

I1-D2
First-Version Controlled English Rule Language

Project number: IST2004506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Eindhoven/I1-D2/D/PU/b1
Responsible editor(s): Gerd Wagner
Reviewer(s): Piero Bonatti
Contributing participants: Eindhoven, Zurich, LibRT
Contributing workpackages: I1
Contractual date of delivery: 28. February 2005
Actual date of delivery: 13. April 2005

Abstract
This report discusses several approaches to Controlled English and the problem of
verbal representations of rules and suggests a method for verbalizing the visual and
formal representations of vocabularies and rules obtained by UML class models and
OWL ontologies. The method, called I1 Controlled English (I1CE), is based on
defining verbalization patterns for all important kinds of fact types (predicates), and
combining them with the help of keywords expressing quantifiers, logical connectives
and other sentence construction operators. An important issue is the quality of the
verbalization results. It is discussed that the simple mapping techniques based on fact
type verbalization patterns lead to results that are acceptable in many important cases
but which could be further improved by applying more advanced techniques such as
the DRS-based treatment of anaphora employed in the Attempto system.

Keyword List
vocabularies and rules, fact types, verbalization, Controlled English

Project co-founded by the European Commission and the Swiss Federal Office for Education and
Science within the Sixth Framework Programme

© REWERSE 2005

 2

 3

First-Version Controlled English Rule Language

Gerd Wagner1, Sergey Lukichev2, Norbert E. Fuchs3, and Silvie
Spreeuwenberg4

1 Institute of Informatics, Brandenburg University of Technology at Cottbus
(formerly Eindhoven University of Technology)

Email: G.Wagner@tu-cottbus.de
2 Institute of Informatics, Brandenburg University of Technology Cottbus

Email: slukichev@informatik.tu-cottbus.de
3 Department of Informatics, University of Zurich

Email: fuchs@ifi.unizh.ch
4 LibRT

Email: info@librt.com

Abstract
This report discusses several approaches to Controlled English and the problem of
verbal representations of rules and suggests a method for verbalizing the visual and
formal representations of vocabularies and rules obtained by UML class models and
OWL ontologies. The method, called I1 Controlled English (I1CE), is based on
defining verbalization patterns for all important kinds of fact types (predicates), and
combining them with the help of keywords expressing quantifiers, logical connectives
and other sentence construction operators. An important issue is the quality of the
verbalization results. It is discussed that the simple mapping techniques based on fact
type verbalization patterns lead to results that are acceptable in many important cases
but which could be further improved by applying more advanced techniques such as
the DRS-based treatment of anaphora employed in the Attempto system.

Keyword List
vocabularies and rules, fact types, verbalization, Controlled English

 5

Contents

1. Introduction...7
2. Foundational Concepts..7

2.1. Things, Sets, Entities and Individuals ..8
2.2. Entity Types and Datatypes ...8
2.3. Facts and Statements ..9
2.4. Fact Types ...9

3. SBVR ..10
3.1. Business vocabulary ..10
3.2. Business Rule ..10
3.3. Rules and Formal Logic ...10
3.4. Rules, Fact Types and Concepts expressed by Terms...11
3.5. Overview of SBVR ...11

3.5.1. Community...12
3.5.2. 'Body of Shared Meanings' ..12
3.5.3. 'Logical Formulation' ..12
3.5.4. Business Expression..12
3.5.5. Logical Expressions ...12

3.6. SBVR Structured English ...13
3.6.1. Expressions in SBVR Structured English...13
3.6.2. Key words and phrases for “logical formulations” ..14
3.6.3. Other keywords..15
3.6.4. Example ...15

3.7. Describing a Vocabulary ..15
3.8. Vocabulary Entries ...15

3.8.1. Designation or Form of Expression..16
3.8.2. Definition ..16

3.9. Specifying a Rule Set...17
3.10. Rule and Clarification Entries...17

3.10.1. Rule Statement or Clarification Statement ...17
3.10.2. Enforcement Level ...18

4. Metalog 18
4.1. The Metalog Model Level...18
4.2. The Metalog Logic Level ..18
4.3. The PNL ...19

5. Attempto Controlled English...20
5.1. Vocabulary ...20
5.2. Grammar ..20

5.2.1. ACE Texts..20
5.2.2. Simple Sentences ..20
5.2.3. Composite Sentences..21
5.2.4. Query Sentences ...22

 6

5.3. Constraining Ambiguity ..23
5.4. Avoidance of Ambiguity..23
5.5. Interpretation rules ...23
5.6. Anaphoric References..24
5.7. Extending ACE to Handle Modality..25

5.7.1. Fixed Modal Phrases ...25
5.7.2. Sentence Reification ..26

5.8. Modality in ACE and in SBVR Structured English ...26
5.9. Alternatives to ACE: PENG..27
5.10. Alternatives to ACE: CLCE ..27
5.11. Verbalisation in ACE ..28

6. The First Version I1 Controlled English (I1CE-V1)..28
6.1. Association Facts ...29

6.1.1. Expressing Functionality or Non-Functionality ...30
6.1.2. Deriving Predicates from Fact Types by Partial Instantiation...31

6.2. Attribution Facts ...31
6.2.1. Constrained Attribution Facts...32

6.3. Generalization Statements...32
6.4. Classification Facts ..32
6.5. Categorization Facts ..33
6.6. Equality and Inequality Facts ...34
6.7. Aggregation Facts ..34
6.8. Multiplicity constraints ..34

6.8.1. Totality and functionality constraints ..35
6.8.2. Neither total nor functional ...35

6.9. Some Rule Examples...36
6.9.1. Defining a derived categorization fact type by means of attribution fact types.............................36
6.9.2. Defining a derived association fact type by means of other association fact types and

categorization fact types...37
6.9.3. Defining a derived categorization fact type by means of association fact types38

7. Conclusion ..38
References ..38
8. Appendix ...39

8.1. Metalog representation of the example in section 6.9.1 ..39
8.2. Metalog representation of the example in section 6.9.2 ..40
8.3. Metalog representation of the example in section 6.9.3 ..41
8.4. EU-Rent domain model..43

8.4.1. EU-Rent vocabulary definition ...44

1. Introduction
A Controlled English (CE) vocabulary and rule language can be used for two
purposes:

! capturing vocabularies and rules, and

! verbalizing vocabularies and rules.

The second purpose, verbalizing visually and/or formally represented vocabularies
and rules, is important to be able to present rules to domain experts for validation.
This is an essential building block in any rule-based methodology. Being able to
capture rules in English is a desirable, but more advanced, feature of such a
methodology. In this report we will only be concerned with developing a CE for the
purpose of verbalization. We may consider the issue of rule capture in the future.

We want to be able to verbalize various kinds of expressions and statements from
visual (UML) and formal (OCL, RDF, OWL) vocabulary and rule languages.

The mapping from the visual or formal representation to the CE proposed by I1 is
defined case-wise for each type of atomic sentence in the representation language. In
general, we will distinguish between different kinds of basic logical statements:

1 association fact
− binary association fact

2 attribution fact
− constrained attribution fact
− data constraint

3 classification fact
4 equality/inequality fact
5 aggregation fact
6 generalization statement

These concepts are explained in the next section.

2. Foundational Concepts
In this chapter, we discuss the foundational concepts (or meta-concepts) being used in
this report and the terms we are using to designate them. These concepts, and their
canonical designations, are described in a foundational vocabulary, which is also
called a foundational (or ‘upper level’) ontology. They define a range of top-level
domain-independent ontological categories, which form a general foundation for more
elaborated domain-specific vocabularies. Our foundational vocabulary is based on the
Unified Foundational Ontology (UFO) proposed in [GW05a, GW05b].

Our analysis is focused on four languages for expressing vocabularies and rules:

1. SBVR – "Semantics of Business Vocabularies and Rules", the main submission to
the OMG BSBR CFP [SBVR]

2. UML – the Unified Modeling Language of the OMG [UML]

3. RDF – the Resource Description Framework of the W3C [RDFCAS]

4. OWL – the Web Ontology Language of the W3C [OWL]

 8

All these languages come with their own foundational vocabulary, employing
different (or the same) designations for the same (or different) concepts. The I1
foundational vocabulary helps to understand the differences and overlaps among these
terminologies.

For simplicity, we will not always be consistent in distinguishing the conceptual from
the terminological level; we will, for instance, often say "rule" instead of "rule
expression", "fact" instead of "fact statement", and "fact type" instead of "fact type
expression".

2.1. Things, Sets, Entities and Individuals

A thing is 'anything perceivable or conceivable’, according to (ISO, 2000) where the
designation 'object’ is used instead of 'thing'. This includes concrete entities and also
abstract things such as sets A set is a thing that has other things as members (in the
sense of set theory).

An entity is a thing that is not a set; neither the set-theoretic membership relation nor
the subset relation can unfold the internal structure of an entity. An individual is an
entity that does not have any instances, i.e., that is not an entity type. A data value is a
member of a datatype, which is a particular kind of named set.

