
I5-D1

State-of-the-art on evolution and reactivity

Project number: IST-2004-506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document R (report)
Dissemination level: PU (public)
Document number: IST506779/Lisbon/I5-D1/D/PU/a1
Responsible editor(s): José Júlio Alferes and Wolfgang May
Reviewer(s): Thomas Eiter
Contributing participants: Dresden, Eindhoven, Goettingen, Lisbon, Munich,

Skoevde, Melbourne
Contributing workpackages: I5
Contractual date of delivery: 31 August 2004

Abstract
This report starts by, in Chapter 1, outlining aspects of querying and updating resources on
the Web and on the Semantic Web, including the development of query and update languages
to be carried out within the Rewerse project.

From this outline, it becomes clear that several existing research areas and topics are of
interest for this work in Rewerse. In the remainder of this report we further present state of
the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give
an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to
briefly describing existing update languages for the Web, and also for updating logic programs;
in Chapter 4 event-condition-action rules, both in the context of active database systems and
in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some
relevant rule-based agents frameworks.

Keyword List
Logics and languages for updates, ECA rules, active databases, rule based agents

c© REWERSE 2004.

State-of-the-art on evolution and reactivity

José Júlio Alferes1, James Bailey2, Mikael Berndtsson3, François Bry4,
Jens Dietrich5, Alexander Kozlenkov6, Wolfgang May7, Paula Lavinia Pătrânjan4,

Alexandre Pinto1, Michael Schroeder8 and Gerd Wagner9

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
2 Department of Computer Science and Software Engineering, The University of Melbourne

3 School of Humanities and Informatics, University of Skövde
4 Institut für Informatik, Ludwig-Maximilians-Universität München

5 Institute of Information Sciences and Technology, Massey University
6 Department of Computing, City University, London

7 Institut für Informatik, Universität Göttingen
8 Biotec/Dept. of Computing, TU Dresden

9 Faculty of Technology Management, I&T, Eindhoven University of Technology

5 August 2004

Abstract
This report starts by, in Chapter 1, outlining aspects of querying and updating resources on
the Web and on the Semantic Web, including the development of query and update languages
to be carried out within the Rewerse project.

From this outline, it becomes clear that several existing research areas and topics are of
interest for this work in Rewerse. In the remainder of this report we further present state of
the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give
an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to
briefly describing existing update languages for the Web, and also for updating logic programs;
in Chapter 4 event-condition-action rules, both in the context of active database systems and
in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some
relevant rule-based agents frameworks.

Keyword List
Logics and languages for updates, ECA rules, active databases, rule based agents

Contents

1 Towards evolution and reactivity on the Web 1
1.1 Web Query Languages . 2

1.1.1 Today’s Web Query Languages . 2
1.1.2 Requirements on Query Languages for the Web 4

1.2 Local Behavior: Answering Queries and Being Reactive 5
1.3 Updates and Evolution of the Web . 6
1.4 Communication on the Web: Reactivity, Events and Actions 8

1.4.1 Events . 9
1.4.2 Conditions . 12
1.4.3 Actions . 13
1.4.4 ECA Rule Markup Languages . 14
1.4.5 General (Re)active Resources . 14

1.5 Communication Structure and Propagation of Knowledge 14
1.6 Reasoning on the Semantic Web . 17

2 Logics for Updates and State Change 21
2.1 Kripke Structures . 21
2.2 Modal Temporal Logics – based on Kripke Structures 21

2.2.1 Linear Time Temporal Logics . 22
2.2.2 Branching Time Temporal Logics . 23
2.2.3 Past Tense Logic . 26
2.2.4 Dynamic Logic . 26
2.2.5 Hennessy-Milner Logic . 26

2.3 State-Oriented Datalog Extensions . 27
2.4 Abstract State Machines . 28
2.5 Path Structures and their Logics . 29
2.6 Labelled Transition Systems and Process Algebras 31
2.7 Event Languages . 33

2.7.1 The Event Algebra of [CKAK94] . 33
2.7.2 The Characterization of [Sin95] . 34
2.7.3 The Event Characterization of [LBS99] 35
2.7.4 Event Detection by Modal Temporal Logic 36

2.8 Action Languages and Situation Calculus . 36
2.8.1 Situation Calculus . 36
2.8.2 Action Languages . 37

iii

3 Update Languages 39
3.1 Update Languages for the Web . 39
3.2 Update Concepts for the Semantic Web . 44

3.2.1 Updates on the Data Level . 44
3.2.2 Updates on the Meta Level: Ontology Evolution 44

3.3 Logic Programs Updates . 46
3.3.1 Updates of Logic Programs . 46
3.3.2 Logic Programming Update Languages . 48

4 Activity and Reactivity in Databases 51
4.1 ECA rules in Active Database Systems . 51

4.1.1 Agent Technology and Active Databases 53
4.1.2 Tools and Methodologies . 54

4.2 Reactivity on the Web . 56
4.2.1 Event-Condition-Action Rules for XML/Conventional Web 57
4.2.2 Event-Condition-Action Rules for the Semantic Web 62
4.2.3 Active behavior encoded in XML Data . 62

5 Rule-Based Agents 65
5.1 Vivid Agents . 65

5.1.1 A Basic Architecture for Rule-Based Agents 66
5.1.2 Reaction Rules . 68

5.2 Agent Systems Developed in SOCS . 69
5.3 IMPACT . 70

5.3.1 Agent Architecture in IMPACT . 71
5.3.2 IMPACT Architecture . 73
5.3.3 Deontic Logics in IMPACT . 73

iv

Chapter 1

Towards evolution and reactivity
on the Web

Use of the Web today –commonly known as the “World Wide Web”– mostly focuses on the
page-oriented perspective: most of the Web consists of browsable HTML pages only. From this
point of view, the Web can be seen as a graph that consists of the resources as nodes, and the
hyperlinks form the edges as it is e.g. done in the notion of a Web skeleton of HTML pages
and their hyperlinks in [ML04]. Here, queries are stated against individual nodes, or against
several nodes, with formalisms such as F-Logic [LHL+98] or Lixto [BFG01]; or in case that
the sources are provided in XHTML, they can be queried by XQuery, XPathLog [May01b], or
Xcerpt [BS02]. Data extraction from the Web lead by the idea of extracting knowledge based
on browsing has been investigated e.g. in [LHL+98] or [ML04]. As such, the Web is mainly
seen from its static perspective of autonomous plain data sources, whereas the semantics and
the behavior of the sources, including active interaction of resources, does not play here any
important role.

But there is more on the Web of today than HTML pages. Leaving the superficial point
of view of HTML pages, the Web can be seen as a set of data sources, some of which are still
browsing-oriented, but there are also database-like resources that can actually be queried. In
fact, besides HTML documents that are accessed as a whole, and in which (query) processing
has then to be done separately, there are XML (including XHTML) data sources, described by
DTDs or XML Schemas, that in general can be queried (e.g., by XPath/XQuery, XPathLog
or Xcerpt). Moreover, specialized information sources (that we abstractly call Web Services)
exist that provide answers only to a restricted set of queries that are given abstractly as a set
of name-value pairs1. We refer to the Web as a collection of “plain” data sources of this kind as
the Conventional Web, populated by (interlinked) HTML, XML, DTDs, and XML Schema
(either as files, or as databases or Web Services that “speak” HTML/XML).

With these representations, the Web could be seen as a graph of data sources that can be
queried as a whole. In the last years, plenty of research on data integration on the Web has
been done [Len02, Len03, Hal03], mainly using view-based mappings between data sources.

1For the sake of simplicity, in the whole of the document we will refer to abstract nodes in the Web (graph)
simply as information resources or data sources though, as it will become clear, we are not thinking of these
nodes as “simply” providing information and sometimes they are, e.g., Web services. For a discussion on the
distinction between information sources and Web services see e.g. [LW00].

1

Continuing this process, the perspective shifted further to the idea of a Web consisting of
(a graph of) information systems. With these information systems, data extraction may be
thought not only in terms of local queries, but also in terms of global queries that are stated
against “the Web”, or against a group (or community) of nodes on the Web (sharing a common
application area and ontology; often, a community is represented by a portal), and to intelligent,
semantic capabilities dealing with the available information. Given the highly heterogeneous
and autonomous characteristics of the Web, this requires appropriate query languages, and a
way to deal with the integration of data from the various sources.

Such an infrastructure of autonomous, cooperative resources will allow for more than plain
querying. The questions in the design of this Semantic Web are e.g. what functionality is
needed, how should it be implemented and, especially, what communication structures are
required. We will discuss these issues in the following, in general, and especially from the point
of view of evolution and reactivity. Let’s start with an example:

Example 1.1 (Introductory Example: Travel Agency) Consider a set of resources of
travel agencies and airline companies. It is important to be capable of querying such a set
for, e.g. timetables of flights, availability of flight tickets, etc. But a Web consisting of infor-
mation systems should allow for more. For example: it should allow for drawing conclusions
based on knowledge (e.g. in the form of derivation rules) available on each node; it should allow
for making reservations via a travel agency, and automatically make the corresponding airline
company (and also other travel agencies) aware of that; it should allow airline companies to
change their selling policies, and make travel agencies automatically aware of those changes;
etc.

The Semantic Web, as we see it, with such capabilities can be regarded as forming an
active, “living” infrastructure of autonomous systems. This view of the Web raises new issues,
and requires new concepts and languages, that we intend to develop within the Rewerse –
Reasoning on the Web with Rules and Semantics – project.

In the present deliverable that represents the starting point of Working Group I5, “Evolution
and Reactivity”, we focus on the aspects –that will be outlined in the remainder of this chapter–
that are relevant for this topic. It will be clear from this outline that several existing research
areas and topics are of importance for our proposed endeavor. In the following chapters we
make a systematic overview of the state-of-the-art in a selection of such areas and topics with
particular emphasis on the aspects that are more relevant for the intended work:

Though this deliverable (and working group) is not directly concerned with the subject of
query languages, that is studied and developed elsewhere in Rewerse, these are of importance
for evolution and reactivity (albeit because update languages are usually based on query lan-
guages) and, as such, we briefly discuss query languages for the Web in Section 1.1. Then, in
Sections 1.2 to 1.5 we discuss dynamical aspects, languages for reactivity and evolution, and
communication on the Web. Reasoning on the Semantic Web, especially in what concerns the
dynamic aspects, are then briefly discussed in Section 1.6.

1.1 Web Query Languages

1.1.1 Today’s Web Query Languages

Query languages similar to, but different from, those used and developed for (XML) databases
are needed on the Web for easing the retrieval of data on the Web, or easing the specification

2

of materialized or non-materialized views (in the database sense) and for expressing complex
updates, especially intentional updates (i.e., updates of intensional predicates expressed in terms
of queries) that must then be translated into updates of the actual sources.

Queries play an important role in the Web, beyond user-defined queries alone: dynamic Web
pages (i.e., those whose content is generated at query time) are non-materialized views (i.e.,
views that are computed at data retrieval time). Here, closedness of the language is obviously
necessary: it is defined over Web contents, and its output must be valid Web contents.
Design of Web Query Languages. Most of the early Web query languages developed from
query languages for semistructured data, and have then been migrated to XML. The design
decisions and experiences of these languages have to be considered when designing query and
manipulation languages for the Web as a whole. An overview of these can be found in [May04].

Logic programming-style rule-based languages (immediately including an incremental up-
date language) have been presented with e.g. WSL/MSL (Wrapper/Mediator Specification Lan-
guage) [GMPQ+97], and F-Logic [LHL+98]. Lorel [MAG+97] and StruQL [FFK+97], following
the SQL/OQL-style clause-based design; StruQL was then developed into XML-QL [DFF+98].
Other languages developed from the area of tree matching and transformations, e.g., UnQL
[BDHS96], XDuce [HP00], or YATL [CDSS99].

The standard XML languages developed from the experience with the above-mentioned
languages and from the SGML area. XPath [xpa99] has been established as an addressing
language. It is based on path expressions for navigation, extended with filters. It serves
as the basis for many other W3C languages in the XML world. XQuery [xqu01] extends
XPath with SQL-like clause-based constructs FLWOR (FOR ... LET ... WHERE ... ORDER BY
... RETURN) to a full-fledged query language. Variables are bound in the FOR and LET clauses
to the answer sets of XPath expressions. The WHERE clause expresses further conditions, and the
RETURN clause creates an XML structure as a result. While the selection parts in the FOR and
LET clauses are XPath-based, an XML pattern in XML-QL style is used in the RETURN clause
where the variables are embedded into literal XML and constructors. Proposals for extending
XQuery with update constructs have been published in [TIHW01, Leh01]. As a transformation
language, XSLT [xsl99] follows a completely different idea for providing information from the
Web: In it, transformation rules specify how information is extracted from a data source.
Recent non-Standard XML Query Languages. The Lixto system [BFG01] uses a graph-
ical interface for querying HTML, where a query is developed by interactively selecting nodes
from a browser presentation. Internally, Lixto uses a logic programming language for XML
called Elog, based on flattening XML data into Datalog. XPathLog [May01b] combines (i)
first-order logic, and (ii) XPath expressions extended with variable bindings. It is completely
XPath-based (i.e., navigational access that is extended to Datalog-like patterns) both in the
rule body (query part) and in the rule read (update part), thereby defining an incremental up-
date semantics for XPath expressions. Xcerpt [BS02] is a pattern-based language for querying
and transforming XML data. Its basic form follows a clean, rule-based design where the query
(matching) part in the body is separated from the generation part in the rule head. XML
instances are regarded as terms that are matched by a term pattern in the rule body, generat-
ing variable bindings. The embedding of Xcerpt terms into CONSTRUCT ... FROM ... clauses
allows for nesting. An extension with updates, called XChange, is currently being designed as
a clause-based language. An overview of proposals of update languages for XML and the Web
can be found in Section 3.1.
Comparison of Design Concepts. The existing languages for handling semi-structured
data and XML differ in several facets in terms of the concepts they use. For example: access

3

mechanisms and homogeneity of the query and generation part (patterns, path expressions);
underlying data model (graph vs. tree); nature of the underlying theoretical framework (logic-
based or denotational semantics); and last but not least clause-based or logic-programming-style
syntax and semantics.

All languages discussed above are rule-based and declarative, generating variable bindings by
a matching/selection part in the “rule body” and then using these bindings in the “rule head”
for generating output or updating the database. This rule-based nature may be more or may be
less explicit: F-Logic, MSL/WSL (Tsimmis), XPathLog, and Elog use the “:-” Prolog syntax,
whereas UnQL, Lorel, StruQL, XML-QL, XQuery, and Xcerpt couch their rule-like structure in
an SQL-like clause syntax. These clausal languages allow for a straightforward extension with
update constructs.

1.1.2 Requirements on Query Languages for the Web

Obviously, a Web query language must allow for the explicitly inclusion of multiple data sources
from the Web. While this was no issue for SQL, all above XML languages provide this func-
tionality by using the URL, mechanism (which is self-evident for those that emanated from
HTML Web data extraction), e.g., by adopting XPath’s document() function. Note that the
smooth extension from a database query language to an update language does not necessarily
carry over to Web query languages: this would require separate additional communication, and
data that is publicly accessible is far from being publicly updatable.

Coming back to queries on the Web, these should also be robust against certain changes in
a data source, e.g., splitting a data source over several ones that are linked by XLink/XPointer,
or wrapping parts of an XML data source in a Web service (which makes querying immediately
also an issue of reactive behavior and communication). In such cases, the execution model
must be modular in the sense that it transparently combines answers contributed by multiple
data sources. It must also consider that data sources provide different, possibly restricted,
functionality like answering arbitrary queries, providing access to bulk data, answering a fixed
set of predefined queries. Thus, closedness is also an important property: query languages are
used to define views that act themselves as virtual data sources, and that must be in the same
format as the other sources.

In the context of the Semantic Web, querying goes much beyond than “only” accessing the
base data, as can e.g. be done by SQL or by XML query languages. Query answering on the
Semantic Web in general also requires the use of metadata expressed , e.g., using RDF/RDFS or
OWL, but maybe also thesauri (as used in information retrieval and computational linguistics),
and thus must support reasoning about the query, data, and metadata. The actual forms of
reasoning to be applied with RDF/RDFS, OWL, thesauri, etc., and in general on the forth-
coming Semantic Web are rather unclear today – this is one of the goals of current research of
Rewerse.

For providing a base for such research, flexible and extensible query languages including
“lightweight reasoning facilities” appear to be a good choice for a first step towards generic
tools for the Semantic Web. For several reasons, we propose to use rule-based languages for
querying.

Rules provide a natural modularization, and the rule-based paradigm covers a lot of sub-
paradigms for designing a wide range of language types as described above: SQL and XQuery
are actually a form of simple rules (for defining views); XSLT is rule-based; and languages
like Datalog provide a multitude of semantics for any kinds of reasoning. Coming back to the

4

modularization issue, a simple form of non-monotonic negation in presence of recursion (such
as restriction to stratified programs) seems to be sufficient for a deductive query language for
the Semantic Web. The expressive power can be restricted and extended by choosing suitable
semantics – e.g. recursion is needed for computing closure relations (as those of RDF and OWL)
and can be easily “bought” with the use of a fixpoint semantics. Recursive rules are a convenient
way to express common forms of reasoning on the Semantic Web, e.g. for traversing several edges
relating remote concepts. Such complex semantics of rule languages are well investigated in
logic programming. In [BFPS04a] it is shown how the rule-based language Xcerpt can be used
for reasoning on Web metadata such as RDF and OWL data. Reasoning about metadata,
classes and default properties is e.g. provided by XPathLog/LoPiX [May01c] that integrates
the F-Logic/Florid mechanisms [KL89] for handling metadata and reasoning (signature, classes,
subclasses and nonmonotonic inheritance).

Additionally, rule-based languages can easily be extended to updates and in general to
the specification of dynamics on the Web. Here, research on event-condition-action rules and
active databases can be applied and extended. As another consequence of their modularity,
rule-based languages are relatively easy to understand and program. The use of rule-based
languages allows also for a modular design of language processors. These consist then of two
components: one for the interpretation of rule heads and bodies, and one for implementing the
global semantics for suitably evaluating a set of rules.

The language base will most likely be provided by XML, where the individual languages are
distinguished by their syntax, i.e., their namespaces, and their element and attribute names.
Thus, a generic rule processor will be able to handle arbitrary rules (not only query rules, but
also updates and general reaction rules) and to apply appropriate processing to each type of
rules. This way, new languages too can be integrated at any time.

1.2 Local Behavior: Answering Queries and Being Reac-
tive

The most basic and primitive activity on the Web is query/answering. From the point of view
of the user, querying is a static issue: there is no actual dynamic aspect in it (except possibly a
delay). Nevertheless, from the point of view of the resources, there comes reactivity into play:
when answering queries, the resources must answer in reaction to a query message, and in case
that the query is answered with cooperation of several resources, they must also send messages
to other resources.

Such cooperation is in general required when considering communities of resources on the
Web. Even more, cooperation and communication is already necessary when a resource contains
references in any form to another resources. Two types of cooperation for query answering can
be distinguished:
Distributed Query Answering of Explicit Queries. Explicit queries in any XML query
language can be stated against XML resources whose external schema is known. Such resources
can contain references to other XML resources by XLink elements with XPointers. A model for
answering queries in the presence of XLink references has been investigated in [May02]. The
actual evaluation of a query in this model results in (re)active communication of result sets
and/or subqueries between resources. This behavior is a simple form of reactivity.
Query Answering by Web Services. Web services can also be used for answering (often
only a specific set of) queries. For this, they can either use their local knowledge (e.g., facts and

5

derivation rules), or they can contact other resources for answering a query (e.g., a travel agency
service that uses the schedules of trains and flights from several autonomous resources) as made
possible by e.g. WSDL/OWL-S/UDDI [wsd01, OWL03, Uni02] (finding an appropriate service
on the Web), or, as with Active XML [ABM+02] (using a known service; see also Section 4.2.2),
they can contain embedded calls in their local data, that when fired enrich the local data with
the call’s results. In the latter cases, the behavior of the Web service is actually not simply
query-answering, but can be seen as a general (re)active behavior, according to an external
interface description that can provide much more functionality than only query/answering.
Such Web Services are instances of general reactivity : there is a message, and the resource
performs some actions. Moreover, Web Services may have an internal state (e.g., reservation
systems) that they update.

For including general reactivity of Web Services into the intended reasoning on the Semantic
Web, a formal specification of their behavior is required. Here, we distinguish two types of Web
Services, according to the possibilities of reasoning about their behavior (and updating it):
Web Services with rule-based behavior (including queries), and Web Services whose behavior
is described STRIPS-like [FN71], or with another similar formal method. Other Web Services
will be considered as black boxes.

Note that, so far, we have described a mainly non-changing, but active Web consisting of
nearly isolated passive and only locally active Web Resources. In this setting, evolution on the
Web takes place by: either local changes in data sources via updates (e.g. changing a flight
schedule); or local evolution of Web Services by reaction to events due to their own, specified,
behavior. However, this scenario already raises a number of issues deserving investigation, and
will serve as our base case for reactivity.

Global Aspects of Distributed Query Answering in the Web. From this “simple” base
case – cooperative answering of queries by “the Web”, independent different dimensions can be
derived:

• The definition of a global model theory and reasoning about global constraints and consis-
tency aspects based on computing answers to queries.
Note that at this point, we do not yet have to deal with mediation and mapping between
different data sources – still, only the base data with explicit links (that explicitly incorporate
potential mappings) is considered;

• Basic peer-to-peer communication between resources via messages and simple reaction rules
for answering queries;

• Extension from queries to updates (where updates require the evaluation of a query e.g.
for addressing the actual item to be updated). Such remote updates on the XML level will
provide our simplest case of dynamics. Here, in addition to materializing a remote update,
access control and authorization has to be considered. Research in this area is done by
Rewerse’s WG I2: Policies.

1.3 Updates and Evolution of the Web

Evolution of the Web is a twofold aspect: on today’s Web, evolution means mainly evolution
of individual Web sites that are updated locally (see discussion of remote updates above). In
contrast, considering the Web as a “living organism” that consists of autonomous data sources,
but that will show a global “behavior” (as already discussed above for query answering) leads

6

to a notion of evolution of the Web as cooperative evolution of (the state of) its individual
resources.

The state of such a system could be classified into three conceptual levels: facts (e.g. in XML
or wrapped in XML); a knowledge base, given by derivation rules (e.g. marked up in RuleML);
and behavior (e.g., reaction rules2 specifying which actions are to be taken upon which event
and given what conditions).

In this context, update concepts are needed for several tasks, besides the updating of the
contents of a Web site by its owner. It should also be possible to update the contents of a Web
site as a reaction to actions of some user (e.g. when a user books a flight, the reservation of
a seat must be stored in the underlying database). This can be either an update of the local
database of the respective Web site but, most likely, this is an update to a remote database
(e.g. in the above example when the booking is done via a travel agency, and the reservation
must be forwarded to an update of the carrier company). This also requires the definition of
ways to communicate updates.

Moreover, update languages must also allow for updating the derivation rules and the be-
havior of a Web site, e.g. in adaptive Web systems, where the user modelling data must be
updated, and the behavior of the system will change. Updates of the latter type are mostly
executed by the owner, but it should also be possible to receive updates of such types from
(authorized) external partners. For example, a website that provides tax consulting should be
updatable from a central service if the taxing rules change.

Example 1.2 Consider a Web site of an online shop, where for all articles the prices without
and with VAT are given. An update of the VAT rate to this page would require updating the
prices of all items of an answer set with an individually computed new price. Obviously, a good
design in reality would only store the net price and compute the gross price by multiplying it
with the current percentage for the VAT.

Here, the update can take place in several ways: (i) the owner of the page regularly polls the
current VAT rate and updates its page accordingly; (ii) the owner subscribes some service that
informs him in case the VAT changes; or (iii) the owner tells an appropriate service to invoke
an update on its data (either to the VAT rate data, or to the rule that computes the gross price)
in case the VAT rate changes. The latter case can be implemented either by an explicit update
statement, or by an update on the semantic level, i.e., “(VAT, is, 20%)” in RDF or as a rule
(suitably markedup) “compute the gross price by adding 20% VAT on the net price” that is then
translated into the local derivation rule language (or, the service uses the “global” rule language
directly as its internal rule language).

This example also illustrates the close connection between “update”, “reactivity” and “evo-
lution” of a Web site.

When updating the Conventional Web, the update is expressed as a specific update operation
on a specific Web site (in general, updating facts on the data level). When derived data, whose
base data is taken from another site, is “updated” appropriate actions must be taken – view
update, requiring again appropriate communication. On the other hand, if another Web site
has ever used the updated data (e.g. providing a materialized view), the update must be
accordingly propagated – view updating, again including communication means.

For the Semantic Web, updates should be expressible on a semantic level, requiring a declar-
ative, semantic framework for generically specifying the update, and appropriate mechanisms
in the receiving Web site to materialize the update.

2For a discussion on these reaction rules, see Section 1.4.

7

Local update languages, that are surveyed in Section 3.1, are in general extensions of query
languages: the query language is used (i) for determining what data is updated, and (ii) for
determining the new value. Note that in both cases, the respective answer is in general not a
single data record or a single value, but can be a set or – in the XML case – a substructure.
Moreover, the value of (ii) can be dependent on the current item of the answer computed in (i).
Update languages for the Semantic Web are to be based on query languages for the Semantic
Web, e.g., for RDF.

Thus, having data flow and dependencies between Web sites, besides a plain communication
mechanism, but mechanisms to maintain consistency between Web sites by update propagation
are required. Update propagation consists of (i) propagating an update, and (ii) process-
ing/materializing the update at another Web resource. The latter, we have just seen, is solved
by local update languages. So the remaining problem turns out how to communicate changes
on the (Semantic) Web. Often, a change is not propagated as an explicit update, but there
must be “evolution” of “the Web” as a consequence of a change to some information.

Example 1.3 (Update on the Semantic Web) Consider an update in the timetable of
Lufthansa that adds a daily flight from Berlin to Timbuktu at 12:00, arriving at 20:00. There
will be several other resources, possibly using different ontologies and belonging to different com-
munities, for whom this information is relevant. First there are German travel agencies etc.
who use the Lufthansa schedule for their offers. For these, it is probably the case that they are
directly informed, or that they query the LH timetable regularly.

There will also be other resources that have no immediate connection to the LH resource.
E.g., a taxi service at Timbuktu can have the rule “when a European airline provides a flight
to Timbuktu, we should provide a car at the airport with a driver who speaks the language of
the country where the plane comes from”. Here, the resource should somehow be able to detect
updates somewhere on the Semantic Web that are relevant for itself.

For this, it is clear that we need a “global” language for communicating changes, and
communication strategies how to propagate pieces of information through the Semantic Web,
seeing it globally as the union of all information throughout the Web. In it, the Semantic-
property of the Web is crucial for automatically mediating between several actual schemata.

This problem again is twofold: (i) infrastructure and organization, and (ii) language. For
the former, e.g., polling (pull), broadcast (push), publish-and-subscribe (push+pull) (see e.g.
[TRP+04]) and continuous query services (pull+push) (see e.g. [CdTW00]) can be used. A
discussion on infrastructure and organization can be found later, in Section 1.5. Next, we
investigate language aspects of this communication.

1.4 Communication on the Web: Reactivity, Events and
Actions

We assume that communication in the Semantic Web takes place by peer-to-peer communi-
cation between resources (see also Section 1.5). Furthermore, this communication is based on
messages and events (that both are represented in XML). Following a well-known and successful
paradigm, we propose to use rules, more specifically, reactive rules similar to Event-Condition-
Action (ECA) rules for communication and for specification of the local behavior of Semantic
Web nodes. Several languages with reaction rules can be found in the literature. For an overview

8

of ECA rules in the context of active database systems and Web languages see Chapter 4, and
for an agent’s language with reaction rules see Section 5.1.

An important advantage of ECA rules is, again, that the content of the communication
can be separated from the semantics of the rules themselves. Communication is then done by
raising/signalling an event. The depending resources process this event (either it is delivered
explicitly to them, or they poll it via the communication means of the Web – see Section 1.5),
then optionally check a condition (that e.g. tests if the update is relevant, trustable etc.), and
finally take an appropriate action (in most cases, updating their own information accordingly).

Events are either atomic events (e.g., updates in the local databases, or received messages),
or complex events formed as combinations of atomic ones (e.g. “when A is updated, and then
B is updated”) expressed in some event algebra; conditions denote queries to one or several
nodes and are to be expressed in the proposed query language; atomic actions are e.g. update
requests or sending a message, and actions can be grouped as transactions. Such a transaction
could for example express “book a flight and then, if a flight has been found, book a hotel at
the arrival place” (the ACID properties of the transaction ensure that either all nor nothing of
this is done).

Accordingly, the language for these rules must comprise the language for events (in the
“Event” part), the language for queries (in the “Condition” part), and the language for up-
dates (in the “Action” part). The language will be based on XML, using a sublanguage for
rule markup, an event sublanguage, and an action sublanguage. Consequently, also the query
language will have an XML representation (which would e.g. also allow to map queries between
different query syntaxes, e.g., XQuery and Xcerpt).

