
I3-D1

Report on the design of component model and

composition technology for the Datalog and

Prolog variants of the REWERSE languages

Project number: IST-2004-506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document R (report)
Dissemination level: PP (restricted to FP6 participants)
Document number: IST506779/Linköping/I3-D1/D/PP/a1
Responsible editor(s): I. Savga
Reviewer(s): M. Kifer
Contributing participants: Linköping, Dresden, Malta
Contributing workpackages: I3
Contractual date of delivery: 31 August 2004

Abstract
This design report outlines the elements of a component model for the REWERSE languages.
Instead of defining a special component model for each and every language explicitly, we
propose a novel concept to derive a component model from a definition of a language, i.e.,
from its metamodel. The component models will be used together with invasive software
composition [Aßmann03], and can thus be employed for generic programming, connector-based
programming, view-based programming, and aspect-oriented programming. So far, invasive
software composition has been developed for Java and has used Java-based component models.
In this paper, we discuss the application of this technology for arbitrary languages and ask the
question whether it is possible to derive an invasive component model from a given language.
To this end, we present two proposals. The first will show that, in principle, every language
construct can be generic (generic construct principle), that is, it is possible to define an
isomorphic mapping from each language construct to the generic elements of its component

model. By generalizing this principle to other languages, we can derive a component model
by an isomorphic mapping of the language’s metamodel. In our second proposal we will
show that it is possible to define semantics for extensibility of components by introducing the
notion of list-like language constructs. Thus, it is possible to derive from any given language
a component model, which is generic and extensible, and which can thus be used for both
generic programming and view-based programming. Once applied to the area of the languages
used on the Web, this methodology gives a uniform approach to the composition of ontology
languages and Web resources.

Keyword List
invasive software composition, component-based systems, component adaptation, meta-
modeling, semantic web

c© REWERSE 2004.

ii

Report on the design of component model and

composition technology for the Datalog and

Prolog variants of the REWERSE languages

Ilie Savga1, Charlie Abela2 and Uwe Aßmann3

1 Institutionen för datavetenskap, Linköpings Universitetet
Email: ilisa@ida.liu.se

2 Department of Computing and IT, Junior College, University of Malta
Email: charlie.abela@cs.um.edu.mt

3 Fakultät Informatik, Institut für Software- und Multimediatechnik, Universität Dresden
Email: uwe.assmann@inf.tu-dresden.de

22 September 2004

Abstract
This design report outlines the elements of a component model for the REWERSE languages.
Instead of defining a special component model for each and every language explicitly, we
propose a novel concept to derive a component model from a definition of a language, i.e.,
from its metamodel. The component models will be used together with invasive software
composition [Aßmann03], and can thus be employed for generic programming, connector-based
programming, view-based programming, and aspect-oriented programming. So far, invasive
software composition has been developed for Java and has used Java-based component models.
In this paper, we discuss the application of this technology for arbitrary languages and ask the
question whether it is possible to derive an invasive component model from a given language.
To this end, we present two proposals. The first will show that, in principle, every language
construct can be generic (generic construct principle), that is, it is possible to define an
isomorphic mapping from each language construct to the generic elements of its component
model. By generalizing this principle to other languages, we can derive a component model
by an isomorphic mapping of the language’s metamodel. In our second proposal we will
show that it is possible to define semantics for extensibility of components by introducing the
notion of list-like language constructs. Thus, it is possible to derive from any given language
a component model, which is generic and extensible, and which can thus be used for both
generic programming and view-based programming. Once applied to the area of the languages
used on the Web, this methodology gives a uniform approach to the composition of ontology
languages and Web resources.

Keyword List
invasive software composition, component-based systems, component adaptation, meta-
modeling, semantic web

Report on the design of component model and composition
technology for the

Datalog and Prolog variants of the REWERSE languages

Ilie Savga1, Charlie Abela2, Uwe Aßmann1,3

1. Institutionen för datavetenskap, Linköpings Universitetet
2. Department of Computing and IT, Junior College, University of Malta
3. Fakultät Informatik, Institut für Software- und Multimediatechnik,

Universität Dresden

Abstract
This design report outlines the elements of a component model for the REWERSE
languages. Instead of defining a special component model for each and every language
explicitly, we propose a novel concept to derive a component model from a definition of a
language, i.e., from its metamodel. The component models will be used together with
invasive software composition [Aßmann03], and can thus be employed for generic
programming, connector-based programming, view-based programming, and aspect-
oriented programming. So far, invasive software composition has been developed for Java
and has used Java-based component models. In this paper, we discuss the application of
this technology for arbitrary languages and ask the question whether it is possible to
derive an invasive component model from a given language. To this end, we present two
proposals. The first will show that, in principle, every language construct can be generic
(generic construct principle), that is, it is possible to define an isomorphic mapping from
each language construct to the generic elements of its component model. By generalizing
this principle to other languages, we can derive a component model by an isomorphic
mapping of the language's metamodel. In our second proposal we will show that it is
possible to define semantics for extensibility of components by introducing the notion of
list-like language constructs. Thus, it is possible to derive from any given language a
component model, which is generic and extensible, and which can thus be used for both
generic programming and view-based programming. Once applied to the area of the
languages used on the Web, this methodology gives a uniform approach to the
composition of ontology languages and Web resources.

1. Introduction
For the future Semantic Web, reuse will play a major role. Applications will be built from
frameworks and components, reusing major parts of applications in the forms of template
components, partial component configurations, and product line skeletons. To be able to reuse
these partial artifacts, however, component and composition models need to be developed for
all involved programming and specification languages [Aßmann03 -PPSWR]. In particular, this
holds for logic-based inference languages, since they will play a major role proving the
consistency of applications in the Semantic Web [Berners-Lee01]. On the other hand, a major
reason why logic languages have not been taken up by the mainstream of software engineering
has been that their modularity concepts were rather week. Large applications need a flexible
construction out of components, but usually, Prolog or Datalog programs were monolithic and
closed, simply, not easy to reuse and to embed into application cores written in other
languages. One can go even further and state that: if a logic language does not support both a
flexible component model and software composition, then it will be unusable for the Semantic
Web.
This dilemma leaves a major challenge for component-based software engineers.
• Will it be possible to develop component and composition models for the rule-based

inference languages in the Semantic Web?
• Will it be possible not only to treat OWL, but also other, more powerful languages, as they

are envisaged in the Semantic Web layer cake [Berners-Lee01]?

• How quickly can a component model be constructed, if a new deductive language appears?
These questions are the major questions that we, the working group I3 “Composition and
Typing” of the Network of Excellence REWERSE [REWERSE], will try to address. The major
task is to develop component models for deductive languages. This first report summarizes the
results of the group's research, and presents a first attempt to construct a generic component
model, that is, a component model derived from a given language. As a working case, we will
apply our methodology to Prolog, but since it applies to arbitrary languages, it is easy to
transfer the reuse technology to other languages of the Semantic Web such as those that will be
developed in the REWERSE working group I1.
In the rest of this document, we will try first to come up with an informal and, yet relatively
thorough overview on the terminology in the area of component software; then, we will explore
the pre- and existing methodologies in the area of software development from the composition
point of view; later, we will apply the technique for composing a new dialect language –
Prolog. Finally, we propose a novel method of deriving component models from the given
source languages and conclude the paper with a discussion on future work.

2. Components and Composition
To lay the basis for our main discussion, in this chapter we introduce some terminology related
to the area of component and composition systems.

Why components?
When in the first century BC the Roman Empire reached its prosperity, it grew enormously
large. Because of the long distances and bad communication between different parts of the
country, the people in power began to have problems in managing the country. In order to
alleviate this problem, they decided to break up the country into smaller administrative regions
and manage them as much separately as possible. Perhaps, it was the first successful
application of the "divide et impera", i.e. "divide and rule" strategy, the technique that has
found its application in many areas of social life since then. Among such are politics, sociology
and economy; being an important part of our nowadays life, computer science is, of course, not
an exception.
Besides the reduced complexity, there is another, even more important result of dividing a
software into more or less independent and, still, adaptable parts; this is the "golden dream" of
any software developer - reuseability. Programmers are lazy; they do not want to reinvent the
wheel each time a slightly new off-the-line product has to be developed. Instead, they would
like to possess a methodology that defines how to reintegrate the previously created software
into a new context of development, to create software systems from existing software rather
than building them from scratch [Kru92].
Not surprisingly, the idea that software should be componentized - built from prefabricated
components - appeared in the software community quite a long time ago. In fact, at least one of
the definitions of reuse includes the notion of components: "reuse is the use of existing
software components in a new context, either elsewhere in the same system or in another
system" [Chr94]. At the end of the 60s, this idea was first formulated by Douglas McIlroy
[McI68] at the conference in Garmisch, Germany and has had since then a big influence over
the computer software.

