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1 Motivation and Introduction

The phenomenon of time has many different facets which are investigated by different commu-
nities. Physicists investigate the flow of time and its relation to physical objects and events.
Temporal logicians develop abstract models of time where only the aspects of time are formal-
ized which are sufficient to model the behaviour of computer programs and similar processes.
Linguists develop models of time which can be used as semantics of temporal expressions in
natural language. More and more information about facts and events in the real world is stored
in computers, and many of them are annotated with temporal information. Therefore it became
necessary to develop computer models of the use of time on our planet, which are sophisticated
enough to allow the kind of computation and reasoning that humans can do. Examples are
‘calendrical calculations’ [4], i.e. formal encodings of calendar systems for mapping dates be-
tween different calendar systems. Other models of time have been developed in the temporal
database community [2], mainly for dealing with temporal information in databases. This work
is becoming more important now with the emergence of the Semantic Web [1]. Informal, semi-
formal and formal temporal notions occur frequently in semistructured documents, and need
to be ‘understood’ by query and transformation mechanisms.

The formalisms developed so far approximate the real use of time on our planet to a certain
extent, but still ignore important aspects. In the CTTN1 project [3] we aim at a very de-
tailed modelling of the temporal notions which can occur in semi-structured data. The CTTN
system consists of a kernel and several modules around the kernel. The kernel itself consists
of several layers. At the bottom layer there are a number of basic datatypes for elementary
temporal notions. These are time points, crisp and fuzzy time intervals [8, 9] and partitionings
for representing periodical temporal notions like years, months, semesters etc. [10, 11]. The
partitionings can be specified algorithmically or algebraically. The algorithmic specifications
allows one to encode phenomena like leap seconds, daylight savings time regulations, the Easter
date, which depends on the moon cycle etc.

Partitionings can be arranged to form ‘durations’, e.g. ‘2 year + 1 month’, but also ‘2
semester + 1 month’, where semester is a user defined partitioning.

Sets of partitionings, together with certain procedures, form a calendar. The Gregorian
calendar in particular can be formalized with the partitionings for years, months, weeks, days,
hours, minutes and seconds.

A part of the second layer is presented in this paper. It uses the functions and relations of the
first layer as building blocks in the specification language GeTS (‘GeoTemporal Specifications’)
for specifying complex temporal notions. A very first version of this language has been presented
in [6, 7], but the new version is much more elaborated. It is essentially a functional programming
language with certain additional constructs for this application area. A flex/bison type parser
and an abstract machine for GeTS has been implemented as part of the CTTN program. GeTS
is the first specification and programming language with such a rich variety of built-in data
structures and functions for geotemporal notions.

Before the GeTS language is introduced in detail in Sections 3.1 and 3.2, we need to give a
short overview over the underlying data structures.

1CTTN stands for ‘Computational Treatment of Temporal Notions’. The initial working name was actually
‘WebCal’. Unfortunately this name had to be given up because of name conflicts with other systems.
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2 Basic Data Structures in CTTN

2.1 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis which is isomor-
phic to the real numbers R. Therefore we take as time points just real numbers. Since the most
precise clocks developed so far, atomic clocks, measure the time in discrete units, it is sufficient
to restrict the representation of concrete time points to integers. In the standard setting these
integers count the seconds from the Unix epoch, which is January 1st 1970. Nothing significant
changes in GeTS, however, if the meaning of these integers is changed to count, for example,
femtoseconds from the year 1.

The next important datatype is that of time intervals. Time intervals can be crisp or fuzzy.
With fuzzy intervals one can encode notions like ‘around noon’ or ‘late night’ etc. This is more
general and more flexible than crisp intervals. Therefore the CTTN system uses fuzzy intervals
as basic interval datatype.

Fuzzy Intervals are usually defined through their membership functions [12, 5]. A member-
ship function maps a base set to real numbers between 0 and 1. The base set for fuzzy time
intervals is a linear time axis, isomorphic to the real numbers.

Definition 2.1 (Fuzzy Time Intervals) A fuzzy membership function in GeTS is a total
function f : R 7→ [0, 1] which does not need to be continuous, but it must be integratable.
The fuzzy interval If that corresponds to a fuzzy membership function f is If =def {(x, y) ⊆
R×[0, 1] | y ≤ f(x)}. Given a fuzzy interval I we usually write I(x) to indicate the corresponding
membership function.

This definition comprises single or multiple crisp or fuzzy intervals like these:

-

6

R
0

1

Crisp and Fuzzy Intervals

It also comprises finite fuzzy intervals like this one:

-

6

R
0

1

Party Time
6pm 7pm 10pm 12pm 2am 3am

This set may represent a particular party time, where the first guests arrive at 6 pm. At 7 pm
all guests are there. Half of them disappear between 10 and 12 pm (because they go to the pub
next door to watch an important soccer game). Between 12 pm and 2 am all of them are back.
At 2 am the first ones go home, and finally at 3 am all are gone. The fuzzy value indicates in
this case the number of people at the party.

The fuzzy intervals can also be infinite. For example, the term ‘after tonight’ may be
represented as a fuzzy value which rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm
and then remains 1 ad infinitum.
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-
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R
0

1

after tonight
6 8

Fuzzy time intervals may be quite complex structures with many different characteristic fea-
tures. The simplest ones are core and support. The core C(I) is the part of the interval I
where the fuzzy value is 1, and the support S(I) is the subset of R where the fuzzy value of I
is non-zero. In addition one can define the kernel K(I) as the part of the interval I where the
fuzzy value is not constant ad infinitum, i.e. the kernel is the smallest convex interval in R such
that I(x) = y1 for all x before the kernel and I(x) = y2 for all x after the kernel. Fuzzy time
intervals with finite kernel are of particular interest because, although they may be infinite,
they can easily be implemented with finite data structures. Therefore CTTN represents only
fuzzy intervals with finite kernel.

-
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0

1

Core and Support

Support

Core

-

6

R
0

1

Kernel
t1 t2

Finite Kernel

Notice that neither the support nor the core of a fuzzy interval need be convex intervals. The
kernel, however, is always a convex interval.

Components
Fuzzy time intervals can consist of several different components. A component is a sub-interval
of a fuzzy interval such that the left and right end is either the infinity, or the membership
function drops down to 0.

Definition 2.2 (Components) Let I be a fuzzy time interval. The components I0, . . . , In of
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I are the largest set of subsets of I such that: (i) for 0 ≤ k ≤ n: Ik(x) = I(x) for all x in
the support of Ik, and (ii) for all k ∈ {1, . . . , n − 1}: I lS

k = −∞ or (limx→IlS

k

I(x) = 0 or

limIlS

k
←x I(x) = 0) and IrS

k = +∞ or (limx→IrS

k

I(x) = 0 or limIrS

k
←x I(x) = 0), where I lS

k is

the left boundary of Ik’s support, and IrS
k is the right boundary of Ik’s support.

The definition is quite complicated because we want to count as separate components parts of
fuzzy time intervals where the membership function drops down to 0 at just one single point.

Example:

-

6

R
0

1

Components

I0 I1 I2

More features of fuzzy time intervals are introduced when the corresponding language constructs
of GeTS are introduced.

2.2 Partitionings

The CTTN system uses the concept of partitionings of the real numbers to model periodical
temporal notions. In particular, the basic time units years, months etc. are realized as par-
titionings. Other periodical temporal notions, for example semesters, school holidays, sunsets
and sunrises etc. can also be modelled as partitionings.

A partitioning of the real numbers R may be, for example, (..., [−100, 0[, [0, 100[, [100, 101[,
[101, 500[, ...). The intervals in the partitionings need not be of the same length (because time
units like years are not of the same length either). The intervals can, however, be enumerated
by natural numbers (their coordinates). For example, we could have the following enumeration

... [−100 0[ [0 100[ [100 101[ [101 500[ ...

... −1 0 1 2 ...

The formal definition for partitionings of R which is used in CTTN is:

Definition 2.3 (Partitionings) A partitioning P of the real numbers R is in CTTN an infi-
nite sequence
. . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .
of half-open non-empty intervals in R with integer boundaries. Each interval [ti, ti+1[ is a
partition of the time line.

For a time point t and a partitioning P let tP be the P -partition containing t.

A coordinate mapping of a partitioning P is a bijective mapping between the intervals in P and
the integers. Since we always use one single coordinate mapping for a partitioning P , we can
just use P itself to indicate the mapping. Therefore let pP be the coordinate of the partition p
in P .

For a coordinate i let iP be the partition which corresponds to i.

For a time t let tPP =def (tP )P be the coordinate of the P -partition containing t.

4
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t

Rpartition tP with coordinate tPP

Remark 2.4 (Calendar Systems) A calendar in the CTTN system is a set of partitionings,
for example the partitionings for seconds, minutes, hours, weeks, months and years, together
with some extra data and methods. Calendars are not visible in the GeTS language because they
are only special cases of sets of partitionings. Some GeTS constructs use partitionings which
can not only be the partitionings of calendar systems, but any kind of partitioning. This is more
general than sticking to particular calendar systems.

Remark 2.5 (Finite Partitionings) The partitionings in CTTN can represent infinite parti-
tionings of the real numbers. This is suitable to model, for example, years. They can, however,
also be used to represent finite sequences of intervals. Examples are the school holidays in
Bavaria from 1970 until 2006. CTTN extrapolates these intervals in a certain way to get an
infinite partitioning. This simplifies the algorithms considerably, but it may yield unwanted
results for time points where the partitioning is not meant for.

Therefore one can define boundaries for the validity of the partitionings. These boundaries
have no influence on the computations, but they can be checked with special functions in the
GeTS language (Def. 3.68).

The CTTN system uses labelled partitionings. The labels are names for the partitions. They
can be used for two purposes. The first purpose is to get access to the partitions via their names
(labels). For example, the labels for the ‘day’ partitioning can be ‘Monday’, ‘Tuesday’ etc., and
one can use these names in various GeTS functions. The second purpose is to use the labels to
group partitions together to so called granules. The concept of ‘working day, for example, can
be modelled by taking an ‘hour partitioning, and attach labels ‘working hour’ and ‘gap’ to the
hour partitions. Groups of hour partitions labelled ‘working hour’ yield a working day. The
working days can be interrupted by ‘gap partitions, for example to take ‘lunch time out of a
‘working day. Example 3.27 below illustrates the concept of granules in more detail.

Definition 2.6 (Labels and Granules) A labelling L is a finite sequence of strings l0, . . . , ln−1.
The label gap has a special meaning.

A labelling L can now be very easily attached to a partitioning: the partition with coordinate
i gets label L(i mod n).

A granule is a sequence pi, . . . , pi+k of partitions such that: (1) the labels of pi and pi+k

are not gap; (2) the labels of pi, . . . , pi+k which are not gap are the same, and (3) i mod n <
(i + k) mod n.

Example 2.7 (The Labelling of Days) The origin of the reference time is again January
1st 1970. This was a Thursday. Therefore we choose as labelling for the day partitioning

L =def Th, Fr, Sa, Su, Mo, Tu, We.

The following correspondences are obtained:

time : . . . [−86400, 0[ [0, 86400[ [86400, 172800[ . . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, L(−1) = We, i.e. December 31 1969 was a Wednesday.
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2.3 Durations

The partitionings are the mathematical model of periodic time units, such as years, months etc.
This offers the possibility to define durations. A duration may, for example, be ‘3 months + 2
weeks’. Months and weeks are represented as partitionings, and 3 and 2 denote the number of
partitions in these partitionings. The numbers need not be integers, but they can be arbitrary
real numbers.

A duration can be interpreted as the length of an interval. In this case the numbers should
not be negative. A duration, however, can also be interpreted as a time shift. In this interpre-
tation negative numbers make perfect sense. d = −2 week + 3 month, for example, denotes a
backward shift of 2 weeks followed by a forward shift of 3 months.

Definition 2.8 (Duration) A duration d = d0 P0, . . . , dk Pk is a list of pairs where the di

are real numbers and the Pi are partitionings.
If a duration is interpreted as a shift of a time point, it may be necessary to turn the shift

around, in the backwards direction. Therefore the inverse of a duration is defined:
−d =def −dk Pk , . . . ,−d0 P0

We also need a negated duration where the order of the partitionings stays the same:
neg(d) =def −d0 P0, . . . ,−dk Pk.

For example, if
d = 3 month, 2 week then
−d = −2 week,−3 month and
neg(d) = −3 month,−2 week .

2.4 Date Formats

A date format in CTTN specifies the structure of date strings.

Definition 2.9 (Date Format) A date format DF is a sequence P0/ . . . /Pk of partitionings.
A date in a date format DF is a sequence d0/ . . . /dn of integers with n ≤ k.

In principle, the date formats can consist of arbitrary partitionings. In most calendar
systems there are, however, a few particular date formats. The Gregorian calendar, for example,
has the two date formats year/month/day/hour/minute/second (where the names stand for the
corresponding partitions), and year/week/day/hour/minute/second.

3 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

1. Although the GeTS language has many features of a functional programming language, it
is not intended as a general purpose programming language. It is a specification language
for temporal notions, however, with a concrete operational semantics.

2. The parser, compiler, and in particular the underlying GeTS abstract machine are not
standalone systems. They must be embedded into a host system which provides the data
structures and algorithms for time intervals, partitionings etc., and which serves as the
interface to the application. GeTS provides a corresponding application programming
interface (API).
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3. The language should be simple, intuitive, and easy to use. It should not be cluttered
with too many features which are mainly necessary for general purpose programming
languages.