1.4.1 Events

As for the “Event” part of the rules, languages for working with and describing events, and
corresponding processors of events, are necessary. The design of event languages should be
based on the experiences in the area of active database systems. Since reactivity is based on
reacting to events, our required notion of an event must be quite general and amount to almost
any detectable occurrence on the Web.

Traditional active rule-based behavior (e.g., in active databases – see Chapter 4) deals only
with local, explicit events that are easy to detect. On the Web, remote events are often also
relevant, e.g. in case that a Web site provides a materialized view of remote data. In the
Conventional Web, these are explicit changes on data, where a (simple) query can be given for
selecting this piece of information. In the Semantic Web, these can be changes or events on
the application level, or even implicit events that indirectly result from some action (often not
even controlled by a Web agent).
Below, we give a list of possible event types:

• system events, e.g., temporal events (local),
• updates to local data (local),
• incoming messages, including queries, answers (local),
• transactional events (commit, confirmations etc) (local),
• updates of data anywhere in the Web (remote),
• implicit “events” that occur somewhere in an application, and that are (possibly) represented

in explicit data. Rule-based behavior of agents is often based on an abstract specification
of application-level events (local/remote, semantic level).

9

Example 1.4 (Events) The following are events:

• internal events like updates of the local database are atomic events.
• Simple local atomic events are also e.g. “it is 12:00 h” (temporal event), “user X.Y., logs

on”.
• An atomic remote event is e.g. “the book XML Query by Lehner et al is added to the

dpunkt publisher’s catalogue Web page”. In this latter case, the detection can either be by
notification (registered, “push”-communication), by polling (“pull”-communication), by a
publish/subscribe system (where dpunkt publishes), or by submitting a suitable query to a
continuous query service.

• The event E1 = “the price for one liter of fuel (at a given petrol station) raises above 1.50
Euro” is also an atomic remote event, that can e.g. be used in a composite event of the form
“if E1 and then E2 then do action”. E1 is detectable, but only indirectly after some update
(in case of an update notification), or by a regular query (polling). The ECA language should
support behavior rules of this kind.

• The event “Goal by Figo in the 85th minute” is an event which can be used in several ways:
Note that the event “received a message that Figo scored a goal in the 85th minute” is another
event that contains information about an event. Here also the difference between actual time
(e.g., 19:55) and transaction time (e.g., 20:03) of obtaining knowledge about the event is
relevant.

• The declarative event “today’s train ICE 800 from Frankfurt to Munich is announced to be
at least 20 minutes late” can be used in a reactive specification, although its detection is not
clear. It can be detected e.g. via a Web page where such situations are announced, or via
checking when it actually departs from a point in the way, say in Stuttgart.

• the implicit event “X = the German national team does not win the European Champi-
onship” is an event that can e.g. be used in a rule “if ... then ...”. Detection of the event
could be done either (i) if the EC is finished and another team has won, or – much earlier,
using semantic knowledge – when the team dropped out of the competition after the group
phase.

An important requirement for the Semantic Web here is that event specification, content and
event detection are as much declarative and application-level as possible; in the best case in
“nearly natural language”.

Explicit Communication: Messages. Messages are a special type of atomic events that
are used for the exchange of all kind of explicit information between Web sites. Receipt of a
message itself is an event, and messages can be used for exchanging information about events,
and also for sending queries and answers.

In most cases, messages are sent directly to one or more receivers (notifications, queries, an-
swers), but in some cases messages are sent “to all”. Since a direct broadcast in the open
community of the Web is not possible, global event bases can be employed, following the
publish/subscribe-paradigm; this makes sense especially on the Semantic Web with application-
specific event bases (possibly also combined with ontology-based services).

Remote Events. As illustrated above, detection of, and reaction upon, remote events is
an important feature for the Semantic Web. An event detection engine must also be able to
detect/discover remote events that are not explicitly communicated. This is especially the case
when working with complex events (see below). It can be done by using remote event bases

10

(when the location of an event is known, and it is known that it is traced in an event base),
or by regularly polling remote data (e.g. fuel prices at my favorite petrol station, or stock
courses). In this case, again, publish/subscribe systems or continuous-query services can be
applied (especially, when they maintain a history).

Implicit Events. Most of the events can be expressed alternatively as detection of updates of
a given database (communicated via publish/subscribe systems), or by queries but, especially
in the Semantic Web, a declarative specification from the point of view of an event is intended.
The reduction of the detection to an actual update is then left to the semantic component.

Event Metadata. We must also distinguish between the event itself (often an application-
specific event), and its metadata, like type of event (update, temporal event, receipt of message,
. . .), time of occurrence, the time of detection/receipt (e.g., to refuse it, when it had been re-
ceived too late), the event generator (if applicable; e.g. in terms of its URI). This is in accordance
with languages for communication among agents defined e.g. by FIPA3, where besides the def-
inition of speech acts or utterances that can be used for communication, there is the definition
of a content language [FIP02d] and a message structure [FIP02a] which considers metadata
such as sender, receiver, etc.

Note that all this information about time points is indispensable for synchronization on the
Web within the update/event language. Event languages of active database systems usually do
not make it possible to express such information because it is not needed in such systems having
a centralized, common synchronization. The issue of synchronization has also been studied in
the area of agents. An overview of studies in this area relevant for Rewerse can be found in
Chapter 5.

Languages. Accordingly, we need two special sublanguages:

• a language for actual messages (XML, to be exchanged),
• a language for describing events (metadata, including a contents part that contains the

actual event), according to an event ontology.

These languages should not be concerned with what this information might be, but instead
make the exchange of all kind of data possible. So, an event must contain the above general
information, and all other necessary information intended for its receiver is then encapsulated
as data, described in an application-specific language, depending on the type of an event (e.g.,
in case of an update: what must be updated, and to what value(s), or the RDF fragment
(person:Figo,shoot,(x:goal,when,time:’19:55’))).

Explicitly, this means that queries, answers to queries, and update requests must not be
expressed as events, but as contents of the messages, expressed in their own languages. Mes-
sages are e.g. used for “update notification”, i.e. telling that an update has been performed
(either as a response to an update request, or just as an information), or for “update rejection
notification”, i.e. for telling that an update has been rejected. Note here the similarity with
FIPA communicative acts [FIP02b], where a fixed set of acts for communication among agents
are established (e.g. inform, propose, agree, refuse, accept, request, etc). However, we are not
assuming here that the set of possible acts are defined a priori, nor are we aiming at dealing with
all the panoply of acts proposed by FIPA for dealing with communication between intelligent
agents.

3See http://www.fipa.org

11

Event Detection and ECA Rules

Usually, ECA rules are rule patterns that contain variables to be bound in the event part that
are communicated to the condition and action parts (e.g., in SQL triggers in form of the old)
variable; in most cases, also the new value is recorded).

Complex Events, Event Algebras

Besides atomic or primitive events, reactive rules can also use the notion of complex events,
e.g., “when E1 happened and then E2 and E3, but not E4 after at least 10 minutes, then do
A”. Complex events are usually defined in terms of an event algebra4. This area has been
investigated in-depth in the area of active database systems.

When considering event algebras for reactive rules on the Web, not only the straightforward
conjunctive, disjunctive and sequential connectives, but also e.g. “negative events” in the style
that “when E1 happened, and then E3 but not E2 in between, then do something” should be
considered. Also, “aperiodic” and “cumulative aperiodic” events should be considered.

It is desirable that event sequences can be combined with requirements on the state of
resources at given intermediate timepoints, e.g. “when at timepoint t1, a cancellation comes
in and somewhere in the past, a reservation request came in at a timepoint when all seats
were booked, then, the cancellation is charged with an additional fee”. In this case, the event
detecting engine has to state a query at the moment when a given event arrives. For being
capable of describing these situations, a formalism (and system) that deals with sequences
of events and queries is required such as, e.g., [Har79, BMP81, CE81, EL85, Gab89, Rei93,
CKAK94, BK94, Cho95b, Sin95, SW95, MZ97, LLM98].

Work on complex events does not only define the semantics of events and complex events,
but in general also describes algorithms for efficient detection and tracing of events (e.g., in-
cremental residuation in [Sin95], incremental bookkeeping in [Cho95c, SW95]). They are in
general restricted to the area of distributed/active databases where the location and communi-
cation of events is fixed. In the context of the Web, the global handling of events must also be
investigated.

All investigations have also to deal with the aspect of incomplete knowledge, e.g., by weak-
ening the ECA semantics to “if I become aware of some event, then do something” (which is
the same way as if humans maintain a Web page), and to add the possibility to apply reactions
later on if necessary. In this setting, updates to the event base must trigger re-evaluation of all
ongoing event-checking activities. In case of cumulative events, the contents of the contributing
events must be collected accordingly.

Event Bases. Models, languages and strategies for event bases (the local ones, and possibly
central ones, dedicated to a given application domain) have to be defined, possibly with separate
communication strategies for exchanging knowledge about events with cooperating event bases.

1.4.2 Conditions

Conditions are in fact tested by queries against the local knowledge, knowledge of remote
resources, and the Web as a whole. Note that the evaluation of “condition-queries” can possibly
return values that act as parameters for the responding action.

4For a survey on event algebras, see Section 2.7.

12

1.4.3 Actions

Actions, which are what in the end may cause reactivity and evolution of the Web, can be of
several kinds: sending a message (that can also be a query - to be answered information for
another node -including answering a query), an external action, or a (local) update. The action
part of an ECA rule can also contain a transaction.

Updates

Updates are partitioned into local updates and remote updates – the latter actually take place
via messages. Nevertheless, concerning reasoning about correctness, an effect such as “resource
X is updated as ...” has to be used (e.g. when reasoning about remote knowledge). Communi-
cation of updates and confirmations will be discussed later in Section 1.5.

Local knowledge is defined by facts and optional derivation rules, and behavior is defined by
reaction rules. All of this local knowledge is uniformly represented in XML, and is updatable,
in the sense that the update language to be developed must be capable of changing facts,
derivation rules and reactive rules. Here we may rely on the studies done in the context of logic
programming about updating derivation and reactive rules (see Section 3.3).

Remote Method Calls

Activities of remote nodes can be invoked by sending them a message with an update statement,
or, for general method calls to Web Services, the SOAP [soa00] protocol can be used on the
Web. Here, also WSDL/UDDI can be employed for finding appropriate services in the Semantic
Web.

External Actions

External actions are the eventual effects of the Web on its outside environment (e.g. printing
a bill). For reasoning about correctness on the application level, they have to be considered
explicitly as part of the information system. For example, the specification of use cases or
activities in UML is in general not done on the level of internal databases (“a reservation is
stored in the DB”), but on the application level (“a client booked a hotel room”). Thus, they
are an important part of the specification of a system. They can also be explicitly mentioned in
application-level ECA rules – as such, they are “fed back” as events (e.g. “if somebody booked
a room at Sheraton, and at his flight arrives later than 22:00, a taxi must be sent”).

Transactions

Transactions are another point of view of ECA rules: they can be implemented themselves
by ECA rules, but they can also serve as a concept of their own that is managed by a sepa-
rate transaction manager. Similarly to ECA rules, transactions combine events, queries, and
updates. We intend to explore the use of Transaction Logic [BK94] and of Evolving Logic
Programs [ABLP02] for this purpose.

Distributed, and nested transaction management, based on local transactional functionality
of nodes, is required for evolution and reactivity on the Web.

13

1.4.4 ECA Rule Markup Languages

We need a common, global language of rules (and sublanguages for events) that covers evolution-
ary and reactive behavior (especially, updates) of resources. Having ECA rules and derivation
rules together, each rule must contain information about its “sublanguage” and its semantics.
Research in this area is done by Rewerse’s WG I1: Rule Markup.

1.4.5 General (Re)active Resources

The behavior of Web nodes is generally not restricted to ECA rules as described above for
implementing updates, but there can be “any” behavior – as e.g. for Web Services. For such
services, the Agents paradigm is often appropriate (see Chapter 5). Communication with them
takes place via common Web protocols (SOAP etc.). In case that reasoning about such a service
is needed, some kind of formal specification of it is assumed.

1.5 Communication Structure and Propagation of Knowl-
edge

We see the upcoming Semantic Web as a living organism consisting of autonomous resources
and groups or communities of resources (sharing e.g. a common ontology and trust policies).
Concerning communication in this Semantic Web, and during its development from the Con-
ventional Web, several issues come into play. Concerning the actual implementation of com-
munication provided by basic communication protocols like TCP/IP or HTTP and higher level
protocols like SOAP, Rewerse will most probably use the existing concepts. The communi-
cation structure in the Web (for distributed query answering, updates etc.) is an important
matter when realizing Web-wide behavior, as already pointed out for the Conventional Web
in Section 1.3 when considering propagation of updates. The Semantic Web will use similar
general communication patterns, enriched by semantics-oriented features. Establishing commu-
nication requires knowledge about capabilities and behavior of participating resources. Thus,
every resource must be distinguished by its capabilities, both from the point of view as of a
knowledge base, and from a directly functional point (i.e. its interface, e.g. considered as an
XML database or as a Web Service). In general, for establishing and maintaining communities,
metadata about available resources must be communicated. In the Conventional Web, this is
done via WSDL/UDDI; for the Semantic Web such services will be lifted to the semantic level;
e.g. based on OWL-S [OWL03].

Conventional Web. In the Conventional Web, without semantic metadata about resources,
communication concerning query answering and evolution of the Web is bound to definite links
between resources. In this setting, evolution takes place if a resource (or its knowledge) evolves
locally, and another resource that depends upon it also evolves (as a reaction).

Example 1.5 Consider the Website of an airline, where the flights with some information
(times, prices etc.) is given, and another resource that compares the offers of several airlines
and shows e.g., the cheapest connection for a set of common connections. If an airline page
changes, the comparison page must also change.

Here resources can be classified according to their role as information providers/consumers:

14

• resources providing information: these are data “sources” that are updated locally by their
maintainers (e.g., the flight schedule database of Lufthansa). Other information sources
may use their information – we call such resources information sources;

• resources that combine information from other resources, and that in course provide this
information (e.g. travel agencies providing packages of flights and train connections) – we
call such resources information transformers.

• resources that use information from others but are not (or are only in small scale) used as
information providers (e.g., statistics about the average load of flights).

The above roles of resources induce different handling of the communication paths. One possi-
bility is to have a registered communication path, where the “provider” knows about the “client”
who uses its data. In another possibility, the user of the information knows his “provider”, but
not vice versa.

Additionally, information transformers can be classified according to the way how their
knowledge is represented, and how it is maintained. An information transformer may not
materialize its knowledge but, rather, answer queries only by transforming them into queries
against sources/transformers via its application logic. Alternatively, an information transformer
may maintain an own (materialized) database that is populated with data that is derived from
information from other sources/transformers.

The application logic of non-materializing transformers is in general Datalog-like specified,
where their knowledge base is represented via derivation rules. There is no internal knowledge
except for the rule base. Thus, answers are always computed from the current state of the
used transformers or sources. There is also no knowledge maintenance problem; however, such
resources totally depend on the 24/7 availability of their information providers.

The application logic of materializing transformers can either be specified in a Datalog-
style, or by reactive rules that state how to update their information according to incoming
messages (or a combination of both). In the latter case, the resource is more independent from
its providers, but the view maintenance problem comes up.

Using peer-to-peer-communication, the propagation of knowledge between sources, which is
obviously desirable to keep resources up-to-date, can then be done in two distinct ways:

• Push: an information source/transformer informs registered users of the updates. A di-
rected, targeted propagation of changes by the push strategy is only possibly along registered
communication paths.

• Pull: resources that obtain information from a fixed informer can pull updates by either ex-
plicitly asking the informer whether he has executed some updates recently, or can regularly
update themselves based on queries against their providers.

Depending on the functionality of the participating nodes, often a push strategy is not possible.
This is for instance the case when the data source is a simple Web page or XML database, or
when it refuses to individually inform all nodes that are interested. Often, a pull strategy is
globally inefficient, since lots of clients would pose the same query continuously. Already in the
Conventional Web, there are several kinds of services that provide special forms of propagation:

• Publish-and-subscribe services (see e.g. [TRP+04]) receive messages from publishers and
notify subscribers if the messages match the subscriptions. Here, the communication follows
a pure push pattern, i.e., information (published items) are pushed from their originators to
the pub/sub system, and derived information (notification about changes) is pushed from
the pub/sub service to its subscribers.

15

In the above example, the Lufthansa and other airlines could act as a publisher against
a pub/sub service, and the comparison service could subscribe to this service (submitting
the exact XQuery queries against the data published by Lufthansa etc). Note that on the
Semantic Web, the subscription could be done in a high-level way, stating only “inform me
about flight schedules”.

• Continuous query systems (see e.g., NiagaraCQ [CdTW00]) allow users to “register” queries
at the service that then continuously states the query against the source, and informs the
user about the answer (or when the answer changes). Here, communication combines pull
and push: the CQ system pulls information from sources, and pushes derived information
to the end user.
In the above example, the comparison service submits the exact XQuery to the CQ service.
Other consumers submit possibly overlapping queries, and the CQ service polls the airline
pages and extracts appropriate answers for each subscriber’s query.

In both cases, the information consumer is correctly informed about the current state and
changes. Thus, propagation of updates is possible in the Conventional Web – using a plain
XML query language, which works as long as the query that is used for obtaining the relevant
information has not to be syntactically changed.

This is an important aspect for update propagation on the Semantic Web: since the specifi-
cation is then on a semantic, application level, the actual representation of the knowledge does
not matter.

Semantic Web. The communication means described above for the Conventional Web can be
used, extended by the fact that the propagation is less vulnerable to changes of the information
source structure, since a semantic query can now be used. Note that it is still required to know
which node actually provides the information.

But then, the advantages of the Semantic Web come up: the query can be stated, e.g., on
the RDF level against “the Web” to be answered by any other node that uses an ontology that
overlaps in the relevant notions. Considering communication, the meaning of “the Web” has
to be resolved; depending on the needs and capabilities of nodes on the Web, different “social”
communication structures are possible:

• a set (community) of nodes that share a common ontology and provide complementary
(more or less overlapping) data. Communities can have different intra-community structure
which in course has implications to the interface towards the user.
In a centralized community, there exists a central resource that does the mapping and
integration tasks, and that acts as a portal, serving as external interface for querying, and
also for service negotiations (e.g., communicating the ontology to the outside). Participants
of the community communicate with the portal, and possibly also with each other.
In a non-centralized communities, each resource performs the mapping task by itself when
it is queried, and (sub)queries are forwarded to relevant nodes in the community to be
answered.
Usually, such communities are formed intentionally by nodes that cooperate permanently
(e.g., tourist offices in a region, airlines, travel agencies, car rental companies etc. – a tourist
information system is one of the prospective testbed scenarios in Rewerseor research groups
in bioinformatics), agree in certain consistency requirements, and that trust each other (see
Rewerse’s WG I2: Policies); there is also a well-defined flow of updates. For an application
area, there can be several such communities.

16

Such communities provide a natural notion of community-global state, as the union of the
knowledge in each community resource. For maintaining the consistency of the global state
in this environment of autonomous resources, appropriate communication and reasoning
mechanisms are needed; see Section 1.6.

• ad-hoc peer-to-peer communication: appropriate partners must find each other; here a dis-
tributed P2P kind of CORBA or UDDI here can be used. After finding potential partners,
communication must be established (concerning negotiation of ontology overlaps, interfaces,
trust etc.) (see again Rewerse’s WG I2: Policies).

We intend to take basic communication mechanisms and Semantic Web policies as taken for
building reactivity and evolution on them. In I5’s starting research in evolution and reactivity
for the Semantic Web, we mainly consider evolution inside a community.

For inter-community communication , the mapping between the ontologies must be done by
distinguished bridge resources that belong to two or more communities and that mediate be-
tween the ontologies by mapping rules between the ontologies, and also mapping communication
messages between the communities. A great amount of work exists on the definition of such map-
pings and mediation for querying (see e.g. [BGK+02, BS03, HIST03, RB01, Kle01, CDGL+04]
and references therein).

The tasks of mapping data between, as well as the necessary (ontology) mappings required
for this, though quite important, are not particular to evolution on the web, nor to reactivity.
Rather, it is a general issue for querying the Semantic Web and, as such, we will rely here
on the results produced by the corresponding Working Groups of Rewerse. Also, lifting the
initial assumption that communities can be accessed by a common semantics level, will mainly
depend on the existence of query languages and ontology mappings, to be developed elsewhere
in Rewerse.

I5 will also build on the work of WG I4, “Reasoning-Aware Querying” for their work on
evaluating intra- and inter-community queries, including their ontology formalisms and on-
tology mappings. These mapping can then be extended to update propagation and message
transformation between different ontologies.

1.6 Reasoning on the Semantic Web

Reasoning on (and about) the Semantic Web is an area that deserves further research on various
topics. Not all of these topics are directly related to evolution and reactivity and, as such, will
not be directly studied within I5, nor will this document provide a systematic overview on
extant related work. In this section we point out some important aspects that should be taken
into account, especially those with influence on evolution.

Reasoning inside Communities. As stated above, the notion of community-global state,
as the union of the knowledge in the resources of a community that shares a common ontology
and agrees in certain consistency requirements has to be defined and investigated. Reasoning
about consistency and consistency preservation is obviously related to I5.
Outside a community, consistency, and completeness can in general not be guaranteed or as-
sumed.

Uncertainty and Incomplete Knowledge Throughout the Web. The Semantic Web
gives the user (and its resources) an “infinite” feeling (no instance can ever claim to collect all
knowledge of the Web as a whole). Thus, “global” reasoning inside the Web must be based on a

17

“as-far-as-I-know”-logic: all reasoning on the Web has to cope with uncertainty and incomplete
knowledge, and, in case of derived facts in general also with nonmonotonic “belief” revisions
(negation, aggregates).
Dealing with Quality of Information. Obviously, the Web (and also the Semantic Web)
contains inconsistent information - both by simply erroneous or outdated information. Ad-
ditionally, many information resources provide opinions, beliefs, conjectures and speculations.
Often, these should also be handled (e.g., for answering questions like “what stocks in auto-
mobile industry are recommended to buy?”). Even, information about (here, we do not mean
metadata, but e.g., evaluations of the trustworthiness and the quality, or comments about
statements of other resources) resources is available. Thus, reasoning has to cope with incon-
sistencies, incompleteness, and with modal information.
Inconsistencies and Consistency Management. Inconsistencies can occur inside the in-
formation of a resource (to be avoided), between resources of a “community” (in most cases,
also to be avoided), and across the whole Web (immanent). The latter ones cannot be avoided,
but must be handled by each resource.

For consistency management, in addition to simply “importing” updates, resources must be
able to apply additional reasoning. There may be the case that the receiver of an update does
not want to implement an update because he does not believe it. Then, the community-global
knowledge becomes either inconsistent (when dealing with facts), or there are different “opin-
ions” or “presentations” (e.g., when handling news from different news services). Additionally,
a resource can come to the decision that one of its informers must be replaced by another one.
So, the communities can be subject to internal restructuring (still sharing the same ontology,
but with different communication paths).

The Semantic Web itself also has to act in a self-cleaning way: Resources that provide erro-
neous or outdated information can be notified, requested for update, and potentially sanctioned
by others. For doing this, instances with powerful reasoning capabilities (and equipped with
some authority!) are needed. Communities inside the Semantic Web will turn out to be useful
for this kind of quality management.
Reasoning about Dynamic Aspects. Mainly for reasoning about evolution and reactivity
in the Web, a logic for reasoning about several states is needed. We need to be able to express
evolution and reactivity of individual resources, and of the global state. Here again, two issues
will be handled:
• Low number of successive states for describing immediate reactions, e.g., for update prop-

agation and consistency maintenance; here, a detailed reasoning on the states is required,
and a logic in the style of classical temporal logics, LTL or CTL with a Kripke semantics
based on a given semantics for individual states, could be used.

• Activities involving a higher number of states for describing transaction-like activities on the
Web, in most cases on a higher level of abstraction. Here, the dynamic aspect is dominating
over the actual data, and a logic in the style of Transaction Logic [BK94] is useful.

Especially, one further needs to find and investigate suitable formalizations for describing the
autonomous, distributed nature of the knowledge and its change in time, and to express a global
semantics and reasoning principles about the Web Evolution and Reactivity rule language in
these formalisms. The formalization of rules must be investigated from the “specification”, the
“implementation”, and the “planning” point of view. Here,

Actions in the Head: “classical” ECA rules that are evaluated “bottom-up” as in many
explicitly state-oriented approaches like e.g. progressive rules in Production Rules [AWH95,

18

PV95], Statelog [LLM98], Evolving Algebras aka Abstract State Machines [Gur88], or logic
programs updates [ABLP02]. If the rule body evaluates to true in some state, the update
specified in the head must be applied.

Actions in the Body: The execution of (basic) actions is triggered in the rule body in the
top-down approach, e.g. in Transaction Logic [BK94]: The “target” in the rule head is
implemented by the expression given in the rule body, consisting of queries (i.e., conditions
that can be evaluated at any timepoints in the state sequence), subgoals (in the same way
specified how to reach in rules), and elementary actions (i.e., in Transaction Logic, updates).

Example 1.6 (Actions in the Body/Actions in the Head) For a flight reservation, the
rule:

reservation(Name,Flight) :- available(Flight,Place),
insertTicket(Name,Flight,Place), printTicket(Name,Flight,Place).

describes how a flight reservation is accomplished by inserting a booking into the database and
printing it.
On the other hand,

insertTicket(Name,Flight,Place), printTicket(Name,Flight,Place) :-
reservation request(Name,Flight), available(Flight,Place).

expresses the same in a production-rule-like syntax where the actions to be taken are given in
the head of the rule.

The “target-driven” top-down/actions-in-the-body approach is mainly useful for planning
how to reach a given goal, including reasoning about complex (trans)actions. The “event-
and data-driven” bottom-up approach directly defines actual “reactive” behavior, where the
question of how a given target can be reached requires additional reasoning about the state
sequence generated by the execution of rules.

Summary and Outlook

The view described up to this point is to result in a rule-based infrastructure for implementing,
and reasoning about, evolution and reactivity on the Web.

In it, we start from the non-semantic level where resources can mainly be divided into data-
oriented resources that are usually described by an XML schema, and service-oriented resources
(e.g. Web services), described by some interface description mechanism (e.g. OWL-S or WSDL).
An intermediate ECA rule language for the Web will be a first step.

In the following chapters, we give a more detailed account on the state of the art in some
relevant areas.

19

20

Chapter 2

Logics for Updates and State
Change

Kripke structures serve as a generic model-theoretic framework for multi-state structures: the
semantics of the individual states is given by some single-state interpretations, and the Kripke
structure provides the “infrastructure” that connects the states. Some (arbitrary) logic is used
for the single-state interpretations, and this logic is extended, in a modular way, with additional
concepts for handling the multi-state aspects. This can be done by modalities (in our situation,
temporal modalities, but modalities of knowledge and belief are also often used).

Many approaches to multi-state reasoning use Kripke structures explicitly; here, temporal
logics will be described. Other, often specialized formalisms, extend single-state formalisms
with a notion of state (in which Kripke Structures are -more or less explicitly- the model of
choice).

Yet other formalisms -although basically mappable to Kripke Semantics- put emphasis on
the dynamic aspects, whereas the single states and their properties become less important
(Transaction Logic, and, even much stronger, process calculi).

2.1 Kripke Structures

Assume some logic (e.g., first-order logic) to describe individual states. A (first-order) Kripke
structure is a triple K = (G,R,M) where G is a set of states (to be interpreted as states or
possible worlds), R ⊆ G × G is an accessibility relation, and M is a function which maps every
state g ∈ G to a (first-order) structure M(g) = (M(g),U(g)) over Σ with universe U(g). G
and R are called the frame of K. A path p in a Kripke structure K = (G,R,M) is a sequence
p = (g0, g1, g2, . . .), gi ∈ G with R(gi, gi+1) holding for all i.

2.2 Modal Temporal Logics – based on Kripke Structures

As mentioned above, Kripke structures provide just a multi-state “infrastructure”: a suitable
single-state-logic must then be chosen for an application, which is then extended to Kripke
structures. Here, temporal extensions, where the Kripke structure is interpreted as a temporal
structure, are suitable for our project (note that a large research area deals with “possible

21

worlds semantics” – they use the same basic modalities as below, but with other intentions,
and another semantics of the accessibility relation R of the Kripke structure). Even in the area
of temporal applications, there are different interpretations of Kripke structures and temporal
modalities.

Due to the historical development of modal logics, the modal operators 2 and 3 were
introduced. 2F stands for F is necessary true, resp. F holds in all possible worlds, and 3F
for F is possibly true, resp. there can be some world where F holds. Translated to modal
logic of time (temporal logic), the operators are interpreted as: 2F – “always” (F holds in all
subsequent states), and 3F – “sometimes” (F eventually holds).

For reasoning in temporal Kripke structures, there are two alternatives: linear time considers
a single path, whereas branching time considers the whole tree-like structure.

2.2.1 Linear Time Temporal Logics

The most intuitive idea for interpreting temporal logic is a sequence of states. Here, the basic
operators of temporal modal logic are others, having a pure temporal semantics: ◦ (“nexttime”)
and until:

• ◦F : in the next state, F holds.
• F until G: there is a subsequent state where G holds, and in all states between now and this

state, F holds.