Components
Usually, when speaking about important concepts, like music, humour, or software agent, a
number of, sometimes contradictory, definitions come up to mind; the term "component" is not
an exception. Generally, this concept exists in many other disciplines, including mechanical
and electrical engineering or architecture; what we are interested in is the notion of a "software
component".
Grady Booch believes, that "a reusable software component is a logically cohesive, loosely
coupled module that denotes a single abstraction." [Boo87]. Szyperski describes a software
component as "a unit of composition with contractually specified interfaces and explicit context
dependencies only" that "can be deployed independently and is subject to composition by third
parties." He also argues that components have no state and are binary deployables [Szy98].
According to MetaGroup (OpenDoc), "Software components are defined as prefabricated, pre-

tested, self-contained, reusable software modules - bundles of data and procedures - that
perform specific functions."
Intuitively, a component is designed to be composed [Nie95], that is, it is a basic unit for
composition. Still, a component is not everything; its structure and behaviour should follow
specific rules. Thus, "a software component is a software element that conforms to a
component model and can be independently deployed and composed without modification
according to a composition standard."[Hei01]

Component model
What is in this case a component model? In a nutshell, a component model defines how
components of a system look. In [Hei01] we find that a component model defines specific
interactions and composition standards .
 The component model is one of the three core parts of a composition system (see Figure 1). By
explicitly describing component interfaces, the model defines the functionality of the
components to be used in composition. At the same time, it hides the rest of the components'
implementation details, thus providing information hiding. Moreover, it introduces the basis for
component substitutability or exchangeability. The latter can be done on the syntactical level,
involving typing, and, through semantics, by checking for the components' conformance or
contracts.
All of this provides for the modularity property of components. Another important and highly
desired feature is customizability of components, that is, the ability to parameterize them to
different reuse contexts (adaptability). Finally, but equally important, the extension of existing
components should be easy when new requirements to a system appear (extensibility).

Composition technique
Another important part of a component system is the technique used for composition.
Basically,this explains the connection between components, their adaptation and extension, the
scalability and other aspects of composition. For example, if a composition mismatch occurs
(i.e. interfaces of two or more components do not fit witheach other) then an adaptation of
some of those composition gates is to be specified (external adaptation). In other cases, gluing
code, which consists of a sequence of adaptations, has to be generated to facilitate
synchronization, communication and distribution.
In addition, the composition technique also specifies how the integration of components is
performed; several examples are
• via base class extension (inheritance),
• via aggregation or
• via integration (mixins).
Moreover, views and aspects can be distinguished; they describe a set of components or a
system partially and are added up to the whole. By exchanging them, system functionality can

Figure 1. The three main composing parts of a composition system: its component
model, the composition language used and the composition techniques applied.

be varied in complex ways (aspect separation [Kic97]). Finally, the scalability of a composition
system should be described, that is, how it can vary in time (static or run-time) and size.

Composition language
The last part of any composition system is its language: this is actually the language that the
composition programs are written in. Implicitly or explicitly, it should provide a set of basic,
but still expressive enough composition operators (composers), rules that govern the
composition as well as integrity constraints to protect the validity of the programs. A
composition language can also contain additional features like control flow or protection
against run-time exceptions, providing robustness. Another important requirement to such
languages is the support of composition abstractions as first-class citizens of the language, that
is. a composition language should clearly specify rules and constraints of composition, thus
making the architecture of the system explicit. Unfortunately, most of the current systems lack
such first-class entities in their grammar; we will discuss this problem in a later chapter.

3. Historical Overview and State of the Art
 Software component technology has evolved considerably from modular systems through
object-oriented technology up to the current component-based and architecture languages. In
fact, if one compares the approaches with the 3 assessment criteria listed above (component
model, composition technology and composition language), one gets a uniform picture of the
state of the art. In this chapter, we are going to explore this topic, starting with the modular
paradigm, then moving on to describe the object-orientation methodology.We then
describesome classical component systems, and, finally, we focus on our vision approach;
invasive composition.

Modular systems
The primary goal of modules is to split a software product into small and independent
subsystems and then to develop and test them separately. Generally, each module hides an
important design decision and provides a well-defined interface, which is relatively unlikely to
change [Parnas72]. Interestingly, such a packaging was the first attempt to get the
exchangeability of software pieces with compatible interfaces and, the most important, to
achieve the re-use of already existing modules.
From the composition point of view, the component model of these component systems has
been binary code with binding points in form of procedures (import/export) and global
variables; the technique implied linking object files statically or at link-time, and, usually, there
was no explicit composition language.
The main problem of those languages has been the lack of customizability, in the sence that the
pieces of application chopped up by modularization were very hard to customize, should the
requirements change slightly. This was primarily due to the lack of parameterization of
modules and their very simplified composition mechanism. Still, the module concept has been
used inalmost all programming languages, like Modula, C, Ada, Java, C++, Pascal and many
others.
Probably, the most interesting example of modular component-based system is Unix shells
(Pipes and Filters), proposed by McIlroy (see Figure 2). The component model in this case
consists of components with unknown content and binding ports in form of stdin/stdout ports.
Components communicate through byte streams with static binding and they can be adapted by
filters written in various languages. Finally, there are a number of composition languages, such
as shell, C, python and makefiles, which allow for specifying the proper programs, build and
version management. Despite, or because, of its simplicity, the UNIX shells style is very
flexible and offers one of the most-used component paradigms.

OO systems
To alleviate the inflexibility of modular systems, the object-oriented paradigm was invented. In
addition to delegation, it introduced new composition mechanisms, such as inheritance and
aggregation, thus allowing for considerably more code reuse than in procedural languages.
Components in such systems are either classes (static programming) or objects (at runtime). In
the later case, components have identity, persistent state, encapsulated state and behaviour.
Moreover, during the binding stage, the receiver of the message is not known, giving additional

power to the polymorphism by this 'late binding' feature. So, the joining points for object-
oriented components can be seen as dynamically dispatched polymorphic calls.

Classical component systems
The object-oriented paradigm, with its numerous advantages, has created a fertile soil for the
creation of the first commercial component systems. Among the most well known of them are
CORBA from OMG [CORBA], JavaBeans [JB] and Enterprise JavaBeans [EJB] from Sun,
DCOM [DCOM] and .NET [NET] from Microsoft. Despite of being produced by various
companies and appearing differently at first sight, they turn to be rather similar when analysed
in more detail.
The component model in such systems usually consist of a set of encapsulated binary
components that implement predefined standard interfaces. The basic idea is to completely
isolate the implementation and to provide ready-to-use components off-the-shelf (COTS). In
addition, the functionality of components is described in terms of binding points using a
standard language, for example the interface definition language (IDL) [IDL]. Because of this
standardized interface description, the actual implementation language of components may vary
from Java, C and C++ in CORBA to Microsoft Visual Basic and even Fortran and .NET.
Moreover, components have a certain set of predefined properties with standardized names,
like having get/set prefixes, which makes the components' introspection easier. As the main
objective of such systems is to run as distributed, concurrent systems on various platforms and
with permanently evolving software requirements, the composition technique provides means
for external adaptation of components by marshalling/unmarshalling and type conversion
through the types of standard languages. In addition, some of the systems, like CORBA,
support powerful dynamic calls. The composition language also varies from Sun's Java to
Microsoft Visual Basic and, generally, suffers from the same problems all other object-oriented
languages do when used to describe architecture (we will discuss this issue later on).

Object-oriented languages are not perfect for composition
Unfortunately, despite their numerous advantages object-oriented systems suffer from the lack
of expressiveness when defining composition abstractions and rules, since they cannot describe
the architecture of the system explicitly. This is mainly due to the fact that object-oriented
languages do not support composition abstractions directly as first-class citizens. In fact, such
abstractions are usually clearly identified when designing systems and typically recorded as
design patterns. Design patterns are "the abstraction from a solution to a recurring problem in a
specific context" [GHJV95], meaning that one abstracts from his or her past experience when
solving particular type of problems and document this as a design pattern for better reuse in
the future. In general, there is no well-known object-oriented language that allows to
implement design patterns as first-class entities.These abstractions are scattered throughout the
application code, making the software hard to develop, understand, document and maintain.
In order to alleviate these problems, other composition mechanisms were investigated by the
software development community , such as Aspect-Oriented Programming [Kic97], Subject
Oriented Programming [Har93], Generative Programming [Cza00] and multi-dimensional
separation of concerns [Tar99]. The description of these techniques is not dealt here since it is
out of scope of this paper.

The Mjolner BETA system

Figure 2. UNIX shells (pipes and filters) architectural style.

An interesting system we have to mention in this context is the BETA system [BETA]. This
system was developed as part of the Mjolner project - a collaborative effort of a number of
Scandinavian participants, which aimed for object-oriented software development
environments.
Two main parts of the system can be certainly recognized: the proper BETA language and the
so-called fragment system [Knu93]. The BETA language is directly designed to enable object-
oriented programming. It is a powerful strongly typed language with two main constructs being
pattern and object. Patterns are used to describe classes, procedures, functions and other
concepts, while object represents instances of these patterns. In addition, the language is used
to implement a series of libraries and application frameworks, which are aimed at automating a
number of very common programming problems, like exception handling, file system access or
text manipulation. All components in the Mjolner BETA system are constructed from the
BETA programming language.
What is interesting in this system in relation to the context of component-based software
development, is the adopted solution for modularization, which introduced the notion of forms,
slots, and fragments. Formally, a form is a set of non-terminal and terminal symbols derived
from a non-terminal according to grammar-specific rules; it is the basic element to define a
module in the system. Using specific notation, it is possible to write non-terminals inside forms
that can be replaced by other forms during the expansion of these non-terminals. Such elements
are called slots since they define openings where other forms may be inserted. Slots have a
name and are typed by a meta-class, i.e., an element of BETA's metamodel (the BETA
grammar). A BETA slot can be defined by a grammar rule as follows:

Slot ::= '<<' Name':' Metaclass '>>'
where metaclass is an arbitrary element of BETA grammar. Finally, when a form is associated
with a name and a syntactic category, it is called a fragment-form or simply a fragment. So, the
fragment system allows for describing fragments as components and their composition
interfaces in the form of parameterizable slots.
Table 1 demonstrates a form named Counter of the syntactic category PatternDecl with two
slots Up and Down of the same syntactic category DoPart. The form is situated in the file
CounterGroup. Now, one can use the slots of this form to bind them with the content of some
other form. For example, the code in Table 2 defines a fragment CounterBody that has as its
origin CounterGroup. The origin construct specifies that the fragments Up and Down should be
substituted for the corresponding slots in CounterGroup.
The result of the substitution - the extent of the fragment - is a combination of the two initial
forms and is represented in Table 3. Note, that the parameterization is typed by syntactic
category, i.e.metaclass, and, hence, is safe.

