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Abstract

With the explosion of online accessible bioinformatics data and tools, systems integration has
become very important for further progress. Currently, bioinformatics relies heavily on the
Web. But the Web is geared towards human interaction rather than automated processing.
The vision of a Semantic Web facilitates this automation by annotating web content and by
providing adequate reasoning languages as developed in the REWERSE project.

The report summarises the state-of-the-art in bioinformatics relevant to REWERSE. First,
we give a motivation by sketching the growth of data in biology, the types of data, and their
distribution and availability. We introduce two fundamental classes of bioinformatics problems:
alignments (of sequences or structures) and structure prediction. Next, we discuss the most
important databases and approaches towards their integration. A fundamental ingredient of
a Semantic Web, which transparently integrates data sources are ontologies. We discuss a
number of different bioinformatics ontologies including GeneOntology, the most widely used
one with some 19.000 terms. Finally, we show three application areas in which rules are used:
Rules to implement computation tree logic to represent and query metabolic pathways; Rules
as constraints for structure prediction; and rules learned by inductive logic programming to
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Figure 1: The central dogma of biology: DNA is expressed and transcribed into RNA, which
is translated into an amino acid sequence, which then folds into its 3D structure. Biology has
changed dramatically and high-throughput experimental methods such as produce masses of
data.

Reviewers: Patrick Lambrix, Tim Furche

1 Introduction

1.1 Data, data, data,...

The central dogma of biology states that DNA is expressed and transcribed into RNA, which
is translated into an amino acid sequence, which then folds into its 3D structure (see Fig. 1).
High-throughput experimental methods produce masses of data, so that the whole of biology
has changed from a data-light science into a data-driven science. To give an impression of the
sheer size of data, consider the numbers below:

• DNA sequences:

– 16.000.000.000 bases (= 16 Gbp (Giga base pairs))

– Human genome = 3.2 Gbp (equivalent size to 6 complete years of the New York
Times)

• Literature:
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– PubMed 14.000.000 abstracts

• Protein sequences:

– SWISSPROT: 130.000 annotated protein sequences

– TrEMBL: 850.000 protein sequences

• Protein structures:

– PDB: > 25.000 protein structures with an average of ca. 400 residues

The above databases grow superlinearly!

1.2 Problems

The masses of data led to numerous challenging bioinformatics problems. Consider the following
scenario [Lesk, 2002], where the numbers in brackets indicate the difficulty: (< 30: solution
exists already; > 30: we cannot solve this (yet))

• A new virus occurs (e.g. SARS) and scientists want to develop a treatment

• Scientists isolate the genetic material of virus

• They screen the genome for relationships with previously studied viruses [10]

• From virus’ DNA they compute the proteins it produces [1]

• Compute proteins’ three-dimensional structure and thereby obtain clues about their func-
tions

• Screen for similar proteins sequences with known structure [15]

• If any are found

– Then interpret difference (homology modelling) [25]

– look for known inhibitors of such proteins in metabolic networks and signaling path-
ways [35]

– Else predict structure from sequence [55]

• Identify or design small molecule blocking relevant active sites of the protein [50]

• Design antibodies to neutralize the virus [50]

Three fundamental problems in this scenario are structure prediction, alignment of sequences
and structures and querying of networks. Let us consider these problems in more detail.
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1.2.1 Structure Prediction

The protein structure prediction problems aims to predict the 3D structure of a protein
from its protein seqeunce. It is one of the most important unsolved problems of compu-
tational biology, which was shown to be at least NP-complete [Berger and Leighton, 1998,
Crescenzi et al., 1998]. For this reason, simplified models have been successfully used by several
groups in hierarchical approaches for protein folding [Xia et al., 2000].

The most important class of simplified models are the lattice models, where monomers
are represented using a unified size having positions in a regular lattice. They are used
for structure prediction [Xia et al., 2000] as well as a method for investigating general
properties of protein folding (since they constitute a genotype versus phenotype mapping,
e.g. [Bornberg-Bauer and Chan, 1999]).

A discussion of lattice proteins can be found in [Dill et al., 1995]. There is a bunch
of groups working with lattice proteins. Examples of how lattice proteins can be used
for predicting the native structure or for investigating principles of protein folding
are [Šali et al., 1994, Abkevich et al., 1995, Dinner et al., 1996, Unger and Moult, 1996,
Hinds and Levitt, 1996, Govindarajan and Goldstein, 1997, Abkevich et al., 1997,
Ortiz et al., 1998]. Most of them use heuristic methods, ranging from Monte-Carlo sim-
ulated annealing (e.g. [MacDonald et al., 2000, Dinner et al., 1996]) to genetic algorithms (e.g.
[Unger and Moult, 1996]), purely heuristic methods like hydrophobic zipper [Dill et al., 1993]
and the chain growth algorithm [Bornberg-Bauer, 1997], as well as complete enumeration
(often restricted to subset of all conformations, e.g. [Šali et al., 1994, Xia et al., 2000]).

First steps have been made to improve the situation on the algorithmic part. The first im-
provement was the introduction of an exact algorithm for finding minimal energy conformations
in the cubic HP-Model [Yue and Dill, 1995]. The algorithm is called CHCC for “Constraint
Hydrophobic Core Construction) (albeit it doesn’t use constraint-based methods). This ap-
proach works only for the cubic lattice, but not for the FCC-lattice which is much better suited
for modeling real protein conformations. The second improvement is the appearance of a bunch
of approximation algorithms [Hart and Istrail, 1996, Agarwala et al., 1997] for different lattice
models. Although they are a very important first step in the right direction, their approximation
ratio is still not good enough to be used in practice.

Another interesting approach is to combine secondary structure predictions with lattice
models. The secondary structure consists of local structure motifs like α-helices and β-sheets.
One searches for conformations in the lattice model with low energy having the predicted
secondary structure elements. Here, major improvements have been achieved using again a
constraint-based approach and the FCC lattice [Dovier et al., 2002].

1.2.2 Alignment Methods

The alignment problem is a very important problem in bioinformatics, where one searches for
an alignment of two strings, optimising a certain score. The strings represent biological macro-
molecules as DNAs or proteins. The scoring scheme evaluates the aligned columns. Alignment
is one of the core techniques, which are used to search for similar objects in biology. Initially,
they were used only for sequences, but it was later extended to many other problems (protein
structure, pathways etc.)

