Let t be a local reference
time point.
Let i U.pc(t) − U.pc(tA) and (k remainder l) i/Σn−1

j=0 sj .

Let P.pc(t) k · n+ maxi≥0((Σ
i
j=0sj) ≤ l).

Example 3.7.14 Let the anchor date be 2000/1, and let the shifts be 3.5,4.5,5.5 months.
Let t be such that i U.pc(t) − U.pc(tA) = 21.
k remainder l = i/(3.5 + 4.5 + 5.5) = 1 remainder 7.5.
P.pc(t) = 1 · 3 + 1 = 4. This is the partition between month 17 and 21.5.

Now let t be such that i U.pc(t) − U.pc(tA) = −21.
k remainder l = −21/13.5 = −2 remainder 8.
P.pc(t) = −2 · 3 + 2 = −4.
This is the partition between month -23.5 and -19.
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shiftPD:
The shift function for regular partitionings is explained informally with the following example:
Suppose we have a specification of trimesters in the following way: Anchor date: 2000/10,
trimesters: 3,4,5 months.

We want to shift a time point t by 8.5 trimesters. The following steps are necessary

1. 8/3 = 2 remainder 2. That means, first a shift of 2 full cycles of 3+4+5 = 12 months is
performed, and we end up at a time point t1.

2. The index i′ of the partition containing t1 is computed, suppose it is 1, i.e. t1 lies in
the first trimester. In order to get two trimesters further, a shift of 3 + 4 = 7 months is
necessary, and we end up at time point t2 which is in the third trimester.

3. The third trimester has 5 month. 5 · 0.5 = 2.5, i.e. we shift t2 by another 2.5 month.

Definition 3.7.15 (shiftPD for Regular Partitionings)
Let P = (tA, U, (s0, . . . , sn−1)) be a regular partitioning (Def. 3.7.10). The function
P.shiftPD(t,m) performs the following steps:

1. Let (k remainder l) bmc/n
Let t1 U.shiftPD(t, k · Σn−1

j=0 sj).

2. Let i′ tP1 .
Let t2 U.shiftPD(t,Σl−1

j=0s(i′+j) mod n).

3. Return U.shiftPD(t2, (m− bmc) · s(i′+l) mod n).

Further examples for periodic temporal notions which can be encoded as regular partitionings
are decades, centuries, the British financial year which starts April 1st, the dates of a particular
lecture, which is every week at the same time etc.

3.7.4 Date Partitionings

Date Partitionings are specified by providing the boundaries of the partitions as concrete dates.
An example could be the dates of the Time conferences: 1994/5/4 Time94 1994/5/5

gap 1995/4/26 Time95 1995/4/27 gap 1996/5/19 Time96 1996/5/21 gap 1997/5/10 Time97
1997/5/12 gap 1998/5/16 Time98 1998/5/18 gap 1999/5/1 Time99 1999/5/3 gap 2000/7/7
Time00 2000/7/10 gap 2001/6/14 Time01 2001/6/17 gap 2002/7/7 Time02 2002/7/10 gap
2003/7/8 Time03 2003/7/11 gap 2004/7/1 Time04 2004/7/4.

Another example could be the seasons: 2000/3/21 spring 2000/6/21 summer 2000/9/23
autumn 2000/12/21 winter 2001/3/21.

In the introduction I explained the trick how to turn these finitely many dates into an
infinite partitioning: the differences between two subsequent dates are turned into durations.
The durations are then used to extrapolate the partitioning into the infinity.

The seasons example above shows that this makes really sense. The time difference between
the dates can be expressed as durations ‘3 month’ for spring, ‘3 month + 2 day’ for summer, ‘3
month - 2 day’ for autumn and ‘3 month’ for winter. The extrapolation of this now yields the
seasons for the whole time line. This works even for the leap years, in which winter is one day
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longer. This is covered by the duration ‘3 month’ for winter, which is one day longer in leap
years.

Definition 3.7.16 (Specification of Date Partitionings) A date partitioning is specified
as a list dates d0, . . . , dn in a date format DF .

The dates can very easily be turned into durations: Suppose the date format is DF P0, . . ..
The difference between two dates di = di,0/di,1/ . . . and di+1 = di+1,0/di+1,1/ . . . yields the
following duration: (di+1,0 − di,0, P0), (di+1,1 − di,1, P1), . . ., and this is sufficient to specify a
duration partitioning. The anchor time is given by DF.timePoint(d0).

Notice that the coordinate calculation for duration partitionings which applies the shift
function for durations, and this uses the date oriented shift function for partitionings, undos
the above subtractions. Therefore it reconstructs exactly the original dates.

3.7.5 Folded Partitionings

Another basic type of partitionings are folded partitionings. We explained already the bus
timetable example. The bus timetable changes from season to season. The best way to specify
this, would be to specify the seasons first, and for each season to specify the particular bus
timetable. The ‘folded partitioning’ specification operation takes as input a frame partitioning,
for example the seasons, and a sequence of component partitionings, for example the four
different bus timetables. It maps the component partitionings automatically to the right frame
partition, such that from the outside the whole thing looks like an ordinary partitioning.

Definition 3.7.17 (Folded Partitioning) A folded partitioning P is specified by a frame par-
titioning F and a finite list P0, . . . , Pn−1 of component partitionings. The component parti-
tionings must meet the following condition:
The partitions of the component partitionings must be aligned with the partitions of the frame
partition. That means, for i = 0, . . . , n−1, the start of each frame partition must be the start of
a component partition in Pi, and the end of each frame partition must be the end of a component
partition in Pi;

A folded partitioning is called constant iff each frame partition with coordinate i contains
the same number of component partitions as the frame partition with coordinate imodn.

The condition is in principle not necessary, but if it is not met, it complicates the algorithms
enormously. It excludes, for example, that ‘week’ can be used as component partitioning when
the frame partition is ‘year’. ‘month’, however, can be used because years start and end with
a month.

The figure below gives an idea how the coordinates for the folded partitioning are obtained
from the coordinates of the frame partitioning and the component partitionings.
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The algorithms for the ‘partition coordinate’ function pc and for the ‘start of partition’ function
sopC are much more efficient if the partitioning is constant, i.e. the number of component
partitions per frame partition of each component partitioning Pi does not change over time. In
this case it is possible to compute the total number of component partitions up to the beginning
of a given frame partition by a few multiplications and additions. If the partitioning is not
constant, one must iterate through all frame partitions and add the corresponding numbers
together.

The bus timetable example is typical for a folded partitioning which is not constant. This
is due to the leap years. Since the winter is one day longer in a leap year, the bus timetable
in this winter has more partitions than in the other winters. An example for a constant folded
partitioning could be the definition of working hours with shifts. In the first week I may have
a morning shift, in the second week an evening shift, and in the third week a night shift. The
number of partitions labelled ‘working hour’ and ‘gap’ would not change in this case.

The ‘partition coordinate’ function pc needs an auxiliary function partitionsUpTo, which
computes for a frame coordinate the number of partitions up to the beginning of this frame
partition. More precisely: for a positive frame coordinate frco, partitionsUpTo computes the
number of component partitions from frame partition 0 (inclusive) up to the beginning of frame
partition with coordinate frco, and for negative frame coordinates, it computes the negated
number of component partitions from frame partition -1 (inclusive) down to and including the
frame partition with coordinate frco.

We define this function for constant folded partitionings and for non-constant folded parti-
tionings separately.

Definition 3.7.18 (partitionsUpTo for constant folded partitionings) Let P be a con-
stant folded partitioning with component partitionings P0 . . . , Pn−1.

We define the function partitionsUpTo(frco) where frco is a coordinate in the frame par-
titioning as follows:

For i = 0, . . . , n − 1 let partitions(i) be the number of component partitions per frame
partition Pi. Since the partitioning is constant, it is sufficient to compute these numbers for
the first n frame partitions.

Let cycle Σn−1
i=0 partitions(i).

Let frco/n = blocks remainder rest.
Now we have:

partitionsUpTo(frco) blocks ∗ cycle+ Σrest−1
i=0 partitions(i).
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Definition 3.7.19 (partitionsUpTo for normal folded partitionings) Let P be a folded
partitioning with frame partitioning F and component partitionings P0 . . . , Pn−1.

We define the function partitionsUpTo(frco) where frco is a coordinate in the frame par-
titioning as follows:

If frco ≥ 0 let from 0 and to frco− 1.
If frco < 0 let from frco+ 1 and to −1.

Let n Σto
i=fromPi mod n.pc(F.eopC(i)) − Pi mod n.pc(F.sopC(i)).

If (frco ≥ 0) let partitionsUpTo(frco) n.
If (frco < 0) let partitionsUpTo(frco) −n.

Now we can define the ‘partition coordinate’ function pc(t). It uses the partitionsUpTo
function to get the number of partitions up to the frame partition containing t, and then
computes the remaining partitions locally with the corresponding component partitioning.

Definition 3.7.20 (The Function pc for Folded Partitionings) Let P be a folded parti-
tioning with frame partitioning F and component partitionings P0, . . . , Pn−1. Let t be a global
reference time point.

Let frco F.pc(t) be the frame coordinate for time point t.
We have:

pc(t) partitionsUpTo(frco) + P
frco mod n

.pc(t) − P
frco mod n

.pc(F.sopC(frco))

The ‘start of partition’ function sopC needs an auxiliary function frameCoordinate(co) =
(frco, rist), which computes for a given coordinate of a partition (i) the coordinate of the
frame partition which contains this partition and (ii) the coordinate of the first component
partition within this frame partition. There are again different definitions for constant folded
partitionings and for normal folded partitionings.

Definition 3.7.21 (frameCoordinate for Constant Folded Partitionings) Let P be a
constant folded partitioning with component partitionings P0 . . . , Pn−1.

We define the function frameCoordinate(co) where co is a P -coordinate as follows:
For i = 0, . . . , n − 1 let partitions(i) be the number of component partitions per frame

partition Pi.
Let cycle Σn−1

i=0 partitions(i).
Let co/cycle = blocks remainder rest
Let frcoblocks·n be the coordinate of the first frame partition p0 in the partitions p0, . . . , pn−1

which correspond to P0, . . . , Pn−1, and where one of the pi contains the component partition with
coordinate co.

Let i maxi(Σ
i
k=0partitions(k) ≤ rest) be the offset from frco, such that frco + i is the

coordinate of the frame partition containing the component partition with coordinate co.
This way we get

frameCoordinate(co) (frco+ i, blocks · cycle+ Σi
k=0partitions(k))

Definition 3.7.22 (frameCoordinate for Normal Folded Partitionings) Let P be a con-
stant folded partitioning with frame partitioning F and component partitionings P0 . . . , Pn−1.

We define the function frameCoordinate(co), where co is a P -coordinate as follows:
If co ≥ 0 let

frco maxi(Σ
i
k=0Pk mod n.pc(F.eopC(k)) − Pk mod n.pc(F.sopC(k)) ≤ co)
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first Σfrco
k=0 Pk mod n.pc(F.eopC(k)) − Pk mod n.pc(F.sopC(k)) ≤ co)

If co < 0 let
frco −maxi(Σ

i
k=1P−k mod n

.pc(F.eopC(−k)) − P
−k mod n

.pc(F.sopC(−k)) ≤ co)

first Σ−frco
k=1 P−k mod n.pc(F.eopC(−k)) − P−k mod n.pc(F.sopC(−k)) ≤ co)

This way we get

frameCoordinate(co) (frco, first)

The ‘start of partition’ function sopC is now defined as follows:

Definition 3.7.23 (The Function sopC for Folded Partitionings)
Let P be a folded partitioning with frame partitioning F and component partitionings
P0, . . . , Pn−1. Let co be a coordinate of P .

Let (frco, first) frameCoordinate(co)
Let border = F.sopC(frco) be the left boundary of the frame partition containing the com-

ponent partition with coordinate co.
Now we define

sopC(co) Pfrco mod n.sopC(Pfrco mod n.pc(border) + (co− first))

All operations on folded partitionings are straightforward if the coordinates involved remain
within a single frame partition. The corresponding operation on the corresponding component
partition can be used in this case. If the coordinates, however, cross the border of a frame
partition then a special treatment is necessary. We explain this for the shiftPD(t,m) function.
All other functions are similar.

The shiftPD(t,m) function for folded partitionings is straightforward if the shifted time
point still remains in the same frame partition. In this case it is sufficient to use the shiftPD
function of the corresponding component partitioning. If this shift crosses the border of the
frame partition then the relative distance to this border is subtracted fromm, and then shiftPD
is called recursively for the border time point and the reduced m-value.

Definition 3.7.24 (shiftPD for Folded Partitionings) Let P be a folded partitioning with
frame partitioning F and component partitionings P0, . . . , Pn−1. Let t be a time point and m a
real number.

P.shiftPD(t,m) performs the following steps:

1. Let co F.pc(t) be the coordinate of the frame partition containing t.

2. Let C Pco mod n the component partitioning assigned to the partition containing t.

3. Let s C.shiftPD(t,m) be the shifted time point.

4. If s is still in the same frame partition as t, return s.

5. If s is not the in the same frame partition, let m′ be the relative distance between t and
the end t′ (if m > 0) or the start t′ (if m < 0) of the frame partition containing t.

6. Subtract m′ from m giving m′′, and call P.shiftPD(t′,m′′) recursively.
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3.8 Summary

The basic ideas of the PartLib library for representing periodic temporal notions are explained
in this chapter. We use partitionings of the real numbers as basic mathematical structures. The
partitionings can be labelled with symbolic names. The labels can be used for various purposes,
in particular for defining granules, i.e. clusters of partitions which belong together semantically.

The approach proposed in this chapter is a mix of algorithmic and symbolic specifications.
The basic time units are realized as algorithmic partitionings where the details of the calendar
system is hard-coded in the correction functions. All other periodic temporal notions are
specified symbolically as regular, duration or folded partitionings. This seems to be a good
compromise between the efficiency of compiled code for the difficult parts of calendar systems,
and the flexibility of symbolic specifications for application specific parts.

The PartLib library is an open source C++ system. The details of its interface are explained
in the appendix.

3.9 Appendix: The PartLib Interface

PartLib is an object oriented C++ implementation of the ideas presented in this chapter. The
interface to this library is presented here in a slightly abstracted way. We omit the technicalities
of objects, pointers, references, const declarations etc. and just show the logical aspects of the
interface. The technical details can be taken from the corresponding header files.

Nevertheless, certain technicalities are still important. One of them are the datatypes.
We need ‘int’ (integers) and ‘string’ (strings) as basic datatypes. Floating point numbers are
indicated by the type ‘FLT’. This must be either ‘float’, ‘double’ or ‘long double’. ‘float’ has only
a precision of 6 digits, which is in general too small compared to a date like 2004/12/4/12/43/22,
which has 13 digits. Therefore ‘double’ is recommended. Furthermore we use ‘Rt’ (for Reference
time) and ‘Co’ (for Coordinate). They must both be integer datatypes. At least 64 bit integers
are recommended. Bignumbers might be even better. Co and Rt can be the same or different.
Since Co and Rt can be the same datatypes, PartLib cannot use overloaded functions in most
cases. Therefore a number of function names have suffixes ‘Co’ and ‘Rt’.