 Table 3.
 Counter:

 (# Up: (# n: @ Integer enter n do n+7-> #);
 Down: (# n: @ Integer do n-5->n exit n #)
 #)

 Table 1.
 name ‘home/smith/CounterGroup’
 Counter: PatternDecl
 Counter:

 (# Up: (# n: @ Integer enter n <<SLOT: Up:DoPart>> #);
 Down: (# n: @ Integer enter n <<SLOT: Up:DoPart>> exit n #)
 #)

 Table 2.
 name ‘home/smith/CounterBody’
 origin ‘home/smith/CounterGroup’
 Up: DoPart
 do n+7 -> n
 Down:DoPart
 do n-5->n

4. Invasive Software Composition
In this section, we introduce invasive software composition, a composition technique
generalizing the BETA genericity principle. Beyond parameterization of template components,
this technology allows for their extension. Based on these two basic operations, more powerful
operations, such as the management of views or aspects, become possible. For a more indepth
discussion about the concepts and applications of invasiveness, refer to [Aßmann03].

Grey-box component model for invasive software composition
In invasive composition, components contain fragments, i.e. pieces of code or XML
documents. Fragment components define composition interfaces, which serve as anchors for
the composition. Finally, there is a set of composition operators that compose these
components by addressing their corresponding anchor points.
From one point of view, this resembles white-box systems, since the components' content is the
source code that can be modified by composition operators; on the other hand, the inside of the
components is invisibly encapsulated by an interface, like in black-box systems. Such a reuse
abstraction is called a grey-box and, hence, the composition is invasive, as the operators change
invasively the fragments in the components [Aßmann03]. To terminologically distinguish such
systems from the others, we will call these components fragment boxes, the interface anchor
points hooks and the composition operators composers.
In a nutshell, the component model of an invasive composition system is built from fragment
boxes that contain hooks, or variation points, - positions of box content, which are subject to
change. Generally, there are two types of hooks: implicit and declared. Implicit hooks are
implied by the semantics of the underlying language and, hence, are language-dependent. For
example, each Java method has a method entry and a method exit in the same way as each well-
formed XML document has a root element - so, the corresponding hooks can be expected.
Declared hooks, on the other hand, are explicitly defined by the box writer as parameters in the
box's fragments and look like markup tags. This implies extension of the underlying language
with new keywords, which follow the standardized naming scheme to be adequately
recognized and used for composition. For example, it is possible to add a Java identifier
genericFooIdentifier to the box code to denote a declared hook named Foo of type
genericIdentifier.
The composition technique then, adapts and extends the components by transforming their
hooks, as opposed to the classic black-box transformation (see Figure 3). Adaptation of a hook
basically means its fragment-based parameterization with a typed value; it is based on the same

Figure 3. Black-box vs. Gray-box composition. Instead of just generating glue code,
composers invasively change the components.

principles as the fragment parameterization in BETA [Knu93] and is performed by the basic
operator Bind.
A special case of such operation is binding a new name to a component's name hook; the
Rename operator is used for this name binding. Certain types of hooks can also be extended by
making use of the Extend operator which takes sets of fragments and enlarges them by
additional items. The rest of the operators that form the compositional algebra are essentially
based on these first three. For weaving of aspects and intrusive functors binding is used,
inheritance and view support rely on extension and connectors combine both techniques with
additional glue code generation.
Naturally, the changes resulting from composition on fragment boxes apply directly to the
corresponding Abstract Syntax Tree/Abstract Syntax Graph by attaching and removing
fragments (see Figure 4). While aspect weaving, view-based and mixin-based composition, and
implicit parameterization work on implicit hooks, the template parameterization (see below)
and the connectors bind the defined ones. Still, in all the cases the operators work uniformly
and do not make any distinction between the types of hooks.
An invasive composition program in such a system can be written in any standard language and
represents merely a combination of composition operators from the meta-library. Being very
compact comparing to the output code (with ration up to 1/10), such programs enable the
description of large systems. Moreover, they are very efficient in terms of the produced code,
as only the one that is really needed and described by the composition interface is being
generated.
In fact, invasive composition implies staged meta-programming [Aßmann98, Aßmann00]: in
the first stage, when the composition program is executed, the whole composition interface in
the form of hooks is conceptually made transparentto the boxes and replaced with "real"
functional interface. Then, in the second stage, the box fragments are actually evaluated, for
example, by a compiler producing machine code. Thus, the composition programs can be
thought of as static (comple-time) meta-programs and the discipline of writing them - as staged
programming. In order to support meta-programming, that is programming with metaobjects, a
system has to support a reflective architecture. Such systems contain programs in the metalevel
that reason about the application domain (see Figure 5) or about themselves, modifying their
own behaviour [Mae87].

COMPOST - a framework for invasive software composition
In order to provide basic demonstration of the concepts just presented above, we will explore
the first existing system for invasive software composition - COMPOST [COMPOST] - by
describing shortly some implementation issues and providing several examples of actual

Figure 4. Operations on different levels.

Figure 5. Metalevel architecture: the metaprograms are executed on the metamodel level
and are used for computation.

Figure 6. The layered architecture of COMPOST.

The uppermost layer of the system – called Unicomp - contains a set of Java interfaces that
abstract away all the fundamental abstractions, thus making the common types for the unified
composition. It describes such notions as fragment box, hook, composer, composition program,
fragment and composition argument. When working at this level of abstraction, the
programmer does not need to know neither the actual component language nor the types of
hooks - the composition is done uniformly for all types.
The second, thicker layer is Boxology: as its name implies, it contains the actual
implementation of the Unicomp interfaces, as well as the meta-library of composers and some
additional supporting features. The implementation goes from the abstract, generic classes
down to the concrete, language-dependent ones, for example, Box-> FragmentBox-> JavaBox-
> ClassBox or Hook-> FragmentHook-> DeclaredHook-> XMLHook-> XMLElementHook
(see Figures 7 and 8).
In fact, one can further divide this layer into three sublayers. The uppermost layer abstracts
away the commonalities in the implementation of fragment boxes and hooks for different
languages and defines the abstract semantics for all component models in the system. The
second sublayer is concerned with temporal constraints that define when the composition takes
place: static, i.e. at compile-time, or at run-time. The , language-specific sublayer defines rules
specific for each language and language dialect. Currently, the system provides two component
models that support two component languages - Java and XML; furthermore, the component
model for XML includes extensions for various language dialects, such as XHTML and
ModelicaXML [Pop04]. We plan to develop a third model to support Prolog. The issues related
to this component model are discussed in the next chapter.
The bottom layer of the system provides the basic program transformation facilities, such as
parsing, semantic analysis, cross referencing, actual transformation engine and pretty printing.
In addition, there are a number of refactorings that can be applied directly to the language
constructs. As currently two languages are supported, the layer includes the packages Recoder
[RECODER] for Java and XMLRecoder for XML.
A composition program can be written in Java and looks unsurprisingly like a set of composers
from the COMPOST library. All the basic architecture abstractions, required by the grey-box
composition, are reified by the system. It is possible to implement mixins, views, aspects,
templates and connectors. In addition, the parameterization of all kind of fragments is type-safe

Figure 7. COMPOST Hook Hierarchy.

and the adaptation of boxes and glue code is also easily supported. It is also possible to vary
strategies of composition in terms of time of execution (eager or lazy), precedence and
overwriting of operators.
To demonstrate the implemented composition programs we present several examples, shown
below, each consisting of a name, a small description, the actual, rather simplified, program
code as well as the initial and resulting component code. All the examples are adapted from
[Aßmann03].

Example 1. Weaving debugging aspect.
The composition program adds a parameter and a print statement to the recursive procedure
lifeCycle of RecursiveRobot, providing thus the track of the recursion depth. For that, it creates
a composition system, finds several implicit hooks and binds them with the corresponding
values. Note, that the binding is implicitely typed and, hence, safe. The initial class code and
the code after the modification are presented in Listings 1-3.public class RecursiveRobot {

 public void lifeCycle() {
 WorkPiece currentPiece = in();
 work(currentPiece);
 out(currentPiece);
 lifeCycle();
}}

Listing 1. Recursive robot.

public class DemoParameterExtension{
 public static void main(String[] argv) {
 // Prepare the composition by allocating composition system
 CompositionSystem compositionSystem =

new FragmentCompositionSystem("gen");
 // Create a fragment box by reading a compilation unit
 Box robot = compositionSystem.createBox("RecursiveRobot.jbx");
 // Add a nesting depth parameter to RecursiveRobot.lifeCycle
 robot.findHook("RecursiveRobot.imports").bind("import boxology.util.Debug;");
 robot.findHook("RecursiveRobot.lifeCycle.parameters").append("int depth");
 robot.findHook("RecursiveRobot.lifeCycle.methodEntry").bind("depth++;

Debug.println(\"Depth \"+depth);");

Figure 8. COMPOST Box Hierarchy.

 robot.findHook("RecursiveRobot.lifeCycle.methodExit").bind("depth--;");
 compositionSystem.printAll();
}}

Listing 2. Composition program extends the recursive procedure with tracing
statements.

import boxology.util.Debug;
public class RecursiveRobot {
 public void lifeCycle(int depth) {
 depth++; Debug.println("Depth");
 WorkPiece currentPiece = in();
 work(currentPiece);
 out(currentPiece);
 lifeCycle(depth);
 depth--;
}}

Listing 3. A new parameter for the debugging version of the recursive robot.