4. The last aspect, but even more the point before, namely that GeTS is to be integrated
into a host system, were the main arguments against an easy solution where GeTS is only
a particular module in a functional language like SML or Haskell. The host system was
developed in C++. Linking a C++ host system to an SML or Haskell interpreter for
GeTS would be more complicated than developing GeTS in C++ directly. The drawback
is that features like sophisticated type inferencing or general purpose data structures like
lists or vectors are not available in the current version of GeTS. If it turns out that they
are useful for some applications, however, it is not a big deal to integrate them into GeTS.

5. Developing GeTS from scratch instead of using an existing functional language has also
an advantage. One can design the syntax of the language in a way which better reflects
the semantics of the language constructs. This makes it easier to understand and use. As
an example, the syntax for a time interval constructor is just [expression1, expression2].
The freedom in designing a nice syntax is, however, is limited by the available parser
technology (in the GeTS case, flex and bison). Therefore some of the language features
are compromises between intuitiveness and technical constraints.

The GeTS language is a strongly typed functional language with a few imperative constructs.
Let us get a flavour of the language, before the technical details are introduced.

Example 3.1 (tomorrow) The definition

tomorrow = partition(now(),day,1,1)

specifies ‘tomorrow’ as follows: now() yields the time point of the current point in time (Def.
3.25). day is the name of the day partitioning. Let i be the coordinate of the day-partition
containing now(). partition(now(),day,1,1) computes the interval [t1, t2[ where t1 is the
start of the partition with coordinate i + 1 and t2 is the end of the partition with coordinate
i + 1. Thus, [t1, t2[ is in fact the interval which corresponds to ‘tomorrow’.

In a similar way, we can define

this_week(Time t) = partition(t,week,0,0).

The time point t, for which the week is to be computed, is now a parameter of the function.

Example 3.2 (Christmas) The definition

christmas(Time t) =

dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),

time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t in the date
format Gregorian month (year/month/day/hour/minute/second). Only the year is needed.

7



dLet year = ... therefore binds only the year to the integer variable year. If, for example,
in addition the month is needed one can write dLet year|month = date(....

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of December of this
year. time(year|12|27,Gregorian month) computes t2 = begin of the 27th of December of
this year. The expression [...,...] denotes the half-open interval [t1, t2[.

2 The result is
therefore the half-open interval from the beginning of the 25th of December of this year until
the end of the 26th of December of this year.

Example 3.3 (Point–Interval Before Relation) The function

PIRBefore(Time t, Interval I) =

if (isEmpty(I) or isInfinite(I,left)) then false

else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works also for fuzzy
intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is false, otherwise
t must be smaller than the left boundary of the support of I.

Now we define a parameterized fuzzy version of the interval–interval before relation.

Example 3.4 (Fuzzy Interval–Interval Before Relation) A fuzzy version of an interval–
interval before relation could be

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =

case

isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left) : 0,

(point(I,right,support) <= point(J,left,support)) : 1,

isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))

else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals to intervals. B is
used to compute for the interval J an interval B(J), which represents the degree of ‘beforeness’
for the points before J.

The function first checks some trivial cases where I cannot be before J (first clause in the
case statement), or where I definitely is before J (second clause in the case statement). If I
is infinite at the left side then

∫
(I ∩ J)(x) · B(J)(x)dx/|I ∩ J | is computed to get a degree of

‘beforeness’, at least for the part where I and J intersect. If I is finite then
∫

I(x)·B(J)(x)dx/|I |
is computed. This averages the degree of a point-interval ‘beforeness’, which is given by the
product I(x) · B(J)(x), over the interval I.

The next example illustrates some procedural features of GeTS. The effect function takes two
intervals and a function F, which maps the two intervals to a fuzzy value. F could for example
be a fuzzy interval–interval relation. The first interval I is now shifted step times by the given
distance, and each time F(I,J) is computed. These values are inserted into a new interval,
which is the result of the function.

2Crisp intervals in CTTN are always half-open intervals [. . . , . . . [. Sequences of such intervals, for example
sequences of days, can therefore be used to partition a time period. The syntactic representation of these intervals
in GeTS is [...,...] and not [...,...[ because this simplifies the grammar and the parser considerably.
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Example 3.5 (effect)

effect(Interval I, Interval J, (Interval*Interval)->Float F,

Time distance, Integer steps) =

Let K = [] in

while (steps >= 0) {

pushBack(K,point(I,right,kernel),F(I,J)),

I := shift(I,distance),

steps := steps - 1}

K

‘Let K = []’ creates a new empty interval and binds it to the variable K. The while loop shifts
the interval I steps times by the given distance (I := shift(I,distance)). Each time
pushBack(K,point(I,right,kernel),F(I,J)) adds the pair (x, y) consisting of x = right
boundary of the kernel of the shifted I and y = F(I,J) to the interval K.

The dashed line in the figure below shows the result of the effect function when applied
to the two intervals I and J, and a suitable interval–interval ‘before’ relation as parameter F.
The dotted figure shows the position of the shifted interval I when the F(I,J) drops down to
0.

-
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Effect of the effect function

I J

3.1 Types in the GeTS Language

The GeTS language has a fixed number of basic types. They represent certain data structures
and certain keywords. So far there is no mechanism for extending the basic types. The basic
types can be combined to functional types T1 ∗ . . . ∗ Tn 7→ T .

3.1.1 Basic Types

There are two groups of basic types, the data structure types and the enumeration types. The
data structure types represent built in data structures.

Definition 3.6 (Data Structure Types)

9



Integer standard integers
Time very long integers
Float standard floating point numbers
String strings
Interval fuzzy intervals
Partitioning partitionings
Label labels for partitions
Duration durations
DateFormat date formats

The data structure types abstract away from the concrete implementation. The Integer

type, for example, is currently realized as 32 bit signed integer data, while the Time type is
currently realized as 64 bit signed integer data. The Float type is currently realized by a 32
bit ‘float’ data type. One should, however, not exploit this in any way.

Strings are currently just sequences of 8-bit characters. (This may change in future releases
to support Unicode).

Intervals (Def. 2.1) are realized as polygons with integer coordinates. An interval is
therefore a sequence of pairs I = (x0, y0), . . . , (xn, yn). The xi are Time points and the yi are
fuzzy values. Internally the yi are realized as short integers between 0 and 1000. From the GeTS
point of view, however, the yi are Float numbers between 0 and 1. The interval I is negative
infinite if y0 6= 0. I is positive infinite if yn 6= 0. The internal representation of Interval data,
however, is completely invisible to the GeTS user. Details about the internal representation
and the algorithms can be found in [8].

Partitionings (Def. 2.3) are complex data structures. Fortunately, this is also not visible
to the GeTS user. Partitionings are just parameters to some of the functions. They can be
used without knowing anything about the internal details.

Labels (Def. 2.6) for partitions are in principle just strings. It is, however, possible to
use different strings for the same label. For example, one can label days with English names
“Monday”, “Tuesday” etc., and with German names “Montag”, “Dienstag” etc., and switch
between these versions. This is also transparent to the user. Nevertheless, it makes it necessary
to consider labels not as strings, but as data structures (see [8] for details).

Durations (Def. 2.8) are sequences of pairs d0 P0, . . . , dn Pn where the di are Float data
and the Pi are Partitionings.

DateFormats (Def. 2.9) are sequences P0/ . . . /Pn of Partitionings.

The data structure types are used as types for variables, but they can also be used explicitly
as constants, so called literals. To this end, there is a string representation of the data structure
types. These strings are parsed by the GeTS parser and mapped to the internal representation.

Remark 3.7 (String Representation of Data Structure Types) The data structure types
have the following string representation:

Integer: sequences of digits, optionally preceded by ‘+’ or ‘-’. Examples are 123, +4, -345.
The length of these sequences depends on the internal representation of integers.

Time: sequences of digits, optionally preceded by ‘+’ or ‘-’ and optionally followed by ‘T’.
Examples: 12345678901, 3T, -23T. The length of these sequences depend on the internal
representation of Time values.
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Notice that a string of digits, which is not followed by ‘T’ is first parsed as Integer. Only
if this fails, it is parsed as Time data. Therefore the string 123 will always be mapped
to Integer data, and not to Time data. Usually this should not harm, because Integer

data are automatically casted to Time data when this becomes necessary.

Float: They have the standard representation of float or double values. Examples are -1.5,
3.4e-2, -77e+5. The length of mantissa and exponent depends on the realization of Float
values.

String: They are arbitrary sequences of characters enclosed in quotes: ”characters”. The two
characters \n are interpreted as newline command. A quote ” within the string must be
escaped with a \ character. The character sequences ”ab\”cd\”ef” is therefore parsed as
the string ab”cd”ef.

Interval: Intervals cannot be explicitly referenced within a GeTS function definition. The
only exception is the empty interval, which is represented by []. The GeTS module,
however, provides an interface function which allows one to call GeTS functions with a
string representation of the arguments. This function accepts non-negative integers as
identifiers for the intervals, together with a vector of pointers to the actual intervals. The
integer identifiers are used as indices to this vector.

Partitioning: It is assumed that all necessary partitionings are predefined, and can be iden-
tified by names. The names can be used in GeTS function definitions. The parser maps
them to the actual partitioning data structures. The names of the partitionings, which
make up the Gregorian calendar, are year, month, week, day, hour, minute, second.

Label: Labels must also be predefined. They are identified by their name.

Duration: The representation of a simple duration is d0 P0 + . . . + dn Pn where the di are
Integer or Float expressions and the Pi are partitioning names or variables. Repeating
patterns like ‘2 week + 1 day + 2 week + 1 day’ can be abbreviated by ‘2*(2 week + 1
day)’.

DateFormat: They need to be predefined. Date formats are accessed by their names in GeTS
specifications. Date formats in CTTN are predefined for each calendar system. The prede-
fined date formats for the Gregorian calendar are Gregorian month and Gregorian week.
Thus, GeTS invokes calendar systmes, but only implicitely via the data formats.

A number of enumeration types is predefined in GeTS. They are used to control some of the
algorithms. Their meaning therefore depends on the meaning of the built-in function where
they occur as parameters.

Definition 3.8 (Enumeration Types)
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type name possible values
Bool true/false

Side left/right

PosNeg positive/negative

UpDown up/down

IntvRegion core/kernel/support

PointRegion core/kernel/support/maximum

Hull core/kernel/support/crisp/monotone/convex

Fuzzify linear/gaussian

Inclusion subset/overlaps/bigger part inside

SplitInclusion align/subset/overlaps/bigger part inside

Sequencing sequential/overlapping/with gaps

SDVersion Kleene/Lukasiewicz/Goedel

Notice that, for example, the keyword core occurs in the enumeration types IntvRegion,
PointRegion and Hull. Which type is meant is determined by the context where it occurs.
If the context is not clear, for example in comparisons ‘expression == keyword’, one can use
Icore (type IntvRegion), Pcore (type PointRegion), or Hcore (type Hull). The same holds
of the keywords kernel and support.

An unknown string is parsed in the following way:
1. is it an Integer value?
2. is it a Time value?
3. is it a Float value?
4. is it a keyword of one of the enumeration types?
5. is it a partitioning?
6. is it a date format?

If none of these succeed then a parse error is generated.

Definition 3.9 (Basic Types) A Basic Type in GeTS is either a data structure type (Def.
3.6), an enumeration type (Def. 3.8), or the special type Void for expressions which do not
return any values.

Automatic Type Conversion:
Automatic type conversion is done from the type Integer to the types Float and Time. That
means, the type Integer is also acceptable whenever a type Float or a type Time is required.

3.1.2 Compound Types

Definition 3.10 (Compound Type) A compound type in GeTS is an expression T1 ∗ . . . ∗
Tn 7→ T where T and the Ti are either basic types or compound types.

A type expression is either a basic type or a compound type expression.

3.2 Language Constructs for GeTS

The GeTS language has a number of general purpose functional and imperative language com-
ponents. Additionally a number of language constructs are geared to manipulating time points,
temporal intervals, partitionings, dates etc. As already mentioned, the language is strongly
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typed. This means, the type of each expression is determined by the top level function name
together with the types of its arguments.

GeTS tries to minimize the required number of parentheses in the expressions. Nevertheless,
it is usually clearer and easier to understand when enough parentheses are used.

The language has an operational semantics. It is described more or less formally when the
language constructs are introduced. The explanations should be clear enough to understand
what the language is able to do.

Some aspects of the language depend on the context where it is used. For example, GeTS
itself has no exception mechanisms. Nevertheless, exceptions are thrown and must be catched
by the host programming system.

Definition 3.11 (Function Definitions) A GeTS function definition has one of the forms

(1) name = expression
(2) name() = expression
(3) name(type1 var1, . . . , typen varn) = expression
(4) type : name(type1 var1, . . . , typen varn) = expression
(5) type : name(type1 var1, . . . , typen varn)

The five versions of function definitions can have a trailer: ‘explanation: any string’. The
explanation is attached at the newly defined function. It can be accessed by the host system.

Version (1) and (2) are for constant expressions, i.e. the name at the left hand side is essentially
an abbreviation for the expression at the right hand side. Version (3) is the standard function
definition. The type of the function is type1 ∗ . . . ∗ typen 7→ T where T is the type of the
expression. Version (4) declares the range type of the function explicitly. It can be used for
recursive function definitions, where the name of the newly defined function occurs already
in the body. In this case it is necessary to know the range type of the function, before the
expression can be fully parsed. The factorial function, for example, must be defined in this
way:

Integer:factorial(Integer n) = if(n == 0) then 1 else n * factorial(n-1) (1)

Finally, version (5) is a forward declaration. It must be used for mutually recursive functions.

Remark 3.12 (Overloading) Function definitions can be overloaded. They are distinguished
by their argument types, not by the result type. This means, two function definitions

f(Integer n) = ... and

f(Float m) = ...

yield different functions, whereas the second definition in

Integer:f(Integer n) = ... and

Float:f(Integer n) = ...

overwrites the first one or is rejected. This depends on the global control parameter GeTS::overwrite.