All the classes which are defined in PartLib can of course also be used as datatypes. These
are in particular ‘Label’, ‘Labelling’, ‘Duration’, ‘DateFormat’, ‘DateData’, ‘Partitioning’, and
the subclasses of ‘Partitioning’.

The notation for the methods (functions) used in this appendix is

ResultType methodName(datatype1 parameter1,...)

‘ResultType’ is the datatype of the resulting value. If ‘ResultType’ is omitted then no
result is returned by the method. ‘datatype1 parameter1’ etc. declares the datatypes of the
parameters. ‘datatypen parametern = value’ is also possible. It means that the default value
for this parameter is ‘value’.

NULL is the ‘null pointer’ which indicates that there is no object.

3.9.1 Repetition Patterns

Various classes defined below have constructor functions which accept part of their key param-
eters as strings. For example, the Labellings class has a constructor function which accepts
the sequence of labels as a string of label names. These constructor functions make it easier
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to process user specified concepts by just passing the strings from the user input or from a
specification file to the PartLib functions. Moreover, it allows the user to use shortcuts for
repeating patterns of the same information.

As an example, where the usefulness of this becomes obvious, suppose we want to specify
a bus timetable as a regular or duration partitioning. The concrete timetable is completely
specified by listing the dates for Monday, declaring that this list is repeated 5 times (for Monday
until Friday), then listing the dates for Saturday, and declaring that this second list is repeated
twice. A compact notation for this would be something like ‘5*(list for Monday), 2*(list for
Saturday)’. This compact notation can then be expanded by repeating the list for Monday five
times, and concatenating it with two copies of the list for Saturday.

To enable this shortcut notation, we define a the formal language of repetition patterns.

Definition 3.9.1 (Repetition Patterns) Let B be a list of base strings. The base strings
could for example be the string representation of integers, or the label names, or duration
specifications. A repetition pattern R over B is the following formal language:

1. each element of B is a repetition pattern;

2. an expression n ∗ b, where n is a non-negative integer and b is an element of B, is a
repetition pattern;

3. a comma separated sequence of repetition patterns is repetition pattern;

4. an expression n ∗ (r), where n is a non-negative integer and r is a repetition pattern, is a
repetition pattern.

A repetition pattern can be expanded to a sequence of strings by repeating for n∗ b the element
b n times, and by repeating for expressions n ∗ (r) the expanded element r n times.

Example 3.9.2 (for Repetition Pattern) If B is a set of label names ‘l1, l2, l3, l4, l5, gap’
then ‘2*(l1, 2*l2, gap)’ is a repetition pattern which expands to ‘l1, l2, l2, gap, l1, l2, l2, gap’.
‘2*(l1, 2*(l2, gap))’ expands to ‘l1, l2, gap, l2, gap, l1, l2, gap, l2, gap’.

3.9.2 The Label Class

A label is essentially a name (string). The name, however, depends on the current realm, which
is also a string. A label can have a different name in each realm. The Label class manages
the set of realms and the mapping of label names to realms. There is always a ‘current realm’,
such that the name() function (see below) can return a name. By changing the realm one can
change the names of all labels. The default realm is ‘en’.

Constructor Function

Label(string name)

Constructs a new label with the given name. An error is thrown if the name is the
empty string.
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Class Methods

setRealm(string realm)

declares a new realm and makes it the current realm. setRealm() throws an error if the
realm is the empty string.

string getCurrentRealm()

returns the current realm.

string getAllRealms()

returns all realms as a comma separated list (unordered).

vector<string> getAllRealmsAsVector()

returns all realms as a vector (unordered).

Public Instance Methods

string name()

returns the name of the label in the current realm. name() throws an error if for the
current realm no name is defined for the label.

Label getLabel(string name)

If a label with this name (in the current realm) exists already then this label is returned,
otherwise a new label with this name is constructed and returned. getLabel throws an
error if the name is the empty string.

addName(string name, string realm)

defines for the given realm a new name for the label. If the realm does not yet exist, it
is constructed. addName throws an error if the name or realm are empty strings, or if
the label is the gap label. ‘gap’ labels cannot be renamed.

bool isGap()

returns true if the label is the gap label.

bool notGap()

returns true if the label is not the gap label.

display()

prints all names in all realms to stdout (for debugging purposes).

3.9.3 The Labelling Class

A labelling is just a vector of labels. The labelling class has no internal states. It therefore just
manages individual labellings.

Constructor Functions

Labelling(vector<Label> Labels)

constructs a new labelling from the given labels. (Def. 3.2.7)

Labelling(string Labels)

‘Labels’ is a repetition pattern over the set of label names (Def. 3.9.1), which expands
to a list of label names. If labels with these names do not yet exist, they are constructed.
Different occurrences of the same name are mapped to the same label. The name ‘gap’
is mapped to the unique gap label. A new labelling is constructed with these labels.

(Def. 3.2.7)
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Public Instance Variables

vector<Label> Labels

contains the labels

int size

number of labels in the labelling

int nGaps

number of gaps in the labelling

bool longGranules

true if the labelling has granules consisting of more than one partition.

bool longGranulesOrGaps

true if the labelling has long granules or gaps.

Public Instance Methods

bool hasGaps()

returns true if there are gaps in the labelling

bool validLabel(string name)

returns true if a label with this name exists in the labelling.

Label label(Co coordinate)

returns the label for the given coordinate

bool isGap(Co coordinate)

returns true if the label for the given coordinate is the gap label.

bool notGap(Co coordinate)

returns true if the label for the given coordinate is not the gap label.

Co nextNonGap(Co coordinate)

If the label at the given coordinate is not the gap label then ‘coordinate’ is returned. If
it is the gap label then the coordinate of the next non-gap label is returned.

Co previousNonGap(Co coordinate)

If the label at the given coordinate is not the gap label then ‘coordinate’ is returned. If
it is the gap label then the coordinate of the previous non-gap label is returned.

bool withinGranule(Co coordinate)

returns true if the label at the given coordinate is within a granule.

Co nextGranule(Co coordinate)

returns the start coordinate of the next granule. The label at ‘coordinate’ may be within
a granule or between granules.

Co previousGranule(Co coordinate)

returns the end coordinate of the previous granule. The label at ‘coordinate’ may be
within a granule or between granules.

Co startOfGranule(Co coordinate)

If the label at ‘coordinate’ is within a granule then the start coordinate of this granule
is returned. If the label is between two granules then the start coordinate of the next
granule is returned.

130



Co endOfGranule(Co coordinate)

If the label at ‘coordinate’ is within a granule then the end coordinate of this granule is
returned. If the label is between two granules then the end coordinate of the previous
granule is returned.

Co lastCoordinate(Co coordinate)

returns the coordinate of the last non-gap label of the copy of the labelling at the given
coordinate.

Co lastCoordinate(Co coordinate)

returns the coordinate of the first non-gap label of the copy of the labelling at the given
coordinate.

int numberOfGaps(Co c1, Co c2)

returns the number of gap labels between coordinate c1 and c2 (both inclusive).

granule(Co coordinate, Co c1, Co c2)

binds c1 to startOfGranule(coordinate) and c2 to endOfGranule(coordinate).

Co nextGranuleWithLabel(Co coordinate, int n, string name)

If n = 0 then the given coordinate is just returned. If n > 0 then the start coordinate
of the granule with the nth next occurrence of a label with the given name is returned.
If n < 0 then the start coordinate of the granule with the nth previous occurrence of a
label with the given name is returned.

display()

prints the labelling in all realms to stdout (for debugging purposes.)

3.9.4 The Duration Class

A duration is a list of pairs (number, partitioning), together with a flag ‘asGranule’. If this
flag is true and there are labellings attached to the partitionings, then certain functions, in
particular the shift function, takes the granules as basic units, and not the partitions.

Constructor Functions

Duration(vector<pair<FLT,Partitioning> durations, bool asGranule=false)

constructs a new duration.

Duration(vector<FLT> shifts, vector<Partitioning> partitionings,

bool asGranule=false)

constructs a new duration by pairing the shifts and partitionings together.

Duration(string duration, bool asGranule=false)

constructs a new duration from a string representation ‘〈number〉 〈partitioning name〉,
...’, for example, ‘3.5 month, -1 week, 2 hour’

Public Instance Methods

Duration invert()

constructs a new duration by inverting the given one
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append(Duration D)

appends the duration D to the given one.
Example: ‘3 week, 2 day’.append(‘1 hour, 3 minute’) → ‘3 week, 2 day, 1 hour, 3 minute’
or: ‘3 week, 2 day’.append(‘3 day, 3 minute’) → ‘3 week, 5 day, 3 minute’
but: ‘3 week, 2 day’.append(‘1 week’) → ‘3 week, 2 day, 1 week’
and: ‘1.5 week’.append(‘1.5 week’) → ‘1.5 week, 1.5 week’

Rt shiftOnce(Rt time, Partitioning P=NULL)

shifts the time point ‘time’ by the given duration. If ‘asGranule’ is true then the
time point is shifted by interpreting the partitionings as granules (see ‘shiftAsGranule’
below), otherwise they are interpreted as partitions. The underlying shift function is
either ‘shiftPartitiongsbyDate’ or shiftGranules, if ‘asGranules’ = true.

Rt shift(Rt time, FLT m=1.0, Partitioning P=NULL)

shifts the time point ‘time’ by m times the given duration. m can be any positive of
negative FLT number.

vector<pair<Rt,Rt> > sections(Rt from, Rt to)

splits the section [from,to[ of the time axis into subsections [(t0, d0), (t1, d1), ...], such
that the duration causes a shift of di basic time units between the time points ti and
ti+1. If the time shift is always the same value d0 then only (from,d0) is returned.

Relations

bool operator<(Duration D1, Duration D2)

This is a <-operator which compares two durations. It yields true if a shift by D1
is always shorter than a shift by D2. For example, ‘1 month, 1 day’ < ‘4 week’. So
far, PartLib contains only an approximative implementation of this relation: A finite
number of time points is generated, and the shifts from these time points are compared.
See also Section 3.2.4.

3.9.5 Class DateFormat

A date format is a list of partitions and a name. The name can be used to retrieve a previously
created date format from the DateFormat class.

Constructor Functions

DateFormat(string name, vector<Partitioning> partitionings)

constructs a date format with the given name and partitionings.

DateFormat(string name, string pnames)

constructs a date format with the given name from the comma separated names of the
partitionings.

Class Methods

DateFormat getDateFormat(string name)

returns a previously generated date format with this name. If the name is unknown
then NULL is returned.
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Public Instance Methods

DateData date(Rt time, clear = true)

turns a time point into dates (see below) of the given date format. If clear = true
then trailing zeros are deleted, otherwise the date is exactly as long as the date format.

(Def. 3.3.2)

3.9.6 Class DateData

A DateData object is essentially a date format and a sequence of integers, the dates.

Constructor Functions

DateData(DateFormat dF, vector<Co> data)

constructs a DateData object for the given date format from the data.

DateData(DateFormat dF, string dD, string separator = "/")

constructs a DateData object for the given date format from a string representation of
the data. The data must be a sequence of positive or negative integers, separated by
the given separator. An error is thrown if the string cannot be parsed properly.

Public Instance Methods

Rt TimePoint()

turns the DateData object into the corresponding time point. (Def. 3.3.3)

append(vector<Co> date, Co extra)

appends ‘date’ at the end of the given date and adds ‘extra’ to date[0].

3.9.7 The Partitioning Class

The ‘Partitioning’ class consists of the abstract class ‘Partitioning’ and a few subclasses. The
class diagram is:

Partioning

algorithmicPartitioning
regularPartitioning
durationPartitioning

datePartitioning
foldedPartitioning

The partitionings are parameterized with an instance of a class ‘CalContext’. This class is
not defined in PartLib. It must provide the following methods:

• intresolution(): which returns a positive integer. 1 means, the basic time unit are seconds.
1000 means, the basic time unit are milliseconds.

• inttimezone() returns the timezone as an integer.
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• leapSeconds() returns a LeapSeconds object, which has the two methods
globalCorrection(grt) (lsG in Def. 3.6.1) and localCorrection(lrt) (lsL in Def.
3.6.1).

The Abstract Class ‘Partitioning’

This class is essentially the interface to the PartLib library. Except for the constructor functions
of the subclasses, one should use only the public methods from this class.

General Methods

name

is the public instance variable which holds the name of the partitioning.

static Partitioning getPartitioning(string name)

returns the partitioning with the given name, or NULL if this name is unknown.

static vector<Partitioning> allPartitionings();

returns a vector of all partitionings.

Coordinate Computations

Rt startOfPartitionRt(Rt time)

maps the given time point to the start time of the partition containing this point.
(Def. 3.2.3)

Rt endOfPartitionRt(Rt time)

maps the given time point to the end time of the partition containing this point.
(Def. 3.2.3)

Rt startOfPartitionCo(Co coordinate)

maps the given coordinate to the start time of the partition with this coordinate (cf.
sopC). (Def. 3.2.3)

Rt endOfPartitionCo(Co coordinate)

maps the given coordinate to the end time of the partition with this coordinate (cf.
eopC). (Def. 3.2.3)

Co partitionCoordinate(Rt time)

maps a time point to the coordinate of the partition containing this point (cf. pc).
(Def. 3.2.3)

Labels and Granules

setLabelling(Labelling L)

attaches the labelling L to the given partitioning. This method throws an error for
folded partitionings.

bool validLabel(string label)

returns true if the label occurs in the labelling.

Labelling labellingCo(Co coordinate)

returns the labelling which is valid for the given coordinate and NULL if there is none.
This is non-trivial only for folded partitionings.
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Labelling labellingRt(Rt time)

returns the labelling which is valid for the given time, and NULL if there is none. This
is non-trivial only for folded partitionings.

labelCo(Co coordinate)

returns the label which is attached to the given coordinate, and NULL if there is none.

labelRt(Rt time)

returns the label which is attached to the partition containing this time, and NULL if
there is none.

bool isGap(Co coordinate)

returns true if the label at this gap is the gap label.

bool notGap(Co coordinate)

returns true if the label at this gap is not the gap label.

bool hasGaps(Co coordinate)

returns true if the labelling which is valid for this coordinate has gaps. The coordinate
plays only a role for folded partitionings.

bool withinGranuleCo(Co coordinate)

true if the coordinate is within a granule.

bool withinGranulRt(Rt time)

true if the time point is within a granule.

bool closestGranuleCo(Co coordinate, Co c1, Co c2)

binds c1 and c2 to the start and end coordinates of the granule which is closest to
‘coordinate’. The result value is true if the coordinate is within a granule. (Def. 3.2.10)

bool closestGranuleRt(Rt time, Co c1, Co c2)

binds c1 and c2 to the start and end coordinates of the granule which is closest to
the given time point. The result value is true if the time point is within a granule.