The semantics of the temporal modal operators 3 and 2, is equivalently defined via until
(note that there is a also an inductive definition based on ◦ which is typically used for model
checking-like approaches):

• 3P := true until P and
• 2P := ¬3¬P .

The Logics PLTL and FOTL. Linear Temporal Logic LTL (here described, as proposi-
tional PLTL; analogously there is first-order FOTL) extends propositional logic with the above
temporal operators: each state is a propositional interpretation, and the states are connected
as a linear Kripke structure (or, a single path in a branching Kripke structure is considered).

The language of LTL formulas is defined as follows:

• Every (propositional or first-order) formula is an LTL formula.
• With F and G LTL formulas, ◦F , 2F , 3F and (F until G) are LTL formulas.

The satisfaction relation |=PLTL (for short also denoted by |=) is defined according to the in-
ductive definition of the syntax with respect to a propositional (infinite) linear Kripke structure
K = (G = {g1, g2, . . .}, {(n, n+1) | n ∈ IN},M), based on the propositional satisfaction relation
|=FOL:

Let g = gi a state in K, A an atomic formula, F and G LTL formulas and χ a variable
assignment. Then,

22

(g, χ) |= A :⇔ (M(g), χ) |=PL A ,

(g, χ) |= ¬F :⇔ not (g, χ) |= F ,

(g, χ) |= F ∧G :⇔ (g, χ) |= F and (g, χ) |= G ,

(gi, χ) |= ◦F :⇔ (gi+1, χ) |= F ,

(gi, χ) |= F until G :⇔ there is a j ≥ i s.t. (gj , χ) |= G
and for all k : i ≤ k < j, (gk, χ) |= F .

2.2.2 Branching Time Temporal Logics

Applying the classical temporal modalities 3 and 2 (without ◦ and until) in a branching struc-
ture leads to surprising interpretations: Whereas in linear time logic, g |= 3F means that F
will eventually hold in the possible future (“sometimes”), the same formula for branching time
means that there is a future, where F will eventually hold (“not never”). For this aspect and
the (dis)advantages of linear vs. branching time logic, see [Lam80] (L. Lamport: “’Sometimes’
is Sometimes ’Not Never’”) and [EL85] (E. A. Emerson and C.-L. Lei: “Modalities for Model
Checking: Branching Time Strikes Back”) and several other papers.
The Logic UB. For combining the expressiveness of both linear and branching time logic,
in [BMP81] the logic UB (unified branching time) has been introduced. UB solves the problem
by path quantifiers A (“on all paths”) and E (“there exists a path such that ...”). With this,
the logic is fundamentally different from the historical modal logics. The modalities of UB are
the following: A2, E2, A3, E3, A◦ and E◦.
The Logic CTL. CTL (Computation Tree Logic) has been introduced in [CE81], originally as
propositional logic for branching time (by extending propositional CTL with first-order atomic
formulas and quantifiers, first-order CTL is obtained, which is described below). It is based
on UB and additionally provides the binary operator until. In the syntactical definition, the
modalities do not consist of the combination of a path quantifier and a modal operator, but
these features are distinguished:
• temporal modal operators ◦, 3, 2 and until (although 3 and 2 can be expressed by until,

they are used here as “basic” operators to obtain the syntax definition described below),
• an existential path quantifier E and a universal path quantifier A.

In CTL, two different types of formulas can be distinguished: State formulas that hold in a
state (all first-order formulas are state-formulas), and path formulas, that hold on paths, i.e.,
on sequences of states.

The language of CTL-formulas does not allow arbitrary combinations, but is defined as
follows:
• Every first-order formula is a CTL-state formula.
• With F and G CTL-state formulas, ¬F , F ∧G and F ∨G are CTL-state formulas.
• With F a CTL-state formula and x a variable, ∀x : F and ∃x : F are CTL-state formulas.
• With F and G CTL-state formulas, ◦F , 2F , 3F and (F until G) are CTL-path formulas.
• With P a CTL-path formula, ¬P is a CTL-path formula.
• With P a CTL-path formula, AP and EP are CTL-state formulas.
• Every CTL-state formula is a CTL-formula.

With the above definition, in CTL every (possibly negated) modal operator is immediately
preceded by a path quantifier.

23

The satisfaction relation |=CTL (for short also denoted by |=) is defined according to the
inductive definition of the syntax with respect to a first-order Kripke structure K = (G,R,M),
based on the first-order satisfaction relation |=PL:

Let g ∈ G be a state, p = (g0, g1, . . .) a path in K, A an atomic first-order formula, F and
G CTL-state formulas, P a CTL-path formula and χ a variable assignment. Then,
(g, χ) |= A :⇔ (M(g), χ) |=PL A ,

(g, χ) |= ¬F :⇔ not (g, χ) |= F ,

(g, χ) |= F ∧G :⇔ (g, χ) |= F and (g, χ) |= G ,

(p, χ) |= ◦F :⇔ (g1, χ) |= F ,

(p, χ) |= F until G :⇔ there is an i ≥ 0 s.t. (gi, χ) |= G and
for all j : 0 ≤ j < i, (gi, χ) |= F ,

(p, χ) |= ¬P :⇔ not (p, χ) |= P ,

(g, χ) |= EP :⇔ there is a path p = (g = g0, g1, . . .) in K s.t. (p, χ) |= P .

The semantics of the modal operators 3, 2, and of the path quantifier A is defined via until
and E:

3P := true until P , 2P := ¬3¬P , AP := ¬E¬P .

Thus, the semantics of the derived operators is formally given as

(g, χ) |= F ∨G ⇔ (g, χ) |= F or (g, χ) |= G ,
(p, χ) |= 2F ⇔ for all i, (gi, χ) |= F ,
(p, χ) |= 3F :⇔ there is an i s.t. (gi, χ) |= F ,
(g, χ) |= AP ⇔ for all paths p = (g = g0, g1, . . .) in K (p, χ) |= P ,
(g, χ) |= ∀x : F ⇔ for all d ∈ U(g), (g, χd

x) |= F .

The Logic CTL+. In CTL, some composite modal operators cannot be expressed:

F unless G := (F until G) ∨ (2(F ∧ ¬G))
F before G := ¬G until (F ∧ ¬G)
F atnext G := (¬G until (F ∧G)) ∨2¬G

Thus, the syntax is extended to CTL+ [EH83] by allowing composition of path formulas by the
usual logical connectives:

• With P and Q CTL+-path formulas, P ∧Q and P ∨Q are CTL+-path formulas.

The semantics is defined straightforwardly: Let p = (g0, g1, . . .) be a path in K, and P and Q
CTL+-path formulas.

(p, χ) |= P ∧Q :⇔ (p, χ) |= P and (p, χ) |= Q.
(p, χ) |= P ∨Q :⇔ (p, χ) |= P or (p, χ) |= Q.

As a derived modal operator, unless, definable in CTL+as F unless G ≡ (F until G) ∨2(F ∧
¬G), plays an important role in reasoning about processes.
In [EH82] and [EH83] it has been shown that CTL and CTL+ have the same expressibility, and
an algorithm for transforming CTL+-formulas to CTL-formulas is given.

24

The Logic CTL?. The most expressive logic of the CTL family is CTL? [EH83] which al-
lows nested modal operators and additional combinations of first-order quantifiers and path
quantifiers:

• Every first-order formula is a CTL?-path formula.
• With P and Q CTL?-path formulas, ◦P , 2P , 3P and (P until Q) are CTL?-path formulas.
• With P a CTL?-path formula and x a variable, ∀x : P and ∃x : P are CTL?-path formulas.

The semantics of the additional formulas (including derived modalities) is also defined straight-
forwardly: Let p = (g0, g1, . . .) be a path in K, where p|i denotes the suffix p|i = (gi, gi+1, . . .)
of p beginning with gi, which is also a path in K. Let F a CTL?-state formula, P and Q
CTL?-path formulas and χ a variable assignment.

(p, χ) |= F :⇔ (p ↓0, χ) |= F ⇔ (g0, χ) |= F.

(p, χ) |= ◦P :⇔ (p|1, χ) |= P.

(p, χ) |= 2P :⇔ for all i : (p|i, χ) |= P.

(p, χ) |= 3P :⇔ there is an i s.t. (p|i, χ) |= P.

(p, χ) |= P until Q :⇔ there is an i ≥ 0 s.t. (p|i, χ) |= Q and
for all j : 0 ≤ j < i, (p|j , χ) |= P.

(p, χ) |= ∀x : P :⇔ for all d ∈ U(K), (p, χd
x) |= P .

(p, χ) |= ∃x : P :⇔ there is a d ∈ U(K) s.t. (p, χd
x) |= P.

Thus, a first-order formula also can be read as a path formula: it describes a property of the
first state on a path (note that later, Transaction Logic will follow this principle).

Comparison between CTL, PLTL, and CTL?. Overviews of the above logics are given
e.g. in [Eme90, Sti95]. In [MP91], the formula classes Safety, Guarantee, and Obligation (ex-
pressible in CTL for branching structures), and Response, Persistence, and Reactivity (need
CTL? – note that Fairness is a Reactivity-formula, thus not expressible in CTL) are analyzed
that are important for reasoning about processes.

The different expressiveness of the above logics is mirrored in the complexity for verification:
the fundamental difference between CTL and PLTL/CTL? is that in the latter there can be
iterated modal operators, leading to a higher complexity. The complexities for (propositional)
model checking in these logics are as follows [McM93] let f be the number of operators in a
given formula, V the number of states, and E the number of transitions to be checked:

CTL: O(f · (V +E)) ,
CTL with n fairness constraints: O(f · (V +E) · n2) ,
PLTL with n fairness constraints: O(2f · (V +E) · n2) (pspace-complete) ,
CTL? with n fairness constraints: same as PLTL .

Note that there are still some formulas that cannot be expressed in CTL?.
Above, temporal logics have been used for describing “simple” states in a Kripke structure.

The semantics of the accessibility relation wrt. states and state change (i.e., execution of actions)
is considered in e.g., in Dynamic Logic Hennessy-Milner-Logic (see subsequent sections), or
several labelled modal logics. Furthermore, CTL is applied in the context of updating knowledge
bases in EKBL (Evolving Knowledge Base Logic) in [EFST02b].

25

2.2.3 Past Tense Logic

Past Tense Logics add past-time temporal operators: • (previous state), ¨ (sometimes in the
past), ¥ (always in the past), and since (e.g., A since B), symmetrical to the future tense
operators. Note that for past-tense operators there is no difference between linear and branching
structures – looking backwards from a given state, there is only a single path (i.e., a single
“past”).

In [GPSS80], it is shown that in the propositional case, past-tense connectives do not increase
the expressiveness of temporal logic. The use of modal temporal logic for executable process
specifications is described in [Gab89], quite similarly to Transaction Logic (see Section 2.5).

Past tense modalities have been employed for checking temporal constraints and temporal
conditions in ECA-style rules, e.g. in [Cho95c, SW95]. [Cho95c] uses full first-order past tem-
poral logic, with ∃ and ∀ quantifiers. [SW95] replaces the quantifiers by a functional assignment
[X ← t]ϕ(X) that binds a variable X to the value of a term t in a given state. This ensures
safety of formulas, but the full expressiveness of using a universal quantifier is not provided.
Both approaches use incremental algorithms for detecting complex temporal events.

2.2.4 Dynamic Logic

Dynamic Logic [Har79, Har84, Pra76] provides a similar theoretical framework. Every language
of Dynamic Logic consists of a first-order signature Σ, several logical and non-logical symbols,
and a set A of atomic programs.

Dynamic Logic makes no distinction between states and the corresponding first-order struc-
tures: Γ denotes the collection of possible states, where each state I = (I,U) ∈ Γ is a first-order
structure over Σ. Thus, semantically, states are not explicitly seen as semantical entities in Dy-
namic Logic. The modal operators are labelled with programs given by the algebra 〈A, {; ,∪,? }〉,
(“;” denotes sequential composition, ∪ denotes alternative composition (“choice”), and ? de-
notes iteration). With every program α, a binary relation m(α) ⊂ Γ×Γ is assigned. The main
difference between CTL and Dynamic Logic lies in the scope of the modalities: The only basic
modality in Dynamic Logic is 3DL with the semantics

I |= 〈α〉DLF ⇔ there is a state J such that (I,J) ∈ m(α) and J |= F

In agreement with the tradition, 2DLF := ¬3DL¬F is defined to be the dual of 3DL. Thus,
the modalities of Dynamic Logic look only one transition ahead. Thus, the eventually, always,
and until -operators can not be expressed in DL without resorting to a fixpoint logic.

2.2.5 Hennessy-Milner Logic

In [Sti89] and [MPW92], Hennessy-Milner-Logic, HML, a modal logic interpretation of the CCS
calculus (see Section 2.6) is given. There, the modal operators 3 and 2 are interpreted in their
historical sense as “possibly” and “necessarily” as in Dynamic Logic. To avoid confusion with
the temporal modalities, for this interpretation the symbols3i HML and ¤i HML for i ∈ Act∗ are
used:
The set of formulas of Hennessy-Milner-Logic, FmlHML, is defined inductively as

• T ∈ FmlHML ,
• F ∈ FmlHML ⇒ ¬F ∈ FmlHML ,

26

• F, G ∈ FmlHML ⇒ F ∧G ∈ FmlHML ,
• F ∈ FmlHML and a ∈ Act∗ ⇒ 3aHMLF ∈ FmlHML .

(instead of3aHML , also 〈a〉HML can be written).
The satisfaction relation |=:=|=HML between processes and HML-formulas is defined by
1. P |= T for all processes P ,
2. P |= ¬F :⇔ not P |= F ,
3. P |= F ∧G :⇔ P |= F and P |= G ,

4. P |=3aHMLF :⇔ there is a process P ′ s.t. P a→ P ′ and P ′ |= F .
Additionally, derived expressions in HML are defined:
• F ≡ ¬T ,
• F ∨G ≡ ¬(¬F ∧ ¬G) ,
• 3aHMLF ≡ 〈a1〉HML . . . 〈an〉HMLF for a = a1. · · · .an ,
• ¤aHMLF ≡ ¬3aHML¬F .

The following examples illustrate the modalities of Hennessy-Milner-Logic:
• P |=3cHML3dHMLT means, that the process P can execute c, followed by d.
• P |= ¤aHMLF means that P cannot execute a.
• A storage bit with read/write actions is in a state where its stored value is 0 iff s |=
〈read 0〉HMLT.
Thus, the semantics of queries can also be expressed in HML.

Here, the difference between the interpretation of the modal operators between CTL and HML
becomes visible: In CTL, the modal operators reach into the future along a single path and the
path quantifiers range orthogonally over all possible futures, speaking about paths not about
states. In HML, the modal operators look ahead one step on every path. Thus, it is not possible
in HML to express properties like “P will eventually execute a” or “in the next step, P will
execute a”.

2.3 State-Oriented Datalog Extensions

Several approaches are based on extending “usual” logic frameworks with a notion of state. By
extending Datalog with a notion of state, (re)active production rules and deductive rules can be
handled in a unified way, thereby combining the advantages of active and deductive rules. Two
such closely related Datalog extensions are XY-Datalog [Zan94, MZ97] and Statelog [LLM98]
(see [KLS92] for an early precursor of the latter). XY-Datalog and Statelog are themselves
closely related to Datalog1S [Cho95a], a query language for temporal databases.

In Statelog [LLM98], access to different database states is accomplished via state terms of
the form [S+k] , where S+k denotes the k-fold application of the unary function symbol “+1”
to the state variable S. Since the database evolves over a linear state space, S may only be
bound to some n ∈ IN0.

A Statelog database D[k] at state k ∈ IN0 is a finite set of facts of the form [k] p(x1, . . . , xn)
where p is an n-ary relation symbol and xi are constants from the underlying domain. A Statelog
rule r is an expression of the form

[S+k0] H ← [S+k1] B1, . . . , [S+kn] Bn

where the head H is a Datalog atom, Bi are Datalog literals, and ki ∈ IN0.

27

In most cases, Statelog rules are required to be progressive, since the current state cannot
be defined in terms of future states, nor should it be possible to change past states: A rule r is
called progressive, if k0 ≥ ki for all i = 1, . . . , n. If k0 = ki for all i = 1, . . . , n, then r is called
local and corresponds to the usual query rules. On the other hand, if k0 = 1 and ki = 0 for all
i ≥ 1, r is called 1-progressive and denotes a transition rule. A Statelog program is a finite set
of progressive Statelog rules.

Every Statelog program may be conceived as a standard logic program by viewing the
Statelog atom [S+k] p(t1, . . . , tn) as syntactic sugar for p(S+k, t1, . . . , tn). This way, notions
(e.g., local stratification) and declarative semantics (e.g., perfect model) developed for deductive
rules can be applied directly to Statelog. A Kripke-style semantics for Statelog, based on a
temporal structure of Datalog states has also been presented.

In [Zan94], XY-Datalog has been proposed as a unified framework for active and deductive
rules. XY-Datalog rules can be regarded as a certain class of Statelog rules. Roughly speak-
ing, X-rules correspond to nonrecursive local rules of Statelog, while Y-rules correspond to
1-progressive rules.

A similar extension of F-Logic [KLW95], which allows for a comprehensive treatment of
state-changes and updates in databases by providing the required semantic and syntactic flexi-
bility, has been proposed in [MSL97]. Providing as well a model-theoretic, declarative semantics
as an operational semantics which is implemented by the Florid system, State-F-Logic acts
at the same time as specification language, implementation language, and metalanguage for
proving properties of a system.

Relational Transducers

Whereas the semantics of the above approaches is usually defined in terms of Kripke structures,
another point of view is taken in recent work on relational transducers. Relational transducers
are specified by a state transition function, and, additionally an output function. In [AVFY98],
a rule-based approach is investigated. Similar to the approach of the Situation Calculus (see
Section 2.8), predicates are partitioned into fixed ones (the database relations), and state-
dependent ones (input, state, output, and log). The underlying semantics is similar to the
inflationary semantics of Datalog: the state relations accumulate all received inputs. In contrast
to Statelog and XY-Datalog described above, their rules do not contain states explicitly, but
always the head refers to the subsequent state.

Their investigations focus on proving correctness properties, i.e., log checking (whether a
certain log is valid wrt. a given set of business rules), goal reachability and progress, temporal
assertions, and transducer equivalence. For the latter, they apply the notions of bisimulation
as defined originally in the area of process algebras (cf. Section 2.6).

In [Spi00], verification and its complexity issues are investigated by applying Abstract State
Machines (see Section 2.4) to relational transducers by restricting the form of the rules.

2.4 Abstract State Machines

The “functional, algebraic” counterpart to Datalog are Abstract State Machines, formerly known
as Evolving Algebras. The concept of “Evolving Algebras”, has been introduced for specifying
the operational semantics of processes in [Gur88, Gur95]. Evolving Algebras have originally
not been introduced from the logical point of view, but for describing the operational semantics

28

of processes in the sense of Turing’s Thesis: “Every algorithm can be described by a suitable
Evolving Algebra”. Thus, for any given algorithm, on any level of abstraction an Evolving
Algebra can be given.

In universal algebra, a first-order structure over a signature where the equality symbol is the
only relation symbol, is called an algebra. For emphasizing the difference to an Evolving Algebra,
we use the term static algebra (which corresponds to a single state, described by functions only).
For describing static algebras, similar notions are used as for first-order structures:

The signature Σ of a static algebra is a finite set of function symbols, each of them with a
fixed arity, including 0-ary constants. The notions of terms are defined as in first-order logic.

A static algebra (A,S) over a (functional) signature Σ is then an interpretation of Σ, inducing
an evaluation of terms. Note that every relation can be represented by its characteristic function.

An Evolving Algebra EA is based on static algebras, which are also called states. The
symbols from Σ can be interpreted state-independently, thus static and dynamic functions can
be distinguished (the latter also known as fluents in other frameworks; e.g., Situation Calculus
[Rei93], GOLOG [LRL+97], also [San94]).

An Evolving Algebra is given by an initial state Z(EA) (which also determines the in-
terpretation of the state-independent function symbols for all states) and a program P (EA)
(a set of transition rules and rule schemata) describing the change of the interpretation of
state-dependent function symbols in a Pascal-like syntax.

An elementary update rule is an update of the interpretation of a function symbol at one
location: f(t1, . . . , tn) := t0 , where f is an n-ary function symbol and ti are terms.

The set of rules is defined by structural induction by blocking, and conditionals (if-then);
also rule schemata that contain free variables are allowed. A program P (EA) of an Evolving
Algebra EA is a finite set of rules and rule schemata. A program is then executed by applying
rules. Note that, in contrast to Logic Programs, there is no fixpoint requirement.

For reasoning about an Evolving Algebra, a Kripke structure with appropriate states, and
a suitable temporal logic can be used.

2.5 Path Structures and their Logics

For dealing with processes or transitions, several logics use path structures. The idea goes back
to propositional Dynamic Logic, and the term path model came up with Process Logic [HKP82].
In contrast to the temporal logics described above, their focus is less on the states than on state
transitions and paths. This idea has then been continued by Transaction Logic [BK94].

Assume a language L with a set AF of primitive formulas and a set AP of primitive programs
(elementary actions). A (propositional) path structure for L is a triple (W,π,m) where W is
a set of states or worlds, π : AF → 2W gives the interpretation of atomic formulas, and
m : AP → 2W×W provides the interpretation of atomic programs.

In contrast to Dynamic Logic, where all formulas are state formulas, the syntax of logics
for path structures focusses on the notion of path formulas: The |=-relation relates paths to
formulas. Nevertheless, in those logics, paths consisting of exactly one state actually take the
role of states.

Transaction Logic. Transaction Logic TR [BK94] is based on path structures, reminiscent
of Process Logic [HKP82]. In TR, in contrast to modal logic where states are given as first-
order structures, states are given as abstract theories. With this general concept, non-standard
semantics, e.g., Clark’s Completion [Cla78], perfect models [Prz88], or well-founded semantics

29

[GRS91], can be handled, allowing to characterize indefinite knowledge, deductive databases,
logic programs etc. The evaluation of formulas wrt. states is provided by a state data oracle Od:
for every state identifier i, Od(i) is a set of e.g., first-order, formulas that are considered to be
all and the only truths about the database state i. Transitions are given by the state transition
oracle Ot which maps pairs of database states to sets of ground formulas (i.e., elementary
transitions). Thus, with S denoting the set of state identifiers, (S,Od,Ot) gives the same
information as a path model for Process Logic.

A language L in Transaction Logic is defined by a state data oracle Od which determines
the alphabet P of predicate symbols and the set S of identifiers of states, and a state transition
oracle Ot. L contains also a distinguished set F of function symbols which are interpreted
state-independently.

The semantics is based on a version of path structures, i.e., the satisfaction of formulas
is defined on paths, not on states: A path of length k ≥ 1 over L is a finite sequence π =
〈D1,D2, . . . ,Dk〉 of state identifiers; π1 ◦π2 = 〈D1, . . . ,Di〉 ◦ 〈Di, . . . ,Dk〉 is a split of π. A path
structure M over L is a triple 〈U , IF , Ipath〉 where
• U is the domain of M,
• IF is an interpretation of the function symbols. Note that these functions are interpreted

state-independently.
• Ipath assigns to every path π = 〈D1, . . . ,Dn〉 a semantic structure 〈U , IF , IP〉 where IP is

an interpretation of predicate symbols.
Ipath is subject to two restrictions:
• Compliance with the data oracle: Ipath(〈D〉) |= φ for every φ ∈ Od(D).
• Compliance with the transition oracle: Ipath(〈D1,D2〉) |= a whenever a ∈ Ot(D1,D2).

Atomic formulas in Transaction Logic are denoted by predicates p(t1, . . . , tn) (for atomic for-
mulas, the data oracle or the transition oracle is queried). Transaction formulas are built by
the connectives ¬,∨,∧,⊕,⊗, and the quantifiers ∃ and ∀. Let M = 〈U, IF , Ipath〉 be a path
structure, π a path and β a variable assignment. Then,

(M, π, β) |=TR p(t1, . . . , tn) ⇔ (Ipath(π), β) |=(Od,Ot) p(t1, . . . , tn) ,
(M, π, β) |=TR φ⊗ ψ ⇔ (M, π1, β) |=TR φ and (M, π2, β) |=TR ψ

for some split π = π1 ◦ π2 of π , and
(M, π, β) |=TR φ⊕ ψ ⇔ (M, π1, β) |=TR φ or (M, π2, β) |=TR ψ

for every split π = π1 ◦ π2 of π .

Negation, disjunction, conjunction, universal and existential quantification are defined as usual.
Since in Transaction Logic, the internal representation of states is not predetermined, struc-

tures of any type can be used. For example, pure functional signature (e.g. static algebras),
pure relational signature (Datalog), first-order, or even object-oriented (F-Logic), can be used.

Due to the restriction of Ot to elementary actions, parallel composition of actions in a single
transition is not possible. In [BK95], an interleaving semantics for parallelism is given.

The “architecture” of a TR model (Od,Ot) is in some sense equivalent with a Kripke struc-
ture with appropriate (temporal) logics: the modelling of states corresponds to the data oracle,
the modelling of transitions corresponds to the transition oracle, and the logic provides explicit
connectives for reasoning about paths (that can be derived from LTL).

The serial Horn fragment of Transaction Logic, i.e., formulas of the form a0 ← a1⊗ . . .⊗an,
plays a special role for Transaction-Logic programming, providing a top-down SLD-style proof

30

procedure. With the above rules, transactions can be defined as complex actions, providing a
declarative specification of the database evolution. Here, the concept of complex actions is not
based on a hierarchical state space but on a sequential one: to execute a0 (in SLD terminology:
to prove a0) in a state D means to execute a1 ← a1⊗ . . .⊗ an by generating n states; thus, the
final state a0(D) is “specified” as a1 ⊗ . . .⊗ an(D). By the connective ∧, dynamic constraints
on transaction execution can be specified.

2.6 Labelled Transition Systems and Process Algebras

Process Algebras describe the semantics of processes in an algebraic way, i.e., by a set of
elementary processes (carrier set) and a set of constructors.

Formally, their semantics is expressed in terms of Labelled Transition Systems (LTS) which
are one of the fundamental concepts for modelling processes (cf. [Plo81], [vBB95]):
A labelled transition system (LTS) is a triple (S, A,→) such that
1. S is a (non-empty) set of states/configurations,
2. A is a (non-empty) set of actions/labels,
3. for every a ∈ A, →a ⊆ S × S is a binary relation.
An LTS can be equivalently defined as a tuple (S, {Ra | a ∈ A}) [vBB95], leading to Kripke
structures for polymodal logics. Note that finite LTSs are equivalent to finite automata.

The semantics of a process algebra can either be given as denotational semantics, i.e., by
specifying the denotation of every element of the algebra (e.g., CSP (Communicating Sequential
Processes), [Hoa85]), or as an operational semantics by specifying the behavior of every ele-
ment of the algebra (e.g., CCS (Calculus of Communicating Systems), [Mil83], [Mil89]). Here,
concepts related to CCS are used.

Basic Process Algebra (BPA). For a given set Act of atomic actions,

BPAAct = 〈Act, {⊥,+, ·}〉

is the basic algebra – i.e., containing the least reasonable set of operators – for constructing
processes over Act. ⊥ is a constant denoting a deadlock, + denotes alternative composition,
and · denotes sequential composition: if x and y are processes, then x+y and x · y are processes
(syntax and semantics are formally introduced later on with CCS). PA is the union of the
concepts of Basic Parallel Processes [Chr93] and context-free processes.

BPArec extends BPA with recursion: if x is a BPArec-process (containing a free variable
X), then recX.(x) is a BPArec-process. The semantics of BPA, BPArec and extensions (e.g.,
CCS) is given as an operational semantics in terms of a labelled transition system:

Calculus of Communicating Systems (CCS). CCS extends BPA by more expressive
operators. The carrier set of a CCS algebra [Mil83, Mil89, Mil90] is given by a set Act of action
names from which processes are built by using several connectives. Every element of the algebra
is called a process. By carrying out an action, a process changes into another process. As an
LTS, a process can be regarded as a state or a configuration. Action names become labels and
the transition relation is given by the rules specifying the execution of actions.
A CCS algebra with a carrier set Act is defined as follows:
1. With X a variable, X is a process expression.
2. Every a ∈ Act is a process expression.

31

3. With a ∈ Act and P a process expression, a : P is a process expression (prefixing; sequential
composition).

4. With P and Q process expressions, P ×Q is a process expression (parallel composition).
5. With I a set of indices, Pi : i ∈ I process expressions,

∑
i∈I Pi is a process expression

(alternative composition).
6. With A ⊆ Act an action and P a process expression, P ¹ A is a process expression (restriction

to a set of visible actions).

7. With I a set of indices, Xi variables, Pi process expressions, fixj
~X ~P is a process expression

(definition of a communicating system of processes). The fix operator binds the variables
Xi, and fixj is one of the |I| processes which are defined by this expression.

The fix operator can be omitted if defining equations of the form Q := P are allowed, where
Q is a new process identifier and P is a process expression. Process expressions not containing
any free variables are processes.
The (operational) semantics of a CCS algebra is given by transition rules:

a : P a→ P ,
Pi

a→ P∑
i∈I Pi

a→ P
(for i ∈ I) ,

P a→ P ′ Q b→ Q′

P ×Q ab→ P ′ ×Q′
,

,
P a→ P ′

P ¹ A a→ P ′ ¹ A
(for a ∈ A) ,

Pi{fix ~X ~P/ ~X} a→ P ′

fixi
~X ~P a→ P ′

.

