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1 Introduction

1.1 Do we need types in the Semantic Web?

The semantics of the Semantic Web is based on two complementary concepts: first, one adds
semantics to the web entity using ontologies; second, one performs transformations and deduc-
tions on the web entity.

So, the Web becomes more semantic as more computations and deductions are performed
on its entities. It becomes therefore the main subject of an intense programming activity which
can be classically sustained by the right elaboration and use of appropriate type systems.

The importance of types for programming languages is recognized since Algol 60. Types,
especially when statically checkable, help in discovering errors in programs and make possible
more efficient implementation techniques. Of particular importance is the ability of static type
checking to automatically and quickly discover and locate a certain kind of program errors.
Without types this requires tedious testing and debugging. The old experience is confirmed with
newer programming paradigms, for instance by logic programmers comparing their experiences
with programming in untyped Prolog and in typed Goedel.

As usual, a type discipline ensures certain guidelines and can prevent inconsistencies such
as the erroneous composition of objects but it also induces constraints on the programming
approach and on the language expressiveness. The design of good type system should therefore
ensure an appropriate balance between the constraints it imposes and the obtained expressive-
ness. Following these ideas, elaborated type systems allowing polymorphism, dependent types,
intersection types or sub-types have been developed. For example, ML is the first and one of the
prominent languages to contain polymorphic type inference together with a type-safe exception
handling mechanism.

On the logical side, the deBruijn-Curry-Howard isomorphism allows for the now classical
correspondence between types and propositions as well as between terms and proofs. Since we
are not only interested on computations on the Web but also on properties about the Web,
types promise also to be of main interest for the logical side of the Semantic Web.

But of course the Web can not only be abstracted as a huge graph, it has its own specificities
and the operations we want to perform on it as well as its properties are strongly influencing
the design of the type systems.

In this general context, we will review works related to the rule based approach on which
the REWERSE framework grounds its semantics.

1.2 What is a rule?

The rule based programming paradigm indeed covers two main different atomic concepts: pro-
duction rule and rewrite rule.

1.2.1 Production rules

The production rules, as well as their declinations like business rules or constraint handling
rules, are statements of the form “if condition then action” that act on a set or multiset of
entities.

They are popular, in particular in AI, to describe expert systems, robot behavior, constraint
simplification [Frü95], behaviour of business, . . . .
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There are many implementations of production rules. Without being exhaustive, let us
mention OPS5 [X-T88, For81], Clips [CR03], Claire [CL96] or the JRules system [Ilo02].

To the best of our knowledge, no specific type system have been defined for these languages.

1.2.2 Rewrite rules

Rewrite rules are statements of the form “replaces a matching entity by another one” that act
on terms [BN98, “T02] or on graphs [Cou90].

They are popular in the theorem proving as well as in the algebraic specification communities
as they are a natural way to operationalize equality. More recently they have been used from a
more logical as well as computational point of view at the heart of the rewriting calculus [CK01]
and logic [Mes92].

Many systems use the concept and implement the evaluation of rewrite rules, some giving
also the possibility to have user defined strategies. Again, without being exhaustive we can
mention ELAN [BKK+98], Maude [CDE+99], ASF+SDF [DHK96], Stratego [Vis99]. A typical
dedicated rewrite language for XML is XSLT. The matching and rewriting concepts behind the
above languages and systems are made available in existing programming languages with the
TOM [MRV03] system (tom.loria.fr), currently available for Java, C and CAML.

These languages, all mainly first-order, use various type systems, some of them quite so-
phisticated like for Maude, where simple types (there called sorts) are completed with subtypes
and membership constraints [Com91, Mes98, HKK98].

Even more elaborated type systems can be defined for rewriting, and we will survey in
section 2.2 the main motivations and results obtained on the rewriting calculus.

1.3 Emerging rule languages for the Semantic Web

The Semantic Web effort of W3C resulted in a recently accepted standard for the Web Ontology
Language OWL. OWL, based on an expressive Description Logic, makes it possible to give
axiomatic characterizations of application domains and to reason about them, e.g. for web
querying.

The W3C vision of layered Semantic Web assumes adding the rule layer on top of the
ontology layer. There seems to be a general consensus (see e.g. [Sta03]) that rules with a
well-defined semantics are needed in the Semantic Web applications and that they should be
well integrated with the ontology level. While development of rule languages seem to be a hot
research topic, the existing proposals tuned to the Semantic Web seem to be rather preliminary.
The topic is also pursued in REWERSE, with the objective to support reasoning on the web
and web querying.

We now briefly mention the efforts which in our opinion are most relevant for REWERSE.

1.3.1 Xcerpt.

The declarative query and transformation language Xcerpt [BS04, and references therein] for
querying XML databases, defined at Munich, will be further extended by REWERSE Working
Group I4 towards a semantic web query and transformation language. Xcerpt differs from most
similar languages, as it is not based on XPATH selection language and the concept of path
navigation in trees. Instead, queries are expressed in terms of pattern matching. There is
similarity between Xcerpt and logic programming. Xcerpt programs consist of rules, similar to
Horn clauses. The standard unification is however not suitable to deal with semistructured data

2



(where, roughly speaking, symbols do not have fixed arity). A specialized notion of simulation
unification is employed instead.

1.3.2 RuleML initiative

The Rule Markup Initiative1 (RuleML), started in August 2000, brings together researchers
and practitioners from several countries with the objective to explore rule systems suitable
for the Semantic Web. As stated on the RuleML home page, the goal of the Rule Markup
Initiative is to develop RuleML as the canonical Web language for rules using XML markup,
formal semantics, and efficient implementations.

The RuleML language is to be defined as an hierarchy of sublanguages. The basic sublan-
guage in this hierarchy is the language of function-free Horn clauses, known as Datalog. Its
XML syntax has been formally defined and is referred to as RuleML 0.7, further extended
to RuleML 0.85. The RuleML language should, among others, include various extensions of
Datalog and production rules (event-condition-action rules).

Some members of REWERSE are involved in RuleML, and the planned proposal for REW-
ERSE reasoning language will certainly be influenced by RuleML activities.

1.3.3 SWRL

Until recently the activities of RuleML did not concern the issue of integration of rules and
ontologies. This gap has been addressed recently by a draft proposal [HPSB+04] for a Seman-
tic Web Rule Language (SWRL) combining OWL with the Unary/Binary Datalog RuleML
sublanguages of the Rule Markup Language. The language makes it possible to extend OWL
axioms with rule axioms. A rule axiom (see [HPSB+04]) consists of an antecedent (body) and
a consequent (head), each of which is a possibly empty set (conjunction) of atoms. Such a rule
is considered an implication of body and head. The integration between rules and ontologies
is achieved by using the concepts2 and the roles3 of the Description Logic underlying OWL,
(which denote, respectively, unary and binary predicates) for building atoms of the SWRL
rules. The concepts and the roles are defined by axioms expressed in OWL, which is a subset of
SWRL, and used in SWRL rules. A model-theoretic semantics of the integration, sketched in
the report, extends naturally the semantics of OWL. It is well-known that the resulting logic is
undecidable. The report does not provide an operational semantics for SWRL; it is well-known
that SLD resolution is no more complete for such an extension of Datalog.

1.3.4 Description logic programs

It is commonly agreed that Datalog will be used in many web applications. A relevant question
is then how to integrate Datalog rules with ontologies. A recent proposal in that direction
[GHRS03] identifies a Description Logic, called Description Horn Logic (DHL), whose formulae
can be transformed into equivalent Datalog rules, and the corresponding subset of Datalog,
called Description Logic Programs (DLP). The Description Horn Logic is shown to be more
expressive than the RDF-S fragment of the Description Logic (see [GHRS03] for the details).
Thus, on the one hand it is practically relevant, and on the other hand it has complete tractable
inference procedure. This is because any DHL ontology can be transformed into the equivalent

1http://www.ruleml.org
2Sometimes called classes
3Sometimes called properties
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Datalog program. This makes it possible to use complete and tractable inference procedures of
Horn clauses for efficient answering of standard queries about classes and properties defined by
a DHL ontology. The limitation of this elegant approach is that it does not apply to OWL but
only to a restricted subset. The Description Logic Programs constitute also a restricted subset
of Datalog, since for example the rule “If x is a brother of y and z is a son of y then x is an
uncle of y” is not expressible in DLP. Thus, in this approach one achieves a complete fusion of
ontology layer with rule layer by restricting the underlying logical formalisms: the Horn logic
and the Description Logic.