(Def. 3.2.10)

Local Length of Partitions and Granules

Rt lengthOfPartitionCo(Co coordinate)

returns the length of the partition with the given coordinate.

Rt lengthOfPartitionRt(Rt time)

returns the length of the partition containing the given time point.

FLT lengthInPartitions(Rt t1, Rt t2)

returns the length of the interval [t1,t2[ in terms of the length of the partitions of the
given partitioning. (Def. 3.2.5)

FLT lengthInGranules(Rt t1, Rt t2)

returns the length of the interval [t1,t2[ in terms of the length of the granules of the
given partitioning. (Def. 3.2.11)

Global Length of Partitions and Granules

setShortestPartition(Rt length)

overrides the randomized computation of partition length by just declaring the shortest
partition length.
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setLongestPartition(Rt length)

overrides the randomized computation of partition length by just declaring the longest
partition length.

Rt shortestPartition()

returns the length of the shortest partition.

Rt longestPartition()

returns the length of the longest partition.

Rt shortestGranule()

returns the length of the shortest granule.

Rt longestGranule()

returns the length of the longest granule.

bool hasShorterPartitionsThan(Partitioning Q)

returns true if the given partitioning has shorter partitions than partitioning Q.
(Def. 3.2.12)

bool hasShorterGranulesThan(Partitioning Q)

returns true if the given partitioning has shorter granules than partitioning Q.
(Def. 3.2.12)

Shift of Time Points

Rt shiftPartitionsbyLength(Rt time, FLT m, DateFormat dF = NULL, Partitioning

P = NULL

shifts the time point by the length of m partitions. If a date format dF and a par-
titioning P is given then the shifted time point is moved again such that the dates
of the shifted time and the original time are kept the same from the partitioning P
onwards. For example, if the date format is year/month/day/hour/minute/second, and
P = hour, then the shifted time has the same hour/minute/second date as the original
time. (Def. 3.4.2)

shiftPartitionsbyLength(Rt time, FLT m, string dF, string P)

This method is almost identical to the above method. The only difference is that the
date format and the partitioning are given by their names, and not by the pointers.

(Def. 3.4.2)

Rt shiftPartitionsbyDate(Rt time, FLT m, Partitioning P = NULL

shifts the time point by m partitions using the dates for the shift. If a partitioning P is
given then the shifted time point is moved again such that the dates of the shifted time
and the original time are kept the same from the partitioning P onwards. (Def. 3.7.5)

Rt shiftPartitionsbyDate(Rt time, FLT m, string P

This method is almost identical to the above method. The only difference is that the
partitioning is given by its names, and not by the pointer. (Def. 3.7.5)

Rt shiftGranules(Rt time, FLT m, Partitioning P = NULL)

shifts the time point by m granules. If a partitioning P is given then the shifted time
point is moved again such that the dates of the shifted time and the original time are
kept the same from the partitioning P onwards, where P is a partitioning with a corre-
sponding date format. This method uses internally the ‘shiftPartitionsbyDate’ method.
shiftGranules throws an error if the time point is between two granules. (Sect. 3.4.3)
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Rt shiftGranules(Rt time, FLT m, string P)

This method is almost identical to the above method. The only difference is that the
partitioning is given by its names, and not by the pointer. (Sect. 3.4.3)

Co nextGranuleWithLabel(Co coordinate, int n, string label)

If n = 0 then ‘coordinate’ is returned. If n > 0 then the coordinate of the start of the
nth next granule with the given label name is returned. If n < 0 then the coordinate
of the end of the nth previous granule with the given label name is returned.

Structural Relations

bool includesPartitions(Partitioning Q)

returns true if each partition of the given partition is a subset of a partition of Q.
(Def. 3.2.12)

bool includesGranules(Partitioning Q)

returns true if each granule of the given partition is a subset of a granule of Q.
(Def. 3.2.12)

bool subsetGranule(Rt time, Co coP, Partitioning Q, Co coQ)

returns true if the P-granule at coordinate coP is a subset of the Q-granule at coordinate
coQ. (Def. 3.2.12)

bool operator<(Partitioning P, Partitioning Q)

P < Q is just short for P.hasShorterPartitionsThan(Q). (Def. 3.2.12)

Boundaries

bool leftBounded

is a public instance variable, which is true when a left boundary is defined.

Rt leftBoundary

is an instance variable which holds the left boundary.

bool rightBounded

is a public instance variable, which is true when a right boundary is defined.

Rt rightBoundary

is an instance variable which holds the right boundary.

void setLeftBoundary(Rt time)

sets the left boundary.

void setRightBoundary(Rt time)

sets the right boundary.

Subclasses of the Partitioning class

Only the constructor functions for the subclasses are in the interface. All other methods are to
be called via the Partitioning class interface.

algorithmicPartitioning(string name, int avl, Co2Rt cf, Rt offset, CalContext

C, int repetitions, Labelling L=NULL)

constructs an arithmetic partitioning. ‘name’ is the name of the partitioning, ‘avl’ is the
average length of the partitions. ‘cf’ is the correction function. ‘offset’ is the offset of
the partition with coordinate 0. ‘C’ is the context object, ‘repetitions’ is the parameter
for the randomized checks, and ‘L’ is a labelling. (Def. 3.7.1)
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regularPartitioning(string name, Rt anchor, vector<FLT> sizes, Partitioning U,

CalContext C, bool asGranule, Labelling L=NULL)

constructs a regular partitioning.‘name’ is the name of the partitioning. ‘anchor’ is the
anchor time. ‘sizes’ specifies the lengths of the partitions in terms of the partitioning
‘U’. ‘C’ is the context object. ‘asGranule = true’ causes the sizes to be interpreted as
granule length. ‘L’ is a labelling. (Def. 3.7.10)

regularPartitioning(string name, Rt anchor, string sizes, string U, CalContext

C, bool asGranule, Labelling L=NULL)

is almost the same as the above constructor function. The difference is that the sizes
are given as repetition pattern over numbers (Def. 3.9.1) and the partitioning ‘U’ is
given by its name. This function throws an error if ‘U’ is unknown or if ‘sizes’ cannot
be parsed. (Def. 3.7.10)

durationPartitioning(string name, Rt anchor, vector<Duration> durations,

CalContext C, Labelling L=NULL)

constructs a duration partitioning. ‘name’ is the name of the partitioning. ‘anchor’ is
the anchor time. ‘durations’ specifies the lengths of the partitions as durations ‘C’ is
the context object. ‘L’ is a labelling. (Def. 3.7.7)

durationPartitioning(string name, Rt anchor, string durations,

CalContext C, Labelling L=NULL)

constructs a duration partitioning. ‘name’ is the name of the partitioning. ‘anchor’
is the anchor time. ‘durations’ is a repetition pattern over duration specifications in
quotes (see the constructor function ‘Duration’). An example is ‘2*(”1 month, 1 week”,
”2 day, -1 hour”)’. The pattern expands to a sequence of durations. They specify
the lengths of the partitions as durations ‘C’ is the context object. ‘L’ is a labelling.

(Def. 3.7.7)

datePartitioning(string name, DateFormat dateFormat, vector<vector<Co>> dates,

CalContext C, Labelling L=NULL)

constructs a date partitioning. ‘name’ is the name of the partitioning. ‘dateFormat’ is
the date format for the dates. ‘dates’ is the vector of dates. ‘C’ is the context object.
‘L’ is a labelling. (Def. 3.7.16)

datePartitioning(string name, DateFormat dateFormat, string dates, CalContext

C, Labelling L=NULL)

This constructor function is almost like the above function. The difference is that the
dates are given as ‘ ’-separated dates (which are ’/’-separated integers). (Def. 3.7.16)

foldedPartitioning(string name, Partitioning framePartitioning,

vector<Partitioning> componentPartitionings, bool constant, CalContext C)

constructs a folded partitioning. ‘name’ is the name of the partitioning. ‘framePartition-
ing’ is the frame partitioning and ‘componentPartitionings’ is the vector of component
partitionings. The ‘constant’ flag indicates whether this is a constant partitioning. This
is not checked! If a folded partitioning is declared constant, but is not, the results of
all computations are unpredictable. (Def. 3.7.17)

foldedPartitioning(string name, Partitioning framePartitioning,

string componentPartitionings, bool constant, CalContext C)

This constructor function is almost like the above function. The difference is that the
component partitionings are given as repetition pattern over the partitioning names
(Def. 3.9.1). This function throws an error if partitioning names are unknown.

(Def. 3.7.17)
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Chapter 4

Calendrical Calculations with

Time Partitionings and Fuzzy

Time Intervals

Hans Jürgen Ohlbach

Abstract

This chapter presents a piece in a big mosaic which consists of formalisms and software packages
for representing and reasoning with everyday temporal notions. The kernel of the mosaic con-
sists of several layers. At the bottom layer there are a number of basic datatypes for elementary
temporal notions. These are time points, crisp and fuzzy time intervals and partitionings for
representing periodical temporal notions like years, months, semesters etc. Partitionings can
be arranged to form ‘durations’ (e.g. ‘2 semester and 1 month’). Each formalism in the bottom
layer comes with its own functions and relations.

The second layer is presented in this chapter. It contains a number of basic functions
which use time points, intervals, partitionings and durations simultaneously. The functions are
introduced and motivated with temporal expressions in natural language.

The third layer, which is not presented in this chapter, uses the functions and relations of
the lower layers as building blocks in a specification language for specifying complex temporal
notions.

The whole mosaic contains a number of other formalisms, in particular a representation of
calendar systems, and various databases with information about temporal notions.

4.1 Motivation and Introduction

The phenomenon of time has many different facets which are investigated by different commu-
nities. Physicists investigate the flow of time and its relation to physical objects and events.
Temporal logicians develop abstract models of time where only the aspects of time are formal-
ized which are sufficient to model the behaviour of computer programs and similar processes.
Linguists develop models of time which can be used as semantics of temporal expressions in
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natural language. More and more information about facts and events in the real world is stored
in computers, and many of them are annotated with temporal information. Therefore it became
necessary to develop computer models of the use of time on our planet, which are sophisticated
enough to allow the kind of computation and reasoning that humans can do. Examples are
‘calendrical calculations’ [16], i.e. formal encodings of calendar systems for mapping dates be-
tween different calendar systems. Other models of time have been developed in the temporal
database community [10], mainly for dealing with temporal information in databases. This
work is becoming more important now with the emergence of the Semantic Web [7]. Informal,
semi-formal and formal temporal notions occur frequently in XML documents, and need be
‘understood’ by XML query and transformation mechanisms.

The formalisms developed so far approximate the real use of time on our planet to a certain
degree, but still ignore important aspects. In the WebCal project [12] we aim at a very detailed
modelling of the temporal notions which can occur in semi-structured data. The WebCal system
consists of a kernel and several modules around the kernel. The kernel itself consists of several
layers. At the bottom layer there are a number of basic datatypes for elementary temporal
notions. These are time points, crisp and fuzzy time intervals [40, 41], and partitionings for
representing periodical temporal notions like years, months, semesters etc. [43, 42]. The parti-
tionings can be specified algorithmically or algebraically. The algorithmic specifications allows
one to encode phenomena like leap seconds, daylight savings time regulations, the Easter date,
which depends on the moon cycle etc. Partitionings can be arranged to form ‘durations’ (e.g.
‘2 semester and 1 month’). Each formalism in the bottom layer comes with its own functions
and relations.

The second layer, the mixed function layer, is presented in this chapter. It contains a number
of basic functions which use time points, intervals, partitionings and durations simultaneously.
The functions are introduced and motivated with temporal expressions in natural language.

The third layer, which is not yet worked out in detail, uses the functions and relations of
the lower layers as building blocks in a specification language for specifying complex temporal
notions. A first version of this language has been presented in [37, 38].

Since the mixed function layer uses the formalisms from the first layer, we briefly introduce
this layer and then define the mixed functions.

4.2 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis which is isomor-
phic to the real numbers R. Therefore we take as time points just real numbers. Since the most
precise clocks developed so far, atomic clocks, measure the time in discrete units, it would be
sufficient to resrict the representation of time points to integers, but this is not important for
the purposes of this chapter. It becomes an issue for concrete implementations.

The next important datatype is that of time intervals. Time intervals can be crisp or fuzzy.
With fuzzy intervals one can encode notions lake ‘around noon’ or ‘late night’ etc. This is
more general and more flexible than crisp intervals. Therefore the WebCal system uses fuzzy
intervals as basic interval datatype.

Fuzzy Intervals are usually defined through their membership functions [53, 17]. A mem-
bership function maps a base set to a real number between 0 and 1. The base set for fuzzy
time intervals is a linear time axis, isomorphic to the real numbers.

Definition 4.2.1 (Fuzzy Time Intervals) A fuzzy membership function is a total function
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f : R 7→ F which does not need to be continuous, but it must be integratable. The fuzzy interval
if that corresponds to a fuzzy membership function f is if {(x, y) ⊆ R × F | y ≤ f(x)}. Given
a fuzzy interval i we usually write i(x) to indicate the corresponding membership function.

A fuzzy time interval may consist of several subintervals or components. Let Comp(i) the
the components of i.

This definition comprises single or multiple crisp or fuzzy intervals like these:

-

6

R
0

1

Crisp and Fuzzy Intervals

The fuzzy intervals can also be infinite. For example, the term ‘after tonight’ may be
represented by a fuzzy value which rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm
and then remains 1 ad infinitum.

Fuzzy time intervals may be quite complex structures with many different characteristic
features. The simplest ones are core and support. The core C(i) is the part of the interval i
where the fuzzy value is 1, and the support S(i) is the subset of R where the fuzzy value of i
is non-zero. In addition one can define the kernel K(i) as the part of the interval i where the
fuzzy value is not constant ad infinitum, i.e. the kernel is the smallest convex interval in R such
that i(x) is constant for x outside K(i). Fuzzy time intervals with finite kernel are of particular
interest because although they may be infinite, they can easily be implemented with finite data
structures.

Fuzzy time intervals can be measured in various ways. Besides the size |i|
∫
i(x) dx, one

can locate the position of the core, support and kernel. ifO and ilO are the first and last time
coordinates of O, where O is either C (core) or S (support) or K (kernel). One can also measure
the maximal fuzzy value î . This should, but need not be 1. Let ifm be the time coordinate of
the first point with i(ifm) = î and let ilm be the last such point.

Fuzzy intervals are represented by their envelope polygons. These polygons represent the
membership functions.