Example 2. Generalized parameterization with generic types and modifiers.
This example shows how the system allows for template programming using explicit hooks in
the form of generic types and identifiers. The composition program reads in the template file
ArrayList, find the declared hooks of type genericIdentifier, genericSuperclass and
genericType and binds them with the corresponding values. This can be done repeatedly, thus
producing considerable amount of code. In fact, some parts of COMPOST, like its list
hierarchy, were generated using such template instantiation. The result of running ListMaker is
presented in Listing 6.

public class genericElementIdentifierArrayList extends genericSuperSuperclass
implements genericElementIdentifierMutableList {

 public genericElementIdentifierArrayList() { super(); }
 public void set(int index, genericTType element){ super.set(index,element); }
 public genericTType getgenericElementIdentifier(int index) {
 return (genericTType)super.getObject(index);}
 public final void add(genericTType element) { super.add(element); }
}

Listing 4. The fragment box for array-based list implementation.

public class ListMaker{
 public static void main(String argv[]) {
 FragmentCompositionSystem cs = new FragmentCompositionSystem("gen");
 JavaCompositionSystem compositionSystem = cs.getJavaCompositionSystem

();
 //Read in the names of the list instantiations from a specification file
 //Instead, for the sake of simplicity here we specify the parameters directly
 String type = "Hook", superclass = "Composable", identifier = "Id";
 //Reading list box from file
 CompilationUnitBox box = compositionSystem.createCompilationUnitBox

("ArrayList.jbx");
 //Parameterizing the list box and pretty printing it
 box.findGenericIdentifier("Element").bind(identifier);
 box.findGenericType("T").bind(type);
 box.findGenericSuperclass("Super").bind(superclass);
 box.print();
 }}

Listing 5. A composition program for generation of list hierarchies.

public class IdArrayList extends Composable implements IdMutableList {
 public IdArrayList() { super(); }
 public void set(int index, Hook element){ super.set(index,element); }
 public Hook getId(int index) {
 return (Hook)super.getObject(index);}
 public final void add(Hook element) { super.add(element); }
}

Listing 6.The result of expanding generic methods to monomorphic instances.

Example 3. Connectors and ports.
As mentioned earlier, the concept of a connector is very important for an explicit architecture
description. In COMPOST, we view ports as special instances of a declared hook. As a
consequence, connectors can be realized as a special variant of composers. Moreover, we
separate other aspects of the architecture, such as topology and transfer, thus generalizing the
concept of connectors. The composition program TopologicalConnector reads in two classes -
Press and Robot - and binds the out port of the robot to the in port of the press. First, it
connects the ports topologically and wires the classes in ProductionCell; the resulting file
cannot be compiled yet. Then, it rewrites the topological connection to a concrete one by
specifying the actual realization of connection, in this case by buffered local procedure call. Of
course, it is possible to connect several classes and obtain a pipe connection, too. The final
result of the composition is shown in Listing 9.

 public class Robot{
 public void spin(){
 while(true){
 lifeCycle();
 }
 }
 public void lifeCycle(){
 WorkPiece p;
 rotateToTable();
 gate.inWorkPiecePort(p);
 rotateToPress();
 gate.outWorkPiecePort(p);
}}

public class Press{
 public void spin(){
 while(true){
 lifeCycle();
 }
 }
 public void lifeCycle(){
 WorkPiece p = (WorkPiece)gate.inWorkPiecePort();
 close();
 press(p);
 open();
 gate.outWorkPiecePort(p);
}}

Listing 7. Robot and Press with COMPOST ports.

public class TopologicalConnector{
 public static void main(String argv[]) {
 JavaCompositionSystem compositionSystem = new

FragmentCompositionSystem().getJavaCompositionSystem();

 JavaConnectorBox productionCell = compositionSystem.createConnectorBox
("ProductionCell");

 ClassBox press = compositionSystem.createClassBox("Press");
 ClassBox robot = compositionSystem.createClassBox("Robot");
 productionCell.connectTopologically(robot.findOutPort("WorkPiece"),

 press.findInPort("WorkPiece"));
 productionCell.produceWireChildren();
 productionCell.connectByBufferedLocalProcedureCall(robot.findOutPort

("WorkPiece"),
 press.findInPort

("WorkPiece"));
 compositionSystem.printAll();
 }}

Listing 8. Topological connector in Compost.

public class Robot {
 public void spin() {
 while (true) {
 lifeCycle();
 }
 }
 public void lifeCycle() {
 WorkPiece p;
 rotateToTable();
 gate.inWorkPiecePort(p);
 rotateToPress();
 gatePress.putWorkPiece(p); //fully bound port
 }
 private Press gatePress;
 public void setGate(Press gatePress) {
 this.gatePress = gatePress;
}}

public class Press {
 public void spin() {
 while (true) {
 lifeCycle();
 }
 }
 public void lifeCycle() {
 WorkPiece p = (WorkPiece)getWorkPiece(); //fully bound port
 close();
 press(p);
 open();
 gate.outWorkPiecePort(p);
 }
 private Robot gateRobot;
 public void setGate(Robot gateRobot) {
 this.gateRobot = gateRobot;
 }
 Buffer bufferedWorkPiece;
 public void putWorkPiece(WorkPiece workpiece) {
 bufferedWorkPiece.add(workpiece);
 }
 public WorkPiece getWorkPiece() {
 bufferedWorkPiece.retrieveFirst();
}}

public class ProductionCell {
 public void wireChildren() {
 Robot robot = new Robot();
 Press press = new Press();
 robot.setGate(press);
 press.setGate(robot);
}}

Listing 9. A topological connector generates topologically bound ports.

Example 4. Inheritance as hook extension.
Mixins - classes with anonymous superclasses - are a powerful and flexible abstraction to
realize inheritance. In COMPOST, the process of defining mixins is implemented as a
composition program operating on implicit hooks. In the following example, the DeviceMaker
creates a new class SemiActiveDevice and extends its member list with the members from both
PassiveDevice and ActiveDevice, realizing thus multiple inheritance on-the-fly. As opposite to
inheritance, it is also possible to use delegation to introduce indirections in the resulting class
(not shown here). All the corresponding code is summarized in Listings 10-12.

public class ActiveDevice{
 public void spin(){
 while(true) {
 lifeCycle();
 }
 }
 public void lifeCycle(){
 piece = gate.takeIn();
 work(piece);
 gate.pushOut(piece);
}}
public class PassiveDevice{
 private WorkPiece piece;
 public void putPiece(WorkPiece p) { piece = p; }
 public WorkPiece getPiece() { return piece; }
}

Listing 10. Passive and Active Devices

public class DeviceMaker{
 public static void main(String argv[]) {
 FragmentCompositionSystem cs = new FragmentCompositionSystem("gen");
 Box semiActiveDevice = compositionSystem.createBox("SemiActiveDevice");
 Box passiveDevice = compositionSystem.createBox("PassiveDevice");
 Box activeDevice = compositionSystem.createBox("ActiveDevice");
 semiActiveDevice.extend(activeDevice);
 semiActiveDevice.extend(passiveDevice);
 semiActiveDevice.print();
 }}

Listing 11. DeviceMaker creates a new device and mixes in the members from both
Passive and Active devices in it.

public class SemiActiveDevice {
 public void spin(){
 while(true) {
 lifeCycle();
 }
 }
 public void lifeCycle(){

 piece = gate.takeIn();
 work(piece);
 gate.pushOut(piece);
 }
 private WorkPiece piece;
 public void putPiece(WorkPiece p) { piece = p; }
 public WorkPiece getPiece() { return piece; }
}

Listing 12. The resulting mixin class inherits methods and fields from all of its
anonymous parents.

As the presented examples show, the invasive software composition representes a powerful
technique that can be used for various purposes. In addition to generic programming and
connector-based programming, it can also be employed for view-based programming, multi-
dimensional, and aspect-oriented programming. The invasive composition framework under
development – COMPOST – supports composition abstractions, e.g. connectors and mixins, as
first-class citizens that allow for clear system architecture description. In addition, the
framework provides for a rich and extensible library of composion operators, composers, and
can be extended to support new component languages.