Definition 3.13 (Literals) Literals are strings which can be interpreted as constants of a
certain type. See Remark 3.7 for the string representation of literals.
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3.2.1 Arithmetic Expressions

GeTS supports the same kind of arithmetic expressions as many other programming languages.
A small difference is the Time type, which is integrated in the arithmetics of GeTS.

Definition 3.14 (Binary Arithmetic Expressions)
Let N be a number type (i.e. N = Integer or N = Float or N = Time).
If n and m are valid arithmetic expressions then the following binary operations are allowed:

n + m (addition) n % m (modulo)
n − m (subtraction) max(n, m) (maximum)
n ∗ m (multiplication) min(n, m) (minimum)
n/m (division) pow(n, e) (ne)

The types are determined according to the following rules:
for the operators ‘+’, ‘-’, ‘*’, ‘/’, max and min:

Integer ∗ Integer 7→ Integer

Float ∗ Integer 7→ Float

Integer ∗ Float 7→ Float

Float ∗ Float 7→ Float

Integer ∗ Time 7→ Time

Time ∗ Integer 7→ Time

Time ∗ Time 7→ Time

Float ∗ Time 7→ Time

Time ∗ Float 7→ Time

The last two type patterns mean that the result of operations on mixed Float and Time values
are rounded to Time values. This makes the operations non-associative: 1.5 + 1.5 + 1T = 4,
whereas 1.5 + 1T + 1.5 = 3.

Float values are not allowed for the modulo operator %. Therefore the remaining type
patterns for % are:

Integer ∗ Integer 7→ Integer

Integer ∗ Time 7→ Time

Time ∗ Integer 7→ Time

Time ∗ Time 7→ Time

The exponentiation operator pow(n, e) is only allowed for Integer exponents and for Float or
Integer mantissas.

Integer ∗ Integer 7→ Integer

Float ∗ Integer 7→ Float.

Flat expressions like a + b + c + d without parentheses are allowed. The operator precedence
is -, +, /, *, i.e. * binds most. The functions min and max can also accept more than two
arguments.

Definition 3.15 (Unary Arithmetic Expressions) There are four unary arithmetic oper-
ators in GeTS:

−n [N 7→ N ] N is any number type
float(b) [Bool 7→ Float]
round(a) [Float 7→ Integer]
round(a, up/down) [Float ∗ UpDown 7→ Integer]

−n negates the number n.
n can be an expression of type N = Integer, N = Float or N = Time.

float(b) turns a boolean value b into a floating point number:
float(false) = 0.0 and float(true) = 1.0.

14



round(a) rounds a Float value a to the nearest integer. 1.5 is rounded to 1, 1.51 is rounded to
2. -1.5 is rounded to -1, -1.51 is rounded to -2.
round(a, up) rounds the Float value a up, and
round(a, down) rounds the Float value a down.

Definition 3.16 (Arithmetic Comparisons) If n and m are arithmetic expressions of type
Integer, Float or Time then

(n < m),
(n <= m),

(n > m)
(n >= m)

are the usual arithmetic comparison operators. The result is one of the boolean values true or
false. These operators compare different types, i.e. (3.9 <= 4T ) yields true, as expected.

The equality and disequality predicates compare numbers in the expected way, but also every
other data type.

Definition 3.17 (Equality and Disequality) If n is an expression of type T and m is an
expression of type Q then

n == m and n ! = m

are expressions of type Bool.

n == m yields true iff

1. T and Q are one of the number types Integer, Float and Time, and the numbers are
equal, i.e. 4.0 == 4T yields true. (4T is the long integer in the Time type.).

2. T = Q, both are enumeration types, and n and m are the same strings. This means in
particular: if T = Hull, Q = IntvRegion, n = core and m = core then n == m yields
false (because T 6= Q).

3. T = Q = Interval and n and m are the same intervals (i.e. the same polygons).

4. T = Q = Partitioning and n and m are pointer-equal partitionings

5. T = Q = Duration and n and m are the same durations.

n ! = m yields true iff n == m yields false.

3.2.2 Boolean Expressions

GeTS has the standard Boolean connectives: negation (-), and (‘and’ or ‘&&’), or (‘or’ or ‘||’)
and exclusive or (‘xor’ or ‘̂ ’).

Definition 3.18 (Boolean Expressions) If a and b are Boolean expressions then

−a [Bool 7→ Bool]
a and b [Bool ∗ Bool 7→ Bool]
a or b [Bool ∗ Bool 7→ Bool]
a xor b [Bool ∗ Bool 7→ Bool]

are Boolean expressions with the corresponding meaning.

Flat Boolean expressions without parentheses are also allowed. The operator precedence is xor,
or, and, i.e. and binds most.
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3.2.3 Control Constructs

GeTS has the obligatory ‘if-then-else’ construct. In addition there is a case construct to avoid
the need for nested if-then-elses. A ‘while’ loop is also available. Since GeTS is a functional
language, the while construct needs a return value. Therefore in addition to the while loop
body, it has a separate return expression. In the body, however, only imperative constructs
(with return type Void) are allowed.

Definition 3.19 (if-then-else) If c is an expression of type Bool and a and b are expressions
of the same type T then

if c then a else b

is an expression of type T .

Thus, the type of the if construct is in general Bool ∗ T ∗ T 7→ T .

Exceptions are:

1. If a is of type Float, and b of type Integer, or vice versa, then the integer is casted to
Float. The type of if is in this case:
Bool ∗ Float ∗ Integer 7→ Float or Bool ∗ Integer ∗ Float 7→ Float.

Example: ‘if true then 3 else 4.0’ yields 3.0 as a Float number.

2. If a is of type Time, and b of type Integer, or vice versa, then the integer is casted to
Time. The type of if is in this case:
Bool ∗ Time ∗ Integer 7→ Time or Bool ∗ Integer ∗ Time 7→ Time.

Notice that a mix of the type Time and the type Float is not allowed in the if statement.
The definition of the factorial function (1) is a typical example for the use of if-then-else.

Definition 3.20 (case) If C1, . . . , Cn are Boolean expressions and E1, . . . En and D are ex-
pressions of the same type T then

case C1 : E1, ..., Cn : En else D

is an expression of type T .

The operational semantics of this case construct is: the conditions C1, . . . , Cn are evaluated in
this sequence. If Ci is the first condition, which yields true then Ei is evaluated and its result
is returned as the result of case. If all Ci evaluate to false then the result of D is returned.

Exceptions for the requirement that E1, . . . En, D are expressions of the same type T are: if
T = Float or T = Time then some of the E1, . . . En and D may have type Integer. These
integers are automatically casted to Float or Time.
As in the ‘if-then-else’ construct, a mix of the types Time and Float is not allowed in the case

body.

Definition 3.21 (while) Let C be an expression of type Bool, E1, . . . , En expressions of type
Void and ‘result’ and expression of type T then

while C {E1, ..., En} result

is an expression of type T .
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The operational semantics of this while construct is: as long as the evaluation of C yields true,
evaluate the expressions E1, . . . , En in this sequence. As soon as C yields false, evaluate result
and return this as value of while.
An iterative definition of the factorial function is a typical example where the while construct
is used.

factorial(Integer n) = Let f = 1 in while(n>0){f := f*n, n := n-1} f (2)

This example also illustrates the binding construct Let and the assignment operation.

Definition 3.22 (Let) The construct
Let variable = expression1 in expression2
of type
T

evaluates the expression1, binds the result to the variable and then evaluates expression2
under this binding.

T is the type of expression2.

Definition 3.23 (Assignment) If x is a variable of type T , and E is an expression of type
T then x := E is an expression of type Void.

This is the usual assignment operation: the result of the evaluation of E is assigned to x.

Exceptions for the requirement that x and E have the same type are: if x has type Float or
Time then E may have type Integer. The value is automatically casted to Float or Time.
Notice that the assignment operation returns no value. It can only occur in the body of the
while statement.

3.2.4 Functional Arguments

A function call in GeTS is an expression name(argument1, . . . , argumentn) where ‘name’ is
either the name of a built-in function, or the name of a previously defined function (or a function
with forward declaration), or a variable with suitable functional type.

Since variables can have functional types, and GeTS allows overloading of function defini-
tions, it needs a notation for functional arguments. A functional argument can either be just
a variable with appropriate functional type, or a function name with argument type specifica-
tions, or a lambda expression. A function name with argument type specifications is necessary
to choose among different overloaded functions.

Definition 3.24 (Functional Arguments) A functional argument in GeTS is either

1. a variable with the appropriate functional type,

2. an expression name[type1 ∗ . . . ∗ typen] of a previously defined function with that name
and with argument types type1 ∗ . . . ∗ typen, or

3. a lambda expression:
lambda(type1 variable1, . . . , typen variablen) expression.
If T is the type of ‘expression’ then type1 ∗ . . . ∗ typen 7→ T is the type of the lambda-
expression.
‘expression’ can contain variables which are lexically bound outside the parameter list of
lambda.
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3.2.5 Now and Shift

Definition 3.25 (now) The expression now() of type Time yields the current moment in time,
i.e. the number of seconds from January, 1st 1970 until the time when the now() function is
invoked.

Notions like ‘in two weeks time’ or ‘three years from now’ etc. denote time shifts. Time
shifts are basic operations for many other temporal notions. Therefore GeTS provides a shift

function which can shift single time points as well as whole intervals by a given duration. Since
in general the absolute length of durations depends on the position of the time points at the
time axis, shifting time points by durations is no trivial operation at all.

A first specification for a shift function is to map a time point t to a time point t′ such
that t′− t is just the required duration, ‘two weeks’ or ‘three years’ in the above examples. This
is a length oriented shift function.

Example 3.26 (for Length Oriented Shift) The algorithm for this function can be best
understood by the following example:

-? ?

� - � -
2 6 73 4 5

t t′

f1
f2

Suppose we want to shift the time point t by 3.5 partitions. First, the relative distance f1

between t and the end of the partition containing t is measured. Suppose it is 0.75. That
means from the end of the partition we need to move forward still 2.75 partitions. We can
move forward 2 partitions by just adding the 2 to the coordinate 4. We end up at the start of
partition 6. From there we need to move forward f2 = 0.75 partitions, which is just 75% of the
length of partition 6.

Unfortunately the length oriented shift function does not always give intuitive results. Suppose
the time point t is noon at March, 15th, and we want to shift t by 1 month. March has 31
days. Therefore the distance to the end of March is exactly 0.5 months. Thus, we need to
move exactly 0.5 times the length of April into April. April has 30 days. 0.5 times its length is
exactly 14 days. Thus, we end up at midnight April, 14th.

This is not what one would usually expect. We would expect to shift t to the same time
of the day as we started with. With the length oriented shift this happens only by chance, or
when the partitions have the same length.

GeTS therefore provides also a date oriented shift function which avoids the above problems
and gives more intuitive results. The idea is to do the calculations not on the level of reference
time points, but on the level of dates. If, for example, t represents 2004/2/15, then ‘in one
month time’ usually means 2004/3/15. That means the reference time must be turned into
a date, the date must be manipulated, and then the manipulated date is turned back into a
reference time. This is quite straight forward if the partitioning represents a basic time unit of
a calendar system (year, month, week, day etc.), and this calendar system has a date format
where the time unit occurs. In the Gregorian calendar this is the case, even for the time unit
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‘weeks’. ‘In two weeks time’ requires to turn the reference time into a date format which uses
weeks. The corresponding date format uses the counting of weeks in the year (ISO 8601). For
example, 2004/42/1 means Tuesday3 in week 42 in the year 2004. In two weeks time would
then be 2004/44/1.

A date oriented shift operation for partitionings which are not standard partitionings of a
calendar system can usually be defined by mapping it to a date oriented shift operation for
a standard partitioning. For example, if a partitioning ‘semester’ is defined as sequences of
6 months, one can reduce a shift in terms of semesters to a shift in terms of months. The
partitioning module, which underlies the GeTS language, has for each type of partitionings a
particular date oriented shift operation. For the details we must therefore refer to [8, 11].

The next problem is to deal with fractional shifts. How can one implement, say, ‘in 3.5
months time’? The idea is as follows: suppose the date format is year/month/day/hour/minute/
second, and the reference time corresponds to, say, 2004/2/20/10/5/1. First we make a shift
by three months and we end up at 2004/5/20/10/5/1. This is a day in May. From the date
format we take the information that the next finer grained time unit is ‘day’. May has 31
days. 0.5 ∗ 31 = 15.5. Therefore we need to shift the date first by 15 days, and we end up at
2004/5/34/10/5/1. There is still a remaining shift of half a day. The next finer grained time
unit is hour. One day has 24 hours. 0.5 ∗ 24 = 12. Thus, the last date is shifted by 12 hours,
and the final date is now 2004/5/34/22/5/1. This is turned back into a time point.

The date oriented shift gives more intuitive results. The drawback is that the distance
between the shifted time point and the original time point need no longer be the given duration
when it is measured with the length function (Def. 3.42).

The shift function can not only shift time points by durations like 3.5 months. More
complex durations like 3.5 months - 5 days + 3 hours are also admissible for the shift function.
A shift by such a duration is executed as a sequence of shifts, first by 3.5 months, then by -5
days (backwards shift), and finally by 3 hours.