Definition 4.2.2 (Envelope Polygon) The envelope polygon I of a fuzzy time interval is
a finite sequence of points p0, . . . , pn. Each point p is a tuple (p.x, p.y) consisting of the time
coordinate p.x and the fuzzy value coordinate p.y.

pi.x ≤ pi+1.x must hold for all i.
We usually identify the envelope polygon with the fuzzy set itself.

The details of the fuzzy intervals and the operations used in the WebCal system are presented
in [40, 41]. The only aspect of fuzzy time intervals which is of some importance for this chapter
are the set operations ∪ (union), ∩ (intersection) and \ (set difference) for fuzzy intervals.
There is no unique definition of these operations for fuzzy intervals. Therefore one has to state,
which definition is being used. A definition of intersection which takes the minimum of the
membership functions, and a corresponding definition of union which takes the maximum of
the membership functions is very natural, but not the only choice. In this chapter we can leave
it open, which version is to be used. In the implementation one can choose a particular one, or
one can leave it as an extra parameter, and the application system has to make the choice.
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4.3 Partitionings

The WebCal system uses the concept of partitionings of the real numbers to model periodical
temporal notions. In particular, the basic time units years, months etc. are realized as par-
titionings. Other periodical temporal notions, for example semesters, school holidays, sunsets
and sunrises etc. can also be modelled as partitionings.

A partitioning of the real numbers R may be, for example, (..., [−100, 0[, [0, 100[, [100, 101[,
[101, 500[, ...). The intervals in the partitionings need not be of the same length (because time
units like years are not of the same length either). The intervals can, however, be enumerated
by natural numbers (their coordinates). For example, we could have the following enumeration

... [−100 0[ [0 100[ [100 101[ [101 500[ ...

... −1 0 1 2 ...

We use labelled partitionings. The labels are names for the partitions. For example, the labels
for the ‘day’ partitioning can be ‘Monday’, ‘Tuesday’ etc.

The formal definition for labelled partitionings of R which is used in this chapter is:

Definition 4.3.1 (Labelled Partitionings) A partitioning P of the real numbers R is a se-
quence . . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .
of half open intervals in R with integer boundaries, such that either the sequence is infinite at
one or both ends, or it is preceded by an infinite interval ] −∞, t[ (the start partition) or/and
it is ended by an infinite interval [t,+∞[ (the end partition).

For a time point t and a partitioning P let tP be the P -partition containing t.

A coordinate mapping of a partitioning P is a bijective mapping between the intervals in P and
a subset of the integers. Since we always use one single coordinate mapping for a partitioning
P , we can just use P itself to indicate the mapping. Therefore let pP be the coordinate of the
partition p in P .

For a coordinate i let iP be the partition which corresponds to i.

For a time t let tPP (tP )P be the coordinate of the P -partition containing t.

A Labelling L is a finite sequence of strings l0, . . . , ln−1.
A labelling L = l0, . . . , ln−1 is turned into a labelling function LP (p) for a partitioning P

as follows:

LP (p)







lpP mod n if p is finite
‘startPartition’ if p = [−∞, t[
‘endPartition’ if p = [t,+∞[

where p is a partition in P .

An important operation which involves partitionings is the ‘shift’ function.
shift(t, 1,month), for example, shifts the time point t by one month. Since the length
of the partitions may be different, such a shift function is usually not continuous. For example,
if the time point t is in January, a shift of 1 month may mean a shift of 31 days, whereas if t is
in February, a shift of 1 month may mean a shift of 28 days. The details of the shift functions
for time points are not important for this chapter. We must, however, keep in mind that the
shift function is in general not continuous.

The shift function can have an extra Boolean parameter SG (for Skip Gaps). If it is true
then all partitions labelled ‘gap’ are skipped when the actual shift is computed. All functions
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defined below can have this extra parameter when they use the shift function. The formalism of
labelled partitionings, together with various algorithmic and symbolic specification mechanisms
for labelled partitionings, is presented in [43].

4.4 Durations

The partitionings are the mathematical model of periodic time units, such as years, months etc.
This offers the possibility to define durations. A duration may, for example, be ‘3 months and
2 weeks’. Months and weeks are represented as partitionings, and 3 and 2 denote the number
of partitions in these partitionings. The numbers need not be integers, but can be arbitrary
real numbers.

A duration can be interpreted as the length of an interval. In this case the numbers should
not be negative. A duration, however, can also be interpreted as a time shift. In this interpre-
tation negative numbers make perfectly sense. d = (−2 week), (3 month), for example, denotes
a backward shift of 2 weeks followed by a forward shift of 3 months.

Definition 4.4.1 (Duration) A duration d = (d0 P0), . . . , (dk Pk) is a list of pairs where the
di are real numbers and the Pi are partitionings.

If a duration is interpreted as a shift of a time point, it may be necessary to turn the shift
around, in the backwards direction. Therefore the inverse of a duration is defined:

−d (−dk Pk), . . . , (−d0 P0)

For example, if d = (3 month), (2 week) then −d = (−2 week), (−3 month).

Definition 4.4.2 (shift for Durations) Given a function shift(t,m, P ), which shifts a time
point t by m partitions of the partitioning P , we define a corresponding shift function for
durations:

shift(t, d) shift(. . . shift(shift(t, d0, p0), d1, p1) . . . , dk, pk)

where t is a time point and d = (d0, p0), . . . , (dk , pk) is a duration.

4.5 Operations on Points, Intervals and Partitionings

In this section we introduce a number of operations which involve points, intervals, partitionings
and durations simultaneously. Together with the operations for the individual datatypes they
form the basic building blocks for a specification language for temporal notions.

Since the intervals are represented by their envelope polygons, there is the choice to define
the operations directly on the envelope polygons, or on the abstract notion of interval. In the
implementation they must operate on the envelope polygons, but it makes sometimes things
clearer if they are defined on the abstract level.

It turned out that even quite simple operations become very complex and need many pa-
rameters if all the details of fuzzy intervals and partitionings are taken into account. Therefore
it is necessary to introduce the operations informally first, and to motivate and discuss the
details before the formal definition is presented.
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4.5.1 Shift and Extend

The first operation is the ‘shift’ operation for intervals. Suppose we have an interval of two
hours, and want to shift it by one week. The two hours may be the time for a meeting, and
the meeting is shifted to next week. This sounds simple, but the details can be really tricky.
The problem is that durations (1 month, 1 week etc.) can denote intervals of different length.
In January, for example, a duration of 1 month means 31 days. In February it means only
28 days. This causes that the shift function for time points is not continuous. The distance
(shift(t, 1 month)−t) depends on the position of t, and this holds for all meaningful definitions
of ‘shift’. As an extreme case, take the interval [January 31, February 1[. If we shift the two
time points separately, we can get [February 31, March 1[, which is equivalent to [March 3,
March 1[. That is definitely not what one wants. In order to avoid that the intervals get
distorted, one must choose a time point as the anchor point for the shift, and compute the
size of the shift for this anchor point. If we choose January 31 in the above example as anchor
point, we get a shift of 31 days, and the result is [March 3, March 5[. If we choose February 1,
the result is [March 1, March 3[.

In principle one can choose any time point as anchor point, but this causes another prob-
lem. If the interval consists of several subintervals, it might not be desirable to choose one
anchor point for all subintervals. Therefore the shift function defined below uses a symbolic
representation for the anchor point. This way the shift function allows one to shift the subin-
tervals separately. For example, if the interval consists of one subinterval in January and one
in February, and we shift it by 1 month, then the interval in January is shifted by 31 days, and
the interval in February is shifted by 28 days.

Definition 4.5.1 (shift) Let I = (p0, . . . , pn) be an envelope polygon. Let D be a duration.
‘componentwise’ is a Boolean flag. ‘anchorpoint’ is one of the keywords ‘fm’ (first maxi-
mum), ‘fS’ (first Support), ‘fC’ (first Core), ‘fK’ (first Kernel), ‘lm’ (last maximum), ‘lS’ (last
Support), ‘lC’ (last Core), ‘lK’ (last Kernel).

We define the function shift(I,D, componentwise, anchorpoint) first for the case
componentwise = false:

shift(I,D, false, anchorpoint) ((p0.x+ d, p0.y), . . . , (pn.x+ d, pn.y))

where d shift(Ianchorpoint, D) − Ianchorpoint.

In the case componentwise = true, the components of the interval are shifted separately.

shift(I,D, true, anchorpoint)
⋃

J∈Comp(I)

shift(J,D, false, anchorpoint)

The result is undefined if the anchor point is the infinity.

This definition of ‘shift’ guarantees that finite intervals are not distorted. The gaps between
components, however, can be distorted if componentwise = true is chosen. It can even happen
that the shifted components overlap or they change their ordering.

extend: The ‘extend’ function defined below extends an interval by a given duration. It
corresponds to phrases like ‘for two more hours’. It can also shrink intervals when the duration
is negative. ‘extend’ is quite similar to the ‘shift’ function. The difference is that ‘extend’ shifts
only a part of the interval to make it wider or shorter. The choices we have for the ‘extend’
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function are: one can extend the interval at the left or at the right side; one can extend only
the outermost subinterval, or all subintervals separately, and one can choose the anchor point
for computing the shift.

An extended fuzzy interval has still the same shape as the original one. It has only become
longer. It is also possible to shrink a fuzzy interval while preserving its shape more or less. To
do this one has to cut it into two pieces, shift one piece and compute the intersection of the
first piece with the shifted second piece.

-

6

R
0

1

Extending and Shrinking a Fuzzy Interval

Definition 4.5.2 (extend) Let I = (p0, . . . , pn) be an envelope polygon. Let D be a duration.
‘front’ and ‘componentwise’ are Boolean flags. anchorpoint is one of the keywords ‘fm’ (first
maximum), ‘fS’ (first Support), ‘fC’ (first Core), ‘fK’ (first Kernel), ‘lm’ (last maximum), ‘lS’
(last Support), ‘lC’ (last Core), ‘lK’ (last Kernel).

We define extend(I,D, front, componentwise, anchorpoint) first for the case
componentwise = false:

Let d shift(Ianchorpoint, D) − Ianchorpoint, and let pl I
fm and pk I lm.

extend(I,D, true, false, anchorpoint)
{

((p0.x− d, p0.y), . . . , (pl.x− d, pl.y), pl . . . , pn) if d > 0
((p0.x− d, p0.y), . . . , (pl.x− d, pl.y)) ∩ (pl . . . , pn) otherwise.

extend(I,D, false, false, anchorpoint)
{

(p0, . . . , pk, (pk.x+ d, p0.y), . . . , (pn.x+ d, pl.y)) if d > 0
(p0, . . . , pk) ∩ ((pk.x+ d, p0.y), . . . , (pn.x+ d, pl.y)) otherwise.

In the case componentwise = true, the components of the interval are extended separately.

extend(I,D, front, true, anchorpoint)
⋃

J∈Comp(I) extend(J,D, front, false, anchorpoint).

The result is undefined if the anchor point is the infinity.

4.5.2 Which

The next function can be used to answer queries like ‘which day in the week is now’ or ‘in
which week in the year is the time point t’. The parameters are which(t, P,Q, inclusion, SG).
t is the time point for which we want to get the information. P and Q are partitionings. For
example, P could be the ‘week’ partitioning and Q could be the ‘year’ partitioning. inclusion is
a control parameter for determining what counts as the first P partition in the Q partitioning.
The problem can be best illustrated with weeks and years. Since weeks and years are not
synchronized, the beginning of a year need not be the beginning of a week. It is therefore a
matter of convention what counts as the first week in a year. It could be the first week which
is completely contained in the year, it could be the first week which overlaps with the year,
or it could be the first week whose lager part is in the year. The latter one is the condition
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which is commonly being used. Therefore inclusion is one of the keywords ‘subset’, ‘overlap’
and ‘bigger part inside’.

The last parameter, SG (for Skip Gaps) controls whether partitions labelled ‘gap’ are
counted or not. If SG = true then they are skipped, otherwise they are counted.

The ‘which’ function is a partial function. There are various conditions which can cause
which(t, P,Q, inclusion, IG) to be undefined. For example, if SG = true and the label of
tQ is ‘gap’ then the function call is undefined. Another example is when the role of P and
Q is reversed and we ask, for example, ‘which year in the week is now’, with the condition
inclusion = subset. No meaningful answer is possible in this case.

‘which’ first locates the Q-partition containing t. Then it determines the first P -partition
in this Q-partition. Finally it counts the number of P -partitions which must be traversed until
t is reached.

Definition 4.5.3 (which) Let t be a time point, let P and Q be partitionings. SG is a Boolean
flag, and ‘inclusion’ is one of the keywords ‘subset’, ‘overlap’ and ‘bigger part inside’. P and
Q can be labelled.
which(t, P,Q, inclusion, IG)






undefined if SG = true and LQ(tQ) = ‘gap’
undefined if n is undefined
mink(t ∈ (n+ k)P ) if SG = false
mink(t ∈ (n+ k)P ) − gaps(n, k) if SG = true and L((n+ k)P ) 6= ‘gap’
undefined otherwise

where n is the coordinate of the first P -partition within the Q-partition that contains t:

n

{
n′ if n′ is defined and (SG = false or LP (n′P ) 6= ‘gap’)
undefined otherwise

The computation of n′ depends on the ‘inclusion’ parameter.

Case inclusion = subset:

n′







(tQ[)
PP if (tQ[)

P ⊆ tQ

(tQ[)
PP + 1 if ((tQ[)

PP + 1)P ⊆ tQ

undefined otherwise

Case inclusion = bigger part inside:

n′







(tQ[)
PP if |(tQ[)

P ∩ tQ| ≥ |(tQ[)
P \ tQ|

(tQ[)
PP + 1 |((tQ[)

PP + 1)P ∩ tQ| ≥ |((tQ[)
PP + 1)P \ tQ|

undefined otherwise

Case inclusion = overlap:
n′ (tQ[)

PP .

The auxiliary function ‘gaps’ counts the number of partitions between n and k which are labelled
‘gap’

gaps(n, k) Σk
i=n

{
1 if LP (iP ) = ‘gap’
0 otherwise

4.5.3 Extract

We define two ‘extract’ functions. Both extract certain parts of given intervals. The first
one, ‘extractL’ extract partitions from given intervals which are labelled with a given la-
bel. For example, if the days in the day-partitioning are labelled ‘Monday’, ‘Tuesday’ etc.,
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one can use extractL to extract all Tuesdays from a given interval. The parameters are
extractL(I, label, P, inclusion, intersection). I is the interval, label is the label and P is the
labelled partitioning. ‘inclusion’ is one of the keywords ‘subset’, ‘bigger part inside’ or ‘over-
laps’. It controls the relationship between the interval I and the partition p with the right label.
If, for example, inclusion = subset then p must be a subset of the support of I . ‘intersection’
is a Boolean flag. It controls whether the result consists of just the partitions, or the partitions
intersected with I .

