A1-D10-1

Implementation: GeTS - A Specification Language for Geo-Temporal Notions

Project title:
Project acronym:
Project number:
Project instrument:
Project thematic priority:
Document type:
Nature of document:
Dissemination level:
Document number:
Responsible editors:
Reviewers:
Contributing participants:
Contributing workpackages:
Contractual date of deliverable:
Actual submission date:

Reasoning on the Web with Rules and Semantics REWERSE
IST-2004-506779
EU FP6 Network of Excellence (NoE)
Priority 2: Information Society Technologies (IST)
D (deliverable)
R (report)
PU (public)
IST506779/Munich/A1-D10-1/D/PU/a1
H.J. Ohlbach

Claude Kirchner
Munich
A1
31 March 2008
31 March 2005

Abstract

This document describes the 'Geo-Temporal' specification language GeTS. The objects which can be described and manipulated with this language are time points, crisp and fuzzy time intervals and labelled partitionings of the time axis. The partitionings are used to represent periodic temporal notions like months, semesters etc. GeTS is essentially a typed functional language with a few imperative constructs. GeTS can be used to specify and compute with many different kinds of temporal notions, from simple arithmetic operations on time points up to complex fuzzy relations between fuzzy time intervals. The syntax of GeTS together with an operational semantics is described. A parser, a compiler and an abstract machine for GeTS is implemented. The application programming interface for GeTS is documented in the appendix.

Keyword List

temporal notions, specification language

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth Framework Programme.
(c) REWERSE 2005.

Implementation: GeTS - A Specification Language for Geo-Temporal Notions

Hans Jürgen Ohlbach
Department of Computer Science, University of Munich
Email: ohlbach@ifi.lmu.de

31 March 2005

Abstract

This document describes the 'Geo-Temporal' specification language GeTS. The objects which can be described and manipulated with this language are time points, crisp and fuzzy time intervals and labelled partitionings of the time axis. The partitionings are used to represent periodic temporal notions like months, semesters etc. GeTS is essentially a typed functional language with a few imperative constructs. GeTS can be used to specify and compute with many different kinds of temporal notions, from simple arithmetic operations on time points up to complex fuzzy relations between fuzzy time intervals. The syntax of GeTS together with an operational semantics is described. A parser, a compiler and an abstract machine for GeTS is implemented. The application programming interface for GeTS is documented in the appendix.

Keyword List
 temporal notions, specification language

Contents

1 Motivation and Introduction 1
2 Basic Data Structures in CTTN 2
2.1 Time Points and Time Intervals 2
2.2 Partitionings 4
2.3 Durations 6
2.4 Date Formats 6
3 The GeTS Language 6
3.1 Types in the GeTS Languaged 9
3.1.1 Basic Types 9
3.1.2 Compound Tvpes 12
3.2 Language Constructs for GeTS 12
3.2.1 Arithmetic Expressions 14
3.2.2 Boolean Expressions 15
3.2.3 Control Constructs 16
3.2.4 Functional Arguments 17
3.2.5 Now and Shift 18
3.2.6 Explicit Construction of Time Intervals 21
3.2.7 Set Operations on Intervals 22
3.2.8 Predicates of Intervals 25
3.2.9 Other Features of Intervals 26
3.2.10 Basic Manipulations of Intervals 29
3.2.11 Date and Time 38
3.2.12 Partitionings and Labels 39
3.2.13 Control Constructs for Operations on Intervals 42
4 Summary 47
A Overview over the Language Constructs 49
A. 1 Types 49
A. 2 Arithmetics 49
A. 3 Boolean Operators 50
A. 4 Control Constructs 50
A. 5 Time Points 50
A. 6 Intervals 50
A. 7 Time and Partitions 52
B The Application Programming Interface 53

1 Motivation and Introduction

The phenomenon of time has many different facets which are investigated by different communities. Physicists investigate the flow of time and its relation to physical objects and events. Temporal logicians develop abstract models of time where only the aspects of time are formalized which are sufficient to model the behaviour of computer programs and similar processes. Linguists develop models of time which can be used as semantics of temporal expressions in natural language. More and more information about facts and events in the real world is stored in computers, and many of them are annotated with temporal information. Therefore it became necessary to develop computer models of the use of time on our planet, which are sophisticated enough to allow the kind of computation and reasoning that humans can do. Examples are 'calendrical calculations' [4], i.e. formal encodings of calendar systems for mapping dates between different calendar systems. Other models of time have been developed in the temporal database community [2], mainly for dealing with temporal information in databases. This work is becoming more important now with the emergence of the Semantic Web [1]. Informal, semiformal and formal temporal notions occur frequently in semistructured documents, and need to be 'understood' by query and transformation mechanisms.

The formalisms developed so far approximate the real use of time on our planet to a certain extent, but still ignore important aspects. In the CTTN1 project [3] we aim at a very detailed modelling of the temporal notions which can occur in semi-structured data. The CTTN system consists of a kernel and several modules around the kernel. The kernel itself consists of several layers. At the bottom layer there are a number of basic datatypes for elementary temporal notions. These are time points, crisp and fuzzy time intervals [8, 9] and partitionings for representing periodical temporal notions like years, months, semesters etc. [10] 11. The partitionings can be specified algorithmically or algebraically. The algorithmic specifications allows one to encode phenomena like leap seconds, daylight savings time regulations, the Easter date, which depends on the moon cycle etc.

Partitionings can be arranged to form 'durations', e.g. ' 2 year +1 month', but also ' 2 semester +1 month', where semester is a user defined partitioning.

Sets of partitionings, together with certain procedures, form a calendar. The Gregorian calendar in particular can be formalized with the partitionings for years, months, weeks, days, hours, minutes and seconds.

A part of the second layer is presented in this paper. It uses the functions and relations of the first layer as building blocks in the specification language GeTS ('GeoTemporal Specifications') for specifying complex temporal notions. A very first version of this language has been presented in [6] 7, but the new version is much more elaborated. It is essentially a functional programming language with certain additional constructs for this application area. A flex/bison type parser and an abstract machine for GeTS has been implemented as part of the CTTN program. GeTS is the first specification and programming language with such a rich variety of built-in data structures and functions for geotemporal notions.

Before the GeTS language is introduced in detail in Sections 3.1 and 3.2 we need to give a short overview over the underlying data structures.

[^0]
2 Basic Data Structures in CTTN

2.1 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis which is isomorphic to the real numbers \mathbb{R}. Therefore we take as time points just real numbers. Since the most precise clocks developed so far, atomic clocks, measure the time in discrete units, it is sufficient to restrict the representation of concrete time points to integers. In the standard setting these integers count the seconds from the Unix epoch, which is January 1st 1970. Nothing significant changes in GeTS, however, if the meaning of these integers is changed to count, for example, femtoseconds from the year 1.

The next important datatype is that of time intervals. Time intervals can be crisp or fuzzy. With fuzzy intervals one can encode notions like 'around noon' or 'late night' etc. This is more general and more flexible than crisp intervals. Therefore the CTTN system uses fuzzy intervals as basic interval datatype.

Fuzzy Intervals are usually defined through their membership functions [12, 5]. A membership function maps a base set to real numbers between 0 and 1 . The base set for fuzzy time intervals is a linear time axis, isomorphic to the real numbers.
Definition 2.1 (Fuzzy Time Intervals) A fuzzy membership function in GeTS is a total function $f: \mathbb{R} \mapsto[0,1]$ which does not need to be continuous, but it must be integratable. The fuzzy interval I_{f} that corresponds to a fuzzy membership function f is $I_{f} \xlongequal{\text { def }}\{(x, y) \subseteq$ $\mathbb{R} \times[0,1] \mid y \leq f(x)\}$. Given a fuzzy interval I we usually write $I(x)$ to indicate the corresponding membership function.

This definition comprises single or multiple crisp or fuzzy intervals like these:

It also comprises finite fuzzy intervals like this one:

This set may represent a particular party time, where the first guests arrive at 6 pm . At 7 pm all guests are there. Half of them disappear between 10 and 12 pm (because they go to the pub next door to watch an important soccer game). Between 12 pm and 2 am all of them are back. At 2 am the first ones go home, and finally at 3 am all are gone. The fuzzy value indicates in this case the number of people at the party.

The fuzzy intervals can also be infinite. For example, the term 'after tonight' may be represented as a fuzzy value which rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm and then remains 1 ad infinitum.

Fuzzy time intervals may be quite complex structures with many different characteristic features. The simplest ones are core and support. The core $C(I)$ is the part of the interval I where the fuzzy value is 1 , and the support $S(I)$ is the subset of \mathbb{R} where the fuzzy value of I is non-zero. In addition one can define the kernel $K(I)$ as the part of the interval I where the fuzzy value is not constant ad infinitum, i.e. the kernel is the smallest convex interval in \mathbb{R} such that $I(x)=y_{1}$ for all x before the kernel and $I(x)=y_{2}$ for all x after the kernel. Fuzzy time intervals with finite kernel are of particular interest because, although they may be infinite, they can easily be implemented with finite data structures. Therefore CTTN represents only fuzzy intervals with finite kernel.

Notice that neither the support nor the core of a fuzzy interval need be convex intervals. The kernel, however, is always a convex interval.

Components

Fuzzy time intervals can consist of several different components. A component is a sub-interval of a fuzzy interval such that the left and right end is either the infinity, or the membership function drops down to 0 .

Definition 2.2 (Components) Let I be a fuzzy time interval. The components I_{0}, \ldots, I_{n} of
I are the largest set of subsets of I such that: (i) for $0 \leq k \leq n$: $I_{k}(x)=I(x)$ for all x in the support of I_{k}, and (ii) for all $k \in\{1, \ldots, n-1\}: I_{k}^{\overline{l S}}=-\infty$ or $\left(\lim _{x \rightarrow I_{k}^{l S}} I(x)=0\right.$ or $\left.\lim _{I_{k}^{l S} \leftarrow x} I(x)=0\right)$ and $I_{k}^{r S}=+\infty$ or $\left(\lim _{x \rightarrow I_{k}^{r S}} I(x)=0\right.$ or $\left.\lim _{I_{k}^{r S} \leftarrow x} I(x)=0\right)$, where $I_{k}^{l S}$ is the left boundary of I_{k} 's support, and $I_{k}^{r S}$ is the right boundary of I_{k} 's support.

The definition is quite complicated because we want to count as separate components parts of fuzzy time intervals where the membership function drops down to 0 at just one single point.

Example:

More features of fuzzy time intervals are introduced when the corresponding language constructs of GeTS are introduced.

2.2 Partitionings

The CTTN system uses the concept of partitionings of the real numbers to model periodical temporal notions. In particular, the basic time units years, months etc. are realized as partitionings. Other periodical temporal notions, for example semesters, school holidays, sunsets and sunrises etc. can also be modelled as partitionings.

A partitioning of the real numbers \mathbb{R} may be, for example, (..., $[-100,0[,[0,100[,[100,101[$, $[101,500[, \ldots)$. The intervals in the partitionings need not be of the same length (because time units like years are not of the same length either). The intervals can, however, be enumerated by natural numbers (their coordinates). For example, we could have the following enumeration

$$
\begin{array}{cccccc}
\ldots & {[-100} & 0[& {[0100[} & {[100101[} & {[101500[} \\
\ldots & -1 & 0 & 1 & 2 & \ldots \\
\hline
\end{array}
$$

The formal definition for partitionings of \mathbb{R} which is used in CTTN is:
Definition 2.3 (Partitionings) A partitioning P of the real numbers \mathbb{R} is in CTTN an infinite sequence
$\ldots\left[t_{-1}, t_{0}\left[,\left[t_{0}, t_{1}\left[,\left[t_{1}, t_{2}[, \ldots\right.\right.\right.\right.\right.$
of half-open non-empty intervals in \mathbb{R} with integer boundaries. Each interval $\left[t_{i}, t_{i+1}[\right.$ is a partition of the time line.
For a time point t and a partitioning P let t^{P} be the P-partition containing t.
A coordinate mapping of a partitioning P is a bijective mapping between the intervals in P and the integers. Since we always use one single coordinate mapping for a partitioning P, we can just use P itself to indicate the mapping. Therefore let p^{P} be the coordinate of the partition p in P.
For a coordinate i let i^{P} be the partition which corresponds to i.
For a time t let $t^{P P} \stackrel{\text { def }}{=}\left(t^{P}\right)^{P}$ be the coordinate of the P-partition containing t.

Remark 2.4 (Calendar Systems) A calendar in the CTTN system is a set of partitionings, for example the partitionings for seconds, minutes, hours, weeks, months and years, together with some extra data and methods. Calendars are not visible in the GeTS language because they are only special cases of sets of partitionings. Some GeTS constructs use partitionings which can not only be the partitionings of calendar systems, but any kind of partitioning. This is more general than sticking to particular calendar systems.
Remark 2.5 (Finite Partitionings) The partitionings in CTTN can represent infinite partitionings of the real numbers. This is suitable to model, for example, years. They can, however, also be used to represent finite sequences of intervals. Examples are the school holidays in Bavaria from 1970 until 2006. CTTN extrapolates these intervals in a certain way to get an infinite partitioning. This simplifies the algorithms considerably, but it may yield unwanted results for time points where the partitioning is not meant for.

Therefore one can define boundaries for the validity of the partitionings. These boundaries have no influence on the computations, but they can be checked with special functions in the GeTS language (Def. 3.68).

The CTTN system uses labelled partitionings. The labels are names for the partitions. They can be used for two purposes. The first purpose is to get access to the partitions via their names (labels). For example, the labels for the 'day' partitioning can be 'Monday', 'Tuesday' etc., and one can use these names in various GeTS functions. The second purpose is to use the labels to group partitions together to so called granules. The concept of 'working day, for example, can be modelled by taking an 'hour partitioning, and attach labels 'working_hour' and 'gap' to the hour partitions. Groups of hour partitions labelled 'workinghour' yield a working day. The working days can be interrupted by 'gap partitions, for example to take 'lunch time out of a 'working day. Example 3.27 below illustrates the concept of granules in more detail.

Definition 2.6 (Labels and Granules) A labelling L is a finite sequence of strings l_{0}, \ldots, l_{n-1}. The label gap has a special meaning.

A labelling L can now be very easily attached to a partitioning: the partition with coordinate i gets label $L(i \bmod n)$.

A granule is a sequence p_{i}, \ldots, p_{i+k} of partitions such that: (1) the labels of p_{i} and p_{i+k} are not gap; (2) the labels of p_{i}, \ldots, p_{i+k} which are not gap are the same, and (3) i mod $n<$ $(i+k) \bmod n$.
Example 2.7 (The Labelling of Days) The origin of the reference time is again January $1^{\text {st }} 1970$. This was a Thursday. Therefore we choose as labelling for the day partitioning

$$
L \stackrel{\text { def }}{=} T h, F r, S a, S u, M o, T u, W e .
$$

The following correspondences are obtained:

time $:$	\ldots	$[-86400,0[$	$[0,86400[$	$[86400,172800[$	\ldots
coordinate $:$	\ldots	-1	0	1	\ldots
label $:$	\ldots	$W e$	$T h$	$F r$	\ldots

This means, for example, $L(-1)=W e$, i.e. December 311969 was a Wednesday.