REWERSE-I1 UML SBVR RDF OWL
thing n.a. n.a. n.a.
entity Thing n.a.

individual object
resource (an
instance of
rdfs:Resource)

individual (an
instance of
owl:Thing)

data value data value

individual concept
literal (an instance
of rdfs:Literal) data value

2.2. Entity Types and Datatypes

An entity type is an entity that has an extension (the set of entities that are instances of
it) and an intension, which includes an applicability criterion for determining if an
entity is an instance of it. A basic entity type is an entity type whose instances are
individuals. A datatype is a set whose members are data values.
REWERSE-I1 UML SBVR RDF OWL
entity type n.a.

basic (1st order)
entity type

type / class class (an instance
of rdfs:Class)

class (an instance
of owl:Class, which
is a subclass of
rdfs:Class)

datatype datatype

object type /
general concept

datatype (an instance of rdfs:Datatype)

 9

Figure 1: The foundational vocabulary adopted by I1

2.3. Facts and Statements

We distinguish between 5 different kinds of facts. In addition to the basic fact kinds of
classification facts, association facts and attribution facts, we also consider
categorization facts and aggregation facts.
REWERSE-I1 UML SBVR RDF OWL
association fact Link associative fact n.a. n.a.
binary
association fact binary link binary associative

fact
individual-valued
property fact

attribution fact object-attribute-
value triple is-property-of fact

triple, statement data-valued
property fact

classification fact instanceOf
dependency assortment fact rdf:type

statement classification fact

categorization
fact n.a. categorization fact n.a. n.a.

aggregation fact aggregation link partitive fact n.a. n.a.
generalization
statement Generalization specialization fact subclassOf

statement subclass axiom

2.4. Fact Types

A fact type corresponds to a predicates in predicate logic. But while there is no further
distinction between different kinds of predicates in standard logic, we distinguish
between four different kinds of fact types, as depicted in the following table.
REWERSE-I1 UML SBVR RDF OWL
association fact
type association associative fact

type n.a. n.a.

binary fact type binary
association

associative binary
fact type

individual-valued
property (an instance
of owl:ObjectProperty)

attribution fact type attribute is-property-of fact
type

property (an
instance of
rdf:Property) data-valued property

(an instance of
owl:DatatypeProperty)

classification fact
type n.a. assortment fact

type n.a. n.a.

categorization fact
type n.a. categorization fact

type n.a. n.a.

aggregation fact
type aggregation partitive fact type n.a. n.a.

 10

3. SBVR
The Semantics of Business Vocabulary and Business Rules (SBVR) is the approach to
developing and structuring business vocabulary suited for business people to express
business rules. [SBVR]

It is taken to be within the business model layer of OMG’s Model Driven Architecture
and implies that SBVR is targeted at business rules and that business models describe
businesses and not the IT systems that support them.

3.1. Business vocabulary

A business vocabulary contains all the specialized terms and definitions of concepts
that a given organization or community uses in their talking and writing in the course
of doing business. SVBR is the result of the integration of this ISO standard, formal
logics, linguistics, and practical experience from BRT members who are foremost
practitioners in the field of Business Vocabulary for Business Rules.

SBVR-based business vocabulary strengths the semantics of ordinary business
glossaries of terms and their definitions.

3.2. Business Rule

The SBVR follows a common-sense definition of ‘business rule’:

Business Rule: rule that is under business jurisdiction

‘Under business jurisdiction’ is taken to mean that the business can enact, revise and
discontinue their business rules as they see fit.

All business rules need to be actionable. This means that a person who knows about a
business rule could observe a relevant situation (including his or her own behavior)
and decide directly whether or not the business was complying with the rule.

Just because business rules are actionable, this does not imply they are always
automatable. Many business rules, especially operative business rules, are not
automatable in IT systems.

3.3. Rules and Formal Logic

An important driver in the SBVR’s treatment of ‘rule’ is consistency with formal
logics. It is recommended that the best treatment for the SBVR’s interpretation of
rules would be as modal propositions claiming either obligation or necessity
modalities.

Consequently, in SBVR, a Rule is “an element of guidance that introduces an
obligation or a necessity”. The two fundamental categories of Rule are:

• Structural Rule (necessities): These are rules about how the business chooses
to organize (i.e., ‘structure’) the things it deals with. Structural Rules
supplement definitions. For example (from EU-Rent): Necessity: A Customer
has at least one of the following:

o a Rental Reservation.
o an in-progress Rental.
o a Rental completed in the past 5 years.

 11

• Operative Rules (obligations): These are rules that govern the conduct of
business activity. In contrast to Structural Rules, Operative Rules are ones that
can be directly violated by people involved in the affairs of the business. For
example (from EU-Rent):

Obligation: A Customer who appears intoxicated or drugged must not be
given possession of a Rental Car.

3.4. Rules, Fact Types and Concepts expressed by Terms

Rules in SBVR approach are always constructed by applying modal operators to fact
types. For example, the rule “A Rental must not have more than three Additional
Drivers” is based on the fact type “Rental has Additional Driver”.

By this means, SBVR realizes a core principle of the Business Rules Approach, which
is that “Business rules build on fact types, and fact types build on concepts as
expressed by terms.” This notion is well-documented in published material by
foremost industry experts over the past 10 years beginning with the Business Rules
Group’s seminal paper in 1995.

One important consequence of the SBVR’s approach in this regard is that concepts
(including fact types) are distinct from rules, which are in a separate Compliance
Point. This design permits SBVR’s support for concepts (including fact types) to be
optionally used on its own for building business vocabularies.

3.5. Overview of SBVR

SBVR can be viewed as having five major aspects, as illustrated below:

 12

3.5.1. Community

The basis for business vocabulary is Community. At the business level, communities
of primary importance are enterprises for which business rules are being established
and expressed. However, other communities - the industry in which an enterprise
operates, partner enterprises, standards groups, regulatory authorities, etc. - also need
to be recognized.

An important aspect of Community is that sub-communities within an enterprise may
need its Body of Shared Meanings (starting with fundamental concepts) to be
expressed in different vocabularies, ranging from specialized jargon to different
natural languages. In SBVR, such sub-communities are called “Speech
Communities”.

3.5.2. 'Body of Shared Meanings'

A community has a 'body of shared meanings', set of concepts (including fact types)
and business rules for which there is a shared understanding in a given semantic
community.

The structure of the 'Body of Shared Meanings' is defined by associating abstract
concepts, fact types and business rules, not by associating statements in any given
language.

3.5.3. 'Logical Formulation'

'Logical Formulation' means logical statements in formal logic language. The purpose
is to formalize business statements.

'Logical formulation' supports the mapping of a 'Body of Shared Meanings' to
Vocabularies used by Communities.

3.5.4. Business Expression

The concepts and business rules in a body of shared meanings need to be expressed in
vocabularies acceptable to, and usable by, Speech Communities that share their
meaning. These vocabularies may be in different natural languages, in artificial
languages such as the UML, or in specialized subsets of natural languages, as used by,
for example, engineers or lawyers.

SBVR supports mapping of business meaning to concrete language by associating
elements of the Body of Shared Meanings with signifiers, e.g. terms such as
“Customer”, “Car”, “Branch” for concepts, and fact symbols (often verb phrases)
such as “rents”, “is located at” for fact types. Logical formulations provide the
structure, and signifiers are placed in logical formulations to provide the expression.

3.5.5. Logical Expressions

SBVR has a sound theoretical foundation of formal logic, underpinning the structures
of “Bodies of Shared Meanings”. The base is first-order predicate logic (although
there is no restriction on extension into higher-order logics), with some limited
extensions into modal logic – notably some deontic forms, for expressing obligation
and prohibition, and alethic forms for expressing necessities.

 13

3.6. SBVR Structured English

The SBVR Structured English is just one of possibly many notations that can map to
the SBVR Metamodel.

There are any number of ways that BSBR vocabulary and other English vocabularies
described using SBVR can be combined with common English words and structures
to express definitions and statements. However expressed, the semantics of
definitions and rules can be formally represented in terms of the SBVR vocabulary
and, particularly, in terms of logical formulations (the SBVR conceptualization of
formal logic).

The SBVR Structured English is not meant to offer all of the variety of common
English, but rather, it uses a small number of English structures and common words to
provide a simple and straightforward mapping.

All formal definitions and rules that are part of ‘SBVR in terms of itself’ are stated
using the SBVR Structured English. These statements can then be interpreted
automatically in order to create MOF and/or XMI representations.

The description of the SBVR Structured English is divided into sections.

• Expressions in SBVR Structured English
• Describing a Vocabulary
• Vocabulary Entries
• Specifying a Rule Set
• Rule and Clarification Entries

3.6.1. Expressions in SBVR Structured English

Examples of BSBR approach at the end of this section contain numerous amounts of
statements.

Note that these fonts are also used for individual designations in the context of
ordinary, unformalized statements in order to note that defined concepts are being
used.