1.3.5 Towards typing of the Semantic Web rules

The proposals for Semantic Web rule languages outlined above are essentially based on, or
influenced by, pure logic programming paradigm. Most of them indicate need for further exten-
sions, like negation, constraints, priorities, etc. A special issue is integration of functions; e.g. in
SWRL it is done by using predefined built-ins of XQuery, typed with XML Schema datatypes.
In all cases the operational semantics of the rules relies on some kind of rewriting. In particular
execution of Xcerpt rules would require rewriting of a kind of terms. We argue that static type
checking of rules could, as usual, facilitate finding errors in the rules and in some cases possibly
could also speed-up the execution.

As mentioned above, most of the existing rule proposals for the Semantic Web refer to logic
programming and/or to rewriting techniques. Therefore this report will survey some relevant
approaches to typing of constraint logic programming (CLP) and a framework for typing of
rewriting based programs.

We will also summarize some ongoing REWERSE research on application of these approaches
to web reasoning languages and to web query languages.

The report is organized as follows. The next section is an overview of typing approaches for
(constraint) logic programming, and for rewrite based programs. Section 3 presents a typing
approach for a sublanguage of RuleML. Section 4 discusses typing web query languages.

2 Typing of rules

2.1 Typing constraint logic programs

We survey existing work on typing for logic programming (LP) and constraint logic program-
ming (CLP). First we explain basic notions of descriptive and prescriptive typing. Then Section
2.1.2 discusses descriptive and Section 2.1.3 prescriptive typing approaches for LP and CLP.

2.1.1 Descriptive and prescriptive typing

There exist two approaches to typing logic programs and constraint logic programs – prescriptive
and descriptive. Stating it briefly: descriptive types approximate the semantics of programs in
an untyped language, and in the prescriptive approach the language is typed and types are part
of its semantics [Pfe92, Chapter 10, “Dependent Types in Logic Programming”, p. 285,286].

In descriptive typing we deal with untyped programming languages, whose declarative
semantics is given by untyped logic. Typing means here providing an approximation of the
semantics of a given program. The notion of approximation is related to some partial ordering
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� on the semantic domain; usually � is induced by the set inclusion. An approximation of a
program’s semantics is a semantic object greater (in �) than the semantics.

Type correctness in descriptive typing is a semantic concept: a program is correct w.r.t. given
types if the types approximate its semantics. One may consider the declarative semantics, for
instance that given by the least Herbrand model of a program. One may also approximate some
operational semantics. In most cases it is call-success semantics, given by the set of procedure
calls and the set of successes that appear in the computations for a given class of initial goals.

Such a semantic approximation is a set, or a family of sets. Thus in descriptive typing a
type is a set, usually a set of terms or atoms. (And we informally call such approximation
“types” or “types for the program”). Types should be decidable sets, and be defined by some
rather simple formalism. Often it is necessary that the class of types is closed under the basic
set operations and that there exist efficient algorithms for certain operations on types.

In the context of descriptive typing, algorithms are usually provided for type checking and
type inference. Type checking means checking whether given types approximate the semantics
of a given program. Type checking can be seen as proving correctness of the program w.r.t. a
specification expressed by means of types. A difference with general proof methods is that we
deal with a restricted class of specifications; thanks to this, proving is effective. Type inference
means finding the types which approximate the semantics of a given program.

Prescriptive typing is closer to the treatment of types in functional programming. In
functional programming, type systems aim to prevent some class of run-time errors correspond-
ing to undefined operations, such as adding an integer to a list, or accessing a non-existing field
in a record. In prescriptive typing of constraint logic programs, this is translated into declaring
some terms to be illegal, thus providing guidelines and in fact a discipline for composing terms
and modules. In an analogy to the previous example, the term 1+[] is thus declared to be
illegal. These declarations are made by giving fixed types (formally – signatures) to function
symbols and predicates, as opposed to descriptive typing where function symbols are untyped.

The correctness of a prescriptive type system w.r.t. an execution model expresses that no
illegal term will appear during the execution of a well-typed query in a well-typed program.
This property is usually called subject reduction. The execution model itself may be typed or
not, that is it may or not “take types in account”. For example, the type system of Mycroft-
O’Keefe is proven correct w.r.t. both an untyped execution model [MO84] and w.r.t. a typed
one [LR91]

A type in prescriptive typing is an expression in some formal language of types (while in
descriptive typing a type is set). Well-typedness is a syntactic notion, usually defined by a
system of proof rules. Only those programs, queries (or other syntactic objects) that can be
derived by the rule system are well-typed. The set of values corresponding to a given type is a
kind of secondary notion and has to be defined separately. Given a prescriptive type system,
one can consider the issue of its correctness w.r.t. some execution model.

Pfenning [Pfe92, Chapter 10] presents a more strict point of view on what prescriptive typing
for (constraint) logic programming is. For them, in prescriptive typing the types are part of
the semantics of the programming language. Its declarative semantics is given by a typed logic.
Only well-typed programs have semantics. Examples of such logic programming languages are
Goedel and Mercury [HL94, SHC96].

Notice that different treatment of function symbols in descriptive and prescriptive typing
corresponds to their different role in logic programming and functional programming. In logic
programming function symbols are constructors and thus are applicable to arbitrary terms.
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In functional programming they denote functions, defined by programs. (And constraint logic
programming combines the two roles of function symbols.)

In contrast to descriptive typing, in the prescriptive approach there exist programs for which
no typing exists (i.e. which are not well-typed for every typing). In the descriptive approach,
the meaning of any program can be approximated by types.

In prescriptive typing variables have types. If a variable appears in an answer of a program,
it stands for a value from (the set of values of) its type. In descriptive typing variables are
untyped. A variable in a program answer stands for an arbitrary term.

2.1.2 Descriptive type systems

We discuss here descriptive type systems for (constraint) logic programming. We first discuss
the tools for expressing the approximations, then the semantics to be approximated. This makes
us ready to present approaches to type checking and type inference. We discuss mainly logic
programming; descriptive type approaches to constraint logic programs are generalizations of
the corresponding ones for logic programs.

Regular sets of terms. To construct semantic approximations for logic programs a formal-
ism for defining (a class of) decidable sets of terms/atoms is needed. Usually one deals with reg-
ular sets of ground terms/atoms, definable by tree automata [CDG+02]. Equivalent formalisms
are regular term grammars (see e.g. [DZ92]), regular unary logic programs [YS91], certain
classes of set constraints [HJ90a, TDT00], and monadic second-order logic [Tho97, Nev02].

There exists an important subclass of the regular sets of terms, namely that given by de-
terministic top-down tree automata. Such sets are sometimes called tuple-distributive, dis-
criminative or path-closed. In a tuple-distributive set, the set of argument tuples of a given
function/predicate symbol is a Cartesian product (of tuple-distributive sets). One may argue
that this is a more natural notion of a type (than that given by nondeterministic tree automata).
The restriction to deterministic automata results in simpler and more efficient algorithms. For
instance checking inclusion of regular sets is EXPTIME-complete, and it is polynomial for the
restricted class. A technical difficulty is that the class is not closed under union, in contrast to
the regular sets of terms.

Datalog (cf. Section 3) is a restricted form of logic programming. We may say that the
structure of data objects is irrelevant for Datalog. (Formally, the data objects are constants,
not general terms). Thus regular sets of terms are not suitable as approximations for Datalog
programs. Section 3 shows how Description Logics can be used for this purpose.

In descriptive typing, type polymorphism means dealing with families of sets. Parametric
families of regular sets of terms can be defined by parameterizing one of formalisms discussed
above. For instance a parametric version of regular tree grammars is used in [DMP02].

In the context of constraint logic programming (CLP), instead of terms we deal with con-
strained terms. A constrained term is a pair c [] t of a constraint c and a term t, where each free
variable of c occurs in t. The notion of a regular set of terms has to be generalized accordingly.
A generalization is proposed in [DMP02]. It employs a fixed finite collection of primitive sets
of constrained terms (like the set of all constrained terms, the set of ground terms, or a set
of constrained variables of the form c [] X with some condition on the form of c). Other types
are created out of the base ones by the mechanism of regular term grammars. This approach
to constraints is rather crude, but it turned out to be useful in the context of CLP over finite
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domains. An attempt of a more expressive system of regular sets of constrained terms was
presented in [DP98, DP99].