Additionally, there are some derived operators and constants:

0 :=
∑
∅ Pi

P1+P2 :=
∑

i∈{1,2} Pi

∂P := fix X(1 : X+P) , X not free in P
P1|P2 := P × ∂Q+∂P ×Q

with the corresponding transition rules

P a→ P ′

P+Q a→ P ′
,

Q a→ Q′

P+Q a→ P ′
, ∂P 1→ ∂P ,

P a→ P ′

∂P a→ P ′

P a→ P ′

P |Q a→ P ′|Q ,
Q a→ Q′

P |Q a→ P |Q′ ,
P a→ P ′ Q b→ Q′

P |Q ab→ P ′|Q′

With this definition, the subalgebra (Act,×, 1) forms a commutative monoid.
In CCS and related concepts, such as CSP [Hoa85] and ACP [BK85], there is no explicit

notion of states, the properties of a state are given by the (sequences of) actions which can be
executed.

The idea of CCS specification is illustrated by a storage bit s which can be read and written
is described by the process

fix1X0, X1 ((output 0) : X0|(input 1) : X1 , (output 1) : X1|(input 0) : X0) .

This means, that there are two processes (components): P0 which is able to output arbitrary
many 0’s, and, if written a 1, changes to P1; and P1 which can output arbitrary many 1’s, and

32

changes into P0 if a 0 is written. The storage bit is described by the first one, i.e., P0. If the
process can perform an output 0 action, this corresponds to a state (an interpretation) where
I(s) = 0, analogous for 1.

Note that the origin of the notion of bisimulation (as used in the Xcerpt language for
querying XML [BS02]) comes from process algebras.

2.7 Event Languages

Reactive rules cannot only be specified by reactions on atomic, primitive events, but can also
use the notion of complex events, e.g., “when E1 happened and the E2 and E3, but not E4 after
at least 10 minutes, then do A”. Complex events are usually expressed in terms of an event
algebra by connectives and operators; they can be parameterized by elements of the universe.
In contrast to process algebras, where most of the proposed concepts share the same set of
operators and constructors, for complex events, there are quite different approaches. Usually,
when defining an event language or an event algebra, an algorithm for detecting such events is
also given for triggering active rules in ECA-like approaches.

In Action Logic (ACT) [Pra90], events are characterized by extended regular expressions.
In addition to the usual operators, two implications, preimplication and postimplication are
introduced.

2.7.1 The Event Algebra of [CKAK94]

In [CKAK94], an event algebra which is used for event detection in the context of ECA-rules
(“on 〈event〉 if 〈condition〉 do 〈action〉”) in active databases is proposed. Semantically, an event
is a predicate E : T → {true, false} where T denotes a set of time instances. For a given set of
elementary events, the set of events is defined inductively:

• If E and F are events, then E∇F and E4F are events.
• If E1, . . . , En are events and m < n ∈ IN, then ANY(m,E1, . . . , En) is an event.
• If E and F are events, then E;F is an event.
• If E1, E2 and E3 are events, then A(E1, E2, E3) and A∗(E1, E2, E3) are events.
• If E1, E2 and E3 are events, then ¬(E1)[E2, E3] is an event.

The semantics of composite events is defined as follows:

(1) (E∇F)(t) :⇔ E1(t) ∨ E2(t) ,
(2) (E4F)(t) :⇔ E1(t) ∧ E2(t) ,
(3) (E1; E2)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E2(t) ,
(4) ANY(m,E1, . . . , En)(t) :⇔ ∃t1 ≤ . . . ≤ tm–1 ≤ t, 1 ≤ i1, . . . , im ≤ n pairwise

distinct s.t. Eij (tj) for 1 ≤ j < m and Eim(t) ,
(5) ¬(E2)[E1, E3](t) :⇔ E3(t) ∧ (∃t1 : E1(t1)∧

∧ (∀t2 : t1 ≤ t2 < t : ¬(E2(t2) ∨ E3(t2)))) ,
(6) A(E1, E2, E3)(t) :⇔ E2(t) ∧ (∃t1 : E1(t1) ∧ (∀t2 : t1 ≤ t2 < t : ¬E3(t2))) ,
(7) A∗(E1, E2, E3)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E3(t) ,

when this event occurs, a specified action for every
occurrence of E2 has to be executed in t.

33

The constructs ∇ (or), 4 (and) are standard and straightforward. “(E1;E2)” denotes the
successive occurrence of E1 and E2, where in case that E2 is a complex event, it is possible
that subevents of E2 occur before E1 occurs. ANY denotes the occurrence of m events out of n
in arbitrary order, which is also expressible by a special ∇-4-;-schema. (5) is a complex event
which detects the non-occurrence of E2 in the interval between E1 and the next E3. (6) is
an “aperiodic” event which is signaled whenever E2 occurs after E1 without E3 occurring in-
between. Note that ¬(E2)[E1, E3] occurs with the terminating event E3 whereas A(E1, E2, E3)
occurs with every E2 in the interval (if E3 never occurs, the interval is endless). The “cumulative
aperiodic event” (7) occurs with E3 and then requires the execution of a given set of actions
corresponding to the occurrences of E2 in the meantime. Thus, it is not a simple event, but
more an active rule, stating a temporal implication of the form “if E1 occurs, then for each
occurrence of an instance of E2, an event must occur later which corresponds to the execution
of a specified action”.

2.7.2 The Characterization of [Sin95]

In [Sin95], another algebra for intertask dependencies is proposed from a workflow modelling
point of view, based on [Pra90]. Here, the aim is to schedule a set of pending events such that
all of them occur. For a given set Σ of (propositional) elementary events,
• with Γ := {e, ē | e ∈ Σ}, every element of Γ is an event expression,
• ⊥ and ∂ are event expressions, and
• with E1 and E2 event expressions, E1 · E2, E1 + E2, and E1|E2 are event expressions.

The semantics of event expressions is defined in terms of traces. The set U := Γ∗ ∪Γω of traces
is defined as the set of all finite and infinite sequences over Γ. Then, the denotation of event
expressions is defined as follows:

[[e]] := {τ ∈ U | τ mentions e} for e ∈ Γ ,
[[⊥]] := ∅ ,
[[∂]] := U ,

[[E1 · E2]] := {υτ | υ ∈ [[E1]] and τ ∈ [[E2]]} ,
[[E1 + E2]] := [[E1]] ∪ [[E2]] ,
[[E1 | E2]] := [[E1]] ∩ [[E2]] .

Note that this definition does not yet guarantee that [[e + ē]] 6= [[∂]] and [[e | ē]] 6= ∅. Instead, this
is guaranteed by additional restrictions on legal computations: In a legal trace,
– every event e ∈ Γ excludes its complementary event ē,
– an elementary event (or its complementary event) occurs at most once in any computation,

and
– an elementary event or its complement occurs eventually in each computation.

Note that with this, an “event” ē, occurring somewhere in a computation, implicitly restricts
the occurrence of e along the whole computation.

An interesting property of this approach is the built-in event-detection algorithm via resid-
uation: If an elementary event e occurs, all pending events are residuated wrt. e and the
remaining pending event is computed:

⊥/e := ⊥ ,
∂/e := ∂ ,
E/e := E if e, ē do not occur in E ,
E/e := ⊥ if ē occurs in E ,

(e · E)/e := E ,
(e′ · E)/e := ⊥ if e occurs in E .
(E1 + E2)/e := (E1/e + E2/e) ,
(E1 | E2)/e := (E1/e | E2/e) .

34

In [Sin96], the issue of scheduling a workflow satisfying a set of given dependencies based on
residuation is addressed. There, the formalism is extended with temporal operators 2 and 3:

• with E an event expression, 3E, and 2E are event expressions.

Let u = (u1, u2, . . .) be a trace over Γ and i ∈ IN. Then,

u |=i ∂ for every u, i ,
u |=i e :⇔ there is a j ≤ i s.t. uj = e (e ∈ Γ) ,
u |=i E1 + E2 :⇔ u |=i E1 or u |=i E2 ,
u |=i E1 | E2 :⇔ u |=i E1 and u |=i E2 ,
u |=i E1 · E2 :⇔ there is a 0 ≤ j ≤ i s.t. u |=j E1 and (uj , uj+1, . . .) |=i–j E2 ,
u |=i 2E :⇔ for all j ≥ i : u |=j E ,
u |=i 3E :⇔ there is a j ≥ i s.t. u |=j E .

Here, if an event is satisfied in some state, it is satisfied in every later state as well, thus, for
all elementary events e ≡ 2e (called stability of events in [Sin96] – note that 3e 6≡ 23e).
u |=0 3E is satisfied if there is some i s.t. u |=i E.

2.7.3 The Event Characterization of [LBS99]

The policy description language PDL [LBS99] is an ECA-style framework (see Section 4) for
defining “policies”. It combines an event description formalism with an action language (see
subsequent section). The semantics is defined based on atomic “time steps”, called “epochs”,
in which one or more actual events can be detected (simultaneously).
The combinators are very similar to the above ones. Basic events are defined from event literals
e1, . . . , en. A basic event occurs in a single epoch:
• if ei are events, then e1& . . . &en is an event (conjunction, simultaneous occurrence of the

eis),
• if ei are events, then e1| . . . |en is an event (disjunction, occurrence of at least one of the eis).

The the event !e is “detected” in an epoch, if e is not detected in this epoch. Using deMorgan
rules, !e is defined for all basic events.
Composite events that are detected over several epochs (i.e., in the last epoch where one of its
components is detected) are then constructed from composite events E1, . . . , En:
• sequence: E1,. . . ,En–1,En occurs, if En occurs, and has been immediately preceded by En–1

etc.,
• iteration: ˆE represents the sequence of zero or more occurrences of E,
• The group(E) construct is used for “ignoring” repeated detections of an event, i.e., the event

(e1, group(e2)) is detected only once in a sequence where e1 . . . e2 . . . e2 occurs [note that in
the semantics definition group(e) is only defined for basic events,

• policy-defined events pde(parms) are defined by triggers, i.e., if a (complex) event is detected
in some situation, and a given condition is satisfied, the policy-defined event pde(parms)
“occurs” in the next step, where parms are determined by the condition and parameters of
the complex event.

Note that the above definition does not allow specification of conjunction or disjunction of
complex events; for them only sequential connectives are defined.

The semantics of events and event detection is then defined based on event histories, traces
of an event in an event history, and minimal histories of an event E.

35

Evaluation is done then by maintaining all possible distinct partial traces for relevant events
E (using an NDFA for event E). In case that a final state of an NDFA is reached, the event is
detected and an ECA rule is activated.

2.7.4 Event Detection by Modal Temporal Logic

As an alternative to event languages, events can be expressed as temporal constraints using
modal temporal logic as described in Section 2.2. In [Cho95c], event detection is done in a
similar way to above by bookkeeping about potentially satisfied temporal constraints that are
expressed as past tense temporal formula. For each constraint (formula), it is incrementally
checked if the current state sequence is a prefix of a model of the formula. If finally the formula
is satisfied, the event expressed by the formula is detected.

2.8 Action Languages and Situation Calculus

Action languages are formal models that are used for representing action and reasoning about
the effects of actions [Rei93, BGP97, GL93, GL98a, GLL+97, GLL+04, GL98b, EFL+04, GL98a,
EFL+04] that have been mainly developed in the Knowledge Representation and Reasoning
community.

Central to this method of formalizing actions is the concept of a transition system. Here a
transition system is simply a labelled graph where the nodes are states (each described by the
set of fluents that are true in it) and the arcs are labelled with actions or sets of action.

Usually, the states are first-order structures, where the predicates are divided into static
and dynamic ones, the latter called fluents (cf. [San94]). Action programs are sets of sentences
that define one such graph by specifying which dynamic predicates change in the environment
after the execution of an action. Note that Evolving Algebras/Abstract State Machines (see
Section 2.4) are actually a special kind of action programs. Usual problems here are to predict
the consequences of the execution of a sequence of (sets of) actions, or to determine a set of
action implying a desired conclusion in the future (planning).

Moreover, several action query language exist, that allow for querying one such transition
system, that goes beyond the simple queries of knowing what is true after a given sequence of
actions has been executed (allowing e.g. to query about which sets of actions lead to a state
where some goal is true, i.e. planning as in [EFL+04]).

2.8.1 Situation Calculus

The first, and most prominent concept here is the situation calculus (originally in [MH69],
reprinted in [McC90], see also [Rei93]).

States (or situations) are elements of the domain, occurring as an argument for distinguished
predicates holds(p(x), s) and occurs(a(x), s) where p is a predicate of the application domain
and a is an action. Events (mainly actions) in a situation produce new situations: do a(s)
denotes the situation which is obtained by executing an action a in a situation s. A situation
is a first order functional term do an(do an–1(. . . (do a1(s0)))), where ai are actions and s0 is a
constant denoting the initial situation; the values of fluents in s0 are specified by formulas of
the form holds(p(x), s0).

36

Actions are characterized by preconditions, e.g.

occurs(a(x), S) → holds(p(x), S)

and their normal effect, e.g.

holds(p(x), S) ∧ occurs(a(x), S) → holds(q(y), do a(x)(S))

describing how an action changes some fluents. The frame problem is solved by adding axioms
for assuming that fluents which are not explicitly changed, remain unchanged [Rei93].

There exist different versions of the situation calculus, e.g., the one used in GOLOG
[LRL+97], a logic programming language. There, the predicate holds is omitted and the pre-
conditions are characterized by a distinguished predicate, i.e. Poss(a(x), s) ≡ holds(p(x), S). In
GOLOG, frame axioms are stated explicitly.

Every set of situation calculus formulas has a natural mapping to Kripke structures.
The situation calculus does not provide constructs for verifying temporal properties, nei-

ther modalities, nor temporal connectives. Thus the specification of temporal constraints or
requirements is not possible.

2.8.2 Action Languages

Language B
The B language [GLL+97, GL98a] is a generalization of the so-called language A [GL93](which
itself represents the propositional fragment of the ADL formalism [Ped89]). It allows conditional
and non-deterministic actions and, unlike A, also for the representation of actions with indirect
effects. A program in B is a set of static and dynamic laws, of the forms, respectively:

L if F
A causes L if F

where L is a fluent literal, F a conjunction of literals, and A an action name. A program in
A is as in B but without static laws. Intuitively a static law states that every possible state
satisfying the conjunction F must also satisfy L, and a dynamic law that if F is satisfied when
action A occurs then L is true in the immediate subsequent state. Given a sets of static and
dynamic laws, a transition system is defined according to these intuition. Basically, states are
all interpretations closed under the static laws, and there is an arc from a state s to a state s′

with label a iff all Ls of dynamic rules of the form a causes L if F , where F holds in s, belong
to s′, and nothing else differs from s to s′. Besides the above briefly described language B,
several other extension of the language A exist. Language AR [GKL97], as for B, also allows
for modelling indirect effects of actions but in this case, instead of static laws, constraints
of the form always F , where F is a propositional formula, are used. Language AK [SB01]
further extends AR for formalizing sensing actions (i.e. actions for determining the truth value
of fluents). Another extension of A, to be found in [LBS99], is the language PDL which is
particularly tailored for specifying policies. A survey and comparisons on extensions of A can
be found in [EFPP04].

37

Language C
As in language B, also in C [GL98b, GLL+04] statements of the language are divided into static
and dynamic laws. The main distinction between C and B, besides the fact that C allows for
arbitrary formulas to be caused by action (rather than simply literals as in B and arbitrary
formulas as conditions (rather than conjunction only), is that C distinguishes between asserting
that a fluents “holds” and making the stronger assertion that “it is caused”, or “has a causal
explanation”.

A program in C is a set of static law and dynamic, of the forms, respectively:

caused F if G
caused F if G after U

where F and G are propositional formulas with fluent literals, and U is a formula with both
fluent literals and action names.

Intuitively, a static law states that the formula G causes the truth of the formula H, and a
dynamic rules states that after U , the static rule caused F if G is in place. The definition of a
transition system for C is based on causal theories [GLL+04]. The idea behind causal theories
is that something is true iff it is caused by something else. Let us consider a causal theory T
and a set of fluents M . Let us further consider the set TM of formulae defined as follows:

TM = {F | caused F if G ∧ M |= G}

We say M is a causal model of T iff M is the unique model of TM . Given any action program
P , a state s and a set of actions K, we consider the causal theory T given by the static laws
of P and the static laws corresponding to the dynamic laws whose preconditions are true in
s ∪K. Then there is an arc between s and s′ with label K iff s′ is a casual model of T . It is
worth nothing that in C, contrary to B, fluent inertia is not assumed by default.

Various extensions to C have recently appeared in the literature. Most prominently, the
language C++ [GLL+04] and the language K [EFL+04]. C++ further allows for multi-valued,
additive fluents which can be used to encode resources and allows for a more compact rep-
resentation of several practical problems. The language K which allows for representing and
reasoning about incomplete states, and for solving planning problems.

For more details on these languages, as well on the implementation of fragments of them in
logic programming, see [EFPP04, GL98a, GLL+04].

38

Chapter 3

Update Languages

In this chapter we give a survey on existing update languages and concepts that are relevant
for our project. For the Conventional Web, i.e. today’s Web, the content and structure of
data sources is of importance and the semantics of data is missing, as detailed in Chapter 1.
Thus, updates act on the (extensional) data level, and on the schema level. The vision of
the Semantic Web is that of a Web where the semantics of data is available for processing by
automated means, including reasoning mechanisms and intensional data. Here, update concepts
both for the data level and for the metadata level, and for intensional data and behavior are
needed.

In the first section we present several existing update languages for the conventional Web
– these will also most probably play an important role as the base layer. Currently, these are
mostly pure update languages for (local) semistructured data, whereas updates “on the Web”
are not yet supported.

Next, we give an overview of update concepts for the emerging Semantic Web. There,
updates on data have then to be specified on the semantic level, i.e. wrt. RDF, and the issues
of maintaining and updating ontologies are discussed. We then give an overview of several
update languages defined for knowledge bases and logic programming, that allow for updating
not only facts (extensional knowledge), but also derivation rules (intensional knowledge) and
reaction rules (behavior).

3.1 Update Languages for the Web

In this section we discuss existing approaches to update languages for XML and for the Web. As
the research community focussed its work on the development of query languages for XML and
for the Web, the development of update languages for XML and for the Web has not received
much attention so far. Most likely this is the reason why no declarative XML update language
has yet become a World Wide Web Consortium’s recommendation. Updates on XML data are
still in most cases performed on the DOM level.

Most existing update languages support only changes to local XML data sources, as known
from SQL. Literally, “updates on the Web” would also mean to update remote information
(that in course requires to deal with authentication issues).

There are the following proposals for languages that provide update capabilities for XML
data: Lorel, XML:DB’s XUpdate, two update extensions to XQuery proposed in [TIHW01] and

39

in [Leh01], XPathLog, XML-RL Update Language, and XChange. Commercial XML-enabled
relational databases also provide update functionality for XML contents that is based on SQL.

Usually, update languages are designed as an extension of a query language with update
capabilities. At least, an addressing mechanism for selecting parts of XML documents that
are to be modified is needed. Thus, most existing proposals for update languages for XML
have a common feature: a XPath expression is used to select nodes within the input XML
document; the selected nodes are then considered as target of the update operations. (Note
that also tree-walking transformational approaches could be used for declaratively modifying
XML data – thus, when talking about updates, e.g. as events in active rules, this possibility
must be considered.)

Lorel

The Lorel language [AQM+97] was originally designed based on OQL as a query and update
language for Stanford’s Lore [GMPQ+97] semistructured database system that, in turn, was
based on the graph-based Object Exchange Model (OEM). The language supports just simple
updates of nodes in the Lorel data graph (i.e. create and delete object names, create a new
object, and insert, delete or modify the value of attributes of an object, and to insert, delete
or modify relationships/references). There is no explicit deletion operation for objects. Instead
a garbage collection approach is taken. The Lorel query language has been migrated to XML
data, but the update features were not ported in the process. Transactional properties of
complex updates (and transactions at all) are not supported.

XML:DB’s XUpdate

XUpdate [XML00] is an update language developed by the XML:DB group1, its latest language
specification was released in late 2000 as a working draft. Note that, at that time, the query
languages XPath, XQL, and XML-QL and the transformation language XSLT were already
defined, but XQuery did not yet exist. Thus, also the name “XUpdate” is not related to
XQuery.

Similar to XSLT, XUpdate is written in XML syntax and makes use of XPath [xpa99]
expressions for selecting nodes to be processed afterwards. Simple atomic update operations to
XML documents are possible with XUpdate. The XSLT-style syntax of the language makes the
programming, and the understanding of complex update programs, very hard. Transactional
properties of complex updates (and transactions at all) are not supported.

Several XML database systems implement this language (see an overview at the end of this
section).

XQuery Update extensions

A proposal to extend XQuery [xqu01] with update capabilities is presented in [TIHW01].
XQuery is extended with a FOR ... LET ... WHERE ... UPDATE ... structure. The
UPDATE part contains specifications of update operations (i.e. delete, insert, rename, replace)
that are to be executed in sequence. For ordered XML documents, two insertion operations are
considered: insertion before a child element, and insertion after a child element. Using a nested
FOR...WHERE clause in the UPDATE part, one might specify an iterative execution of updates for

1Formerly at http://www.xmldb.org, now http://xmldb-org.sourceforge.net/

40

nodes selected using an XPath expression. Moreover, by nesting update operations, updates
can be expressed at multiple levels within a XML structure. A transaction-like concept for
complex updates (i.e. treating them as a unit, and executing in an all-or-nothing manner) is
not explicitly investigated. Alternative techniques for implementing the update operations are
presented for the case when XML data is stored in a relational database (i.e. XML update state-
ments are translated into SQL statements [KK00]). This is the only work on update languages
that reports on implementation performance. Using three sets of test data (viz. synthesized
data with fixed structure, synthesized data with random structure, and real-life data from the
DBLP2 bibliography database), experiments have been carried out in order to compare the
techniques proposed for the core update operations of insert and delete.

Update operations very similar to those described in [TIHW01] have been specified and im-
plemented in [Leh01], extended e.g. by means to specify conditional updates. The proposal has
been prototypically implemented in Quip3 which works directly with the XQuery update state-
ments without any use of SQL statements. The solution has been incorporated into Software
AG’s Tamino4 product.

XPathLog

XPathLog [May01a, MB01] is a rule-based logic-programming style language for querying, ma-
nipulating and integrating XML data. XPathLog can be seen as the migration from F-Logic
[KL89], as a logic-programming style language, for semistructured data to XML. It uses XPath
[xpa99] as the underlying selection mechanism and extends it with the Datalog-style variable
concept. XPathLog uses rules to specify the manipulation and integration of data from XML
resources. As usual for logic-programming style languages, the query and construction parts are
strictly separated: XPath expressions in the rule body, extended with variables bindings, serve
for selecting nodes of XML documents; the rule head specifies the desired update operations
intensionally by another XPath expression with variables, using the bindings gathered in the
rule body. As a logic-programming style language, XPathLog updates are insertions. There is
no explicit replacement or deletion operation in the basic language (but can be extended with
appropriate semantics in the same way as for bottom-up Datalog). Transactional properties of
complex updates (and transactions at all) are not supported.

In addition to the plain query and update functionality, XPathLog supports class member-
ship, subclasses, schema data, and nonmonotonic inheritance as known from F-Logic. XPathLog
is implemented in the LoPiX5 system, which, in turn, is based on the Florid6 system.

XML RL Update Language

The XML-RL Language [LLW03] incorporates some features of object-oriented databases and
logic programming. The XML-RL Update Language extends XML-RL with update capabilities.
The query and construction parts are strictly separated. The rule body specifies queries to XML
documents and the rule head specifies the XML data to be constructed.

Five kinds of update operations are supported by the XML-RL Update Language, viz.
insert before, insert after, insert into, delete, and replace with. Using the built-in

2DBLP bibliography, http://www.informatik.uni-trier.de/~ley/db/
3http://developer.softwareag.com/tamino/quip
4http://www.tamino.com
5LoPiX, http://www.dbis.informatik.uni-goettingen.de/lopix/
6Florid, http://www.informatik.uni-freiburg.de/~dbis/florid/

41

position function, new elements can be inserted at the specified position in the XML document
(e.g. insert first, insert second). Also, complex updates at multiple levels in the document struc-
ture can be easily expressed. Transactional properties of complex updates (and transactions at
all) have not been investigated. No implementation is available.

XChange

XChange [BPS04b, BPS04a] is a declarative language for specifying evolution of data on the
(Semantic) Web. The language is currently being developed at the University of Munich and
by the Working Group I5 “Evolution and Reactivity” of the Rewerse project. XChange builds
upon Xcerpt [BS02, BS04], a declarative query and transformation language for the (Semantic)
Web. Xcerpt uses a positional or pattern-based selection of data items. A query pattern is
like a form that gives an example of the data that is to be selected, like query atoms in logic
programming. As in logic programming, a query pattern can contain variables, which serve
for retrieving data items from the queried data. The XChange update language uses rules to
specify intensional updates, i.e. a description of updates in terms of queries. A metaphor for
XChange is to see update specifications as forms, where rule head with the variable bindings
yields the data terms after update execution.
XChange supports the following features for updating XML data on the Web:

Synchronisation of Updates. XChange provides the capability to specify relations between
complex updates and execute the updates synchronously (e.g. when booking a trip on the
Web one might wish to book an early flight and the corresponding hotel reservation, or
a late flight and a shorter hotel reservation). As the updates are to be executed on the
Web, network communication problems could cause failures of update execution. To deal
with such problems, an explicit specification of synchronisation of updates is possible with
XChange, a kind of control which logic-programming languages lack.

Transactions as Updating Units. Since it is sometimes necessary to execute complex up-
dates in an all-or-nothing manner (e.g. when booking a trip on the Web, a hotel reservation
without a flight reservation is useless), the concept of transactions is supported by the lan-
guage XChange. More precisely, XChange transactions are composed of events (discussed
in Section 4.2.1) posted on the Web and updates to be performed on one or more Web sites.
Complex applications specifying evolution of data and metadata on the (Semantic) Web re-
quire a number of features that cannot always be specified by simple programs. In XChange
transactions can also be used as means for structuring complex XChange programs.

An XChange prototype will be available in the near future, based on the Xcerpt prototype7.

Commercial and Open Source Systems

Several commercial and open-source database systems provide update capabilities on stored
XML data. A comprehensive overview of such systems can be found at http://www.
rpbourret.com/xml/XMLDatabaseProds.htm. The commercial systems support transactions
while the open-source ones in general don’t.

“Native” XML Database Systems. The Apache Xindice project8 is a continuation of a
project called “dbxml core”, implementing XQuery and the XML:DB approach. The open-

7Xcerpt Prototype: http://demo.xcerpt.org
8http://xml.apache.org/xindice/

42

source XML database system eXist9, and the commercial system X-Hive10, both support
XQuery and XML:DB’s XUpdate. The Tamino11 system (Software AG) does not support
the XML:DB XUpdate approach, but implements the update functionality from [Leh01] on top
of XQuery (that has been prototypically implemented before in Quip12). The eXcelon Infor-
mation Server (before: Object Store, now: Progres Software) provides an update functionality
that is similar to the XML:DB update proposal, called XUL (XML Update Language, extending
XSLT); calling such small programs “updategrams”.

XML-Enabled Conventional Database Systems. At present, most “conventional”
(object)-relational commercial database systems also support XML data. Here, XML is stored
either directly as VARCHAR, as CLOB, by “shredding”, or by “opaque” storage via built-in
object-relational datatypes, or in separate files. In either case, XML-specific query and up-
date functionality is provided. Here, XPath as an addressing mechanism is not embedded into
XQuery, but into the surrounding SQL via the SQL/XML standard13 [EM01]. The query part
is specified by this standard: XML objects are treated like row objects or column objects in
SQL3, and then XML-specific member-methods are applied for evaluating XPath expressions
on such data. For the update part, different approaches are currently followed: The MS SQL
server provides update functionality via “updategrams”, which are similar to eXcelon’s XSLT-
style XML instances that contain the commands. IBM DB2 and Oracle 10 extend SQL/XML
smoothly with update functionality into the SQL/XML syntax 14 by extending to XML the
usual SQL UPDATE ... SET attr=expr: an update on an XML item x is a function that
specifies the updated node inside x (by a relative XPath expression) and the new value. The
result of the function is returned and replaces x. Thus, here updates are actually seen as
transformations.

Transaction-like concepts

Transaction-like concepts, including the issue of synchronising updates (i.e. specifying complex
updates and relations between them, and executing the updates accordingly) are in general
only addressed in the larger open-source and commercial systems. For the XChange language,
transactional concepts are planned as described above.

Updates on the Web

In contrast to relational languages like SQL, where queries are stated against a local repository,
XML and Web query languages seamlessly query as well local XML data, as remote XML data
by using URLs in queries. Nevertheless, in the style of traditional database concepts, most of
the above (update) languages work on first sight on local XML data, or databases.