2.3 Durations

The partitionings are the mathematical model of periodic time units, such as years, months etc. This offers the possibility to define durations. A duration may, for example, be ' 3 months +2 weeks'. Months and weeks are represented as partitionings, and 3 and 2 denote the number of partitions in these partitionings. The numbers need not be integers, but they can be arbitrary real numbers.

A duration can be interpreted as the length of an interval. In this case the numbers should not be negative. A duration, however, can also be interpreted as a time shift. In this interpretation negative numbers make perfect sense. $d=-2$ week +3 month, for example, denotes a backward shift of 2 weeks followed by a forward shift of 3 months.

Definition 2.8 (Duration) A duration $d=d_{0} P_{0}, \ldots, d_{k} P_{k}$ is a list of pairs where the d_{i} are real numbers and the P_{i} are partitionings.

If a duration is interpreted as a shift of a time point, it may be necessary to turn the shift around, in the backwards direction. Therefore the inverse of a duration is defined:
$-d \stackrel{\text { def }}{=}-d_{k} P_{k}, \ldots,-d_{0} P_{0}$
We also need a negated duration where the order of the partitionings stays the same:
$n e g(d) \stackrel{\text { def }}{=}-d_{0} P_{0}, \ldots,-d_{k} P_{k}$.
For example, if
$d=3$ month, 2 week then
$-d=-2$ week, -3 month and
$n e g(d)=-3$ month, -2 week.

2.4 Date Formats

A date format in CTTN specifies the structure of date strings.
Definition 2.9 (Date Format) A date format $D F$ is a sequence $P_{0} / \ldots / P_{k}$ of partitionings. A date in a date format $D F$ is a sequence $d_{0} / \ldots / d_{n}$ of integers with $n \leq k$.

In principle, the date formats can consist of arbitrary partitionings. In most calendar systems there are, however, a few particular date formats. The Gregorian calendar, for example, has the two date formats year/month/day/hour/minute/second (where the names stand for the corresponding partitions), and year/week/day/hour/minute/second.

3 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

1. Although the GeTS language has many features of a functional programming language, it is not intended as a general purpose programming language. It is a specification language for temporal notions, however, with a concrete operational semantics.
2. The parser, compiler, and in particular the underlying GeTS abstract machine are not standalone systems. They must be embedded into a host system which provides the data structures and algorithms for time intervals, partitionings etc., and which serves as the interface to the application. GeTS provides a corresponding application programming interface (API).
3. The language should be simple, intuitive, and easy to use. It should not be cluttered with too many features which are mainly necessary for general purpose programming languages.
4. The last aspect, but even more the point before, namely that GeTS is to be integrated into a host system, were the main arguments against an easy solution where GeTS is only a particular module in a functional language like SML or Haskell. The host system was developed in $\mathrm{C}++$. Linking a $\mathrm{C}++$ host system to an SML or Haskell interpreter for GeTS would be more complicated than developing GeTS in C++ directly. The drawback is that features like sophisticated type inferencing or general purpose data structures like lists or vectors are not available in the current version of GeTS. If it turns out that they are useful for some applications, however, it is not a big deal to integrate them into GeTS.
5. Developing GeTS from scratch instead of using an existing functional language has also an advantage. One can design the syntax of the language in a way which better reflects the semantics of the language constructs. This makes it easier to understand and use. As an example, the syntax for a time interval constructor is just [expression ${ }_{1}$, expression ${ }_{2}$]. The freedom in designing a nice syntax is, however, is limited by the available parser technology (in the GeTS case, flex and bison). Therefore some of the language features are compromises between intuitiveness and technical constraints.

The GeTS language is a strongly typed functional language with a few imperative constructs. Let us get a flavour of the language, before the technical details are introduced.

Example 3.1 (tomorrow) The definition

```
tomorrow = partition(now(),day,1,1)
```

specifies 'tomorrow' as follows: now() yields the time point of the current point in time (Def. 3.25]. day is the name of the day partitioning. Let i be the coordinate of the day-partition containing now(). partition(now(), day,1,1) computes the interval $\left[t_{1}, t_{2}\left[\right.\right.$ where t_{1} is the start of the partition with coordinate $i+1$ and t_{2} is the end of the partition with coordinate $i+1$. Thus, $\left[t_{1}, t_{2}\right.$ [is in fact the interval which corresponds to 'tomorrow'.

In a similar way, we can define

```
this_week(Time t) = partition(t,week, 0,0).
```

The time point t, for which the week is to be computed, is now a parameter of the function.
Example 3.2 (Christmas) The definition

```
christmas(Time t) =
    dLet year = date(t,Gregorian_month) in
                            [time(year|12|25,Gregorian_month),
                            time(year|12|27,Gregorian_month)]
```

specifies Christmas for the year containing the time point t.
date(t,Gregorian_month) computes a date representation for the time point t in the date format Gregorian_month (year/month/day/hour/minute/second). Only the year is needed.
dLet year $=\ldots$ therefore binds only the year to the integer variable year. If, for example, in addition the month is needed one can write dLet year|month = date (....
time (year| $12 \mid 25$, Gregorian_month) computes $t_{1}=$ begin of the 25 th of December of this year. time (year|12|27, Gregorian_month) computes $t_{2}=$ begin of the 27th of December of this year. The expression [...,...] denotes the half-open interval $\left[t_{1}, t_{2}[2]\right.$ The result is therefore the half-open interval from the beginning of the 25th of December of this year until the end of the 26th of December of this year.

Example 3.3 (Point-Interval Before Relation) The function

```
PIRBefore(Time t, Interval I) =
    if (isEmpty(I) or isInfinite(I,left)) then false
    else (t < point(I,left,support))
```

specifies the standard crisp point-interval 'before' relation in a way which works also for fuzzy intervals.

If the interval I is empty or infinite at the left side then PIRBefore (t, I) is false, otherwise t must be smaller than the left boundary of the support of I.
Now we define a parameterized fuzzy version of the interval-interval before relation.
Example 3.4 (Fuzzy Interval-Interval Before Relation) A fuzzy version of an intervalinterval before relation could be

```
IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =
    case
        isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left) : 0,
        (point(I,right,support) <= point(J,left,support)) : 1,
            isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))
    else integrateAsymmetric(I,B(J))
```

The input are the two intervals I and J and a function B which maps intervals to intervals. B is used to compute for the interval J an interval $B(J)$, which represents the degree of 'beforeness' for the points before J .

The function first checks some trivial cases where I cannot be before J (first clause in the case statement), or where I definitely is before J (second clause in the case statement). If I is infinite at the left side then $\int(I \cap J)(x) \cdot B(J)(x) d x /|I \cap J|$ is computed to get a degree of 'beforeness', at least for the part where I and J intersect. If I is finite then $\int I(x) \cdot B(J)(x) d x /|I|$ is computed. This averages the degree of a point-interval 'beforeness', which is given by the product $I(x) \cdot B(J)(x)$, over the interval I.

The next example illustrates some procedural features of GeTS. The effect function takes two intervals and a function F, which maps the two intervals to a fuzzy value. F could for example be a fuzzy interval-interval relation. The first interval I is now shifted step times by the given distance, and each time $F(I, J)$ is computed. These values are inserted into a new interval, which is the result of the function.

[^1]
Example 3.5 (effect)

```
effect(Interval I, Interval J, (Interval*Interval)->Float F,
    Time distance, Integer steps) =
    Let K = [] in
            while (steps >= 0) {
                pushBack(K,point(I,right,kernel),F(I,J)),
                    I := shift(I,distance),
                    steps := steps - 1}
            K
```

'Let $\mathrm{K}=[]$ ' creates a new empty interval and binds it to the variable K. The while loop shifts the interval I steps times by the given distance ($\mathrm{I}:=\operatorname{shift}(\mathrm{I}$, distance)). Each time pushBack(K, point (I,right,kernel) $\mathrm{F}(\mathrm{I}, \mathrm{J})$) adds the pair (x, y) consisting of $x=$ right boundary of the kernel of the shifted I and $y=\mathrm{F}(\mathrm{I}, \mathrm{J})$ to the interval K .

The dashed line in the figure below shows the result of the effect function when applied to the two intervals I and J, and a suitable interval-interval 'before' relation as parameter F . The dotted figure shows the position of the shifted interval I when the $F(I, J)$ drops down to 0 .

Effect of the effect function

3.1 Types in the GeTS Language

The GeTS language has a fixed number of basic types. They represent certain data structures and certain keywords. So far there is no mechanism for extending the basic types. The basic types can be combined to functional types $T_{1} * \ldots * T_{n} \mapsto T$.

3.1.1 Basic Types

There are two groups of basic types, the data structure types and the enumeration types. The data structure types represent built in data structures.

Definition 3.6 (Data Structure Types)

```
Integer standard integers
Time very long integers
Float standard floating point numbers
String strings
Interval fuzzy intervals
Partitioning partitionings
Label labels for partitions
Duration durations
DateFormat date formats
```

The data structure types abstract away from the concrete implementation. The Integer type, for example, is currently realized as 32 bit signed integer data, while the Time type is currently realized as 64 bit signed integer data. The Float type is currently realized by a 32 bit 'float' data type. One should, however, not exploit this in any way.

Strings are currently just sequences of 8-bit characters. (This may change in future releases to support Unicode).

Intervals (Def. [2.1) are realized as polygons with integer coordinates. An interval is therefore a sequence of pairs $I=\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$. The x_{i} are Time points and the y_{i} are fuzzy values. Internally the y_{i} are realized as short integers between 0 and 1000. From the GeTS point of view, however, the y_{i} are Float numbers between 0 and 1 . The interval I is negative infinite if $y_{0} \neq 0 . I$ is positive infinite if $y_{n} \neq 0$. The internal representation of Interval data, however, is completely invisible to the GeTS user. Details about the internal representation and the algorithms can be found in [8].

Partitionings (Def. 2.3) are complex data structures. Fortunately, this is also not visible to the GeTS user. Partitionings are just parameters to some of the functions. They can be used without knowing anything about the internal details.

Labels (Def. 2.6] for partitions are in principle just strings. It is, however, possible to use different strings for the same label. For example, one can label days with English names "Monday", "Tuesday" etc., and with German names "Montag", "Dienstag" etc., and switch between these versions. This is also transparent to the user. Nevertheless, it makes it necessary to consider labels not as strings, but as data structures (see [8 for details).

Durations (Def. [2.8) are sequences of pairs $d_{0} P_{0}, \ldots, d_{n} P_{n}$ where the d_{i} are Float data and the P_{i} are Partitionings.

DateFormats (Def. [2.9) are sequences $P_{0} / \ldots / P_{n}$ of Partitionings.
The data structure types are used as types for variables, but they can also be used explicitly as constants, so called literals. To this end, there is a string representation of the data structure types. These strings are parsed by the GeTS parser and mapped to the internal representation.

Remark 3.7 (String Representation of Data Structure Types) The data structure types have the following string representation:

Integer: sequences of digits, optionally preceded by ' + ' or ' - '. Examples are $123,+4,-345$.
The length of these sequences depends on the internal representation of integers.
Time: sequences of digits, optionally preceded by ' + ' or '-' and optionally followed by ' T '. Examples: $12345678901,3 \mathrm{~T},-23 \mathrm{~T}$. The length of these sequences depend on the internal representation of Time values.

Notice that a string of digits, which is not followed by ' T ' is first parsed as Integer. Only if this fails, it is parsed as Time data. Therefore the string 123 will always be mapped to Integer data, and not to Time data. Usually this should not harm, because Integer data are automatically casted to Time data when this becomes necessary.

Float: They have the standard representation of float or double values. Examples are -1.5, $3.4 \mathrm{e}-2,-77 \mathrm{e}+5$. The length of mantissa and exponent depends on the realization of Float values.

String: They are arbitrary sequences of characters enclosed in quotes: "characters". The two characters $\backslash \mathrm{n}$ are interpreted as newline command. A quote "within the string must be escaped with a \backslash character. The character sequences "ab \backslash "cd \backslash "ef" is therefore parsed as the string ab"cd"ef.

Interval: Intervals cannot be explicitly referenced within a GeTS function definition. The only exception is the empty interval, which is represented by []. The GeTS module, however, provides an interface function which allows one to call GeTS functions with a string representation of the arguments. This function accepts non-negative integers as identifiers for the intervals, together with a vector of pointers to the actual intervals. The integer identifiers are used as indices to this vector.

Partitioning: It is assumed that all necessary partitionings are predefined, and can be identified by names. The names can be used in GeTS function definitions. The parser maps them to the actual partitioning data structures. The names of the partitionings, which make up the Gregorian calendar, are year, month, week, day, hour, minute, second.

Label: Labels must also be predefined. They are identified by their name.
Duration: The representation of a simple duration is $d_{0} P_{0}+\ldots+d_{n} P_{n}$ where the d_{i} are Integer or Float expressions and the P_{i} are partitioning names or variables. Repeating patterns like ' 2 week +1 day +2 week +1 day' can be abbreviated by ' $2 *$ (2 week +1 day)'.

DateFormat: They need to be predefined. Date formats are accessed by their names in GeTS specifications. Date formats in CTTN are predefined for each calendar system. The predefined date formats for the Gregorian calendar are Gregorian_month and Gregorian_week. Thus, GeTS invokes calendar systmes, but only implicitely via the data formats.

A number of enumeration types is predefined in GeTS. They are used to control some of the algorithms. Their meaning therefore depends on the meaning of the built-in function where they occur as parameters.

Definition 3.8 (Enumeration Types)

type name	possible values
Bool	true/false
Side	left/right
PosNeg	positive/negative
UpDown	up/down
IntvRegion	core/kernel/support
PointRegion	core/kernel/support/maximum
Hull	core/kernel/support/crisp/monotone/convex
Fuzzify	linear/gaussian
Inclusion	subset/overlaps/bigger_part_inside
SplitInclusion	align/subset/overlaps/bigger_part_inside
Sequencing	sequential/overlapping/with_gaps
SDVersion	Kleene/Lukasiewicz/Goedel

Notice that, for example, the keyword core occurs in the enumeration types IntvRegion, PointRegion and Hull. Which type is meant is determined by the context where it occurs. If the context is not clear, for example in comparisons 'expression $==$ keyword', one can use Icore (type IntvRegion), Pcore (type PointRegion), or Hcore (type Hull). The same holds of the keywords kernel and support.
An unknown string is parsed in the following way:

1. is it an Integer value?
2. is it a Time value?
3. is it a Float value?
4. is it a keyword of one of the enumeration types?

5 . is it a partitioning?
6 . is it a date format?
If none of these succeed then a parse error is generated.
Definition 3.9 (Basic Types) A Basic Type in GeTS is either a data structure type (Def. [3.6), an enumeration type (Def. [3.8), or the special type Void for expressions which do not return any values.