There are five markup font styles with formal meaning:

term The ‘term’ font is used for a designation for a type, one that
is part of a vocabulary being used or defined (e.g., person,
rental car, fact type). If a designation is mentioned (where
the designation is itself the subject of a statement) it appears
in this style within single quote marks (e.g., ‘modality’)

concept The ‘concept’ font is applied to a term in the special case
where the term is used to name the represented concept
rather than to refer to things denoted by the term. This is a
reference to the concept itself.

Name The ‘name’ font is used for a designation of an individual
concept — a name. Names tend to be proper nouns (e.g.,
California).

verb The ‘verb’ font is used for designations for fact types —
usually a verb, preposition or combination thereof. Such a
designation is defined in the context of a form of
expression.

 14

keyword The ‘keyword’ font is used for linguistic symbols used to
construct statements – the words that can be combined with
other designations to form statements and definitions (e.g.,
‘each’ and ‘it is required that’).

The SBVR Structured English uses designations and forms of expressions exactly as
they are defined in a vocabulary. Plural forms are not used to avoid linguistic
difficulties. For example, a formal statement would say “each concept” rather than
“all concepts.” Both the active form and the passive form of a verb need to be defined
in a vocabulary if both are used.

3.6.2. Key words and phrases for “logical formulations”

Key words and phrases are shown below for expressing each kind of “logical
formulation”. The letters ‘n’ and ‘m’ represent use of a literal whole number. The
letters ‘p’ and ‘q’ represent expressions of propositions.
3.6.2.1. Quantification

Universal quantification (each), existential quantification (some, at least one), at-least-
n quantification (at least n), at-most-one quantification (at most one), at-most-n
quantification (at most n), exactly-one quantification (exactly one), exactly-n
quantification (exactly n), numeric range quantification (at least n and at most m), at-
least-2 quantification (more than one).
3.6.2.2. Logical Operations

Logical negation (it is not the case that p), conjunction (p and q), disjunction (p or q),
exclusive disjunction (p or q but not both), implication (if p then q, q if p),
equivalence (p if and only if q), nand formulation (not both p and q), nor formulation
(neither p nor q), whether-or-not formulation (p whether or not q)

Where a subject is repeated when using ‘and’ or ‘or’, the repeated subject can be
elided.

The keyword ‘not’ is used within an expression before the verb “is” as a way of
introducing a logical negation. Also, the key words “does not” are used before other
verbs (modified to be infinitive) to introduce a logical negation.
3.6.2.3. Modal Operations

There are two styles of SBVR Structured English:

1. Prefixed Rule Keyword Style
2. Embedded (Mixfix) Rule Keyword Style

The Prefix Style introduces rules by prefixing a statement with keywords that convey
a modality

Operative Business Rules and
Clarifications

Structural Rules and Clarifications*

It is obligatory that It is necessary that
It is prohibited that It is impossible that
It is permitted that It is possible that

The Embedded Style features the use of rule keywords embedded (usually in front of
verbs) within rules statements of appropriate kind. The following key words are used
within expressions having a verb (often modified to be infinitive) to form verb
complexes that add a modal operation.

 15

Operative Business Rules and
Clarifications

Structural Rules and Clarifications*

… must … … always …
… must not … … never …
… may … … sometimes …

3.6.3. Other keywords

the 1. used with a designation to make a pronominal reference to a
previous use of the same designation. This is formally a
binding to a variable of a quantification.

2. introduction of a name of an individual thing or of a definite
description

a, an universal or existential quantification, depending on context
based on English rules

that 1. when preceding a designation for a type or role, this is a
binding to a variable (as with ‘the’)
2. when after a designation for a type or role and before a
designation for a fact type, this is used to introduce a restriction
on things denoted by the previous designation based on facts
about them

3.6.4. Example

It is obligatory that each rental car is owned by exactly one branch.

The example above includes three key words or phrases, two designations for types
and one for a fact type (from a form of expression), as illustrated below.

3.7. Describing a Vocabulary

A vocabulary is described in a document section having glossary-like entries for
concepts having representations in the vocabulary. The introduction to a vocabulary
description includes the vocabulary’s name and can further include any of the several
kinds of details: vocabulary name, description, source, speech community, language,
included vocabulary, and note.

3.8. Vocabulary Entries

Each entry is for a single concept, called the entry concept. It starts with a
representation of the concept, either a designation or a form of expression.

 16

Any of several kinds of captioned details can be listed under the representation. A
skeleton of a vocabulary entry includes the following captions: designation of form of
expression, definition, source, dictionary basis, general concept, concept type, symbol
type, necessity, possibility, reference scheme, note, example, synonym, synonymous
form, see, qualifier.

The explanation of the use of some captions is given below.

3.8.1. Designation or Form of Expression

The designation or form of expression, called the ‘primary representation’ with
respect to each entry, can be for any concept type. The primary representation for a
fact type is a form of expression.

3.8.2. Definition

A definition is shown as an expression that can be logically substituted for the
primary representation. It is not a sentence, so it does not end in a period.

A definition can be fully formal, partly formal or informal. It is fully formal if all of it
is styled as described above. A partially-formal definition starts with a styled
designation for a more general concept but other details depend on external concepts.

Styles of definition are explained separately for different types of concepts.
3.8.2.1. Definition of a Type or Role

A common pattern of definition begins with a designation for a more general concept
followed by the keyword ‘that’ and then an expression of necessary and sufficient
characteristics that distinguish a thing of the defined concept from other things of the
more general concept. Another less used pattern also leads with a designation for a
more general concept but then uses the word ‘of’ with another expression as explained
above.

Two kinds of information are formally expressed by a fully formal definition.

1. A fact that the concept being defined is a category of a particular more general
concept

2. A closed set projection that defines the concept.

Only the first kind of information is formally expressed by a partially formal
definition. A partially formal definition leads with a styled designation that is for a
more general concept. That designation is generally followed by the keyword ‘that’
and then an informal expression of necessary and sufficient characteristics.
3.8.2.2. Definition of an Individual Concept

A definition of an individual concept is just like a definition of a type except that it
must be a definite description of one single thing.

A definition of an individual concept can generally be read as a statement using the
following pattern. The leading “The” is optionally used depending on the
designation.

[The] <designation> is the <definition>.
3.8.2.3. Definition of a Fact Type

A definition given for a fact type is an expression that can be substituted for a simple
statement expressed using a form of expression of the fact type.

 17

The definition must refer to the placeholders in the form of expression. This is done
in order to relate the definition to the things that play a role in instances of the fact
type. Whether or not the definition is formal, each reference to a placeholder appears
in the ‘term’ font and is preceded by the definite article, “the”.

A definition of a fact type can generally be read using the pattern below, which is
shown for a binary fact type but works for fact types of any arity (“a” represents either
“a” or “an”).

A fact that a given <placeholder 1> <fact type designation> a given
<placeholder 2> is a fact that <definition>.

For example: A fact that a given statement expresses a given proposition is a fact that
the proposition is what is meant by the statement.

Similarly, the equivalence understood from a definition of a fact type can generally be
read using the following pattern:

A <placeholder 1> <fact type designation> a <placeholder 2> if and only if
<definition>.

For example: A statement expresses a proposition if and only if the proposition is
what is meant by the statement.

3.9. Specifying a Rule Set

A rule set is specified in a document section having several individual entries for rules
and clarifications. The introduction to a rule set includes the rule set’s name,
description, vocabulary, note, and source.

3.10. Rule and Clarification Entries

Each entry in a rule set is an element of guidance—expressed as one of the following:

! An operative business rule statement.
! An operative business rule clarification statement.
! A structural business rule statement.
! A structural business rule clarification statement.

Business rules include only those rules under business jurisdiction. Similarly, business
rule clarifications include only those clarifications under business jurisdiction. Entries
can also be made for structural rules and clarifications that are not under business
jurisdiction. These entries are, respectively:

! A structural rule statement.
! A structural rule clarification statement.

Each entry includes the statement itself and optionally includes the following
captions: name, guidance type, description, source, synonymous form, note, example,
enforcement level.

3.10.1. Rule Statement or Clarification Statement

A rule statement or clarification statement can be expressed formally or informally.
A statement that is formal uses only formally styled text — all necessary vocabulary
is available (by definition or adoption) such that no external concepts are required.
Such a statement can be represented as a logical formulation.

 18

3.10.2. Enforcement Level

The ‘Enforcement Level’ caption labels the enforcement level that applies to an
operative business rule.

4. Metalog
The main idea of the Semantic Web is to provide a flexible “basic semantic
language”, RDF, which makes possible to codify the basic bricks of reasoning: then
on top of this “universal semantic alphabet”, more and more sophisticated
technologies can be employed, so to bring the expressive power to higher levels
[Metalog]. What has been somehow missing has been technologies that follow not
just the technological axis, but the people axis, i.e. technologies that empower the
people and try to make the semantic web closes to the widest possible audience,
possible sacrificing some of this power. For this purpose Metalog uses a so-called
Pseudo Natural Language (PNL), which is much similar to natural language, and
therefore allows an easy interfacing to the more complex underlying technologies of
the Semantic Web.