Since all these update languages use answers obtained from queries as a basis for updates,
it is clear that in principle update statements can be formulated specifying an update of remote
data. However, in these languages’ realizations this is usually not supported, and in fact the
remote data is not updatable and even not accessible for the system that executes the statement.

9http://exist.sourceforge.net/
10http://www.x-hive.com
11http://www.tamino.com
12http://developer.softwareag.com/tamino/quip
13http://www.sqlx.org
14IBM DB2’s XML functionality is based on the Xperanto/Xtables project [CFI+00].

43

Thus, update languages for the Web will have to deal with communication (and authorization)
issues.

3.2 Update Concepts for the Semantic Web

Updates on the Semantic Web should deal with the data level, and also with the metadata
level, i.e. with ontologies. At the data level updates on the Semantic Web should be possibly
not only on the plain XML level, but also on a semantic level, e.g. RDF.

3.2.1 Updates on the Data Level

For executing updates on the data level of the Semantic Web, first an appropriate query language
is required. Since all XML query/update languages be applied to RDF serialized as XML, they
can also somehow be regarded as RDF query/update languages. Xcerpt/XChange is applied
in this way to RDF/RDFS data in [BFPS04b]. With XPathLog, RDFS can be handled more
natively, since it supports class membership, subclasses, signatures, and also nonmonotonic
inheritance. However, this cannot yet be seen as “RDF querying” since the central concept of
RDF, namely that identifying objects by their URIs, is not used.

An overview of existing RDF query languages can be found at http://www.w3.org/2001/
11/13-RDF-Query-Rules/. Most of them combine well-known basic constructs (SFW clauses,
FLWR clauses, logic-programming rules) with navigation and filtering on the RDF graph. Such
an RDF path language is also defined in [PPW04] as RDFTL (RDF Trigger Language) path
expressions that serve as the basis for their ECA rules (see Section 4.2.2). With its (simple)
update statements, this language can also count as an RDF update language.

For the Semantic Web, languages have to provide additional ontology-level reasoning mecha-
nisms. Concerning the Rewerse project, the development of a Semantic Web Query Language
will be done in the Working Group I4 “Reasoning-Aware Querying” by extending the Xcerpt
language accordingly. Based on this language, the XChange concepts will also be lifted to the
Semantic Web level in course of the Rewerse project.

3.2.2 Updates on the Meta Level: Ontology Evolution

On the metadata-level, special-purpose tools for ontology evolution are important for managing
evolution of the Semantic Web. Some of the existing tools for ontology evolution and works on
updates in Description Logics [BCM+03] are described below. This description, though, is not
an exhaustive survey on existing tools for ontology evolution.
Anonymous work proposed in [Sin03]. This work discusses change operations on knowl-
edge bases having ALC [SSS91] as a base description logic. In ALC only concepts and relations
(roles) between concepts are specified. The objects (i.e. instances of specified concepts) and
their relations are neglected.

In order to have an explicit semantics for each operation that changes the knowledge base,
the work focusses on formalizing change operations on ontologies. Thus, a system KB is defined,
which represents a knowledge base using ALC, and a set of operations (e.g. for deriving new
concepts, or for adding new roles) working on the KB. For each such operation, a precondition
and a postcondition are formally specified. The author gives a flavor of a technique for formal
operationalisation, thus the set of proposed operations can be changed or extended to cope with
the actual requirements of the concrete applications.

44

It is also discussed how the proposed system can be used to model the ontology life-cycle
management, dealing with ontology version management. Issues like ontology mapping and
ontology merging are neglected but mentioned as future work. Also, multi-user management
and transaction management are currently missing.

Anonymous work proposed in [KN03]. A framework is proposed in [KN03] that inte-
grates several sources of information about ontology evolution. The ontology change information
can be represented in different formalisms. For a new version of an ontology the changes can be
represented as e.g. a log of changes applied to the old version of the ontology, or just as the old
and new versions of the ontology. The proposed framework relates the change information that
is available in different formalisms, and provides mechanisms to derive new change information
from existing information gathered from different sources.

In this work, an ontology of change operations for the OWL [owl04] knowledge model is
used as a common language for the interaction of framework tools and components. This
ontology of change operations is also used in the OntoView [KFKO02] system (see below).
The ontology of change contains basic change operations and an extension that defines complex
change operations. A number of rules and heuristics are proposed for obtaining complex change
operations from a set of basic operations. The authors want to experiment with these heuristics
in order to test their effectiveness and to determine the optimal values for the parameters.

OntoView. OntoView [KFKO02] is a web-based system that currently supports RDF-based
ontology languages, like DAML+OIL15 and provides capabilities like finding, specifying, and
storing relationships between ontology versions. It maintains information about the descriptive
metadata (e.g. the date of a change), the conceptual relationships (i.e. the logical relationships
between constructs in two versions of the ontology), and the transformations between the
ontology specifications (i.e. a list of change operations).

OntoView has been inspired by the Concurrent Versioning System, CVS [Ber90], which is
used in software development. The implementation of the OntoView system has initially been
based on CVS, but the authors want to shift to a new implementation that will be build on a
solid storage system for ontologies, like Sesame16.

Anonymous work proposed in [RSS02]. An interesting proposal can be found in [RSS02],
which introduces update semantics into a Description Logics system. The authors argue that
this problem is strongly related to the view management problem in databases.

Two kinds of assignments are considered in this work: concept assignment (i.e. expressing
properties of the form a specified object is an instance of a concept), and attribute value as-
signments. From our point of view, an important contribution of this proposal is the use of
the transaction concept. Two types of transactions are considered: update transactions, i.e.
the standard transactions in databases, and completion transactions that revise the existing
information.

A transaction may (and generally does) contain two parts: the first part specifies elementary
updates, and the second part specifies constraints, i.e. concept assignments. In transaction
updates, independence of roles (i.e. concept assignments do not change the values of roles) is
assumed and explicit role updates are required.

Implementation issues and optimization proposals are also discussed in [RSS02].

15DAML+OIL, http://www.daml.org/language/
16Sesame, Demo, http://sesame.administrator.nl

45

3.3 Logic Programs Updates

Most of the work conducted until recently in the field of logic programming for knowledge
representation has focused on representing static knowledge, i.e. knowledge that does not evolve
with time. To overcome this limitation, in recent years, work has been developed in the area of
logic programming to deal with updates of logic programs by logic programs, where both fact
and logic program’s rules can be updated [ABBL04, ABLP02, ALP+00, APPP02, EFST02a,
EFST02b, EFST01, Lei03, LP98, MT94, SI99, ZF98].

In our view of the (Semantic) Web as a living organism combining autonomously evolving
(rule-based) data sources, declarative languages and mechanisms for specifying its maintenance
and evolution are needed. For example, for changing the behavior of a data source, so that a
new rule becomes into effect, one should not per force have to be concerned with the complex,
interrelated, and dynamically obtained knowledge, and should have a way to simply specify
what knowledge is to be changed. This requires the existence of a language for exacting such
changes (or updates), which takes in consideration the addition/deletion and change of rules,
thereby automating the task of dealing with inconsistencies arising from those updates. The
above mentioned works exactly aim at defining the meaning of a knowledge base that is made
of a set of rules (or, more precisely, a logic program) after it is subject to a sequence of updates,
and where each update is a set of either an external events or the additions, deletions of rules.
In this Section we briefly review some of these approaches for updating of logic programs. For
a more extensive review see e.g. [EFST02a, Lei03].

3.3.1 Updates of Logic Programs

As the world changes so must programs that represent knowledge about it. When dealing with
modifications to a knowledge base represented by a propositional theory, two kinds of abstract
frameworks have been distinguished both by Keller and Winslett in [KW85] and by Katsuno
and Mendelzon in [KM91]. One, theory revision, deals with incorporating new knowledge about
a static world state. The other deals with changing worlds, and is known as theory update. In
this section, we are concerned with theory update only, and, in particular, within the framework
of logic programming.

In [MT94], the authors introduced a logic programming language for specifying updates to
knowledge bases, which they called revision programs and here, to avoid confusion with theory
revision, we refer to as MT-revision-program. Given the set of all models of a knowledge base,
a MT-revision-program specifies exactly how the models are to be changed.17

The language of MT-revision-programs is quite similar to that of logic programming: MT-
revision-programs are collections of update rules, which in turn are built of atoms by means
of the special operators: ←, in, out, and “,”. The first is an implication symbol, in specifies
that some atom is added to the models, via an update, out that some atom is deleted, and the
comma denotes conjunction. I.e. update rules are of the form:

in(p) ← in(q1), . . . , in(qm), out(s1), . . . , out(sn) or
out(p) ← in(q1), . . . , in(qm), out(s1), . . . , out(sn)

where p, qi, 1 ≤ i ≤ m, and sj , 1 ≤ j ≤ n, are atoms, and m,n ≥ 0. These rules state that if
all the qis, and none of the sis, are in the knowledge base then p should be in (resp. not be

17For more detailed motivation and background the reader is referred to [MT94, PT95].

46

in) the knowledge base. It is worth noting here some similarities between these update rules
and STRIPS operators [FN71], in that both specify what should be added and what should be
deleted from the current knowledge base. However, differently from STRIPS the preconditions
of these rules may depend on the models of the resulting knowledge base. With STRIPS they
may only depend on the models of the previous knowledge base.

In [PT95], a correct transformation of MT-revision-programs into logic programs is defined,
that immediately provides a means for implementing the latter. This transformation simply
amounts to deleting all the ins from the above rules, and to replacing the outs by logic program-
ming negation. This requires considering extensions of logic programs that deal with negation
in rule heads, such as extended [GL90] or generalized [LW92] logic programs. Moreover addi-
tional rules, catering for the inertia of atoms, must be added. As such, MT-revision-programs
are simply regarded as logic programs that update models of a knowledge base or, in other
words, as logic programs that update sets of facts.

In [LP98] it is noted that to deal with sequences of updates of logic programs, besides
considering inertia of atoms, inertia of rules should also be taken into account. To cope with
sequences of updates of logic programs, [ALP+00] defines the framework of Dynamic Logic
Programming (DLP). In DLP, sequences of generalized programs P1⊕ . . .⊕Pn are given. Here
a generalized logic program is a program where default negation may appear both in rule
bodies or heads. Intuitively a sequence is to be viewed as the result of, starting with program
P1, updating it with program P2, . . ., and updating it with program Pn. The role of dynamic
programming is to ensure that the newly added rules (from latter programs) are in force, and
that previous rules (from previous programs) are still valid (by inertia) as far as possible, i.e.
they are kept for as long, and for each objects, as they do not conflict with newly added ones.
For example, consider that a logic program with a rule a(X) ← b(X) is updated with the rule
not a(X) ← c(X). It is up to DLP to guarantee that after the update, all objects satisfying b
also satisfy a, unless they satisfy c. In this very simple case this would amount to replacing the
original rule by a(X) ← b(X), not c(X).

The semantics of dynamic logic programs is defined according to this rationale. Given a
model M of the last program Pn, start by removing all the rules from previous programs whose
head is the complement of some later rule with true body in M (i.e. by removing all rules
which conflict with more recent ones). All others persist through by inertia. Then, to properly
deal with default negation, add facts notA for all atoms A which have no rule whose body is
satisfied in M , and compute the least model. If M is a fixpoint of this construction, M is a
stable model of the sequence up to Pn.

A comparative study on sequences of updates of logic programs can be found in [EFST02a].
There, a syntactic redefinition of DLPs is presented, and semantical properties are investi-
gated. In particular, studies on the DLP-verification of well known postulates of belief revision
[AGM85], iterated revision [DP97], of theory updates [KM91] have been carried out. Fur-
ther structural properties of DLPs, when viewed as nonmonotonic consequence operators, are
also studied in [EFST02a]. Structural properties of logic program updates are also studied in
[DDDS99]. Another important result of [EFST02a] is the clarification of the close relationship
between DLPs and inheritance programs [BFL99]. Though defined with different goals, inher-
itance programs share some close similarities with DLP. Inheritance programs [BFL99] aim at
adding inheritance to disjunctive logic programming with strong negation.

Other approaches to updates of logic programs by logic programs are presented in [IS95,
IS03, SI99]. Based on an abductive framework for (non-monotonic) auto-epistemic theories,
that make use of the notion of negative explanation and anti-explanation, in [IS95] the authors

47

define “autoepistemic updates”. Based on this work, in [SI99] they employ this new abduction
framework (in this case rewritten for logic programming instead) to compute minimal programs
which result from updating one logic program by another. In their framework, several updates
are possible because non-deterministic contradiction removal is used to revise inconsistencies
(through abduction) between an initial program and the one updating it, giving preference to
the rules of the latter. In their framework, updating and revision take place simultaneously.

Yet another, independently defined, approach to logic programs updates, can be found
in [ZF98]. As in DLPs, the semantics of the update of a program by another is obtained
by removing rules from the initial program which “somehow” contradict rules from the update
program, and retaining all others by inertia. Additionally, at the end, prioritized logic programs
are used to give preference to rules from the update program over all retained rules of the initial
program. For extended comparisons with the various approaches to sequences of updates of
logic programs see [Lei03].

3.3.2 Logic Programming Update Languages

Dynamic logic programming does not by itself provide a proper language for specifying (or
programming) changes to logic programs. If knowledge is already represented by logic programs,
dynamic programs simply represent the evolution of knowledge. But how is that evolving
knowledge specified? What makes knowledge evolve? Since logic programs describe knowledge
states, it seems that logic programs could describe transitions of knowledge states as well. It
is natural to associate with each state a set of transition rules to obtain the next state. As a
result, an interleaving sequence of states and rules of transition will be obtained. Imperative
programming specifies transitions and leaves states implicit. Traditional logic programming
could not specify state transitions. With the language of dynamic updates LUPS [APPP02],
both states and their transitions are made declarative.

LUPS update programs are sequences of update commands that state which logic program’s
rules are to be added or deleted, and in which conditions. Example of such LUPS commands
are:

always L0 ← L1, . . . , Lk when Lk+1, . . . , Ln

retract L0 ← L1, . . . , Lk when Lk+1, . . . , Ln

The first command above states that, from the moment it is given onwards, whenever
Lk+1, . . . , Ln are true the rule L0 ← L1, . . . , Lk should be added, whereas the second states
that, when Lk+1, . . . , Ln the rule should be deleted. A declarative meaning of a LUPS up-
date program is defined by first obtaining a sequence of logic programs with the additions and
deletions of rules, and then obtaining the semantics of such a sequence by using DLP.

Note the similarities of these LUPS update commands with Event-Condition-Action (ECA)
rules. However there are two distinctive features. Unlike in ECA rules, in LUPS there is no
distinction between events and conditions. In other words, in LUPS only the evaluation of
conditions triggers the actions of updating the program. Another distinction is in what regards
the actions. In LUPS, actions are limited to updates of the program. But, contrary to what
happens in most ECA formalisms, these updates can be besides the insertion or deletion of facts,
also the insertion or deletion of rules. This way, LUPS is capable of updating the (derivation)
rules of a knowledge base.

To deal with external events, in [EFST01, EFST03] an extension to LUPS, called EPI, is
defined. With EPI, commands resemble more the ECA rules, in which an update is triggered
by events and evaluation of conditions.

48

It is clear that LUPS and EPI commands can be seen as reaction (or behavioral) rules. In a
dynamic environment, such as the one described in Chapter 1, not only the fact and derivation
rules may be subject to updates, but the very reaction rules should be allowed to be changed.
Both LUPS and EPI allow for the update of facts and derivation rules, but none of them allows
for updates in the reaction rules. KABUL [Lei03] is an extension of LUPS that is capable of
dealing with some forms of updates to reaction rules by allowing, in the commands such as the
ones above, the replacement of a logic programming rule by a LUPS command. This way, one
can specify that, under some conditions, a LUPS command is to be added (or issued) or deleted
(or stop to be active).

The EVOLP framework [ABLP02] appeared in the line of development of the above lan-
guages for specifying and programming the evolution of knowledge bases represented as logic
programs. Distinctly from these extant languages, which introduce a lot of new programming
constructs, each encoding a high level behavior of addition and deletion of rules, EVOLP’s up
front goal was to enable the evolution of logic programs by adding to traditional logic program-
ming as few constructs as possible, i.e. by staying as close as possible to the usual language of
logic programs. Basically, EVOLP syntax is simply that of logic programs, with the addition
of a special predicate assert(R) whose sole argument is itself a full-blown EVOLP rule (i.e. a
logic program rule, or a rule with asserts). The meaning of sequences of EVOLP programs is
obtained by sets of traces, each trace being a sequence of logic programs whose semantics is de-
fined by DLP. Moreover, EVOLP considers both the evaluation of conditions, and the existence
of external events. This way, EVOLP is capable of specifying both derivation rules (in logic
programming), and reaction rules that are triggered by events, evaluate conditions and update
the derivation rules (as in ECA rules), as well as rules that cater for the update of reaction
rules themselves.

A systematic approach for describing, classifying, and reasoning about knowledge base up-
dates is presented in [EFST02b]: an evolution frame parameterizes the update mechanism and
the semantics of the knowledge base. It consists of a set of (generic) update actions (e.g., insert,
deletion, and change of rules), an update policy how such actions are executed (e.g., directly,
or after considering possible inconsistencies), a realization assignment that characterized how
the actions are actually executed on the rule base, and a semantics for actually evaluating the
rules of the knowledge base.

49

50

Chapter 4

Activity and Reactivity in
Databases

This chapter presents a state-of-the-art survey on active and reactive behavior in databases,
especially, Event-Condition-Action (ECA) rules. Briefly, ECA rules have the following seman-
tics: when an event occurs, evaluate a condition, and if the condition is satisfied then execute
an action. In the literature, ECA rules are also referred to as triggers, active rules, or reactive
rules. This survey starts by tackling the issue of active database systems, and then gives an
overview of some recent proposals of ECA rules for semistructured data, for the Semantic Web,
and the non-ECA approach of Active XML.
Conceptually, an ECA rule concept consists of several parts:
• Event part: ECA rules can either react on atomic events, or they can use languages for

specifying complex events. Such event languages have been described in Section 2.7. The
event specification language must be accompanied by a suitable event detection algorithm.

• Condition part which is usually based on a query language.
• Action part (in general, a kind of a small program) that specifies the actions to be executed.
• ECA execution model: this includes different possibilities for how the ECA rule is applied

(before or after or deferred, statement-oriented or set-oriented, its transactional embedding
etc), and policies of the ECA engine (e.g. for conflict resolution).

Depending on the choice of the above sublanguages, a broad range of behaviors can be designed.
ECA languages based on atomic events are e.g. used for maintaining consistency (as in the well-
known SQL triggers) in course of execution of a surrounding process. On the other end of the
range, ECA languages that allow for complex events can themselves be used for specifying the
behavior of a system in a rule-based way (cf. Action languages as described in Section 2.8), up
to the definition of rule-based agents (see Section 5).

4.1 ECA rules in Active Database Systems

ECA rules were first investigated by the database community in the late 1980s within the con-
text of active database management systems. Briefly, an active database management system
(ADBMS) is a database management system that supports ECA rules. Support for ECA rules

51

in database systems was initiated in the late 1980s and extensively explored during the 1990s,
for example:

• Several working prototypes have been implemented, to name a few, ACOOD [BL92], Ariel
[Han96], EXACT [DJ97], NAOS [CCS94], Ode [GJ92], Postgres [PS96], Reach [BZBW95],
Samos [GD94], Sentinel [CAMM94], and TriGS [KR98]. More than twenty suggested active
database prototypes have been identified.

• Seven workshops have been held between 1993 and 1997, viz. RIDS [PW94, Sel95, GB97],
RIDE-ADS [WC94], a Dagstuhl Seminar [BCD94] and ARTDB [BH96, AH98].

• Two special issues of journals [Cha92, CW96] have been published.
• Two text books [WC96b, Pat99] and an ACM Computing Survey [PD99] have been written.
• Most relational database systems support simple forms of ECA rules, e.g. SQL triggers.

In addition, the groups within the ACT-NET consortium1 reached a consensus on what con-
stitutes an active database management system with the publication of the Active Database
System Manifesto [ACT96].

The number of ADBMS publications peaked around 1994-1997 with roughly 40-50 publi-
cations each year. During the late 1990s most active database groups moved their research in
other directions, e.g., bioinformatics, data warehousing, data mining, and semistructured data.
Since 1998 the number of ADBMS publications have significantly decreased and they are now
rare in major journals and conferences. Thus, the ADBMS area is not very active today and
the survey done by Paton and Diaz [PD99], and the outcome from RIDS’97 [GB97] still reflect
the current state-of-the-art concerning ADBMS. Instead, the work on ECA rules is picked up
by other communities, e.g., AI [LBS99], and semistructured data (see later sections in this
chapter).

An ADBMS can be described by its knowledge model and execution model. The knowledge
model describes what can be said about the ECA rules, for example, what type of events
(primitive, composite) are supported, in which context the rule condition is evaluated with
respect to the database state (e.g., the database state at the beginning of the transaction).
The execution model describes how the ECA rules behave at runtime, for example, when the
condition is evaluated with respect to the triggering event (i.e., coupling modes), scheduling of
rules, triggering of multiple rules.

Briefly, there are two approaches for adding ECA rule support to a DBMS: the layered
approach and the integrated approach. The layered approach adds ECA rule support on top of
an existing DBMS, whereas the integrated approach embeds ECA rule support into the internal
components of the DBMS. Although the layered approach might be easier to implement, it
restricts what type of ADBMS features that can be implemented and also how efficient they
can be implemented. For example, it might be problematic or even impossible to implement
support for a certain coupling mode or a transaction event due to the lack of hooks to the
internals of the DBMS.

Most ADBMSs are monolithic and assume a centralized environment, consequently, the
majority of the prototype implementations do not consider distribution issues. Initial work on
how ADBMSs are affected by distribution issues is reported in [Sch96, KL98, BKLW99, YC99].
For example, the event signalling must now be specified in terms of its visibility. In other words,
is the event signal visible to the entire distributed environment or only visible at the node that
generated the event signal?

1A European research network of Excellence on active databases 1993-1996.

52

It is common knowledge that users of computer programs (which may be based on databases)
are reluctant to use something that is slow. Thus, performance issues are in most cases of crucial
importance for any computer based program, including active database systems.

One of the first indications of the performance for active databases was reported in [DPG91]:
With regard to the active DBMS prototype ADAM it was identified that

“ ... the introduction of rules makes programs on average about twice as slow as they
are when the rule mechanism is disabled.”

As of now, only a few concrete experiments have been performed with regard to the performance
of active databases [GBLR98, Ker95], the most extensive one being the BEAST benchmark
project [GBLR98]. The BEAST project evaluated the performance of four active object-oriented
database prototypes with respect to event detection, rule management, and rule execution. In
addition, twelve hypotheses concerning ADBMS performance were investigated and verified.
From a practical point of view, the outcome of the BEAST project can help designers of
ADBMS to avoid design solutions that have been verified as bottlenecks with respect to ADBMS
performance.

As of now there are several techniques (or design solutions) available that can be used to
enhance the ADBMS performance, for example, rule indexing, dedicated event detectors, and
concurrent rule execution. However, performance issues for ECA rules in the context of XML
and the Semantic Web are unexplored.

Given the activities that have taken place since the early 1990s within the ADBMS commu-
nity and the initiated transfer of research results into commercial products, one might consider
whether there is anything left to be done on ECA rules? The answer is yes, but not necessarily
within the mainstream database field.

In the forthcoming sections we will elaborate on current trends and open research questions
concerning ECA rules. In particular:

• Agent technology and active databases,
• Tools and methodologies for designing with active rules,
• ECA rules and XML

4.1.1 Agent Technology and Active Databases

Since rule engines are frequently used by both agent systems and active databases it is not
surprising that attempts have been made to integrate active database technology and agent
technology.

A comparison between the characteristics of ADBMSs and agent systems was reported in
[BGK+95]. It is shown that although they are developed in different fields of computer science,
they have much in common. Hence, researchers in both communities can benefit from the
exchange of ideas and techniques developed. In particular,

• There are some key differences in language syntax and semantics between the two research
fields. Thus, concepts such as powerful event languages can be adopted by the agent com-
munity. Similarly, ADBMSs can benefit from incorporating more complex reasoning and
deliberation about which action(s) to execute.

• Agent systems will need to adopt database features such as recovery techniques, rollbacks,
and history. This is especially important for real world agent systems that need to be able to

53

recover from failures etc. Indeed the notion of building more safety into agents is currently
an active research area [saf04].

The work reported in [AS97] contrasts ADBMSs with respect to the notions of weak and strong
agency. It is demonstrated that ADBMSs already support the notion of weak agency (autonomy,
social ability, reactivity, pro-activeness), whereas no aspect of strong agency (knowledge, belief,
intention, obligation) is yet supported. Although ADBMSs do not support strong agency, there
is speculation on how the notion of strong agency can improve the adaptability and flexibility of
an ADBMS. According to the authors of [AS97], this can be achieved by incorporating general
purpose reasoning abilities into an ADBMS.

The work in [BCL97a, BCL97b] focuses on using ECA rules for supporting the major co-
operation strategies (task sharing and result sharing) as formulated in distributed artificial
intelligence. Briefly, cooperation strategies are mapped down to ECA rules in three steps:

• The first step is to model high-level speech acts by state diagrams. The state diagrams
present an overview of how the various speech acts interact, for example, how should an
agent react to a received Accept speech act.

• The second step is to extract intermediate representation, i.e., classes, algorithms, and high-
level ECA rules that are needed in order to capture the semantics of the speech act protocol.

• The final step is to generate ECA rules for a specific ADBMS. Three features are suggested
as important for any ADBMS that would like to support advanced collaboration strategies:
i) composite events, ii) composite event restrictions, and iii) dynamic event and rule creation.

4.1.2 Tools and Methodologies

Traditionally, software developers rely upon the use of tools and methodologies for developing
an information system. Once the information system has been implemented, users such as
database administrators use various types of tools such as debuggers and browsers which can
facilitate the process of maintaining an information system.

Although active capability in the form of ECA rules is now available in most commercial
databases, its usage in practice is low. One of the major reason for this is the lack of proper tools
and methodologies for developing ECA rule based software. Developing tools and methodologies
for designing with ECA rules has previously been suggested as one of the crucial issues in order
to increase the usage of active database technology in practice [Day95, SKD95, BH96, WC96a,
GB98, Dia99]. For example the participants at the ARTDB’95 workshop pointed out that
[BH96]:

“.. most software developers do not use active features in their projects due to com-
plexity. Currently, software designers have no guidelines on what should be implemented
as ECA rules and what should not. The participants agreed that there is a need to
provide tools for supporting active features in the software development process. It was
further suggested that active database tools should be integrated with the software design
tools that are already in common use.”

As of now, much work has been done on developing tools for static and dynamic verification
of ECA rules. It is assumed that these tools are mostly to be used during the design phase of
the software development process. Unfortunately, most of these tools are developed and used
in isolation, i.e. they are not integrated or used together with a real active database system

54

[GB98]. Thus, research results from these isolated tools may be difficult to transfer to tools
that are used together with a real active database system.

In addition to developing tools for the design phase of the software development process,
we envision more work on theoretical foundations and tools for supporting the earlier phases
(requirements engineering / analysis) of the software development process. For example, what
type of tools can be used when software developers derive active rule capabilities from the
application requirements. It is envisioned that more work is needed in the field of developing
tools and techniques for simulation of active rules applications. These simulation tools can be
useful for rapid prototyping or for demonstrating active rule semantics.

Although tools for active databases have been developed and used, Diaz concludes in his
chapter on tool support for active databases that [Dia99]:

“Unfortunately, there is not yet a proper methodology that guides throughout the
whole process of building active databases.”

The perhaps most complete software methodology for designing with active rules is the IDEA
methodology [CF97], which also has an extensive set of supporting tools. From a practical
perspective, software developers may be reluctant to use the IDEA methodology since it implies
that they will have to learn how to use a completely new software methodology, rather than
learning how to use an extension to, for example, their existing software methodology.

Although, most researchers agree upon the importance of business rules as one of the main
sources from which active rules can be derived, there is still very little work reported on the
relationship between business rules and active rules. In our view, business rule modelling takes
place during the phases of requirements engineering and analysis. At some point during the
analysis or design phase a decision is made, which separates out a set of business rules that
are suitable to be implemented as ECA rules and another set of business rules that are not
suitable to implemented as ECA rules. To the best of our knowledge there are no guidelines
available which can help a software developer to identify which business rules that are suitable
to implement as ECA rules.

In addition to the usage of active capability in the database community, active capability
in the form of ECA rules has proven to be useful in areas where the database component is not
considered as mandatory. Thus, initial work has been done on unbundling active capabilities
from a database system [GKvBF98]. Taking this process a step further, applications that are
based on ECA rules but not necessarily are built on top of a database will also require guidelines
and tools for deriving the proper ECA rules. Hence, what is needed is a methodology (with
associated tools) that provides a software developer with guidelines on how to derive ECA
rules from user requirements which can then be mapped into executable ECA rules. In such a
scenario the choice of using a database system or not for providing active capabilities (or even
ECA rules) is reduced to a design and implementation issue. Thus, it is not an issue when
extracting potential active capability during the requirements engineering and analysis phase.
In summary, the following is needed:
• Methodologies and notations for designing with ECA rules, preferably these

methodologies should be based on existing common methodologies for software development
and use the UML notation [RJB99]. Hence, existing knowledge on software methodologies
can be reused, rather than inventing new software methodologies with support for active
rules. For example, how can software engineers derive and support active rule capabilities
during the software development process using OMT [RBP+91], Booch [Boo94], or ROP
[JRB99].