In the simplest case, alignment is identical to computing the edit distance of strings. This
problem is usually solved by dynamic programming (DP) as e.g. by Needleman and Wunsch
in [Needleman and Wunsch, 1970].
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However, dynamic programming approaches suffer from their inflexibility. If the problem is
slightly modified, one has to develop a new DP algorithm (if one exists at all). For example, it
is an unsolved problem to align two sequences incorporating biological knowledge that tells us
which sub-sequences/domains should be aligned.

In addition, many extensions of the basic alignment problem have been investigated (with the
need of generating new algorithms for every variation of the problem). Examples of this kind of
“extended basic alignment methods” is RNA-Sequence-Structure Alignment [Jiang et al., 2002,
Höchsmann et al., 2003, Backofen and Will, 2004]. This kind of sequence/structure similarity
has been extended to proteins in many different ways, where the problem becomes NP-complete.
This are protein protein threading (e.g., [Akutsu and Miyano, 1997]), the contact map problem
[Lancia et al., 2001] and the alignment of TOPS-diagrams [Visna and Gilbert, 2002]

1.2.3 Metabolic and signaling networks

In recent years, molecular biology has engaged in a large-scale effort to elucidate cellular pro-
cesses in terms of their biochemical basis at the molecular level. Mass production of post
genomic experimental results, such as mRNA expression data, protein expression or protein-
protein interaction data, is following and completing the initial piecemeal catalog of elementary
components – genes and proteins – of the sequencing and genomic analyses projects by progres-
sively painting a global picture of the complex interactions that take place in a cell. Exploit-
ing these experimental data to understand the underlying processes requires much more than
database integration and storage: it calls for a strong parallel effort on the formal representation
of biological processes.

Several formalisms have been proposed in recent years for the modeling of metabolic path-
ways, extracellular and intracellular signaling pathways, or gene regulatory networks: boolean
networks [Thieffry and Thomas, 1998], ordinary differential equations [Schoeberl et al., 2002],
and more recently hybrid Petri nets [Matsuno et al., 2000, Hofestädt and Thelen, 1998]
and hybrid automata [Alur et al., 2001, Ghosh and Tomlin, 2001]. Formal concur-
rent languages were also considered, including hybrid concurrent constraint languages
[Bockmayr and Courtois, 2002], or rewriting logics [Eker et al., 2002a]. Regev and Shapiro
[Regev et al., 2001a] were the first to propose the use of the π-calculus [Milner et al., 1992].

Most formal approaches mentioned above proceed by wholesale importation of a language
(eg Petri nets, the π-calculus) that emerged in answer to very specific design goals, some of which
may be relevant to our present modeling task, and some of which may not. While the expected
benefit is direct inheritance of preexisting methods and tools, this results in some contorted
translations and the existence of useless constructs, and somewhat defeats the explanatory
purpose of the formalisation.

The current state-of-the-art in modeling is mostly based on simulation and graph-
ical display [Alur et al., 2001, Bockmayr and Courtois, 2002, Maimon and Browning, 2001,
Matsuno et al., 2000], with some attempts towards stability and bifurcation analyses of dynami-
cal behaviour on small systems [Thieffry and Thomas, 1998, de Jong, 2001] described either by
differential equations or by discretisations thereof. A different approach promotes symbolic
manipulation and exploration of the model by means of computational logics which are com-
monplace, in hardware verification for instance. Formal methods extend the ways one can play
with a given model and thus may second simulation and even replace it when quantitative
information is sparse or inacurate.

4



1.3 Bioinformatics and the web

As argued above, there are masses of bioinformatics data and algorithms working on it. Much
of the data and tools are published online. As a consequence, a strategic research workshop of
the NSF and EU found that bioinformatics could play the role for the Semantic Web, which
physics played for the web. The reasons are manyfold:

• There are masses of information

• The data are public

• The data are online

• The data are (more and more often) published in XML

• Data standards are accepted and actively developed by the bioinformatics community

• Much valuable information is scattered (as production is cheap and hence often not cen-
tralised)

• Systems integration and interoperation are a prime concern

• One can predict that in the not too distant future many tools and databases will be
accessible as web services

2 Bioinformatics Data

With much data online accessible, let us consider some of the data sources. In
[Lambrix and Jakonienė, 2003] a number of the most used and best known databanks were
studied: GenBank, EMBL, DDBJ, SWISS-PROT, PIR, ENZYME, PDB, MMDB, PROSITE,
PRINTS and BLOCKS. For these systems we investigated the organisation of the data, the
data content and the data retrieval possibilities. With respect to the organisation of the data
we looked at the kind of data, the source, the data model, the update frequency and the location
of the data. The chosen databanks store information about nucleotide sequences (GenBank,
EMBL, DDBJ), protein sequences (SWISS-PROT, PIR, ENZYME), 3D macromolecular struc-
tures (PDB, MMDB) and protein families (PROSITE, PRINTS, BLOCKS). The source of the
data can be researchers (that submit their data), literature (data from published articles) and
other databanks. This is summarised in table 1. Data can usually be retrieved in different
ways: via a web interface, ftp and e-mail. The underlying data models for these databanks are
the flat file model, the relational model and the object-relational model. Also different formats
may be used for the databank behind the web interface and the databank that can be loaded
from ftp servers. A summary of the formats is given in table 2.

The content information can be grouped into the header, the annotation and the actual
information. The header contains a unique identifier for the data item, one or more entry
dates, one or more names, the source of the information and references. The annotation part
contains comments and feature information. Finally, there is additional information that can
contain a protein or DNA sequence, structure descriptions or experiment descriptions depending
on the kind of databank. The level of detail of the data is also different.