5. Invasive Software Composition of Prolog Components
For the future Semantic Web, reuse will play a major role. Applications will be built from
frameworks and components, reusing major parts of applications in the forms of template
components, partial component configurations, and product line skeletons. To be able to reuse
these partial artifacts, however, component and composition models need to be developed for
all involved programming and specification languages [Aßmann03-PPSWR]. In particular, this
holds for logic-based inference languages, since they will play a major role proving the
consistency of applications in the Semantic Web [Berners-Lee01]. On the other hand, a major
reason why logic languages have not been taken up by the mainstream of software engineering
has been that their modularity concepts were rather week. Large applications need a flexible
construction out of components, but usually, Prolog or Datalog programs were monolithic and
closed, simply, not easy to reuse and to embed into application cores written in other
languages. One can even phrase this more provocatively: if a logic language does not support a
flexible component model, if the language does not support software composition, it will be
unusable for the Semantic Web.
This dilemma leaves a major challenge for component-biased software engineers. Will it be
possible to develop component and composition models for the rule-based inference languages
in the Semantic Web? Will it be possible not only to treat OWL, but also other, more powerful
languages, as they are envisaged in the Semantic Web layer cake [Berners-Lee01]? How
quickly can a component model be constructed, if a new deductive language appears? These
questions are the major questions of the working group I3 “Composition and Typing” of the
Network of Excellence REWERSE [REWERSE]. Its task is to develop component models for
deductive languages, and in the following, a first example will be presented, an invasive
component model for Prolog.
In the following section we start by giving a very brief description of Prolog and its successor,
HiLog, then we discuss their possible component models for these languages and demonstrate
how invasive composition can be applied for languages.

Prolog and HiLog
The logic programming language Prolog - PROgramming in LOGic - , was originally designed
for natural language processing but has become one of the most widely used languages in
different areas of computer science, especially in artificial intelligence. It is based on predicate
calculus and enriched with higher-order and meta-level programming. It allows for powerful
use of generic predicate definitions, such as sorting and transitive closure. For example, this is
how a transitive closure written in Prolog looks:

ancestor(X,Y) <- parent(X,Y).
ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).

Still, the language lacks “high-orderness” in its syntax and semantics. For example, only
parameter symbols can represent functions, predicates and atomic formulas.
As a solution, a novel language, called HiLog, was invented [Che93]. HiLog has a higher-order
syntax, allowing thus for its application in higher-order and modular logic programming, DCG
grammars, deductive databases. It supports multiple roles for parameter symbols in a clean and
understandable way. More importantly, the language allows arbitrary terms to appear in places
where predicates, functions and atomic formulas occur in predicate calculus. For example, this
is how transitive closure can be generalized:

closure(manager)(X,Y) <- manager(X,Y).
closure(manager)(X,Y) <- manager(X,Z), closure(manager)(Z,Y).

Here, the simple predicate ancestor is replaced by an expression depending on the base
predicate manager. This illustrates why it is easy to generalize the query to arbitrary predicates:
as soon as the predicate manager is replaced by a variable, the query can be instantiated for all
base relations.
Although having a higher-order syntax, HiLog, still, preserves its first-order semantics and,
hence, soundness and completeness of the proofing procedure. From our point of view, these
two languages – Prolog and HiLog - are interesting to be modeled in COMPOST in order to re-
apply the existing composition technology for the invasive composition of Prolog components.

The basic idea of invasive composition for Prolog
The basic idea behind the scene is that, despite of its specific "logic" syntax, Prolog programs
can be seen as sets of fragments. Thus, once we have Prolog components defined in the same
manner as Java and XML ones, we can reuse the existing composition technology to transform
them. Moreover, because of this uniformity, the composition becomes transparent and
language-independent.
In order for a language to be supported by an invasive software system like COMPOST, its
component model must be defined in terms of fragment boxes and hooks. So, we have to
provide answers for several basic questions:
• What is a Prolog fragment box?
• What is a Prolog hook?
• Which defined and implicit hooks one can depict in such components?
• Which are possible composition operators that can be applied for transformation?
The extension of the existing component model to support Prolog components involves several
steps. First, the fragment box hierarchy is extended; clearly, a Prolog component should
subclass FragmentBox in the same manner as the Java and XML components do. Then, Prolog-
specific hooks are to be introduced; so far, two of them can easily be imagined:
• The first one, a generic identifier, is similar to the generic identifiers defined for Java and

XML components.
• The second one, the members hook, in contrary, is implicit and delimits the content of a

Prolog-program, i.e. a set of rules and facts, and resembles the corresponding hook in Java
model.

Finally, a Prolog-specific composition system must be defined supporting specific language
features, like query evaluation.
Once all these steps are performed, one can start to write composition programs in the same
manner and using the same composition library, as for other implemented languages. For
example, a generic transitive closure predicate can be defined as follows:

File closureTemplate.pbx
genericOutPredicate(X,Y) <- genericInPredicate(X,Y).
genericOutPredicate(X,Y) <- genericInPredicate(X,Z), genericOutPredicate(Z,Y).

Here, two declared hooks are declared, namely genericOutPredicate and genericInPredicate,
both representing identifiers of type GenericPredicate. Then, one can use such component as a
template and supply the corresponding parameters for its instantiation. The composition
program ClosureDemo creates a Prolog-specific composition system and a component out of
the template and binds its declared hooks. After that, it reads in facts and extends them with the
content of the instantiated component. As the main consequence, it is possible to query the
resulting component in a Prolog-like manner. The composition program, its input and resulting

components are shown in Listings 13 and 14. This and the following example were inspired by
[Che93].

public class ClosureDemo{
 public static void main(String argv[]) {
 PrologCompositionSystem cs = new FragmentCompositionSystem().

getPrologCompositionSystem;
 Box closureBox = cs.createBox("closureTemplate.pbx")
 closureBox.findHook("In").bind("parent");
 closureBox.findHook("Out").bind("ancestor");
 Box factBox = cs.createBox("facts.pbx");
 factBox.extend(closureBox);
 cs.getEvaluator().query(factBox,"ancestor(john,X)").print();
}

Listing 13. A composition program binds the explicit hooks of a template fragment
box and extends it by a box of facts. The resulting box can be queried and the answers printed
out.

File facts.pbx
parent(john,bill).
parent(bill,bob).
parent(bob, andrew).
parent(bob, mathew).
The content of factBox after its extension and parameterization.
parent(john,bill).
parent(bill,bob).
parent(bob, andrew).
parent(bob, mathew).
ancestor(X,Y) <- parent(X,Y).
ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).

List14. The input facts and the result of generic parameterisation.

As mentioned, HiLog allows arbitrary terms to be viewed as functions, predicated and atomic
formula. In order to support such features in COMPOST, we extend our closure template with a
new hook of type GenericRelation, the subtype of GenericIdentifier.

File closureTemplate2.pbx
genericOutPredicate(genericFooRelation)(X,Y) <- genericFoorRelation(X,Y).
genericOutPredicate(genericFooRelation)(X,Y) <- genericFooRelation(X,Z),

 genericOutPredicate(genericFooRelation)(Z,Y).

The composition program ClosureDemo2 starts with creating of a Prolog composition system.
Then, it creates the template component and binds its genericOutPredicate hook. Assume that
relationNames is a vector argument, containing the names of some relations, for example,
"manager" and "parent". In a loop, the template is repeatedly cloned and instantiated for every
such relation. The same is done with the fragment box, containing a specific rule, in this case a
rule that determines who should report to whom in an organization. The result of instantiation
at each iteration is added to the component factBox, that contains also some facts. The initial
fact component and the result of its extension by rules are shown in Listing 15 and 16. Now, it
is possible to query the resulting box and obtain, for example, the set of john's ancestors and
bosses.
An invasive composition system is not fully higher-order. Since template variables, hooks, are
expanded before the actual runtime of the component, all second-order features are reduced at
compile-time. Hence, using declared hooks, we realize a static second-order predicate with a
higher-order syntax, but first-order semantics.

public class ClosureDemo2{

 public static void main(String argv[]) {
 PrologCompositionSystem cs = new FragmentCompositionSystem().

getPrologCompositionSystem;
 Box closureBox = cs.createBox("closureTemplate2.pbx")
 closureBox.findHook("Out").bind("closure");
 Box ruleBox = cs.createBox("reports_to(Person)(Supervisor) <-

 closure(genericRelationIdentifier)(Person,Supervisor)");
 Box factBox = cs.createBox("facts2.pbx");
 for(int i=0; i<relationNames.size(); i++){
 String name = (String)relationNames.get(i);
 Box closureSnippet = closureBox.copy();
 closureSnippet.findGenericRelation("Foo").bind(name);
 Box ruleSnippet = ruleBox.copy();
 ruleSnippet.findGenericRelation("Foo").bind(name);
 factBox.extend(closureSnippet);
 factBox.extend(ruleSnippet);
 cs.getEvaluator.query(factBox,"reports_to(john)(X)").print();
}

Listing 15. A composition program that realizes generic transitive closure and quieries
the resulting box.

File facts2.pbx.
parent(john,bill).
parent(bill,bob).
parent(bob, andrew).
parent(bob, mathew).
manager(john,mary).
manager(mary,kathy).
The content of factBox after its extension and parameterization.
parent(john,bill).
parent(bill,bob).
parent(bob, andrew).
parent(bob, mathew).
manager(john,mary).
manager(mary,kathy).
closure(parent)(X,Y) <- parent(X,Y).
closure(parent)(X,Y) <- parent(X,Z), closure(Z,Y).
reports_to(Person,Supervisor) <- closure(parent)(Person,Supervisor).
closure(manager)(X,Y) <- manager(X,Y).
closure(manager)(X,Y) <- manager(X,Z), closure(Z,Y).
reports_to(Person,Supervisor) <- closure(manager)(Person,Supervisor).

Listing 16.The initial facts and the resulting component after parameterization.

In this section, we discussed a possible extension of the current version of COMPOST to
support invasive composition of Prolog components. We tried to identify the main issues
implied by modeling the Prolog component model as well as possible applications of our
approach. For demonstration purposes, we also presented sample composition programs. In the
future, we plan to come up with more sophisticated examples and case studies as well as
enrichment of the corresponding component model. In the next chapter, we describe future
work regarding the automated generation of component models such as the Prolog model and
discuss possible solutions for that.