55

• Tools for designing with ECA rules, preferably these tools should be integrated with
existing CASE tools and used with real active database systems (research prototypes or
commercial systems).

4.2 Reactivity on the Web

This section describes existing work related to reactivity on the Web. Reactivity is expressed
by means of Event-Condition-Action rules (also called active rules, triggers, or reaction rules)
inspired from active databases [Pat99, WC96b, DG96].

Although ECA rules have been extensively explored within ADBMS, not all active rules
applications need a complete DBMS. The idea to unbundle active rules capabilities from an
ADBMS has previously been suggested in [GKvBF98] and [GB98]. It is assumed that un-
bundling active capabilities from an ADBMS is likely to open up the possibilities for:

• use of active capabilities with arbitrary DBMSs,
• use of active capabilities in broader contexts separate from a DBMS, and
• use of active capabilities in heterogeneous environments.

Unbundled ECA rule engines (e.g., ruleCore [rul] and Amit [IBM]) are a necessary step for
transferring ADBMS technology to the Semantic Web, since one cannot assume that all Se-
mantic Web applications have access to a fully fledged ADBMS. In addition, ADBMS technology
needs modification in order to adapt to the Semantic Web environment, where information is
distributed and the data model is far richer than in the relational context.

The semistructured nature of XML data gives rise to new issues affecting the use of ECA
rules. These issues are principally linked to the choice of an appropriate language syntax and
an execution model.

In the relational model, the granularity of data manipulation events is straightforward, since
insert, delete or update events occur when a relation is inserted into, deleted from or updated,
respectively. With XML, this kind of strong typing of events no longer exists. Specifying the
granularity of where data has been inserted or deleted within an XML document becomes more
complex.

Again in the relational model, the effect of data manipulation actions is straightforward,
since an insert, delete or update action can only affect tuples in a single relation. With XML,
actions now manipulate entire subdocuments, and the insertion or deletion of subdocuments
can trigger a set of different events. Thus, the analysis of which events are triggered by an
action can no longer be based on syntax alone.

Compared to rules for relational databases, ECA rules for XML data are more difficult to
analyze, due to the richer types of events and actions. However, rules for XML have arguably
less analysis complexity than rules for object-oriented data. This stems from the fact that
object-oriented databases may permit arbitrary method calls to trigger events, and determining
triggering relationships between rules may therefore be very difficult. ECA rules for XML, in
contrast, can be based on declarative languages such as XQuery, and so are more amenable
to analysis. Here, it is an important decision whether the ECA execution should be restricted
to modifications executed in the query/update language, or if the rules should also react on
manipulations of the XML data by other means (e.g., on DOM level).

Reactivity in the (Semantic) Web context is still quite an open research issue. An overview
of the work done in this field is given in the following, as some of the investigated ideas could

56

play an essential role in realizing reactivity on the Semantic Web.

4.2.1 Event-Condition-Action Rules for XML/Conventional Web

Below, approaches to active rules and ECA rules for XML data and for the Web are described.
ECA on the Web comes in different flavors: extending the “local” SQL3 ECA functionality to
XML, publish-subscribe systems that monitor changes and send messages, ECA rules integrated
in a “controlled” distributed environment, and globalized variants of ECA rules.

ECA Rules based on XSLT, Lorel, and XQuery

Several approaches have been presented that extend the ECA paradigm from SQL to languages
of the XML world, following the development of the latter.

XSLT and Lorel. In [BCP00], reactive capabilities are investigated in the context of XSLT
[xsl01] and of Lorel (viz. its migration to XML in [GMW99]). Events are considered insertion
and deletion of elements, and insertion, deletion, and update of attribute and text nodes. The
authors discuss the problem of detecting changes to an XML document. This problem is more
intricate than in SQL databases since XML documents can be manipulated either by their
DOM interface, by XSLT transformations (i.e. by replacing the document against a slightly
changed one), or by high-level update languages, and by external tools.

In all these cases, an external rule processor engine is fed with rule specifications. The event
is, as usual, an update event on an XML document, or an external event; with the occurrence
of an event, a value can be bound to a variable. Condition and action are expressed together.
In the XSLT case, this condition-action part is expressed as a sequence of XSLT templates,
where the “root” template is applied to the value of the variable bound in the event part.
The result of applying this XSLT fragment is returned as the outcome of the rule application
for further processing. In the Lorel case, the condition-action part is a usual Lorel SELECT or
UPDATE statement. Similar to SQL3, different granularities (set-oriented and node-oriented) are
supported; the functions old and new are supported to denote the values of the node before
and after the update execution; and conflict resolution strategies are discussed. [BCP00] does
not mention a distinction between “before” and “after” triggers.

The main guidelines of the implementation of active document systems based on XSL and
Lorel are discussed; a prototype of the Lorel version is reported.

XQuery. The approach from [BCP00] is continued for XQuery (with the update constructs
from [TIHW01], described in Section 3.1) in [BBCC02] with Active XQuery, emulating the
trigger definition and execution model of the SQL3 standard that specifies a syntax and ex-
ecution model for ECA rules in relational databases (and using the same syntax for CREATE
TRIGGER). Active XQuery adapts the SQL3 notions of BEFORE vs. AFTER triggers and, more-
over, the ROW vs. STATEMENT granularity levels to the hierarchical nature of XML data. The
core issue here is to extend the notions from “flat” relational tuples to hierarchical XML data.
Thus, XQuery updates on complex nodes are seen as bulk update statements, consisting of
several simple updates. Bulk update statements are transformed (i.e. expanded) into equiva-
lent collections of simple update operations. As update statements are expanded, triggers are
activated by update operations relative to internal portions of fragments of data (in contrast
to the similar approach in [BPW02] that is described below). Again, conflict resolution is dis-
cussed. The development of a prototype is planned when XQuery updates will become a W3C
recommendation.

57

Generic ECA for XML. A similar approach to ECA rules for standard XML languages in
the style of SQL3 triggers is described in [BPW02] and [PPW03] (here, together with an ECA
language for RDF, that is described below in Section 4.2.2). ECA rules are expressed as on ...
if ... do. Events can be of the form INSERT e or DELETE e, where e is an XPath expression
that evaluates to a set of nodes; the nodes where the event occurs are bound to a system-defined
variable $delta where they are available for use in condition and action parts. An extension for
a replace operation is sketched. The condition part consists of a boolean combination of XPath
expressions. The action part consists of a sequence of actions, where each action represents an
insertion or a deletion. For insertion operations, one can specify the position where the new
elements are to be inserted using the BELOW, BEFORE, and AFTER constructors.

Regarding the semantics of the language, an immediate scheduling of rules that have been
fired is used. Updates are not immediately executed: the inserted or deleted nodes are anno-
tated, the triggered active rules are evaluated and, at the end of the evaluation, the updates
are actually executed. In contrast to the approach of Active XQuery, complex updates are
treated as atomic. The focus of [BPW02] is on the analysis of rule behavior, i.e. techniques
for determining triggering and activation relationships between rules. A prototype, based on
flat files, is reported in [PPW03]. This same paper presents some ideas too for the case when
ECA rules are distributed on the Web. As future work, the coordination of the evaluation of
conditions is proposed in case that the events and actions are considered to occur at the same
local peer.

Publish/Subscribe and Notification Systems

Publish/Subscribe and Notification systems deal with a restricted version of ECA rules. Such
systems do not support execution of updates to the underlying HTML/XML data. Instead
changes to documents are monitored and reported. In most cases, they actually use only a
single rule pattern whose event can be configured by a subscriber; the condition is empty, and
the action consists of sending a (possibly parameterized) notification.

Here two types can be distinguished: the change detection and notification mechanism is
located at the same place as the repository, or a separate service is provided that can be told
to monitor remote sources and to notify the customer of changes.

A Publish/Subscribe (pub/sub) system (e.g. see [TRP+04]) receives messages from publish-
ers and notifies subscribers if the messages match the subscriptions. In most cases, the ECA
functionality is local to the pub/sub system. The research focus in this area is less on ECA
and communication issues, but more on efficient evaluation of a large number of subscriptions
on a large number of subscribers. The communication follows a pure push pattern, i.e., infor-
mation (published items) are pushed from their originators to the pub/sub system, and derived
information (notification about changes) is pushed from the pub/sub service to its subscribers.

An even simpler technology is followed by repositories with notification functionality, where
a restricted ECA functionality is directly implemented in the repository. Subscribers can inform
the notification service that they want to be informed about changes in its document and receive
notifications. As above, the communication follows a pure push pattern, where information
(changes) is pushed from the repository to its subscribers.

Another communication paradigm is followed by “global” internet query systems, e.g. Ni-
agaraCQ [CdTW00] based on continuous queries. In it, users can “register” queries at the
service that then continuously states the query against the source, and informs the user about
the answer (or when the answer changes). In these systems, communication combines pull and

58

push: the CQ system pulls information from sources, and pushes derived information to the
end user. Research focus here is again on the efficient evaluation (and combination) of a large
number of continuous queries.

Considering the goals of the Rewerse project, notifications and pub/sub functionality will
be sufficient in many cases, but it is also intended to use full ECA rules throughout the Web.

Generic Remote ECA Rules

Except for the global continuous query services, all the above approaches are “local”, in that,
as in SQL3, work on a local database, are defined inside the database by the database owner,
and consider local events and actions. In [BCP01], an infrastructure for user-defined ECA rules
on XML data is proposed that makes use of existing standards for XML and for (XML-based)
communication. Here, rules that should be applied to a repository x can be defined by arbitrary
users (using a predefined XML ECA rule markup), and can be submitted to x where they are
then executed. The definition of events and conditions is up to the user (in terms of changes
and a query to an XML instance). Only the actions are still restricted to sending messages.

The approach implements a subscription system that enables users to be notified upon
changes on a specified XML document d somewhere on the Web. For this, the approach
extends the server where d is located by a rule processing engine. Users that are interested
in being notified upon changes in d submit suitable rules to this engine that manages all rules
corresponding to documents on this server. Thus, evaluation of events and rules is local to the
server, and notifications are “pushed” to the remote users. Note that the actions of the rules
do not modify the information, but simply send a message.
Rules are themselves marked up in XML, i.e., by

<event> {insert|delete|update} xpath-expr </event>

<condition> query </condition>

<action> SOAP-method-call </action>

where the event part specifies the occurrences of simple update operations on elements that
are addressed by xpath-expr. The condition part is an (XQuery) query that is interpreted as
true if it returns a nonempty answer, and that may refer to the nodes on which the events
occurred. This is realized through the variables old and new that represent the nodes on which
the events occurred with their past and current values. The action part contains the call of a
SOAP [soa00] method, but restricted to implement the call to a message delivery system that
transfers information to specified recipients. It is assumed that complex parameters can be
passed to the SOAP method that is invoked.

In the basic scenario, such rules are specified by users, and sent to an XML-ECA-enabled
server that will process them and will, accordingly, execute the SOAP method that sends a
notification message to the subscriber. In this case, the user must know where the events will
occur. In a more complex scenario, there is a rule broker that even manages the generation of
rules, and their allocation with a suitable repository: users tell the rule broker about the services
being searched. The rule broker knows or identifies (e.g. via WSDL and SOAP) appropriate
service providers and installs a suitable rule at the remote provider (that must support this
XML-ECA functionality), who then notifies the original user directly.

The main ideas for implementing the proposed system are presented. Of importance here
is the reuse of several current Web standards and of their implementations. The DOM Event
Model [dom00], an XQuery engine, and a generator of SOAP calls are needed.

59

Though the above approach only deals with notifications, its general architecture seems to
be extensible to update actions too. The approach including the rule broker is likely to provide
a good basis for Semantic Web ECA rules.

ECA-based Communication: XChange

The language XChange (see also Section 3.1 for a description of its update functionality and
the underlying query language Xcerpt) aims at establishing reactivity, expressed by reaction
rules, as communication paradigm on the Web. In XChange the events are not restricted to
changes in a database, but an event language will be designed that covers update and message
events as atomic events, as well as composite events.

The data that is communicated between Web sites are called events in XChange. An event
is an XML instance with a root element with label event and the following four parameters
(represented as child elements as they may contain complex content): raising-time (i.e. the
time of the raising machine when the event is raised), reception-time (i.e. the time of the
receiving machine when the event is received), sender (i.e. the URI of the site where the event
has been raised), and recipient (i.e. the URI of the site where the event has been received).
An event is an envelope for arbitrary XML content, and multiple events can be nested (e.g.
to create trace histories).

An important distinction needs to be made between (i) static or persistent data, i.e. data of
Web pages, and (ii) dynamic or volatile data, i.e. events. For querying static data (standard)
queries are used, and persistent data is updatable. For querying dynamic data, event queries
are used. Volatile data is not updatable. As events are XML instances, like static data, the
same query language is used for querying static and dynamic data.

XChange events are directly communicated between Web sites without a centralized pro-
cessing or management of events. All parties have the ability to initiate a communication. Since
communication on the Web might be unreliable, synchronisation is supported by XChange.

Events are processed locally at the recipient Web site by means of XChange ECA rules. The
event part is expressed by an event query, i.e. a query against events received by the Web site.
Two kinds of event queries are supported: atomic event queries (i.e. one event query term) and
composite event queries. Composite event queries (CEQ) are formed from atomic event queries
and/or composite event queries along three dimensions: temporal range (e.g. CEQ within
duration), event composition (e.g. not CEQ in finite time interval), and occurrence (specifying
multiplicity, position, and repetition). The condition part is expressed by an Xcerpt query
against (local or remote) Web resources. For the action part, XChange considers transactions
instead of isolated actions. A transaction is a group of updates and/or explicit events (i.e.
events that are raised and sent to other Web sites), with the A(C)I(D) properties. Atomicity
(A) and isolation (I) are considered in XChange, the issue of consistency (C) and durability
(D) for transactions are currently not investigated in the project.
An XChange prototype will be available in the near future.

In this approach, the events must occur locally – either as changes in the database or by
messages (which, by the push communication strategy can also include messages about events
occurring somewhere else in the Web). ECA rules are then evaluated locally, and appropriate
actions (updates, or sending messages) are taken.

60

ECA Rules in “Closed Communities”: Active Views

The Active View system [AAC+99] aims at providing a Web-based environment for collabo-
rative applications. An Active View is not only a view, but it defines a kind of a simple agent
pattern whose instances allow actors to perform controlled activities and to work interactively
in a distributed environment. Central to an Active View infrastructure is a repository, and a
management for active rules and communication. The specification of an active view consists
of the following components:

• a view on the underlying (XML) data in a repository,
• method specifications that allow the actor to update the repository via the view,
• activities specifications: these activities can also update the view, and can be invoked declar-

atively from other view instances,
• active rules in the form of ECA rules.

An application of active views is illustrated in [AAC+99]: by logging on an e-commerce site, a
customer invokes the customer pattern, and then has access to the repository and can commu-
nicate, e.g. with a vendor instance. The view data consists of the catalog items, equipped with
methods that update the repository (e.g. to submit an order), and a dispatcher can assign the
consumer (i.e., his view) to a vendor with whom he can communicate then (by calling activities
of the vendor view). Active rules can both be associated with the central instance, and with
views.

Reactivity. At the time this work was reported, there was no standard query language
for XML; Active Views is based on a simple query and update language inspired by Lorel
[AQM+97], including an update construct.

Events are (remote) method calls, operations like write, read, append, or detection of
changes. Note that in contrast to most other approaches, events are not necessarily located at
the same place as the active rules: events occurring in the central repository (invoked either
by local reactive rules, or by activities of some views) are communicated to the views. Views
are either notified by all events, or notification can be customized as subscription to certain
events. The condition part of an Active View condition is an XML query that is evaluated as
a boolean. The action part can specify operations on the repository, method calls (remote, but
inside the Active View system) or notifications.

Further Functionality. The approach of Active Views goes beyond active rules, and incor-
porates many other issues that are relevant to the Semantic Web:

• distribution of data, events, and activities;
• update propagation to the views2: if the repository is updated by some activity, views must

be updated or become stale. The propagation of changes from the repository to the views
is supported, and alternative ways are sketched;

• communication of events (notifications, subscriptions, detecting remote events);
• access rights when using views (e.g., in the above-mentioned application, “bad” customers

can be excluded by using a blacklist).

On the other hand, Active Views restricts reactivity to a “closed community”, and to a prede-
fined set of rules.

2Note that update propagation through the Web will raise further issues.

61

4.2.2 Event-Condition-Action Rules for the Semantic Web

Reactivity is an important component of the vision of the Semantic Web as a closely intertwined
network of autonomous nodes. In contrast to the current Web, where many sites are just
providing information, and others simply query them on-demand, the Semantic Web will profit
from enhanced communication between its nodes, not only for answering queries, but also for its
evolution. It is crucial that relevant changes to information that has been used by a Semantic
Web agent are consistently and rapidly propagated to all interested parties.

The ECA Approach Proposed in [PPW03]

The Event-Condition-Action language proposed in [PPW03], and described in the previous
section, can also be used for RDF data which has been serialized as XML data. [PPW03] reports
on the first steps towards such a language for RDF data, and presents a set of examples working
directly with the metadata expressed in RDF/RDFS. [PPW04] defines a query language that
works directly on the RDF graph/triple representation, and extends it with the above ECA
functionality. The events and conditions are as before, but now working on RDF level; the
action part is now a sequence of actions, where each action represents insertion or deletion of
a set of RDF triples (i.e. of the form (subject, predicate, object))

A distributed version supporting ECA rules on distributed RDF repositories is to be devel-
oped as part of the SeLeNe project3. The project investigates self e-learning networks, where
such a network is a distributed repository of metadata related to learning objects.

A distributed system architecture is proposed, which offers a context for discussion on prob-
lems like registering of ECA rules and rule triggering, and execution in distributed environments.
The architecture contains peers and super-peers, which coordinate a group of peers. However,
the accent is on infrastructure issues and not, for example, on means for communication between
the peers of the network.

XChange

XChange, as a language for specifying reactivity on the Web, has been discussed in the pre-
vious section. In [BFPS04b] it is shown that the language XChange can be used to specify
propagation of changes on the Semantic Web. Using a simple reasoner implemented in the un-
derlying query language Xcerpt, examples working with RDF data serialized as Xcerpt terms
are presented.

Applying the languages Xcerpt and XChange to more complex Semantic Web applications
is currently being investigated and may result in the implementation of (partial) reasoners for
certain ontologies.

4.2.3 Active behavior encoded in XML Data

Relational databases distinguish between data (stored in relations) and activities (by proce-
dures, functions and triggers). With object-oriented databases, this distinction has been blurred
since objects encapsulate both data and behavior. But still, the behavior is local to the database.

With XML data, XML syntax of query languages (XQueryX), and XML-based Web Services
(WSDL, UDDI, SOAP) the encoding of active behavior directly in the data becomes possible.

3SeLeNe project, http://www.dcs.bbk.ac.uk/selene

62

This approach is followed by Active XML4 [AXM02, ABM+02]. In Active XML Service calls
are put into XML instances by special elements of the form

<sc>service-URL arguments </sc>

where arguments contains a (possibly empty) sequence of elements that are submitted as argu-
ments with the service call. The XML elements resulting from the service call are inserted into
the document as siblings of the call.
Active XML is employed in the DBGlobe system [PAP+03], aiming at

“ ...viewing the conglomeration of interconnected peers carrying data as a virtual super-
database ...”

4http://www-rocq.inria.fr/gemo/Gemo/Projects/axml/

63

64

Chapter 5

Rule-Based Agents

To date there exist different approaches, frameworks and platforms to develop agents on different
levels of abstraction. For example, web services, the common object request broker architecture
[Obj92, Obj93], and the parallel virtual machine [GBD+94] cater for the infrastructure of
distributed systems, in general, and multi-agent systems, in particular. Such systems tackle
low-level issues of distributed systems and form the technical basis of high-level conceptual
frameworks for designing and developing agent applications. Programming languages such as
April [MC95] or PVM-Prolog [CM96, CM97] support distributed computing and declarative
programming. Unfortunately, on the highest level of abstraction one mostly finds either agent
theories which are not operational, such as the BDI logics of [RG91], or implemented systems
with certain data structures corresponding to beliefs and goals [IG90, LHDK94] but without
a formal semantics, such as PRS, dMARS, and ARCHON. We start this Chapter, in Section
5.1, by giving an overview an Vivid agents [SW00], that sets out to bridge this gap by defining
an agent framework and its web-enabled implementation. Other rule-based agent frameworks
have been developed recently also with the goal of both being operational and providing a
formal logical semantics. Examples of such frameworks are the DALI logic programming agent-
oriented language [CT02, CT04], MetateM [BFG+95] and Concurrent MetateM [Fis93],
3APL [HdBvM98, HBdHM99] and MINERVA [Lei03, LAP02]. Rather than making here an
extensive overview of all these systems, in Section 5.2 we concentrate on one of these approaches
and make a brief overview on the agent systems being developed within the project SOCS –
Societies Of ComputeeS (IST-2001-32530).

Finally, in Section 5.3, we briefly overview IMPACT [RRS96, SBD+00], an agents frame-
work aiming at both a theory as well as a software implementation that facilitates the creation,
deployment, interaction, and collaborative aspects of software agents in a heterogeneous, dis-
tributed environment.

5.1 Vivid Agents

In this section we overview work done on reaction rules for rule-based Vivid agents [SW00]. An
artificial agent is called rule-based, if its behavior and/or its knowledge is expressed by means
of rules. More specifically, in this section we review a general architecture for rule-based agents
originally proposed in [Wag96, SW00, DKSW03] and discuss how it can be realized with the
help of Semantic Web languages.

65

Agents are situated in an environment and exhibit reactive behavior [WJ95]. Reaction rules
are natural means to specify such agent behavior. Reaction rules generalize event-condition-
action rules used in active databases [MD89, KGB+95].

5.1.1 A Basic Architecture for Rule-Based Agents

In philosophy and AI, there is a strong tradition to describe rational agents in terms of their
beliefs, desires, and intentions (BDI) [Bra87, CL90]. While many researchers (see e.g. [RG91])
follow the philosophical logic tradition in modelling mental components with the help of highly
complex multi-modal logics, another strand of research takes a more practical approach and
models mental components as specific data structures forming the composite state of agents
whose operational semantics is given by the resulting state transition system. In his seminal
paper [Sho93], Shoham coins the term agent-oriented programming (AOP), which is centered
around the three mental components of beliefs, capabilities, and commitments. In the next
section, we will sketch an agent framework based on knowledge and perception.

Knowledge- and Perception-Based (KP) Agents

While we can associate implicit notions of goals and intentions with any “intentional system”,
be it natural or artificial (according to D. Dennett), it is only the explicit notion (of a goal or
an intention) which counts for an artificial agent from the programming point of view. Having
an explicit goal requires that there is some identifiable data item in the agent program which
represents exactly this goal, or the corresponding sentence. Having explicit goals makes only
sense for an agent, if it is capable of generating and executing plans in order to achieve its
goals. Simple agents, however, which are purely reactive, do not generate and execute plans
for achieving explicit goals assigned to them at run time (i.e. do not behave pro-actively), but
only react to events according to their reactive behavior specification. Of course, a reaction
pattern can be viewed as encoding a certain task or goal which is implicit in it. But unlike
explicit goals, such implicitly encoded tasks have to be assigned to the agent at design time by
hard-coding them into the agent system.

So what are the basic components shared by all important – and even very simple – types
of agents? At any moment, the state of any such agent comprises beliefs (about the current
state of affairs) and perceptions (of communication and environment events), and possibly other
components such as tasks/goals, intentions, obligations, emotions, etc. While the agent’s beliefs
are represented in its knowledge base (KB), its perceptions are represented (in the form of
incoming messages) in its event queue (EQ). We obtain the following picture:

agent state = beliefs + perceptions + ...

or, formally,
A = 〈KB ,EQ , . . .〉

And the state of a purely reactive agent may very well consist of just these two components,
and nothing else:

reactive agent specification = reaction patterns + initial state
reactive agent state = beliefs + perceptions

(or, formally, A = 〈KB ,EQ〉)

66

Example 5.1 Consider the following example: A personal finance agent monitors a user’s
portfolio and acts if appropriate by alerting the user to critical situations, as well as selling and
buying of shares.
The behavior of the agent is specified by the following rules:

1. If an investment is critical and the investment is for more than 1 year in the portfolio then
sell the investment.

2. If an investment is critical then send an alert with high priority.
3. If an investment is at risk then send an alert.
4. If the value of the investment dropped by more than 5% then the investment is critical.
5. If the value of the investment dropped by more than 3% and the value of the investment in

the portfolio is more than 10% of the total value of all investments then the investment is
critical.

6. If the value of the investment dropped by more than 3% then the investment is at risk.
7. Log the investment. (No prerequisites)

The above rules are a mix of derivation and reaction rules and in the remainder of the paper,
we will develop and implement this example in our framework.

The core of any reactive agent is its KB. Technically, the beliefs in a KB are expressions in
some representation language.

Example 5.2 For instance, beliefs in a KB may be simple attribute/variable=value pairs like

MyName = 007, or
FaxNo[sunshine Ltd] = 8132,

such as in a conventional program, or atomic sentences like

I am(007), or
company(sunshine Ltd, malibu, 8132),

such as the table rows in a relational database, or the facts in a Prolog program. In certain
cases, beliefs may have to be qualified, e.g. by a degree of uncertainty, a valid-time span, or a
security classification, like in

price(sunshine Ltd, rise) : very likely
strategy(cautious) @ [2001/05/01–∞]
price(dodgyCorp, fall) / top secret

Perceptions may have the form of typed messages labelled with their origination, such as the
environment event message

〈 observed(dog(approaching, 300m):0.7), camera 1 〉,
or the communication event message

〈 tell(price(sunshine Ltf, rise), aFriend) 〉
and FIFO-buffered in the event queue EQ.

Thus, all interesting types of artificial agents are knowledge- and perception-based (KP).

67

5.1.2 Reaction Rules

Let us now consider the reaction rules of an agent. Reaction rules encode the behavior of
KP agents in response to perception events created by the agent’s perception subsystems, and
to communication events created by communication acts of other agents. They are similar
to event-condition-action (ECA) rules known from ‘active’ databases [MD89, KGB+95] (see
Chapter 4. We distinguish between mental, physical, and communicative reaction rules.

Definition 5.1 Reaction Rule
Let A1, A2 be agent terms. Let LEvt, LCom and LAct be an environment event, a communication
event, and a physical action language. Then rules of the form

Eff ← recvMsg(ε(U), A1), Cond (Mental)
do(α(V)), Eff ← recvMsg(ε(U), A1), Cond (Physical)

sendMsg(η(V), A2), Eff ← recvMsg(ε(U), A1), Cond (Communicative)

where Cond ∈ LQuery, Eff ∈ LInput ∪ {Goal(g), not Goal(g) | g ∈ LInput}, and
ε(U) ∈ LEvt∪LCom, α(V) ∈ LAct, η(V) ∈ LCom are called mental, physical and communicative
reaction rules.

The event condition recvMsg(ε(U), A1) is a test whether the event queue of the agent con-
tains a message of the form ε(U) sent by some perception subsystem of the agent or by another
agent identified by A1, where ε(U) represents an environment or a communication event, and U
is a suitable list of parameters. The epistemic condition Cond refers to the current knowledge
state, and the mental effect Eff specifies an update of the current knowledge state and/or the
adoption or deletion of goals. For physical reactions, LAct is the language of all elementary
physical actions available to an agent; for an action α(V), do(α(V)) calls a procedure realizing
the action α with parameters V . For the communicative reaction, sendMsg(η(V), A2) sends the
communication message η(V) with parameters V to the receiver A2.

Example 5.3 Both perception and communication events are represented by incoming mes-
sages. In a robot, for instance, appropriate perception subsystems, operating concurrently, will
continuously monitor the environment and interpret the sensory input. If they detect a relevant
event pattern in the data, they report it to the knowledge system of the robot in the form of a
perception event message. Similarly, the portfolio agent monitors the share prices and updates
of the prices are processed as incoming messages.

In general, reactions are based both on perception and on knowledge. Immediate reactions
do not allow for deliberation. They are represented by rules with an empty epistemic premise,
i.e. C ond = true. Timely reactions can be achieved by guaranteeing fast response times for
checking the precondition of a reaction rule. This will be the case, for instance, if the pre-
condition can be checked by simple table look-up such as in relational databases or factbases.
Reaction rules are triggered by events. The agent interpreter continuously checks the event
queue of the agent. If there is a new event message, it is matched with the event condition of
all reaction rules, and the epistemic conditions of those rules matching the event are evaluated.
If they are satisfiable in the current knowledge base, all free variables in the rules are instanti-
ated accordingly resulting in a set of triggered actions with associated mental effects. All these
actions are then executed, leading to physical actions and to sending messages to other agents,
and their mental effects are assimilated into the current knowledge base.