Semantics of LP/CLP for descriptive typing. Descriptive typing means approximating
a program’s semantics with types. The first candidate is the declarative semantics, given by
the least Herbrand model (or by the set of atomic logical consequences of the program). Such
semantics was dealt with in typing approaches of [Mis84, JB92, FSVY91, YS91].

Unfortunately it turns out that for many programs useful approximations of their
declarative semantics do not exist. A typical example is the standard append program
{ append([H|K], L, [H|M ])← append(K, L, M).; append([ ], L, L)←. }. The second and the
third argument of append in an answer of the program may be arbitrary terms. As a con-
sequence, the best approximation (for the declarative semantics of the program) says that the
first argument is a list and the remaining ones are arbitrary terms. This is not what one would
expect from a typing for this program. For instance such approximations cannot express that,
speaking informally, append works with lists. Possibly the only practical application of this ap-
proach was for discovering that a predicate never succeeds (because the obtained approximation
is empty).

The difficulty described above lead even to opinions (not widely shared) that such pro-
grams should be considered erroneous [Nai92] and should be corrected to change their declar-
ative semantics. In the case of the append program the unary clause should be changed into
append([ ], L, L)← list(L), with an appropriately defined predicate list, so that append succeeds
only with all its arguments being lists.

A more reasonable way of making descriptive typing practical is to adopt another semantics.
A usual solution is to use a call-success semantics. The semantics formalizes a directional view
of logic programs. In this view each predicate is considered a procedure which, applied to a
suitable tuple of call arguments, returns upon a success a tuple of computed values. So instead
of the declarative semantics one uses operational semantics, given by SLD-resolution. Usually
the Prolog selection rule is assumed (LD-resolution). One considers the procedure calls and
procedure successes in LD-derivations. The call-success semantics of the program is the set of
calls and the set of successes for the given program and a given set of initial atomic goals.

The declarative semantics and the call-success semantics are related by the “magic transfor-
mation” [BMSU86]. Given a program P and a query Q, their magic transformation is a logic
program P ′. Roughly speaking, the declarative semantics or P ′ is the call-success semantics
of P . More precisely, for each predicate symbol p of P , P ′ contains predicates •p and p•;
P ′ |= •p(~t) iff p(~t) is (an instance of) a call of P (in an LD-derivation starting from Q), and
P ′ |= p•(~t) iff p(~t) is (an instance of) a success of P . This can be generalized to a regular set
of initial goals.

As a result, any method of approximating the declarative semantics can be used to approx-
imate the call-success semantics, by applying the magic transformation.

Type checking In the context of descriptive typing, we say that a program is type correct
w.r.t. a typing, if the typing approximates the semantics of the program. More formally, both
the program meaning and the typing are sets; type correctness means that the former is a subset
of the latter. (In a general case they may be tuples of sets, and we consider component-wise
inclusion).

Another viewpoint may be useful. The typing can be seen as a specification; type correctness
boils down to correctness of a program w.r.t. the specification. By a program P being correct

7



w.r.t. a specification spec we mean that spec |= A for any answer A of the program.4 Hence
type checking (i.e. checking whether a given program is type correct w.r.t. a given typing)
means proving program correctness. As specifications are regular sets, the proving can be made
effective.

In order to prove program correctness for the declarative semantics, it is sufficient to show
that the specification is a model of the program:

spec |= P .

This method was proposed by Clark [Cla79], see also [DM93, Chapter 7], [DM01] and the
references therein. Soundness of the method is simple to prove: if spec |= P and A is an answer
of P then P |= A and thus spec |= A. The method is also complete [Der93]; if a program P is
correct w.r.t. spec then there exists a stronger specification spec′ ⊆ spec such that spec′ |= P .

If spec is a Herbrand interpretation, given by a set of ground atoms, then the sufficient
condition is equivalent to TP (spec) ⊆ spec, where TP is the immediate consequence operator.
To check the condition one has to check that for every ground instance (H ← B)θ of any
clause of the program P , if Bθ ⊆ spec then Hθ ∈ spec. This can be done by computing, for
each variable X in the clause, the set of ground terms Xθ such that Bθ ⊆ spec. These sets
characterize the set of clause instances with the bodies contained in spec. Then the set of the
heads of these clause instances can be computed and checked whether it is a subset of spec.
(See e.g. [DMP02] for missing details.) If we begin with a regular set spec then all the sets in
this computation are regular, and the checks decidable. (Notice that the union of the computed
sets of heads, for all clauses of P , is TP (spec).)

For the call-success semantics, an appropriate proof method was given in [BC89] (see also
[Apt97]); it is a simplification of the method of [DM88] (the latter makes it possible to deal
with sets not closed under substitution). It gives a sufficient condition for type correctness
with call-success semantics. Out of this condition a type checking algorithm can be obtained,
similarly as described above for the declarative semantics (cf. e.g. [DMP02]). Alternatively,
one can apply first the magic transformation to the program, and then type checking for the
declarative semantics. Both approaches result in the same verification conditions and type
checking algorithms.

Most authors use the described above way of type checking, often without relating it to
program correctness (e.g. [GdW94]). The abovementioned condition for correctness w.r.t. the
call-success semantics is often used as a definition for well-typedness of a program, without
mentioning its relation to the call-success semantics of LD-resolution (e.g. [AL94, CP98]).

Type inference There exist two main approaches for inferring descriptive types for (con-
straint) logic programs: based on abstract interpretation paradigm and employing set constraint
solving.

Abstract interpretation is a general framework for computing approximations of the
semantics of programs [CC77]. Roughly speaking it consists in performing computations over an
abstract domain (instead of using the actual data values). The elements of the abstract domain
correspond to sets of actual values; the domain is partially ordered, the ordering corresponds
to inclusion of the corresponding sets.

4By an answer we mean any Qθ, where Q is a query and θ a computed, or equivalently correct, answer
substitution for P and Q. Notice that if spec is a Herbrand interpretation then correctness of P is equivalent to
MP ⊆ spec, where MP is the least Herbrand model of P .
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Abstract interpretation paradigm was widely applied to logic programs, see the overview
[CC92a]. (For later work see e.g. the references in [Mil99] and below). In most cases abstract
interpretation was used to approximate the call-success semantics. Our brief discussion will
however deal with approximating the declarative semantics. (Any such approximation method
may be applied to approximating the call-success semantics by employing magic transformation
— the later relates both kinds of semantics as described above).

When abstract interpretation is applied to derive descriptive types [JB92, GdW94, HCC95,
Mil99, Cod99, DMP02], the abstract domain is the chosen class of regular sets, ordered by
inclusion. Such abstract domain has some specific properties. Its height is infinite. The
abstraction function does not exist [DP99, DP98]. This is because there may not exist the
closest regular approximation of a given set. Instead we have an infinite set of approximations
without a greatest lower bound in the abstract domain (see [DP98] for an example).

Approximating the declarative semantics of a given program P means finding a specification
spec from the abstract domain, such that P is correct w.r.t. spec. A sufficient condition is
spec |= P . Assume that spec is a Herbrand interpretation; the sufficient condition is thus
TP (spec) ⊆ spec. The method of type checking outlined above provides a way of computing
TP (spec) for a given spec. Abstract interpretation starts from spec0 = ∅ and then iteratively
computes TP (speci−1) and speci ⊇ TP (speci−1), for i > 0. The iteration terminates when
TP (speci) ⊆ speci; such speci is the required result.

There are two reasons why speci may be not equal to TP (speci−1). First, TP (speci−1) may
not belong to the abstract domain. (If the abstract domain is the class of tuple-distributive
regular sets then TP (speci−1) is a union of such sets, but the class is not closed under union).
Then, the height of the domain is infinite and infinite computations are possible. A usual way
of assuring termination is widening [CC92a]; this means using, for some values of i, a set larger
than TP (speci−1) as speci (more precisely, a set larger than the closest superset of TP (speci−1)
within the abstract domain).

Termination of abstract interpretation for type inference often poses difficulties. For instance
the termination proof in [GdW94] is incorrect. This topic is discussed in [Mil99].

Set constraints can be used to represent a sufficient condition for program correctness. A
solution of such system of set constraints is a specification for which the program is correct.