In the examples part of this document we demonstrate verbalization of business rules
with Metalog. The Metalog approach is composed by 3 major layers.

4.1. The Metalog Model Level

The first layer consists of an enrichment of the RDF model. RDF provides the basis
for the data structuring on the web in a consistent and accurate way. However, RDF is
only the first step towards the construction of what is called semantic web. RDF
provides only the basic vocabulary in which data can be expressed and structured. But
the problem of accessing and managing of the data arises. Metalog provides the way
to express logical relationships like “and”, “or” and “implication”. These are denoted
with ml:and, ml:or and ml:imply respectively. It provides a negation (not) operator,
and the classic comparison, which is used to name variables. Finally, it also provides
two annotation extensions, ml:annotation and ml:ns. The “semantic layer” is built on
top of RDF using so-called RDF schema.

4.2. The Metalog Logic Level

The second layer consists of a “logical interpretation” of RDF data into logic. It is
essentially a subset of equational First Order Logic. The basic intuition of the
recursive interpretation mapping:

• The ml:and, ml:or and ml:imply and “not” operators are translated into logical
conjunction, logical disjunction, logical implication and logical negation
respectively. The interpretation of operators, in almost all useful logics, is the
same, except logical interpretation of the not connector. There are different
alternatives to consider, giving different logics. The Metalog choice follows
from the intrinsic nature of the World Wide Web (where the Metalog system is
mainly expected to be used), as a distributed knowledge basis, with possible
partial information available: the interpretation of the not connector has been
chosen to be negation as failure (NAF), that is to say, the Closed World
Assumption is adopted.

 19

• Ground mathematics, and equality/inequality, can be naturally mapped into
this logic (this also means that the corresponding infinitary axioms for the
comparison and equality predicates has to be presented in MLL).

• Each literal/URI-reference is mapped into some constant via an injective
mapping.

• ml:name, ml:annotation and ml:ns are mapped into distinguished (i.e. distinct
and outside of the image of the literals/URI) constants.

• Each triple (S, P, O) that neither has Metalog extensions, nor is part of an RDF
container description is mapped into the predicate P(S,O).

• RDF Container description of type Seq (Bag, Alt resp.) containing k objects
are mapped into a distinguished k-ary operator SEQk (BAGk, ALTk resp)
applied to (the mapping) of its k operands.

4.3. The PNL

The third level is a language interface (PNL) for writing structured data and reasoning
rules. In principle, data and rules can be written directly in RDF, using RDF syntax
and the Metalog schema, but this is not convenient from the practical viewpoint. The
PNL stresses user-friendliness as much as possible: a program is a collection of
natural language assertions. Here is the simple example of the Metalog session:

comment: the simplest session.
comment: we start defining what things are.
CAR represents the car “Mini_Cooper” from the branch
“http://www.example.com/car”.
IS represents the verb “is” from the collection
“http://www.relationships.example.com/verbs”.
comment: now we say something.
CAR IS “available”.
comment: now we ask something.
do you know whether CAR IS AVAILABLE?

When this program is loaded in Metalog, it is actually colored in different ways, so to
better outline the various components of the discourse. The first, second, fifth and
sixth sentences would output as red, indicating that these are comments.

The third and fourth sentences would appear as green lines: green indicates that these
are so called “representation” parts. Representations are useful to denote shorthand: in
these sentences, we associate some entity (like CAR) to its corresponding concept (the
concept “Mini_Cooper” from the branch “http://www.example.com/car”.). This
means in certain sense that, anywhere, writing the whole the car “Mini_Cooper” from
the branch “http://www.example.com/car”. is pretty much equivalent to writing its
representation (the shorter CAR).

The last two sentences (the sixth and the eight) would appear on the Metalog screen in
blue, signaling that they can be either “assertions” or “queries”. An assertion is a
sentence where we state something. For instance, the first of such a blue lines in the
Metalog discourse (CAR IS “available”.) states precisely what it says. A query,
instead, is a sentence where we are asking Metalog for answers. In fact, the second
blue line is a query (do you know whether CAR IS AVAILABLE?). Queries can be
easily distinguished because they end with a question mark (“?”). Representations,
assertions, and queries are the three types of sentences in any Metalog discourse.

 20

Metalog queries not just return truth, but more meaningful answers, which is achieved
by the process of instantiations of the answers (where free variables are bound to
results, much like Prolog), and, above all, via return process called feedback.
Feedback allows re-computing back an answer, and trying to model it in the form of
natural language reply. To this extent, feedback utilizes special annotations, which
codify at the RDF level the information expressed by the representations, and use
them back after a reply is given by the inference engine, so to build up a meaningful
answer. For example, the above query would return that

CAR IS “available”.

together with the opportune (minimal) set of representations needed to understand the
answer.

5. Attempto Controlled English
Attempto Controlled English (ACE) is a controlled natural language, i.e. a precisely
defined subset of full English that can automatically and unambiguously be translated
into discourse representation structures, a variant of first-order logic. Thus ACE is
both human and machine understandable.

The following is a brief introduction into ACE. For a full account readers should
consult the ACE documentation found at the Attempt website
[www.ifi.unizh.ch/attempto].

5.1. Vocabulary

The vocabulary of ACE comprises
• predefined function words (e.g. determiners, conjunctions, prepositions)
• user-defined, domain-specific content words (nouns, verbs, adjectives, adverbs)

The Attempto system provides a large basic lexicon of content words. Users can
define additional content words with the help of a lexical editor, or can import
existing lexica.

5.2. Grammar

The grammar of ACE defines and constrains the form and the meaning of ACE texts.
ACE's grammar is expressed as a small set of construction rules.

5.2.1. ACE Texts

An ACE text is a sequence of anaphorically interrelated sentences. There are
• simple sentences
• composite sentences

Furthermore, there are query sentences that allow users to interrogate the contents of
an ACE text.

5.2.2. Simple Sentences

Simple ACE sentences have the following general structure:
subject + verb + complements + adjuncts

Each simple sentence has a subject and a verb. Complements (direct and indirect
objects) are necessary for transitive verbs (insert something) and ditransitive verbs

 21

(give something to somebody), whereas adjuncts (adverbs, prepositional phrases) are
optional.
Here are examples of simple sentences.

A customer waits.
A customer inserts 2 cards .
A card is valid.

All elements of a simple sentence can be elaborated upon to describe the situation in
more detail.
To further specify the nouns customer and card, we could add adjectives

A new customer inserts 2 valid cards.
possessive nouns and of-prepositional phrases

John’s customer inserts a card of Mary.
or proper nouns and variables as appositions

The customer Mr Miller inserts a card A.
Other modifications of nouns are possible through relative sentences

A customer who is new inserts a card that he owns.
which are described below since they make a sentence composite.
We can also detail the insert event, e.g. by adding an adverb

A customer inserts some cards manually.
or equivalently

A customer manually inserts not more than 2 cards.
or by adding prepositional phrases, e.g.

A customer inserts a card into a slot.
We can combine elaborations to arrive at

John’s customer who is new inserts a valid card of Mary manually into a slot A.

5.2.3. Composite Sentences

Composite sentences are recursively built from simpler sentences through
coordination, subordination, quantification, and negation.
Coordination by and is possible between sentences and between phrases of the same
syntactic type.

A customer inserts 2 cards and the machine checks their codes.
A customer inserts a card and enters a code.
An old and trusted customer enters a card and a code.

(NB. The coordination of the noun phrases a card and a code represents a plural
object.)
Coordination by or is possible between sentences and between verb phrases.

A customer inserts a card or enters a code.
Coordination by and and or is governed by the standard binding order of logic, i.e.
and binds stronger than or. Commas can be used to override the standard binding
order. Thus the sentence

A customer inserts a VisaCard or inserts a MasterCard, and inserts a code.
means that the customer inserts a VisaCard and a code or a MasterCard and a code.

 22

There are two forms of subordination: relative sentences and if-then sentences.
Relative sentences starting with who, which, that allow to add detail to nouns, e.g.

A customer who is new inserts a card that he owns.
With the help of if-then sentences we can specify conditional or hypothetical
situations, e.g.

If a card is valid then a customer inserts it.
Note the anaphoric reference via the pronoun it in the then-part to the noun phrase a
card in the if-part.
Quantification allows us to speak about all objects of a certain class, or to denote
explicitly the existence of at least one object of this class. To express that all involved
customers insert cards we can write

Every customer inserts a card.
This sentence means that each customer inserts a card that may, or may not, be the
same as the one inserted by another customer. To specify that all customers insert the
same card – however unrealistic that situation seems – we can write

There is a card that every customer inserts.
ACE does not know the passive voice. To state that every card is inserted by a
customer we write somewhat indirectly

For every card there is a customer who inserts it.
The textual occurrence of a quantifier opens its scope that extends to the end of the
sentence, or – in coordinations – to the end of the respective coordinated sentence.
Negation allows us to express that something is not the case, e.g.