With respect to retrieval capabilities most databanks allow for queries based on the occur-
rence of text within a data item (full-text search) and all databanks support queries based on
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Databank R L DB

GenBank Y EMBL, DDBJ

EMBL Y GenBank, DDBJ

DDBJ Y EMBL, GenBank

SWISS-PROT Y Y GenBank, EMBL DDBJ

PIR Y Y GenBank, EMBL DDBJ

ENZYME Y Y IUBMB

PDB Y

MMDB PDB

PROSITE Y Y SWISS-PROT

PRINTS Y SWISS-PROT, TREMBL

BLOCKS Interpro

Table 1: Source of the data. (Researchers (R), Literature (L), Other databanks (DB).)

the occurrence of a text string within certain predefined fields. The user is often guided by
the retrieval interface of the systems as to which fields are searchable. Two of the databanks,
ENZYME and PRINTS, also allow for browsing the branches of a predefined structure. Most
systems support Boolean queries (using and, or, not) as well as wildcards in the text strings.
In addition to a form-based query interface, most systems also support command-line querying
using the systems’ query languages. A summary is given in table 3. An explanation of the
abbreviations used in table 3 is given in table 4. The result of a query is for most systems a
list of the data entries that match the query. The actual result data is the complete data entry.
In some systems it is possible to define views over the result and in that way one may retrieve
only the interesting fields. Two systems, PDB and PIR, support reuse of query results in new
queries.

3 Integration of Databanks

There exist a number of systems that provide access to multiple biological databanks. These
systems can be divided into two categories [Davidson et al., 2001]. The category of the link-
driven federations contains most of the currently used websites that provide an interface to
multiple biological resources, such as Entrez and SRS. These systems support a number of
basic queries via a web interface. Often, they also allow to use alignment algorithms such as
BLAST on the result of a query. Usually, the users need to explicitly state which resources
should be used for retrieving the answers, requiring good knowledge of the underlying sources.
The data source systems are often implemented using flat files and specialised retrieval packages.
Most of the integration is link driven and is achieved by the creation of cross-reference indexes.
For instance, the SRS language defines search in indexes of databanks (including string search,
regular expressions, numeric ranges and dates), and combinations of queries using and, or and
andnot. With respect to the combination of databanks the link construct is introduced. This
allows for queries of the forms ‘find all entries in databank A that are referenced in databank
B’, and ‘find all entries in databank A that reference entries in databank B’. The advantage of
such systems is that queries relating to knowledge in different databanks can be asked and that
the query processing is fast. However, although this is a first step in integrating data sources,
this solution does not handle the differences in terminology used in the underlying sources, is
syntax based and only allows limited query functionality over multiple databanks. Also, adding
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Databank FTP server user interface

GenBank genbank flat file, genbank flat file

asn.1

EMBL embl flat file embl flat file,

fasta, xml

DDBJ ddbj flat file ddbj flat file,

embl flat file,

xml, fasta

SWISS-PROT swissprot flat file, user friendly view

fasta swissprot flat file

PIR nbfr-pir, codata, nbfr-pir, codata,

fasta, xml fasta, xml

ENZYME enzyme flat file, user friendly view,

asn.1 enzyme flat file

PDB pdb flat file, pdb flat file,

mmCIF mmCIF

MMDB asn.1 mmdb flat file

PROSITE prosite flat file user friendly view,

prosite flat file

PRINTS prints flat file prints flat file

BLOCKS blocks flat file blocks flat file

Table 2: Data formats.

a new resource requires cross-referencing with the other resources.
The BioKleisli [Davidson et al., 1997], K2 [Davidson et al., 2001], TINet

[Eckman et al., 2001], P/FDM [Kemp et al., 2000], TAMBIS [Goble et al., 2001] and
BioTRIFU [Lambrix and Jakonienė, 2003] systems use an approach based on view inte-
gration. Also IBM’s DiscoveryLink can be placed into this category. In this approach the
underlying schemas are integrated to form a global schema. The global schema is queried
in a high-level language such as CPL (e.g. BioKleisli) or OQL (e.g. K2). The languages
in TAMBIS [Stevens et al., 2001] and BioTRIFU [Lambrix and Jakonienė, 2003] have been
inspired by the study of the use of current biological databanks. The other proposals seem
to be based mainly on database technology. In general, the view approach allows for more
complex querying and allows for support for integration on schema level. The advantages of
such systems include the possibility of complex querying, the knowledge that is required of the
end-user is not as large and the local conceptual models are used in the integration. Further,
these view integration systems may also be used to create warehouses. As a possible solution
of the terminology discrepancy problem in the local schemas as well as a step towards semantic
querying, ontologies could be used.

4 Bioinformatics and Ontologies

In bioinformatics, the majority of data sources are databases and tools with a variety of user
interfaces. The ontologies help manage the interoperation between these resources by pro-
viding a dynamic controlled vocabulary of concepts. One widely used definition of ontology
is ”a specification of a conceptualisation”. Even with this definition, there is a spectrum
of the structure of ontologies, ranging from flat lists of controlled vocabulary to very formal
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Databank UI CL

GenBank a,n,nr,k,o,g,au,c,spec a,n

EMBL a,n,nr n,nr

DDBJ a,n,nr,k

SWISS-PROT a,n,nr,d,o,g,au,c a,n,nr,d,o,g,k,au

PIR a,nr,k,g,o,au,c,f n,nr

ENZYME n,d,spec n

PDB a,n,d,k,au,c,spec n

MMDB a,n,o,au,c,spec a,n

PROSITE a,n,nr,d,au,c,spec a,n,nr,d,au

PRINTS n,nr,d,f,s,spec n

BLOCKS n,k,s n,k

Table 3: Search within specific fields in the form-based user interface (UI) and the command-line
interface (CL).

a: all text n: entry name nr: accession number

d: description k: keyword o: organism

g: gene name au: author c: citation

f: family s: sequence spec: specific fields

Table 4: Explanation of abbreviations in table 3.

logic-based implementations. (For an overview see e.g. [Stevens et al., 2000b, Lambrix, 2004,
Guarino and Giaretta, 1995, Jasper and Uschold, 1999].) Pragmatically, an ontology typically
includes a hierarchically arranged list of concepts (i.e., classes) of a given domain, relationships
among these concepts, definitions of these concepts and relationships, and optional logical ax-
ioms that serve as further constraints among these entities. Apart from the high-level aim of
representing the knowledge of a domain in a computationally amenable form, an ontology pro-
vides a controlled vocabulary in that a given term always has the same meaning. Thus, rather
than attempting to parse the complex structure of natural language for embedded biological
knowledge, computational agents can query an ontology and a knowledge base based on the
ontology to specifically and reliably retrieve data.