A statement like ‘we must move this task by three working days’ refers to a shift of time
points which is measured in granules. GeTS offers therefore a possibility to shift time points
and intervals by durations which are interpreted as granules. The basic idea for the algorithm
which shifts a time point by a number of granules is to turn the granules into partitions, and
to use the shift function for partitions. The method is illustrated with the following example:

Example 3.27 Suppose we want to model a working day with two shifts, a day shift from 8
am until 4 pm, with a one hour break between 12 am and 1 pm, and a night shift between 10
pm and 2 am. The labelled partitioning is hour with labels ds (for day shift) and ns (for night
shift).

-ds ds gap ds
8 10 12

ds
14 16 24 222

︸ ︷︷ ︸

granule1

︸ ︷︷ ︸

granule2

ns ns

The first granule consists of 7 non-gap partitions labelled ds. The second granule consists of 4
non-gap partitions labelled ns.

3According to ISO 8601, the first day in a week is Monday. In the standard notation this is day number 1.
Since we count days from 0, Monday is day 0 and Tuesday is day 1.
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This example shows that shifts by granules yield intuitive results only in special cases. A
time point t at 9 am at day n, shifted by 2 granules, should end up at 9 am at day n + 1. But
how can we shift t by one granule, i.e. from the day shift to the night shift? GeTS provides
shift operations for this and other cases as well. Whether they yield intuitive results, depends
on the application.

A time point t can be: (i) within a non-gap partition of a granule, (ii) within a gap partition
of a granule or (iii) within a gap partition between two granules. Suppose we want to shift t by
m = 1.5 granules. The number of partitions to be shifted is determined as follows:

Case (i): t is within a non-gap partition p of a granule g. Suppose m is positive. Let n be the
relative position of p within g (not counting internal gaps). 9 am in Example 3.27 is in partition
1 of a 7-partition granule (the first partition has number 0). n = 1/7 = 0.1428. From the start
of the first granule we need to move m + n = 1.6428 granules forward, i.e. we need to move
n′ = 0.6428 into the second granule. Since this is a 4-partition granule, and 4 · 0.6428 = 2.57,
the target partition is the third partition in the second granule. 9 am would be mapped to 1
am next day in the above example.

A negative shift m is treated in a similar way. The only difference is that the relative position
of a partition within a granule is computed from the end of the granule and it is represented as
a negative number. The relative position of the second partition within a 7-partition granule
is in this case −6/7 = −0.857.

Case (ii): t is within a gap partition p of a granule g. Let t be at 12:30 am in Example 3.27.
If the shift m is integer, we try to move t again into a gap partition of a granule g + m. If
the granule g + m has gaps, we determined the relative position n of the gap region containing
t within g. 12:30 am is in the first gap region of a granule consisting of 2 non-gap regions.
Therefore n = 0.5. If the target granule g + m has k non-gap regions, the gap region, into
which t is to be moved is the n · kth gap region. In a second step, the relative position of the
gap-partition within the gap region is mapped to a relative position of a gap partition in the
target gap-area.

Negative shifts are again treated by computing relative positions as negative numbers, as in
case (i).

If the target granule has no gaps, or the shift m is not integer, internal gaps are ignored and
the algorithm of case (i) is applied.

Shifting t = 12:30 am by m = 2 granules ends up at 12:30 am next day with this method.
Shifting t = 12:30 am by m = 1 granules ends up at 0:30 am next day.

Case (iii): t is within a gap partition p between two granules g1 and g2. If the shift m is integer
then the relative position n of the gap partition p within the gap region between g1 and g2 is
mapped to a relative position of a gap partition p′ between the granules g1 + m and g2 + m.
If there are no gaps between g1 + m and g2 + m then the target partition p′ is just the first
partition of the granule g2 + m.

Example 3.27: let t be at 5 pm and m = 1. 5 pm is in the second gap-partition of a 6
gap-partition region. The gap-region between the night shift and the day shift consists also of
6 gap-partitions. Therefore t is shifted to the 2/6 · 6 = 2nd gap-partition, i.e. 3 am next day.

Positive fractional shifts, for example m = 1.5, are treated in a relatively simple way. Let
m′=defbmc be the integer part of m. The target partition p′ is determined by taking the fractional
part m − m′ as the relative position of the non-gap partitions of granule g2 + m′. The exact
position of t between the two granules plays no role in this case.

Shifting t = 6 : 30 am by 1.5 granules in the above example therefore ends up at 0:30 am
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next day.
Negative fractional shifts are computed by shifting the end of granule g1 +m′ the fractional

part m − m′ backwards.

Definition 3.28 (shift) The shift function can shift a single time point by a given duration:
shift(time, duration, asGranule, dateOriented)
is of type
Time ∗ Duration ∗ Bool ∗ Bool 7→ Time.

The shiftLength function determines the length of a shift:
shiftLength(time, duration, asGranule, dateOriented)
is of type
Time ∗ Duration ∗ Bool ∗ Bool 7→ Time.

shiftLength(time, duration, asGranule, dateOriented) is just an abbreviation for
shift(time, duration, asGranule, dateOriented)− time.

shift(time, duration, asGranule, dateOriented) shifts the time point by the given duration.
If asGranule = true then the partitionings in the duration are interpreted as granules, other-
wise as partitions. If dateOriented = true then the shift is date oriented, otherwise it is length
oriented.

3.2.6 Explicit Construction of Time Intervals

Fuzzy time intervals (type Interval) are one of the built-in data structures in GeTS. It is
possible to create new empty intervals and fill them up with coordinate points. There are three
ways to create new intervals in GeTS:

Definition 3.29 (New Time Intervals)

1. The expression [] stands for the empty interval.

2. The expression [t1, t2] of type Time ∗ Time 7→ Interval constructs a new crisp interval
with boundaries t1 and t2 (see Example 3.2).

3. The expression [(t1, y1), (t2, y2)] of type Time∗Float∗TimeFloat 7→ Interval constructs
a new fuzzy interval with the given two points.

Definition 3.30 (Extending Intervals) The function
pushBack(I, time, value)
of type
Interval ∗ Time ∗ Float 7→ Void

adds the point (time, value) to the end of the interval I. I must be an interval which was
constructed with newInterval() (see Def. 3.29). time must lie after the last point in the
interval. value must be a Float value between 0 and 1.

The pushBack(I, time, value) function can only ill up the interval I from the past to the future.
It throws an error if time is before the last time point in I .
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3.2.7 Set Operations on Intervals

For crisp intervals there are the standard set operators: complement, intersection, union etc.
These are uniquely defined. There is no choice. Unfortunately, or fortunately, because it gives
you more flexibility, there are no such uniquely defined set operators for fuzzy intervals. Set
operators are essentially transformations of the membership functions, and there are lots of
different ones.

GeTS offers standard versions of the set operators, parameterized set operators of the
Hamacher family, and finally set operators with transformation functions for the membership
function as parameter. These allow one to customize the set operators in an arbitrary way.

Definition 3.31 (Complement of Intervals)
Let I be an expression of type Interval. The complement operation for intervals comes in
three versions:

(1) complement(I) Interval 7→ Interval

(2) complement(I, λ) Interval ∗ Float 7→ Interval

(3) complement(I, negation function) Interval ∗ (Float 7→ Float) 7→ Interval

Version (1) is the standard complement. Each point (x, y) of the membership function of I is
turned into (x, 1 − y).
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Standard Complement for a Fuzzy Interval

Version (2) is the lambda-complement. For λ > −1, each point (x, y) of the membership function
of I is turned into (x, 1−y

1+λy
). The ordinary complement is computed for λ ≤ −1.
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λ-Complement for λ = 2
6 8

Finally, with version (3) it is possible to submit a user defined negation function. For example,
with

lambda complement(Interval I, Float lam)

= complement(I,lambda(Float y) (1-y)/(1+lam*y))

one can define the same lambda-complement with a user defined negation function.
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Definition 3.32 (Union of Intervals) Let I and J be expressions of type Interval. The
union operation for intervals comes in three versions:

(1) union(I, J) Interval ∗ Interval 7→ Interval

(2) union(I, J, β) Interval ∗ Interval ∗ Float 7→ Interval

(3) union(I, J, co norm)
Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval

Version (1) is the standard union. Each pair (x, y1) and (x, y2) of points of the membership
function of I and J is turned into (x, max(y1 − y2)).
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Standard Union of Fuzzy Sets

I J

I ∪ J

Version (2) is the so called Hamacher–Union. For β ≥ −1, each pair (x, y1) and (x, y2) of points

of the membership function of I and J is turned into (x, y1+y2+(β−1)y1y2

1+βy1y2
). The ordinary union

is computed for β < −1.
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Hamacher–Union with β = 0.5

Finally, with version (3) of the union function it is possible to submit a user defined co-norm.4

For example, with

Hamacher Union(Interval I, Interval J, Float beta)

= union(I, J, lambda(Float y1, Float y2)

(y1+y2+((beta - 1)*y1*y2))/(1+beta*y1*y2))

one can define the same Hamacher union with a user defined co-norm.

Definition 3.33 (Intersection of Intervals) Let I and J be expressions of type Interval,
The intersection operation for intervals comes also in three versions:

(1) intersection(I, J) Interval ∗ Interval 7→ Interval

(2) intersection(I, J, γ) Interval ∗ Interval ∗ Float 7→ Interval

(3) intersection(I, J, norm))
Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval

4Norms and co-norms are binary functions on membership values of fuzzy sets. They satisfy conditions which
make sure that the corresponding set operations can be considered as union and intersection [5].
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Version (1) is the standard intersection. Each pair (x, y1) and (x, y2) of points of the membership
function of I and J is turned into (x, min(y1 − y2)).
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Standard Intersection of Fuzzy Sets

i
j

Version (2) is the Hamacher–Intersection. For γ ≥ 0, each pair (x, y1) and (x, y2) of points
of the membership function of I and J is turned into (x, y1y2

γ+(1−γ)(y1+y2−y1y2)
). The ordinary

intersection is computed for γ < 0.
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Hamacher–Intersection γ = 0.5

Finally, with version (3) it is possible to submit a user defined norm. For example, with

Hamacher_Intersection(Interval I, Interval J, Float gamma)

= intersection(I, J, lambda(Float y1, Float y2)

(y1*y2)/(gamma + (1-gamma)*(y1 + y2 -y1*y_2))

one can define the same Hamacher-Intersection with a user defined norm.

Definition 3.34 (Set Difference between Intervals) Let I and J be expressions of type
Interval. The set difference operation for intervals comes also in three versions:

(1) setdifference(I, J) Interval ∗ Interval 7→ Interval

(2) setdifference(I, J, version) Interval ∗ Interval ∗ SDVersion 7→ Interval

(3) setdifference(I, J, intersection, complement)
Interval ∗ Interval ∗ (Interval ∗ Interval 7→ Interval) ∗
(Interval 7→ Interval) 7→ Interval

(1) extends the crisp correspondence: I \ J = I ∩ J ′ where J ′ is the complement of J ,
setdifference(I,J) is therefore an abbreviation for intersection(I,complement(J)) with
standard intersection and complement functions.

(2) The second version computes the set difference operator by means of a binary function on
the membership functions. The following versions are possible:

SDVersion Function
Kleene (I \ J)(x) =def min(I(x), 1 − J(x))
Lukasiewicz (I \ J)(x) =def max(0, I(x) − J(x))
Goedel (I \ J)(x) =def 0 if I(x) ≤ J(x) and 1 − J(x) otherwise
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(3) Finally, the third version is a generalization of the first version:

setdifference(I, J, intersection, complement) =def intersection(I, complement(J))

intersection is a user defined binary function on intervals, and complement is a user defined
unary function on intervals.

3.2.8 Predicates of Intervals

Fuzzy time intervals have many properties. They can be checked with suitable GeTS predicates.

Definition 3.35 (Predicates) GeTS provides the following predicates to check the structure
of an interval I:

(1) isCrisp(I) Interval 7→ Bool

(2) isCrisp(I, left/right) Interval ∗ Side 7→ Bool

(3) isEmpty(I) Interval 7→ Bool

(4) isConvex(I) Interval 7→ Bool

(5) isMonotone(I) Interval 7→ Bool

(6) isInfinite(I) Interval 7→ Bool

(7) isInfinite(I,left/right) Interval ∗ Side 7→ Bool

isCrisp(I) checks whether the interval is a, possibly non-convex, crisp interval.
isCrisp(I, left) checks whether the interval is crisp at its left end. I may be infinite at this
side, but the fuzzy value must be 1 in this case. Similar for isCrisp(I, right).

isEmpty(I) checks whether the interval is empty.

isConvex(I) checks whether the interval is convex. I can be non-convex even if I is crisp
because it may consist of several different components (Def. 2.2).

isMonotone(I) checks whether the membership function of the interval is monotonically rising
to a maximal value, and then monotonically falling again.

isInfinite(I) checks whether the interval is infinite.

isInfinite(I, left) checks whether the interval is infinite at the left hand side.
isInfinite(I, right) checks whether the interval is infinite at the right hand side.

The boundaries of infinite intervals are of course the infinity. Infinity has a special repre-
sentation in the Time datatype. This can be checked with the isInfinity predicate:

Definition 3.36 (Infinity)

isInfinity(time) Time 7→ Bool

isInfinity(time,positive/negative) Time ∗ PosNeg 7→ Bool
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isInfinity(time) checks whether the time represents an infinity.
isInfinity(time,positive) checks whether the time represents the positive infinity.
isInfinity(time,negative) checks whether the time represents the negative infinity.

The next three predicates allow one to check basic relations between time points and inter-
vals, or between intervals and intervals.