A customer does not insert a card.
A card is not valid.

To negate something for all objects of a certain class one uses no
No customer inserts more than 2 cards.

or, equivalently, there is no
There is no customer who inserts a card.

To negate a complete statement one uses sentence negation
It is not the case that a customer inserts a card.

5.2.4. Query Sentences

Query sentences permit us to interrogate the contents of an ACE text. There are
yes/no-queries and wh-queries.
Yes/no-queries establish the existence or non-existence of a specified situation. If we
specified

A customer inserts a card.
then we can ask

Does a customer insert a card?
to get a positive answer.
With the help of wh-queries, i.e. queries with query words, we can interrogate a texts
for details of the specified situation. If we specified

A new customer inserts a valid card manually.
we can ask for each element of the sentence, e.g.

 23

Who inserts a card?
Which customer inserts a card?
What does the customer insert?
How does the customer insert a card?

Note, however, that we cannot ask for the verb itself.

5.3. Constraining Ambiguity

To constrain the ambiguity of full natural language ACE employs three simple means
• some ambiguous constructs are not part of the language; unambiguous

alternatives are available in their place
• all remaining ambiguous constructs are interpreted deterministically on the basis

of a small number of interpretation rules
• users can either accept the assigned interpretation, or they must rephrase the

input to obtain another one

5.4. Avoidance of Ambiguity

Here is an example of how ACE replaces ambiguous constructs by unambiguous
constructs. In full natural language relative sentences combined with coordinations
can introduce ambiguity, e.g.

A customer inserts a card that is valid and opens an account.
In ACE the sentence has the unequivocal meaning that the customer opens an
account. This is reflected as

A customer inserts {a card that is valid} and opens an account.
To express the alternative – though not very realistic – meaning that the card opens an
account the relative pronoun that must be repeated, thus yielding a coordination of
relative sentences.

A customer inserts a card that is valid and that opens an account.
with the interpretation

A customer inserts {a card that is valid and that opens an account}.

5.5. Interpretation rules

However, not all ambiguities can be safely removed from ACE without rendering it
artificial. To deterministically interpret otherwise syntactically correct ACE sentences
we use about 20 interpretation rules. Here are some examples. If we write

The customer inserts a card with a code.
we get the interpretation

The customer {inserts a card with a code}.
that reflects ACE's interpretation rule that a prepositional phrase always modifies the
verb. However, this is probably not what we meant to say. To express that the code is
associated with the card we can employ the interpretation rule that a relative sentence
always modifies the immediately preceding noun phrase.

The customer inserts a card that carries a code.
yielding the interpretation

The customer inserts {a card that carries a code}.

 24

or – to specify that the customer inserts a card and then a code – as
The customer inserts a card and a code.

Adverbs can precede or follow the verb. To disambiguate the sentence
The customer who inserts a card manually enters a code.

we employ the interpretation rule that the postverbal position has priority.
The customer who {inserts a card manually} enters a code.

5.6. Anaphoric References

Usually specifications consist of more than one sentence.
A customer enters a card and a code. If a code is valid then SimpleMat accepts a card.
If a code is not valid then SimpleMat rejects a card.

To express in the sentences above that the occurrences of card and code should mean
the same card and the same code, ACE provides anaphoric references via the definite
article

A customer enters a card and a code. If the code is valid then SimpleMat accepts the
card. If the code is not valid then SimpleMat rejects the card.

During the processing of ACE texts the ACE system replaces any anaphoric reference
by the most recent and most specific accessible noun phrase that agrees in gender and
number, yielding

A customer enters a card and a code. If [the code] is valid then SimpleMat accepts [the
card]. If [the code] is not valid then SimpleMat rejects [the card].

What does "most recent and most specific" mean? Given the sentence
A customer enters a red card and a blue card.

then
The card is correct.

yields
[The blue card] is correct.

while
The red card is correct.

yields
[The red card] is correct.

What does "accessible" mean? According to Discourse Representation Theory noun
phrases introduced in if-then sentences, universally quantified sentences or negations
are not accessible as antecedents of anaphora. Thus the card in

A customer does not enter a card. The card is correct.
cannot refer to card.
Anaphoric references are also possible via personal pronouns

A customer enters a card and a code. If it is valid then SimpleMat accepts the card. If it
is not valid then SimpleMat rejects the card.

or via variables
A customer enters a card CARD and a code CODE. If CODE is valid then SimpleMat
accepts CARD. If CODE is not valid then SimpleMat rejects CARD.

Anaphoric references via definite articles and variables can be combined.

 25

A customer enters a card CARD and a code CODE. If the code CODE is valid then
SimpleMat accepts the card CARD. If the code CODE is not valid then SimpleMat
rejects the card CARD.

Note that proper nouns like SimpleMat always refer to the same object.

5.7. Extending ACE to Handle Modality

Obviously, ACE is highly suited to express business rules and policy rules. However,
these rules often use modal constructs like can, cannot, must, must not, is/does
always, is/does never etc. that are not at all, or not satisfactorily, covered in ACE.
Currently ACE provides only variables as a restricted means to express modality. For
instance, to express is/does always we can say

For every time T … is/does … at T.
and to express is/does never

There is no time T such that … is/does … at T.
There remains a definite need to extend ACE by better means to express modality.
However, for obvious reasons we want to remain within first-order logic, we do not
want to extend ACE in ways that increase the ever-present danger of ambiguity, and
we do not want to increase the size – and decrease the performance – of the ACE
parser. Taking these constraints into account, we have developed two proposals to add
modality to ACE:
• fixed modal phrases, and
• sentence reification.

5.7.1. Fixed Modal Phrases

Fixed modal phrases are patterned after ACE's sentence negation
It is not the case that a customer inserts a card.

where the fixed phrase it is not the case negates the embedded sentence a customer
inserts a card. Similarly we can build

It is possible that a customer inserts a card.
It is obligatory that a customer inserts a card.
It is necessary that a customer inserts a card.
…

by introducing the appropriate fixed modal phrases that modify the respective
embedded sentence. The DRS derived from one of these sentences consists of the
representation of the embedded sentence wrapped within the respective fixed modal
phrase, and thus remains within first-order logic.
In the same way we can introduce negation as failure

It is not provable that a customer inserts a card.
to complement ACE's logical negation.
Deductions from sentences using fixed modal phrases must be carefully designed to
prevent incorrect inferences since there is an interplay between the monotonicity of
the embedded sentence and the fixed modal phrases. For example, though we want to
deduce

A user accesses the data.
from

 26

A privileged user accesses the data.
we probably would not want to deduce

It is allowed that a user accesses the data.
from

It is allowed that a privileged user accesses the data.

5.7.2. Sentence Reification

The idea of sentence reification is simple: sentences get labels that can be referred to
as variables in other sentences. It is straightforward to express by sentence reification
the examples used for the illustration of fixed modal rules. With

S1: A customer inserts a card.
we get

S1 is possible.
S1 is obligatory.
S1 is necessary.
S1 is not provable.

Note that the labelled sentence is the embedded sentence of the fixed modal phrases.
Note furthermore that labelled sentences do not have a truth value.
Obviously, sentence reification is at least as expressive as fixed modal rules. However
as we will see presently, sentence reification is in fact much more powerful than fixed
modal rules. Let's look at two very similar looking sentences.

A customer promises a clerk to enter a card.
A customer expects a clerk to enter a card.

While in the first sentence the entering agent is the customer, in the second sentence
the entering agent is the clerk. Deriving the correct logical representations of the two
sentences is tricky. Sentence reification, however, clearly distinguishes the two cases.

S2: A customer enters a card. The customer promises a clerk S2.
S3: A clerk enters a card. A customer expects S3.

(Note that there are still unresolved problems concerning anaphoric references.)
Sentence reification has the advantage that ACE needs only to be extended by labels
and references to labels; no other changes to the language or to the parser will be
necessary. Sentence reification has one disadvantage, though. Splitting a modal
sentence into a labelled one and another one that refers to the label may not be
acceptable to all users of ACE.

5.8. Modality in ACE and in SBVR Structured English

While ACE's fixed modal phrases are syntactically – though perhaps not semantically
– identical to the Prefixed Rule Keyword Style of SBVR Structured English (see
above), we do not plan to offer in ACE the equivalent of the Embedded (Mixfix) Rule
Keyword Style of SBVR Structured English, i.e. modal constructs like can, cannot,
must, must not, or similar.
Though Hobbs [http://www.isi.edu/~hobbs/disinf-chap2a.pdf] has shown that these
modal constructs can be represented in first-order logic by appropriate reification, the
representations proposed by Hobbs would allow incorrect deductions. Furthermore,

 27

the necessary extensions of ACE could lead to new forms of ambiguity that we would
rather avoid.
Using sentence reification to express modal constructs like can, cannot, must, must
not, or similar is certainly possible, but leads to unnatural sentences. For instance, to
express

A customer can enter a card.
we could write

S: A customer enters a card.
A customer can S.

which is hardly acceptable English.