Definition 4.5.4 (extractL) Let I be an interval, ‘label’ a label, P a labelled partitioning
with labelling LP , ‘inclusion’ one of the key words ‘subset’, ‘bigger part inside’ or ‘overlaps’
and ‘intersection’ a Boolean flag.

We define the function extractL:

extractL(I, label, P, inclusion, intersection)

⋃

p∈P,L(p)=label,C(p)

{
p ∩ I if intersection = true
p otherwise

where

C(p)







p ⊆ S(I) if inclusion = ‘subset’
|p ∩ S(I)| ≥ |p \ S(I)| if inclusion = ‘bigger part inside’
p ∩ I 6= ∅ otherwise

The next function, ‘extractD’ can extract a subinterval of a certain duration from an interval.
It can, for example, be used to extract the second fortnight in a year. The parameters are

extractD(I, O,D, componentwise, boundaries, forward, inclusion, intersection)

I is the interval from which subintervals are to be extracted. O (for offset) is a duration. It
determines the offset for the interval to be extracted. For example, if the second fortnight is
to be extracted, we need an offset of one fortnight. O = ((2, week)) could be used in this
case. D is the duration of the interval to be extracted. Both, the offset, and the duration
must be positive. Otherwise the extractD function is undefined. componentwise is a flag. If
it is false then only one single subinterval is extracted. If it is true then a subinterval of each
component of I is extracted. ‘boundaries’ is one of the keywords ‘support’, ‘core’ or ‘kernel’.
It determines the part of the interval I which is to be used for the extraction. forward is
a Boolean flag. If it is true then the offset is computed from the start of the interval I .
Otherwise it is computed from the end of the interval. ‘inclusion’ is one of the keywords
‘align’, ‘subset’, ‘bigger part inside’ or ‘overlaps’. It is used in the functions startpoint and
endpoint and determines exactly from where the offset is computed. In the above example,
one would choose inclusion = bigger part inside. This causes that the usual convention that
the first week in a year (or any other interval) is the week whose bigger part is in the interval.
‘intersection’ is again a Boolean flag. If it is true then the time interval which is determined
by the offset and the duration is intersected with I . Otherwise this time interval is returned,
even if its intersection with I is empty. This feature can, for example, be used to compute the
second fortnight from now. It is sufficient to have an interval I which is just one second long.
With the flags inclusion = align and intersection = false one would get the 2 weeks interval.

The extractD function needs two auxiliary functions startpoint and endpoint. They com-
pute the exact start and endpoint for the offset.
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Definition 4.5.5 (startpoint, endpoint) let t be a time point, P a partitioning and ‘inclu-
sion’ one of the keywords ‘align’, ‘subset’, ‘bigger part inside’ or ‘overlap’. We define the two
functions

startpoint(t, P, inclusion) and endpoint(t, P, inclusion):

startpoint(t, P, ‘align’) t

startpoint(t, P, ‘subset’)

{
tP [ if t = tP [

tP ] otherwise

startpoint(t, P, ‘bigger part inside’)

{
tP [ if t− tP [ ≤ tP ] − t
tP ] otherwise

startpoint(t, P, ‘overlap’) tP [

endpoint(t, P, ‘align’) t

endpoint(t, P, ‘subset’)

{
tP [ if t = tP [

(tPP − 1)P
[ otherwise

endpoint(t, P, ‘bigger part inside’)

{
tP ] if t− tP [ ≥ tP ] − t
tP [ otherwise

endpoint(t, P, ‘overlap’)

{
tP [ if t = tP [

(tP ] otherwise

The next auxiliary function intersect(i, I, inclusion, intersection) checks whether the in-
terval i is an admissible part of the result of extractD. This depends on the control parameter
‘inclusion’ which determines the relationship between i and the original interval I . The second
parameter ‘intersection’ controls whether i itself should be the result, or the intersection of i
with S(I).

Definition 4.5.6 (intersect) Let i = [t1, t2[ be a crisp interval, and let I be a fuzzy inter-
val. Let ‘inclusion’ be one of the keywords ‘subset’, ‘bigger part inside’ or ‘overlap’. Let
‘intersect’ be a Boolean flag.

We define

intersect(i, I, inclusion, intersection)






i ∩ S(I) if keep = true and intersect = true
i if keep = true and intersect = false
∅ otherwise

where
keep = true iff inclusion = ‘subset’ and i ⊆ S(I) or

inclusion = ‘bigger part inside’ and |i ∩ S(I)| ≥ |i \ S(I)| or
inclusion = ‘overlap’ and i ∩ S(I) 6= ∅

Definition 4.5.7 (extractD) Let I be an interval, let O = ((n0, P0), . . .) (for offset) and D
(for duration) be two durations. ‘componentwise’, ‘forward’ and ‘intersection’ are three Boolean
flags. ‘boundaries’ is one of the keywords ‘support’, ‘core’ or ‘kernel’ and ‘inclusion’ is one of
the keywords ‘align’, ‘subset’, ‘bigger part inside’ or ‘overlaps’.

We define the function
extractD(I, O,D, componentwise, boundaries, forward, inclusion, intersection)
as follows:
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Let [a, b[







[IfS , I lS [ if boundaries = ‘support’
[IfC , I lC [ if boundaries = ‘core’
[IfK , I lK [ otherwise

be the relevant boundaries for extracting the interval. The extractD function is undefined if
one of the boundaries is infinite.

Let t0

{
startpoint(a, P0, inclusion) if forward = true
endpoint(b, P0, inclusion) otherwise

t0 is the start point for computing the offset.

Let [t1, t2[

{
[shift(t, O), shift(t1, D)[ if forward = true
[shift(t2,−D), shift(t,−O)[ otherwise

be the interval to be extracted.

extractD(I, O,D, false, boundaries, forward, inclusion, intersection)
intersect([t1, t2[, I, inclusion, intersection).

extracts one subinterval from I.

extractD(I, O,D, true, parameters)






⋃

J∈Cmp(I) extractD(J,O,D, false, parameters)

if componentwise = true
extractD(I, O,D, false, parameters) otherwise

extracts a subinterval from each component.
‘parameters’ stands for ‘boundaries, forward, inclusion, intersection’.

A simplified version of ‘extractD’ needs no duration D, but only an offset O, and extracts
instead of an interval, just the start point of the interval.

4.6 Split

The function ‘split’ splits an interval into several intervals of a given duration. As an example
for its use, suppose we want to define a function ‘Weekend(I)’, which extracts from the interval
I all weekends. One way to do this would be to partition the interval I into intervals of one
week length, and then to use the function extractD to extract from each week the sixth and
the seventh day. The function

split(I,D, componentwise, boundaries, forward, inclusion, sequencing,
intersect)

is controlled by a whole bunch of parameters. The flag ‘componentwise’ indicates whether the
interval I is split as a whole, or whether its components are split separately. The keyword
‘boundaries’ determines whether the support of I , the core of I or the kernel of I is to be split.
The flag ‘forward’ indicates whether the interval is to be split from left to right or from right to
left. inclusion is a further keyword. It controls where to start with the splitting and determines
the relationship between the split parts and the interval I . For example, if inclusion = subset
then all split parts must be a subset of the support if I . The keyword ‘sequencing’ becomes
relevant when the duration D is not a single partition, but something mixed. If, for example,
D = (1week, 3day) we want to split I into intervals of length 1 week plus 3 days. There are
three different options. The first possibility is to partition I sequentially without gaps. The
second possibility is to synchronize the split parts with the ‘week’ partitioning. That means
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each split part starts with the start of a week. Since the length of the split parts is not a multiple
of a week length, we must either leave gaps (second possibility) or compute overlapping split
parts (third possibility).

Finally the ‘intersect’ flag controls whether the sequence of partitions is the result of split,
or whether the partitions are intersected with I .

The ‘split’ function needs two auxiliary functions, ‘advance’ and ‘retract’. Depending on the
value of the keyword ‘sequencing’ they compute the start point of the next split part. ‘advance’
is used for forward splitting and ‘retract’ is used for backward splitting.

Definition 4.6.1 (advance and retract) Let t be a time point, P a partitioning and
sequencing one of the key words ‘sequential’, ‘overlap’ or ‘with gaps’. We define the function
‘advance’:

advance(t, P, sequencing)







t if sequencing = ‘sequential’
tP [ if sequencing = ‘overlap’ or t = tP [

tP ] otherwise

We define the function ‘retract:

retract(t, P, sequencing)







t if sequencing = ‘sequential’
tP ] if sequencing = ‘overlap’ or t = tP ]

tP [ otherwise.

Definition 4.6.2 (split) Let I be an interval and D = ((n0, P0), . . .) be a duration. Let
‘boundaries’ be one of the keywords ‘support’, ‘core’ or ‘kernel’. Let ‘componentwise’,
‘forward’ and ‘intersect’ be Boolean flags. Let ‘inclusion’ be one of the keywords ‘subset’, ‘big-
ger part inside’ or ‘overlap’, and let ‘sequencing’ be one of the key words ‘sequential’, ‘overlap’
or ‘with gaps’.

We define the function split:

split(I,D, componentwise, boundaries, forward, inclusion, sequencing,
intersect) which computes a list (S0, . . .) of intervals.

Case componentwise = false:

Let [a, b[







[IfS , I lS [ if boundaries = ‘support’
[IfC , I lC [ if boundaries = ‘core’
[IfK , I lK [ otherwise

be the relevant boundaries for splitting the interval. The split function is undefined if one of
the boundaries is infinite.

Let t0

{
startpoint(a, P0, inclusion) if forward = true
endpoint(b, P0, inclusion) otherwise

be the start point for computing the split.

We compute a first sequence S ′i of intervals:

if forward = true then

S′0 [t0, shift(t0, D)[ and S′i+1 [s, t[ where s advance(S ′i], P0, sequencing) and t shift(s,D).

The sequence S′i is computed until S′i] ≥ b.

if forward = false then

S′0 [shift(t0,−D), t0[ and S′i+1 [s, t[ where t retract(S ′i [, P0, sequencing) and s shift(t,−D).

The sequence S′i is computed until S′i[ ≤ a.
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The final sequence (S0, . . .) is now obtained from the S ′i by computing

Si intersect(S
′
i, I, inclusion, intersect)

and removing the empty intervals from the sequence.

Case componentwise = true:
split(I,D, true, parameters)

⋃

J∈Comp(I) split(J,D, false, parameters)

where parameters stands for
‘boundaries, forward, inclusion, sequencing, intersect’.
⋃

does in this case not mean set union, but appending the lists of intervals, and removing
duplicates.

An appication for the ‘split’ function is the representation of clock times. For example,
the interpretation of ‘8:30 am’ could be the set of all time points corresponding to 8:30 am.
Alternatively it could mean a function mapping an interval I to the time points in I which
corresponds to 8:30 am. This could be achieved as a composition of the ‘split’ function and the
‘extract’ function.

4.7 Summary

In this chapter a number of basic operations have been defined which operate on time points,
crisp and fuzzy time intervals, partitionings and durations. Together with the functions and
relations defined for each of these datatypes separately, they form the building blocks for a
powerful specification language for temporal notions. This language can then be used as a
computational semantics for temporal expressions in structured and semistructured data, and
for XML and database query languages.

The functions at the mixed function layer were chosen to be minimal and powerful. Minimal
means that they cannot be decomposed into simpler functions. Powerful means that as many
different operations on fuzzy time intervals as possible can be defined by combining the mixed
functions and the functions at the lower layer. So far, this is not such a formal notion as
the general notion of computable functions. Experience and practical applications will show
whether other functions need to be added.

The functions will be available in the WebCal system. This system is developed for pro-
cessing complex temporal notions as realistically as possible, i.e. without any approximations
and abstractions. A prototype, which does not yet contain all the functions proposed in this
chapter is currently being tested.
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Chapter 5

Systematics and Architecture for

a Resource Representing

Knowledge about Named Entities

Klaus U. Schulz and Felix Weigel

Abstract

Named entities are ubiquitous in documents in the web and other document repositories. The
information that a human user associates with named entities occurring in a document of-
ten suffices to derive a simplified picture, or a fingerprint, of its contents. Quite generally,
background knowledge on named entities simplifies proper document understanding. In order
to use this kind of information in automated document processing, resources are needed that
make information implicitly carried by named entities explicit, formalizing it in an appropriate
way. We describe the systematics and architecture of an experimental resource that contains a
thematic-geographic-temporal hierarchy for classifying named entities, positions named entities
of various kinds with respect to the hierarchy, lists synonyms, and gives formal descriptions of
these entities and their relations. The resource should offer a general basis for semantic annota-
tion, indexing, retrieval, querying, browsing and hyperlinking of (semi-)textual web documents,
structured documents and flat texts.

5.1 Introduction

Named entities of various categories, such as “Ludwig van Beethoven”, “Daimler-Chrysler”,
“Dresdner Bank”, “Kofi Annan”, “Second World War”, “Coca-Cola”, “International Confer-
ence on Logic Programming”, “February”, “Royal Albert Hall”, “Niagara Falls” etc. are ubiq-
uitous in (semi-)textual documents, including documents in the web. Typically they carry a
large amount of implicit semantic information and associations that help human users to get
a simplified picture of the contents of the document. From the occurrence of “Beethoven”,
“Royal Albert Hall”, “February 7, 2004”, “Fidelio” we can guess that the document announces
or describes a classical concert in London. Documents with occurrences of “Beckenbauer”,
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“FIFA” and “World-Championship 2006” are likely to describe some current political affair in
the world of football. Documents with occurrences of “Putin” and “George W. Bush” in gen-
eral are related to the field of global politics. Hence, named entities occurring in a document
yield an interesting fingerprint of its general content. Furthermore, in order to “understand”
contents or meta-information of a given document it might be necessary to know, say, that
“Regensburg” is a town in “Bavaria/Germany” and “Christmas” is in “December”.

Currently, techniques for automated analysis of documents only start to make use of this
kind of information. In the area of information retrieval (IR), sometimes special dictionaries for
important categories of named entities (e.g., persons, geographic entities) are used. However,
the adequate role of these entities in the general process of indexing and similarity search is not
yet clarified in a satisfactory way. Going beyond classical IR, analysis of named entities could
obviously support various ambitious document understanding/processing tasks such as, e.g.,
extraction of meta-information, deduction, “semantic” document transformation, automated
hyperlinking and others. However, not much of this potential role is realized in actual systems.

As a first step towards an automated analysis of named entities, a more precise picture of the
semantic information that comes with specific kinds of named entities has to be developed. In
this chapter we focus on four general types of information. First, any named entity is associated
with a collection of thematic fields. Second, many named entities (e.g., “Olympic Games”,
“International Conference on Logic Programming”) are associated with a temporal period, or a
collection of temporal periods. Third, named entities are often related to a geographic location,
or to a collection of places. Fourth, characteristic relations exist between named entities of
various categories (e.g., “Leonardo da Vinci” is the creator of the painting “Mona Lisa” which
is located in the “Louvre”). As a matter of fact, these relations may be temporarily restricted.