Definition 3.37 (during, isSubset, doesOverlap)
(1) during(time, I, core/kernel/support) Time ∗ Interval ∗ IntvRegion 7→ Bool

(2) isSubset(I, J, core/kernel/support) Interval ∗ Interval ∗ IntvRegion 7→ Bool

(3) doesOverlap(I, J, core/kernel/support) Interval ∗ Interval ∗ IntvRegion 7→ Bool

(1) during(time, I, region) checks whether the time is inside the given region of the interval I .
(2) isSubset(I, J, region) checks whether the corresponding region of the interval I is a subset
of the corresponding region of the interval J .
(3) doesOverlap(I, J, region) checks whether the corresponding region of the interval I overlaps
the corresponding region of the interval J .

The point-interval during relation is one of the five point–interval relations ‘before’, ‘starts’,
‘during’, ‘finishes’ and ‘after’ for crisp intervals. Only during is built-in because it is one of
the most frequently used relations. The other relations can easily be defined in GeTS. The
point–interval before relation in Example 3.3 is such an example.

3.2.9 Other Features of Intervals

With the first function in this paragraph one can access the fuzzy membership value of a time
point within a given fuzzy interval.

Definition 3.38 (member) The function
member(time, I)
of type
Time *Interval 7→ Float

returns the value of the membership function of the interval I at time point time. The value is
a Float number between 0 and 1.

Definition 3.39 (Components)

1. The function components(I) of type Interval 7→ Integer yields the number of compo-
nents in the interval I.

2. The function component(I,k) of type Interval ∗ Integer 7→ Interval extracts the kth

component from the interval I.

The function size below measures an interval I or parts of it by integrating over its membership
function.
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Definition 3.40 (size) The function size comes in three versions.

(1) size(I) Interval 7→ Time

(2) size(I, core/support/kernel) Interval ∗ IntvRegion 7→ Time

(3) size(I, t1, t2) Interval ∗ Time ∗ Time 7→ Time

size(I) measures the size of the support of I .
size(I, core/support/kernel), measures the size of the corresponding region of I .
size(I) = size(I, support).
size(I, t1, t2) measures the area of I between t1 and t2.

Definition 3.41 (sub and inf) Let I be an interval expression.
The function sup(I) of type Interval 7→ Float returns the supremum of the fuzzy values of
the membership function for I (usually 1).

The function inf(I) of type Interval 7→ Float returns the infimum of the fuzzy values of
the membership function for I (usually 0).

The function length measures the distance between two time points in terms of a partition.

Definition 3.42 (length) The function

length(t1, t2, partitioning, asGranule)
of type
Time ∗ Time ∗ Partitioning ∗ Bool 7→ Float

measures the distance between t1 and t2 in terms of the given partitioning. If asGranule = true

then the distance is measured in terms of the length of the granules of the partitioning’s labelling
(without gaps).

An example for determining the distance between two time points in terms of partitions is

length(now(),shift(now(),1 day),day,false)

is just 1.0.

The next example illustrates the length function in terms of granules.

Example 3.43 (length in terms of granules)
Consider a partitioning P with labelling a,a,gap,gap,a,gap,b,b.

� -a a gap gap a gap b b

︸ ︷︷ ︸

granule1

︸ ︷︷ ︸

granule2

0 1 2 3 4 5 6 7

The table below gives the results of length(t1,t2,P,true) where t1 is the start of partition
p1 and t2 is the start of partition p2.
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t1 t2 length in terms of granules
0 1 1/3
0 2 2/3
0 3 2/3
0 4 2/3
0 5 1
0 6 1
0 7 1.5
0 8 2

The function ‘point’ below can be used to access the boundaries of the three different regions
of an interval: support, core and kernel, and the first and last maximal points.

Definition 3.44 (point) The function

point(I, left/right, core/support/kernel/maximum)
of type
Interval ∗ Side ∗ PointRegion 7→ Time

returns the position of the boundaries of I’s regions:
point(I, left,support) yields the position of the left support boundary
point(I, right,support) yields the position of the right support boundary
point(I, left,core) yields the position of the left core boundary
point(I, right,core) yields the position of the right core boundary
point(I, left,kernel) yields the position of the left kernel boundary
point(I, right,kernel) yields the position of the right kernel boundary.
point(I, left,maximum) yields the leftmost position of the maximal fuzzy value.
point(I, right,maximum) yields the rightmost position of the maximal fuzzy value.

If I is just a convex crisp interval [t1, t2[ then
point(I, left,support) = t1 and point(I, right,support) = t2.

Center Points
The n, m-center points are used to express temporal notions like ‘the first half of the year’, or
‘the second quarter of the year’, or more exotic expressions like ‘the 25th 49th of the weekend’
etc. The notion of n, m-center points makes only sense for finite intervals.

Example 3.45 (Center Points) The 1,2-center point I1,2 of I splits I in two halfs of the
same size (integrated over the membership function). The 1,3-center point indicates a split of
I into three parts of the same size. centerPoint(I,1,3) is the boundary of the first third,
centerPoint(I,2,3) is the boundary of the second third.
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n, 3-Center Points
I0,3 I1,3 I2,3 I3,3
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n, 2-Center Points
I0,2 I1,2 I2,2

Definition 3.46 (Center Points) The function

centerPoint(I, n, m)
of type
Interval ∗ Integer ∗ Integer 7→ Time

yields the (earliest) position of the n, m-center point.

The center points are computed such that for n < m:

∫ centerPoint(n+1,m)

centerPoint(n,m)

I(x) dx = (

∫

I(x) dx)/m

3.2.10 Basic Manipulations of Intervals

In this paragraph we introduce some elementary transformation functions for fuzzy time inter-
vals.

Definition 3.47 (Shift of Time Intervals) The function

shift(I, t)
of type
Interval ∗ Time 7→ Interval

shifts the interval by the given time, i.e. shift(I, t)(x) = I(x − t)

Definition 3.48 (cut) The function

cut(I, t1, t2)
of type
Interval ∗ Time ∗ Time 7→ Interval

cuts the part of the interval I between the time points t1 and t2 out of I and returns it as a new
interval.

The hull function below is able to compute different hulls of a fuzzy time intervals.

Definition 3.49 (Hull Calculations) The function

hull(I, core/support/kernel/crisp/monotone/convex)
of type
Interval ∗ Hull 7→ Interval

computes a hull of the interval I. The second parameter determines which hull is to be computed.
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The core, support and kernel hull compute the corresponding interval regions as crisp
intervals. The core and support hull may therefore consist of different components, whereas
the kernel hull consists of at most one single component.

There is a small problem with the support hull. Consider the following example:

-

6

R
0

1

support hull problem

I

0 20 40 60

Since I(0) = 0, the support of I is the open interval ]0, 60[. The function hull(I,support),
however, calculates the interval boundaries 0 and 60, which are interpreted as the half open
interval [0, 60[. Strictly mathematical, this is not correct. In a correct implementation, however,
we would have to distinguish open and half open intervals. Since the overhead for this is
enormous, the current version of GeTS has to live with this error.

The crisp hull for crisp intervals is the usual convex hull of crisp intervals. It consists of
the smallest crisp interval which contains all the components of the interval. The crisp hull for
non-crisp intervals is the convex hull of the support of the interval. If the non-convex interval
consists of one single component only, there is no difference between the crisp and support hull.
In general we have

hull(I, crisp) = hull(hull(I, support),crisp).

The monotone hull of an interval I is the smallest monotone interval which contains I . An
interval is monotone iff its membership function rises monotonically up to a maximal point,
and then falls monotonically again.
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Monotone Hull of a Fuzzy Interval

The convex hull of an interval I is the smallest convex interval which contains I . The notion
‘convex’, which is appropriate here, is the notion of a convex polygon. That means, if we
follow the membership function from left to right there are only right curves. The next figure
illustrates this.
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Convex Hull of a Fuzzy Interval

If the interval I is crisp then the crisp, monotone and convex hull are the same.

The next function can be used to extract the gaps between components of an interval. The
invert function inverts the membership function, but only between the last maximal point
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of the first component and the first maximal point of the last component. invert(I) is zero
outside these points.

Definition 3.50 (invert) The function invert(I) of type Interval 7→ Interval inverts the
membership function of the interval I:

invert(I)(x) =def

{
1 − I(x) if a ≤ x < b
0 otherwise.

where a is the last maximal point of the first component of I, and b is the first maximal point
of the last component of I.

Example:
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Invert

components(invert(I)) yields the number of gaps in the interval I .

The scaleup function below multiplies the membership function of an interval I with a factor
f , such that the maximal value of I(x) ∗ f is 1.

Definition 3.51 (scaleup) The function scaleup(I) of type Interval 7→ Interval scales
the membership function of I such that its maximum is 1.

More general scaling functions are times and exp.

Definition 3.52 (times and exp)

times(I, f) Interval ∗ Float 7→ Interval

exp(I, e) Interval ∗ Float 7→ Interval

times(I, f)(x) = min(I(x) · f, 1).
exp(I, e) computes an interval such that exp(I, e)(x) = I(x)e.

The dashed line in the next figure indicates times(I, 2) and the dotted line indicates exp(I, 2).

-

6

R
0

1

times(I, 2) and exp(I, 2)

The rising part of a fuzzy time interval is crucial for a fuzzy point-interval before relation. The
falling part, on the other hand, is crucial for a point-interval after relation. The rising part
of an interval I can be computed by following its monotone hull up to the first maximal point,
and then extending it to the infinity. Similar with the falling part.
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Definition 3.53 (Extend to Infinity) The function
extend(I, positive/negative)
of type
Interval ∗ PosNeg 7→ Interval

extends the interval to the infinity. extend(I, positive) raises the membership function of
the monotone hull of I to 1 after the first maximum Ifm. extend(I, negative) raises the
membership function of the monotone hull of I to 1 before the right maximum I lm.

Example:
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extend(I,positive) and extend(I,negative)
Ifm I lm

I I

An example where the extend function is useful is the definition of the binary ‘until’ relation
between two intervals.

until(Interval I, Interval J)

= intersection(extend(I,positive),extend(J,negative))
(3)

computes until(I, J) as the interval which lasts from the beginning of interval I until the end
of interval J .
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until

I J

There is a further extend function in GeTS. It lengthens or shortens an interval by a certain
time.

Definition 3.54 (Extend by a Certain Time) The function
extend(I, length, side)
of type
Interval ∗ Time ∗ Side 7→ Interval

extends the interval I by the given length.

The side parameter determines at which side the interval is extended. side = left extends it
at the left side, side = right extends it at the right side. A positive length value causes the
interval to be extended, whereas a negative length value causes the interval to be shrunken.

The algorithm for extending or shrinking a fuzzy interval works as follows: In a first step
the interval I is split into the left/right part I1 of the interval up to the first maximal point,
and the rest I2. I1 is extended to the infinity. This part is shifted. If the interval is to be
extended, then the union of the shifted I1 with I2 is computed. If the interval is to be shrinked
then the intersection of the shifted I1 with I2 is computed. The next figure illustrates this.
The dotted line shows the shifted front part of the interval. The dashed line is the result of the
union/intersection.
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Example:
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extending and shrinking an interval

by a certain duration

The extend function together with shiftLength (Def. 3.28) can be used to extend an
interval by a certain duration. For example,

extend(I,−shiftLength(point(I, left, support),−1 month, false, true), left)

extends the left side of the interval I by 1 month. The month length is determined by a
backwards shift of the left boundary of I ’s support.

Definition 3.55 (integrate) The function

integrate(I, positive/negative)
of type
Interval ∗ PosNeg 7→ Interval

integrates the membership function of I and normalizes its value to 1. If the control parameter
is positive then I is integrated from left to right. If it is negative then I is integrated from
right to left.

An example where the integrate operator may be useful is the definition of party time

Example 3.56 (Birthday Party Time) Consider a database about, say, the institute’s birth-
day parties. It may contain the entry that the birthday party for the director took place ‘from
around noon until early evening’ of 20/7/2003. ‘Around noon’ is a fuzzy notion and ‘early
evening’ is a fuzzy notion. Suppose, we have a formalization of ‘around noon’ and ‘early
evening’ as the following fuzzy sets:
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Around Noon and Early Evening
11 12 13 20 21 2422

What is now the duration of the birthday party? It must obviously also be a fuzzy set. The
fuzzy value of the birthday party duration at a time point x is 1 if the probability that the
party started before x is 1 and the probability that the party ended after x is also 1. Therefore
the fuzzy value at point x is computed by integrating over the probabilities of the start points
and the end points. A natural definition would therefore be:

partyTime(Interval I, Interval J)

= intersection(integrate(I,positive),integrate(J,negative))
(4)

The resulting fuzzy set is:
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Birthday Party Time
11 12 13 20 21 2422

I J

The dashed curve may, for example, represent the percentage of people at the party at a give
time.

Fuzzification
Fuzzy time intervals could be defined by specifying the shape of the membership function in
some way. This is in general very inconvenient. Therefore GeTS provides an alternative. The
idea is to take a crisp interval and to ‘fuzzify’ the front and back end in a certain way. For
example, one may specify ‘early afternoon’ by taking the interval between 1 and 6 pm and
imposing, for example, a linear or a Gaussian shape increase from 1 to 2 pm, and a linear
or a Gaussian shape decrease from 4 to 6 pm. Technically this means multiplying a linear or
Gaussian function with the membership values.