5.9. Alternatives to ACE: PENG

ACE allows users free-form input, but expects them to learn and to recall ACE's
construction and interpretation rules. Though the number of construction and
interpretation rules is small, occasional users could possibly formulate syntactically
incorrect ACE sentences, or be unaware that a sentence has another meaning than the
intended one.
To keep users from generating syntactically incorrect sentences and to restrict the
possibility of wrong interpretations, Schwitter
[http://www.ics.mq.edu.au/~rolfs/peng/] has developed the controlled language PENG
that frees the users from knowing the grammatical restrictions of the controlled
language. PENG's look-ahead text editor ECOLE guides the user during the
composition of a PENG text indicating at each instance the restrictions that apply,
respectively the alternatives that are allowed.
The idea of guiding users through the composition of a PENG texts seems very
attractive. It remains to be seen, though, whether users do value the guidance they get
by ECOLE, or feel unnecessarily constrained by it.
Concerning syntax and semantics PENG overlaps largely with ACE – which is no
surprise since Schwitter was one of the original authors of ACE – does, however, not
cover some of the newer extensions of ACE like plural. There does not seem to be a
plan to add modality.

5.10. Alternatives to ACE: CLCE

Sowa [http://www.jfsowa.com/clce/specs.htm] has developed Common Logic
Controlled English (CLCE), a formal language with an English-like syntax.
Concerning syntax ACE and CLCE are very similar, and their language constructs
overlap to a large degree. There are, however, some significant differences. On the
one side, CLCE is more expressive since it supports ontology for sets, sequences and
integers, and also allows in-line declarations of words with references to databases.
On the other side, unlike ACE CLCE does not cover plurals. CLCE also does not
cover modality that ACE plans to introduce. While ACE successfully disambiguates a
large number of constructs that in full English would be ambiguous, CLCE is much
more restrictive and even introduces parentheses for disambiguation. In this sense
CLCE is less expressive and less natural than ACE.

 28

Concerning semantics, CLCE like ACE supports full first-order logic. However, it is
not clear whether a CLCE parser exists that translates CLCE texts into first-order
logic.
Like ACE, CLCE is intended for bi-directional translations, i.e.

controlled language ⇒ first-order logic ⇒ controlled language
According to the documentation found at [http://www.jfsowa.com/clce/specs.htm] the
development of CLCE is not yet completed.

5.11. Verbalisation in ACE

The Attempto Parsing Engine (APE) translates the ACE text
John enters a card. Every card is correct.

unambiguously into the discourse representation structure drs/2, a variant of first-
order logic.

drs([A,B,C,D,E],[named(B,‘John’),
object(B,named entity,person),structure(B,atomic),
quantity(B,cardinality,count unit,A,eq,1),structure(D,atomic),
quantity(D,cardinality,count unit,C,eq,1),object(D,card,object),
predicate(E,event,enter,B,D),drs([F,G],[structure(G,atomic),
quantity(G,cardinality,count unit,F,eq,1),
object(G,card,object)])=>drs([H,I],[property(I,correct),
predicate(H,state,be,G,I)])])

APE is implemented as a Definite Clause Grammar that is in principle reversible, i.e.
can also be used to generate texts. However, APE's grammar rules use feature
structures and procedural attachments that render APE non-reversible, i.e. APE cannot
readily be used to translate the above discourse representation structure back into the
original ACE text.
To achieve the verbalisation of the discourse representation structure in ACE, we will
proceed in two steps.
First, since different ACE sentences can result in the same discourse representation
structure, we will define a subset of ACE as the target language for verbalisation. This
subset of ACE will, for instance, not allow for relative phrases, and use instead
sentence conjunctions. Furthermore, there will be only a restricted form of anaphoric
references.
Second, we will complement each grammar rule of APE with a complementing rule
for the translation of elements of discourse representation structures into elements of
ACE, i.e. for verbalisation.
Once we will be able to translate discourse representation structures into ACE, we can
proceed to the next step, verbalising other formal notations in ACE. To do so we will
use discourse representation structures as interlingua, i.e. translate the respective
formal notation into a discourse representation structure, and then translate this into
ACE. A prerequisite for verbalisation in ACE is that the respective formal notation is
equivalent to (a subset of) first-order logic.

6. The First Version I1 Controlled English (I1CE-V1)
The I1 approach to verbalization under development is based on the template method
of SBVR Structured English and aims at combining it with the DRT-based approach

 29

of Attempto for improving the quality of the English output. Like SBVR Structured
English we are also using verbalization templates and font style markup.
Verbalization templates allow a simple mapping from formal/visual representations to
English expressions, while the markup allows a non-ambiguous reading of these
expressions, and thus also supports capturing vocabularies and rules.

The expressions obtained from applying verbalization templates may, however, not be
perfectly correct and natural. The correctness and naturalness of the obtained
expressions can be improved by additionally applying certain linguistic improvement
rules and by using more advanced linguistic techniques such as the DRT
representations of Attempto.

Our approach deviates from SBVR by supporting

1. a systematic use of UML role names, which correspond to OWL property
names.

2. a systematic treatment of classification both at the first-order and at the
second-order level

The following keywords are used in the I1 Controlled English (I1CE) :

! IF, THEN, OR, AND, NOT – designate logical connectives
! the, a, an, that - other keywords as explained in the section on SBVR

We use the following font types for marking up the different parts of an I1CE
expression:

! type term – designates a type (that is part of a vocabulary being used or
defined)

! type term – This markup is applied to a type term in the special case where the
term is used to name the represented concept rather than to refer to things
denoted by the term. This is a reference to the concept itself.

! connecting verb phrase – designates a (user-defined) domain predicate symbol
! predefined connecting verb phrase – designates a predefined predicate symbol
! name – designates an individual or data value

6.1. Association Facts

UML associations and OWL object property axioms are verbalized as association fact
type expressions.

For instance, consider the binary association

which has both an association name and a range class role name, as well as an inverse
association name and a domain class role name. It can be verbalized by the following
three equivalent fact type expressions:

person buys from vendor

person has vendor as supplier

person is customer of vendor

Its inverse can be verbalized correspondingly as

 30

vendor sells to person

vendor has person as customer

vendor is supplier of person

This association fact type expression corresponds to the following OWL property
axiom (expressed in the abstract syntax of OWL):

ObjectProperty(supplier domain(person) range(vendor)
inverseOf(customer))

Since, in general, the class and property identifiers used in OWL do not allow a
natural verbalization, we introduce three OWL annotation properties for the
verbalization of class, association, and role names:

vterm – verbalization terms for verbalizing class names.

vp – verb phrases for verbalizing verb phrase predicate symbols.

rgrolename and domrolename – role names for verbalizing range and
domain class role name predicate symbols.

We have to distinguish between the range class role name (rgrolename) and the
domain class role name (domrolename). The corresponding OWL annotation property
axioms to introduce these annotations are:

Namespace(i1ce=<http://rewerse.net/I1/I1CE#>)
AnnotationProperty(i1ce:vterm)
AnnotationProperty(i1ce:vp)
AnnotationProperty(i1ce:domrolename)
AnnotationProperty(i1ce:rgrolename)

With the help of these annotation properties we can express the above association by
the following OWL axioms:

Namespace(pp=<http://rewerse.net/I1/ex1#>)
Class(pp:person annotation(i1ce:vterm("person")))
ObjectProperty(pp:supplier domain(pp:person) range(pp:vendor)
 annotation(i1ce:vp("buys from"))
 annotation(i1ce:rgrolename("supplier"))
 inverseOf(pp:customer))
ObjectProperty(pp:customer domain(pp:vendor) range(pp:person)
 annotation(i1ce:vp(“sells to”))
 annotation(i1ce:rgrolename(“customer”))
 inverseOf(pp:supplier))

We obtain association fact statements from association fact type expressions in the
obvious way: by replacing the type terms (here person and vendor) with individual
names (such as Tony Miller and DELL):

Tony Miller buys from DELL

Tony Miller has DELL as supplier
Tony Miller is customer of DELL

6.1.1. Expressing Functionality or Non-Functionality

It is straightforward to improve the above verbalization results by taking the
functionality or non-functionality of an association into consideration. If an
association is functional, we add the determiner "the" before the range role name; if it
is inverse functional, we add the determiner "the" before the domain role name.

 31

Otherwise, if the association is not functional (or not inverse functional) we use the
determiner "a" before the range (or domain) role name. This gives, for instance,

Tony Miller has DELL as a supplier

Tony Miller is a customer of DELL

A functional role name, such as "owner" in

person is owner of portfolio

can be used as a function for referring to the particular instance (or, equivalently, to
all instances) playing that role:

int is the age of the owner of portfolio
instead of

int is the age of person AND person is owner of portfolio

6.1.2. Deriving Predicates from Fact Types by Partial Instantiation

From a n-ary fact type we can derive predicates of arity smaller than n by partially
instantiating the fact type. For instance, from the binary fact type

person buys from vendor,

we can derive the unary predicate

person buys from DELL

which defines the derived person subclass "DELL customer".