Automatic Type Conversion:

Automatic type conversion is done from the type Integer to the types Float and Time. That means, the type Integer is also acceptable whenever a type Float or a type Time is required.

3.1.2 Compound Types

Definition 3.10 (Compound Type) A compound type in GeTS is an expression $T_{1} * \ldots *$ $T_{n} \mapsto T$ where T and the T_{i} are either basic types or compound types.
A type expression is either a basic type or a compound type expression.

3.2 Language Constructs for GeTS

The GeTS language has a number of general purpose functional and imperative language components. Additionally a number of language constructs are geared to manipulating time points, temporal intervals, partitionings, dates etc. As already mentioned, the language is strongly
typed. This means, the type of each expression is determined by the top level function name together with the types of its arguments.

GeTS tries to minimize the required number of parentheses in the expressions. Nevertheless, it is usually clearer and easier to understand when enough parentheses are used.

The language has an operational semantics. It is described more or less formally when the language constructs are introduced. The explanations should be clear enough to understand what the language is able to do.

Some aspects of the language depend on the context where it is used. For example, GeTS itself has no exception mechanisms. Nevertheless, exceptions are thrown and must be catched by the host programming system.

Definition 3.11 (Function Definitions) A GeTS function definition has one of the forms
(5) type : name (type var $_{1}, \ldots$, type $_{n}$ var $_{n}$)

The five versions of function definitions can have a trailer: 'explanation: any string'. The explanation is attached at the newly defined function. It can be accessed by the host system.

Version (1) and (2) are for constant expressions, i.e. the name at the left hand side is essentially an abbreviation for the expression at the right hand side. Version (3) is the standard function definition. The type of the function is type $e_{1} \ldots \ldots *$ type $_{n} \mapsto T$ where T is the type of the expression. Version (4) declares the range type of the function explicitly. It can be used for recursive function definitions, where the name of the newly defined function occurs already in the body. In this case it is necessary to know the range type of the function, before the expression can be fully parsed. The factorial function, for example, must be defined in this way:

```
Integer:factorial(Integer n) = if(n == 0) then 1 else n * factorial(n-1)
```

Finally, version (5) is a forward declaration. It must be used for mutually recursive functions.

Remark 3.12 (Overloading) Function definitions can be overloaded. They are distinguished by their argument types, not by the result type. This means, two function definitions
$\mathrm{f}($ Integer n$)=\ldots$ and
f(Float m) $=$...
yield different functions, whereas the second definition in
Integer:f(Integer n) $=\ldots$ and
Float:f(Integer n) $=$...
overwrites the first one or is rejected. This depends on the global control parameter GeTS : : overwrite.

Definition 3.13 (Literals) Literals are strings which can be interpreted as constants of a certain type. See Remark 3.7 for the string representation of literals.

3.2.1 Arithmetic Expressions

GeTS supports the same kind of arithmetic expressions as many other programming languages. A small difference is the Time type, which is integrated in the arithmetics of GeTS.

Definition 3.14 (Binary Arithmetic Expressions)

Let N be a number type (i.e. $N=$ Integer or $N=$ Float or $N=$ Time).
If n and m are valid arithmetic expressions then the following binary operations are allowed:

$n+m$	(addition)	$n \% m$	(modulo)
$n-m$	(subtraction)	$\max (n, m)$	(maximum)
$n * m$	(multiplication)	$\min (n, m)$	(minimum)
n / m	(division)	$\operatorname{pow}(n, e)$	$\left(n^{e}\right)$

The types are determined according to the following rules:
for the operators '+', '-', '*', '/', max and min:

Integer	$*$	Integer	\mapsto	Integer	Time	$*$	Integer	\mapsto	Time
Float	$*$	Integer	\mapsto	Float	Time	$*$	Time	\mapsto	Time
Integer	$*$	Float	\mapsto	Float	Float	$*$	Time	\mapsto	Time
Float	$*$	Float	\mapsto	Float	Time	$*$	Float	\mapsto	Time
Integer	$*$	Time	\mapsto	Time					

The last two type patterns mean that the result of operations on mixed Float and Time values are rounded to Time values. This makes the operations non-associative: $1.5+1.5+1 T=4$, whereas $1.5+1 T+1.5=3$.

Float values are not allowed for the modulo operator \%. Therefore the remaining type patterns for \% are:

Integer $*$	Integer	\mapsto	Integer	Time	Integer	\mapsto	Time
Integer $*$	Time	\mapsto	Time	Time $*$	Time	\mapsto	Time

The exponentiation operator pow (n, e) is only allowed for Integer exponents and for Float or Integer mantissas.

```
Integer * Integer }\mapsto Integer
Float * Integer \mapsto Float.
```

Flat expressions like $a+b+c+d$ without parentheses are allowed. The operator precedence is,,$-+ /,^{*}$, i.e. ${ }^{*}$ binds most. The functions \min and \max can also accept more than two arguments.

Definition 3.15 (Unary Arithmetic Expressions) There are four unary arithmetic operators in GeTS:

```
-n
float(b)
round(a)
round(a,up/down)
```

```
\([N \mapsto N] \quad N\) is any number type
```

$[N \mapsto N] \quad N$ is any number type
[Bool \mapsto Float]
[Bool \mapsto Float]
[Float \mapsto Integer]
[Float \mapsto Integer]
Float $*$ UpDown \mapsto Integer]

```
Float \(*\) UpDown \(\mapsto\) Integer]
```

$-n$ negates the number n.
n can be an expression of type $N=$ Integer, $N=$ Float or $N=$ Time.
float(b) turns a boolean value b into a floating point number:
float $(f a l s e)=0.0$ and float $($ true $)=1.0$.
round (a) rounds a Float value a to the nearest integer. 1.5 is rounded to $1,1.51$ is rounded to 2. -1.5 is rounded to $-1,-1.51$ is rounded to -2 . round (a, up) rounds the Float value $a \mathrm{up}$, and round (a, down) rounds the Float value a down.

Definition 3.16 (Arithmetic Comparisons) If n and m are arithmetic expressions of type Integer, Float or Time then
$\left.\begin{array}{lll}(n<m), & (n> & >\end{array}\right)$
are the usual arithmetic comparison operators. The result is one of the boolean values true or false. These operators compare different types, i.e. $(3.9<=4 T)$ yields true, as expected.

The equality and disequality predicates compare numbers in the expected way, but also every other data type.

Definition 3.17 (Equality and Disequality) If n is an expression of type T and m is an expression of type Q then

$$
n=m \quad \text { and } \quad n \quad!=m
$$

are expressions of type Bool.
$n==m$ yields true iff

1. T and Q are one of the number types Integer, Float and Time, and the numbers are equal, i.e. $4.0==4 T$ yields true. ($4 T$ is the long integer in the Time type.).
2. $T=Q$, both are enumeration types, and n and m are the same strings. This means in particular: if $T=$ Hull, $Q=$ IntvRegion, $n=$ core and $m=$ core then $n==m$ yields false (because $T \neq Q$).
3. $T=Q=$ Interval and n and m are the same intervals (i.e. the same polygons).
4. $T=Q=$ Partitioning and n and m are pointer-equal partitionings
5. $T=Q=$ Duration and n and m are the same durations.
$n!=m$ yields true iff $n==m$ yields false.

3.2.2 Boolean Expressions

GeTS has the standard Boolean connectives: negation (-), and ('and' or '\&\&'), or ('or' or '\|') and exclusive or ('xor' or '").

Definition 3.18 (Boolean Expressions) If a and b are Boolean expressions then

		$-a$	$[$ Bool \mapsto Bool $]$
a	and	b	$[$ Bool $*$ Bool \mapsto Bool $]$
a	or	b	$[$ Bool $*$ Bool \mapsto Bool $]$
a	xor	b	$[$ Bool $*$ Bool \mapsto Bool $]$

are Boolean expressions with the corresponding meaning.
Flat Boolean expressions without parentheses are also allowed. The operator precedence is xor, or, and, i.e. and binds most.

3.2.3 Control Constructs

GeTS has the obligatory 'if-then-else' construct. In addition there is a case construct to avoid the need for nested if-then-elses. A 'while' loop is also available. Since GeTS is a functional language, the while construct needs a return value. Therefore in addition to the while loop body, it has a separate return expression. In the body, however, only imperative constructs (with return type Void) are allowed.

Definition 3.19 (if-then-else) If c is an expression of type Bool and a and b are expressions of the same type T then

$$
\text { if } c \text { then } a \text { else } b
$$

is an expression of type T.
Thus, the type of the if construct is in general Bool $* T * T \mapsto T$.
Exceptions are:

1. If a is of type Float, and b of type Integer, or vice versa, then the integer is casted to Float. The type of if is in this case: Bool $*$ Float $*$ Integer \mapsto Float or Bool $*$ Integer $*$ Float \mapsto Float. Example: 'if true then 3 else 4.0 ' yields 3.0 as a Float number.
2. If a is of type Time, and b of type Integer, or vice versa, then the integer is casted to Time. The type of if is in this case:
Bool $*$ Time $*$ Integer \mapsto Time or Bool $*$ Integer $*$ Time \mapsto Time.

Notice that a mix of the type Time and the type Float is not allowed in the if statement.
The definition of the factorial function (11) is a typical example for the use of if-then-else.
Definition 3.20 (case) If C_{1}, \ldots, C_{n} are Boolean expressions and $E_{1}, \ldots E_{n}$ and D are expressions of the same type T then

$$
\text { case } C_{1}: E_{1}, \ldots, C_{n}: E_{n} \text { else } D
$$

is an expression of type T.
The operational semantics of this case construct is: the conditions C_{1}, \ldots, C_{n} are evaluated in this sequence. If C_{i} is the first condition, which yields true then E_{i} is evaluated and its result is returned as the result of case. If all C_{i} evaluate to false then the result of D is returned.
Exceptions for the requirement that $E_{1}, \ldots E_{n}, D$ are expressions of the same type T are: if $T=$ Float or $T=$ Time then some of the $E_{1}, \ldots E_{n}$ and D may have type Integer. These integers are automatically casted to Float or Time.
As in the 'if-then-else' construct, a mix of the types Time and Float is not allowed in the case body.

Definition 3.21 (while) Let C be an expression of type Bool, E_{1}, \ldots, E_{n} expressions of type Void and 'result' and expression of type T then

$$
\text { while } C\left\{E_{1}, \ldots, E_{n}\right\} \text { result }
$$

is an expression of type T.

The operational semantics of this while construct is: as long as the evaluation of C yields true, evaluate the expressions E_{1}, \ldots, E_{n} in this sequence. As soon as C yields false, evaluate result and return this as value of while.
An iterative definition of the factorial function is a typical example where the while construct is used.

```
factorial(Integer n) = Let f = 1 in while(n>0){f := f*n, n := n-1} f
```

This example also illustrates the binding construct Let and the assignment operation.
Definition 3.22 (Let) The construct
Let variable $=$ expression 1 in expression 2
of type
T
evaluates the expression1, binds the result to the variable and then evaluates expression 2 under this binding.
T is the type of expression2.
Definition 3.23 (Assignment) If x is a variable of type T, and E is an expression of type T then $x:=E$ is an expression of type Void.

This is the usual assignment operation: the result of the evaluation of E is assigned to x.
Exceptions for the requirement that x and E have the same type are: if x has type Float or Time then E may have type Integer. The value is automatically casted to Float or Time.
Notice that the assignment operation returns no value. It can only occur in the body of the while statement.

3.2.4 Functional Arguments

A function call in GeTS is an expression name(argument t_{1}, \ldots, argument ${ }_{n}$) where 'name' is either the name of a built-in function, or the name of a previously defined function (or a function with forward declaration), or a variable with suitable functional type.

Since variables can have functional types, and GeTS allows overloading of function definitions, it needs a notation for functional arguments. A functional argument can either be just a variable with appropriate functional type, or a function name with argument type specifications, or a lambda expression. A function name with argument type specifications is necessary to choose among different overloaded functions.
Definition 3.24 (Functional Arguments) A functional argument in GeTS is either

1. a variable with the appropriate functional type,
2. an expression name $\left[t y p e_{1} * \ldots *\right.$ type $\left._{n}\right]$ of a previously defined function with that name and with argument types type $e_{1} \ldots *$ type $_{n}$, or
3. a lambda expression:
lambda(type $_{1}$ variable $_{1}, \ldots$, type $_{n}$ variable $\left._{n}\right)$ expression.
If T is the type of 'expression' then type ${ }_{1} * \ldots *$ type $_{n} \mapsto T$ is the type of the lambdaexpression.
'expression' can contain variables which are lexically bound outside the parameter list of lambda.

3.2.5 Now and Shift

Definition 3.25 (now) The expression now() of type Time yields the current moment in time, i.e. the number of seconds from January, 1 st 1970 until the time when the now() function is invoked.

Notions like 'in two weeks time' or 'three years from now' etc. denote time shifts. Time shifts are basic operations for many other temporal notions. Therefore GeTS provides a shift function which can shift single time points as well as whole intervals by a given duration. Since in general the absolute length of durations depends on the position of the time points at the time axis, shifting time points by durations is no trivial operation at all.

A first specification for a shift function is to map a time point t to a time point t^{\prime} such that t ' $-t$ is just the required duration, 'two weeks' or 'three years' in the above examples. This is a length oriented shift function.

Example 3.26 (for Length Oriented Shift) The algorithm for this function can be best understood by the following example:

Suppose we want to shift the time point t by 3.5 partitions. First, the relative distance f_{1} between t and the end of the partition containing t is measured. Suppose it is 0.75 . That means from the end of the partition we need to move forward still 2.75 partitions. We can move forward 2 partitions by just adding the 2 to the coordinate 4 . We end up at the start of partition 6 . From there we need to move forward $f_{2}=0.75$ partitions, which is just 75% of the length of partition 6 .

Unfortunately the length oriented shift function does not always give intuitive results. Suppose the time point t is noon at March, 15th, and we want to shift t by 1 month. March has 31 days. Therefore the distance to the end of March is exactly 0.5 months. Thus, we need to move exactly 0.5 times the length of April into April. April has 30 days. 0.5 times its length is exactly 14 days. Thus, we end up at midnight April, 14th.

This is not what one would usually expect. We would expect to shift t to the same time of the day as we started with. With the length oriented shift this happens only by chance, or when the partitions have the same length.

GeTS therefore provides also a date oriented shift function which avoids the above problems and gives more intuitive results. The idea is to do the calculations not on the level of reference time points, but on the level of dates. If, for example, t represents $2004 / 2 / 15$, then 'in one month time' usually means $2004 / 3 / 15$. That means the reference time must be turned into a date, the date must be manipulated, and then the manipulated date is turned back into a reference time. This is quite straight forward if the partitioning represents a basic time unit of a calendar system (year, month, week, day etc.), and this calendar system has a date format where the time unit occurs. In the Gregorian calendar this is the case, even for the time unit
'weeks'. 'In two weeks time' requires to turn the reference time into a date format which uses weeks. The corresponding date format uses the counting of weeks in the year (ISO 8601). For example, 2004/42/1 means Tuesday ${ }^{3}$ in week 42 in the year 2004. In two weeks time would then be 2004/44/1.