Definition 3.57 (Fuzzification) There are two different versions of the fuzzify function in
GeTS. The first version allows one to specify the part of the interval I which is to be fuzzified
in terms of percents of the interval length. The second version needs absolute coordinates.

fuzzify(I, linear/gaussian,left/right, increase, offset)
of type
Interval, Fuzzify, Side, Float, Float 7→ Interval

fuzzify(I, linear/gaussian,left/right, x1, x2, offset)
of type
Interval, Fuzzify, Side, Time, Time, Time 7→ Interval

The second parameter determines whether a linear or gaussian increase is to be imposed on
the interval. The third parameter determines whether the increase is from left to right or from
right to left. increase is a Float number in percent. increase = 10 means that the region
to be modified consists of the first/last 10% of the kernel of the interval. offset is also a float
number in percent. offset = 20 means that the interval is to be widened by 20% of the kernel
of the interval. To this end the fuzzified part of the interval is shifted back (second parameter
= left) or forth (second parameter = right) 20% of the kernel size.

x1 and x2 in the second version of the fuzzify function allows one to determine the part of the
interval to be fuzzified in absolute coordinates. fuzzify([0, 100], linear, left, 20, 70, 0), for ex-
ample, yields a polygon [(20,0) (70,1) (100,1) (100,0)]. fuzzify([0, 100], linear, right, 20, 70, 0),
on the other hand, yields a polygon [(0,0) (0,1) (20,1) (70,0)]. The offset widens the polygon:
fuzzify([0, 100], linear, right, 20, 70, 20), yields [(0,0) (0,1) (60,1) (90,0)].

A function which fuzzifies both ends of an interval in the same way could be

f(Interval I, Float increase, Float offset)

= intersection(extend(fuzzify(I,gaussian,left,increase,offset),positive),

extend(fuzzify(I,gaussian,right,increase,offset),negative))
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f(I, 20, 0) produces the following fuzzified interval.
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Relative Gaussian Fuzzification

Notice that the obvious ‘solution’

f(Interval I, Float increase, Float offset)

= fuzzify(fuzzify(I,gaussian,right,inc,off),left,increae,offset)

yields no symmetric structure, because the inner fuzzify operation changes the kernel of the
interval, such that the absolute increase and offset of the outer fuzzify operation are different
to the absolute increase and offset of the inner fuzzify operation

The next example illustrate a potential use of the fuzzify function. We want to realize a
function beforeChristmas. It should accept a time point t and compute a fuzzy interval, whose
membership function increases for a certain time period and then stays 1.0 until Christmas.
The increase is determined by two parameters, offset and increase. offset = 50 means that
the increase should start in the middle between t and Christmas. increase = 20 means that
the duration of the actual linear increase should be 20% of the interval length.

If t = 2004/7/1 then beforeChristmas(t,50,10) yields an interval whose membership
function rises from 2004/9/28 until 2004/10/6/19/12 and then stays at 1.0 until 2004/12/25.

Example 3.58 (Before Christmas)

1 beforeChristmas(Time t, Float offset, Float increase) =

2 dLet year = date(t,Gregorian_month) in

3 Let christmas = time(year|12|25,Gregorian_month) in

4 case (t < christmas) :

5 Let days = round(length(t,christmas,day,false),down) in

6 fuzzify([time(year|12|25-days+round((days*offset/100)),

7 Gregorian_month),christmas],

8 linear,left,increase,0),

9 (t < time(year|12|27,Gregorian_month)): []

10 else

11 Let christmas1 = time(year+1|12|25,Gregorian_month) in

12 Let days = round(length(t,christmas1,day,false),down) in

13 fuzzify([time(year+1|12|25-days+round((days*offset/100)),

14 Gregorian_month),christmas1],

15 linear,left,increase,0)

The beforeChristmas function considers the three cases, namely (1) that the time point t in
the year y is before Christmas in this year, (2) that t is just on Christmas in this year, and
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(3) that t is after Christmas in this year. In case (1) the rounded number of days between
t and Christmas is computed first (line 5). This number minus the offset is subtracted from
christmas to get the left boundary of the interval to be fuzzified (line 6). The right boundary
is christmas. The left part of the interval is fuzzified linearly with the given increase (line
6–8). If the time point t is just on Christmas (line 9) then the empty interval is returned. If t
is after Christmas (case 3), then next year’s Christmas is considered (line 11-15).

Integration over Pairs of Intervals
One possibility to define an interval–interval relation like ‘before(I, J)’ is, to take a point–
interval relation ‘PIRbefore(t, J)’ and average PIRbefore(t, J) over the interval I . Averaging
over an interval means integrating over its membership function. For purposes like this GeTS
provides two integration operations.

Definition 3.59 (Integration) GeTS has the two integration functions:

integrateSymmetric(I, J, simple) Interval ∗ Interval ∗ Bool 7→ Float and
integrateAsymmetric(I, J) Interval ∗ Interval 7→ Float

integrateAsymmetric(I, J) computes (
∫

I(x) · J(x) dx)/|I |.

integrateSymmetric(I, J, simple) computes (
∫

I(x) · J(x) dx)/N(I, J)

where N(I, J) =def

{
min(|I |, |J |) if simple = true

maxa(
∫

I(x − a) · J(x) dx) otherwise.

Example 3.4 shows an application of the asymmetric integrate function.

The next example shows an application of the symmetric integrate function. A fuzzy
interval–interval relation IIRMeets is defined: Besides the two intervals, it takes the transfor-
mation functions F and S and integrates the interval F (I) over S(J). F (I) should map the
interval I to a finishing section of I and S(J) should map the interval J to a starting section
of J . The integration of F (I) to S(J) yields the final result.

Example 3.60 (Fuzzy Interval–Interval ‘Meets’ Relation) A possible definition for a fuzzy
interval–interval meets relation is

IIRMeets(Interval I, Interval J, Interval->Interval F, Interval->Interval S) =

if isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left)

then 0

else integrateSymmetric(F(I),S(J),false)

The figure below shows the effect of the IIRMeets relation for suitable F and S operations. The
dashed figure shows the result of IIRMeets(I, J, . . .) when the interval I is moved along the
time axis. The dotted figure shows the position of the interval I where IIRMeets(I, J, . . .) is
maximal.
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GeTS contains the very special purpose function MaximizeOverlap which is, so far, only
needed for implementing the fuzzy interval–interval overlaps relation. The classical relation
I overlaps J has two requirements:
1. a non-empty part I1 of I must lie before J , and
2. another non-empty part I2 of I must lie inside J .

A generalization to fuzzy intervals encodes the first condition in the factor 1 − D(I, E+(J))
where D is a during operator. E+(J) extends the rising part of J to the infinity. Therefore
D(I, E+(J)) measures the part of I which is after the front part of J . 1 − D(I, E+(J)) then
measures the part of I which is before the front part of J . This factor is multiplied with D(I, J)
which corresponds to the second condition. It measures to which degree I is contained in J .
The product is normalized with maxa((1 − D(Ia, E+(J))) · D(Ia, J)), where Ia(x) =def I(x − a).
This corresponds to the maximal possible overlap when I is shifted along the time axis. This
guarantees that there is a position for I where I overlaps J = 1. The normalization factor is
computed with the function MaximizeOverlap

Definition 3.61 (MaximizeOverlap) The function
MaximizeOverlap(I, J, EJ, D)
of type
Interval ∗ Interval ∗ Interval ∗ (Interval ∗ Interval 7→ Float) 7→ Float

computes
max

a
((1 − D(shift(I, a), EJ)) · D(shift(I, a), J))

Notice that EJ can in principle be an arbitrary interval. For the encoding of the fuzzy overlaps
relation, it should, however, be the extension of J to the infinity.

Example 3.62 IIROverlaps

IIROverlaps(Interval I, Interval J, Interval->Interval E,

(Interval*Interval)->Float D) =

case

isEmpty(I) or isEmpty(J) or isInfinite(J,left) : 0,

isInfinite(I,right) : float(point(I,left, support) < point(J,left, support)),

isInfinite(J,right) : float(point(I,right, support) < point(J,left, support))

else

Let EJ = E(J) in

(1 - D(I,EJ))*D(I,J) / MaximizeOverlap(I,J,EJ,D)
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Example 3.63 (IIROverlaps for Fuzzy Intervals)
This example shows the result of the IIROverlaps relation where the standard IIRDuring

operator is used (with the identity function as point–interval during operator).
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Example: Overlaps Relation

I J

The dashed line represents the result of the overlaps relation for a time point t where the
positive end of the interval I is moved to t. The dotted figure indicates the interval I moved
to the position where IIRoverlaps(I, J) becomes maximal.

3.2.11 Date and Time

In examples 3.2 and 3.58 we have already seen applications of functions which convert time
points to dates and dates to time points. The dates are sequences of integers which correspond
to date formats, and these are sequences of partitionings. An example for a date format is
year/month/day/hour/minute/second in the Gregorian calendar. The sequence 2004|12|3|21|43|0
in this date format is therefore the 3rd of December 2004, 9:43 pm.

The time function converts a date in a given date format to the corresponding time point.

Definition 3.64 (time) The function
time(year|month|..., dateFormat)
of type
Integer ∗ . . . ∗ Integer ∗ DateFormat 7→ Time

maps a date in a given date format to the time point denoted by this date.

The tokens year, month etc. in the time function are expressions of type Integer. There can
be as many expressions as the date format has partitionings. For example, the year/month/day/
hour/minute/second date format in the Gregorian calendar has 6 partitionings. Therefore there
are in this case at most 6 Integer expressions allowed in the time function.

Examples:
time(2004,Gregorian month) = 1072915231 (1st of January 2004)
time(2004|1+1,Gregorian month) = 1075593631 (1st of February 2004)
time(2004|2|2,Gregorian week) = 1073347231 (6th of January 2004)
Gregorian week is the date format year/week/day/hour/minute/second. Therefore 2004|2|2 is
the second day in the second week in the year 2004.

The dLet construct in the next definition is a kind of inverse to the time function. It computes
for a given time point and a date format a date representation as a sequence of Integers and
binds the variables to these Integers in a similar way as the Let construct.

Definition 3.65 (dLet) The expression

dLet year|month|... = date(time, dateFormat) in expression
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binds the variables year, month, . . . to the integers which correspond to the date denoted by
‘time’, in the given date format.
‘expression’ is then evaluated under this binding.
The type of date is Time∗DateFormat 7→ Integern where n ≤ maximal number of partitionings
in the date format.

Example:
‘dLet y|m|d|h = date(0, Gregorian month) in y + m + d’ yields 1973 because the time point 0
corresponds to the first of January 1970. Therefore y = 1970, m = 1, d = 1 and h = 0.

3.2.12 Partitionings and Labels

GeTS has a number of functions for reckoning with time points, partitions and labels. The
partition function was already introduced in Example 3.1.

Definition 3.66 (partition) The partition function maps time points to intervals, which
represent partitions.

(1) partition(time, partitioning)
Time ∗ Partitioning 7→ Interval

(2) partition(time, partitioning, n, m)
Time ∗ Partitioning ∗ Integer ∗ Integer 7→ Interval

The first version computes the interval which corresponds to the partition containing time.
The second version computes an interval [t1, t2[ as follows: If i is the coordinate of the partition
containing time then t1 is the start of partition i + n and t2 is the end of the partition i + m.

If instead of the partition as interval, only the boundaries are needed, one can use the
partitionBoundary function.

Definition 3.67 (partition boundary) The function
partitionBoundary(time, partitioning, left/right)
of type
Time ∗ Partitioning ∗ Side 7→ Time

computes the left/right boundary of the partition containing time.

Although partitionings are in general infinite mathematical structures, their validity may be
limited (see remark 2.5). GeTS has two functions for getting information about the boundaries
of the valid regions of a partitioning.

Definition 3.68 (Valid Regions of Partitionings) The function
partitioningIsBounded(P, left/right)
of type
Partitioning ∗ Side 7→ Bool

checks whether the valid region of the partitioning P is bounded at the given side.

The function
partitioningBoundary(P, left/right)
of type
Partitioning ∗ Side 7→ Time
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returns the boundary of the partitioning at the given side. If there is no bound at this side then
a representation of infinity is returned.

The next function is which. It can, for example, be used to compute which week in the year
is now, or which day in the semester is now.

Definition 3.69 (which) The function
which(time, P, Q, inclusion, asGranule)
is of type
Time ∗ Partitioning ∗ Partitioning ∗ Inclusion ∗ Bool 7→ Time.

The function is explained for the two asGranule case:

Case asGranule = false:
Consider the following example:
which(now(),week,year,bigger part inside,false).
It computes, which week of the year is now.

The which function first computes the starting point tQ of the Q-partition containing time.
In the example, it would be the beginning of the current year. Then it determines the P -
partition for tQ. In the example, it is the first week in the year. What counts as the ‘first’
P -partition p depends on the parameter inclusion:

inclusion = subset: p is the leftmost P -partition after tQ.

inclusion = overlaps: p is the leftmost P -partition containing tQ.

inclusion = bigger part inside: p is the leftmost P -partition whose bigger part comes after
tQ. (This is suitable for counting weeks within a year).

If n is the coordinate of p and m is the coordinate of the P -partition containing time then
m − n is returned by the which function. If now() is first of January then the call
which(now(), week, year, bigger part inside, false)
returns 0 as the number of the first week in the year.

Notice that the result of the which function is of type Time. The Time datatype is in this
case just to be taken as a potentially very big integer, and not as a time point.

Case asGranule = true:
The partitionings P and Q are in this case interpreted as granules. tQ is the start of the Q-
granule containing time. If time is between two granules then tQ is the end of the Q-granule
before tQ.

The first P granule p depends again on the parameter inclusion:

inclusion = subset: p is the leftmost P -granule after tQ.

inclusion = overlaps: p is the leftmost P -granule containing tQ. If tQ is between two P -
granules then p is the leftmost P -granule after tQ.

inclusion = bigger part inside: p is the leftmost P -granule whose bigger part comes after
tQ.
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A special case is that time lies before the start of p. In this case the which function returns
the value -1 to indicate that the counting is not possible.

In the normal case the which function counts from granule p as number 0 the P -granules
until it reaches time. If time is between two P -granules then the counting stops before time.
The value of the counter is returned.