68

5.2 Agent Systems Developed in SOCS

As mentioned in the introduction to this chapter, instead of making here an extensive overview
on the various rule-based agent frameworks, we concentrate on, and make a brief overview of,
the agent systems being developed within the project SOCS – Societies Of ComputeeS (IST-
2001-32530)1. Comparisons of these systems to other rule-based agent frameworks can be found
in the literature cited in this section.

The SOCS project, funded by the European Commission under the 5th framework, aims at
providing a computational logic model for the description, analysis, and verification of global
and open societies of heterogeneous computees. Computees are understood in SOCS as abstrac-
tions of the entities (or agents) that populate open and global computing environments. As with
Vivid agents, the SOCS project also aims at bridging the gap between low-level approaches to
agents, with no obvious logical characterization allowing for a proper analysis and verification,
and more abstract specifications that have no computational counterpart. Accordingly, the
models for societies of computees that SOCS aims at providing should have a computational
counterpart that is executable but at the same time provably correct with respect to the formal
models.

As in the Rewerse Working Group I5 “Evolution and Reactivity”, SOCS also aims at
dealing with dynamic environments, i.e. with the possibility of evolution, and with incomplete
information about the environment. But SOCS goes beyond the goals of Rewerse regarding
the behavior of agents. In fact, in SOCS, computees’ behavior should cater for more than
reactivity, and issue like planning activities to accomplish goals, sharing of resource to achieve
goals, revision of computees beliefs due to their incompleteness and possible misconception
about the environment are being developed within SOCS. On the other hand, the specific
requirements of being able to deal with more complex data structures and models related to
the Web and the Semantic Web, as well as the capability to deal with richer event languages
and transactions, to be worked out in Rewerse, are beyond the scope of SOCS.

One of the main basic choices in SOCS, and in their developed agent systems, is the use
of Computational Logics and, more specifically in most cases, Abductive Logic Programming
[KKT98] for the modelling and realization of agents. Abductive Logic Programming is used
as a means to reconcile rational behavior of an agent, required for e.g. planning activities with
reactive behavior. This reconciliation is made on the basis of an “Observe-Think-Act” cycle of
agents that has been proposed in [KS96, KS99] and for which an abductive proof procedure
has been defined [FK97] and implemented. This procedure has been recently extended to cope
also with constraint solving (CIFF) [EMS+04b], making it possible to deal with time intervals.

According to [KS96, KS99] knowledge is represented by a logic program augmented with
integrity constraints and sets of goals. The integrity constraints can be denials, expressing
prohibitions, e.g. do(agent, Act1, T) ∧ do(agent,Act2, T) ∧ Act1 6= Act2 → false (stating that
agent cannot perform two actions at the same time), and also rules, similar to (event-)condition-
action rules. For example, the integrity constraint

at(Agent, B, T) ∧ intruder(Agent) ∧ at(self, a, T) → do(self, move(A,B), [T, T + 10])

states that agent self should move to a location where an intruder has been detected, in a
moment between the time the intruder has been detected and that time plus 10 units. Goals

1More information on the SOCS project can be found at http://lia.deis.unibo.it/Research/Projects/

SOCS/

69

are sets of predicates that the agents seeks to make true. An agent evolves according to a cycle
consisting of the following activities: new observations, acquired from the environment, are
added to the knowledge – observe; a fixed number of derivation (rewriting) steps for proving
the current goals are performed by using the rules (in a backward manner) and the integrity
constraints (in a forward manner) in which actions are hypothesized, or abduced – think ; an
action among those abduced is chosen for actual execution – act. This way, a purely reactive
behavior is obtained if all integrity constraint rules only have in their bodies conditions that are
either immediately obtained from the observed facts or from other facts in the knowledge base.
Rationality behavior is obtained when checking the conditions requires various derivation steps.
A combination of both is obtained by limiting the number of possible steps in each iteration of
the cycle.

This basic approach has been extended to deal with negotiation of resources between agents
[STS02]. This is done by modifying the agent cycle sketched above in order to deal with
dialogues between agents and to enforce atomicity and interleaving of dialogues. Dialogues
here are understood as sequences of dialogue moves, each move being an utterance (e.g. request,
give, accept, refuse, etc.). This framework has been further extended in a number of ways. One
such extension is related to the ability of negotiating not just resources, but also time windows
during which resources are shared [STS03].

Other extensions introduce different levels of conformance to check and enforce the adap-
tation of an agent to public protocols regulating the interaction in a multiagent system
[EMST03, EMST04]. For this, the framework is extended to deal with rules and constraints on
utterances. The work on protocols and verification of compliance to protocols in agent societies
is being further explored in the context of SOCS, with recent results [ACG+03, ADG+04] where
Social Integrity Constraints and ways to express expectations of agents are defined. Social in-
tegrity constraints specify the way expectation should be generated, given a partial history of
a society of agents, i.e. given a sequence of events that had occurred. In [ADG+04] it is shown
how social integrity constraints may be used to implement communication protocols, including
the FIPA Contract Net Protocol [FIP02c].

Implementations have accompanied most of the work described above. In particular, a
platform for programming software agents (PROSOCS) [SKL+04], a society infrastructure tool
(SOCS-SI) [ACT04], and an engine for the CIFF procedure [EMS+04a] have been designed and
implemented.

In this section some work being developed in SOCS that may be relevant for Rewerse
has been surveyed, concentrating on a few aspects of the work in SOCS, viz. dealing with
rationality, beyond reactivity, and communication protocols in societies of agents. This way, this
overview must be understood as giving only a partial view of SOCS. In fact more work, not even
mentioned here, is being developed. For a complete account of this work, the reader is referred
to the SOCS homepage, where a complete list of publications and demos of implementations
may be found. Publications on that list contain various comparisons to other agent systems,
such as the ones mentioned in this chapter’s introduction.

5.3 IMPACT

The Interactive Maryland Platform for Agents Collaborating Together (IMPACT) [RRS96,
SBD+00] is an international research project led by the University of Maryland. Its main goal
is to develop both a theory as well as a software implementation that facilitates the creation,

70

deployment, interaction, and collaborative aspects of software agents in a heterogeneous, dis-
tributed environment. Since we are concerned with the interaction between several distributed
Web resources — reacting to each others messages — and their knowledge evolution, the rele-
vance of IMPACT to our work becomes immediate. In this chapter we make a brief overview
of IMPACT [SBD+00] and its underlying concepts, and also take a brief glance over the use of
Deontic Logics in IMPACT.

The IMPACT Team had as objectives to develop techniques and tools to build agents on
top of existing legacy code — as well as on top of freshly written code — and at the same
time enabling agent interoperability. We are set to investigate and design the reactivity and
knowledge evolution principles of a network of several distributed Web resources, some of which
may be built on top of legacy systems.

Under IMPACT’s philosophy, each agent should offer some data services that must be
somehow described. Different agents can possibly use different ontologies to describe their
services, their environments and their behaviors. IMPACT also concerns about the organization
of the thousands of networked agents who offer their services to others and to humans, and the
facilitation of the collaboration between such agents.

In all, IMPACT is a powerful system and it has proved to be useful being used in practical
fields such as Army applications, Logistics, and Air Traffic Control. The main features of
this system’s architecture, and the core agent concept and architecture are IMPACT’s primary
differences to other agent-based systems and are the source of IMPACT’s success. Moreover,
IMPACT’s use of a declarative language for specifying the agent program greatly contributes
to the flexibility in agent-design as well as facilitating the programming/correcting process.

5.3.1 Agent Architecture in IMPACT

As different application programs reason with different types of data and as even programs that
deal with the same types of data often manipulate that data in a variety of different ways, it
is critical that any notion of agenthood be applicable to arbitrary software programs. Agent
developers should be able to select data structures that best suit the application functions
desired by users of the application they are building.

It is important to assure that all agents have the same architecture and hence the same
components, although the content of these components can be different. This may lead to a
variety of different behaviors and capabilities offered by different agents.

IMPACT’s agents’ architecture is comprised of the following components:

Data structures: A specification of the data types or data structures that the agent manip-
ulates. As usual, each data type has an associated domain which is the space of objects
of that type. For example, the data type countries may be an enumerated type containing
names of all countries. At any given point, the instantiation or content of a data type is
some subset of the space of the dataobjects associated with that type.
The set of data structures is manipulated by a set of functions that are callable by external
programs (such functions constitute the Application Programming Interface or API of the
package on top of which the agent is being built. An agent includes a specification of all
these API function calls’ signatures (i.e. types of the inputs to such function calls and types
of the output of such function calls).

Message box: In addition to the data types of the code that an agent is built on top of,
IMPACT provides a special “messaging” package which may be “added on” to agents so

71

that they are able to handle messaging.
At any given point in time, the actual set of objects in the data structures (and message
box) managed by the agent constitutes the state of the agent.

Actions: The agent has a set of actions that can change its state. Such actions may include
reading a message from the message box, responding to a message, executing a request “as
is”, executing a modified request, cloning a copy of the agent and moving it to a remote
host, updating the agent data structures, etc. Even doing nothing may be an action. Every
action has a precondition, a set of effects that describe how the agent state changes when
the action is executed, and an execution script or method consisting of a body of physical
code that implements the action.

Concurrency: The agent has an associated body of code implementing a notion of concur-
rency. Intuitively, a notion of concurrency takes a set of actions as input, and returns a
single action (which “combines” the input actions together) as output. There are numerous
possible notions of concurrency, being sequentially ordered execution one of the simplest
choices.

Action constraints: Each agent has a set of action constraints which are rules of the form
“If the state satisfies some condition, then actions {a1, . . . , an} cannot be concurrently exe-
cuted.”

Integrity constraints: Each agent has a set of integrity constraints that states of the agent
are expected to satisfy. Such integrity constraints are of the form “If some condition C is
true, then an atom A must be true.”

Agent program: Each agent has a set of rules called the Agent Program specifying the op-
erating principles under which the agent is functioning. These rules describe the do’s and
don’t’s for the agent. They specify what the agent may do, what it must do, what it may
not do, etc. The Agent Program uses deontic modalities (cf. below) to implement what
the agent can and cannot do. If α(–→t) is an action with parameters –→

t , then Oα(–→t); Pα(–→t);
Fα(–→t); Do α(–→t); Wα(–→t) are called action status atoms. These action status atoms are read
(respectively) as α(–→t); is obligatory, permitted, forbidden, to be done, and the obligation
to do Wα(–→t); is waived. If A is an action status atom, then A and ¬A are called action
status literals. An agent program is a finite set of rules of the form

A ← χ ∧ L1 ∧ . . . ∧ Ln

where A is an action status atom, χ is a condition, and L1, . . . , Ln are action status literals.
Agent behavior: We assume that when the agent is initially constructed and deployed, all

integrity constraints are satisfied by the agent’s state. This is analogous to requiring that the
agent, when built and deployed, is not “messed up” right at the beginning. Given this, we
can ensure that whatever the agent does, it maintains consistency of the integrity constraints
by never executing actions that force it to transition to an inconsistent state. We assume
that an agent B can directly change an agent A’s state only by sending it a message (and
thus causing an update to the agent’s mailbox). All other changes to agent A’s state must
be made by agent A, perhaps as a response to such a message from agent B. There is no loss
of generality in making this assumption. Thus, every time an agent A receives a message,
its integrity constraints may get violated. The agent’s job is to compute a set of actions to
take which, if executed concurrently, satisfy the following conditions:

1. satisfies the action constraints,

72

2. leads to a new state (of the agent) that satisfies the integrity constraints, and
3. satisfies all rules of the agent’s program.

In fact, in this framework, a status set is a set of ground action status atoms that preserve
such conditions, and also satisfy some consistency conditions. The important point to re-
member is that agents continuously respond to messages (state changes) by computing such
a status set, and concurrently executing all the actions of the form Doα in that status set.

5.3.2 IMPACT Architecture

The IMPACT system architecture comprises several components, namely: an Agent Develop-
ment Environment (AgentDE for short), the IMPACT Server, the Agent Roost, the IMPACT
Connections module and the AgentLog component. Most of these components have a practical
interest and provide useful functionalities to the IMPACT system, but their conceptual interest
to our work seems to be limited. The Agent DE component, however, has some functionalities
which may be of importance.

Besides providing an environment within which an agent developer can program all the
parts of an agent, the AgentDE performs a series of validations and verifications on the agent
code before the agent can be deployed.

Among these validations and verifications the AgentDE performs the “Deontic Stratifica-
tion” — an operation concerning the Deontic Logic Operators which are described below.

5.3.3 Deontic Logics in IMPACT

IMPACT used Deontic Logics [Tho03] for reasoning about and working with actions.
The Deontic Logic Operators (DLOs) used in IMPACT are

O — Obligatory
P — Permitted
F — Forbidden
W — Waived
Do — Execute

These DLOs are used for programming the rules that form the agent program. An agent
program rule looks like

A ← χ ∧ L1 ∧ . . . ∧ Ln

where A is an action status atom, χ is a condition, and L1, . . . , Ln are action status literals
as explained in Section 5.3.1. As it is obvious, DLOs are naturally well suited for integrity
constraint specification as well as for action constraint specifications.

In [Tho03], Simon Thornton shows the clear similarities between some classical Deontic Logic
Operators and the classical Modal Logic ‘2’ and ‘3’ operators. Additionally, Thornton shows
that an already built and used proof workbench tool — originally designed for Modal Logic —
can be used to efficiently perform automated reasoning using Deontic Logic Operators. This
shows that it is feasible to develop an efficient logic based system to reason with the (deontic)
logic rules which make up the agent program.

73

Deontic stratification

The check for Deontic Stratification ensures that an action status atom is never defined recur-
sively in terms of its own negation. For instance, a rule such as

Oα ← ¬Pα

is a rule that defines Oα cyclically (implicitly whenever Oα holds, Pα must hold as well).
IMPACT deals with this kind of problem — definition by self-negation — by simply not

allowing it to occur; although the detection of such ‘looping-across-an-odd-number-of-negations’
definitions might be computationally expensive and time-consuming.

The Deontic Stratification, being an interesting feature, has also some drawbacks, namely,
if the agent’s program gets updated — either by an internal self-update or by an external-agent
message which causes the update — the resulting updated program might no longer be Deontic
Stratifiable. This would render the agent useless. Malicious-intentioned users could use this
security weakness to do harm to a system. To prevent such an undesirable situation, one must
perform the Deontic Stratification process every time an agent’s program is updated; which
turns out to be a very time-consuming task as the agent’s program grows larger and larger.

74

Acknowledgements

We would like to thank Thomas Eiter and Gerd Wagner, who acted as cross readers of this
deliverable, for their valuable comments on a previous version of this document, which really
helped on improving it.

75

76

Bibliography

[AAC+99] Serge Abiteboul, Bernd Amann, Sophie Cluet, Adi Eyal, Laurent Mignet, and
Tova Milo. Active Views for Electronic Commerce. In Intl. Conference on Very
Large Data Bases (VLDB), 1999.

[ABBL04] J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: a principled based approach. In Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-7),
volume 1730 of LNAI, Berlin, 2004. Springer.

[ABLP02] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs.
In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the 8th
European Conference on Logics in Artificial Intelligence (JELIA’02), volume 2424
of LNAI, pages 50–61. Springer-Verlag, 2002.

[ABM+02] Serge Abiteboul, Omar Benjelloun, Ioana Manolescu, Tova Milo, and Roger We-
ber. Active XML: Peer-to-Peer Data and Web Services Integration. In Very Large
Data Bases Conference (VLDB’02), pages 1087–1090. Morgan Kaufmann, 2002.

[ACG+03] M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni. Specification and verification of agent interactions using social integrity
constraints. In W. van der Hoek, A. Lomuscio, E. de Vink, and M. Wooldridge,
editors, Proceedings of the Workshop on Logic and Communication in Multi-Agent
Systems (LCMAS), 2003.

[ACT96] ACT-NET Consortium. The Active Database Management System Manifesto: A
Rulebase of ADBMS Features. SIGMOD Record, 25(3):40–49, September 1996.

[ACT04] M. Alberti, F. Chesani, and P. Torroni. SOCS-SI. In C. Sierra L. Sonenberg,
editor, 3rd International Conference on Autonomous Agents and Multi Agent Sys-
tems. Systems Demos, 2004.

[ADG+04] M. Alberti, D. Daolio, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Speci-
fication and Verification of Agent Interaction Protocols in a Logic-based System.
In Hisham M. Haddad, Andrea Omicini, and Roger L. Wainwright, editors, Pro-
ceedings of the 19th ACM Symposium on Applied Computing (SAC 2004), pages
72–78, 2004.

[AGM85] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change:
Partial meet contraction and revision functions. J. Symbolic Logic, 50(2):510–530,
1985.

[AH98] S. F. Andler and J. Hansson, editors. Proceedings of the 2nd International Work-
shop on Active, Real-Time, and Temporal Database Systems, volume 1553 of Lec-

77

ture Notes in Computer Science. Springer, 1998. ISBN 3-540-65649-9.
[ALP+00] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-

ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1–3):43–70, 2000. A shorter version appeared in “Principles of
Knowledge Representation and Reasoning’98”.

[APPP02] J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query
Language for Semistructured Data. Int. Journal on Digital Libraries, 1(1):68–88,
1997.

[AS97] J.v.d. Akker and A. Siebes. Enriching Active Databases with Agent Technol-
ogy. In P. Kandzia and M. Klusch, editors, Proceedings of the First International
Workshop on Cooperative Information Agents (CIA-97), volume 1202 of Lecture
Notes in Artificial Intelligence, pages 116–125. Springer, 1997.

[AVFY98] Serge Abiteboul, Victor Vianu, Bradley S. Fordham, and Yelena Yesha. Rela-
tional transducers for electronic commerce. In ACM Symposium on Principles of
Database Systems (PODS), pages 179–187, 1998.

[AWH95] A. Aiken, J. Widom, and J. M. Hellerstein. Static analysis techniques for pre-
dicting the behavior of active database rules. ACM Transactions on Database
Systems (TODS), 20(1):3–41, March 1995.

[AXM02] Active XML Primer, 2002. http://www-rocq.inria.fr/gemo/Gemo/Projects/
axml/.

[BBCC02] Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano Ceri. Active
XQuery. In Intl. Conference on Data Engineering (ICDE), pages 403–418, San
Jose, California, 2002.

[BCD94] A. Buchmann, S. Chakravarthy, and K. Dittrich. Active databases. Dagstuhl
Seminar No. 9412, Report No. 86, 1994.

[BCL97a] M. Berndtsson, S. Chakravarthy, and B. Lings. Extending Database Support for
Coordination Among Agents. International Journal on Cooperative Information
Systems, 6(3-4):315–339, 1997.

[BCL97b] M. Berndtsson, S. Chakravarthy, and B. Lings. Result Sharing Among Agents
Using Reactive Rules. In Proceedings of the First International Workshop on Co-
operative Information Agents (CIA-97), volume 1202 of Lecture Notes in Artificial
Intelligence, pages 126–137. Springer, February 1997.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. The Description Logic Handbook. Cambridge University Press,
2003.

[BCP00] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Active Rules for XML: A
New Paradigm for E-Services. In First Workshop on Technologies for E-Services
(TES 2000), September 2000.

[BCP01] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Pushing Reactive Services
to XML Repositories Using Active Rules. In World Wide Web Conf. (WWW
2001), pages 633–641, 2001.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrandt, and D. Suciu. A query language and

78

optimization techniques for unstructured data. In ACM Intl. Conference on Man-
agement of Data (SIGMOD), pages 505–516, Montreal, Canada, 1996.

[Ber90] Brian Berliner. CVS II: Parallelizing Software Development. In USENIX Asso-
ciation, editor, Proc. of the Winter 1990 USENIX Conference, pages 341–352,
Washington, DC, USA, January 1990.

[BFG+95] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM: An
introduction. Formal Aspects of Computing, 7(5):533–549, 1995.

[BFG01] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with Lixto. In Intl. Conference on Very Large Data Bases (VLDB), pages 119–128,
2001.

[BFL99] F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), pages 79–93, Cambridge, November 1999. MIT
Press.

[BFPS04a] François Bry, Tim Furche, Paula-Lavinia Pătrânjan, and Sebastian Schaffert. Data
retrieval and evolution on the (semantic) web: A deductive approach. Technical
Report PMS-FB-2004-13, University of Munich, May 2004.

[BFPS04b] François Bry, Tim Furche, Paula Lavinia Pătrânjan, and Sebastian Schaffert. Data
Retrieval and Evolution on the (Semantic) Web: A Deductive Approach. In Proc.
of Workshop on Principles and Practice of Semantic Web Reasoning, St. Malo,
France, (6th – 10th September 2004), 2004.

[BGK+95] J. A. Bailey, M. Georgeff, D. B. Kemp, D. Kinny, and K. Ramamohanarao. Active
Databases and Agent Systems - A Comparison. In T. Sellis, editor, Proceedings
of the 2nd International Workshop on Rules in Database Systems, volume 985 of
Lecture Notes in Computer Science, pages 342–356. Springer, 1995.

[BGK+02] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data management for Peer-to-Peer Computing: A Vision. In 5th
International Workshop on the web and Databases (WebDB’02). ITC-IRST Tech-
nical Report 0204-15, 2002.

[BGP97] C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws,
observations and hypotheses. Journal of Logic Programming, 31(1–3):201–243,
April–June 1997.

[BH96] M. Berndtsson and J. Hansson. Workshop Report: The First International Work-
shop on Active and Real-Time Database Systems (ARTDB-95). SIGMOD Record,
25(1):64–66, 1996.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 1(37):77–121, 1985.

[BK94] A. J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133(2):205–265, 1994.

[BK95] A. J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In ICDT’95: Advances in Logic-Based Languages, 1995.

[BKLW99] G.v. Bültzingsloewen, A. Koschel, P. C. Lockemann, and H-D. Walter. ECA
Funtionality in a Distributed Environment. In N. W. Paton, editor, Active Rules
in Database Systems, Monographs in Computer Science, chapter 8, pages 147–175.

79

Springer, 1999.
[BL92] M. Berndtsson and B. Lings. On Developing Reactive Object-Oriented Databases.

IEEE Quarterly Bulletin on Data Engineering, Special Issue on Active Databases,
15(1-4):31–34, December 1992.

[BMP81] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
8th Annual ACM Symp. on Principles of Programming Languages, 1981.

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin
Cummings, 1994.

[BPS04a] François Bry, Paula Lavinia Pătrânjan, and Sebastian Schaffert. Poster Presen-
tation: Xcerpt and XChange - Logic Programming Languages for Querying and
Evolution on the Web. In Proc. of 19th Int. Conf. on Logic Programming, St.
Malo, France, (6th – 10th September 2004), LNCS, 2004.

[BPS04b] François Bry, Paula Lavinia Pătrânjan, and Sebastian Schaffert. Xcerpt and
XChange: Deductive Languages for Data Retrieval and Evolution on the Web.
In Proc. of Workshop on Semantic Web Services and Dynamic Networks, Ulm,
Germany, (22nd – 24th September 2004). GI, 2004.

[BPW02] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An event-condition-
action language for xml. In Int. WWW Conference, 2002.

[Bra87] M. E. Bratmann. Intentions, Plans, and practical reason. Harvard University
Press, 1987.

[BS02] François Bry and Sebastian Schaffert. Towards a declarative query and transfor-
mation language for XML and semistructured data: Simulation unification. In
Intl. Conf. on Logic Programming (ICLP), number 2401 in LNCS, pages 255–270,
2002.

[BS03] A. Borgida and L Serafini. Distributed description logics: Assimilating informa-
tion from peer sources. Journal of Data Semantics, 1:153–184, 2003.

[BS04] François Bry and Sebastian Schaffert. Querying the Web Reconsidered: A Prac-
tical Introduction to Xcerpt. In Proc. of Extreme Markup Languages 2004, Mon-
treal, Quebec, Canada, (2nd – 6th August 2004), 2004.

[BZBW95] A. P. Buchmann, J. Zimmermann, J. A. Blakeley, and D. L. Wells. Building an
Integrated Active OODBMS: Requirements, Architecture, and Design Decisions.
In Proceedings of the 11th International Conference on Data Engineering, pages
117–128. IEEE Computer Society Press, 1995.

[CAMM94] S. Chakravarthy, E. Anwar, L. Maugis, and D. Mishra. Design of Sentinel: An
Object-Oriented DBMS with Event-Based Rules. Information and Software Tech-
nology, 36(9):559–568, 1994.

[CCS94] C. Collet, T. Coupaye, and H. Svensen. NAOS - Efficient and modular reactive
capabilities in an Object-Oriented Database System. In Proceedings of the 20th
International Conference on Very Large Data Bases, pages 132–143, 1994.

[CDGL+04] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. What to ask to a peer: Ontology-based query reformulation.
In Proc. of the 9th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2004), pages 469–478, 2004.

[CDSS99] Sophie Cluet, Claude Delobel, Jérome Siméon, and Katarzyna Smaga. Your me-

80

diators need data conversion. In ACM Intl. Conference on Management of Data
(SIGMOD), pages 177–188, 1999.

[CdTW00] Jianjun Chen, David J. deWitt, Feng Tian, and Yuang Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In ACM Intl. Conference
on Management of Data (SIGMOD), pages 379–390, 2000.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. of the IBM Workshop on Logics of
Programs, number 131 in Lecture Notes in Computer Science, 1981.

[CF97] S. Ceri and P. Fraternali. Designing Database Applications with Objects and Rules.
Addison-Wesley, 1997.

[CFI+00] M.J̃. Carey, D. Florescu, ZG̃. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita, and
S. Subramanian. XPeranto: Publishing object-relational data as XML. In WebDB
2000, 2000.

[Cha92] S. Chakravarthy, editor. Special Issue on Active Databases, volume 15(1–4). IEEE
Quarterly Bulletin on Data Engineering, December 1992.

[Cho95a] Jan Chomicki. Depth-bounded bottom-up evaluation of logic programs. Journal
of Logic Programming, 25(1):1–31, October 1995.

[Cho95b] Jan Chomicki. Efficient Checking of Temporal Integrity Constraints Using
Bounded History Encoding. ACM Transactions on Database Systems, 20(2):149–
186, 1995.

[Cho95c] Jan Chomicki. Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems (TODS), 20(2):149–
186, 1995.

[Chr93] S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis,
Edinburgh University, 1993.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In Proceedings of the
20th VLDB, pages 606–617, 1994.

[CL90] P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3):213–261, 1990.

[Cla78] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, 1978.

[CM96] José C. Cunha and Rui F. P. Marques. PVM-Prolog: A prolog interface to PVM.
In Proceedings of the 1st Austrian-Hungarian Workshop on Distributed and Par-
allel Systems, DAPSYS’96, Miskolc, Hungary, 1996.

[CM97] José C. Cunha and Rui F. P. Marques. Distributed algorithm development with
PVM-Prolog. In 5th Euromicro Workshop on Parallel and Distributed Processing,
London, UK, 1997. IEEE Computer Society Press.

[CT02] S. Constantini and A. Tocchio. A Logic Programming Language for Multi-Agent
Systems. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Logics in Artifi-
cial Intelligence, Proc of the 8th European Conference JELIA’02, volume 2424 of
LNAI, pages 1–13. Springer, 2002.

[CT04] S. Constantini and A. Tocchio. The DALI logic programming agent-oriented

81

language. In J. J. Alferes and J. Leite, editors, Logics in Artificial Intelligence,
Proc of the 9th European Conference JELIA’04, volume 3229 of LNAI, pages
679–682. Springer, 2004.

[CW96] S. Chakravarthy and J. Widom, editors. Special Issue on the Active Database
Systems, volume 7(2). Journal of Intelligent Information Systems (JIIS), October
1996.

[Day95] U. Dayal. Ten Years of Activity in Active Database Systems: What Have We
Accomplished? In Proceedings of the 1st International Workshop on Active and
Real-Time Database Systems, Workshops in Computing, pages 3–22. Springer,
1995.

[DDDS99] M. Dekhtyar, A. Dikovsky, S. Dudakov, and N. Spyratos. Monotone expansions
of updates in logical databases. In M. Gelfond, N. Leone, and G. Pfeifer, editors,
LPNMR’99. Springer, 1999.

[DFF+98] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Su-
ciu. XML-QL: A query language for XML. http://www.w3.org/TR/1998/
NOTE-xml-ql, 1998.

[DG96] Klaus R. Dittrich and Stella Gatziu. Aktive Datenbanksysteme, Konzepte und
Mechanismen. Internat. Thompson Publ., 1996.

[Dia99] O. Diaz. Tool Support. In N. W. Paton, editor, Active Rules in Database Systems,
Monographs in Computer Science, chapter 7, pages 127–145. Springer, 1999.

[DJ97] O. Diaz and A. Jaime. EXACT: an EXtensible approach to ACTive object-
oriented databases. VLDB Journal, 6(4):282–295, 1997.

[DKSW03] Jens Dietrich, Alexander Kozlenkov, Michael Schroeder, and Gerd Wagner. Rule-
based agents for the semantic web. Journal on Electronic Commerce Research
Applications, 2(4):323–38, 2003.

[dom00] World Wide Web Consortium, http://www.w3.org/TR/DOM-Level-2-Events/.
Document Object Model (DOM) Level 2 Events Specification, November 2000.

[DP97] A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial
Intelligence, 89(1-2):1–29, 1997.