A date oriented shift operation for partitionings which are not standard partitionings of a calendar system can usually be defined by mapping it to a date oriented shift operation for a standard partitioning. For example, if a partitioning 'semester' is defined as sequences of 6 months, one can reduce a shift in terms of semesters to a shift in terms of months. The partitioning module, which underlies the GeTS language, has for each type of partitionings a particular date oriented shift operation. For the details we must therefore refer to [8, 11].

The next problem is to deal with fractional shifts. How can one implement, say, 'in 3.5 months time'? The idea is as follows: suppose the date format is year/month/day/hour/minute/ second, and the reference time corresponds to, say, 2004/2/20/10/5/1. First we make a shift by three months and we end up at $2004 / 5 / 20 / 10 / 5 / 1$. This is a day in May. From the date format we take the information that the next finer grained time unit is 'day'. May has 31 days. $0.5 * 31=15.5$. Therefore we need to shift the date first by 15 days, and we end up at $2004 / 5 / 34 / 10 / 5 / 1$. There is still a remaining shift of half a day. The next finer grained time unit is hour. One day has 24 hours. $0.5 * 24=12$. Thus, the last date is shifted by 12 hours, and the final date is now $2004 / 5 / 34 / 22 / 5 / 1$. This is turned back into a time point.

The date oriented shift gives more intuitive results. The drawback is that the distance between the shifted time point and the original time point need no longer be the given duration when it is measured with the length function (Def. [3.42).

The shift function can not only shift time points by durations like 3.5 months. More complex durations like 3.5 months -5 days +3 hours are also admissible for the shift function. A shift by such a duration is executed as a sequence of shifts, first by 3.5 months, then by -5 days (backwards shift), and finally by 3 hours.

A statement like 'we must move this task by three working days' refers to a shift of time points which is measured in granules. GeTS offers therefore a possibility to shift time points and intervals by durations which are interpreted as granules. The basic idea for the algorithm which shifts a time point by a number of granules is to turn the granules into partitions, and to use the shift function for partitions. The method is illustrated with the following example:

Example 3.27 Suppose we want to model a working day with two shifts, a day shift from 8 am until 4 pm , with a one hour break between 12 am and 1 pm , and a night shift between 10 pm and 2 am . The labelled partitioning is hour with labels ds (for day shift) and ns (for night shift).

The first granule consists of 7 non-gap partitions labelled ds. The second granule consists of 4 non-gap partitions labelled ns.

[^2]This example shows that shifts by granules yield intuitive results only in special cases. A time point t at 9 am at day n, shifted by 2 granules, should end up at 9 am at day $n+1$. But how can we shift t by one granule, i.e. from the day shift to the night shift? GeTS provides shift operations for this and other cases as well. Whether they yield intuitive results, depends on the application.

A time point t can be: (i) within a non-gap partition of a granule, (ii) within a gap partition of a granule or (iii) within a gap partition between two granules. Suppose we want to shift t by $m=1.5$ granules. The number of partitions to be shifted is determined as follows:
Case (i): t is within a non-gap partition p of a granule g. Suppose m is positive. Let n be the relative position of p within g (not counting internal gaps). 9 am in Example 3.27 is in partition 1 of a 7 -partition granule (the first partition has number 0). $n=1 / 7=0.1428$. From the start of the first granule we need to move $m+n=1.6428$ granules forward, i.e. we need to move $n^{\prime}=0.6428$ into the second granule. Since this is a 4 -partition granule, and $4 \cdot 0.6428=2.57$, the target partition is the third partition in the second granule. 9 am would be mapped to 1 am next day in the above example.

A negative shift m is treated in a similar way. The only difference is that the relative position of a partition within a granule is computed from the end of the granule and it is represented as a negative number. The relative position of the second partition within a 7 -partition granule is in this case $-6 / 7=-0.857$.

Case (ii): t is within a gap partition p of a granule g. Let t be at 12:30 am in Example 3.27 If the shift m is integer, we try to move t again into a gap partition of a granule $g+m$. If the granule $g+m$ has gaps, we determined the relative position n of the gap region containing t within g. 12:30 am is in the first gap region of a granule consisting of 2 non-gap regions. Therefore $n=0.5$. If the target granule $g+m$ has k non-gap regions, the gap region, into which t is to be moved is the $n \cdot k$ th gap region. In a second step, the relative position of the gap-partition within the gap region is mapped to a relative position of a gap partition in the target gap-area.

Negative shifts are again treated by computing relative positions as negative numbers, as in case (i).

If the target granule has no gaps, or the shift m is not integer, internal gaps are ignored and the algorithm of case (i) is applied.

Shifting $t=12: 30$ am by $m=2$ granules ends up at 12:30 am next day with this method. Shifting $t=12: 30 \mathrm{am}$ by $m=1$ granules ends up at 0:30 am next day.
Case (iii): t is within a gap partition p between two granules g_{1} and g_{2}. If the shift m is integer then the relative position n of the gap partition p within the gap region between g_{1} and g_{2} is mapped to a relative position of a gap partition p^{\prime} between the granules $g_{1}+m$ and $g_{2}+m$. If there are no gaps between $g_{1}+m$ and $g_{2}+m$ then the target partition p^{\prime} is just the first partition of the granule $g_{2}+m$.

Example 3.27] let t be at 5 pm and $m=1.5 \mathrm{pm}$ is in the second gap-partition of a 6 gap-partition region. The gap-region between the night shift and the day shift consists also of 6 gap-partitions. Therefore t is shifted to the $2 / 6 \cdot 6=2$ nd gap-partition, i.e. 3 am next day.

Positive fractional shifts, for example $m=1.5$, are treated in a relatively simple way. Let $m^{\prime} \stackrel{\text { def }}{=}\lfloor m\rfloor$ be the integer part of m. The target partition p^{\prime} is determined by taking the fractional part $m-m^{\prime}$ as the relative position of the non-gap partitions of granule $g_{2}+m^{\prime}$. The exact position of t between the two granules plays no role in this case.

Shifting $t=6: 30$ am by 1.5 granules in the above example therefore ends up at 0:30 am
next day.
Negative fractional shifts are computed by shifting the end of granule $g_{1}+m^{\prime}$ the fractional part $m-m^{\prime}$ backwards.

Definition 3.28 (shift) The shift function can shift a single time point by a given duration:
shift(time, duration, asGranule, dateOriented)
is of type
Time $*$ Duration $*$ Bool $*$ Bool \mapsto Time.
The shiftLength function determines the length of a shift:
shiftLength(time, duration, asGranule, dateOriented)
is of type
Time $*$ Duration $*$ Bool $*$ Bool \mapsto Time.
shiftLength(time, duration, asGranule, dateOriented) is just an abbreviation for shift(time, duration, asGranule, dateOriented) - time.
shift(time, duration, asGranule, dateOriented) shifts the time point by the given duration. If $a s G r a n u l e=$ true then the partitionings in the duration are interpreted as granules, otherwise as partitions. If dateOriented $=$ true then the shift is date oriented, otherwise it is length oriented.

3.2.6 Explicit Construction of Time Intervals

Fuzzy time intervals (type Interval) are one of the built-in data structures in GeTS. It is possible to create new empty intervals and fill them up with coordinate points. There are three ways to create new intervals in GeTS:

Definition 3.29 (New Time Intervals)

1. The expression [] stands for the empty interval.
2. The expression $\left[t_{1}, t_{2}\right]$ of type Time $*$ Time \mapsto Interval constructs a new crisp interval with boundaries t_{1} and t_{2} (see Example (3.2).
3. The expression $\left[\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right)\right]$ of type Time $*$ Float $*$ TimeFloat \mapsto Interval constructs a new fuzzy interval with the given two points.

Definition 3.30 (Extending Intervals) The function
pushBack(I, time, value)
of type
Interval * Time * Float \mapsto Void
adds the point (time, value) to the end of the interval I. I must be an interval which was constructed with newInterval() (see Def. 3.29). time must lie after the last point in the interval. value must be a Float value between 0 and 1.

The pushBack(I, time, value) function can only ill up the interval I from the past to the future. It throws an error if time is before the last time point in I.

3.2.7 Set Operations on Intervals

For crisp intervals there are the standard set operators: complement, intersection, union etc. These are uniquely defined. There is no choice. Unfortunately, or fortunately, because it gives you more flexibility, there are no such uniquely defined set operators for fuzzy intervals. Set operators are essentially transformations of the membership functions, and there are lots of different ones.

GeTS offers standard versions of the set operators, parameterized set operators of the Hamacher family, and finally set operators with transformation functions for the membership function as parameter. These allow one to customize the set operators in an arbitrary way.

Definition 3.31 (Complement of Intervals)

Let I be an expression of type Interval. The complement operation for intervals comes in three versions:

```
(1) complement(I)
Interval }\mapsto\mathrm{ Interval
(2) complement(I, \lambda)
Interval*Float \mapsto Interval
(3) complement(I,negation_function)
Interval * (Float \mapsto Float)\mapsto Interval
```

Version (1) is the standard complement. Each point (x, y) of the membership function of I is turned into $(x, 1-y)$.

Version (2) is the lambda-complement. For $\lambda>-1$, each point (x, y) of the membership function of I is turned into $\left(x, \frac{1-y}{1+\lambda y}\right)$. The ordinary complement is computed for $\lambda \leq-1$.

Finally, with version (3) it is possible to submit a user defined negation function. For example, with

```
lambda_complement(Interval I, Float lam)
= complement(I,lambda(Float y) (1-y)/(1+lam*y))
```

one can define the same lambda-complement with a user defined negation function.

Definition 3.32 (Union of Intervals) Let I and J be expressions of type Interval. The union operation for intervals comes in three versions:

```
(1) union (I, J) Interval* Interval }\mapsto\mathrm{ Interval
(2) union(I, J,\beta) Interval* Interval * Float \mapsto Interval
(3) union(I, J,co_norm)
    Interval * Interval * (Float * Float }\mapsto\mathrm{ Float) }\mapsto\mathrm{ Interval
```

Version (1) is the standard union. Each pair $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ of points of the membership function of I and J is turned into $\left(x, \max \left(y_{1}-y_{2}\right)\right.$).

Version (2) is the so called Hamacher-Union. For $\beta \geq-1$, each pair $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ of points of the membership function of I and J is turned into $\left(x, \frac{y_{1}+y_{2}+(\beta-1) y_{1} y_{2}}{1+\beta y_{1} y_{2}}\right)$. The ordinary union is computed for $\beta<-1$.

Finally, with version (3) of the union function it is possible to submit a user defined co-norm For example, with

```
Hamacher_Union(Interval I, Interval J, Float beta)
= union(I, J, lambda(Float y1, Float y2)
    (y1+y2+((beta - 1)*y1*y2))/(1+beta*y1*y2))
```

one can define the same Hamacher union with a user defined co-norm.
Definition 3.33 (Intersection of Intervals) Let I and J be expressions of type Interval, The intersection operation for intervals comes also in three versions:

```
(1) intersection \((I, J) \quad\) Interval \(*\) Interval \(\mapsto\) Interval
(2) intersection \((I, J, \gamma) \quad\) Interval * Interval \(*\) Float \(\mapsto\) Interval
(3) intersection( \(I, J\), norm \()\) )
Interval \(*\) Interval \(*(\) Float \(*\) Float \(\mapsto\) Float \() \mapsto\) Interval
```

[^3]Version (1) is the standard intersection. Each pair $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ of points of the membership function of I and J is turned into $\left(x, \min \left(y_{1}-y_{2}\right)\right)$.

Version (2) is the Hamacher-Intersection. For $\gamma \geq 0$, each pair (x, y_{1}) and (x, y_{2}) of points of the membership function of I and J is turned into $\left(x, \frac{y_{1} y_{2}}{\gamma+(1-\gamma)\left(y_{1}+y_{2}-y_{1} y_{2}\right)}\right)$. The ordinary intersection is computed for $\gamma<0$.

Hamacher-Intersection $\gamma=0.5$
Finally, with version (3) it is possible to submit a user defined norm. For example, with

```
Hamacher_Intersection(Interval I, Interval J, Float gamma)
    = intersection(I, J, lambda(Float y1, Float y2)
        (y1*y2)/(gamma + (1-gamma)*(y1 + y2 -y1*y_2))
```

one can define the same Hamacher-Intersection with a user defined norm.

Definition 3.34 (Set Difference between Intervals) Let I and J be expressions of type Interval. The set difference operation for intervals comes also in three versions:

```
(1) setdifference(I,J) Interval * Interval \mapsto Interval
(2) setdifference(I, J,version) Interval * Interval * SDVersion }\mapsto\mathrm{ Interval
(3) setdifference(I, J, intersection, complement)
    Interval * Interval * (Interval * Interval }\mapsto\mathrm{ Interval) *
    (Interval \mapsto Interval) }\mapsto\mathrm{ Interval
```

(1) extends the crisp correspondence: $I \backslash J=I \cap J^{\prime}$ where J^{\prime} is the complement of J, setdifference (I, J) is therefore an abbreviation for intersection(I, complement (J)) with standard intersection and complement functions.
(2) The second version computes the set difference operator by means of a binary function on the membership functions. The following versions are possible:
SDVersion Function
Kleene $\quad(I \backslash J)(x) \stackrel{\text { def }}{=} \min (I(x), 1-J(x))$
Lukasiewicz $\quad(I \backslash J)(x) \stackrel{\text { def }}{=} \max (0, I(x)-J(x))$
Goedel $\quad(I \backslash J)(x) \stackrel{\text { def }}{=} 0$ if $I(x) \leq J(x)$ and $1-J(x)$ otherwise

Set Difference
(3) Finally, the third version is a generalization of the first version:
setdifference $(I, J$, intersection, complement $) \stackrel{\text { def }}{=}$ intersection $(I$, complement $(J))$
intersection is a user defined binary function on intervals, and complement is a user defined unary function on intervals.

3.2.8 Predicates of Intervals

Fuzzy time intervals have many properties. They can be checked with suitable GeTS predicates.
Definition 3.35 (Predicates) GeTS provides the following predicates to check the structure of an interval I :

(1)	isCrisp(I)	Interval \mapsto Bool
(2)	isCrisp(I, left/right)	Interval * Side \mapsto Bool
(3)	isEmpty (I)	Interval \mapsto Bool
(4)	isConvex(I)	Interval \mapsto Bool
(5)	isMonotone(I)	Interval \mapsto Bool
(6)	isInfinite(I)	Interval \mapsto Bool
(7)	isInfinite(I,left/right)	Interval * Side \mapsto Bool

isCrisp (I) checks whether the interval is a, possibly non-convex, crisp interval.
isCrisp $(I$, left $)$ checks whether the interval is crisp at its left end. I may be infinite at this side, but the fuzzy value must be 1 in this case. Similar for isCrisp(I, right).
isEmpty (I) checks whether the interval is empty.
isConvex (I) checks whether the interval is convex. I can be non-convex even if I is crisp because it may consist of several different components (Def. [2.2).
isMonotone (I) checks whether the membership function of the interval is monotonically rising to a maximal value, and then monotonically falling again.
isInfinite (I) checks whether the interval is infinite.
isInfinite (I, left) checks whether the interval is infinite at the left hand side. isInfinite(I, right) checks whether the interval is infinite at the right hand side.