Before we may use semantic information associated with named entities for document un-
derstanding/processing and reasoning tasks we have to make it explicit. A special resource
is needed where information on named entities of the above type is formalized and encoded
in an appropriate way. Both design and construction of such a knowledge base are difficult
tasks. From a conceptual point of view a suitable hierarchical structure has to be found where
thematic areas, temporal periods, locations and entities are ordered using a well-defined set of
meaningful semantic relations. Using this scheme, knowledge on real world entities and topics
has to be formalized and imported. From a practical point of view, the number of relevant
entities is huge and associated with all kinds of thematic areas. In a way, the intended resource
covers an important part of encyclopedic knowledge. On this background it makes sense to
distinguish three tasks, design of a suitable architecture, realization (filling) of the resource,
and adaption to specific applications.

In this chapter we concentrate on the first task. We describe our actual picture of an ar-
chitecture for a resource that encodes the above-mentioned types of information for named
entities. An experimental version of the resource based on this architecture is currently realized
in our group, concentrating on entities in non-scientific “common-sense” thematic areas. The
resource is structured using three levels. Level 1, the navigational level, positions named enti-
ties of various categories in a thematic-geospatial-geotemporal hierarchy. Each named entity, as
well as every field in the hierarchy, comes with a short formal description including main name,
synonyms and others. The ordering structure of the hierarchy is induced by meaningful oper-
ations for refining and combining entries. Level 2, the logical level, describes relations between
entities in the hierarchy. It refines and complements the relationships implicitly encoded in the
hierarchy, adding explicit relations in the form of datalog facts. Level 3, the linguistic level, is
used to associate natural language words and phrases with the entries of the hierarchy. This
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should support indexing mechanisms that include thematic information as well as geospatial
and temporal information. Our ideas for Level 3 are only preliminary and we largely ignore
this level here.

The chapter is structured as follows. Taking the experimental nature of the resource into
account, the following section collects some pictures and ideas that guide the design of the
resource. In Section 5.3 we describe syntax and meaning of the identifiers that are used for the
thematic-geographic-temporal hierarchy and show how the ordering relations of the hierarchy
are derived from the set of identifiers of entries. Section 5.4 briefly describes the structure of
a single entry of the hierarchy. Section 5.5 indicates how relations between named entities are
described in Level 2 using facts. Section 5.6 adds some concluding remarks.

5.2 Motivation: Goals, pictures, and intended applica-

tions

In the following description, which explains the motivation behind the development of the
resource in more detail, we distinguish between

• general scientific goals that are associated with the design and construction of the resource,

• pictures and ideas that influenced the design, and

• intended applications of the resource.

It should be stressed that the general development is not governed by a fixed set of intended
applications. However, some ideas of future applications are needed to guide design principles.

Goal 1. Systematics for thematic areas, periods and locations with a semantic meaning.
By systematics we mean an abstract ordering scheme for positioning entries of a structured
knowledge base, together with a scheme for assigning identifiers to the entries that reflect the
organization. In the area of documentation languages many distinct systematics can be found
for organizing collections of thematic fields in a structured way. Most systematics yield a tree
structured classification scheme that is based on a single topic/subtopic ordering relation (e.g.
ACM Computing Classification Scheme [4]). Other systematics, such as the universal decimal
classification [51], are more complex, but not very explicit as to the meaning of syntactic con-
structs used for composing identifiers. We would like to have a “typed” systematics that reflects
the difference between main categories of entries (thematic fields, temporal periods, locations,
entities, classes of entities, etc.). It should be possible to combine entries of distinct categories in
a flexible way (e.g., 〈“Germany”,“Politics”〉 7→ “German Politics”) and to refine thematic fields
and other entries (e.g., “Politics” 7→ “Foreign Politics”, “Germany” 7→ “Bavaria”). Refinement
and combination operations should have a defined semantic meaning. Further desirable prop-
erties are the following. Stability: local changes (e.g., addition of subentries, deletions) should
not affect other parts of the identification scheme. Arbitrary depth and branching degree: the
identification scheme should allow an arbitrary number of levels for organizing concepts and
topics. Similarly it should be possible to have an arbitrary number of immediate subtopics for
a given topic. Multiple parents: the scheme should not be restricted to tree structures. It
should be possible to consider an entry as a child of distinct parent topics. Multiple subdivision
of entries should be supported. Many entries can be further subdivided using distinct criteria
(e.g., the category of politicians can be subdivided by gender, nationality, administrative role,
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etc.) It should be possible to encode the criterion that gives rise to a certain division into
subentries. Efficient computational access to subordinate and superordinate concepts should
be supported.

Goal 2. Providing a basis for geospatial and geotemporal reasoning. The data contained in
the resource should help to realize simple forms of geospatial and geotemporal reasoning. To
this end, the locational or temporal position of entities and objects should be described. For
example, the resource should make clear that “Munich” is part of “Bavaria”, which is part of
“Germany”. It should encode that “Christmas” is in “December” and “December” is in the
“Second Half of a Year”. A reasoning component may then conclude that a given event in
Munich in December 2004 is an event in Germany in the second half of 2004. In a similar way
the resource should provide basic numeric information on distances that can be used to deduce,
say, that the town “Holzkirchen” is within a 50 km neighbourhood of “Munich”. To this end,
temporal periods (“Second World War”) and locations (“Munich”), as well as other classes of
entities (e.g., conferences, concerts and other events) are described with the help of calendar
dates and geo-coordinates.1 In addition we use symbolic temporal and spatial relations such as
inclusion or overlap. From a practical point of view, a large set of entities carrying temporal
and/or locational information has to be covered.

Goal 3. Connecting textual expressions and vocabulary with thematic fields.
As one vision going beyond analysis of named entities would like to be able to associate

with any content word of a given dictionary a set of topical areas or domains of the hierarchy
where the word has an important status. For example, the noun “heart” typically points to
a small selection of topics such as “Love”, “Popsongs”, and “Medicine”. We plan to realize a
partial mapping from words/phrases to typical topics. This is the role of the above-mentioned
Level 3.

Picture 1. A logical model of prominent entities of the world. From one point of view,
with Levels 1 and 2 we would like to describe a simplified formal model of a part of the “real
world” that includes time periods, places, individuals of distinct type, their relations etc. The
model does not try to capture “deep knowledge” such as aspects of causality. It “merely”
represents a (partial) collection of relational facts. Still, many details of this picture remain to
be clarified. For example it is not really clear how the intuitive notion of a “thematic area”
should be modelled in logical terms.

Picture 2. Chaining of associations. Any real-world topic or entity can be seen as a
“mental container” for a whole class of related topics, places, periods and entities. Opening
this container, or looking at it with a magnifying glass, we find new subordered topics etc. With
“chaining of associations” we mean a mental process where we start with a topic or entity, move
to a subtopic, find new subtopics and continue up to a certain point. One characteristic feature
of chaining is that it is possible to reach a given topic on distinct paths. As an example, consider
the event “Olympic Games Munich 1972”. One chain, starting from “Munich” could have the
form

Munich → History of Munich → Munich in the 1970ies → Events in Munich in
the 1970ies → Sport Events in Munich in the 1970ies → Olympic Games Munich
1972

Further chains leading to “Olympic Games Munich 1972”could start, e.g., from “Sports”, or
from the period “1970ies”. When browsing the hierarchy we would like to support chaining

1As a starting point we intend to describe locations numerically using a single pair of geo-coordinates, marking

a central point within the location. Clearly it is desirable to integrate more precise descriptions.
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of associations. It should be possible to find a specific entity or topic starting from distinct
points. As an immediate consequence, our hierarchical structure cannot be tree-formed. Still
we definitely want to avoid cycles. When finding an entry of the hierarchy such as “Olympic
Games Munich 1972” in a document we would like to be able to derive superordinate entries
(“Munich”, “Sports”, “1970ies”). Once we have cycles, the notion of “superordinate” entries
does not make sense.

Intended application 1. Semantic annotation and semantic indexing of web-documents
and document repositories. With “annotation” we mean a process where pieces of meta-
information are attached to a document, or to specific elements of a document. Based on the
planned resource we may, e.g., enumerate named entities of a particular type found in the
document/element in a syntactically normalized way, attach thematic areas, temporal periods
and locations associated with these entities to documents/elements. Furthermore, Level 3 of
the resource helps to map arbitrary words and phrases occurring in the document to thematic
areas, and to use this mapping for semantic annotation. With “indexing” we mean the related
process where we create a simplified description for each document in a given repository. We
may use the resource to create specialized subindexes that (conceptually) map named entities,
thematic areas, time periods and locations of the hierarchy to documents in the repository.
Semantic annotation and semantic indexing support the following practical applications.

Intended application 2. “Semantic” document querying and transformation. A popular
vision is that future generations of query/transformation languages for data on the web are
equipped with special mechanisms for dealing with semantic information of distinct types.
Using semantic annotations of the above-mentioned form, such languages could be able to
access, query and transform documents based on topical, temporal and locational conditions.
A possible web-inquiry could be: “Find web pages that mention transport enterprises in a
neighbourhood of 100 km around Munich. Order them by distance from Munich.”

Intended application 3. Semantic Retrieval. Semantic retrieval is similar, but does not
involve transformation steps. Locational, temporal or topical conditions in queries bring IR
closer to data base querying. Possible retrieval tasks to be supported are, e.g. “Find documents
that mention international jazz musicians and locations in Bavaria.”, or “Find documents that
mention banks in Bavaria, contain the keyword ’mortgage’, and refer to each of the last twelve
months.”

Intended application 4. Typed hyperlinking. Based on the resource we may introduce links
between web-pages that support special navigation/mining tasks. We may, say, link documents
that refer to the same entity of category X (person, event, film, composition, organization,...),
or to some entity in a given thematic area (jazz in the 1970ies). We may use the relations of
Level 2 to link documents that mention at least two compositions of Ludwig van Beethoven.
Using the hierarchy, links can be typed, say, with topics like “Music”, “Politics” etc.

Intended application 5. Browsing. The hierarchy will include a small collection of web-
addresses that are relevant for a given entry. Hence it can be used as a special (limited)
kind of web-directory. Based on the above-mentioned indexing mechanisms we may also use
the hierarchy to support document retrieval by interactive browsing techniques. For example,
during a retrieval session where we use conventional keyword querying we may open a parallel
window where we browse through the hierarchy. We may restrict a given large result set to those
documents that mention at least one entity of the special category X of the currently visited
entry of the hierarchy. From more general point, the knowledge available in the hierarchy is
used to reduce complexity of searching and answer navigation.
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5.3 Systematics and Organization

Thematic fields and domains, as well as geographic regions and temporal periods, can be orga-
nized in at least two conceptually distinct ways. Following an analytical organization scheme,
topics and entities are ordered using a logical perspective. Consequently, concepts that have
the same analytical status are introduced at the same level, or depth. On the other hand we
may use a relevance-based perspective. This would mean that we try to have “important” topics
close to the root of the hierarchy. As a matter of fact, the notion of “importance” is relative
and depends on a given application. For example, assume that the hierarchy is used to classify
news in Germany. When following an analytical ordering, the two states “Germany” and “Por-
tugal” should be on the same level: both are European states. When using a relevance-based
ordering, “Germany” has to be found on a higher level than Portugal. With our systematics
we would like to support a twofold organization with an analytical principal ordering and a
relevance-based secondary ordering.

5.3.1 Syntax of identifiers

We use the following general philosophy. Each entry of the hierarchy has a unique identifier.
Identifiers have a well-defined term structure. The syntactic structure of the identifier of an
entry reflects its analytical position in the hierarchy: all analytical parent- and ancestor-relations
are derived from the term structure of identifiers, in a way to be explained.

In order to support a secondary relevance-based organization we may specify for a given
entry a set of “godfather entries”. In the visual representation we do not only enumerate the
analytical children of an entry but also its godchildren. In this way an entity like “David
Beckham”, who might perhaps be introduced as an “Current British Football Player of Real
Madrid” at a deep level of the analytical hierarchy, can be made directly visible, say, under
“Sportsmen”. The use of godfather parents is not only relevant for browsing. For classification
tasks it might be important to know that David Beckham belongs to a small group of prominent
sportsmen, which implies that documents mentioning David Beckham are related to sports, but
not necessarily to the actual equipe of Real Madrid.

Definition 5.3.1 There are seven basic types of identifiers, E (category of entities), e (individ-
ual entity), G (category of geographic areas), g (individual geographic areas), T (category of tem-
poral periods), t (individual temporal period), F (thematic field). With T = {E, e,G, g, T, t, F}
we denote the set of basic types.

Example 5.3.2 Entity categories (type E) can be considered as unary predicates that refer to
a set of entities. Examples are “Persons”, “Composers”, “Organizations”, “Paintings”. Ex-
amples for individual entities (type e), which can be interpreted as individual constants, are
“George W. Bush”, “Beethoven”, “Picasso”, “BMW”, “The Rolling Stones”. Possible cate-
gories of geographic areas (type G) are, e.g., “Continents”, “States”, “Industrial Regions”.
Individual geographic areas (type g) are, e.g., “Austria”, “Germany”, “Pacific Ocean”, “Alps”.
Categories of temporal periods (type T ) are, e.g., “Political Epochs”, “Epochs in Art”, “Cen-
turies”. Individual temporal periods (type t) are, e.g., “Middle Ages”, “Second World War”,
“1970ies”. Thematic fields (type F ) are “Politics”, “Arts”, “Music”, “Mathematics and Music
in Ancient Greece”.

Definition 5.3.3 The set of possible identifiers, I(T , IN), is recursively defined as follows:
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1. Root Identifier. The empty sequence, written ( ), is a possible identifier.

2. Local Introduction. If ϕ is an identifier, n is a positive integer, and if X ∈ T0 is a basic
type, then (Xϕ.n) is a possible identifier.

3. Symmetric Intersection. If ϕ and ψ are possible identifiers, then (ϕ&ψ) is a possible
identifier. The operator “&” is considered to be associative, commutative and idempotent.
Hence expressions (ϕ1&ϕ2& . . .&ϕn) are well-formed. The root identifier ( ) is treated as
a neutral element w.r.t. “&”, which means that expressions (ϕ&( )) and ϕ are equivalent.

4. Focus. If ϕ and ψ are identifiers, and if ϕ has type E, G, T , or F , then (ϕ:ψ) is an
identifier. The root identifier ( ) is treated as a right neutral element w.r.t. “:”, which
means that expressions (ϕ : ( )) and ϕ are equivalent.