6.2. Attribution Facts

UML attributes and OWL datatype property axioms are verbalized as attribution fact
type expressions.

For instance, consider the following attributes of person:

These attributes can be verbalized as

person has string as phone number

or, inversely, as

string is phone number of person

This attribution fact type expression corresponds to the following OWL datatype
property axiom:

DatatypeProperty(pp:phone_number domain(pp:person)
 range(xsd:string) annotation(i1ce:rcrolename("phone
number")))

In order to include a natural attribute name in such an OWL axiom we propose to use
our rgrolename annotation property since an attribute name corresponds to a range
class role name of the corresponding association with the attribute datatype as the
range class.

 32

Again, we obtain the corresponding fact statements by instantiating the type terms
(here, e.g., person and string), i.e. by replacing them with instance names (such as
Tony Miller and "8027644"):

Tony Miller has "8027644" as phone number

"8027644" is phone number of Tony Miller

As for association facts, we can express the functionality or non-functionality of an
attribute by using the determiners "the" and "a":

"8027644r" is a phone number of Tony Miller

34 is the age of Tony Miller

6.2.1. Constrained Attribution Facts

Attribution facts may be constrained by an attached data constraint. Consider, for
instance, the fact type expression

int is the age of person AND int is greater than 20

Here, the attached data constraint expression is

int is greater than 20

which is formed with the help of the predefined predicate "is greater than" and the
data value "20".

If a data constraint refers to a functional attribute, such as "age", we can use it as a
function and simplify the above fact type expression into

the age of person is greater than 20

6.3. Generalization Statements

A generalization statement, such as

or its equivalent in OWL,

Class(pp:rental_car_scheduled_for_service partial
pp:rental_car)

can be verbalized in the form of

A rental car scheduled for service is a rental car

6.4. Classification Facts

A classification fact as expressed by the following UML instanceOf-dependency

can be verbalized as

rc0327 is a rental car

 33

where "rc0327" is an identifier for an individual. It corresponds to the following OWL
fact:

Individual(pp:rc0237 type(rental_car))

Classification facts are not instances of a (user-defined) domain fact type. Rather they
are instances of the meta-fact type

entity is a entity type"

6.5. Categorization Facts

There are also 'subclassification' facts, better called categorization facts, such as
expressed by

rental car

rental car
scheduled for servicerc0327

«instanceOf»

«instanceOf»

which can be verbalized as

The rental car rc0327 is a rental car scheduled for service

This categorization fact corresponds to the following combination of an OWL
individual description and an OWL implication:

Individual(pp:rc0237 type(pp:rental_car)
 type(pp:rental_car_scheduled_for_service))
Class(pp:rental_car_scheduled_for_service partial

pp:rental_car)

For suchh categorization facts we can form the corresponding binary categorization
fact type:

rental car is a rental car status category

assuming that "rental car scheduled for service" is an instance of the second order
entity type "rental car status category", which is an example of a categorization
type, i.e. a type whose instances are categories (subtypes) of a certain type. This is
depicted in the following diagram:

 34

By instantiating the categorization type of a binary categorization fact type, we obtain
a unary categorization fact type like, for instance,

rental car is a rental car scheduled for service

Categorization types and binary categorization fact types cannot be expressed in OWL
DL, since they are second order concepts. In OWL Full, they could be expressed in
the form of second order classes and user-defined higher order properties, but they are
not supported by a built-in categorization property:

Class(pp:rental_car_status_category
annotation(i1ce:vterm("rental
 car status category")))
ObjectProperty(pp:categorization_type domain(pp:rental_car)
 range(pp:rental_car_status_category)
 annotation(i1ce:vp("is categorized by"))
 annotation(i1ce:rgrolename("categorization_type")))

6.6. Equality and Inequality Facts

Equality (and inequality) facts, stating that two or more names refer to the same
individual (or to different individuals), as expressed in OWL by means of "sameAs"
(and "differentFrom"), can be verbalized with the help of the key words "is the same
as" (and "is different from"). For instance,

James Bond is the same as 007

is the verbalization of the OWL equality fact
Individual(pp:James_Bond sameAs(pp:007))

...

6.7. Aggregation Facts

Aggregation is a special binary relationship that is asymmetric and transitive and
carries the intended meaning of a part-whole relation. In UML it is visualized with the
help of a diamond shape at the range class association end which represents the role of
aggregate:

OWL does not support this important ontological concept, so in OWL one has to
express it with the help of a user-defined object property. An example of a
corresponding aggregation fact (or link) is

Aggregation links and associations can be verbalized in the same style as links and
associations, except that one can always employ the special (implicit) verb phrase
predicate symbol is part of.

6.8. Multiplicity constraints

Multiplicity constraints are an important class of integrity rules. As has been proposed
in [ORM], they can be verbalized with the help of various quantifier key words:

− universal quantification (each),

 35

− existential quantification (some, at least one),
− at-most-one quantification (at most one)
− at-least-n quantification (at least n),
− at-most-n quantification (at most n),
− exactly-one quantification (exactly one)

For each association, we have to specify, if it is

1. total or not, using the symbols +T or –T
2. functional or not, using the symbols +F or –F
3. inverse total or not, using the symbols +IT or –IT
4. inverse functional or not, using the symbols +IF or –IF

6.8.1. Totality and functionality constraints

An example of an association with a totality constraint is

which is verbalized by the fact type

rental car is stored at local area

or inversely as

local area stores rental car

This association is both total and functional. The totality constraint can be verbalized
as

(+T) Each rental car is stored at at least one local area

The functionality constraint is verbalized as

(+F) Each rental car is stored at at most one local area

Both constraints, totality and functionality, can be combined in one statement:

(+TF) Each rental car is stored at exactly one local area
According to SBVR, this rule is not a business rule but a structural rule, so it should
be verbalized as a necessity statement:

(+TF) It is necessary that each rental car is stored at exactly one local area

6.8.2. Neither total nor functional

The association

which is verbalized by the fact type

company requests rental car

or inversely as

rental car is requested by company

 36

is neither total nor functional, which is expressed by the following clarification
statement:

(-T) It is possible that some company requests no rental car
(-F) It is possible that the same company requests more than one rental car

This association is also neither inverse total nor inverse functional, which may be
verbalized as:

(-IT) It is possible that some rental car is requested by no company
(-IF) It is possible that the same rental car is requested by more than one
company

6.9. Some Rule Examples

The following examples are based on the case study of a fictitious car rental company
called EU-Rent, which is described in the appendix. We first give I1CE representation
of a rule, then express it using OCL and finally show how it is expressed in ACE.

6.9.1. Defining a derived categorization fact type by means of attribution fact
types

First version:

IF rental car has service reading AND service reading is greater than 5000 km OR
rental car has last maintenance date AND last maintenance date is more than 3
months ago THEN rental car is a rental car scheduled for service.

Second version, using that as an anaphoric reference:

IF rental car has a service reading that is greater than 5000 km OR rental car has a
last maintenance date that is more than 3 months ago THEN rental car is a rental
car scheduled for service.

Third version, exploiting the functionality of the attributes service reading and last
maintenance date:

IF the service reading of rental car is greater than 5000 km OR the last maintenance
date of rental car is more than 3 months ago THEN rental car is a rental car
scheduled for service.

OCL:
context RentalCar::isScheduledForService:Boolean derive:
if lastMaintainanceDate>=3 or serviceReading>=5000
then true
else false
endif

 37

ACE:
If the last-maintenance-date of a rental-car is at least 3
months old or the service-reading of the rental-car is at
least 5000 km then the rental-car is scheduled-for a service.

6.9.2. Defining a derived association fact type by means of other association
fact types and categorization fact types

IF rental car is stored at branch AND NOT rental car is a rental car scheduled for
service AND rental car is NOT assigned to a rental THEN rental car is available at
the branch.

OCL:
context Branch::availableCar: RentalCar derive:
self.storedCar->select(c |
 not oclIsKindOf(RentalCarScheduledForService)
 and c.Rental->isEmpty())

ACE:
If a rental-car is stored-at a branch and the rental-car is not
assigned-to a rental and the rental-car is not scheduled-for a
service then the rental-car is available.

 38

6.9.3. Defining a derived categorization fact type by means of association fact
types

IF a person has more than 3 bad experiences THEN the person is a barred driver.

OCL:
context Person::BarredDriver:Boolean derive:
if self.badExperience->size()>3
then true
else false
endif

ACE:
If a driver has more than 3 bad-experience-records then the
driver is barred.

7. Conclusion
We have shown that an approach based on verbalization patterns for all important
cases of fact types can lead to acceptable verbalization results in many practically
relevant cases. However, it lacks a systematic method of applying anaphoric
references for simplifying the generated verbalizations. Such a method is provided by
the Attempto approach. It is therefore an issue for future research to develop a method
for combining fact type verbalization patterns with the anaphoric reference
mechanism of Attempto.