The boundaries of infinite intervals are of course the infinity. Infinity has a special representation in the Time datatype. This can be checked with the isInfinity predicate:

Definition 3.36 (Infinity)

```
isInfinity(time) Time\mapstoBool
isInfinity(time,positive/negative) Time*PosNeg\mapstoBool
```

isInfinity (time) checks whether the time represents an infinity.
isInfinity (time, positive) checks whether the time represents the positive infinity.
isInfinity (time, negative) checks whether the time represents the negative infinity.
The next three predicates allow one to check basic relations between time points and intervals, or between intervals and intervals.

Definition 3.37 (during, isSubset, doesOverlap)
(1) during(time, I, core/kernel/support) Time * Interval * IntvRegion \mapsto Bool
(2) isSubset(I, J, core/kernel/support) Interval * Interval * IntvRegion \mapsto Bool
(3) doesOverlap(I, J, core/kernel/support) Interval * Interval * IntvRegion \mapsto Bool
(1) during $($ time, I, region) checks whether the time is inside the given region of the interval I.
(2) isSubset $(I, J$, region) checks whether the corresponding region of the interval I is a subset of the corresponding region of the interval J.
(3) does $\mathrm{V}_{\mathrm{verl}} \mathrm{lap}(I, J$, region) checks whether the corresponding region of the interval I overlaps the corresponding region of the interval J.

The point-interval during relation is one of the five point-interval relations 'before', 'starts', 'during', 'finishes' and 'after' for crisp intervals. Only during is built-in because it is one of the most frequently used relations. The other relations can easily be defined in GeTS. The point-interval before relation in Example 3.3 is such an example.

3.2.9 Other Features of Intervals

With the first function in this paragraph one can access the fuzzy membership value of a time point within a given fuzzy interval.

Definition 3.38 (member) The function
member(time, I)
of type
Time *Interval \mapsto Float
returns the value of the membership function of the interval I at time point time. The value is a Float number between 0 and 1.

Definition 3.39 (Components)

1. The function components(I) of type Interval \mapsto Integer yields the number of components in the interval I.
2. The function component (I, k) of type Interval * Integer \mapsto Interval extracts the $\mathrm{k}^{\text {th }}$ component from the interval I.

The function size below measures an interval I or parts of it by integrating over its membership function.

Definition 3.40 (size) The function size comes in three versions.
(1) $\operatorname{size}(I)$
Interval \mapsto Time
(2) $\operatorname{size}(I$, core/support/kernel)
Interval * IntvRegion \mapsto Time
(3) $\operatorname{size}\left(I, t_{1}, t_{2}\right)$
Interval * Time * Time \mapsto Time
$\operatorname{size}(I)$ measures the size of the support of I.
size(I, core/support/kernel), measures the size of the corresponding region of I.
$\operatorname{size}(I)=\operatorname{size}(I$, support $)$.
$\operatorname{size}\left(I, t_{1}, t_{2}\right)$ measures the area of I between t_{1} and t_{2}.

Definition 3.41 (sub and inf) Let I be an interval expression.
The function $\sup (I)$ of type Interval \mapsto Float returns the supremum of the fuzzy values of the membership function for I (usually 1).

The function $\inf (I)$ of type Interval \mapsto Float returns the infimum of the fuzzy values of the membership function for I (usually 0).

The function length measures the distance between two time points in terms of a partition.

Definition 3.42 (length) The function
length $\left(t_{1}, t_{2}\right.$, partitioning, asGranule)
of type
Time $*$ Time $*$ Partitioning $*$ Bool \mapsto Float
measures the distance between t_{1} and t_{2} in terms of the given partitioning. If asGranule $=$ true then the distance is measured in terms of the length of the granules of the partitioning's labelling (without gaps).

An example for determining the distance between two time points in terms of partitions is
length(now(),shift(now(),1 day), day,false)
is just 1.0 .
The next example illustrates the length function in terms of granules.

Example 3.43 (length in terms of granules)

Consider a partitioning P with labelling a,a,gap,gap,a,gap,b,b.

The table below gives the results of length($\mathrm{t} 1, \mathrm{t} 2, \mathrm{P}$, true) where t 1 is the start of partition p 1 and t 2 is the start of partition p2.

t 1	t 2	length in terms of granules
0	1	$1 / 3$
0	2	$2 / 3$
0	3	$2 / 3$
0	4	$2 / 3$
0	5	1
0	6	1
0	7	1.5
0	8	2

The function 'point' below can be used to access the boundaries of the three different regions of an interval: support, core and kernel, and the first and last maximal points.

Definition 3.44 (point) The function
point(I, left/right, core/support/kernel/maximum) of type
Interval * Side $*$ PointRegion \mapsto Time
returns the position of the boundaries of I's regions:
point(I, left, support) yields the position of the left support boundary
point(I, right, support) yields the position of the right support boundary
point(I,left,core) yields the position of the left core boundary
point(I, right,core) yields the position of the right core boundary
point(I,left,kernel) yields the position of the left kernel boundary
point(I, right,kernel) yields the position of the right kernel boundary.
point(I, left,maximum) yields the leftmost position of the maximal fuzzy value.
point(I, right, maximum) yields the rightmost position of the maximal fuzzy value.

If I is just a convex crisp interval $\left[t_{1}, t_{2}[\right.$ then
$\operatorname{point}(I$, left, support $)=t_{1}$ and point $(I$, right, support $)=t_{2}$.

Center Points

The n, m-center points are used to express temporal notions like 'the first half of the year', or 'the second quarter of the year', or more exotic expressions like 'the 25 th 49 th of the weekend' etc. The notion of n, m-center points makes only sense for finite intervals.

Example 3.45 (Center Points) The 1,2-center point $I^{1,2}$ of I splits I in two halfs of the same size (integrated over the membership function). The 1,3-center point indicates a split of I into three parts of the same size. centerPoint (I,1,3) is the boundary of the first third, centerPoint $(I, 2,3)$ is the boundary of the second third.

Definition 3.46 (Center Points) The function
centerPoint (I, n, m)
of type
Interval * Integer * Integer \mapsto Time
yields the (earliest) position of the n, m-center point.
The center points are computed such that for $n<m$:

$$
\int_{\text {centerPoint }(n, m)}^{\text {centerPoint }(n+1, m)} I(x) d x=\left(\int I(x) d x\right) / m
$$

3.2.10 Basic Manipulations of Intervals

In this paragraph we introduce some elementary transformation functions for fuzzy time intervals.

Definition 3.47 (Shift of Time Intervals) The function
$\operatorname{shift}(I, t)$
of type
Interval * Time \mapsto Interval
shifts the interval by the given time, i.e. $\operatorname{shift}(I, t)(x)=I(x-t)$
Definition 3.48 (cut) The function
$\operatorname{cut}\left(I, t_{1}, t_{2}\right)$
of type
Interval * Time * Time \mapsto Interval
cuts the part of the interval I between the time points t_{1} and t_{2} out of I and returns it as a new interval.

The hull function below is able to compute different hulls of a fuzzy time intervals.

Definition 3.49 (Hull Calculations) The function

hull(I, core/support/kernel/crisp/monotone/convex)
of type
Interval $*$ Hull \mapsto Interval
computes a hull of the interval I. The second parameter determines which hull is to be computed.

The core, support and kernel hull compute the corresponding interval regions as crisp intervals. The core and support hull may therefore consist of different components, whereas the kernel hull consists of at most one single component.

There is a small problem with the support hull. Consider the following example:

Since $I(0)=0$, the support of I is the open interval]0,60[. The function hull (I, support), however, calculates the interval boundaries 0 and 60 , which are interpreted as the half open interval $[0,60[$. Strictly mathematical, this is not correct. In a correct implementation, however, we would have to distinguish open and half open intervals. Since the overhead for this is enormous, the current version of GeTS has to live with this error.

The crisp hull for crisp intervals is the usual convex hull of crisp intervals. It consists of the smallest crisp interval which contains all the components of the interval. The crisp hull for non-crisp intervals is the convex hull of the support of the interval. If the non-convex interval consists of one single component only, there is no difference between the crisp and support hull. In general we have

$$
\text { hull }(I, \text { crisp })=\text { hull }(\text { hull }(I, \text { support }), \text { crisp }) .
$$

The monotone hull of an interval I is the smallest monotone interval which contains I. An interval is monotone iff its membership function rises monotonically up to a maximal point, and then falls monotonically again.

Monotone Hull of a Fuzzy Interval
The convex hull of an interval I is the smallest convex interval which contains I. The notion 'convex', which is appropriate here, is the notion of a convex polygon. That means, if we follow the membership function from left to right there are only right curves. The next figure illustrates this.

Convex Hull of a Fuzzy Interval
If the interval I is crisp then the crisp, monotone and convex hull are the same.
The next function can be used to extract the gaps between components of an interval. The invert function inverts the membership function, but only between the last maximal point
of the first component and the first maximal point of the last component. invert(I) is zero outside these points.

Definition 3.50 (invert) The function invert (I) of type Interval \mapsto Interval inverts the membership function of the interval I :

$$
\operatorname{invert}(I)(x) \stackrel{\text { def }}{=} \begin{cases}1-I(x) & \text { if } a \leq x<b \\ 0 & \text { otherwise } .\end{cases}
$$

where a is the last maximal point of the first component of I, and b is the first maximal point of the last component of I.

Example:

components(invert (I)) yields the number of gaps in the interval I.
The scaleup function below multiplies the membership function of an interval I with a factor f, such that the maximal value of $I(x) * f$ is 1 .

Definition 3.51 (scaleup) The function scaleup (I) of type Interval \mapsto Interval scales the membership function of I such that its maximum is 1.

More general scaling functions are times and exp.
Definition 3.52 (times and exp)

$$
\begin{array}{ll}
\text { times }(I, f) & \text { Interval } * \text { Float } \mapsto \text { Interval } \\
\exp (I, e) & \text { Interval } * \text { Float } \mapsto \text { Interval }
\end{array}
$$

$\operatorname{times}(I, f)(x)=\min (I(x) \cdot f, 1)$.
$\exp (I, e)$ computes an interval such that $\exp (I, e)(x)=I(x)^{e}$.
The dashed line in the next figure indicates times $(I, 2)$ and the dotted line indicates $\exp (I, 2)$.

The rising part of a fuzzy time interval is crucial for a fuzzy point-interval before relation. The falling part, on the other hand, is crucial for a point-interval after relation. The rising part of an interval I can be computed by following its monotone hull up to the first maximal point, and then extending it to the infinity. Similar with the falling part.

Definition 3.53 (Extend to Infinity) The function
extend(I, positive/negative)
of type
Interval * PosNeg \mapsto Interval
extends the interval to the infinity. extend(I, positive) raises the membership function of the monotone hull of I to 1 after the first maximum $I^{f m}$. extend(I, negative) raises the membership function of the monotone hull of I to 1 before the right maximum $I^{l m}$.

Example:

An example where the extend function is useful is the definition of the binary 'until' relation between two intervals.

```
until(Interval I, Interval J)
= intersection(extend(I,positive),extend(J,negative))
```

computes until (I, J) as the interval which lasts from the beginning of interval I until the end of interval J.

There is a further extend function in GeTS. It lengthens or shortens an interval by a certain time.

Definition 3.54 (Extend by a Certain Time) The function
extend(I, length, side)
of type
Interval * Time * Side \mapsto Interval
extends the interval I by the given length.
The side parameter determines at which side the interval is extended. side $=$ left extends it at the left side, side $=$ right extends it at the right side. A positive length value causes the interval to be extended, whereas a negative length value causes the interval to be shrunken.

The algorithm for extending or shrinking a fuzzy interval works as follows: In a first step the interval I is split into the left/right part I_{1} of the interval up to the first maximal point, and the rest $I_{2} . I_{1}$ is extended to the infinity. This part is shifted. If the interval is to be extended, then the union of the shifted I_{1} with I_{2} is computed. If the interval is to be shrinked then the intersection of the shifted I_{1} with I_{2} is computed. The next figure illustrates this. The dotted line shows the shifted front part of the interval. The dashed line is the result of the union/intersection.

Example:

The extend function together with shiftLength (Def. 3.28) can be used to extend an interval by a certain duration. For example,

$$
\operatorname{extend}(I,-\operatorname{shiftLength}(\text { point }(I, \text { left, support }),-1 \text { month, false, true), left })
$$

extends the left side of the interval I by 1 month. The month length is determined by a backwards shift of the left boundary of I's support.

Definition 3.55 (integrate) The function

```
integrate(I, positive/negative)
    of type
```

Interval * PosNeg \mapsto Interval
integrates the membership function of I and normalizes its value to 1 . If the control parameter is positive then I is integrated from left to right. If it is negative then I is integrated from right to left.

An example where the integrate operator may be useful is the definition of party time
Example 3.56 (Birthday Party Time) Consider a database about, say, the institute's birthday parties. It may contain the entry that the birthday party for the director took place 'from around noon until early evening' of $20 / 7 / 2003$. 'Around noon' is a fuzzy notion and 'early evening' is a fuzzy notion. Suppose, we have a formalization of 'around noon' and 'early evening' as the following fuzzy sets:

What is now the duration of the birthday party? It must obviously also be a fuzzy set. The fuzzy value of the birthday party duration at a time point x is 1 if the probability that the party started before x is 1 and the probability that the party ended after x is also 1 . Therefore the fuzzy value at point x is computed by integrating over the probabilities of the start points and the end points. A natural definition would therefore be:

```
partyTime(Interval I, Interval J)
= intersection(integrate(I,positive),integrate(J,negative))
```

The resulting fuzzy set is:

The dashed curve may, for example, represent the percentage of people at the party at a give time.

Fuzzification

Fuzzy time intervals could be defined by specifying the shape of the membership function in some way. This is in general very inconvenient. Therefore GeTS provides an alternative. The idea is to take a crisp interval and to 'fuzzify' the front and back end in a certain way. For example, one may specify 'early afternoon' by taking the interval between 1 and 6 pm and imposing, for example, a linear or a Gaussian shape increase from 1 to 2 pm , and a linear or a Gaussian shape decrease from 4 to 6 pm . Technically this means multiplying a linear or Gaussian function with the membership values.