We use the following notational conventions: If ϕ = ( ) we write (X.n) for (Xϕ.n). Expres-
sions (Xϕ.n.k) are shorthand for (X(Xϕ.n).k). Similarly (X.n.k) is shorthand for (X(X.n).k).

Remark 5.3.4 In order to account for the above equivalences, identifiers are normalized in
the actual system. This means that nested symmetric intersections are flattened in the obvious
way. Conjuncts “( )” are suppressed, as well as multiple conjuncts, the remaining conjuncts are
ordered lexicographically. For example, the normal form of ((( )&(F.1))&(((F.3)&(F.2))&(F.3))
is ((F.1)&(F.2)&(F.3)). Furthermore, any focus on ( ) is erased.

In the sequel, we write In(T , IN) for the set of normalized identifiers. If not mentioned
otherwise, with an identifier we always mean a normalized identifier.

Remark 5.3.5 For points deeply embedded in the hierarchy, identifiers tend to be notationally
complex and long. In the implemented version, each entry is mapped to a unique integer that
represents a second, numerical identifier. An identifier of the form (ϕ&ψ) can then be written
more compact in the form (n&m) where n and m respectively denote the numerical identifiers
corresponding to ϕ and ψ.

5.3.2 Meaning of identifiers

The following remarks explain the intuition behind the above three operations and describe
the meaning. Clearly, since we model parts of the real world we cannot expect to have a fully
formalized semantics as, say, in mathematical logic. Still, persons that fill the hierarchy and
persons that use the results should have a common picture that is as precise as possible.

Local Introduction. When moving to a specific topic, ϕ, we may find new entity classes,
thematic subtopics, temporal periods, geographic areas etc. that are specific for the given
topic in the sense that they do not play a major role “outside” the topic. In such a case,
the entity class (or the thematic subfield, the period, the geographic area etc.) is introduced
into the hierarchy using a local introduction (Xϕ.n). For example, consider an entry “Music”
with identifier ϕ. The category of entities “Compositions” is only relevant inside the area of
music. We might introduce it using an identifier (Eϕ.1). If ϕ stands for Europe, the European
Commission might be introduced as (eϕ.1), the 20 commissioners as (Eϕ.1). An entry “Politics”
with identifier ψ might be refined using a local introduction (Fψ.5) to “Foreign Politics”. In
contrast, assuming that “Germany” is an entry of the hierarchy, “German Politics” would not
be introduced by a local introduction, but as a symmetric intersection (s.b.). The following list
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illustrates the formal relationship between an entry ϕ and a local introduction (Xϕ.n). Due
to type differences there are 49 possible instances of the local introduction scheme. Hence we
cannot describe all cases here. In the sequel we use superscripts to denote types. Outermost
superscripts represent the type of the resulting expression.

1. (tϕt.n)t: a subperiod of the temporal period ϕ.

2. (TϕT .n)T : a subcategory of the category of temporal periods ϕ.

3. (Tϕt.n)T : a category of temporal periods, all overlapping with temporal period ϕ. We
do not demand containment in ϕ. As an example, assume that we want to introduce as
a category the “Years of the Second World War” using ϕ = “Second World War”. Then
1945 would be a member of the category, even if the war was finished before the end of
1945.

4. (tϕT .n)t: a member of the category of temporal periods ϕ.

5. (Gϕg .n)G: a category of locations, all overlapping with the location ϕ.

6. (eϕe.n)e: a subentity of the structured (complex) entity ϕ.

7. (Eϕe.n)E : a category of entities, all subentities of the complex entity ϕ.

8. (eϕE .n)e: a member of the category of entities ϕ.

Symmetric Intersection. Given two thematic fields ϕF and ψF the symmetric inter-
section (ϕ&ψ) denotes the thematic intersection of the two fields. A symmetric intersection is
used if any subtopic of (ϕ&ψ) can be considered as a common subtopic of both ϕ and ψ, which
means that (ϕ&ψ) is a subarea of both arguments. Given the analytical hierarchy defined
below, (ϕ&ψ) will always be a child both of ϕ and ψ. For unbalanced combinations where
the second argument only selects a specific subarea of the first argument the focus operator is
used (s.b.). In the general case the meaning of the operator “&” depends on the types of the
arguments. We list some examples.

1. (ϕt&ψt)t: a temporal period representing the intersection of temporal periods ϕ and ψ.

2. (ϕt&ψT )T : the category of temporal periods obtained by restricting category ψ to those
periods that overlap with period ϕ (cf. Case 3 above).

3. (ϕg&ψG)G: category of locations obtained restricting category ψ to those locations that
overlap with location ϕ. For example, “Danubian states” are states overlapping with the
Danube, and not states within the Danube.

4. (ϕF &ψt)F : thematic field ϕ restricted to “temporal window” ψ. For example, if ϕ denotes
“Politics” and ψ denotes “Second World War”, then (ϕF &ψt)F means “Politics During
the Second World War”.

5. (ϕF &ψg)F : thematic field ϕ restricted to location ψ. The interpretation is liberal in the
sense that subtopics only must have some strong relationship to location ψ. For example if
ϕ denotes “Politics” and ψ means “Germany”, then “German Politics” can be introduced
as (ϕF &ψg)F . Still, events of the field “German Politics” might happen, say, in Paris,
Warsaw, or Washington.
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6. (ϕF &ψG)F : thematic field ϕ restricted to locations of the category ψ. If ϕ denotes
“Education” and ψ denotes “European States” then “Education in European States” can
be introduced as (ϕF &ψG)F .

7. (ϕE&ψF )E : a subcategory of the class of entities ϕE . Only entities are considered that
are relevant for the thematic field F (entities “in the area” F ).

8. (ϕE&ψe)E : a subcategory of the class of entities ϕE . Only entities are considered where
entity e plays a dedicated role. If ϕ denotes “Symphonies” and ψ denotes “Haydn” then
“Symphonies of Haydn” can be introduced as (ϕE&ψe)E .

Focus. The focus operation (ϕ : ψ) is used for a kind of combination where the first
argument ϕ, which has type X ∈ {T,G,E, F}, is more privileged than the “focussed” argument
ψ. Typically, ψ represents just a kind of “object”, an “orientation” of ϕ, the type of (ϕ : ψ) is
always the type of ϕ. For example, “French Policy concerning Germany” could be modelled as
“French Policy” focussing “Germany”. As a second example, consider the difference between
“Political Sciences” (German word: “Politikwissenschaft”) and “Policy of Science” (German
word: “Wissenschaftspolitik”). The former can be modelled as “Science” focussing “Policy”,
the latter as “Policy” focussing “Science”. Similarly “Policy of Education” would be modelled
as “Policy” focussing “Education”, “Political Films” as “Films” focussing “Policy”. It should be
mentioned that in practice we found a considerable number of cases where it is difficult to decide
if a symmetric intersection or a combination using the focus operation is more appropriate. For
example, under one possible interpretation, “Religious Arts” can also be considered as “Arts”
focussing “Religion”. The problem is to decide if icons and other paintings of the field of
“Religious Arts” really have some kind of religious status. If this is typically the case, then the
use of a symmetric intersection is appropriate.

Remark 5.3.6 For some applications it might seem desirable to model the relationship between
distinct topics in a more detailed way, introducing further operations. However, we have seen
above that even with our coarse scheme it is sometimes difficult to select the “correct” operation.
These difficulties tend to grow with an enlarged set of operations.

Remark 5.3.7 In order to design special reasoning mechanisms for the information found in
the hierarchy it would be interesting to have a formal notion of a “model” of the hierarchy,
purely based on algebraic notions. The development of such a notion is one point of future
work. Parts of Definition 5.3.3 can be considered as a partial axiomatization. Subclasses of
models could be characterized using additional axioms such as, e.g., the equivalency between
(ϕ : (ψ1&ψ2)) and ((ϕ : ψ1)&(ϕ : ψ2)).

5.3.3 Derived hierarchical structure

When describing a concrete thematic-geographic-temporal hierarchy we use a finite subset H of
the set of all normalized identifiers, In(T , IN). We now want to define an ordering relation on
H , based on a suitable parent/child relation. It might seem natural to treat for any symmetric
intersection of the form ϕ := (δ1&δ2) the two identifiers δ1 and δ2 as analytical parents of ϕ.
However, this leads to counterintuitive results. For example, with this choice, all identifiers
of H in the sequence (δ&(F.1)), (δ&(F.1.1)), (δ&(F.1.1.1)), . . . would be treated as unrelated
children of δ ∈ H . Thus the number of children becomes unacceptable and the intuitive internal
order among these children is ignored.
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Definition 5.3.8 The set min-gen(ϕ) of minimal generalizations of ϕ ∈ In(T , IN), and the set
of X-refinements (where X ∈ T ) of a normalized identifier is recursively defined in the following
way (exponents n denote normalization):

1. min-gen(( )) := ∅.

2. min-gen((Xψ.n)) := {ψ}; the identifier (Xψ.n) is an X-refinement of ψ.

3. min-gen((ϕ&ψ)) := {(ϕ′&ψ)n | ϕ′ ∈ min-gen(ϕ)} ∪ {(ϕ&ψ′)n | ψ′ ∈ min-gen(ψ)}. Here
(ϕ&ψ) is an X-refinement of (ϕ′&ψ) iff ϕ is an X-child of ϕ′, and similarly for (ϕ&ψ)
and (ϕ&ψ′).

4. min-gen((ϕ : ψ)) := {(ϕ′ : ψ)n | ϕ′ ∈ min-gen(ϕ)} ∪ {(ϕ : ψ′)n | ψ′ ∈ min-gen(ψ)}. Here
(ϕ : ψ) is an X-refinement of (ϕ′ : ψ) iff ϕ is an X-refinement of ϕ′, and similarly for
(ϕ : ψ) and (ϕ : ψ′).

With gen(ϕ) we denote the set of all generalizations of ϕ, which is obtained using the transitive
closure of the min-gen-relation.

We define ψ <gen ϕ iff ψ ∈ gen(ϕ) and call “<gen” the refinement/generalization order on
normalized identifiers in In(T , IN). It is simple to see that ψ <gen ϕ implies that the notational
length of ψ is smaller than the length of ϕ. As a trivial consequence we obtain:

Lemma 5.3.9 The refinement ordering “<gen” is a strict partial ordering on In(T , IN). It
imposes the structure of a rooted directed acyclic graph on In(T , IN).

Definition 5.3.10 Let H be a finite subset of In(T , IN), let ϕ ∈ H. The set R ⊆ gen(ϕ) ∩H
is called a minimal coverage of ϕ w.r.t. H iff the following conditions hold:

1. Coverage. For all ψ ∈ gen(ϕ) ∩H there exists an element ϕ′ ∈ R such that ψ ≤gen ϕ
′.

2. Minimality. If ϕ1 and ϕ2 are elements of R, then neither ϕ1 <gen ϕ2 nor ϕ2 <gen ϕ1.

It is not difficult to see that a minimal coverage always exists and is unique.

Definition 5.3.11 Let H be a finite subset of In(T , IN). Then the analytical parents of ϕ ∈ H
w.r.t. H are the elements of the minimal coverage of ϕ w.r.t. H.

Example 5.3.12 We illustrate the definition of the analytical parent-child relation with an
example from sports where we show how the Spanish football club “Real Madrid” could be po-
sitioned in a suitable (fragment of the) hierarchy. Let us assume we have the following en-
tries in H: (F.9) “Sports”, (E.3) “Organizations”, σ “Spain” (we leave the form of σ open),
((F.9)&σ) “Spanish Sports”, ((F.9)&(E.3)) “Sports Organizations”, (F.9.1) “Ball Games”,
(F.9.1.1) “Football”, ((F.9.1.1)&(E.3)) “Football Organizations”, ((F.9.1.1)&σ) “Spanish Foot-
ball”, (E((F.9.1.1)&(E.3)).1) “Football Clubs”, ((E((F.9.1.1)&(E.3)).1)&σ)
“Spanish Football Clubs”. Then (e((E((F.9.1.1)&(E.3)).1)&σ).1) might denote “Real Madrid”.
The analytical parent-child relationship induced by this set-up can be seen in Figure 5.1. Now
assume that we delete entry ((F.9.1.1)&σ) “Spanish Football” in H. Then link (1) disappears,
and links (2), (3) are merged into a link from “Spanish Sports” to “Spanish Football Clubs”.
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(F.9) Sports (E.3) Organisations σ Spain

((F.9)&(Ε.3)) Sports Organisations

((F.9)&σ) Spanish Sports

(F.9.1) Ball Games

(F.9.1.1) Football

((F.9.1.1)&(E.3)) Football Organisations

(E((F.9.1.1)&(E.3)).1) Football Clubs

((E((F.9.1.1)&(E.3)).1)&σ) Spanish Football Clubs

((F.9.1.1)&σ) Spanish Football

(e((E((F.9.1.1)&(E.3)).1)&σ).1) Real Madrid

(1)
(2)

(3)

Figure 5.1: Parent-child relationship derived from identifiers (cf. Example 5.3.12).

Note that the semantics of the analytical parent-child relation can be derived from the
meaning of the operations. From Section 5.3.2 it follows that in Figure 5.1 ((F.9.1.1)&σ)
“Spanish Football” is a thematic subarea of (F.9.1.1) “Football” obtained by looking only
at those aspects/subtopics with a close relationship to the location σ “Spain”. Similarly it
follows that ((F.9.1.1)&(E.3)) “Football Organisations” is obtained from ((F.9)&(E.3)) “Sports
Organisations” by restricting organisations in the area of sports to organisations in the more
specific area of football. Still, the ordering relations of the hierarchy only capture a part the
information that is encoded in the identifiers, due to “missing points” in the hierarchy (such as
“Spanish Football Organisations” above).

Remark 5.3.13 The actual computation of analytical parents of an identifier ϕ w.r.t. a given
set H ⊂ In(T , IN) proceeds in two steps. (1) We first compute a coverage for ϕ. To this end we
“treat” every minimal refinement ϕ′ of ϕ. To treat ϕ′ means: check if ϕ′ ∈ H. In the positive
case, add ϕ′ to the coverage for ϕ. In the negative case, treat the minimal refinements of ϕ′. (2)
Given a coverage C we erase all members that refine other members of C. Details are omitted.

The transitive closure of the analytical parent relation on H is called the ancestor-relation
on H and denoted “<H

gen”.

Definition 5.3.14 A subset H of In(T , IN) is called constructive iff the following conditions
hold: (1) ( ) ∈ H, (2) (Xϕ.n) ∈ H implies that ϕ ∈ H (X ∈ {t, T, g,G, e, E, F} and n ∈ IN),
(3) (ϕ&ψ) ∈ H implies ϕ ∈ H and ψ ∈ H, (4) (ϕ : ψ) ∈ H implies ϕ ∈ H and ψ ∈ H.