A set constraint is an inclusion E1 ⊆ E2, where E1, E2 are set expressions. Set expres-
sions are built out of variables and set operations, like conjuction, intersection, construction
(f(S1, . . . , Sn) := { f(t1, . . . , tn) | t1 ∈ S1, . . . , tn ∈ Sn }, where f is a function symbol), projec-
tion (f−1

(i) (S) := { ti | f(t1, . . . , tn) ∈ S }), generalized projection (t−X(S) := {Xθ | tθ ∈ S },
where t is a term and X a variable), complementation and others. Various classes of set con-
straints were studied, complexity results for these classes and actual algorithms were presented
(see [HJ90a, Aik94, PP97, TDT00] and references therein). In most cases the least solutions
(of systems of set constraints) are computed. Usually the solutions are (unrestricted) regular
sets of terms (while in most abstract interpretation approaches to type inference the inferred
types are tuple-distributive, cf. page 6).

Applying set constraint solving to type inference of logic programs was discussed, among
others, in [HJ90b, Hei92, DTT97, CP98]. As an advantage of such approach it is pointed out
that it provides separation between specification of the problem (constructing constraints that
represent correctness of a given program) and constraint solving [Aik99]. Algorithms for solving
constraints can be studied separately, the reach existing theory can be exploited in sophisticated
implementations. On the other hand most actual implementations of descriptive type inference
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employ abstract interpretation.
It is interesting to compare abstract interpretation with set constraint solving. In the former

the computation is in principle infinite and requires additional measures for termination. Why
this problem does not occur in set constraint solving? A formal comparison is given in [CC95]
and an informal discussion in [Aik99]. Roughly speaking, for each particular program only
finite subset of the abstract domain is of importance. The subset is implicitely discovered
during solving set constraints. Otherwise it is difficult to find; it cannot be obtained directly
from the text of the program [CC92b, Section 7.1].

2.1.3 Prescriptive type systems

Prescriptive type systems address a different issue: the one of composition. By providing types
to the signature of function and predicate symbols, one expresses the syntactic categories to
which a function, a predicate, and in turn a complete module, is supposed to be applied.
Prescriptive types are therefore an integral part of the programs and modules and constitute a
discipline to compose them correctly.

The type system of Mycroft and O’Keefe [MO84] is an adaptation of the Damas-
Milner [DM82] type system for ML. The type of function symbols has to be declared, while the
type of the predicates may be inferred. This type system has been implemented in the language
Gödel [HL94].

In this context however, parametric polymorphism is quite restrictive, and there have been
several attempts to augment the expressive power of prescriptive type systems for constraint
logic programming by using subtyping.

The type system of Dietrich and Hagl [DH88] adds subtyping to the Mycroft - O’Keefe
type system, provided that information is given about the data-flow. This information can
be provided either by modes, or by a global analysis of the program. However, Dietrich and
Hagl do not study the decidability of the conditions they impose on the subtyping relation.
Furthermore, each result type must be transparent, that is the type variables occurring in
the type of the arguments of a function symbol must also appear in the type of the result.
Smaus, Fages and Deransart [SFD00] proposed a type system with subtyping and parametric
polymorphism for moded constraint logic programs, without the transparency condition.

Hanus [Han92] introduced a type system with a typed execution model. The type sys-
tem allows for many-sorted, order-sorted, polymorphic and polymorphically order-sorted type
structures, by using an equality theory on types.

The type system of Fages, Paltrinieri and Coquery [FP97, FC01] for constraint logic pro-
gramming adding subtyping to the Mycroft - O’Keefe system. The system thus combines
parametric polymorphism and subtyping. The equality constraint has the polymorphic type
∀.α× α. Parametric polymorphism is also used for data structures, such as homogeneous lists.
Subtyping is used for typing the simultaneous use of different constraint domains. For example,
it is possible to share variables between boolean constraints and finite domain constraints. This
is possible when the type boolean, corresponding to the boolean domain, is a subtype of the
type integer, corresponding to finite domain constraints. Subtyping is also used for the typ-
ing of meta-programming predicates. The type term is introduced as a supertype of all other
types, and is used for predicates that compose or decompose terms. For example, the predi-
cate =../2, which associates to a term a list containing its head symbol and all its arguments
has the type term× list(term). Using this type requires to deal with subtyping inequalities like
list(α) ≤ term, which correspond to a non-structural non-homogeneous subtyping relation. The
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system can be extended to use overloaded function symbols [CF02]. For example, the operator
−/2 can have types expr× expr→ expr for arithmetics and ∀αβ.α× β → pair(α, β) for pairs.
The correctness of the type system is proved w.r.t. two execution models. The first one is
the CSLD resolution [JL87], which is an abstract untyped model that proceeds by constraint
accumulation. The second one is a typed execution model, in which type are kept on variables
and that ensure that whenever a variable X of type τ is instantiated with a term t, then t is
also of type τ .

The type checking algorithm features type inference for variables. Type inference for pred-
icates is also possible. In presence of the supertype term however, the type term × . . . × term
is a possible type for any predicate. In order to obtain more informative types for undeclared
predicates, a heuristic type inference algorithm is used for infering the types of predicates.

2.2 Typing rewriting based programs

This section presents a prescriptive based approach for the typing of rewrite based programs.
Rewriting is a fundamental concept when dealing with computation, equality or inference. It
is therefore of fundamental interest for the Semantic Web. Furthermore, the rewriting concept
is well understood and many type systems have been designed for its specific purpose.

The rewriting calculus is a fine grained framework that allows us to describe rule application
and to formalize the fundamental concept of strategy application. It has therefore been already
used in order to give a semantics to the (rules and strategies of the) rewrite based language
ELAN. We survey in more depth its main design concepts and results about its type systems.

We will not present here the order-sorted or the membership constraint approaches imple-
mented, for example, in the rule based language Maude. Good references about them is the
special issue [Smo98] as well as [BJM00].

2.2.1 The simply typed rewriting calculus

Introduced in [CK99, CK01], the rewriting calculus, also called ρ-calculus, is a framework em-
bedding λ-calculus and rewriting capabilities, by allowing abstraction not only on variables but
also on patterns. The first proposed typed version [CK00] used a quite strict type discipline and
enjoyed the good properties: strong normalisation and subject reduction. More sophisticated
type systems were introduced later [CKL01b, BCKL03] and the relationship with corresponding
logics explored.

We briefly present here the latest simply typed rewriting calculus [CLW03] due to its close
expressiveness wrt classical rewriting (languages) and thus to its potential wrt to the query
languages of REWERSE.

The core mechanism of the rewriting calculus is pattern matching and thus we define first
the classical notions of matching equations and matching solutions.

Definition 2.1 (Matching)

Given a theory T (i.e. a set of axioms defining a congruence relation T=):

1. A matching equation is a problem T
4
= P ≺≺T A with P a pattern and A a term.

2. A substitution θ is a solution of the matching equation T if:

(a) Pθ
T= A
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(b) θ is well-typed, i.e. ∀Γ such that A and P are typable, if Γ ` X : τ then Γ ` Xθ : τθ.

The set of solutions of T is denoted by Sol(T).

Different theories and the corresponding pattern matching problems can quand vous voulez.be
formally defined and solved, for example, as explained in [CKL01a]. If the underlining theory
is clear from the context then it can be omitted from the notation.

The higher-order mechanisms of the λ-calculus and the pattern matching facilities of the
rewriting are then both available at the same level. The syntax is presented in Figure 1.
The types are as one would expect from a first-order type system, i.e. constant-types and

τ ::= ι | τ _ τ Ty Types

∆ ::= ∅ | ∆, X:τ | ∆, f :τ Contexts

P ::= X | stk | f P (variables occur only once in any P) P Patterns

A ::= f | stk | X | P _∆ A | [P �∆ A]A | A •A | A; A T Terms

Figure 1: Syntax of ρ_

arrow-types. The patterns are algebraic terms (i.e. terms constructed only with variables,
constants and application) which can be used as left-hand sides of the rewrite rules; the set of
patterns is obviously included in the set of terms. The well-known linearity restriction [vO90]
is needed to keep the small-step semantics confluent. A rewrite rule of the form (P _∆ A)
abstracting over the free variables of P is a first-class citizen of the calculus. The types of the
free variables of P are declared in ∆, i.e. FV(P ) = Dom(∆), resulting in a fully annotated
calculus à la Church. An application is implicitly denoted by concatenation. The delayed
matching constraint [P �∆ A]B can be seen as the term B with its free variables constrained
by the matching between P and A. Again, the context ∆ contains the type declarations of all
the free variables appearing in the pattern P . A structure is a collection of terms that can be
seen either as a set of rewrite rules or as a set of results. The symbol stk can be considered
as the special constant representing a delayed matching constraint whose matching problem is
unsolvable. An alternative approach would be to omit this symbol from the syntax, but the
encoding of rewriting systems presented later would be no longer possible.