The functions in the next definition deal with labels of partitions. Notice that labels are
not just strings. They are special data structures, such that, for example, two labels with the
same name are identical.

Definition 3.70 (Basic Functions for Labels) The function
label(time, partitioning)
of type
Time ∗ Partitioning 7→ Label

returns the label of the partition containing time. If there is no labelling defined, it returns a
NULL label.

The function
isLabel(label)
of type
Label 7→ Bool

checks whether the label is not the NULL label.

The function
isGap(label)
of type
Label 7→ Bool

checks whether the label is the gap label.

The function
LabelName(name)
of type
String 7→ Label

turns a string (without quotes) into a Label.

The extractLabelled function below can be used to extract from an interval all partitions
with a given label, for example all Tuesdays of a labelled day partitioning.

Definition 3.71 (extractLabelled) The function
extractLabelled(I, label, partitioning, inclusion, intersect)
of type
Interval ∗ Label ∗ Partitioning ∗ SplitInclusion ∗ Bool 7→ Interval

extracts partitions in the interval I with the given label.

The extractLabelled function maps through all partitions of the given partitioning which
are labelled with the given label, and which overlap with the interval [a, b[ where a is the left
boundary of the interval and b is the right boundary of the interval. An error is thrown if a or
b are the infinity.

For each such partition p a condition is tested which depends on the parameter inclusion.

inclusion = align: the condition is always true.
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inclusion = subset: p must be a subset of I ’s support.

inclusion = overlaps: p must overlap with I ’s support.

inclusion = bigger part inside: the bigger part of p must be a subset of I ’s support.

If the parameter intersect = false then all partitions p which meet the condition are joined
into the resulting (crisp) interval.

If the parameter intersect = true then the intersection of I with all partitions p which meet
the condition are joined into the resulting interval. The result may now be a fuzzy interval.

The function below is for constructing intervals which represent granules.

Definition 3.72 (nextGranule) The function

nextGranule(time, partitioning, label, n, withGaps)
of type
Time ∗ Partitioning ∗ Label ∗ Integer ∗ Bool 7→ Interval

constructs a new interval which represents a granule.

The interval is constructed as follows:

Case 1: time is inside a granule with the given label.

If n = 0 then this granule is computed. Otherwise the nth next/previous (if n < 0) granule
with this label is computed.

Case 2: time lies outside a granule with the given label.

If n = 0 then the empty interval is returned. Otherwise the nth next/previous (if n < 0)
granule with this label is computed.

Finally an interval is constructed and returned which represents the granule. If withGaps =
true then this interval may be non-convex to exclude the gap partitions within a granule.

3.2.13 Control Constructs for Operations on Intervals

GeTS has two basic control constructs for operations on parts of intervals. The componentwise
control construct allows one to apply an operation to each component of an interval and to
combine the results of each application with a combination function.

Definition 3.73 (componentwise) The following function applies an operation to each com-
ponent of an interval and combines the results with a combination operator. It comes in two
versions, without and with an end test.

componentwise(I, initialObject, operation, combination)
of type
[Interval ∗ T ∗ (Interval 7→ T ) ∗ (T ∗ T 7→ T ) 7→ T ]

componentwise(I, initialObject, operation, combination, endTest)
of type
[Interval ∗ T ∗ (Interval 7→ T ) ∗ (T ∗ T 7→ T ) ∗ (T 7→ Bool) 7→ T ]
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I is the interval whose components are considered.
operation is the operation which is applied to the components of I . It generates results of type
T (which is determined by the type of initialObject).
combination is the operation which is used to combine the results of the application of operation.
initialObject is the object which is returned when I is empty, and which is used to combine
it with the very first result of operation. Typically, initialObject = [] (T = Interval) or
initialObject = 0T (T = Time).
endTest is a predicate which is applied to the intermediate results. The loop is terminated and
the intermediate result is returned as soon as endTest yields true.

Examples:
componentwise(I, [], lambda(Interval J) hull(J, crisp),

lambda(Interval K, Interval L) union(K, L))
computes the crisp hull for each component of the interval I separately and then joins them
into one single crisp, possibly non-convex, interval.

componentwise(I, 0.0,
lambda(Interval J) length(point(J, left, support),

point(J, right, support), month, false)
lambda(Float n, Float m) n + m)

computes the lengths of the support of (a finite) interval I in terms of months.

split:
The split function below is in principle similar to the componentwise function. The difference
is that the interval is not taken apart into its components, but it is split into subintervals of a
given length. A function is applied to these split parts, and a combination function combines
the partial results into a final result.

Definition 3.74 (split) The split function also comes in two versions, without and with an
end test.

split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect)

is of type
Interval ∗ Duration ∗ Bool ∗ Bool ∗ T ∗ (Interval 7→ T ) ∗ (Interval ∗ Interval 7→ T )∗

IntvRegion ∗ Bool ∗ SplitInclusion ∗ Sequencing ∗ Bool 7→ T

split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect, endTest)

is of type
Interval ∗ Duration ∗ Bool ∗ Bool ∗ T ∗ (Interval 7→ T ) ∗ (Interval ∗ Interval 7→ T )∗

IntvRegion ∗ Bool ∗ SplitInclusion ∗ Sequencing ∗ Bool ∗ (T 7→ Bool) 7→ T.

In order to explain the split function in detail, we must introduce some auxiliary functions.
They are not part of GeTS, but used internally.

The startpoint and endpoint functions compute the starting point for the split.

Definition 3.75 (startpoint and endpoint) The function startpoint(t, P, inclusion, asGranule)
of type Time ∗ Partitioning ∗ SplitInclusion∗ Bool 7→ Time computes the starting point of
a forward split as follows:
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Case asGranule = false:

Case inclusion = align: return t

Case inclusion = subset: return the starting point s of the leftmost P -partition such
that t ≤ s.

Case inclusion = overlaps: return the starting point of the leftmost P -partition con-
taining t.

Case inclusion = bigger part inside: return the starting point of the leftmost P -partition
p such that the bigger part of p comes after t.

Case asGranule = true:

Case inclusion = align: If t is between two granules g1 and g2 then return the starting
point of g2, otherwise return t.

Case inclusion = subset: return the starting point of the leftmost granule after t.

Case inclusion = overlaps: If t is between two granules g1 and g2 then return the start-
ing point of g2, otherwise return the starting point of the leftmost granule containing
t.

Case inclusion = bigger part inside: If t is between two granules g1 and g2 then re-
turn the starting point of g2, otherwise return the starting point of the leftmost
granule whose bigger part comes after t. Gaps within a granule are not measured.

A similar function endpoint(t, P, inclusion, asGranule) computes the starting point of a back-
wards split:

Case asGranule = false:

Case inclusion = align: return t

Case inclusion = subset: return the end point s of the rightmost P -partition such that
s ≤ t.

Case inclusion = overlaps: return the endpoint of the rightmost P -partition containing
t.

Case inclusion = bigger part inside: return the endpoint of the rightmost P -partition
p such that the bigger part of p comes before t.

Case asGranule = true:

Case inclusion = align: If t is between two granules then return the endpoint of the
rightmost granule before t, otherwise return t.

Case inclusion = subset: return the endpoint of the rightmost granule before t.

Case inclusion = overlaps: If t is between two granules then return the endpoint of the
rightmost granule before t, otherwise return the endpoint of the rightmost granule
containing t.
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Case inclusion = bigger part inside: If t is between two granules then return the end-
point of the rightmost granule before t, otherwise return the endpoint of the right-
most granule whose bigger part comes before t. Gaps within a granule are not
measured.

The functions advance and retract below compute the start of the next split part.

Definition 3.76 (advance and retract) The function advance(t, P, sequencing, asGranule)
of type Time ∗ Partitioning ∗ Sequencing ∗ Bool 7→ Time computes for the end time t of
a (forward) split part the start time of the next split part:

Case asGranule = false:

Case sequencing = sequential: return t;

Case sequencing = overlapping: return the start of the P -partition containing t;

Case sequencing = with gaps: if t is the start of the P -partition containing t then return
t, otherwise return the start of the following P -partition.

Case asGranule = true:

Case sequencing = sequential: if t is between two granules then return the start of the
next granule, otherwise return t.

Case sequencing = overlapping: if t is between two granules then return the start of
the next granule, otherwise return the start of the granule containing t.

Case sequencing = with gaps: if t is between two granules then return the start of the
next granule. If t is the start of a granule then return t, otherwise return the start
of the granule which follows the granule containing t.

The corresponding function retract(t, P, sequencing, asGranule) computes for the start time t
of a (backward) split part the end time of the next split part:

Case asGranule = false:

Case sequencing = sequential: return t;

Case sequencing = overlapping: return the end of the P -partition containing t;

Case sequencing = with gaps: if t is the end of the P -partition containing t then return
t, otherwise return the end of the previous P -partition.

Case asGranule = true:

Case sequencing = sequential: if t is between two granules g1 and g2 then return the
end of g1, otherwise return t.

Case sequencing = overlapping: if t is between two granules g1 and g2 then return the
end of g1, otherwise return the end of the granule containing t.
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Case sequencing = with gaps: if t is between two granules g1 and g2 then return the
end of g1. If t is the end of a granule then return t, otherwise return the end of the
granule which is before the granule containing t.

Back to the function
split(I, duration, asGranule, dateOriented, initialObject, operation,

combination, region, forward, inclusion, sequencing, intersect, endTest).

The parameters I , initialObject, operation and combination have the same meaning as for
the componentwise function (Def. 3.73).

The interval I can be split in forward direction (forward = true) or in backward direction
(forward = false).

Region to be split:
The parameter region (= core, support or kernel) determines the region [a, b[ of the interval
I which is to be split. a is the leftmost point of the region and b is the rightmost point of the
region. An error is thrown if a or b is the infinity.

The split loop:
Let P0 be the first partitioning which occurs in duration. Let A = initialObject be the
accumulator for the operation.

Case forward = true:
Let t0 = startpoint(a, P0, inclusion, asGranule) be the starting point for the split. The
split command performs the following (forward) loop:

while(t0 < b){
let t1 := shift(t0, duration, asGranule, dateOriented); (Def. 3.28)
let J := [t0, t1[ be the split part;
if intersect = true J := I ∩ J ;
A := union(A, operation(J));
if(endTest(A) = true) return A;
t0 = advance(t1, P, sequencing, asGranule); }

return A

Case forward = false:
Let t1 = endpoint(b, P0, inclusion, asGranule) be the starting point for the split.

The split command now performs the following (backwards) loop:

while(t1 > a){
let t0 := shift(t1, neg(duration), asGranule, dateOriented); (Def. 3.28)
let J := [t0, t1[ be the split part;
if intersect = true J := I ∩ J ;
A := union(A, operation(J));
if(endTest(A) = true) return A;
t0 = retract(t1, P0, sequencing, asGranule); }

return A
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4 Summary

The GeTS language is a special purpose functional specification and programming language for
temporal notions. It has a basic set of general purpose functional and imperative programming
language features. In addition there are a number of built-in data structures and functions
which are specific for this application. The most important ones are time points, fuzzy temporal
intervals and labelled partitionings of the time line.

GeTS is not a stand alone programming language. It must be part of a host system which
provides these data structures and which invokes the GeTS application programming interface.

The GeTS constructs were carefully chosen as a compromise between simplicity and easy
usage. Future applications will show whether this goal has been achieved.
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Principles and Practice of Semantic Web Reasoning, volume 2901 of LNCS, pages 69–83.
Springer Verlag, 2003.

[4] Nachum Dershowitz and Edward M. Reingold. Calendrical Calculations. Cambridge Uni-
versity Press, 1997.

[5] Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets. Kluwer Academic
Publisher, 2000.

[6] Hans Jürgen Ohlbach. About real time, calendar systems and temporal notions. In H. Bar-
ringer and D. Gabbay, editors, Advances in Temporal Logic, pages 319–338. Kluwer Aca-
demic Publishers, 2000.

[7] Hans Jürgen Ohlbach. Calendar logic. In I. Hodkinson D.M. Gabbay and M. Reynolds,
editors, Temporal Logic: Mathematical Foundations and Computational Aspec ts, pages
489–586. Oxford University Press, 2000.

[8] Hans Jürgen Ohlbach. Geotemporal reasoning: Basic theory. Deliverable D1 of EU NoE
Rewerse Working Group A1, 2004.

[9] Hans Jürgen Ohlbach. Relations between fuzzy time intervals. In C. Combi and G. Ligozat,
editors, Proc. of the 11th International Symposium on Temporal Representation and Rea-
soning, pages 44–51, Los Alamitos, California, 2004. IEEE.

[10] Hans Jürgen Ohlbach. The role of labelled partitionings for
modelling periodic temporal notions. httpd://www.informatik.uni-
muenchen.de/mitarbeiter/ohlbach/homepage/publications/PRP/abstracts.shtml, 2004.
To be published.

47



[11] Hans Jürgen Ohlbach. The role of labelled partitionings for modelling periodic temporal
notions. In C. Combi and G. Ligozat, editors, Proc. of TIME 2004, pages 60–63, Los
Alamitos, California, 2004. IEEE.

[12] L. A. Zadeh. Fuzzy sets. Information & Control, 8:338–353, 1965.

48



Appendix

A Overview over the Language Constructs

The language constructs are summarized and briefly explained.