6. Deriving an Invasive Component Model as a Derived
Metamodel

So far, both invasive component models have been defined specifically for certain languages,
e.g., for Java or for Prolog. In other words, the component models were hand-written. This

section goes an important step forward. It attempts to derive the concepts in the component
model automatically from the language definition. We propose a method to derive the concepts
in an invasive component model from a given core language, thus automating the process of
creating component models. For the Semantic Web, this has the advantage that, whenever a
new language should be considered for ontologies, a component model is immediately
available, which supports reuse, generic and view-based programming.

The basic idea
The basic idea for the derivation stems from the object-oriented language BETA (see Chapter
3). In BETA, every language construct can be generic, that is achieved by an isomorphic
mapping from each language construct to the generic elements of its component model. We
claim that by generalizing this principle to other languages, we can derive the metamodel of a
generic component model by an isomorphic mapping of the language's metamodel. In addition,
we can augment the component model with so-called list hooks that form extensible list
constructs of a language.
In the following text, we explore this idea, starting with the description of the term metamodel
and the model hierarchy, then discussing the distinction between two basic composition
operators, and, finally, proposing a way to derive a component model from a language’s
grammar.

Metamodels in the Model Hierarchy
While modeling systems, several levels can be distinguished, forming the model hierarchy
[For99, Sch98] (Figure 9). In order to describe them, we use a running example.
Level 0. The real world. Consists of the objects in the application domain. For example,
describing suite of furniture, we might have a bookcase, a table, a sofa and 6 chairs.
Level 1. The software world. Represents the corresponding objects from the real world as
software objects. To simulate the furniture, we need to create objects that represent the
bookcase, table, sofa and 6 objects to represent the chairs.
Level 2. The software model. Abstracts the features and actions of the software objects by
means of classes and the relations between objects by relationships. In fact, this level
introduces typing for the software objects and their relations. In our furniture example, the
chairs can be described with a class Chair. The classes Bookcase, Table and Sofa complete the

Figure 9. The metalevels of a programming language.

model. As these classes are objects that describe program object from the first level, they are
also called metaobjects.
Level 3. The metamodel. In the same manner as the software model models the first level, the
metamodel models the second one. It describes all elements of the model, introducing thus
types for the types in the model. As the items on this level describe classes of the level below,
they are also called metaclasses or meta-metaobjects. For instance, the classes of the software
model can be described by metaclass Class. Other possible metaclasses could be Property,
Method or Attribute items. In essence, the metaclasses of the metamodel define the constructs
of a language. Hence, the metamodel is a language description.
Also, component models live on this level: they describe reuse-oriented typing schemes for the
programs on level 2. Their concepts (e.g., fragment boxes, hooks, or composers) form
metaclasses of a specific metamodel, i.e., the component model.
Level 4. The metametamodel. This is the most abstract layer of the hierarchy that describes all
the items of the metamodel. In fact, it describes the concepts that can be used to specify a
programming language. In other words, the third level introduces programming languages and
the fourth level defines the concepts for their specification. The metametamodel forms a
language specification language. Metamodels are written in a metametamodel. Examples for
metametamodels are
• grammar formalisms such as EBNF [EBNF] (in which metamodels, grammars, can be

written),
• attribute grammar formalism, such as ELI-LIGA (in which metamodels, attribute grammars,

can be written) [ELI],
• the metaobject facility (MOF) of OMG [MOF], a UML-class-diagram-like specification

language, which can describe class-diagram-based metamodels, e.g., for UML. Another
application of the MOF is type-system mapping. The concepts defined in MOF can be
mapped to the types of a specific type system and from these mappings it is possible to
generate code that allows for navigating in object graphs. Thus, services to operate on types
systems are automatically derived and, moreover, different type systems can be compared
under the same unifying model.

Our core idea is to use the metamodelling approach for describing component models of
Semantic Web languages.

The Bind and Extend Composition Operators
The two basic operators of the composition calculus – Bind and Extend – were implicitly
introduced when describing invasive composition; we shortly investigate them before going
into details of our proposal. In fact, they complement each other and yield a strong composition
operator algebra, since all other operators can be produced using these two basic ones
[Aßmann2003].
Which prerequisites do both operators pose on the underlying languages? Bind is used for
(typed) parameterization of generic slots and requires genericity and adressibility. Genericity
means that it can be specified for a language construct that it is generic, i.e., that a component
parser can recognize a generic slot easily. Secondly, the slot should be named, so that it can be
addressed from a composition operator (adressibility).
On the other hand, some constructs in a language can be thought of as list-like and, hence, can
be extended. For example, the members of a Java class or the rule list of a Prolog file can be
treated as lists and extended by applying the composition operator Extend. Since the Extend
operator can be repeatedly applied, it allows for view-based programming, thus repeatedly
extending of components depending on the context of their use [Aßmann2003]. Since view-
based system development directly generalizes inheritance, inheritance can also be realized as
hook extension.

A Component Model as a Derived Metamodel
As previously mentioned, the concepts of a language are specified by its metamodel, which is
on the third level of the model hierarchy (see Figure 9 in Chapter 6). Once they are defined, it
is possible to manipulate them using the facilities from the meta-metamodel, like the MOF
does. Our main idea is to generalize the concept of the generic language construct by defining

a mapping from each entity in the language's metamodel to the elements of the component
model. In addition, for extensible component hooks, we propose to define extension points for
every list construct in a language. Both the generic model and the extension model form the full
component model. We call the language the core language. A component model, which is
defined by a mapping from a metamodel is called a derived component model. Since the
derived component model is used to specify composition interfaces of components, the
augmented language is the core language joined with the composition interface language.
1. Mapping for genericity.

Suppose, we have a core language without generic constructs. If we want to define generic
constructs for all language constructs, there should be an isomorphic mapping from the
elements of the metamodel to a second metamodel, the metamodel of the generic constructs.

genGenericModel:Metamodel -> Metamodel
That is a mapping that maps a language metamodel to an isomorphic metamodel of generic
constructs. If the metamodel is a graph, the generic construct metamodel is also a graph.
In the case of BETA, the generic slot concepts can be constructed by mapping every language
construct to a generic slot concept. Hence, the generic slots result by systematically applying a
mapping from the language constructs to the elements of the composition interfaces. The
resulting model is generic and the basic operator that works on its components is Bind.

2. Mapping for extensibility.
Not all language elements, however, can be extended. Here, the idea is to define a partial
component model. Let

genExtensibleModel:Metamodel ->Metamodel
be a unary composition operator, which derives from all lists in the core language's
metamodel. For every list-like fragment of a language, we can, atleast derive a list-like
extensible fragment that marks up parts of a list.

ExtensibleFragment ::= [[<name> : <metaclass>]]
The Extend operator can be applied to this fragment. It will extend the extensible construct
with a fragment, typed by a metaclass.
The extensible constructs can be regarded as elements of the composition interfaces of
components. Hence, the elements form a small language for the extensible part of the
composition interfaces of a component. Again, the composition interface language can augment
the core language, such that components can be extended very easily.

7. Deriving a Prolog Component Model: an Example
In this section we combine the previously mentioned ideas with the ideas of Chapters 4 and 5
to derive an invasive component model for Prolog. The model generalizes HiLog in two ways:
first, by allowing all language elements to be generic, and then all list-like language elements
to be extensible. Finally, and more important, the component model is derived systematically
and not ad-hoc.
We make use of the following, simplified grammar for a Prolog-like language:

PrologGrammar = (N={Language, Rule, Head, Body, Clause, TermOrVar, Var, Term,
Functor, SmallWord, Predicate},
 T={ ',', ':-', '.', SmallWord}
 Z=Language,
 R={Language ::= Rule * . -- (1)

Rule ::= Head ':-' Body .
Head := Clause .
Body ::= Clause // ',' '.'. -- (2)
Clause ::= Predicate '(' TermOrVar // ',' ')' .-- (3)
TermOrVar ::= Var .
Var ::= LargeWord
Term ::= Functor '(' TermOrVar // ',' ')' . -- (4)
Functor ::= SmallWord.
Predicate ::= SmallWord.

 },

).

Using a grammar is not the only way to specify the structure of a language. In a UML model,
knowing the structure allows for other part-of relationships to be modelled. Hence, a UML
model can also express static contextual relationships, that is, context conditions. Similarly, a
model in OWL would be possible. However, for this example, we will use the grammar
formalism. We assume it has the meta-metamodel

Grammar = (Nonterminals, Terminals, Rules, StartNonterminal)

Genericity
Using the basic idea for a derived generic component from above, the nonterminals can be
made to be generic slots:

genGenericModel: Nonterminals --> Nonterminals
-- every nonterminal is mapped to a generic counterpart
genGenericModel(N) := { G<A> | where A in N }
-- we use the < > string concatenation operator as in C++

genGenericModel(PrologGrammar.N) = {GLanguage, GRule,GHead, GBody,
GClause, GTermOrVar, GVar, GTerm GFunctor, GPredicate}

where the nonterminals starting with “G” are generic nonterminals, which can be used as
placeholders for a sentential form of their concrete counterparts.
Additionally, a new rule set must be derived, whose heads are the new nonterminals that
express genericity:

genGenericModel: Rules --> Rules
genGenericModel(R) := { NewHead ::= “<<” Name “:” Head “>>”.
 | r in R, NewHead = genGenericNonTerminals (r.Head) }

from which results for our example:

genGenericModel (PrologGrammar.R) = {
GLanguage ::= “<<” Name ':' Language “>>”.
GRule ::= “<<” Name ':' “Rule” “>>”.
GHead := “<<” Name ':' “Head” “>>”.
GBody ::= “<<” Name ':' “Body” “>>”.
GClause ::= “<<” Name ':' “Clause” “>>”
GTermOrVar ::= “<<” Name ':' “TermOrVar” “>>” .
GVar ::= “<<” Name ':' “Var” “>>”.
GTerm ::= “<<” Name ':' “Term” “>>”.
GFunctor ::= .“<<” Name ':' “Functor” “>>”.
GPredicate ::= “<<” Name ':' “Predicate” “>>”.