Example 2.1 (Some ρ-terms)

• a term similar to the λ-term (λx.x) a: (X _(X:τ) X)•a

• the well-known λ-term (ωω): (X _(X:τ) X•X)•(X _(X:τ) X•X)

• the application of the rule a _ b to the term a: (a _ b)•a

• a classical rewrite rule application: (f(X, Y ) _(X:τ1,Y :τ2) g(X, Y ))•f(a, b)

• “non-deterministic” application: (a _ b; a _ c)•a

By now we have settled all the background necessary to describe in Figure 2 the reduction
rules of the general rewriting calculus parameterized by the theory T. When instantiating T with
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concrete theories (e.g. theories containing axioms for associativity, associativity-commutativity,
etc., for a given symbol) different versions of the calculus are obtained. When not essential or
clear from the context, we will omit the theory T in rules and congruences.

(P _∆ A) •B →ρ [P �∆ B]A

[P �∆ B]A →σ Aθ1, . . . , Aθn with {θ1, . . . , θn} = Sol(P ≺≺T B)

(A; B) • C →δ A • C; B • C

Figure 2: Small step semantics of the Rewriting Calculus

Let us quickly explain these rules:

(ρ) this rule “fires” the application of an abstraction to a term, but does not immediately try
to solve the associated matching equation.

(σ) this rule is applied if (and only if) the matching equation P ≺≺T B has at least one solution:
in this case the matching solutions are computed and applied to the term A. If the
matching is not unitary, a structure collecting all the different results is obtained when
the rule is applied. If there is no solution, this rule does not apply and thus, the term
represents a matching failure. As we will see, further reductions or instantiations are
likely to modify B so that the equation has a solution and the rule can be fired.

(δ) this rule distributes structures on the left-hand side of the application. This gives the
possibility, for example, to apply in parallel two distinct pattern abstractions A and B to
a term C.

The multi-step reduction induced by these rules is denoted by 7→→ρσδ.

Example 2.2 (Some ρ-reductions)

(X _(X:τ) X)•a 7→→ρσδ a

(X _(X:τ) (X•X))•(X _(X:τ) (X•X)) 7→→ρσδ ω•ω 7→→ρσδ . . .

(a _ b)•a 7→→ρσδ b

(f(X, Y ) _(X:τ1,Y :τ2) g(X, Y ))•(f(a, b)) 7→→ρσδ [f(X, Y )�(X:τ1,Y :τ2) f(a, b)]g(X, Y ) 7→→ρσδ g(a, b)

(f(X, Y ) _(X:τ1,Y :τ2) g(X, Y ))•(g(a, b)) 7→→ρσδ [f(X, Y )�(X:τ1,Y :τ2) g(a, b)]g(X, Y )

(a _ b; a _ c)•a 7→→ρσδ (a _ b)•a; (a _ c)•a 7→→ρσδ b; c

Example 2.3 If we denote ω
4
= f•X _ X•(f•X) then we have

ω•(f•ω) ≡ (f•X _ X•(f•X))•(f•ω)
7→→ρσδ [f•X � f•ω](X•(f•X))
7→→ρσδ ω•(f•ω)
7→→ρσδ . . .
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2.2.2 Typed encoding of normalizing strategies

Many type systems for the λ-calculus can be generalized to the ρ-calculus. The type system
of ρ_ [CLW03] allows one to type (object oriented flavored) fixpoints, leading to an expressive
and safe calculus. In particular, using pattern matching, one can encode and typecheck term
rewriting systems in a natural and automatic way.

Figure 3 presents the typing rules of ρ_, which are directly inspired by the simply typed
λ-calculus.

α:τ ∈ Γ τ ∈ T y

Γ ` α : τ
(Start)

Γ, ∆ ` P : τ1 Γ, ∆ ` A : τ2

Γ ` P _∆ A : τ1 _ τ2

(Abs)

τ ∈ T y

Γ ` stk : τ
(Stuck)

Γ ` A : τ1 _ τ2 Γ ` B : τ1

Γ ` A •B : τ2

(Appl)

Γ ` A : τ Γ ` B : τ

Γ ` A; B : τ
(Struct)

Γ, ∆ ` P : τ1 Γ ` B : τ1 Γ, ∆ ` A : τ2

Γ ` [P �∆ B]A : τ2

(Match)

Figure 3: The Type System for ρ_

- (Start): The context determines the type of variables and constants. It cannot contain two
declarations for the same variable (or constant);

- (Abs): We impose Dom(∆) = FV(P ). For the left-hand side of the arrow-type, we use the
type of the pattern P ; notice that the (Abs) rule allows one to hide some type informations
in a pattern containing applications, e.g. τ2 disappears in the final type of (f •X) in the
judgment f :τ2 _ τ1, X:τ2 ` f •X : τ1.

- (Appl): We directly exploit the information given in the type of the function by statically
checking that the given argument has the expected type τ1;

- (Struct): This rule states that all the members of a structure have the same type. This is
important when considering structures as a collection of results; if a function can return
different results, we would at least expect them to have the same type;

- (Stuck): Since stk can appear in any structure, it can have any type;

- (Match): This rule states that the constraint [P �∆ B]A gets the same type as (P _∆ A)•B.
This is sound since (P _∆ A) •B →ρ [P �∆ B]A. Once again, Dom(∆) = FV(P ).

Example 2.4 (Simple type derivation)
The (Appl) rule is effective for the typing of algebraic terms too. Let Γ 4

= f :ι _ ι, a:ι.

Γ ` f : ι _ ι Γ ` a : ι

Γ ` f•a : ι
(Appl)
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and, let Γ 4
= f :τ1 _ τ2, g:τ1 _ ι, a:τ1.

Γ, X:τ1 ` f•X : τ2 Γ, X:τ1 ` g•X : ι

Γ ` f•X _(X:τ1) g•X : τ2 _ ι
(Abs)

Γ ` f•a : τ2

Γ ` (f•X _(X:τ1) g•X)•(f•a) : ι
(Appl)

This type system is designed as a typing discipline for a programming language: its aim is
to ensure that the arguments of a function have the same types as the corresponding formal
parameters. However, the notion of (well-typed) pattern used here is crucial since it guarantees
that the instantiation of the variables of the pattern will be correct with respect to types (i.e.
the substitutions obtained as result of the matching are well-typed) even if no type-checking is
performed in the matching algorithm.

Example 2.5 If we take f : (α _ α) _ α and Γ = X : α _ α the term ω
4
= f•X _ X•(f•X)

defined in Example 2.3 is well-typed:

Γ ` f : (α _ α) _ α Γ ` X : α _ α

(b) Γ ` f•X : α

Γ ` X : α _ α

(b)

Γ ` f•X : α

Γ ` X•(f•X) : α

(a) ` ω ≡ f•X _ X•(f•X) : α _ α

(a)

` ω : α _ α

` f : (α _ α) _ α

(a)

` ω : α _ α

` f•ω : α

` ω•(f•ω) : α

Starting from fixpoints like the one presented in the previous example one can encode various
reduction strategies wrt a given rewrite system by a ρ-term. The encoding methodology together
with its properties and some examples can be found in [CLW03]; we give here an informal
example that just gives the intuition on the proposed approach.

Example 2.6 (An (ad-hoc) Object-Oriented Encoding) We can define in the typed ρ_
a suitable self-duplicating term that allows us to simulate the global behavior of a TRS R. For
the addition, using two constants rec(lab_ι_ι)_lab and addι_ι_ι, the corresponding term is:

plus
4
= rec • S _

(
add • 0 • Y _ Y ;
add • (suc •X) • Y _ suc • (S.rec • (add •X • Y ))

)
Intuitively, the variable S acts like the meta-variable this in JAVA and thus, the recursive ap-
plication of the different rules is realized explicitly by using this variable in the right-hand side
of the corresponding rules. This term computes indeed the addition over Peano integers defined
by the rewrite system add(0, Y )→ Y, add(suc(Y ), X)→ suc(add(X, Y )) where the strategy is
explicitly given by the rho-term rec.

We say that a substitution θ is well-typed in context Γ if for any X in the domain of θ such
that Γ ` X : τ we have Γ ` Xθ : τ and we have that:
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Lemma 2.1 (Substitution Lemma)
If Γ, ∆ ` A : τ , then for any substitution θ well-typed in Γ such that Dom(θ) = Dom(∆), we
have Γ ` Aθ : τ .