4.1 Gene Ontology (GO)

The most successful ontology within the realm of bioinformatics is the Gene Ontology (GO)
[GeneOntologyConsortium, 2004], a controlled vocabulary that details the molecular functions
gene products may possess, the higher-level biological processes in which they may participate,
and the cellular locations in which they may be active. Although GO was created for the
express purpose of providing a common terminology for functional annotation of genes and
gene products in biological databases towards the goal of database interoperability, it has since
been widely used for a variety of purposes, including analyses of experimental data, predictions
of experimental results, and document retrieval. GO is the flagship ontology of the Open
Biological Ontologies (OBO), a collection of biological ontologies that are open in that they can
be used by all without constraint so long as the sources are acknowledged and the ontologies are
not edited and redistributed under the same names (http://obo.sourceforge.net/). In addition
to the taxonomies of GO, the OBO ontologies deal with anatomies of humans and of various
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model organisms, biochemical substances, and sequence types, among others. Over the past
years GO has developed into the main ontology in molecular biology and it comprises over
19.000 terms organised in three subontologies for cellular location, function and process. The
terms are linked by three relations: is-a, part-of, is-synonym.

GO was initially created to reflect Drosophila gene function via the Flybase database, but
has expanded to encompass mouse, yeast and gene expression databases, and is expected to
expand further. Proteins in UniProt and the Interpro databases are currently being assigned
GO terms.

Designing a structured vocabulary of some 19.000 terms is far from easy and there are a
couple of principles, an ontology should follow [Gruber, 1993], but which GO still violates:

• Clarity, an ontology should be objective and clearly describe its concepts. GO com-
prises terms, which appear like definitions such as e.g. the 29 word term ’oxidoreductase
activity, acting on paired donors, with incorporation or reduction of molecular oxygen,
2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both
donors’.

• Coherence, definitions given to the concepts must not invalidate the logical relations
between concepts. For example, the concept ‘succinate (cytosol) to fumarate (mitochon-
drion) transporter’ implicitly holds properties about location and orientation in the mi-
tochondrial membrane and thus mixes functional and location concepts, which should be
separate

• Extendibility, the basic concepts defined in the ontology need to allow a monotonic exten-
sion. The basic concepts need not be changed for such an extension. GO contains terms
with unknown location. When the location becomes known the ontology would have to
be changed. GO should only define positive knowledge.

• And minimal encoding bias, concepts should be defined on the knowledge level and not
on the level of syntax. GO terms like ’structural protein of chorion (sensu Drosophila)’
encode the information that the concept is to be seen in the context of a certain organism,
Drosophila in this case. The name of the concept syntactically represents an attribute
(the species).

However, all of the above problems are minor and the vast majority of GO terms are well-
structured.

4.2 Anatomy Ontologies

While most biological databases contain information about findings at the molecular level, there
is a growing need to link this information to concepts about the global structure of organisms,
that is to their anatomy. This development is due to two main reasons.

A central question in genetics is which genes influence the development of which parts of an
organism and which genetic mutations cause which deviations from the standard phenotype.
Researchers tackle this question by exploring which genes are expressed at which stage of
development in which tissues of an organism. To make such findings generally accessible, a
standardised vocabulary about developmental stages and tissues is needed for annotations. A
second reason is that biological image data are increasingly being published on the Web. To
describe in a uniform way what tissue an image shows one has to resort to some anatomical
vocabulary.
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4.2.1 Anatomies for Model Organisms

Modern biology aims to identify fundamental principles that govern biological processes at the
cellular and molecular level in arbitrary organisms. However, not all organisms are equally
well suited for studying a specific question or for conducting a specific experiment. Fruit flies,
for instance, have extremely short generation cycles and are inexpensive to raise, which makes
them ideal for studying genetics and mutations. A drawback is that observations about flies
are less likely to be transferable to humans than, for instance, observations about mammals.
Among mammals, some small species like mice still have short generation cycles, which brings
about advantages similar to those of flies. For some experiments it is crucial to influence or to
directly observe the development of embryos. This is not possible for mammals, but it is for
chickens, where the embryo develops in a bird’s egg.

Thus, biologists will choose for their research a species whose characteristics are favourable
for their research questions and their intended experiments. Such species are known as “model
organisms.” In practice, only relatively few species have been established as model organisms
so far and practically all molecular and image data have been obtained from a small number of
species.

Several collaborative groups of researchers have built up and are maintaining comprehensive
web sites for such model organisms. For instance,

• the Mouse Genome Informatics (MGI) site at the Jackson Laboratory gives integrated
access to various types of genetic and genomic data on the mouse [Ringwald et al., 2001];

• Wormbase does the same for the worm C. Elegans and other nematodes
[Stein et al., 2001];

• Flybase collects genomic information on the fruit fly Drosophila
[The FlyBase Consortium, 2003];

• the Zebrafish Information Network (ZFIN) makes gene expression, mutant, and other
genomic data on the zebrafish available [Sprague et al., 2001].

All these sites use anatomy ontologies for their model organisms to index their data, except the
Zebrafish Network, which has published an anatomy, but is still in the process of linking it to
other data.

Anatomies can also be an integral part of larger ontologies, like the MeSH term system
(Medical Subject Headings), which contains mostly terms for human anatomy, but also some
that relate to various mammal species. MeSH terms are used to annotate entries in large
bibliographical databases.

The Edinburgh Mouse Atlas Project (EMAP) is creating a resource that combines an
anatomy ontology with a 3-dimensional spatial model of the mouse embryo to give access
to gene expression data [Baldock et al., 2003]. Anatomical terms are linked to regions in the
spatial model and vice versa. The Mouse Atlas is based on the same anatomy as Jackson Lab’s
MGI, but has been enriched it to represent groupings between tissues such as the “skin” group,
which comprises tissues in many different locations [Bard et al., 1998].