}

The Prolog grammar would then be extended by pointwise set union as follows:

PrologGrammarWithGenerics = (
 Nonterminals + GenericNonterminals,
 Terminals + { “<<”, “:”, “>>” }
 Z=NLanguage,
 PrologGrammar + {

Nlanguage ::= Language | GLanguage.
Nrule ::= Rule | GRule.
Nhead ::= Head | GHead.

...
Npredicate ::= Predicate | GPredicate.

})

In this grammar, invasive components, i.e., template components can be specified, for instance
the generic transitive closure from Chapter 5:

component c = {
<<TransRelation: Predicate>>(X,Y) :- <<BaseRelation:Predicate>>(X,Y).
<<TransRelation:Predicate>>(X,Y) :- <<TransRelation:Predicate>>(X,Z),

 <<BaseRelation:Predicate>>(Z,Y).
}

The Bind, composition operator for generic components, expands a slot from such a template
into a concrete sentential form:

Bind : Component x Slot x Fragment --> Component
Bind(A, A.Name == “<< Name “:” Type “>>”, value) := A.Name = value

Since for all nonterminals generic slots are available, the language is fully generic. The
composition interface of a fragment component consists of all used generic nonterminals.

Extensibility
Similarly for the genGeneric mapping, we can also define a mapping that derives extensible
language constructs from the constructs of a language. Thereby, it defines an extensible
component model for the language. First, we define its behaviour on nonterminals:

genExtensibleModel: Nonterminals -> Nonterminals
genExtensibleModel(N) := { E | B in listHeads(N),
 listElements(N) = { ListElement | r in N

and r == Head ::= ListElement //
or r == Head ::= ListElement *

 }

i.e., listElements selects all nonterminals that characterize elements in list-like constructs, and
these generate the extensible nonterminals. For our grammar,

listElements(PrologGrammar.N) = { Rule, Clause, TermOrVar}

holds, which is determined by rules (1-4). Hence, for the grammar the nonterminals

 N-Ext = genExtensibleModel(PrologGrammar.N)
 = { ERule, EClause, ETermOrVar}

results. Then, we give another function that produces terminals for them in the concrete
language:
genExtensibleModel(R) ::= { NewHead ::= “[[” Name “:” Head “]]”.
 | r in R, NewHead = genExtensibleNonterminals(r.Head) }

from which results for our example:

genExtensibleModel(PrologGrammar.R) = {
ERule ::= “<<” Name ':' “Rule” “>>”.
EClause ::= “<<” Name ':' “Clause” “>>”
ETermOrVar ::= “<<” Name ':' “TermOrVar” “>>” .

}

The Prolog grammar would then be extended by pointwise set union as follows:

PrologGrammarWithExtensibility = (
 Nonterminals + ExtensibleNonterminals,
 Terminals + { “[[”, “:”, “]]” }
 Z=NLanguage,
 PrologGrammar + {

Nlanguage ::= Language | ELanguage.
Nrule ::= Rule | ERule.
Nhead ::= Head | EHead.
...
Npredicate ::= Predicate | EPredicate.

 }
)

In this grammar, we can write invasive components that almost look like templates, but are
extensible. For instance, in the transitive closure example we can introduce a extensible hook
that can be extended with the Extend operator:

component c = {
base(X,Y,[[baseExt:TermOrVar]]) <- base(X,Y,[[baseExt:TermOrVar]]).
trans(X,Y) <- trans(X,Z), base(Z,Y,[[baseExt:TermOrVar]]).

}

and define an extension operator extended

Extend: hook, value ->
Extend : Component x Hook x Fragment --> Component
Extend(A, A.Hook == “[[“ Name “:” Type “]]”, value) :=
 A.Hook = [[A.Hook, value]]

where [[]] means insertion into embedding lists. Then, we can operate

Extend(c, c.baseExt, Attribute) = {
base(X,Y,Attribute, [[baseExt:TermOrVar]]) :-
 base(X,Y,Attribute, [[baseExt:TermOrVar]]).
trans(X,Y) :- trans(X,Z), base(Z,Y,Attribute, [[baseExt:TermOrVar]]).

}

and

Extend(c, c.baseExt, []) = {
base(X,Y) :- base(X,Y).
trans(X,Y) :- trans(X,Z), base(Z,Y).
}

Since for all list-contained nonterminals hooks are available, the language is fully extensible
for all its list-like constructs. The composition interface of a fragment component consists of all
used extensible nonterminals.

Both genericity and extensibility
The full component model is both generic and extensible, because the above definitions are in
fact a union in the model.

PrologGrammarWithGenericsAndExtensibility = (
 Nonterminals + GenericNonterminals + ExtensibleNonterminals,
 Terminals + { “<<”, “>>”, “[[”, “:”, “]]” }
 Z=NLanguage,
 PrologGrammar + {

NLanguage ::= Language | GLanguage | ELanguage.
NRule ::= Rule | GRule | ERule.
NHead ::= Head | GRule | EHead.
...
NPredicate ::= Predicate | GPredicate | EPredicate.

 }
)

The composition interfaces of components in the core language under this derived component
model consist of all used generic slots and extensible hooks. Components become possible
such as:

component c = {
<<TransRelation: Predicate>>(X,Y, [[transExt1:TermOrVar]]) :-
 <<BaseRelation:Predicate>>(X,Y, [[baseExt1:TermOrVar]]).
<<TransRelation:Predicate>>(X,Y, [[transExt2:TermOrVar]]) :-
 <<TransRelation:Predicate>>(X,Z, [[transExt3:TermOrVar]]),

<<BaseRelation:Predicate>>(Z,Y, [[baseExt2:TermOrVar]]),
 [[clauseExt:Clause]].
[[ruleExt:Rule]]

}
This component is parameterized and extended at several points. An imperative composition
programming

Bind(c, c.transRelation, grandchild);
Bind(c, c.baseRelation, child);
Extend(c, c.transExt1, 0);
Extend(c, c.transExt2, RecursionDepth+1);
Extend(c, c.transExt3, RecursionDepth);
Extend(c, c.clauseExt3, print(“found another grandchild”, Y));

Extend(c, c.ruleExt,[]);
Extend(c, c.clauseExt,[]);
Extend(c, c.transExt1, []);
Extend(c, c.transExt2, []);
Extend(c, c.transExt3, []);
Extend(c, c.baseExt1, []);
Extend(c, c.baseExt2, []);

will result in a specific form of transitive closure, with recursion depth tracking:

c == {
grandchild(X,Y,0) :-
 child(X,Y).
grandchild(X,Y,RecursionDepth+1) :-
 grandchild(X,Z,RecursionDepth), child(Z,Y),
print(“found another grandchild”, Y)
}

8. Discussion
The reader has certainly discovered that a second-order language, here a second-order logic
programming language directly provides the component models, in the form of higher order
functions and clauses. However, full second-order logic programming is undecidable. Hence,
one could say that the decisive difference of a derived component model to a second-order
language is that the invasive composition operations are executed in a stage before the actual
system (staged metaprogramming) [Tah97]. Hence, a derived component model in our sense is
nothing else but an application of staged metaprogramming principles.
The advantage of a derived component model is that it is automatic. It comes for free. Variation
and extension points of components are systematically named, and can be addressed from
outside the components during the composition. Whenever a language is defined, the designer
immediately knows how to use extension and variation points, because the roles of the
nonterminals in the grammar determine them.
In MDA, various horizontal transformations can be defined [MDAGuide]. A horizontal
transformation does not change the level of abstraction, is applied to the concepts of the same
language, but refactors the model. This is not quite what we have been doing - we have been
extending our modelling language. Hence, we could say that a derived component model is a
horizontal extension, in the sense, that the modelling language is extended with concepts for
reuse.
Lämmel's work has applied static metaprogramming to attribute grammars [Lämmel98]. He
uses the Lambda calculus as a composition language (with the Bind operation), simulates
Extend operations by function composition, and is able to compose attribute grammar
components. Our work is in this spirit; however, we have made the Extend operation explicit,
which allows us for deriving an extensible component model. This is not possible in Lämmel's
approach.
Extended derived component model.
Up to this point, we discussed automatic component models, i.e., the models were generated
from the grammar of core languages. Since the generation treats only the syntactical aspects of
a language, we call them syntactical models. Such a model is always isomorphic to a proper
subset of the core language and, hence, is homomorphic to the language. Nevertheless, a
language designer might want to add additional semantics to the model in the form of variation
and extension points. For example, to model component ports one would like to extend a model
with the component-port concept. Clearly, this concept introduces additional semantics, since
for a composition operation semantic conditions have to be taken into account. We call such
extensions semantic variation points. Note, that such component models are no longer
homomorphic to the metamodel of the core language.