Using the previous result we can show the correctness of the type system w.r.t. the reduction:

Theorem 2.1 (Subject Reduction for ρ_)
If Γ ` A : τ and A 7→→ρσδ, then Γ ` B : τ .

[*** a few words about the properties below to be added here ***]

Theorem 2.2 (Type Uniqueness for ρ_)
If Γ ` A : τ1 and Γ ` A : τ2, and stk is not a subterm of A, then τ1 ≡ τ2.

Theorem 2.3 (Decidability of Typing for ρ_)
If stk is not a subterm of A and FV(A) ⊆ Dom(Γ), then the following problems are decidable:

1. Type Reconstruction: given Γ, is there a type τ such that Γ ` A : τ?

2. Type Checking: given Γ, and a type τ , is it true that Γ ` A : τ?

2.2.3 Dependent types ensure normalization

Nevertheless, it is important to remark that when the type discipline is enhanced with depen-
dent types, as it was done recently by the authors [BCKL03], the example presented above
is statically rejected, i.e. blocked by the type system. The chosen dependent type theory in-
troduces pattern matching inside types, and matching failures significantly restrict the set of
type-checked programs.

Here are recalled the two main previous typing rules, where patterns are given a context as
Church-style type information (e.g. in T1 : ∆→ T2) but only simple types appear in the types
(e.g. σ _ τ).

Γ, ∆ ` T1 : σ Γ, ∆ ` T2 : τ

Γ ` T1 : ∆ _ T2 : σ _ τ
(Abs)

Γ ` T1 : σ _ τ Γ ` T2 : σ

Γ ` T1 T2 : τ
(Appl)

In the “pattern-dependent” type system, patterns occur in the types, extending the usual
notion of dependent type, where bound variables appear in the types. A type like σ _ τ may
then have shape T1 : ∆ _ τ . The types for abstractions are delayed matching constraints that
may be resolved later using a conversion rule.

Γ, ∆ ` T2 : τ

Γ ` (T1 : ∆) _ T2 : (T1 : ∆) _ τ
(Abs)

Γ ` T1 : (T11 : ∆) _ τ Γ ` T2 : σ Γ, ∆ ` T11 : σ

Γ ` T1 T2 : [T11 �∆ T2].τ
(Appl)
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Let us quickly explain why the previous encoding of Ω is not typable in this system. Since
patterns appear inside types, with the notation ∆ ≡ X : α _ α, we have:

` ω
4
= f(X) : ∆ _ X • f(X) : f(X) : ∆ _ α

However, the constant f must be given a type like:

` f : Y : (Y :Z _ α) _ α

Thus, the term f(ω) can not be typed because of the premises of rule (Appl): the pattern T11

and the argument T2 (here respectively Y and ω) should have a common type, but f(X) _ α
is not convertible to Z _ α.

Theorem 2.4 (Strong normalization of typable PPTS terms) [Wac04]
∀Σ, Γ, A, Φ, if Σ, Γ ` A : Φ then A is strongly normalizing.

3 Descriptive typing of RuleML with description logics

This section shows how the idea of descriptive typing can be applied to reasoning languages of
the Semantic Web. At present such languages are still in discussion and development phase,
so we focus on the RuleML sublanguage encoding Datalog, which seems to be a stable core for
further development (inside and outside REWERSE). The section summarizes the work reported
in [HM04]; for further details the reader is referred to that paper.

3.1 Typing Datalog rules

Recall that a Datalog rule is an implicitly universally quantified formula of the form

h← b1 ∧ ... ∧ bn

where n > 0 and h, b1, ..., bn are atomic formulae built over given alphabets of predicate symbols,
constants and variables, and ← is the implication connective. h is called the head of the rule,
while the conjunction on the right hand side is called the body. A Datalog program P is a set of
rules and ground atomic formulae (called facts). The least Herbrand model semantics (see e.g.
[NM95])associates with each program P a setMP of ground atomic formulae, which is also the
set of all ground atomic logical consequences of the program.

Example 3.1 Consider the program consisting of the rule

uncle(U ,X )← father(Y ,X ), sibling(U ,Y )

and facts father(tom, john), sibling(bill , tom), sibling(john,mary) and
father(tom,mary).

The least Herbrand model consists of all facts of this program and of the facts
uncle(bill, john) and uncle(bill,mary).

The least Herbrand model of a program is defined jointly by the rules and by the facts of
the program. We expect that Datalog rules on the web will be used with different sets of facts
distributed on the web. Thus for a given set of rules different sets of attached facts will result in
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different least Herbrand models. For example, adding the fact sibling(bob, tom) to the example
program above will extend its least Herbrand model with two additional facts uncle(bob, john)
and uncle(bob,mary).

Generally the constants of a program P represent elements of some application domain D.
Thus there exists a mapping I of the constants of P into objects in D. We extend the mapping
I to a logical interpretation over D where each n-ary predicate p is interpreted as the relation
pI consisting of those tuples 〈I(c1), ..., I(cn)〉 that p(c1, .., cn) ∈ MP . This interpretation is
also a model of P ; we will call it the I-induced model of P .

For example, if I maps the constants of our example to some persons Bill, John, Tom and
Mary then in the induced model Bill is the uncle of John and Mary.

The arguments of the relations of the I-induced models will usually range over specific
subsets of the domain, rather than over the whole domain. For example we would expect that
an uncle of a person is a man and not a woman. In web applications the whole database of facts
may not be accessible, or may dynamically change over time. Therefore it might be desirable
to characterize a priori (a superset of) the range of each argument of the relation associated
with a given predicate in the I-induced model. We call this set the type of the argument. The
type of a predicate is then the Cartesian product of the types of the respective arguments. More
precisely for given program P and mapping I over D a type specification T associates with the
i-th argument of an n-ary predicate p a subset T (pi) of D. Then by T (p) we denote the set
T (p1)× ...× T (pn).

Let I be a mapping of constants into a domain D and let T be a type specification of a
program P . We say that P is correct wrt a type specification T iff for every predicate p in P
the relation pI in the I-induced model is a subset of T (p).

Example 3.2 Consider a domain of people including, among others, the persons Bill, John,
Tom and Mary. Naturally, the universe divides into two classes: female and male which are
disjoint subsets of the set person including all elements of the domain.

For the program of Example 3.1 we consider the natural mapping I of constants into the
considered domain, assigning the constant mary to person Mary, etc. We can check then that
the program is correctly typed wrt the following type specification:

T (father) = male × person
T (sibling) = person× person
T (uncle) = male× person

This is because in any tuple of the relation uncle of the induced model the first argument
is a male.

3.2 A technique for proving type correctness of rules

Clearly the program, may or may not be correct wrt a given type specification. Verification of
type correctness of a logic program is a special case of a more general problem of verification
of a definite program wrt a specification, discussed by many authors. We apply the method
originating from Clark [Cla79] and discussed in Section 2.1.2 (page 8). Specialization of this
method to our problem can be summarized by the following proposition.

Proposition 3.1 Let P be a Datalog program, T a type specification for P over D, and I be
a mapping of the constants into the domain D.

If
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• for every ground fact p(c1, ..., cn) in P we have I(ci) ∈ T (pi) for i = 1, ..., n, and

• for every ground instance

p0(c0)← p1(c1) ∧ ... ∧ pk(ck)

of a rule of P , whenever I(ci) ∈ T (pi) for i = 1, ..., k then I(c0) ∈ T (p0) where ci denotes
the respective vector of constants,

then P is correct wrt T .

This proposition holds by soundness of the inductive proof method. It can be easily proved
by a structural induction on the proof trees of the program. Intuitively, we want to check
that the elements of the tuples in the I-induced model are in the sets specified by a given
type specification. The model is obtained by interpretation of constants in the least Herbrand
model. Thus, the induced model consists of the tuples which are either directly indicated by
facts (first condition of the proposition) or are obtained by the ground instances of the rules,
using the TP operator (see e.g. [NM95]). The type correctness of the latter is guaranteed by
the second condition.

Notice that Proposition 3.1 only provides a sufficient condition. The method is not complete:
a program may be correct wrt a given type specification which does not satisfy the condition.

Example 3.3 Consider the program of Example 3.1 with type specification of Example 3.2. In
the following ground instance of the program rule:

uncle(mary , tom)← father(john, tom), sibling(mary , john)

all body atoms are correctly typed but the head atom is not. Thus the program does not satisfy
the conditions of Proposition 3.1, but, as discussed in Example 3.2 it is correct wrt the type
specification.