Definition 3.57 (Fuzzification) There are two different versions of the fuzzify function in GeTS. The first version allows one to specify the part of the interval I which is to be fuzzified in terms of percents of the interval length. The second version needs absolute coordinates.

```
fuzzify(I,linear/gaussian,left/right,increase, offset)
of type
Interval, Fuzzify,Side, Float, Float \mapsto Interval
fuzzify(I,linear/gaussian,left/right, x1, x2, offset)
of type
Interval, Fuzzify, Side, Time, Time, Time }\mapsto\mathrm{ Interval
```

The second parameter determines whether a linear or gaussian increase is to be imposed on the interval. The third parameter determines whether the increase is from left to right or from right to left. increase is a Float number in percent. increase $=10$ means that the region to be modified consists of the first/last 10% of the kernel of the interval. offset is also a float number in percent. offset $=20$ means that the interval is to be widened by 20% of the kernel of the interval. To this end the fuzzified part of the interval is shifted back (second parameter $=$ left) or forth (second parameter $=$ right) 20% of the kernel size.
$x 1$ and $x 2$ in the second version of the fuzzify function allows one to determine the part of the interval to be fuzzified in absolute coordinates. fuzzify $([0,100]$, linear, left, 20, 70, 0), for example, yields a polygon $[(20,0)(70,1)(100,1)(100,0)]$. fuzzify $([0,100]$, linear, right, 20, 70,0$)$, on the other hand, yields a polygon $[(0,0)(0,1)(20,1)(70,0)]$. The offset widens the polygon: fuzzify $([0,100]$, linear, right, $20,70,20)$, yields $[(0,0)(0,1)(60,1)(90,0)]$.

A function which fuzzifies both ends of an interval in the same way could be

```
f(Interval I, Float increase, Float offset)
    = intersection(extend(fuzzify(I,gaussian,left,increase,offset),positive),
    extend(fuzzify(I,gaussian,right,increase,offset),negative))
```

$f(I, 20,0)$ produces the following fuzzified interval.

Relative Gaussian Fuzzification
Notice that the obvious 'solution'

```
f(Interval I, Float increase, Float offset)
    = fuzzify(fuzzify(I,gaussian,right,inc,off),left,increae,offset)
```

yields no symmetric structure, because the inner fuzzify operation changes the kernel of the interval, such that the absolute increase and offset of the outer fuzzify operation are different to the absolute increase and offset of the inner fuzzify operation

The next example illustrate a potential use of the fuzzify function. We want to realize a function beforeChristmas. It should accept a time point t and compute a fuzzy interval, whose membership function increases for a certain time period and then stays 1.0 until Christmas. The increase is determined by two parameters, offset and increase. offset $=50$ means that the increase should start in the middle between t and Christmas. increase $=20$ means that the duration of the actual linear increase should be 20% of the interval length.

If $t=2004 / 7 / 1$ then beforeChristmas $(t, 50,10)$ yields an interval whose membership function rises from 2004/9/28 until 2004/10/6/19/12 and then stays at 1.0 until 2004/12/25.

Example 3.58 (Before Christmas)

```
beforeChristmas(Time t, Float offset, Float increase) =
    dLet year = date(t,Gregorian_month) in
        Let christmas = time(year|12| 25,Gregorian_month) in
            case (t < christmas) :
                Let days = round(length(t,christmas,day,false),down) in
                    fuzzify([time(year|12|25-days+round((days*offset/100)),
                            Gregorian_month),christmas],
                    linear,left,increase,0),
                (t < time(year|12|27,Gregorian_month)):
                else
                    Let christmas1 = time(year+1|12|25,Gregorian_month) in
                    Let days = round(length(t,christmas1,day,false),down) in
                                fuzzify([time(year+1|12|25-days+round((days*offset/100)),
                                    Gregorian_month), christmas1],
                            linear,left,increase,0)
```

The beforeChristmas function considers the three cases, namely (1) that the time point t in the year y is before Christmas in this year, (2) that t is just on Christmas in this year, and
(3) that t is after Christmas in this year. In case (1) the rounded number of days between t and Christmas is computed first (line 5). This number minus the offset is subtracted from christmas to get the left boundary of the interval to be fuzzified (line 6). The right boundary is christmas. The left part of the interval is fuzzified linearly with the given increase (line $6-8$). If the time point t is just on Christmas (line 9) then the empty interval is returned. If t is after Christmas (case 3), then next year's Christmas is considered (line 11-15).

Integration over Pairs of Intervals

One possibility to define an interval-interval relation like 'before (I, J) ' is, to take a pointinterval relation 'PIRbefore (t, J) ' and average PIRbefore (t, J) over the interval I. Averaging over an interval means integrating over its membership function. For purposes like this GeTS provides two integration operations.

Definition 3.59 (Integration) GeTS has the two integration functions:

```
integrateSymmetric(I, J, simple) Interval*Interval*Bool }\mapsto\mathrm{ Float and
integrateAsymmetric (I,J) Interval * Interval }\mapsto\mathrm{ Float
```

integrateAsymmetric (I, J) computes $\left(\int I(x) \cdot J(x) d x\right) /|I|$.
integrateSymmetric $(I, J$, simple $)$ computes $\left(\int I(x) \cdot J(x) d x\right) / N(I, J)$
where $N(I, J) \stackrel{\text { def }}{=} \begin{cases}\min (|I|,|J|) & \text { if simple }=\text { true } \\ \max _{a}\left(\int I(x-a) \cdot J(x) d x\right) & \text { otherwise. }\end{cases}$
Example 3.4 shows an application of the asymmetric integrate function.
The next example shows an application of the symmetric integrate function. A fuzzy interval-interval relation IIRMeets is defined: Besides the two intervals, it takes the transformation functions F and S and integrates the interval $F(I)$ over $S(J) . F(I)$ should map the interval I to a finishing section of I and $S(J)$ should map the interval J to a starting section of J. The integration of $F(I)$ to $S(J)$ yields the final result.

Example 3.60 (Fuzzy Interval-Interval 'Meets' Relation) A possible definition for a fuzzy interval-interval meets relation is

```
IIRMeets(Interval I, Interval J, Interval->Interval F, Interval->Interval S) =
    if isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left)
        then 0
    else integrateSymmetric(F(I),S(J),false)
```

The figure below shows the effect of the IIRMeets relation for suitable F and S operations. The dashed figure shows the result of $\operatorname{IIRMeets}(I, J, \ldots)$ when the interval I is moved along the time axis. The dotted figure shows the position of the interval I where $\operatorname{IIRMeets}(I, J, \ldots)$ is maximal.

IIRMeets for Fuzzy Intervals
GeTS contains the very special purpose function MaximizeOverlap which is, so far, only needed for implementing the fuzzy interval-interval overlaps relation. The classical relation I overlaps J has two requirements:

1. a non-empty part I_{1} of I must lie before J, and
2. another non-empty part I_{2} of I must lie inside J.

A generalization to fuzzy intervals encodes the first condition in the factor $1-D\left(I, E^{+}(J)\right)$ where D is a during operator. $E^{+}(J)$ extends the rising part of J to the infinity. Therefore $D\left(I, E^{+}(J)\right)$ measures the part of I which is after the front part of $J .1-D\left(I, E^{+}(J)\right)$ then measures the part of I which is before the front part of J. This factor is multiplied with $D(I, J)$ which corresponds to the second condition. It measures to which degree I is contained in J. The product is normalized with $\max _{a}\left(\left(1-D\left(I_{a}, E^{+}(J)\right)\right) \cdot D\left(I_{a}, J\right)\right)$, where $I_{a}(x) \stackrel{\text { def }}{=} I(x-a)$. This corresponds to the maximal possible overlap when I is shifted along the time axis. This guarantees that there is a position for I where I overlaps $J=1$. The normalization factor is computed with the function MaximizeOverlap

Definition 3.61 (MaximizeOverlap) The function
MaximizeOverlap $(I, J, E J, D)$
of type
Interval * Interval * Interval * (Interval * Interval \mapsto Float) \mapsto Float
computes

$$
\max _{a}((1-D(\operatorname{shift}(I, a), E J)) \cdot D(\operatorname{shift}(I, a), J))
$$

Notice that $E J$ can in principle be an arbitrary interval. For the encoding of the fuzzy overlaps relation, it should, however, be the extension of J to the infinity.

Example 3.62 IIROverlaps

```
IIROverlaps(Interval I, Interval J, Interval->Interval E,
                    (Interval*Interval)->Float D) =
    case
    isEmpty(I) or isEmpty(J) or isInfinite(J,left) : 0,
    isInfinite(I,right) : float(point(I,left, support) < point(J,left, support)),
    isInfinite(J,right) : float(point(I,right, support) < point(J,left, support))
else
    Let EJ = E(J) in
                (1 - D(I,EJ))*D(I,J) / MaximizeOverlap(I,J,EJ,D)
```


Example 3.63 (IIROverlaps for Fuzzy Intervals)

This example shows the result of the IIROverlaps relation where the standard IIRDuring operator is used (with the identity function as point-interval during operator).

The dashed line represents the result of the overlaps relation for a time point t where the positive end of the interval I is moved to t. The dotted figure indicates the interval I moved to the position where IIRoverlaps (I, J) becomes maximal.

3.2.11 Date and Time

In examples 3.2 and 3.58 we have already seen applications of functions which convert time points to dates and dates to time points. The dates are sequences of integers which correspond to date formats, and these are sequences of partitionings. An example for a date format is year/month/day/hour/minute/second in the Gregorian calendar. The sequence 2004|12|3|21|43|0 in this date format is therefore the 3rd of December 2004, 9:43 pm.

The time function converts a date in a given date format to the corresponding time point.

Definition 3.64 (time) The function

time(year \mid month $\mid \ldots$, dateFormat)
of type
Integer $* \ldots *$ Integer $*$ DateFormat \mapsto Time
maps a date in a given date format to the time point denoted by this date.
The tokens year, month etc. in the time function are expressions of type Integer. There can be as many expressions as the date format has partitionings. For example, the year/month/day/ hour/minute/second date format in the Gregorian calendar has 6 partitionings. Therefore there are in this case at most 6 Integer expressions allowed in the time function.

Examples:

time(2004,Gregorian_month) $=1072915231$ (1st of January 2004)
time $(2004 \mid 1+1$,Gregorian_month $)=1075593631$ (1st of February 2004)
time (2004|2|2,Gregorian_week) $=1073347231$ (6th of January 2004)
Gregorian_week is the date format year/week/day/hour/minute/second. Therefore 2004|2|2 is the second day in the second week in the year 2004.

The dLet construct in the next definition is a kind of inverse to the time function. It computes for a given time point and a date format a date representation as a sequence of Integers and binds the variables to these Integers in a similar way as the Let construct.

Definition 3.65 (dLet) The expression

$$
\text { dLet year } \mid \text { month } \mid \ldots=\text { date }(\text { time, dateFormat }) \text { in expression }
$$

binds the variables year, month,... to the integers which correspond to the date denoted by 'time', in the given date format.
'expression' is then evaluated under this binding.
The type of date is Time*DateFormat \mapsto Integer n where $n \leq$ maximal number of partitionings in the date format.

Example:

'dLet $y|m| d \mid h=$ date(0, Gregorian_month) in $y+m+d$ ' yields 1973 because the time point 0 corresponds to the first of January 1970. Therefore $y=1970, m=1, d=1$ and $h=0$.

3.2.12 Partitionings and Labels

GeTS has a number of functions for reckoning with time points, partitions and labels. The partition function was already introduced in Example 3.1

Definition 3.66 (partition) The partition function maps time points to intervals, which represent partitions.
(1) partition(time, partitioning)

Time $*$ Partitioning \mapsto Interval
(2) partition(time, partitioning, n, m)

Time * Partitioning * Integer * Integer \mapsto Interval

The first version computes the interval which corresponds to the partition containing time. The second version computes an interval $\left[t_{1}, t_{2}[\right.$ as follows: If i is the coordinate of the partition containing time then t_{1} is the start of partition $i+n$ and t_{2} is the end of the partition $i+m$.

If instead of the partition as interval, only the boundaries are needed, one can use the partitionBoundary function.

Definition 3.67 (partition boundary) The function
partitionBoundary(time, partitioning, left/right)
of type
Time $*$ Partitioning $*$ Side \mapsto Time
computes the left/right boundary of the partition containing time.
Although partitionings are in general infinite mathematical structures, their validity may be limited (see remark [2.5]. GeTS has two functions for getting information about the boundaries of the valid regions of a partitioning.

Definition 3.68 (Valid Regions of Partitionings) The function
partitioningIsBounded (P, left/right)
of type
Partitioning*Side \mapsto Bool
checks whether the valid region of the partitioning P is bounded at the given side.
The function
partitioningBoundary $(P$, left/right)
of type
Partitioning*Side \mapsto Time
returns the boundary of the partitioning at the given side. If there is no bound at this side then a representation of infinity is returned.

The next function is which. It can, for example, be used to compute which week in the year is now, or which day in the semester is now.

Definition 3.69 (which) The function
which(time, P, Q, inclusion, asGranule)
is of type
Time $*$ Partitioning $*$ Partitioning $*$ Inclusion $*$ Bool \mapsto Time.

The function is explained for the two asGranule case:
Case asGranule $=\mathrm{false}$:
Consider the following example:
which(now(), week, year, bigger_part_inside,false).
It computes, which week of the year is now.
The which function first computes the starting point t_{Q} of the Q-partition containing time. In the example, it would be the beginning of the current year. Then it determines the P partition for t_{Q}. In the example, it is the first week in the year. What counts as the 'first' P-partition p depends on the parameter inclusion:
inclusion $=$ subset: p is the leftmost P-partition after t_{Q}.
inclusion $=$ overlaps: p is the leftmost P-partition containing t_{Q}.
inclusion $=$ bigger_part_inside: p is the leftmost P-partition whose bigger part comes after t_{Q}. (This is suitable for counting weeks within a year).

If n is the coordinate of p and m is the coordinate of the P-partition containing time then $m-n$ is returned by the which function. If now () is first of January then the call which(now(), week, year, bigger_part_inside, false)
returns 0 as the number of the first week in the year.
Notice that the result of the which function is of type Time. The Time datatype is in this case just to be taken as a potentially very big integer, and not as a time point.

Case asGranule $=$ true:
The partitionings P and Q are in this case interpreted as granules. t_{Q} is the start of the Q granule containing time. If time is between two granules then t_{Q} is the end of the Q-granule before t_{Q}.

The first P granule p depends again on the parameter inclusion:
inclusion $=$ subset: p is the leftmost P-granule after t_{Q}.
inclusion $=$ overlaps: p is the leftmost P-granule containing t_{Q}. If t_{Q} is between two P granules then p is the leftmost P-granule after t_{Q}.
inclusion $=$ bigger_part_inside: p is the leftmost P-granule whose bigger part comes after t_{Q}.

A special case is that time lies before the start of p. In this case the which function returns the value -1 to indicate that the counting is not possible.

In the normal case the which function counts from granule p as number 0 the P-granules until it reaches time. If time is between two P-granules then the counting stops before time. The value of the counter is returned.

The functions in the next definition deal with labels of partitions. Notice that labels are not just strings. They are special data structures, such that, for example, two labels with the same name are identical.

Definition 3.70 (Basic Functions for Labels) The function
label(time, partitioning) of type
Time $*$ Partitioning \mapsto Label
returns the label of the partition containing time. If there is no labelling defined, it returns a NULL label.
The function
isLabel(label)
of type
Label \mapsto Bool
checks whether the label is not the NULL label.
The function
isGap(label)
of type
Label \mapsto Bool
checks whether the label is the gap label.
The function
LabelName (name)
of type
String \mapsto Label
turns a string (without quotes) into a Label.
The extractLabelled function below can be used to extract from an interval all partitions with a given label, for example all Tuesdays of a labelled day partitioning.