Restricted derived component models.
Alternatively, a concrete component model can select a subset of the available slots and hooks
in the derived syntactic model to constrain the composability of the components. Then, not all
language constructs are variation or extension points, but the composition is restricted to a
subset of them. Again, the mapping function in this case is not monomorphic, but epimorphic.

Restricted and extended derived component models.
Probably, the most realistic scenario is a derived model for a restricted subset of the language,
enriched by additional semantic constructs. The restriction in such cases is applied because the
language designer is not interested in all the language constructs to be used in composition
interfaces. Onthe other hand, the semantic extension is due to the specific requirements for the
composition, which are not covered by the syntactical part of a model.
There are also other open questions. Is it possible, beyond the generic and extension models, to
derive further dependent metamodels for reuse? In other words, we got now some automatic
reuse mechanisms with a language, can we get more? How do frameworks with the derived
models look like? The markup tags for parameterization and extension have to be explicitly
specified. What about implicit hooks that allow for unforeseen extensions?
In this and the previous chapters we discussed our vision of the consistent construction of a
generalized component model for various component languages. We have shown that there
exists a simple form of invasive component models that come for free. We believe that, used in
a systematic way, this technology can be applied to a range of languages, such as Prolog, Java,

XML, or OWL, and will help to achieve a unified and useful reuse technique for modelling in
the Semantic Web and beyond.

9. Conclusion
In the first part of the paper we gave a short survey of the related work. One of the future tasks
will be to investigate the commonalities in different methodologies, and try to come up with
unifying concepts. For example, there are interesting common points in generative
programming and software composition or ADL and invasive composition that, once
investigated and formulated, can contribute to all techniques.
We have also given an overview of software composition, presented invasive software
composition for Java, and also suggested a way how to derive an invasive component model
for any given language from the language's metamodel. A component model for Prolog was
described, and this extends HiLog for extension-based composition.
As regards the Prolog modeling, we are just starting to investigate the issues involved. The
semantics of the language will be investigated in more depth and the corresponding component
model thoroughly described. After that, we also plan to extend the model for other closely
related languages, such as Datalog, and OWL. Also, serious efforts will to be made to
transparently unify all the models within the framework.
Still, our main future scope is to elaborate a novel technique for deriving important parts of the
concepts in an invasive component model from a given core language. Generalizing the generic
language construct principle and applying it to a number of various languages, we aim to
achieve the metamodel of a generic component model for the given languages, and, thus, get a
uniform framework of fragment component transformation. In this context, the main future
work will consist in formalizing our approach and implementing software for the tool support.

References:

[Ach02] Acherman, Franz. Forms, agents and channels. PhD.thesis. University of Bern, 2002
[Ach01] F. Achermann, M. Lumpe, J.-G. Schneider, and O. Nierstrasz. Piccola - a small
composition language. In H. Bowman and J. Derrick, editors, Formal Methods for Distributed
Processing, an Object Oriented Approach. Cambridge University Press, 2001
[Ach01+] F. Achermann and O. Nierstrasz. Applications = Components + Scripts - A Tour of
Piccola. In M. Aksit, editor, Software Architectures and Component Technology. Kluwer,
2001.
[Aßmann98] Aßmann, Uwe. Meta-programming composers in second-generation component
systems. In Bishop J. and Horspool N., editors, System Implementation 2000 – Working
Conference IFIP WG 2.4, Berlin. Chapman and Hall.
[Aßmann00] Aßmann, U., Genssler, T., and Bär, H. Metaprogramming Grey-Box Connectors.
In Mitchell, R., editor, Proceedings of the International Conference on Object-Oriented
Languages and Systems (TOOLS Europe). IEEE Press, Piscataway, NJ.
[Aßmann03] Aßmann, Uwe. Invasive software composition. Springer-Verlag, 2003.
[Aßmann03-PPSWR] Composing Frameworks and Components for Families of Semantic
Web Applications.
[BETA] The BETA language homepage. http://www.daimi.au.dk/~beta/
[Bra90] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings
OOPSLA/ECOOP'90, ACM SIGPLAN Notices, pages 303-311, Oct. 1990.
[Bau97] Baumer D., Gryczan G., Knoll R., Lilienthal C., Riehle D. and Zullighoven H..
Framework Development for Large Systems. In Communications of the ACM, Volume 40,
Number 10 (October 1997), pages 52-59, October 1997.
[Berners-Lee01] Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web.
Scientific American, May, 2001.
[Boo87] Booch, Grady. Software Component with ADA. 1st edition Software Component with
ADA, 1st edition. Benjamin-Cummings Publishing Co., Inc, 1987
[Chr94] B. Christine and Marciniak John J. Encyclopedia of software engineering, 1994.
[CORBA] Catalog of CORBAr/IIOPr specifications
www.omg.org/technology/documents/corba_spec_catalog.htm
[Che93] W. Chen, M. Kifer, D.S.Warren. HiLog: a Foundation for Higher-Order Logic
Programming. 1993
[COMPOST] COMPOST homepage. www.the-compost-system.org
[Cza00] K. Czarnecki and U. Eisenecker. Generative Programming. Methods, Tools, and
Applications. Addison-Wesley, 2000.
[DCOM] DCOM homepage. www.microsoft.com/com/tech/DCOM.asp
[For99] Forman, I.R. and Danforth, S.H. Putting Metaclasses to Work: a New Dimension in
Object-Oriented Programming. Addison-Wesley Longman, Redwood City, CA. 1999.
[Kic97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J.
Irwin. Aspect-oriented programming. In Proceedings of ECOOP'97, pages 220-242. Springer
Verlag, 1997. LNCS 1241.
[EBNF] Extended BNF. ISO/IEC standard.
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26153
[EJB] Enterprise JavaBeans specification. http://java.sun.com/products/ejb.docs.html
[ELI] ELI project homepage. http://eli-project.sourceforge.net
[Fre83] P. Freeman. Reusable software engineering: Concepts and research directions. 1983.
[Har93] W. Harrison and H. Ossher. Subject-oriented programming (A critique of pure
objects). In A. Paepcke, editor, OOPSLA 1993 Conference Proceedings, volume 28 of ACM
SIGPLAN Notices, pages 411-428. ACM Press, Oct. 1993.
[Hei01] G. T. Heineman and W. T. Councill, editors. Component-Based Software
Engineering. Addison Wesley, 2001.
[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addisson-
Wesley, 1994.
[IDL] The OMG IDL ISO International Standard. www.iso.ch/cate/d25486.html

[JB] JavaBeans specification. http://java.sun.com/products/javabeans/docs/spec.html
[Java] Java 1.4.2 API specification. http://java.sun.com/j2se/1.4.2/docs/api/
[Joh88] R. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22-35, June 1988.
[Knu93] J. Lindskov Knudsen, M.Lofgren, O.Lehrmann Madsen, B.Magnusson. Object-
oriented environments: the Mjolner approach. Prentice Hall, 1993
[Lämmel98] Lämmel, Ralf. ???
[Mae87] Maes, P. Concepts and experiments in computational reflection. In Proceedings of
OOPSLA87, number 12(22) in ACM SIGPLAN Notices, pages 147-155. New York, 1987.
[McI68] McIlroy, Douglas. Mass-produced software components. In P. Naur and B. Randell,
editors, Software Engineering, NATO Science Committe report, pages 138--155, 1968.
[Mil] Milner, Robin. A polyadic pi-calculus: a tutorial.
citeseer.ist.psu.edu/milner91polyadic.html
[MOF] The OMG MOF specification. http://www.omg.org/cgi-bin/doc?formal/00-04-03
[.NET] .NET homepage. http://www.microsoft.com/services/net/default.asp
[Nie95] O. Nierstrasz and L. Dami. Component-oriented software technology. In O. Nierstrasz
and D. Tsichritzis, editors, Object-Oriented Software Composition, pages 3-28. Prentice-Hall,
1995.
[Parnas72] D.Parnas. On the Criteria to be Used in Decomposing Systems into Modules. New-
York, communication of ACM, Volume 15, December 1972.
[Pop04] Pop A., Savga I., Assmann U., Fritzen P. Composition of XML dialects: a
ModelicaXML case study. In Software Composition Workshop Preliminary Proceedings,
Barcelona, 2004.
[RECODER] The RECODER homepage. http:recoder.sourceforge.net.
[REWERSE] The REWERSE project homepage. www.rewerse.net
[Sha96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.
[Tah97] W.Taha, T. Sheard. Multi-staged Programming with Explicit Annotation. New-York,
ACM, 1997. Pages 203-217.
[Tar99] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N Degrees of Separation:
Multi-dimensional Separation of Concerns. In Proceedings of ICSE'99, pages 107-119, Los
Angeles CA, USA, 1999.
[Sch98] Scheer, A-W. ARIS-Business Process Frameworks. Springer, Berlin, 1998.
[Szy98] Szyperski, Clemens. Component Software: Beyond Object-Oriented Programming.
ACM Press and Addison-Wesley, New York, N.Y., 1998.
[Wuy01] Wuyts, Roel. A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel, 2001.
[Wuy01+] R. Wuyts and S. Ducasse. Symbiotic reflection between an object-oriented and a
logic programming language. In Multiparadigm Programming with Object-Oriented
Languages, volume 7, pages 81-96. John von Neumann Institute for Computing, 2001.
[Wuy01++] R. Wuyts, S. Ducasse, and G. Arjevalo. Applying experiences with declarative
codifications of software architectures on cod. In 6th Workshop on Component Oriented
Programming (ECOOP'01), 2001.