In the considered example application of the rule to the facts of the program did not make
it possible to obtain incorrectly typed conclusions. However, by adding to the program the
correctly typed fact sibling(ann, tom) would make it possible to obtain incorrectly typed con-
clusion that Ann is the uncle of John. This shows that in web applications the incompleteness
of the considered proof method is not a problem, since we want the rules to work properly not
only with the given fixed set of facts, but with all correctly typed facts. For this, satisfaction
of the verification conditions for the rule is not only sufficient but also necessary.

3.3 Specializing the method to types defined in DL

We now discuss how conditions of Proposition 3.1 can be checked in practice, without generating
ground instances of clauses and looking at interpretation of constants. A ground instance of a
clause is obtained by binding each variable in a clause to a constant. Consider all occurrences of
a variable X in a clause c. Generally it may have m occurrences in the body and p occurrences
in the head. For each of them the type specification of the program predicates determines a
type Ti, i = 1, ...,m and Rj , j = 1, ..., p. To satisfy the second condition of the proposition it is
necessary that

T1 ∩ ... ∩ Tm ⊆ R1 ∩ ... ∩Rp
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Such a condition should be generated and checked for each variable occurring in the clause.
In addition one has to check that every constant occurring in the head is of the type required
for its position. Formally, it is not necessary to check the types of the constants in the body,
since a constant of wrong type will result in trivial satisfaction of the second condition of the
proposition. This means that such a clause would never be applicable to correctly typed atoms.
In practice it is desirable to perform this check in order to identify these useless clauses, which
most likely were not intended by the programmer.

In order to be able to perform type checking described above we need a language for de-
scribing sets to be used as types. Following the Semantic Web approach we propose to adopt
for that purpose the language of a Description Logic [BCM+02]. A typing of a program P is
thus specified as follows:

• We provide DL definitions T of concepts and roles (Tbox).

• We provide DL axioms A about individuals (Abox), so that for every constant a of P and
for any given class expression C the formula C(a) can be proved (or disproved) in the
Description Logic from T and A.

• We assign to each n-ary predicate of P an n-tuple of class expressions built with the
constructors of the DL over the primitive concepts of the ontology. Each model of T
provides thus a typing of the program in the sense of Section 3.1.

Example 3.4 In most of the Description Logics the type specifications of Example 3.2 could
be formulated as follows:

• Tbox:
person = male t female male u female = ⊥

• Abox:
male(john),male(tom),male(bill), female(mary)

• predicate assignment:
father : (male, person)
sibling : (person, person)
uncle : (male, person)

We can now perform automatic type checking wrt to every model of this specification. For
this

• using the Tbox, the Abox and the assignment of types to predicates we generate the
formulae of the Description Logic, corresponding to the verification conditions described
above,

• we prove the verification conditions using a complete DL reasoner.

If the proof succeeds, the program is correct wrt to the typing provided by any model of the
ontology.

Example 3.5 The verification conditions for the rule of Example 3.1 and the type specification
of Example3.2 give rise to the following DL formulae:

person v male, person v person

The first of them is not a logical consequence of the ontology, the other trivially holds.
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As the research in DL resulted in several complete and efficient DL reasoners, we can choose
any of them to implement a type checker for Datalog, as described above.

For example, in [HM04] we outlined a prototype implementation of a type checker for
Datalog rules, encoded in RuleML with types described in OWL. The system uses the RACER5

reasoner available on the web to perform type checking.

4 Typing query languages

In this section we review that existing work on typing web query languages which we believe
is relevant for REWERSE. As the work mainly deals with descriptive typing, we first discuss
formalisms to describe regular sets of unranked trees (which are a useful abstraction of XML
documents).

4.1 Regular sets of semistructured data

In the context of Web applications, tree structured data are of particular importance. HTML
and XML documents are tree-structured. Other kinds of data are required to be translated
into trees. XML has constructs, like ID and IDREF attributes/links, for representing graphs
as trees.

Recommendations of W3C provide two tools for describing sets of XML documents. A rather
restricted formalism of DTD’s is a part of XML [XML00]. A more general one is XML Schema
[Fal01]. A substantial part of XML Schema is formalized in [XML04]. Relax NG [CM01] is
possibly the most important of a few other proposed schema languages. Schema languages,
particularly XML Schema, are large and complicated. Thus for the purpose of research one
should first choose some abstract mathematical formalism.

There exist well-understood formalisms to deal with trees, or terms, and their sets. It is
natural to represent trees as terms, and define their (regular) sets by means of tree-automata,
or some equivalent formalism (cf. Section 2.1.2).6

There is however a substantial difference between such trees and the tree-structured data of
XML. Classical approaches deal with terms, in which each symbol has a fixed arity. The data
in logic programming and functional programming are of this form. Such terms correspond
to labelled trees where the label of a node determines the number of its children; this number
however is not fixed in XML document sets of interest. Sometimes trees of the latter kind are
called unranked. Some classes of regular sets of unranked trees are introduced, and related to
schema languages, in [MLMK03].

Usually ordered (unranked) trees are considered. This is because XML data are ordered.
However it is often useful to abstract from the ordering. For instance the order of attributes
of an XML element is irrelevant. A corresponding formal notion is that of mixed tree, in which
a node has either a sequence or a set of children. Such representation of semistructured data
was dealt with in [BS02, BS04, WD03, BDM04].

There are two possible approaches to deal with unranked trees. We can represent them by
binary trees in a standard way [Knu73] and then apply standard formalisms (like it is done
in [HVP00]). Alternatively, we can generalize the tree formalisms to deal with unranked

5http://www.sts.tu-harburg.de/˜r.f.moeller/racer/
6Some researchers prefer defining sets of sequences of trees [HVP00], instead of sets of trees [BKMW01,

MLMK03, WD03, BDM04]. Both approaches are equivalent.
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trees. Roughly speaking, single sequences (of states in a tree automaton, or of nonterminals
in a term grammar) have to be replaced by regular languages. (Thus the resulting formalism
has to incorporate a formalism to define regular languages, like regular expressions or finite
automata.) Out of tree automata one obtains in this way hedge automata, or unranked tree
automata [BKMW01], where instead of a tuple of next states we have a regular language of
next states. Similarly, a generalization of regular term grammars can be obtained [MLMK03,
WD03, BDM04], where the right hand side of a production contains a regular expression over
nonterminals instead of a sequence of nonterminals.

Each of the approaches has its advantages. Using binary trees makes it possible to apply
known formalisms and existing tools. On the other hand, the difference between being a child
and a sibling is in a sense hidden in the binary tree encoding. (The left child of a node a
represents a child of a, the right child represents a sibling of a. Then algorithms working on
binary trees treat both kinds of children in the same way.)

Algorithms for descriptive type checking or inference employ some basic operations on types
(regular sets of trees), like check for emptiness, computing intersection, or checking inclusion.
These operations should be decidable, and efficient algorithms should exist. What poses a diffi-
culty is inclusion checking. It is EXPTIME-complete already for tree automata (but polynomial
for deterministic top-down tree automata). For regular sets of unranked trees it is decidable and
also EXPTIME-complete. Hosoya et al. [HVP00] present a practical algorithm, which includes
some heuristic optimizations. The algorithm is reported to behave efficiently on many practical
examples. The intuition is that the types encountered in practice do not use the full power of
the formalism.

A formalization of this intuition is proposed in [BDM04, WD03]. That work proposes a
restriction on the class of sets, which leads to an efficient, polynomial inclusion check. The
restriction seems acceptable from the practical point of view, it resembles some restrictions of
DTD’s and XML Schema. The used formalism combines regular tree grammars with regular
expressions, as outlined above, and the restriction consists of three conditions. First one requires
that in a defined set all the trees have the same root label. So to each set name there corresponds
a label (of the root of each term in the set). Moreover, if two distinct set names occur in a
regular expression in a grammar, then the corresponding labels are distinct. The third condition
is that the regular expressions are 1-unambiguous in the sense of [BKW98].

The first two conditions correspond to the class of single-type tree grammars of [MLMK03];
this class includes DTD and “the expressiveness of W3C XML Schema is mostly within” this
class [MLMK03]. The third condition seems equivalent to an (informal) restriction on regular
expressions in DTD’s, from Appendix E of [XML00]. Imposing the first two conditions is similar
to requiring a tree automaton to be top-down deterministic (the latter leads to polynomial
inclusion checking for tree languages, cf. Section 2.1.2). The third condition assures a linear time
transformation (instead of exponential) of regular expressions into deterministic finite automata.
For the formalism restricted in such way, efficient and simple polynomial time algorithms exist
for the primitive operations of checking inclusion and emptiness, and of computing intersection,
needed in descriptive type checking / inference.