Lemma 5.3.15 Let H be a constructive subset of In(T , IN). Then the ancestor relationship
“<H

gen” is a strict partial order on H that imposes the structure of a rooted directed acyclic
graph on H.
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Remark 5.3.16 In the graphical visualization we not only depict analytical children of a given
entry, but also visualize the godchildren. As long as we do not control the introduction of
godfathers there is no guarantee that we run into a loop when we follow arbitrary chains of
children. For this reason, the visualization of analytical children and godchildren is distinct.

5.3.4 Examples from the experimental version

In order to illustrate the systematics we add two further examples from the experimental version.

Example 5.3.17 The first level (analytical children of the root node) of the current hierar-
chy has the following entries.2 (E.1) “Persönlichkeiten” (VIPs), (E.2) “Events”, (E.3) “Or-
ganisationen und Einrichtungen” (Organisations and Institutions), (F.1) “Politik” (Politics),
(F.2) “Wirtschaft” (Economy), (F.3) “Finanzen” (Financial Sector), (F.4) “Recht und Jus-
tiz” (Law), (F.5) “Wissenschaft und Technik” (Science and Technology), (F.6) “Kunst und
Kultur” (Arts and Culture), (F.7) “Medien und Kommunikation” (Media and Communica-
tion), (F.8) “Bildung, Erziehung, Ausbildung und Beruf” (Education and Profession), (F.9)
“Sport” (Sports), (F.10) “Religion”, (F.11) “Lifestyle”, (F.12) “Gesundheit und Ernährung”
(Health and Food), (F.13) “Natur und Umwelt” (Nature and Environment), (G.1) “Geophysis-
che Lokationen” (Geophysical Locations), (G.2) “Politische geographische Lokationen” (Political
Geographic Locations), (G.3) “Kulturelle und religiöse Lokationen” (Cultural and Religious Lo-
cations), (t.1) “Geschichte” (History), (T.1) “Epochen” (Epochs), (T.2) “Jahrhunderte” (Cen-
turies).

Example 5.3.18 Figure 5.2 gives a partial picture of the hierarchy, including temporal and
geographic axes, and illustrates how entities such as “Leonardo da Vinci” and “Mona Lisa” are
positioned in the hierarchy.

5.4 The structure of the entries

We have seen how entries are positioned in the hierarchy. In order to complete the description
of Level 1 of the resource, some words on the structure of entries are in order. Any entry of the
hierarchy has the following components:

1. Identifier (element of In(T , IN)).

2. Secondary identifier (integer).

3. Main name (non-empty string).

4. Explanation (string, possibly empty). Explains the meaning/use of the main name in the
present context. For human readers.

5. Identifiers of godfather entries (list, possibly empty). Determines entries of the hierarchy
where the given entry is treated as an non-analytical immediate child since it is considered
as a relevant subentry.

2The current version of the resource uses German notions. English translations are given in parentheses for

convenience.
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σ
Italy

(E.1)
VIPs

(F.6)
Arts and Culture

(T.1)
Epochs

(F.6.1)
Painting

((F.6)&(T.1))
Epochs of Arts

(t((F.6)&(T.1)).1)
Renaissance

((t((F.6)&(T.1)).1)&σ)
Italian Renaissance

((E.1)&(F.6))
VIPs of Arts
and Culture

((E.1)&(F.6.1))
Painters

((F.6.1)&(t((F.6)&(T.1)).1))
Renaissance Painting

((E.1)&(F.6.1)&(t((F.6)&(T.1)).1))
Renaissance Painters

((F.6.1)&(t((F.6)&(T.1)).1)&σ)
Painting of Italian Renaissance

((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ)
Painters of Italian Renaissance

(e((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ).1)
Leonardo da Vinci

(E(F.6).1)
Works of Arts

(E(F.6).1)&(F.6.1))
Paintings

(E(F.6).1)&(F.6.1)&(t...1))
Renaissance Paintings

(E(F.6).1)&(F.6.1)&(t...1)&s)
Paintings of Italian Renaissance

((E(F.6).1)&(F.6.1))&(e((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ).1))
Paintings of Leonardo da Vinci

(e((E(F.6).1)&(F.6.1))&(e((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ).1)).1)
Mona Lisa

Figure 5.2: Part of the experimental hierarchy.
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6. Synonyms (list of strings, possibly empty). Collects distinct natural language expressions
that can be interpreted (in one reading) as synonyms of the main name. Synonyms
are important for recognizing entities and topics in texts. Clearly, a remaining difficult
problem is the resolution of ambiguities.

7. Relationship to entries of other classification schemes. Explains synonymy, hyperonymy,
hyponymy or similarity relations with subject categories from other classification schemes
such as the universal decimal classification UDC [51] and the IPTC subject classification
[28].

In addition, all entries of type X ∈ {g, t, e} come with a formal description that depends on
the category of the entry. In the experimental version, the format of the formal description has
only been fixed for a small number if entity classes. As an illustration we describe which kind
of data should be included in the formal description of events. Some of these data belong to
Level 2 (logical level).

1. Main URL (optional). If there is any URL especially for the event.

2. Useful URLs. URLs where useful information associated with the event can be found.

3. Temporal description:

(a) Singular or periodical (sin/per).

(b) First/last occurrence (only for periodical events). Last occurrence: use the last
occurrence that is confirmed. This may be a point in future.

(c) Turnus (for periodical events only). (n days, n weeks, n months, or n years (n ∈ IN).

(d) Duration. (n days, n weeks, n months, or n years n ∈ IN). May be qualified with
“approx.”.

(e) Temporal “home” position. For periodical events list a period that describes the
usual temporal position of the event within a year as precisely as possible (upper and
lower boundary). Similar for singular events. There are the following alternatives:
For specifying a rough period of the year, the categories (first half, second half,
spring, summer, autumn, winter) may be used. It is also possible to list an interval
of months (from April to August). It is also possible to give a more precise interval
such as “from April 15 to August 15”.

4. Location. A state plus a subcountry (such as Bavaria, optional) plus a city (optional) plus
an address (optional). States and cities should be introduced in the hierarchy. We use
their identifiers. Exceptions are possible (small unknown towns). For periodical events
with distinct places we only give a common location of all instances. (E.g., “Europe” for
European championships).

5. Location URL (optional). This might be the URL of a concert hall, of a theatre, of a city,
of a country,...

6. Organizer (optional). This might be another entity of the hierarchy (give identifier and
main name), or a freely specified entity.

7. Organizer URL (optional).

8. Importance. International (i), national (n), or local (l).

166



5.5 Level 2: Facts

Level 2 of the planned resource represents a collection of facts that yield a more precise de-
scription of the relations between distinct entries of a hierarchy. Facts are classified into several
categories.

1. Compositional facts describe the composition of an entry in terms of other entries.

Definition 5.5.1 A symmetric union has the form (ψ1t. . .tψn) (n ≥ 2) where the components
ψi are distinct normalized identifers of the same type X ∈ F,E,G, T, g, t (1 ≤ i ≤ n). (ψ1 t
. . . t ψn) has type X.

The operator “t” is considered to be associative, commutative and idempotent. Read, e.g.,
((F.1) t (F.3)) as “Union of universal thematic fields 1 and 3”, ((G.1) t (G.3)) as “Union of
the categories of geo-entities 1 and 3”, and ((g.1) t (g.3)) as “Spatial union of the geo-entities
1 and 3”, and ((t.1) t (t.3)) as “Temporal union of the temporal periods 1 and 3”.

Definition 5.5.2 Let ϕ denote an identifier, let α ∈ D be a possible division criterion. A
compositional fact for ϕ has the form ϕ ≡ (ψ1 t . . . t ψn), ϕ ≡ [α](ψ1 t . . . t ψn), ϕ v
(ψ1 t . . .tψn), or ϕ v [α](ψ1 t . . .tψn) where the ψi have the same type X ∈ {F,E,G, T, g, t}
as ϕ.

Example 5.5.3 Let fmm ∈ D stand for the male-female distinction. Let (E(...).n) denote any
category of persons, say, politicians. Assume that we have two further entries with identifiers
(E(...).n.k) and (E(...).n.l) denoting female and male politicians. Then the axiom (E(...).n) ≡
[fmm]((E(...).n.k) t (E(...).n.l)) expresses that the class of all politicians is the union of the
classes of female politicians and male politicians, and that the division follows the male-female
distinction.

Example 5.5.4 Let adm ∈ D stand “immediate political-administrative subunit”. Then an
symmetric union of the German “Bundesländer” (Baden-Wurttemberg, Bavaria, ..., Thuringia)
and a compositional fact can be used to express that Germany can be partitioned into 16 imme-
diate political-administrative subunits.

2. Pure geographic facts express relations between entities of type g. Symbolic pure
geographic facts are based on a collection of unary and binary relations between geo-entities.

1. extended (unary). Used for geographic areas like states.

2. linear (unary). Used for geo-entities like rivers and roads with a linear form on maps.

3. point (unary). Used for geo-entities like waterfalls, churches, ... which are represented as
points on maps. Cities/towns are not treated as points.

4. part of (binary). Describes spatial inclusion.

5. common border line (binary). For extended geo-entities with a common borderline such
as France and Belgium.

6. overlaps (binary). Describes two extended geo-entities where the intersection is extended
and a proper subarea of both entities. For example, Austria and the alps overlap.
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7. is-capital-of (binary).

Numeric pure geographic facts assign a pair of coordinates to a geographic entity. The point
described by the coordinates is meant to denote one central point of the geographic entity.
Later we perhaps look at more complex spatial descriptions of extended geographic entities.

3. Pure temporal facts express relations between entities of type t. As for geographic
facts, there are two kinds of pure temporal facts. Symbolic temporal relations. We use Allen’s
13 relations for temporal intervals [5]. Numeric temporal relations assign a starting date and
an end point to a temporal entity.

4. Roles. Recall from the discussion of the local introduction operation that the
hierarchy in Level 1 is rich enough to encode elementship in sets represented as entries of type
X ∈ {E,G, T}. However, the hierarchy does not systematically encode relations of arity n ≥ 2
between entities. To this end we introduce a set R of roles in Level 2. The following is a
non-exhaustive and preliminary list. For relations with one temporal argument, this argument
may either be an entry of the hierarchy or an explicit date (a century, decade, year, month, or
a day).

1. Is-location-of. Ternary relation; first argument type e, second argument type G, third
argument type g. Used to express locations that are stable. E.g., the location of “Han-
nover Messe” w.r.t. the category of locations “Towns” is “Hannover”. The location of
“Carnegy Hall” w.r.t. the category of locations “state” is “USA”.

2. Is-time-of. Ternary relation; first argument type e, second argument type T , third argu-
ment type t. Used for entities that are naturally associated with a temporal period. E.g.,
the time of the “French Revolution” w.r.t. the category of “Years” is “1789”.

3. Is-the-of-in. Arity 4. First argument type e, second argument type E, third argument
type e or g, fourth argument type t. With this predicate we express that a twofold
restriction of an entity category determines a unique person, and that at some moment in
time the person satisfied the predicate. E.g., “George W. Bush” is the “President” of the
“USA” in “2003”. Again we assume that “George W. Bush”, “President” and “USA” are
entries of the hierarchy. Similarly person X might be the chief manager of an enterprise
in a given year.

4. Is-the-of-from-until. These axioms are similar, but they specify two points in time that
mark the beginning and the end of the role. Example pattern: X was president of Y from
U until V .

5. Is-a-of-in. Similar as “Is-the-of-in”-facts, but we do not assume that the role determines
a unique person. A person can be a member of a political party in a fixed year. A person
can be a member of a football equipe at a moment of time.

6. Is-a-from-until. Similar as an “Is-the-of-from-until”-relation, but we do not assume that
the role determines a unique entity.

7. Is-the-location-of-in. For example, “Edinburgh” is the location of the “ICDAR”-
conference in “2003”.

8. Is-the-in. “Woytila” is the “Roman Pope” in “2002”.

9. Is-the-from-until.

168



5.6 Concluding remarks

In this chapter we introduced a systematics and a three-level architecture for a resource that en-
codes knowledge about named entities using a thematic-geographic-temporal hierarchy. Though
the systematics described in Section 5.3 is stable, the complete picture of the resource is still
preliminary in many respects. We are not aware of another resource or knowledge base with
a similar functionality and structure. In our approach the thematic hierarchy - or the corre-
sponding set of identifiers - is considered as a kind of quotient term algebra with a derivable
ordering structure that represents a simplified model of real-world thematic areas, entities, and
their relations. We think this perspective deserves further attention. We intend to discuss
how formal models based on conventional set-theoretic notions can be used to derive a better
semantics. This problem is not simple. For example, thematic areas are always described using
natural language expressions. The inherent vagueness and context-adaptivity represents one
major obstacle.

We only started with second big task, the explicit construction (“filling”) and maintenance
of the resource. Here we face a considerable number of questions and difficulties. Some of
these might give rise to interesting research problems. (1) Hierarchy construction. Due to the
interleaved nature of the hierarchy and the analytical ordering structure, which is fully derived
from identifiers, persons that “fill” a subpart of the thematic hierarchy have to be aware of
neighboured areas and their structure/identifiers. Hence hierarchy construction is much more
difficult than for any tree-based classification scheme. (3) Editing the hierarchy. Intelligent
techniques for editing a given hierarchy have to be developed. (4) Collecting data. The
collection of the data that are necessary to realize the resource represents a huge amount of
work. The process should be partially automated.

As a matter of fact, many particular aspects of the resource can be found in other work.
A lexical treatment of domains, e.g, is discussed in [27]. Thesauri [1] or meta-thesauri [36] are
obviously close to our resource. In particular, the geographic part of the hierarchy (once fully
elaborated) is similar to geographic thesauri such as Getty’s thesaurus [26]. The graph structure
of the hierarchy in Level 1 and some of the motivations in Section 5.2 indicate a neighbourhood
to knowledge bases such as WordNet [21, 2], perhaps also to conceptual lattices [49, 23]. From
the temporal information encoded in the resource we obtain a direct line to interval-based
temporal reasoning [5] and calendar systems [37]. The idea of reasoning based on taxonomies
and classification schemes, which plays an important role for the given hierarchy, has been
discussed in [20]. One important application area of the resource is the semantic web [52].
Here suitable deduction mechanisms built upon the resource could yield a valuable addition to
approaches based on ontologies and description logics [32, 6, 3, 46]. Eventually, our resource
shares some ideas with Topic Maps [50]. Topic Maps describe distinct entities and thematic
fields using typed relations called “associations”, and add typed links to “occurrences” (CVs,
home pages, etc.) that yield further information on the topics. Associations are similar to the
relations in our Level 2, occurrences are close to the URLs that we use in the formal description
of events and other entities. Topics Maps do not use identifiers that “describe” the nature of
topics and entities. Hence there is no internal ordering between topics derived from identifiers,
as in our approach. Furthermore, no special emphasis is given to temporal and geographic data.
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