Definition 3.71 (extractLabelled) The function
extractLabelled(I, label, partitioning, inclusion, intersect)
of type
Interval $*$ Label * Partitioning $*$ SplitInclusion $*$ Bool \mapsto Interval
extracts partitions in the interval I with the given label.
The extractLabelled function maps through all partitions of the given partitioning which are labelled with the given label, and which overlap with the interval $[a, b[$ where a is the left boundary of the interval and b is the right boundary of the interval. An error is thrown if a or b are the infinity.

For each such partition p a condition is tested which depends on the parameter inclusion.
inclusion $=$ align: the condition is always true.
inclusion $=$ subset: p must be a subset of I 's support.
inclusion $=$ overlaps: p must overlap with I 's support.
inclusion = bigger_part_inside: the bigger part of p must be a subset of I 's support.

If the parameter intersect $=\mathrm{false}$ then all partitions p which meet the condition are joined into the resulting (crisp) interval.

If the parameter intersect $=$ true then the intersection of I with all partitions p which meet the condition are joined into the resulting interval. The result may now be a fuzzy interval.

The function below is for constructing intervals which represent granules.

Definition 3.72 (nextGranule) The function
nextGranule(time, partitioning, label, n, withGaps)
of type
Time $*$ Partitioning $*$ Label $*$ Integer $*$ Bool \mapsto Interval
constructs a new interval which represents a granule.

The interval is constructed as follows:
Case 1: time is inside a granule with the given label.
If $n=0$ then this granule is computed. Otherwise the $n^{t h}$ next/previous (if $n<0$) granule with this label is computed.
Case 2: time lies outside a granule with the given label.
If $n=0$ then the empty interval is returned. Otherwise the $n^{\text {th }}$ next/previous (if $n<0$) granule with this label is computed.

Finally an interval is constructed and returned which represents the granule. If withGaps $=$ true then this interval may be non-convex to exclude the gap partitions within a granule.

3.2.13 Control Constructs for Operations on Intervals

GeTS has two basic control constructs for operations on parts of intervals. The componentwise control construct allows one to apply an operation to each component of an interval and to combine the results of each application with a combination function.

Definition 3.73 (componentwise) The following function applies an operation to each component of an interval and combines the results with a combination operator. It comes in two versions, without and with an end test.
componentwise(I, initialObject, operation, combination)
of type
$[$ Interval $* T *($ Interval $\mapsto T) *(T * T \mapsto T) \mapsto T]$
componentwise(I, initialObject, operation, combination, endTest)
of type
$[$ Interval $* T *($ Interval $\mapsto T) *(T * T \mapsto T) *(T \mapsto$ Bool $) \mapsto T]$
I is the interval whose components are considered.
operation is the operation which is applied to the components of I. It generates results of type T (which is determined by the type of initialObject).
combination is the operation which is used to combine the results of the application of operation. initialObject is the object which is returned when I is empty, and which is used to combine it with the very first result of operation. Typically, initialObject $=[]$ ($T=$ Interval) or initialObject $=0 T(T=$ Time $)$.
endTest is a predicate which is applied to the intermediate results. The loop is terminated and the intermediate result is returned as soon as endTest yields true.

Examples:
 componentwise($I,[]$, lambda(Interval J) hull(J, crisp),
 lambda(Interval K, Interval L) union (K, L))

computes the crisp hull for each component of the interval I separately and then joins them into one single crisp, possibly non-convex, interval.

```
componentwise(I,0.0,
    lambda(Interval }J\mathrm{ ) length(point(J, left, support),
    point(J, right, support), month, false)
    lambda(Float n,Float m) n+m)
```

computes the lengths of the support of (a finite) interval I in terms of months.
split:
The split function below is in principle similar to the componentwise function. The difference is that the interval is not taken apart into its components, but it is split into subintervals of a given length. A function is applied to these split parts, and a combination function combines the partial results into a final result.

Definition 3.74 (split) The split function also comes in two versions, without and with an end test. split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect) is of type Interval $*$ Duration $*$ Bool $*$ Bool $* T *($ Interval $\mapsto T) *($ Interval $*$ Interval $\mapsto T) *$

IntvRegion $*$ Bool $*$ SplitInclusion $*$ Sequencing $*$ Bool $\mapsto T$ split(I, duration, asGranule, dateOriented, initialObject, operation, combination, region, forward, inclusion, sequencing, intersect, endTest) is of type Interval $*$ Duration $*$ Bool $*$ Bool $* T *($ Interval $\mapsto T) *($ Interval $*$ Interval $\mapsto T) *$ IntvRegion $*$ Bool $*$ SplitInclusion $*$ Sequencing $* \operatorname{Bool} *(T \mapsto$ Bool $) \mapsto T$.

In order to explain the split function in detail, we must introduce some auxiliary functions. They are not part of GeTS, but used internally.

The startpoint and endpoint functions compute the starting point for the split.
Definition 3.75 (startpoint and endpoint) The function startpoint (t, P, inclusion, asGranule) of type Time $*$ Partitioning $*$ SplitInclusion $*$ Bool \mapsto Time computes the starting point of a forward split as follows:

Case asGranule = false:

Case inclusion $=$ align: return t
Case inclusion $=$ subset: return the starting point s of the leftmost P-partition such that $t \leq s$.

Case inclusion $=$ overlaps: return the starting point of the leftmost P-partition containing t.

Case inclusion $=$ bigger_part_inside: return the starting point of the leftmost P-partition p such that the bigger part of p comes after t.

Case asGranule $=$ true:

Case inclusion $=$ align: If t is between two granules g_{1} and g_{2} then return the starting point of g_{2}, otherwise return t.
Case inclusion = subset: return the starting point of the leftmost granule after t.
Case inclusion $=$ overlaps: If t is between two granules g_{1} and g_{2} then return the starting point of g_{2}, otherwise return the starting point of the leftmost granule containing t.

Case inclusion = bigger_part_inside: If t is between two granules g_{1} and g_{2} then return the starting point of g_{2}, otherwise return the starting point of the leftmost granule whose bigger part comes after t. Gaps within a granule are not measured.

A similar function endpoint $(t, P$, inclusion, asGranule) computes the starting point of a backwards split:

Case asGranule $=$ false:

Case inclusion $=$ align: return t
Case inclusion $=$ subset: return the end point s of the rightmost P-partition such that $s \leq t$.
Case inclusion $=$ overlaps: return the endpoint of the rightmost P-partition containing t.

Case inclusion $=$ bigger_part_inside: return the endpoint of the rightmost P-partition p such that the bigger part of p comes before t.

Case asGranule = true:
Case inclusion $=$ align: If t is between two granules then return the endpoint of the rightmost granule before t, otherwise return t.

Case inclusion = subset: return the endpoint of the rightmost granule before t.
Case inclusion =overlaps: If t is between two granules then return the endpoint of the rightmost granule before t, otherwise return the endpoint of the rightmost granule containing t.

Case inclusion = bigger_part_inside: If t is between two granules then return the endpoint of the rightmost granule before t, otherwise return the endpoint of the rightmost granule whose bigger part comes before t. Gaps within a granule are not measured.

The functions advance and retract below compute the start of the next split part.
Definition 3.76 (advance and retract) The function advance (t, P, sequencing, asGranule) of type Time $*$ Partitioning $*$ Sequencing $*$ Bool \mapsto Time computes for the end time t of a (forward) split part the start time of the next split part:

Case asGranule $=$ false:
Case sequencing $=$ sequential: return t;
Case sequencing = overlapping: return the start of the P-partition containing t;
Case sequencing $=$ with_gaps: if t is the start of the P-partition containing t then return t, otherwise return the start of the following P-partition.

Case $a s G r a n u l e=$ true:
Case sequencing = sequential: if t is between two granules then return the start of the next granule, otherwise return t.
Case sequencing = overlapping: if t is between two granules then return the start of the next granule, otherwise return the start of the granule containing t.

Case sequencing = with_gaps: if t is between two granules then return the start of the next granule. If t is the start of a granule then return t, otherwise return the start of the granule which follows the granule containing t.

The corresponding function retract (t, P, sequencing, asGranule) computes for the start time t of a (backward) split part the end time of the next split part:

Case asGranule $=$ false:

Case sequencing $=$ sequential: return t;
Case sequencing $=$ overlapping: return the end of the P-partition containing t;
Case sequencing $=$ with_gaps: if t is the end of the P-partition containing t then return t, otherwise return the end of the previous P-partition.

Case asGranule $=$ true:
Case sequencing $=$ sequential: if t is between two granules g_{1} and g_{2} then return the end of g_{1}, otherwise return t.
Case sequencing = overlapping: if t is between two granules g_{1} and g_{2} then return the end of g_{1}, otherwise return the end of the granule containing t.

Case sequencing = with_gaps: if t is between two granules g_{1} and g_{2} then return the end of g_{1}. If t is the end of a granule then return t, otherwise return the end of the granule which is before the granule containing t.

Back to the function
split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect, endTest).
The parameters I, initialObject, operation and combination have the same meaning as for the componentwise function (Def. 3.73).

The interval I can be split in forward direction (forward $=$ true) or in backward direction $($ forward $=$ false $)$.

Region to be split:

The parameter region ($=$ core, support or kernel) determines the region $[a, b[$ of the interval I which is to be split. a is the leftmost point of the region and b is the rightmost point of the region. An error is thrown if a or b is the infinity.

The split loop:

Let P_{0} be the first partitioning which occurs in duration. Let $A=$ initialObject be the accumulator for the operation.

Case forward=true:
Let $t_{0}=\operatorname{startpoint}\left(a, P_{0}\right.$, inclusion, asGranule) be the starting point for the split. The split command performs the following (forward) loop:

```
while \(\left(t_{0}<b\right)\{\)
    let \(t_{1}:=\operatorname{shift}\left(t_{0}\right.\), duration, asGranule, dateOriented); (Def. 3.28
    let \(J:=\left[t_{0}, t_{1}[\right.\) be the split part;
    if intersect \(=\) true \(J:=I \cap J\);
    \(A:=\operatorname{union}(A, \operatorname{operation}(J))\);
    \(i f(\operatorname{endTest}(A)=\) true \()\) return \(A\);
    \(t_{0}=\) advance \(\left(t_{1}, P\right.\), sequencing, asGranule \(\left.) ;\right\}\)
return \(A\)
```

Case forward $=$ false:
Let $t_{1}=\operatorname{endpoint}\left(b, P_{0}\right.$, inclusion, asGranule $)$ be the starting point for the split.
The split command now performs the following (backwards) loop:

```
while(t }\mp@subsup{t}{1}{}>a)
    let }\mp@subsup{t}{0}{}:=shift(\mp@subsup{t}{1}{},neg(duration),asGranule,dateOriented); (Def. 3.28
    let J:= [to, t [ [ be the split part;
    if intersect = true J:=I\capJ;
    A := union(A,operation(J));
    if(endTest (A) = true) return A;
    t
return A
```


4 Summary

The GeTS language is a special purpose functional specification and programming language for temporal notions. It has a basic set of general purpose functional and imperative programming language features. In addition there are a number of built-in data structures and functions which are specific for this application. The most important ones are time points, fuzzy temporal intervals and labelled partitionings of the time line.

GeTS is not a stand alone programming language. It must be part of a host system which provides these data structures and which invokes the GeTS application programming interface.

The GeTS constructs were carefully chosen as a compromise between simplicity and easy usage. Future applications will show whether this goal has been achieved.

References

[1] T. Berners-Lee, M. Fischetti, and M. Dertouzos. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web. Harper, San Francisco, September 1999. ISBN: 0062515861.
[2] Claudio Bettini, Sushil Jajodia, and Sean X. Wang. Time Granularities in Databases, Data Mining and Temporal Reasoning. Springer Verlag, 2000.
[3] François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, and Stephanie Spranger. On reasoning on time and location on the web. In N. Henze F. Bry and J. Malusyński, editors, Principles and Practice of Semantic Web Reasoning, volume 2901 of LNCS, pages 69-83. Springer Verlag, 2003.
[4] Nachum Dershowitz and Edward M. Reingold. Calendrical Calculations. Cambridge University Press, 1997.
[5] Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, 2000.
[6] Hans Jürgen Ohlbach. About real time, calendar systems and temporal notions. In H. Barringer and D. Gabbay, editors, Advances in Temporal Logic, pages 319-338. Kluwer Academic Publishers, 2000.
[7] Hans Jürgen Ohlbach. Calendar logic. In I. Hodkinson D.M. Gabbay and M. Reynolds, editors, Temporal Logic: Mathematical Foundations and Computational Aspec ts, pages 489-586. Oxford University Press, 2000.
[8] Hans Jürgen Ohlbach. Geotemporal reasoning: Basic theory. Deliverable D1 of EU NoE Rewerse Working Group A1, 2004.
[9] Hans Jürgen Ohlbach. Relations between fuzzy time intervals. In C. Combi and G. Ligozat, editors, Proc. of the 11th International Symposium on Temporal Representation and Reasoning, pages 44-51, Los Alamitos, California, 2004. IEEE.
[10] Hans Jürgen Ohlbach. The role of labelled partitionings for modelling periodic temporal notions. httpd://www.informatik.unimuenchen.de/mitarbeiter/ohlbach/homepage/publications/PRP/abstracts.shtml, 2004. To be published.
[11] Hans Jürgen Ohlbach. The role of labelled partitionings for modelling periodic temporal notions. In C. Combi and G. Ligozat, editors, Proc. of TIME 2004, pages 60-63, Los Alamitos, California, 2004. IEEE.
[12] L. A. Zadeh. Fuzzy sets. Information \& Control, 8:338-353, 1965.

Appendix

A Overview over the Language Constructs

The language constructs are summarized and briefly explained.

A. 1 Types

Data Structure Types

Integer	standard integers
Time	very long integers
Float	standard floating point numbers
String	strings
Interval	fuzzy intervals
Partitioning	partitionings
Label	labels for partitions
Duration	durations
DateFormat	date formats

Enumeration Types

type name	possible values
Bool	true/false
Side	left/right
PosNeg	positive/negative
UpDown	up/down
IntvRegion	core/kernel/support
PointRegion	core/kernel/support/maximum
Hull	core/kernel/support/crisp/monotone/convex
Fuzzify	linear/gaussian
Inclusion	subset/overlaps/bigger_part_inside
SplitInclusion	align/subset/overlaps/bigger_part_inside
Sequencing	sequential/overlapping/with_gaps
SDVersion	Kleene/Lukasiewicz/Goedel

A. 2 Arithmetics

Binary Arithmetic Operators

The operators are + (addition), (subtraction), * (multiplication), (division), \% (modulo), max, min, pow (exponentiation) (Def. 3.14.