4.2 Typing for Web query languages

Here we present a brief overview of some work on typing for queries for XML documents.
XQuery is a W3C proposal for a query language for XML data. It is a typed functional

language, with prescriptive typing. There exists a formal definition of XQuery [XML04], it
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includes typing rules.

Suciu [Suc02] discusses type checking for a restriction of the transformation language XSLT.
The question is whether a given XSLT program applied to XML data from a given type will
provide results of a given type. One may use type inference to check this (derive the type of
the results and check its inclusion in the given type). It turns out however that methods not
employing type inference are stronger. This is due to the fact that the type, say T , provided
by an approximation algorithm may be a too rough approximation of the actual set T0 of
generated data. T may be not a subset of the given type U , despite T0 ⊆ U . A method that
does not employ type inference can be stronger, as it can take U into account, in contrast to
type inference algorithms.

An interesting result (from [AMN+01]) is that such type checking problem is, in general
case, undecidable. Thus for any (correct) type checking algorithm there exist counterexamples,
where all the results of an XSLT program are in a given type but the algorithm is unable to
find this. Some subclasses are known, for which the problem is decidable.

The functional language CDuce [BCF03] is adapted to the manipulation of XML documents.
This language provides powerful pattern matching, first class functions, overloaded functions,
a very rich type system (arrows, sequences, pairs, records, intersections, unions, differences),
precise type inference for patterns and error localization, and a natural interpretation of types
as sets of values. Additionally, static type information can be used to obtain very efficient
compilation schemas.

XDuce [HP03] is a statically typed programming language for XML processing. Its basic
data values are XML documents, and its types (so-called regular expression types) directly
correspond to document schemas. XDuce also provides a flexible form of regular expression
pattern matching, integrating conditional branching, tag checking, and subtree extraction, as
well as dynamic typechecking.

Regular types have been proposed as a foundation for statically typed processing of XML
and other forms of tree-structured data. and they have been mainly explored in special-purpose
languages (e.g., XDuce, CDuce, and XQuery). The XTATIC language [GP03] is a combination
of the tree-structured data model of XDuce and the classes-and-objects data model of a con-
ventional object-oriented language and its goal is to bring regular types to a broad audience by
offering them as a lightweight extension of a popular object-oriented language, C#.

Descriptive typing for Xcerpt (cf. Section 1.3.1) rules was discussed in [WD03]. That ap-
proach follows the work on descriptive typing for logic programming with declarative semantics
(cf. page 7, and [DMP02] together the references therein). The data is modelled as unranked
mixed trees (cf. p. 21 above), called data terms. Types are defined by the formalism outlined
in the previous section (p. 22). The formalism is a generalization of regular tree grammars to
unranked terms, with some restrictions guaranteeing polynomial inclusion checking and other
basic operations.

An Xcerpt program is a set of rules. The body (right hand side) of a rule is a conjunction of
query terms. Each query term is to be matched against a given database, by means of so called
simulation unification. As a result a (possibly non unique) binding of data terms to variables is
obtained. Applying this binding to the head (left hand side) of the rule results in a data term
that is a result of the rule. In a general case the computation resembles bottom-up evaluation of
logic programs: the body of a rule is matched against the database augmented by the already
obtained results. Thus chaining of rules and recursion is possible.
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Type checking of an Xcerpt program consists of independent type checking of its rules. For
each rule one computes (a superset approximation of) its results, under assumption that the
data matched against are in the specified type. Then one checks whether the obtained set is a
subset of the specified type. The core of the approach is approximating the set of the results
of an Xcerpt rule.

To compute the set of rule results, one first approximates the results of simulation unifica-
tions. For each variable and each query term in the rule body one computes the set of possible
bindings of the variable, resulting from the unification. Then the sets for each variable are
intersected. In this way the set of possible values for each variable is found, out of these sets
the set of possible rule results is obtained. Notice that this method can be employed for type
inference for non-recursive sets of rules.

The work described in [WD03] deals with a simplified version of Xcerpt; the main restriction
is that data terms representing non-tree graphs are excluded. The computed approximations
of the sets of rule results are shown to be exact (i.e. the obtained set is the set of the results
of the given rule applied to data from the given type), provided the rule does not contain the
“at” ( ) construct of Xcerpt. (This construct is treated in a simplified way). The computed
approximations are in the form of a finite union of types (i.e. of sets specified by the above
mentioned formalism). The union may be not expressible by a single type, as the formalism is
not closed under union.

The decidability of type checking for Xcerpt is not discussed in [WD03]. For single rules for
which the set of results is computed exactly by the presented method, the problem is obviously
decidable. In a general case a negative answer of type checking does not imply that the Xcerpt
program is not type correct. A question whether the problem is undecidable, similarly to type
checking for XSLT, is open.

5 Conclusions and future work

The objective of this report was to survey the existing work on typing relevant for the emerging
rule layer of the Semantic Web, in particular for the ongoing work in REWERSE. As REWERSE
is to develop a collection of reasoning languages and prototype processors for these languages,
a natural question is whether these languages are to be typed, and if yes, what are the suitable
type systems. The ongoing work on defining the REWERSE languages can be linked to two
different initiatives:

• RuleML, aiming at definition of a family of web reasoning languages,

• Xcerpt, developing a declarative query and transformation language for XML databases.

Both have some connections to logic programming and their computations can be seen as
rewritings. Therefore the report focuses on selected work on typing done in constraint logic
programming and in the theory of rewriting.

The initial research done in REWERSE, reported therein, shows that the concept of descrip-
tive types originating from the field of logic programming is relevant for the emerging REWERSE
languages. In particular, the following ideas seem to be worth further investigation:

• Using extensions of regular tree grammars for specifying descriptive types for the Semantic
Web query language developed on the basis of Xcerpt by the REWERSE WG I4. This
work should include the following steps:
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– Integration of the type checking algorithms for Xcerpt described in [BDM04, WD03]
with the prototype of the Xcerpt system.

– Investigation of the use of typing information in query evaluation for improvements
of the Xcerpt system.

– Investigation of the ways of using ontologies in Xcerpt; while an ontology provides
a conceptualization of the application domain, present version of Xcerpt deals with
pure XML data. Relating types of Xcerpt to classes of the ontology could provide
a link between the concepts defined by the ontology and the representation of their
instances.

• Using ontology languages for specifying descriptive types for web rule languages, while
type checking of rules reduces to ontology reasoning. An instance of this approach is a
typechecker for RuleML with types specified in OWL, described in [HM04] (see Section 3).
A continuation of this work should investigate application of this technique to SWRL, and
to the rule languages to be defined by the REWERSE WG I1. Extension of the approach
to the case of dynamic typing, when types of the variables are explicitly included as
constraints in the rules should also be considered.

The use of prescriptive types in REWERSE languages addresses the complementary issue of
composition: how ontologies can be combined, how Datalog rules or different reasoning rules
can be composed? The following workplan is proposed in this direction:

• Study the adaptation of a prescriptive type system for constraint logic programs to
Xcerpt/RuleML, in particular revisit the structure of signatures in order to treat non-
fixed arity extensible structures,

• Design a prescriptive type system for Xcerpt/RuleML,

• Experiment the use of typed Xcerpt/RuleML for complex queries involving different kinds
of ontologies or reasoning.

The typed rewriting calculus offers a conceptually simple way to describe uniformly three
fundamental components of any rule based language: (1) computation rules described by a
confluent and terminating rewriting relation, (2) deduction or search rules whose application
should be directed by (3) strategies. Since these paradigms are intensively used in the rea-
soning and query languages under development in WG I1 and WG I4, the prescriptive type
systems proposed in this context [CKLW03, CLW03, Wac04] could be good candidates for typ-
ing the language constructions of the REWERSE project. In seems therefore useful to further
investigate:

• The applicability of this (term) rule based model to the entities of interest in REWERSE,
in particular the ruleML and Xcerpt languages,

• The kind of type system enforcing a strongly terminating behavior of the typed ρ-terms,

• The meta-properties of the type systems of interest, in particular type inference.
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These investigations are intended to be done in parallel. One way to combine their benefits
in the future would be to define descriptive types for a prescriptively typed language, with a
simple relation of abstraction between both type hierarchies.

The progress of the above mentioned work will be reported in the deliverables I3-D4 (month
12) and I3-D6 (month 24).
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