Anatomy ontologies can be sizable. The mouse anatomy, for instance, comprises more than
8,000 terms.
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4.2.2 Structure of Anatomies

All anatomies have a natural hierarchical structure. Users can browse the hierarchy to find
a tissue they are interested and then look up reports on genes that are expressed in these
tissues. Similarly, it is possible to start with a gene and then to find where in the organism it
is expressed. However, the anatomies mentioned above follow different approaches to structure
as well as to the way in which terms are linked to other data.

For one, they differ with respect to the primitives by which they are expressed. While the
mouse anatomy of MGI and the zebrafish anatomy of ZFIN are trees with unlabeled edges,
the edges in the Flybase anatomy are labeled as component part, instance of, or derived from
while those in the Wormbase anatomy are component, instance, descendant, and develops from.
Moreover, the Flybase and Wormbase anatomies are directed acyclic graphs, but not trees.
While in Wormbase almost exclusively leaf terms of the anatomical hierarchy are employed for
annotations, in other systems arbitrary also non-leaf terms are used frequently.

Most anatomies, like the ones of mouse, zebrafish, drosophila, and worm mentioned above,
are developmental in the sense that they model the organism at several stages of its development.
However, only the fly and worm anatomy connect tissues in distinct stages by descendant or
develops from links. The anatomy embedded in the MeSH terms is not developmental.

Although one may presume that anatomies using a rich set of labels support a richer set of
queries, this is not the case. Typical queries are term based. The anatomical terms occurring
in the query are then “exploded”, that is, replaced by all terms in the hierarchy that are more
specific. This means for instance, that a query for genes expressed in the mouse forelimb also
returns genes that are only expressed in the paw. In anatomies where edges in the hierarchy
are not labeled, usually all terms below the search terms are considered to be more specific,
while in those with several labels it is common to include terms reachable via component and
instance links. No existing biological data resource allows for queries that describe paths in the
anatomies, like e.g., “genes expressed at developmental stage 4 or earlier in tissues that develop
into the retina of the mouse eye.”

4.2.3 Limitations of Current Formal Approaches to Anatomy

Anatomies, like many other ontologies are lacking a well-defined semantics and their current
one is intuitive at best.

To give an example, the meaning of component links in the presence of instance links is not
straightforward at all. Terms that have instances must stand for classes. However, what does it
mean that class C1 is a component of class C2? There are at least two options: (1) every instance
of C1 is a component of some instance of C2, or (2) every instance of C2 has a component that
is an instance of C1. While both options may have arguments in their favour, only option 2
is compatible with a search strategy based on exploding terms. To see this, suppose a user is
interested in genes expressed in tissues of class C2. Then an explosion search will also return
genes expressed in some tissue of class C1. These are only answers to the intended query
if every tissue in C1 is part of some tissue of class C2. To date, such semantic definitions of
primitives are usually tacitly assumed by ontology designers, but have have not been formalised
or otherwise made explicit. Only in rare cases have attempts at formalising anatomies been
made (see e.g. [Burger et al., 2004]).

Often different anatomies follow fundamentally different approaches to capturing the struc-
ture of an organism. There is, for example, what might be called the butcher’s view of an
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organism, where the organism is virtually decomposed in space. Alternatively, there is a sys-
temic approach, where the anatomical hierarchy follows organ systems like nervous system,
blood circulation, skeleton, etc.

Ideally, for an anatomy that serves as a conceptual backbone for querying databases, one
would like to see both approaches being realised. However, so far combinations have been only
ad-hoc and give unsatisfactory results. In the Jackson Lab mouse anatomy, for instance, in
embryonic stage 17, there are two nodes in the anatomy tree labeled with the term “central
nervous system,” one below the node “organ system,” the other one below the node “tail”. The
semantics, as can be verified from the usage in the database, is that the first node represents
the central nervous system in the body, but not the tail, while the second represents the part
occurring in the tail.

Such limitations, like lack of formal semantics or ad-hoc mixture of incompatible approaches,
are not serious as long as an anatomy is used to support access to a single database for a
single species, and if the access mode is essentially browsing as opposed to querying. However,
researchers in the area feel a need for more flexible access and for connecting anatomies for
several species.

4.2.4 Integration of Anatomies

In the past few years various information resources for model organisms have been created,
which are avaiable on the Web. In this situation biologists would like to combine both infor-
mation on a single species residing in different resources and information across species.

Antomies are a key structure for accessing biological data and images. A necessary step
therefore is to integrate anatomies within a single species and to link anatomies across species.
Several initiatives are underway towards this goals. Within the “Standards and Ontologies
for Functional Genomics” community, a working group has been established to integrate sev-
eral anatomies of human and mouse and to link them with each other. The XSPAN project
(www.xspan.org) aims at creating a web resource that holds several anatomies in a unified
format together with cross species mappings between tissues.

4.3 EcoCyc

EcoCyc uses an ontology to describe the richness and complexity of a domain and the con-
straints acting within that domain, to specify a database schema [Karp et al., 2004]. EcoCyc
is presented to biologists using an encyclopaedia metaphor. It covers genes, metabolism, regu-
lation and signal transduction, which a biologist can explore and use to visualise information.
The knowledge base currently describes 695 enzymes encoded by a subset of these genes, 904
metabolic reactions and the organisation of these reactions into 129 metabolic pathways. Eco-
Cyc uses the classification of gene product function from Riley as part of this description.
Scientists can visualise the layout of genes within the chromosome, or of an individual biochem-
ical reaction, or of a complete biochemical pathway (with compound structures displayed).

EcoCyc’s use of an ontology to define a database schema has the advantages of its expressiv-
ity and ability to evolve quickly to account for the rapid schema changes needed for biological
information. The user is not aware of this use of the ontology, except that the constraints
expressed in the knowledge captured mean that the relationships on the data are captured
precisely. In EcoCyc, for example, the concept of Gene is represented by a class with various
attributes, that link through to other concepts: Polypeptide product, Gene name, synonyms
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and identifiers used in other databases etc. The representation system can be used to impose
constraints on those concepts and instances which may appear in the places described within
the system.

4.4 MBO

The Ontology for Molecular Biology (MBO) is an attempt to provide clarity and communication
within the molecular biology database community [Schulze-Kremer, ].