[DPG91] O. Diaz, N. Paton, and P. Gray. Rule Management in Object Oriented Databases:
A Uniform Approach. In Proceedings of the 17th International Conference on Very
Large Data Bases, pages 317–326, 1991.

[EFL+04] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres.
A Logic Programming Approach to Knowledge-State Planning: Semantics and
Complexity. ACM Transactions on Computational Logic, 5(2):206–263, 2004.

[EFPP04] Thomas Eiter, Wolfgang Faber, Gerald Pfeifer, and Axel Polleres. Declarative
planning and knowledge representation in an action language. In Ioannis Vlahavas
and Dimitris Vrakas, editors, Intelligent Techniques for Planning. Idea Group,
Inc., 2004. To appear.

[EFST01] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 649–654, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

[EFST02a] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics

82

based on causal rejection. Theory and Practice of Logic Programming, 2:711–767,
November 2002.

[EFST02b] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. Reasoning
about evolving nonmonotonic knowledge bases. Technical Report INFSYS RR-
1843-02-11, Institut für Informationssysteme, Technische Universität Wien, A-
1040 Vienna, Austria, September 2002. ACM Transactions on Computational
Logic, to appear.

[EFST03] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. Declarative
update policies for nonmonotonic knowledge bases. In J. Chomicki, R. van der
Meyden, and G. Saake, editors, Logics for Emerging Applications of Databases,
chapter 3, pages 85–129. Springer-Verlag, 2003.

[EH82] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in
the temporal logic of branching time. In Proceedings of the 14th Annual ACM
Symposium on Computing, pages 169–180, 1982.

[EH83] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: On
branching time versus linear time in temporal logic. In 10th Annual ACM Symp.
on Principles of Programming Languages, 1983.

[EL85] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
strikes back. In 12th Annual ACM Symp. on Principles of Programming Lan-
guages, 1985.

[EM01] Andrew Eisenberg and Jim Melton. SQL/XML and the SQLX informal group of
companies. SIGMOD Record, 30(3):105–108, 2001. See also www.sqlx.org.

[Eme90] E. A. Emerson. Temporal and modal logic. In v. Leeuwen [vL90], chapter 16,
pages 995–1073.

[EMS+04a] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive Logic
Programming with CIFF: System description. In J. J. Alferes and J. Leite, editors,
Logics in Artificial Intelligence, Proc of the 9th European Conference JELIA’04,
volume 3229 of LNAI, pages 675–678. Springer, 2004.

[EMS+04b] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof
procedure for abductive logic programming with constraints. In J. J. Alferes
and J. Leite, editors, Logics in Artificial Intelligence, Proc of the 9th European
Conference JELIA’04, volume 3229 of LNAI, pages 31–43. Springer, 2004.

[EMST03] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-
based agents. In Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages
679–684. Morgan Kaufmann, 2003.

[EMST04] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication
protocols. In F. Dignum, editor, Advances in Agent Communication, volume 2922
of LNAI, pages 91–107. Springer, 2004.

[FFK+97] Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy, and Dan
Suciu. STRUDEL: A web-site management system. In ACM Intl. Conference on
Management of Data (SIGMOD), pages 549–552, 1997.

[FIP02a] FIPA ACL Message Structure Specification. Technical Report SC00061G, Foun-
dation for Intelligent Physical Agents, Dec. 2002.

83

[FIP02b] FIPA Communicative Act Library Specification. Technical Report SC00037J,
Foundation for Intelligent Physical Agents, Dec. 2002.

[FIP02c] FIPA Contract Net Interaction Protocol. Technical Report SC00029H, Foundation
for Intelligent Physical Agents, Dec. 2002.

[FIP02d] FIPA SL Content Language Specification. Technical Report SC00008I, Foundation
for Intelligent Physical Agents, Dec. 2002.

[Fis93] M. Fisher. Concurrent metatem — A language for modelling reactive systems.
In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, Proceedings of PARLE
’93 – Parallel Architectures and Languages Europe, Lecture Notes in Computer
Science, pages 185–196, Munich, Germany, June 14–17, 1993. Springer-Verlag.

[FK97] T. Fung and R. Kowalski. The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming, 33(2):151–165, 1997.

[FN71] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(2-3):189–208, 1971.

[Gab89] Dov Gabbay. The declarative past, and imperative future: Executable temporal
logic for interactive systems. In B. Banieqbal, B. Barringer, and A. Pnueli, editors,
Temporal Logic in Specification, number 398 in LNCS, pages 409–448. Springer,
1989.

[GB97] A. Geppert and M. Berndtsson, editors. Proceedings of the 3rd International
Workshop on Rules in Database Systems, volume 1312 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1997. ISBN 3-540-63516-5.

[GB98] A. Geppert and M. Berndtsson. Workshop Report: The Third International Work-
shop on Rules in Database Systems (RIDS’97). Knowledge Engineering Review,
13(2):195–200, June 1998.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. PVM: Parallel Virtual Machine. MIT Press, 1994.

[GBLR98] A. Geppert, M. Berndtsson, D. Lieuwen, and C. Roncancio. Performance Evalua-
tion of Object-Oriented Active Database Management Systems Using the BEAST
Benchmark. Theory and Practice of Object Systems (TAPOS), 4(3):135–149, Au-
gust 1998.

[GD94] S. Gatziu and K. R. Dittrich. Detecting Composite Events in Active Databases
Using Petri Nets. In Proceedings of the 4th International Workshop on Research
Issues in Data Engineering - Active Database Systems, pages 2–9, 1994.

[GJ92] N. H. Gehani and H. V. Jagadish. Active Database Facilities in Ode. IEEE
Quarterly Bulletin on Data Engineering, Special Issue on Active Databases, 15(1-
4):19–22, 1992.

[GKL97] E. Giunchiglia, G. Kartha, and V. Lifschitz. Representing actions: Indeterminacy
and ramifications. Artificial Intelligence, 95:409–443, 1997.

[GKvBF98] S. Gatziu, A. Koschel, G. von Bültzingsloewen, and H. Fritschi. Unbundling
Active Functionality. SIGMOD Record, 27(1), March 1998.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, 7th International Conference on Logic Programming, pages
579–597. MIT Press, 1990.

84

[GL93] M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

[GL98a] M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on Arti-
ficial Intelligence, 2(3-4):193–210, 1998.

[GL98b] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

[GLL+97] E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing
actions in logic programs and default theories: a situation calculus approach.
Journal of Logic Programming, 31:245–298, 1997.

[GLL+04] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153:49–104, 2004.

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, V. Vassalos, and J. Widom. The TSIMMIS approach to mediation:
Data models and languages. Journal of Intelligent Information Systems, 8(2):117–
132, 1997.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:
Migrating the Lore data model and query language. In WebDB 1999, pages 25–
30, 1999.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In ACM Symposium on Principles of Programming Languages, pages
163–173, 1980.

[GRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[Gur88] Y. Gurevich. Logic and the challenge of computer science. In Current Trends in
Theoretical Computer Science, pages 1–57. Computer Science Press, 1988.

[Gur95] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

[Hal03] Alon Y. Halevy. Data integration: A status report. In Datenbanken in Büro,
Technik und Wissenschaft (BTW-2003), pages 1171–1187, 2003.

[Han96] E. N. Hanson. The design and implementation of the Ariel active database rule sys-
tem. IEEE Transactions on Knowledge and Data Engineerin(TKDE), 8(1):157–
172, February 1996.

[Har79] D. Harel. First-Order Dynamic Logic. Number 68 in LNCS. Springer, 1979.
[Har84] D. Harel. Dynamic Logic. In D. Gabbay and F. Guenther, editors, Handbook

of Philosophical Logic, Volume II - Extensions of Classical Logic, pages 497–604.
Reidel Publishing Company, 1984.

[HBdHM99] Koen V. Hindriks, Frank S. De Boer, Wiebe Van der Hoek, and John-Jules Ch.
Meyer. Agent programming in 3APL. Autonomous Agents and Multi-Agent Sys-
tems, 2(4):357–401, November 1999.

[HdBvM98] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Formal
semantics for an abstract agent programming language. In M. P. Singh, A. Rao,
and M. J. Wooldridge, editors, Proceedings of the 4th International Workshop on
Agent Theories, Architectures, and Languages (ATAL-97, volume 1365 of LNAI,

85

pages 215–230, Berlin, July 24–26 1998. Springer.
[HIST03] A. Halevy, Z. Ives, D. Suciu, and I Tatarinov. Schema mediation in peer data man-

agement systems. In 19th IEEE International Conference on Data Engineering
(ICDE’03) , pages 505–516, 2003.

[HKP82] D. Harel, D. Kozen, and R. Parikh. Process Logic: Expressiveness, decidability,
completeness. Journal of Computer and System Sciences, 25(2):144–170, 1982.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[HP00] Haruo Hosoya and Benjamin C. Pierce. Xduce: A typed XML processing language.

In WebDB 2000, pages 111–116, 2000.
[IBM] IBM. The Amit home page:

http://www.haifa.il.ibm.com/projects/software/amit/index.html.
[IG90] François Félix Ingrand and Michael P. Georgeff. Managing deliberation and rea-

soning in real-time AI systems. In Proceedings of the 1990 DARPA Workshop on
Innovative Approaches to Planning, pages 284–291, San Diego, CA, 1990.

[IS95] K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory change.
In IJCAI’95, pages 204–210. Morgan Kaufmann, 1995.

[IS03] K. Inoue and C. Sakama. An abductive framework for computing knowledge base
updates. Theory and Practice of Logic Programming, 3(6):671–713, 2003.

[JRB99] I. Jacobson, J. Rumbaugh, and G. Booch. The Unified Software Development
Process. Addison-Wesley, 1999.

[Ker95] M. L. Kersten. An Active Component for a Parallel Database Kernel. In Proceed-
ings of the 2nd International Workshop on Rules in Database Systems, volume
985 of Lecture Notes in Computer Science, pages 277–291. Springer, 1995.

[KFKO02] Michel Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanoff. OntoView:
Comparing and Versioning Ontologies. In Collected Posters of First Int. Semantic
Web Conf. (ISWC 2002), Sardinia, Italy, 2002.

[KGB+95] David Kinny, Michael Georgeff, James Bailey, David B. Kemp, and Kotagiri Ra-
mamohanarao. Active databases and agent systems – a comparison. In Proceed-
ings of RIDS95, International Workshop of Rules in Database Systems, Athens,
Greece, 1995.

[KK00] Kevin Kline and Daniel Kline. SQL in a Nutshell. O’Reilly & Associates, Decem-
ber 2000.

[KKT98] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming.
In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logics in AI and
Logic Programming 5, pages 235–324. Oxford University Press, 1998.

[KL89] Michael Kifer and Georg Lausen. F-Logic: A higher-order language for reasoning
about objects, inheritance and scheme. In ACM Intl. Conference on Management
of Data (SIGMOD), pages 134–146, 1989.

[KL98] A. Koschel and Peter C. Lockemann. Distributed Events in Active Database
Systems - Letting the Genie out of the Bottle. Journal of Data and Knowledge
Engineering (DKE), 25, 1998. Special Issue for the 25th Vol. of DKE.

[Kle01] M. Klein. Combining and relating ontologies: an analysis of problems and solu-
tions. In Proceedings of the IJCAI’01 Workshop on Ontologies and Information

86

Sharing, 2001.
[KLS92] Michael Kramer, Georg Lausen, and Gunter Saake. Updates in a rule-based

language for objects. In Intl. Conference on Very Large Data Bases (VLDB),
pages 251–262, Vancouver, 1992.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

[KM91] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In J. Allen, R. Fikes, and E. Sandewall, editors, KR’91.
Morgan Kaufmann, 1991.

[KN03] Michel Klein and Natasha F. Noy. A Component-Based Framework for Ontol-
ogy Evolution. In Proc. of the Workshop on Ontologies and Distributed Systems
(IJCAI’03), Acapulco, Mexico, 2003.

[KR98] G. Kappel and W. Retschitzegger. The TriGS Active Object-Oriented Database
System - An Overview. SIGMOD Record, 27(3):36–41, September 1998.

[KS96] R. Kowalski and F. Sadri. Towards a unified agent architecture that combines
rationality with reactivity. In D. Pedreschi and C Zaniolo, editors, Proceedings of
LID-96, volume 1154 of LNAI, pages 137–149, 1996.

[KS99] R. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25:391–419, 1999.

[KW85] A. Keller and M. Winslett Wilkins. On the use of an extended relational model to
handle changing incomplete information. IEEE Trans. on Software Engineering,
11(7):620–633, 1985.

[Lam80] L. Lamport. ‘Sometimes’ is sometimes Not Never’‘. In 7th Annual ACM Symp.
on Principles of Programming Languages, 1980.

[LAP02] J. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA - A Dynamic Logic
Programming Agent Architecture. In J. J. Meyer and M. Tambe, editors, Intelli-
gent Agents VIII — Agent Theories, Architectures, and Languages, volume 2333
of LNAI, pages 141–157. Springer-Verlag, 2002.

[LBS99] J. Lobo, R. Bhatia, and S.Naqvi. A policy description language. In National
Conference on Artificial Intelligence (AAAI), 1999.

[Leh01] Patrick Lehti. Design and Implementation of a Data Manipulation Processor for
an XML Query Language (diploma thesis), August 2001. Technische Universität
Darmstadt.

[Lei03] J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2003.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective. In ACM Intl.
Conference on Management of Data (SIGMOD), pages 233–246, 2002.

[Len03] Maurizio Lenzerini. Tutorial on information integration. In International Joint
Conference on Artificial Intelligence (IJCAI), 2003.

[LHDK94] Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, and Patrick G. Kenny. UM-
PRS: An implementation of the procedural reasoning system for multirobot ap-
plications. In CIRFSS94, Conference on Intelligent Robotics in Field, Factory,
Service and Space, pages 842–849. MIT Press, 1994.

87

[LHL+98] Bertram Ludäscher, Rainer Himmeröder, Georg Lausen, Wolfgang May, and
Christian Schlepphorst. Managing semistructured data with Florid: A deduc-
tive object-oriented perspective. Information Systems, 23(8):589–612, 1998.

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On active deductive
databases: The statelog approach. In Burkhard Freitag, Hendrik Decker, Michael
Kifer, and Andrei Voronkov, editors, Transactions and Change in Logic Databases,
number 1472 in LNCS. Springer, 1998.

[LLW03] Mengchi Liu, Li Lu, and Guoren Wang. A Declarative XML-RL Update Language.
In Proc. Int. Conf. on Conceptual Modeling (ER 2003), number 2813 in LNCS
2813, pages 506–519, Chicago, Illinois, USA, October 2003. Springer-Verlag.

[LP98] J. A. Leite and L. M. Pereira. Iterated logic program updates. In J. Jaffar, editor,
Proceedings of the 1998 Joint International Conference and Symposium on Logic
Programming (JICSLP-98), pages 265–278, Cambridge, 1998. MIT Press.

[LRL+97] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic
programming language for dynamic domains. Journal of Logic Programming,
31:59–83, 1997.

[LW92] V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

[LW00] A. Levy and D. Weld. Intelligent Internet Systems. Artificial Intelligence, 118(1–
2):1–14, 2000.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3):54–66, 1997.

[May01a] Wolfgang May. A Logic-Based Approach to XML Data Integration. Habilita-
tion thesis, Universität Freiburg, 2001. Available at http://www.informatik.
uni-freiburg.de/~may/lopix/.

[May01b] Wolfgang May. A rule-based querying and updating language for XML. In Work-
shop on Databases and Programming Languages (DBPL 2001), number 2397 in
LNCS, pages 165–181, 2001.

[May01c] Wolfgang May. XPath-Logic and XPathLog: A logic-based approach for declara-
tive XML data manipulation. Technical report, Habilitation Thesis, Universität
Freiburg, Institut für Informatik, 2001. Available at http://dbis.informatik.
uni-goettingen.de/lopix/.

[May02] Wolfgang May. Querying linked XML document networks in the web. In 11th.
WWW Conference, 2002. Available at http://www2002.org/CDROM/alternate/
166/.

[May04] Wolfgang May. XPath-Logic and XPathLog: A logic-programming style XML
data manipulation language. Theory and Practice of Logic Programming, 4(3),
2004.

[MB01] Wolfgang May and Erik Behrends. On an XML Data Model for Data Integration.
In Intl. Workshop on Foundations of Models and Languages for Data and Objects,
Viterbo, Italy, September 2001.

[MC95] F. G. McCabe and K. L. Clark. APRIL - Agent PRocess Interaction Language.

88

In M. Wooldridge and N.R. Jennings, editors, Intelligent Agents I. LNAI 890,
Springer–Verlag, 1995.

[McC90] John McCarthy. Formalizing Common Sense. Ablex, Norwood, 1990.
[McM93] Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[MD89] D.R. McCarthy and U. Dayal. The architecture of an active database management

system. In Proc. ACM SIGMOD-89, pages 215–224, 1989.
[MH69] John McCarthy and P. J. Hayes. Some philosophical problems from the standpoint

of artificial intelligence. Machine Intelligence, 4, 1969.
[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,

25:267–310, 1983.
[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Mil90] R. Milner. Operational and Algebraic Semantics of Concurrent Processes, chap-

ter 19, pages 1201–1242. Volume B: Formal Models and Semantics of v. Leeuwen
[vL90], 1990.

[ML04] Wolfgang May and Georg Lausen. A uniform framework for integration of infor-
mation from the web. Information Systems, 29(1):59–91, 2004.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 1(100):1–77, 1992.

[MSL97] W. May, C. Schlepphorst, and G. Lausen. Integrating dynamic aspects into de-
ductive object-oriented databases. In Rules in Database Systems, number 1312 in
Lecture Notes in Computer Science, pages 20–34. Springer, 1997.

[MT94] V. W. Marek and M. Truszczyński. Revision specifications by means of programs.
In C. MacNish, D. Pearce, and L. M. Pereira, editors, Proceedings of the European
Workshop on Logics in Artificial Intelligence (JELIA-94), volume 838 of LNAI,
pages 122–136, Berlin, September 1994. Springer.

[MZ97] Iakovos Motakis and Carlo Zaniolo. Temporal aggregation in active database
rules. In ACM Intl. Conference on Management of Data (SIGMOD), pages 440–
451, Tucson, Arizona, 1997.

[Obj92] Object Management Group. The Common Object Request Broker: Architecture
and Specification. Wiley, 1992.

[Obj93] Object Management Group. Object Management Architecture Guide. Wiley, 1993.
[OWL03] OWL-S: Web Service Ontology. http://www.daml.org/services/owl-s/, 2003.
[owl04] World Wide Web Consortium, http://www.w3.org/TR/owl-features/. OWL Web

Ontology Language, February 2004.
[PAP+03] Evaggelia Pitoura, Serge Abiteboul, Dieter Pfoser, George Samaras, and Michalis

Vazirgiannis. DBGlobe: a Service-Oriented P2P System for Global Computing.
SIGMOD Record, 32(3):77–82, 2003.

[Pat99] N. W. Paton, editor. Active Rules in Database Systems. Monographs in Computer
Science. Springer, 1999. ISBN 0-387-98529-8.

[PD99] N. W. Paton and O. Diaz. Active Database Systems. ACM Computing Surveys,
31(1):63–103, 1999.

89

[Ped89] E. Pednault. Exploring the middle ground between STRIPS and the Situation
Calculus. In Proc. of the 1st International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’89), pages 324–332. Morgan Kaufmann
Publishers Inc., 1989.

[Plo81] G. Plotkin. A structured approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[PPW03] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-
condition-action rule languages for the semantic web. In Workshop on Semantic
Web and Databases (SWDB’03), 2003.

[PPW04] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. RDFTL: An
Event-Condition-Action Rule Languages for RDF. In Hellenic Data Management
Symposium (HDMS’04), 2004.

[Pra76] V. R. Pratt. Semantical considerations on Floyd-Hoare Logic. In 17.th IEEE
Symp. on Foundations of Computer Science, pages 109–121, 1976.

[Pra90] V. R. Pratt. Action logic and pure induction. In J. v. Eijck, editor, Logics
in AI: Europ. Workshop JELIA ’90, number 478 in Lecture Notes in Artificial
Intelligence, pages 97–120, 1990.

[Prz88] T. Przymusinski. Perfect model semantics. In R. A. Kowalski and K. A. Bowen,
editors, Proceedings of the Fifth International Conference and Symposium on Logic
Programming, pages 1081–1096, Seatle, 1988. ALP, IEEE, The MIT Press.

[PS96] S. Potamianos and M. Stonebraker. The POSTGRES Rules System. In Active
Database Systems: Triggers and Rules For Advanced Database Processing, pages
43–61. Morgan Kaufmann, 1996.

[PT95] T. Przymusinski and H. Turner. Update by means of inference rules. In V. Marek,
A. Nerode, and M. Truszczyński, editors, LPNMR’95, volume 928 of LNAI, pages
156–174. Springer-Verlag, 1995.

[PV95] Philippe Picouet and Victor Vianu. Semantics and expressiveness issues in active
databases. In ACM Symposium on Principles of Database Systems (PODS), 1995.

[PW94] N. W. Paton and M. W. Williams, editors. Proceedings of the 1st International
Workshop on Rules in Database Systems, Workshops in Computing. Springer-
Verlag, 1994. ISBN 3-540-19846-6.

[RB01] E. Rahm and P. Berstein. A survey of approaches of automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modelling and Design. Prentice Hall, 1991.

[Rei93] R. Reiter. Proving properties of states in the situation calculus. Artificial Intel-
ligence, 64(2):337–351, 1993.

[RG91] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, KR91, International
Conference on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann, 1991.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, 1999.

90

[RRS96] T. J. Rogers, R. Ross, and V. S. Subrahmanian. Impact: A system for building
agent applications. Journal of Intelligent Information Systems, pages 275–294,
1996.

[RSS02] Mathieu Roger, Ana Simonet, and Michel Simonet. Towards Updates in Descrip-
tion Logics. In Proc. Int. Workshop on Description Logics (DL2002), volume 53.
Ian Horrocks and Sergio Tessaris, editors, April 2002.

[rul] ruleCore. The ruleCore home page: http://www.rulecore.com/.
[saf04] Proceedings of the 1st International Workshop on Safety and Security in Multi-

Agent Systems, 2004.
[San94] E. Sandewall. Features and Fluents: A Systematic Approach to the Representation

of Knowledge about Dynamical Systems. Oxford University Press, 1994.
[SB01] T. Son and C. Baral. Formalizing sensing actions - a transition function based

approach. Artificial Intelligence, 125(1-2):19–91, 2001.
[SBD+00] V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma

Özcan, and Robert Ross. Heterogenous Active Agents. MIT-Press, 2000.
[Sch96] S. Schwiderski. Monitoring the behaviour of distributed systems. PhD thesis,

University of Cambridge, April 1996.
[Sel95] T. Sellis, editor. Proceedings of the 2nd International Workshop on Rules in

Database Systems, volume 985 of Lecture Notes in Computer Science. Springer,
1995. ISBN 3-540-60365-4.

[Sho93] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

[SI99] C. Sakama and K. Inoue. Updating extended logic programs through abduction. In
M. Gelfond, N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-99),
volume 1730 of LNAI, pages 147–161, Berlin, 1999. Springer.

[Sin95] Munindar P. Singh. Semantical considerations on workflows: An algebra for in-
tertask dependencies. In Intl. Workshop on Database Programming Languages,
electronic Workshops in Computing, Gubbio, Italy, 1995. Springer.

[Sin96] M. P. Singh. Synthesizing distributed constrained events from transactional work-
flow specifications. In Proc. 12th. ICDE, 1996.

[Sin03] Thomas Sindt. Formal Operations for Ontology Evolution. In Proc. Int. Conf. on
Emerging Technologies (ICET’03), Minneapolis, Minnesota (USA), August 2003.

[SKD95] E. Simon and A. Kotz-Dittrich. Promises and Realities of Active Database Sys-
tems. In Proceedings of the 21th International Conference on Very Large Data
Bases, pages 642–653, 1995.

[SKL+04] K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic.
In Robert Trappl, editor, Proceedings of the 17th European Meeting on Cybernetics
and Systems Research, Vol. II, Symposium “From Agent Theory to Agent Imple-
mentation” (AT2AI-4), pages 523–528, Vienna, Austria, 2004. Austrian Society
for Cybernetic Studies.

[soa00] World Wide Web Consortium, http://www.w3.org/TR/soap. Simple Object Ac-

91

cess Protocol (SOAP) 1.1, May 2000.
[Spi00] Marc Spielmann. Verification of relational transducers for electronic commerce.

In ACM Symposium on Principles of Database Systems (PODS), pages 92–103,
2000.

[SSS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48:1–26, February 1991.

[Sti89] C. Stirling. Temporal logics for CCS. In Linear Time, Branching Time and
Partial Order in Logics and Models of Concurrency, number 354 in Lecture Notes
in Computer Science, pages 660–672. Springer, 1989.

[Sti95] C. Stirling. Modal and temporal logics. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Computational Structures, volume 2 of Handbook of
Logic in Computer Science, pages 477–563. Oxford Science Publications, 1995.

[STS02] F. Sadri, F. Toni, and F. Sadri. An abductive logic programming architecture
for negotiating agents. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors,
Proceedings of the 8th European Conference on Logics in Artificial Intelligence
(JELIA’02), volume 2424 of LNAI, pages 419–431. Springer-Verlag, 2002.

[STS03] F. Sadri, F. Toni, and F. Sadri. Minimally intrusive negotiating agents for resource
sharing. In Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, pages 796–
804. Morgan Kaufmann, 2003.

[SW95] A. Prasad Sistla and Ouri Wolfson. Temporal Conditions and Integrity Con-
straints in Active Database Systems. In Proceedings ACM SIGMOD International
Conference on Management of Data (SIGMOD 1995), pages 269–280, 1995.

[SW00] Michael Schroeder and Gerd Wagner. Vivid agents: Theory, architecture, and ap-
plications. the International Journal for Applied Artificial Intelligence, 14(7):645–
76, August 2000. Francis and Taylor.

[Tho03] Simon Thornton. Automated deduction for deontic logics: Laying the foundations
of legal expert systems. In Proceedings of the First Australian Undergraduate
Students’ Computing Conference, pages 100–105. Dept. of Computer Science, The
Australian National University, 2003.

[TIHW01] Igor Tatarinov, Zachary G. Ives, Alon Halevy, and Daniel Weld. Updating XML.
In ACM Intl. Conference on Management of Data (SIGMOD), pages 133–154,
2001.

[TRP+04] Feng Tian, Berthold Reinwald, Hamid Pirahesh, Tobias Mayr, and Jussi Myl-
lymaki. Implementing a scalable xml publish/subscribe system using relational
database systems. In ACM Intl. Conference on Management of Data (SIGMOD),
2004.

[Uni02] Universal Description, Discovery and Integration, http://www.uddi.org. UDDI
Technical White Paper, 2002.

[vBB95] J. van Benthem and J. Bergstra. Logic of transition systems. Journal of Logic,
Language, and Information, 3:247–283, 1995.

[vL90] J. v. Leeuwen, editor. Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics. Elsevier, 1990.

[Wag96] Gerd Wagner. A logical and operational model of scalable knowledge-and

92

perception-based agents. In Proceedings of MAAMAW96, LNAI 1038. Springer-
Verlag, 1996.

[WC94] J. Widom and S. Chakravarthy, editors. Proceedings of the 4th International
Workshop on Research Issues in Data Engineering - Active Database Systems.
IEEE-CS, February 1994. ISBN 0-8186-5360-4.

[WC96a] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann, 1996. ISBN 1-55860-304-2.

[WC96b] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

[WJ95] M.J. Wooldridge and N.R. Jennings. Agent theories, architectures and languages:
A survey. In M. Wooldridge and N.R. Jennings, editors, Intelligent Agents I.
LNAI 890, Springer–Verlag, 1995.

[wsd01] World Wide Web Consortium, http://www.w3.org/TR/wsdl/. Web Services De-
scription Language (WSDL), March 2001.

[XML00] XML:DB Initiative, http://xmldb-org.sourceforge.net/. XUpdate - XML Update
Language, September 2000.

[xpa99] World Wide Web Consortium, http://www.w3.org/TR/xpath. XML Path Lan-
guage (XPath), Nov 1999.

[xqu01] World Wide Web Consortium, http://www.w3.org/TR/xquery/. XQuery: A
Query Language for XML, Feb 2001.

[xsl99] World Wide Web Consortium, http://www.w3.org/TR/xslt/. XSL Transforma-
tions (XSLT), November 1999.

[xsl01] World Wide Web Consortium, http://www.w3.org/TR/xsl/. Extensible Stylesheet
Language (XSL), October 2001.

[YC99] S. Yang and S. Chakravarthy. Formal Semantics of Composite Events for Dis-
tributed Environment. In Proceedings of the 15th International Conference on
Data Engineering, pages 400–407. IEEE Computer Society Press, 1999.

[Zan94] Carlo Zaniolo. A unified semantics for active and deductive databases. In Paton
and Williams [PW94], pages 271–287. ISBN 3-540-19846-6.

[ZF98] Y. Zhang and N. Y. Foo. Updating logic programs. In Henri Prade, editor,
Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98),
pages 403–407, Chichester, 1998. John Wiley & Sons.

93