A.1 Types

Data Structure Types
Integer standard integers
Time very long integers
Float standard floating point numbers
String strings
Interval fuzzy intervals
Partitioning partitionings
Label labels for partitions
Duration durations
DateFormat date formats

Enumeration Types
type name possible values
Bool true/false

Side left/right

PosNeg positive/negative

UpDown up/down

IntvRegion core/kernel/support

PointRegion core/kernel/support/maximum

Hull core/kernel/support/crisp/monotone/convex

Fuzzify linear/gaussian

Inclusion subset/overlaps/bigger part inside

SplitInclusion align/subset/overlaps/bigger part inside

Sequencing sequential/overlapping/with gaps

SDVersion Kleene/Lukasiewicz/Goedel

A.2 Arithmetics

Binary Arithmetic Operators
The operators are + (addition), - (subtraction), * (multiplication), (division), % (modulo),
max, min, pow (exponentiation) (Def. 3.14).

Unary Arithmetic Operators
- (negation), float(b) (Bool 7→ Float), round(a), round(a,up/down) (Def. 3.15).

Comparisons
<, <=, >, >= (Def. 3.16).
==, != (Def. 3.17).
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A.3 Boolean Operators

- (complement), and or ‘&&’ (conjunction), or or ‘||’ (disjunction), xor or ‘̂ ’ (exclusive or)
(Def. 3.18).

A.4 Control Constructs

if c then a else b (Def. 3.19).

case C1 : E1, ..., Cn : En else D (Def. 3.20).

while c {E1, ..., En} D (Def. 3.21).

Let variable = expression1 in expression2 (local binding) (Def. 3.22).

dLet year|month|... = date(time, dateFormat) in expression (local binding of dates) (Def.
3.65).

x := E (assignment) (Def. 3.23).

A.5 Time Points

now() of type Time (current moment in time) (Def. 3.25)

shift(time, duration, asGranule, dateOriented) of type Time∗Duration∗Bool∗Bool 7→ Time

(time shift by a duration) (Def. 3.28)

shiftLength(time, duration, asGranule, dateOriented) of type Time∗Duration∗Bool∗Bool 7→
Time (length of a time shift by a duration) (Def. 3.28)

isInfinity(time) Time 7→ Bool

isInfinity(time,positive/negative) Time ∗ PosNeg 7→ Bool (Def. 3.36)

length(t1, t2, partitioning, asGranule) of type Time ∗ Time ∗ Partitioning ∗ Bool 7→ Float

(length between t1 ,t2 in terms of the partitioning or granule) (Def. 3.42)

A.6 Intervals

[] of type Interval (empty interval)

[t1,t2] of type Interval (new crisp interval from t1 until t2)

pushback(I, time, value) of type Interval ∗ Time ∗ Float 7→ Void adds (time, value) to the
membership function of the interval (Def. 3.30).

Set Operations on Intervals
complement(I)

of type Interval 7→ Interval

complement(I, λ)
of type Interval ∗ Float 7→ Interval

complement(I, negation function)
of type Interval ∗ (Float 7→ Float) 7→ Interval (Def. 3.31)
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union(I, J)
of type Interval ∗ Interval 7→ Interval

union(I, J, β)
of type Interval ∗ Interval ∗ Float 7→ Interval

union(I, J, co norm)
of type Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval (Def. 3.32)

intersection(I, J)
of type Interval ∗ Interval 7→ Interval

intersection(I, J, γ)
of type Interval ∗ Interval ∗ Float 7→ Interval

intersection(I, J, norm))
of type Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval (Def. 3.33)

setdifference(I, J)
of type Interval ∗ Interval 7→ Interval

setdifference(I, J, version)
of type Interval ∗ Interval ∗ SDVersion 7→ Interval

setdifference(I, J, intersection, complement)
of type Interval ∗ Interval ∗ (Interval ∗ Interval 7→ Interval)∗

(Interval 7→ Interval) 7→ Interval (Def. 3.34)

Predicates on Intervals
isCrisp(I) Interval 7→ Bool

isCrisp(I, left/right) Interval ∗ Side 7→ Bool

isEmpty(I) Interval 7→ Bool

isConvex(I) Interval 7→ Bool

isMonotone(I) Interval 7→ Bool

isInfinite(I) Interval 7→ Bool

isInfinite(I,left/right) Interval ∗ Side 7→ Bool (Def. 3.35)

during(time, I, core/kernel/support) of type Time ∗ Interval ∗ IntvRegion 7→ Bool checks
whether time is in the corresponding region of the interval I (Def. 3.37).

isSubset(I, J, core/kernel/support) of type Interval ∗ Interval ∗ IntvRegion 7→ Bool

checks whether the corresponding region of I is a subset of the corresponding region of J (Def.
3.37).

doesOverlap(I, J, core/kernel/support) of type Interval ∗ Interval ∗ IntvRegion 7→ Bool

checks whether the corresponding region of I overlaps with the corresponding region of J (Def.
3.37).

member(time, I) of type Time ∗ Interval 7→ Float (membership function) (Def. 3.38).

components(I) of type Interval 7→ Integer (number of components of I) (Def. 2.2).

component(I, k) of type Interval ∗ Integer 7→ Interval (kth component of I) (Def. 2.2).

size(I) of type Interval 7→ Time (size of the interval) (Def. 3.40)

size(I, region) of type Interval∗IntvRegion 7→ Time (size of the corresponding region of the
interval) (Def. 3.40)

size(I, t1, t2) of type Interval ∗ Time ∗ Time 7→ Time (size of the interval between t1 and t2)
(Def. 3.40)

sup(I) of type Interval 7→ Float (supremum of I) (Def. 3.41)
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inf(I) of type Interval 7→ Float (infimum of I) (Def. 3.41)

point(I, side, region) of type Interval ∗ Side ∗ PointRegion 7→ Time (position of the corre-
sponding end of the region) (Def. 3.44).

centerPoint(I, n, m) of type Interval ∗ Integer ∗ Integer 7→ Time (n-m center point) (Def.
3.46).

Manipulation of Intervals
shift(I, t) of type Interval ∗ Time 7→ Interval shifts the interval by the given time (Def.
3.47).

cut(I, t1, t2) of type Interval∗Time ∗Time 7→ Interval (extracts the part of I between t1
and t2) (Def. 3.48).

hull(I, core/support/kernel/crisp/monotone/convex) of type Interval∗Hull 7→ Interval

(construction of the corresponding hull) (Def. 3.49).

invert(I) of type Interval 7→ Interval inverts the membership function (Def. 3.50).

scaleup(I) of type Interval 7→ Interval scales the membership function up to maximal value
1 (Def. 3.51).

times(I, f) of type Interval ∗ Float 7→ Interval multiplies the membership function of I
with f (Def. 3.52).

exp(I, e) of type Interval ∗ Float 7→ Interval exponentiates the membership function of I
with e (Def. 3.52).

extend(I, positive/negative) of type Interval∗PosNeg 7→ Interval extends I to the infinity
(Def. 3.53).

extend(I, length, side) of type Interval ∗ Time ∗ Side 7→ Interval extends or shrinks I (Def.
3.54).

integrate(I, positive/negative) of type Interval∗PosNeg 7→ Interval integrates the mem-
bership function (Def. 3.55).

fuzzify(I, linear/gaussian,left/right, increase, offset)
of type Interval, Fuzzify, Side, Float, Float 7→ Interval

fuzzify(I, linear/gaussian,left/right, x1, x2, offset)
of type Interval, Fuzzify, Side, Time, Time, Time 7→ Interval (Def. 3.57)
fuzzifies the interval at the given side with the given fuzzification function.

integrateSymmetric(I, J, simple)
of typeInterval ∗ Interval ∗ Bool 7→ Float and
integrateAsymmetric(I, J)
of type Interval ∗ Interval 7→ Float

symmetric or asymmetric integration of the membership function of I over the membership
function of J (Def. 3.59).

MaximizeOverlap(I, J, EJ, D) of type Interval∗Interval∗Interval∗(Interval∗Interval 7→
Float) 7→ Float (Def. 3.61)

A.7 Time and Partitions

time(year|month|..., dateFormat) of type Integer| . . . |Integer∗ DateFormat 7→ Time maps a
date in a given date format to the time point denoted by this date (Def. 3.64).
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partition(time, partitioning) of type Time ∗ Partitioning 7→ Interval

partition(time, partitioning, n, m) of type
Time ∗ Partitioning ∗ Integer ∗ Integer 7→ Interval

compute partitions as intervals (Def. 3.66).

partitionBoundary(time, partitioning, left/right) of type Time ∗ Partitioning ∗ Side 7→
Time compute partition boundaries (Def. 3.67).

partitioningIsBounded(P, left/right) of type Partitioning∗Side 7→ Bool checks whether
the valid region of the partitioning is bounded (Def. 3.68).

partitioningBoundary(P, left/right) of type Partitioning ∗ Side 7→ Time returns the
boundaries of the valid region of the partitioning (Def. 3.68).

which(time, P, Q, inclusion, asGranule) of type Time∗Partitioning∗Partitioning∗Inclusion∗
Bool 7→ Time (which week in the year, for example) (Def. 3.69)

Labels
label(time, partitioning) of type Time ∗ Partitioning 7→ Label returns the label of the cor-
responding partition (Def. 3.70).

isLabel(label) of type Label 7→ Bool checks whether the label is not the NULL label (Def.
3.70).

isGap(label) of type Label 7→ Bool checks whether the label is the gap label (Def. 3.70).

LabelName(string) of type String 7→ Bool turns the string into a label (Def. 3.70).

extractLabelled(I, label, partitioning, inclusion, intersect) of type Interval∗Label∗Partitioning∗
SplitInclusion ∗ Bool 7→ Interval extracts partitions in the interval I with the given label
(Def. 3.71).

nextGranule(time, partitioning, label, n, withGaps) of type Time ∗ Partitioning ∗ Label ∗
Integer ∗ Bool 7→ Interval constructs a new interval which represents a granule (Def. 3.72).

Loops over Intervals
componentwise(I, initialObject, operation, combination) of type Interval ∗ T ∗ (Interval 7→
T ) ∗ (T ∗ T 7→ T ) 7→ T applies operation to all components of the interval (Def. 3.73).

split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect) of type

Interval ∗ Duration ∗ Bool ∗ Bool ∗ T ∗ (Interval 7→ T ) ∗ (Interval ∗ Interval 7→ T ) ∗
IntvRegion ∗ Bool ∗ SplitInclusion ∗ Sequencing ∗ Bool 7→ T
splits the interval into parts and applies the operation to them (Def. 3.74).

B The Application Programming Interface

The C++ API of the GeTS language is as follows:
GeTS functions are realized as a class Function in a namespace GeTS. They can be defined,

they can be applied to arguments, and some information about them can be retrieved.

Definition:
A new GeTS function can be created with an ordinary constructor:

fct = new Function(definition).
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The definition is a string representation of the definition, optionally followed by the key-
word explanation and some text. The explanation can be retrieved just by fct->explanation.

The definition is parsed and compiled. Parsing or compilation errors can be obtained by
fct->getError(). The function fct->noError() checks whether there was a parsing or com-
pilation error.

Information about Functions:
The function definitions can be obtained in different versions:

fct->callString() returns the function call as string

fct->typeString() returns the function type as string

fct->definitionString() returns the function definition with line numbering as string.

fct->codeString() returns the abstract machine code as string.

Example B.1 (for codeString()) The code string for the function

PIRBefore(Time t, Interval I) =

if (isEmpty(I) or isInfinite(I,left)) then false

else (t < point(I,left,support))

(Example 3.3) is

0: I[1,Interval]

1: isEmpty(Interval->Bool)

2: ||(Bool*Bool->Bool)

3: I[1,Interval]

4: left[-1,left,Side]

5: isInfinite(Interval*Side->Bool)

6: ||(Bool*Bool->Bool)

7: IfThenElse(Bool*Bool*Bool->Bool)

8: false[-1,false,Bool]

9: IfThenElse(Bool*Bool*Bool->Bool)

10: t[0,Time]

11: I[1,Interval]

12: left[-1,left,Side]

13: support[-1,support,IntvRegion]

14: point(Interval*Side*IntvRegion->Time)

15: <(Time*Time->Bool)

16: IfThenElse(Bool*Bool*Bool->Bool)

It should be fairly obvious what this means. For example, line 0, I[1,Interval] means
that the parameter I at parameter position 1 and of type Interval is pushed to the stack. Line
1: isEmpty(Interval->Bool) means that the isEmpty predicate pops its argument from the
stack, performs the check, and pushes the result to the stack again. Line 2: ||(Bool*Bool->Bool)
is the first invocation of the or check. It checks the top of stack. If this is the Boolean value true
then this value is popped from the stack and the program counter is set to 7. The remaining
program steps are more or less self explaining.
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It should be noticed that the actual computations, for example, integrating over a mem-
bership function of an interval, are done with compiled machine code. The commands of the
GeTS abstract machine are only used to control the invocation of this machine code.

Auxiliary Classes and Types:

The data types of GeTS are represented as a class Type in the namespace GeTS. They can be
basic data types or compound types. The most important API method for types is toString.
Most other methods are for internal use.

The data which are manipulated by a GeTS function are comprised into a union type.
Without further explanation we just list the definition.

union GeTSValue {

long long int* Time;

PartLib::Partitioning* Partitioning;

PartLib::Label* Label;

PartLib::DateFormat* DateFormat;

FuTIRe::Interval* Interval;

Function* lFunction;

int Integer;

float Float;

bool Bool;

DurationSpec* Duration;

string* String;

};

Application:
There are two application functions:

pair<Type*, GeTSValue> apply(vector<pair<Type*, GeTSValue> >& values)

can be used to apply the function to a vector of parameters. The result is a pair consisting of
the result type and the result value.

The other method

pair<Type*, GeTSValue>

apply(const string& arguments,const vector<FuTIRe::Interval*>& intervals)

can be used to apply the function to a string representation of the parameters. Intervals are
represented as non-negative integers. The integers are used as indices in the given vector of
interval pointers. The result is again a type-value pair.
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