The MBO contains concepts and relationships that are required to describe biological ob-
jects, experimental procedures and computational aspects of molecular biology. It is very wide
ranging and has over 1200 nodes representing both concepts and instances. In the conceptual
part of the MBO, the primary relationship used is the ‘is a kind of’ relationship. The MBO
has an organising, upper-level ontology. The root concept “Being’ divides into ‘object’ and
‘event’. ‘Object’, for instance, is subdivided into ‘physical-’ and ‘abstract-’ object. This helps
give a precise classification for lower level concepts. The actual biological content of the MBO
is currently relatively small, ending at quite large grained concepts such as Protein, Gene, and
Chromosome. The framework, however, exists for extending the MBO much further into the
biological domain.

4.5 RiboWeb

RiboWeb is a resource whose primary aim is to facilitate the construction of three-dimensional
models of ribosomal components and compare the results to existing studies [Chen et al., 1997].
The knowledge that RiboWeb uses to perform these tasks is captured in four ontologies: The
physical-thing ontology; the data ontology; the publication ontology and the methods ontology.
The physical-thing ontology describes ribosomal components and associated ‘physical things’. It
has three principle conceptualisations: Molecules, Molecule-Ensembles and Molecule-Parts. The
first describes covalently bonded molecules and includes the main biological macromolecules.
Molecule-ensembles captures non-covalently bonded collections of molecules, such as enzyme
complexes. The molecule-part ontology holds knowledge about regions of molecules that do
not exist independently, but need to be talked about by biologists. These would include amino
acid side chains and the 3’ and 5’ ends of nucleic acid molecules. The data ontology captures
knowledge about experimental detail as well as data on the structure of physical-things. The
methods ontology contains information about techniques for analysing data. It holds knowledge
of which techniques can be applied to which data, as well as the input and outputs of each
method.

Instances are added to RiboWeb that correspond to these concepts. For example, a publi-
cation in a peer-reviewed article describes the three-dimensional structure of the 30s ribosomal
subunit. This means linked instances need to be created in the publication, data and physical-
thing ontologies. A user may want to see if this structure is consistent with others captured
within RiboWeb. The constraints described within RiboWeb can highlight conflicts with current
knowledge to the biologist.

4.6 Tambis

TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) uses an on-
tology to enable biologists to ask questions over multiple external databases using a com-
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mon query interface. The TAMBIS ontology (TaO) describes a wide range of bioinformatics
tasks and resources, and has a central role within the TAMBIS system [Baker et al., 1999,
Stevens et al., 2000a].

An interesting difference between the TaO and some of the other ontologies presented in
this report, is that the TaO does not contain any instances. The TaO only contains knowledge
about bioinformatics and molecular biology concepts and their relationships - the instances
they represent still reside in the external databases. As concepts represent instances, a concept
can act as a question. The concept Receptor Protein represents the instances of proteins with
a receptor function and gathering these instances is answering that question.

The TaO is a dynamic ontology, in that it can grow without the need for either conceptu-
alising or encoding new knowledge. In contrast, the other ontologies described here are static -
developers must intervene and encode new conceptualisation to form new concepts. The TaO
uses rules within the ontology to govern what concepts can be joined to another concept via
relationships, to form new concepts. Thus the TaO places great emphasis on relations. A user
can form a complex, multi-source query, using relationships, in the following manner. Starting
with the concept Protein, the TaO is consulted as to which relationships can be used to join
Protein to other concepts. Amongst many, the following two are offered: is homologous to Pro-
tein and hasAccessionNumber AccessionNumber. Initially, the original Protein is extended to
give a new concept Protein isHomologous to Protein (The concept Protein Protein homologue);
then the second ‘protein’ is extended with hasAccessionNumber AccessionNumber. The result-
ing concept (‘Protein homologue of Protein with Accession Number’) describes proteins which
are homologous to protein with a particular accession number. This concept can be used as a
source independent query containing no information on how to answer such a query. The rest
of the TAMBIS system takes this conceptual query and processes it to an executable program
against the external sources.

The TaO is available in two forms - a small model that concentrates on proteins and a larger
scale model that includes nucleic acids. The small TaO, with 250 concepts and 60 relationships,
describes Proteins and enzymes, as well as their motifs, secondary and tertiary structure, func-
tions and processes. There is also supporting material on subcellular structure and chemicals,
including cofactors. Motifs extend to detail such as the principal modification sites; function
and process to broad classifications such as Hormone and Receptor, and Apoptosis and Lac-
tation; structure extends to detail such as gross architecture - for example, SevenPropellor.
Important relationships include is component of, has name, has function and is homologous to,
as well as many more. The larger model, with 1500 concepts, broadens these areas to include
concepts pertinent to nucleic acid, its children and genes.

4.7 Editing, Browsing, and Mapping Ontologies

There are many tools to edit, browse and map ontologies. As GeneOntology is the most
prominent bioinformatics ontology, we consider the following list of editors and browsers (for
details see www.geneontology.org).

• DAG-Edit: This Java application provides an interface to browse, query and edit GO or
any other vocabulary that has a DAG data structure.

• COBrA: COBrA is an ontology editing and mapping tool for GO and OBO ontologies
developed by AIAI and the XSPAN project. COBrA displays two ontologies simultane-
ously for the purpose of defining mappings between terms, e.g. between tissues and cell
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types. Export and import to/from GO flat file, GO RDF, plus RDFS and OWL formats
are supported. Ontology merging and inference is also possible.

• AmiGO from BDGP: With AmiGO, you can search for a GO term and view all gene
products annotated to it, or search for a gene product and view all its associations. You
can also browse the ontologies to view relationships between terms as well as the number
of gene products annotated to a given term.

• MGI GO Browser: With the MGI GO Browser, you can search for a GO term and view all
mouse genes annotated to the term or any subterms. You can also browse the ontologies
to view relationships between terms, term definitions, as well as the number of mouse
genes annotated to a given term and its subterms.

• QuickGO at EBI: With QuickGO, a GO browser integrated into InterPro at the EBI,
you can search for a GO term to see its relationships and definition, as well as any
available mappings to SWISS-PROT keywords, to the Enzyme Classification or Transport
Classification databases, or to InterPro entries.