Unary Arithmetic Operators

- (negation), float(b) (Bool \mapsto Float), round(a), round(a,up/down) (Def. 3.15).

Comparisons

$<,<=,>,>=$ (Def. 3.16].
$==,!=$ (Def. 3.17).

A. 3 Boolean Operators

- (complement), and or '\&\&' (conjunction), or or ' $\|$ ' (disjunction), xor or " (exclusive or) (Def. [3.18).

A. 4 Control Constructs

if c then a else b (Def. 3.19). case $C_{1}: E_{1}, \ldots, C_{n}: E_{n}$ else D (Def. 3.20).
while $c\left\{E_{1}, \ldots, E_{n}\right\} D$ (Def. 3.21).
Let variable $=$ expression 1 in expression 2 (local binding) (Def. (3.22).
dLet year \mid month $\mid \ldots=$ date(time, dateFormat) in expression (local binding of dates) (Def. 3.65].
$x:=E$ (assignment) (Def. 3.23].

A. 5 Time Points

now () of type Time (current moment in time) (Def. 3.25)
shift(time, duration, asGranule, dateOriented) of type Time $*$ Duration $*$ Bool $*$ Bool \mapsto Time (time shift by a duration) (Def. 3.28)
shiftLength(time, duration, asGranule, dateOriented) of type Time $*$ Duration $*$ Bool $*$ Bool \mapsto Time (length of a time shift by a duration) (Def. 3.28)

```
isInfinity(time) Time\mapstoBool
isInfinity(time,positive/negative) Time * PosNeg \mapsto Bool (Def. 3.36
```

length $\left(t_{1}, t_{2}\right.$, partitioning, asGranule) of type Time $*$ Time $*$ Partitioning $*$ Bool \mapsto Float (length between t_{1}, t_{2} in terms of the partitioning or granule) (Def. 3.42)

A. 6 Intervals

[] of type Interval (empty interval)
[t1, t2] of type Interval (new crisp interval from t1 until t2)
pushback (I, time, value) of type Interval $*$ Time $*$ Float \mapsto Void adds (time, value) to the membership function of the interval (Def. 3.30).

```
Set Operations on Intervals
complement(I)
    of type Interval }\mapsto\mathrm{ Interval
complement(I, \lambda)
    of type Interval * Float }\mapsto\mathrm{ Interval
complement(I, negation_function)
    of type Interval * (Float \mapstoFloat)\mapsto Interval (Def. 3.31]
```

```
union \((I, J)\)
    of type Interval * Interval \(\mapsto\) Interval
union \((I, J, \beta)\)
    of type Interval \(*\) Interval \(*\) Float \(\mapsto\) Interval
union( \(I\), \(J\), co_norm)
    of type Interval \(*\) Interval \(*\) (Float \(*\) Float \(\mapsto\) Float) \(\mapsto\) Interval (Def. 3.32)
intersection \((I, J)\)
    of type Interval * Interval \(\mapsto\) Interval
intersection \((I, J, \gamma)\)
    of type Interval * Interval \(*\) Float \(\mapsto\) Interval
intersection( \(I, J\), norm \()\) )
    of type Interval * Interval * (Float * Float \(\mapsto\) Float) \(\mapsto\) Interval (Def. 3.33)
setdifference \((I, J)\)
    of type Interval * Interval \(\mapsto\) Interval
setdifference( \(I, J\), version)
    of type Interval \(*\) Interval \(*\) SDVersion \(\mapsto\) Interval
setdifference( \(I, J\), intersection, complement)
    of type Interval * Interval * (Interval * Interval \(\mapsto\) Interval)*
                (Interval \(\mapsto\) Interval) \(\mapsto\) Interval (Def. [3.34]
```


Predicates on Intervals

```
isCrisp(I) Interval \mapsto Bool
isCrisp(I,left/right) Interval * Side }\mapsto\mathrm{ Bool
isEmpty(I) Interval \mapsto Bool
isConvex(I) Interval }\mapsto\mathrm{ Bool
isMonotone(I) Interval }\mapsto\mathrm{ Bool
isInfinite(I) Interval\mapstoBool
isInfinite(I,left/right) Interval * Side \mapstoBool (Def. 3.35)
```

during (time, I, core/kernel/support) of type Time $*$ Interval $*$ IntvRegion \mapsto Bool checks
whether time is in the corresponding region of the interval I (Def. 3.37.
isSubset (I, J, core/kernel/support) of type Interval * Interval * IntvRegion \mapsto Bool
checks whether the corresponding region of I is a subset of the corresponding region of J (Def.
3.37.
doesOverlap $(I, J$, core/kernel/support) of type Interval $*$ Interval * IntvRegion \mapsto Bool
checks whether the corresponding region of I overlaps with the corresponding region of J (Def.
3.37.
member (time, I) of type Time $*$ Interval \mapsto Float (membership function) (Def. 3.38.
components (I) of type Interval \mapsto Integer (number of components of I) (Def. [2.2.].
component (I, k) of type Interval $*$ Integer \mapsto Interval (k th component of I) (Def. [2.2].
size (I) of type Interval \mapsto Time (size of the interval) (Def. 3.40)
size (I, region) of type Interval $*$ IntvRegion \mapsto Time (size of the corresponding region of the
interval) (Def. 3.40)
$\operatorname{size}\left(I, t_{1}, t_{2}\right)$ of type Interval $*$ Time $*$ Time \mapsto Time (size of the interval between t_{1} and t_{2})
(Def. 3.40)
$\sup (I)$ of type Interval \mapsto Float (supremum of I) (Def. 3.41)
$\inf (I)$ of type Interval \mapsto Float (infimum of I) (Def. 3.41)
point (I, side, region) of type Interval $*$ Side $*$ PointRegion \mapsto Time (position of the corresponding end of the region) (Def. [3.44].
centerPoint (I, n, m) of type Interval $*$ Integer $*$ Integer \mapsto Time (n - m center point) (Def. 3.46].

Manipulation of Intervals

$\operatorname{shift}(I, t)$ of type Interval * Time \mapsto Interval shifts the interval by the given time (Def. 3.47.
cut $\left(I, t_{1}, t_{2}\right)$ of type Interval $*$ Time $*$ Time \mapsto Interval (extracts the part of I between t_{1} and t_{2}) (Def. 3.48).
hull(I, core/support/kernel/crisp/monotone/convex) of type Interval*Hull \mapsto Interval (construction of the corresponding hull) (Def. 3.49).
invert (I) of type Interval \mapsto Interval inverts the membership function (Def. 3.50].
scaleup (I) of type Interval \mapsto Interval scales the membership function up to maximal value 1 (Def. 3.51).
times (I, f) of type Interval $*$ Float \mapsto Interval multiplies the membership function of I with f (Def. 3.52).
$\exp (I, e)$ of type Interval $*$ Float \mapsto Interval exponentiates the membership function of I with e (Def. 3.52].
extend(I, positive/negative) of type Interval*PosNeg \mapsto Interval extends I to the infinity (Def. [3.53]).
extend (I, length, side) of type Interval $*$ Time $*$ Side \mapsto Interval extends or shrinks I (Def. 3.54].
integrate(I, positive/negative) of type Interval*PosNeg \mapsto Interval integrates the membership function (Def. 3.55).
fuzzify(I, linear/gaussian, left/right, increase, offset)
of type Interval, Fuzzify, Side, Float, Float \mapsto Interval
fuzzify(I, linear/gaussian,left/right, $x 1$, $x 2$, offset)
of type Interval, Fuzzify, Side, Time, Time, Time \mapsto Interval (Def. 3.57)
fuzzifies the interval at the given side with the given fuzzification function.
integrateSymmetric(I, J, simple)
of typeInterval * Interval * Bool \mapsto Float and
integrateAsymmetric (I, J)
of type Interval * Interval \mapsto Float
symmetric or asymmetric integration of the membership function of I over the membership function of J (Def. 3.59).
MaximizeOverlap $(I, J, E J, D)$ of type Interval*Interval*Interval*(Interval*Interval \mapsto Float) \mapsto Float (Def. 3.61)

A. 7 Time and Partitions

time (year \mid month $\mid \ldots$, dateFormat) of type Integer $\mid \ldots$ Integer $*$ DateFormat \mapsto Time maps a date in a given date format to the time point denoted by this date (Def. 3.64].

```
partition(time, partitioning) of type Time * Partitioning \mapsto Interval
partition(time, partitioning, n,m) of type
Time * Partitioning* Integer * Integer }\mapsto\mathrm{ Interval
compute partitions as intervals (Def. 3.66).
```

partitionBoundary(time, partitioning, left/right) of type Time $*$ Partitioning $*$ Side \mapsto
Time compute partition boundaries (Def. 3.67).
partitioningIsBounded $(P$, left/right) of type Partitioning*Side \mapsto Bool checks whether
the valid region of the partitioning is bounded (Def. [3.68).
partitioningBoundary $(P$, left/right) of type Partitioning $*$ Side \mapsto Time returns the
boundaries of the valid region of the partitioning (Def. [3.68).
which $($ time $, ~ P, ~ Q$, inclusion, asGranule) of type Time $*$ Partitioning*Partitioning*Inclusion $*$
Bool \mapsto Time (which week in the year, for example) (Def. 3.69)

Labels

label(time, partitioning) of type Time $*$ Partitioning \mapsto Label returns the label of the corresponding partition (Def. 3.70.
isLabel (label) of type Label \mapsto Bool checks whether the label is not the NULL label (Def. 3.70].
isGap (label) of type Label \mapsto Bool checks whether the label is the gap label (Def. 3.70.
LabelName (string) of type String \mapsto Bool turns the string into a label (Def. 3.70].
extractLabelled(I, label, partitioning, inclusion, intersect) of type Interval*Label*Partitioning*
SplitInclusion $*$ Bool \mapsto Interval extracts partitions in the interval I with the given label
(Def. 3.71).
nextGranule(time, partitioning, label, n, withGaps) of type Time $*$ Partitioning $*$ Label $*$ Integer $*$ Bool \mapsto Interval constructs a new interval which represents a granule (Def. [3.72].

Loops over Intervals

componentwise $(I$, initialObject, operation, combination) of type Interval $* T *$ (Interval \mapsto $T) *(T * T \mapsto T) \mapsto T$ applies operation to all components of the interval (Def. 3.73).
split(I, duration, asGranule, dateOriented, initialObject, operation, combination, region, forward, inclusion, sequencing, intersect) of type
Interval $*$ Duration $*$ Bool $*$ Bool $* T *($ Interval $\mapsto T) *($ Interval $*$ Interval $\mapsto T) *$ IntvRegion $*$ Bool $*$ SplitInclusion $*$ Sequencing $*$ Bool $\mapsto T$
splits the interval into parts and applies the operation to them (Def. 3.74).

B The Application Programming Interface

The C++ API of the GeTS language is as follows:
GeTS functions are realized as a class Function in a namespace GeTS. They can be defined, they can be applied to arguments, and some information about them can be retrieved.

Definition:

A new GeTS function can be created with an ordinary constructor:

```
fct = new Function(definition).
```

The definition is a string representation of the definition, optionally followed by the keyword explanation and some text. The explanation can be retrieved just by fct->explanation.

The definition is parsed and compiled. Parsing or compilation errors can be obtained by $f c t->$ getError (). The function $f c t->$ noError () checks whether there was a parsing or compilation error.

Information about Functions:

The function definitions can be obtained in different versions:
fct->callString() returns the function call as string
fct->typeString() returns the function type as string
fct->definitionString() returns the function definition with line numbering as string.
fct->codeString() returns the abstract machine code as string.
Example B. 1 (for codeString()) The code string for the function

```
PIRBefore(Time t, Interval I) =
    if (isEmpty(I) or isInfinite(I,left)) then false
    else (t < point(I,left,support))
```

(Example 3.3) is
I[1, Interval]
isEmpty(Interval->Bool)
||(Bool*Bool->Bool)
I [1, Interval]
left[-1,left,Side]
isInfinite(Interval*Side->Bool)
||(Bool*Bool->Bool)
IfThenElse(Bool*Bool*Bool->Bool)
false[-1,false,Bool]
IfThenElse(Bool*Bool*Bool->Bool)
t [0, Time]
I[1, Interval]
left[-1,left,Side]
support [-1, support,IntvRegion]
point(Interval*Side*IntvRegion->Time)
<(Time*Time->Bool)
IfThenElse(Bool*Bool*Bool->Bool)

It should be fairly obvious what this means. For example, line 0 , I [1, Interval] means that the parameter I at parameter position 1 and of type Interval is pushed to the stack. Line 1: isEmpty (Interval->Bool) means that the isEmpty predicate pops its argument from the stack, performs the check, and pushes the result to the stack again. Line 2: || (Bool*Bool->Bool) is the first invocation of the or check. It checks the top of stack. If this is the Boolean value true then this value is popped from the stack and the program counter is set to 7 . The remaining program steps are more or less self explaining.

It should be noticed that the actual computations, for example, integrating over a membership function of an interval, are done with compiled machine code. The commands of the GeTS abstract machine are only used to control the invocation of this machine code.

Auxiliary Classes and Types:

The data types of GeTS are represented as a class Type in the namespace GeTS. They can be basic data types or compound types. The most important API method for types is toString. Most other methods are for internal use.

The data which are manipulated by a GeTS function are comprised into a union type. Without further explanation we just list the definition.

```
union GeTSValue {
    long long int* Time;
    PartLib::Partitioning* Partitioning;
    PartLib::Label* Label;
    PartLib::DateFormat* DateFormat;
    FuTIRe::Interval* Interval;
    Function* lFunction;
    int Integer;
    float Float;
    bool Bool;
    DurationSpec* Duration;
    string* String;
};
```


Application:

There are two application functions:

```
pair<Type*, GeTSValue> apply(vector<pair<Type*, GeTSValue> >& values)
```

can be used to apply the function to a vector of parameters. The result is a pair consisting of the result type and the result value.

The other method

```
pair<Type*, GeTSValue>
    apply(const string& arguments,const vector<FuTIRe::Interval*>& intervals)
```

can be used to apply the function to a string representation of the parameters. Intervals are represented as non-negative integers. The integers are used as indices in the given vector of interval pointers. The result is again a type-value pair.

[^0]: ${ }^{1}$ CTTN stands for 'Computational Treatment of Temporal Notions'. The initial working name was actually 'WebCal'. Unfortunately this name had to be given up because of name conflicts with other systems.

[^1]: ${ }^{2}$ Crisp intervals in CTTN are always half-open intervals [..., ... [. Sequences of such intervals, for example sequences of days, can therefore be used to partition a time period. The syntactic representation of these intervals in GeTS is [...,...] and not [...,...[because this simplifies the grammar and the parser considerably.

[^2]: ${ }^{3}$ According to ISO 8601, the first day in a week is Monday. In the standard notation this is day number 1. Since we count days from 0 , Monday is day 0 and Tuesday is day 1 .

[^3]: ${ }^{4}$ Norms and co-norms are binary functions on membership values of fuzzy sets. They satisfy conditions which make sure that the corresponding set operations can be considered as union and intersection [5].