• EP GO Browser: The EP:GO browser is built into EBI’s Expression Profiler, a set of
tools for clustering, analysis and visualisation of gene expression and other genomic data.
With it, you can search for GO terms and identify gene associations for a node, with or
without associated subnodes, for the organism of your choice.

• GoFish: The GoFish program, available as a Java applet, allows the user to construct
arbitrary Boolean queries using GO attributes, and orders gene products according to
the extent they satisfy such queries. GoFish also estimates, for each gene product, the
probability that they satisfy the Boolean query.

• GenNav: GenNav is a GO browser developed at NLM. It searches GO terms and an-
notated gene products, and provides a graphical display of a term’s position in the GO
DAG.

• GeneOntology@RZPD: With the GeneOntology@RZPD tool at the Resource Cen-
ter/Primary Database (RZPD) in Germany, you can search for GO identifiers associated
with UniGene ClusterIds, Genes (Name/Symbol) and Clones provided by the RZPD.
You can also search for UniGene Clusters, Genes and Clones annotated with a certain
GO identifier or a combination of GO identifiers. So far, GO annotations for human and
mouse genes/clones are linked.

• ProToGO: ProToGO, developed at the Hebrew University in Jerusalem, searches the
GOA@EBI and Compugen annotation datasets. The output is a graphical view of the
relevant sub-graph of GO, containing those GO terms assigned to the query proteins.
Documentation is provided.

• CGAP GO Browser: With the GO browser at the The Cancer Genome Anatomy Project,
you can browse through the GO vocabularies, and find human and mouse genes assigned to
each term. The help documentation is at: http://cgap.nci.nih.gov/Genes/AllAboutGO.

• GOBrowser: GO terms are presented in an explorer-like browser, and behaviour can be
configured by altering Perl scripts.
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• TAIR: Keyword Browser: The TAIR Keyword Browser, developed at The Arabidopsis
Information Resource searches and browses for Gene Ontology, TAIR Anatomy, and TAIR
Developmental stage terms, and allows you to view term details and relationships among
terms. It includes links to genes, publications, microarray experiments and annotations
associated with the term or any children terms.

• PANDORA: With PANDORA, developed at The Hebrew University of Jerusalem you
can search for any non-uniform sets of proteins and detect subsets of proteins that share
unique biological properties and the intersections of such sets. PANDORA supports
GO annotations as well as additional keywords (from UniProt Knowledgebase, InterPro,
ENZYME, SCOP etc). It is also integrated into the ProtoNet system, thus allowing
testing of thousands of automatically generated protein families.

A number of other ontology engineering tools have been developed and used in bioinformat-
ics. However, only few evaluations of ontology tools using bio-ontologies have been performed.
In [Lambrix et al., 2003] Protégé-2000 [Noy et al., 2001], Chimaera [McGuinness et al., 2000],
OilEd [R et al., 2001] and DAG-Edit were evaluated as ontology development tools using GO
ontologies as test ontologies. In [Lambrix and Edberg, 2003] PROMPT [Noy and Musen, 2000]
(plug-in for Protégé-2000) and Chimaera were evaluated as ontology merging tools. An ex-
tension of this evaluation is found in [Lambrix and Tan, 2004]. First a number of merging
algorithms are evaluated and then the SAMBO tool is compared to PROMPT and Chimaera.
The test ontologies were GO ontologies, Signal-Ontology, MeSH and the Anatomical Dictionary
for the Adult Mouse. In [Yeh et al., 2003] Protégé-2000 was assessed for its use in developing
and maintaining GO ontologies.

Much research has been dedicated to mapping and comparing different ontologies.
[Cantor et al., 2003] evaluate mappings between GeneOntology and UMLS, the Unified Medical
Language System, which is focused on clinical medicine focusing on precision and recall, which
range from 0.65 to 0.90 and 0.59 to 0.93, respectively. [McCray et al., 2002] found that in the
order of 50% of GO-terms relating to function can be mapped to the ontologies MeSH and
SNOMED, while GO-terms covering processes and localisation are largely absent from MeSH
and SNOMED.

5 Rules in Bioinformatics

A natural extension of factual knowledge are rules and logic programming. Here we have three
application areas in which rules are used: Rules to represent metabolic pathways and query
them in computation tree logic; Rules as constraints for structure prediction; and rules learned
by inductive logic programming to declaratively capture biological knowledge.

5.1 Modelling Networks with Computation Tree Logic

This idea of introducing formal methods was mentioned as a prime motivation by early efforts at
formal modeling [Regev et al., 2001a], and the specific prospects of using computational logics
were clearly articulated in [Eker et al., 2002a]. Substance was given to this idea by proposing
the use of the Computation Tree Logic CTL as a query language for biomolecular networks
[Chabrier et al., 2004].
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In networks biology, the complexity of the systems at hand (metabolic networks, ex-
tracellular and intracellular networks, networks of gene regulation) clearly shows the ne-
cessity of software tools for reasoning globally about biological systems. Several for-
malisms have been proposed in recent years for modeling biochemical processes either
qualitatively [Regev et al., 2001b, Nagasaki et al., 2000, Eker et al., 2002b] or quantitatively
[Matsuno et al., 2000, Hofestädt and Thelen, 1998, Alur et al., 2001, Ghosh and Tomlin, 2001,
Bockmayr and Courtois, 2002]. State-of-the-art tools integrate a graphical user interface and
a simulator, yet few formal tools are available for reasoning about these processes and proving
properties of them. The focus in Biocham [Chabrier-Rivier et al., 2004] has been on the design
of a biochemical rule language and a query language of the model in temporal logic, that are
intended to be used by biologists.

Biocham is a language and a programming environment for modeling biochemical systems,
making simulations, and querying such models in temporal logic. Biocham is composed of :

1. a rule-based language for modeling biochemical systems,

2. a simple simulator,

3. a powerful query language based on Computation Tree Logic CTL,

4. an interface to the NuSMV [Cimatti et al., 2002] model checker for automatically evalu-
ating CTL queries.

Biocham shares several similarities with the Pathway Logic system implemented in Maude.
Both systems rely on an algebraic syntax and are rule-based languages. One difference is the
use in Biocham of CTL logic which allows us to express a wide variety of biological queries,
and the use of a state-of-the-art symbolic model checker for handling the complexity of highly
non-deterministic models.

5.2 Bioinformatics and Constraint

The protein structure prediction is one of the most important unsolved problems of compu-
tational biology. It can be specified as follows: Given a protein by its sequence of amino
acids, what is its native structure? NP-completeness of the problem has been proven for
many different models (including lattice and off-lattice models) [Berger and Leighton, 1998,
Crescenzi et al., 1998]. These results strongly suggest that the protein folding problem is NP-
hard in general. Therefore, it is unlikely that a general, efficient algorithm for solving this
problem can be given. Actually, the situation is even worse, since the general principles why
natural proteins fold into a native structure are unknown. This is cumbersome since rational
design is commonly viewed to be of paramount importance e.g. for drug design, where one
faces the difficulty to design proteins that have a unique and stable native structure.

To tackle structure prediction and related problems simplified models have been intro-
duced. These simplified models have been successfully used by several groups in the in-
ternational contest on automated structure prediction (see the meeting review of CASP3
[Koehl and Levitt, 1999]). They are used in hierarchical approaches for protein fold-
ing [Xia et al., 2000]. Given a protein sequence, then one first enumerates all low (or mini-
mal) energy conformations in a simplified model. In the simplified model, only some aspects
of the protein structure are modeled (for which reason they are also called low-resolution or
coarse-grained protein models). Then, the say 10 000 best structures are taken and fine-tuned
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using other methods. These methods usually incorporate biological knowledge and simulation
of protein folding on full atomic detail (i.e. molecular dynamics simulation).

Constraint-based approaches to structure prediction express distance constraints on con-
secutive and adjacent monomers. E.g. to express that the distance between two successive
monomers is 1, we introduce for every monomer i the three variables Xdiffi, Ydiffi and
Zdiffi. The value range of these variables is [0..1]. Then we can express the unit-vector
distance constraint by

Xdiffi =: Abs(Xi − Xi+1)

Ydiffi =: Abs(Yi − Yi+1)

Zdiffi =: Abs(Zi − Zi+1)

Sum[Xdiffi, Ydiffi, Zdiffi] =: 1

On some models such a constraint-based approach can outperform other existing approaches
such as Monte-Carlo simulated annealing (e.g. [MacDonald et al., 2000, Dinner et al., 1996]),
genetic algorithms (e.g. [Unger and Moult, 1996]), purely heuristic methods like hydrophobic
zipper [Dill et al., 1993] and the chain growth algorithm [Bornberg-Bauer, 1997], as well as
complete enumeration (often restricted to subset of all conformations, e.g. [Šali et al., 1994,
Xia et al., 2000]).

5.3 Bioinformatics and Inductive Logic Programming (ILP)

Inductive logic programming uses examples and background knowledge to construct hypotheses,
which explain the examples using the background knowledge. Muggleton et al. have applied
inductive logic programming to a wide variety of biological problems such as the following:1

• Structure-activity prediction: In [King et al., 1992] it was shown that ILP system Golem
[Muggleton and Feng, 1992] was capable of constructing rules which accurately predict
the activity of untried drugs. Rules were constructed from examples of drugs with known
medicinal activity. The accuracy of the rules was found to be slightly higher than tra-
ditional statistical methods. More importantly the easily understandable rules provided
insights which were directly comparable to the relevant literature concerning the binding
site of dihydrofolate reductase.

• Mutagenesis: In [King et al., 1996, Srinivasan et al., 1996] ILP system Progol
[Muggleton, 1995] was used to predict the mutagenicity of chemical compounds taken
from a previous study in which linear regression had been applied. Progol’s predictive
accuracy was equivalent to regression on the main set of 188 compounds and significantly
higher (85.7% as opposed to 66.7%) on 44 compounds which had been discarded by the
previous authors as unpredictable using regression. Progol’s single clause solution for
the 44 compounds was judged by the domain experts to be a new structural alert for
mutagenesis.

• Pharmacophores: In a series of “blind tests” in collaboration with the pharmaceutical
company Pfizer UK, Progol was shown [Finn et al., 1998] capable of re-discovering a 3D
description of the binding sites (or pharmacophores) of ACE inhibitors (a hypertension
drug) and an HIV-protease inhibitor (an anti-AIDS drug).

1This survey is taken from www.doc.ic.ac.uk/˜muggleton
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• Carcinogenicity: Progol was entered into a world-wide carcinogenicity prediction compe-
tition run by the National Toxicology Program (NTP) in the USA. Progol was trained on
around 300 available compounds, and made use of its earlier rules relating to mutagenic-
ity. In the first round of the competition Progol produced the highest predictive accuracy
of any automatic system entered [Srinivasan et al., 1997].

• Proteins: Protein secondary structure prediction. In [Muggleton et al., 1992] Golem was
applied to one of the hardest open problems in molecular biology. The problem is as
follows: given a sequence of amino acid residues, predict the placement of the main three
dimensional sub-structures of the protein. The problem is of great interest to pharma-
ceutical companies involved with drug design. For this reason, over the last 20 years
many attempts have been made to apply methods ranging from statistical regression to
decision tree and neural net learning to this problem. Published accuracy results for
the general prediction problem have ranged between 50 and 60%, very close to majority-
class prediction rates. In an investigation it was found that the ability to make use of
background knowledge from molecular biology, together with the ability to describe struc-
tural relations boosted the predictivity for a restricted sub-problem to around 80% on an
independently chosen test set.

• Discovery of fold descriptions: Protein shape is usually described at various levels of
abstraction. At the lower levels each family of proteins contains members with high
sequence similarity. At the most abstract level folds describe proteins which have similar
overall shape but are very different at the sequence level. The lack of understanding
of shape determination has made protein fold prediction particularly hard. However, it
is intriguing that although there are around 300 known folds, around half of all known
proteins are members of the 20 most populated folds. Progol was applied to discover
rules governing these 20 most populated protein folds. Average in class cross-validated
prediction was around 70% and many of the rules were judged to be good characterisations
of the fold classes.
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