References
[GW05b] G. Guizzardi & G. Wagner. A Unified Foundational Ontology and some
Applications of it in Business Modeling. In P. Green and M. Rosemann (Eds.),
Business Systems Analysis with Ontologies, IDEA Publishing, 2005.

[GW05a] G. Guizzardi & G. Wagner. Towards Ontological Foundations for Agent
Modelling Concepts Using the Unified Foundational Ontology. In P. Bresciani et al.
(Eds.): AOIS 2004, LNAI 3508, pp. 110 – 124, Springer-Verlag, 2005.

[Metalog] The Metalog Project, http://www.w3.org/RDF/Metalog/. W3C, 1998-2004.

[NFRA] Reasoning in Attempto Controlled English. Norbert E. Fuchs, Uta Schwertel.
Institute für Informatik, Universität Zürich, {fuchs, uschwert}@ifi.unizh.ch,
http://www.ifi.unizh.ch/attempto.

[ORM] T.A. Halpin, Information Modeling and Relational Databases, Morgan
Kaufmann Publishers, 2001

[OWL] OWL Web Ontology Language, http://www.w3.org/2004/OWL.

[RDFCAS] G. Klyne and J.J. Caroll (Eds.), Resource Description Framework (RDF):
Concepts and Abstract Syntax, W3C, 2004.

 39

[SBVR] Semantic of Business Vocabulary and Business Rules (SBVR). Revised
Submission to BEI RFP br/2003/06/03, http://www.omg.org/cgi-bin/doc?bei/2005-03-
01.
[UML] UML, http://www.uml.org/.

8. Appendix

8.1. Metalog representation of the example in section 6.9.1

The vocabulary for this rule:
<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>
<rdfs:Class rdf:ID=”RentalCar”/>
<rdfs:Class rdf:ID=”RentalCarScheduledForService”>
 <rdfs:subClassOf rdf:resource=”#RentalCar”/>
</rdfs:Class>
<rdf:Property rdf:ID=”lastMaintenanceDate”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”http://www.w3.org/1999/02/22-rdf-syntax-
ns#Literal ”/>

</rdf:Property>
<rdf:Property rdf:ID=”serviceReading”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”http://www.w3.org/1999/02/22-rdf-syntax-
ns#Literal”/>
</rdf:Property>
...
</rdf:RDF>
The XML/RDF syntax of the rule:
<implies>
 <rdf:Seq>
 <rdf:li>
 <and>
 <rdf:Alt>
 <rdf:li>
 <Predicate name=”less”>
 <rdf:Seq>
 <rdf:li>

 <Variable>LAST_MAINTENANCE_DATE</Variable>
 </rdf:li>
 <rdf:li><Constant>3</Constant></rdf:li>

 </rdf:Seq>
 </Predicate>

 </rdf:li>
 <rdf:li>
 <Predicate name=”greater_or_equal”>
 <rdf:Seq>

 <rdf:li>
 <Variable>SERVICE_READING</Variable>
 </rdf:li>
 <rdf:li><Constant>5000</Constant></rdf:li>
 </rdf:Seq>

 </Predicate>
 </rdf:li>
 </rdf:Alt>
 </and>
 </rdf:li>
 <rdf:li>
 <Predicate name=”RentalCarScheduledForService”>
 <rdf:Seq>
 <rdf:li><Variable>RENTAL_CAR</Variable></rdf:li>
 </rdf:Seq>
 </Predicate>

 40

 </rdf:li>
 </rdf:Seq>
</implies>
PNL representation of the rule:
if LAST_MAINTENANCE_DATE is greater than “3” months and
SERVICE_READING greater_or_equal than “5000” km then RENTAL_CAR is
“RentalCarScheduledForService”.

8.2. Metalog representation of the example in section 6.9.2
Metalog

The vocabulary for this rule:
<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>
<rdfs:Class rdf:ID=”RentalCar”/>
<rdfs:Class rdf:ID=”RentalCarScheduledForService”>
 <rdfs:subClassOf rdf:resource=”#RentalCar”/>
</rdfs:Class>
<rdfs:Class rdf:ID=”Branch”/>
<rdfs:Class rdf:ID=”Rental”/>
<rdfs:Class rdf:ID=”ReservedRental”>
 <rdfs:subClassOf rdf:resource=”#Rental”/>
</rdfs:Class>
<rdfs:Class rdf:ID=”OpenedRental”>
 <rdfs:subClassOf rdf:resource=”#Rental”/>
</rdfs:Class>
<rdfs:Class rdf:ID=”ClosedRental”>
 <rdfs:subClassOf rdf:resource=”#Rental”/>
</rdfs:Class>
<rdf:Property rdf:ID=”rentedCar”>
 <rdfs:domain rdf:resource=”#Rental”/>
 <rdfs:range rdf:resource=”#RentalCar”/>
</rdf:Property>
<rdf:Property rdf:ID=”availableCar”>
 <rdfs:domain rdf:resource=”#Branch”/>
 <rdfs:range rdf:resource=”#RentalCar”/>
</rdf:Property>
<rdf:Property rdf:ID=”storageBranch”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”#Branch”/>
</rdf:Property>
<rdf:Property rdf:ID=”isAvailableAt”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”#Branch”/>
</rdf:Property>
<rdf:Property rdf:ID=”stores”>
 <rdfs:domain rdf:resource=”#Branch”/>
 <rdfs:range rdf:resource=”#RentalCar”/>
</rdf:Property>
<rdf:Property rdf:ID=”isStoredAt”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”#Branch”/>
</rdf:Property>
<rdf:Property rdf:ID=”isAssignedToRental”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”#Rental”/>
</rdf:Property>
<rdf:Property rdf:ID=”lastMaintenanceDate”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
</rdf:Property>
<rdf:Property rdf:ID=”serviceReading”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
</rdf:Property>

 41

...
</rdf:RDF>
The XML/RDF syntax of the rule:
<implies>
 <rdf:Seq>
 <rdf:li>

<and>
 <rdf:Seq>
 <rdf:li>

<Predicate name=”isStoredAt”>
 <rdf:Seq>

 <rdf:li><Variable>CAR</Variable></rdf:li>
 <rdf:li><Variable>BRANCH</Variable></rdf:li>

 </rdf:Seq>
</Predicate>

 </rdf:li>
 <rdf:li>

<not>
 <rdf:Seq>
 <rdf:li>

<Predicate name=”isAssignedToRental”>
 <rdf:Seq>
 <rdf:li><Variable>CAR</Variable></rdf:li>
 </rdf:Seq>
</Predicate>

 </rdf:li>
 </rdf:Seq>
</not>

 </rdf:li>
 <rdf:li>

<not>
 <rdf:Seq>
 <rdf:li>

 <Predicate name=”RentalCarScheduledForService”>
 <rdf:Seq>

 <rdf:li><Variable>CAR</Variable></rdf:li>
 </rdf:Seq>

 </Predicate>
 </rdf:li>
 </rdf:Seq>
</not>

 </rdf:li>
 </rdf:Seq>
</and>

 </rdf:li>
 <rdf:li>
 <Predicate name=”isAvailableAt”>

 <rdf:Seq>
 <rdf:li><Variable>CAR</Variable></rdf:li>
 <rdf:li><Variable>BRANCH</Variable></rdf:li>
</rdf:Seq>
</Predicate>

 </rdf:li>
 </rdf:Seq>
</implies>
PNL representation of the rule:
if CAR “isStoredAt” the BRANCH and CAR not “isAssignedToRental” and CAR not
“RentalCarScheduledForService” then CAR “isAvailableAt” the BRANCH.

8.3. Metalog representation of the example in section 6.9.3
Metalog

The vocabulary of this rule:
<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>

 42

<rdfs:Class rdf:ID=”Person”/>
<rdfs:Class rdf:ID=”BadExperience”/>
<rdfs:Class rdf:ID=”BarredDriver”>
 <rdfs:subClassOf rdf:resource=”#Person”/>
</rdfs:Class>
<rdf:Property rdf:ID=”badExperienceRecords”>
 <rdfs:domain rdf:resource=”#RentalCar”/>
 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#integer/”>
</rdf:Property>
...
</rdf:RDF>
The XML/RDF syntax of the rule:
<implies>
 <rdf:Seq>
 <rdf:li>
 <Predicate name=”greater”>

 <rdf:Seq>

<rdf:li><Variable>BAD_EXPREIENCE_RECORDS</Variable></rdf:li>
 <rdf:li><Constant>3</Constant></rdf:li>
 </redf:Seq>
</Predicate>

 </rdf:li>
 </rdf:Seq>
 <rdf:Seq>
 <rdf:li>

<Predicate name=”BarredDriver”>
 <rdf:Seq>
 <rdf:li><Variable>PERSON</Variable></rdf:li>
 </rdf:Seq>
</Predicate>

 </rdf:li>
 </rdf:Seq>
</implies>
PNL representation of the rule:
if BAD_EXPERIENCE_RECORDS greater than “3” then PERSON is
“BarredDriver”.

 43

8.4. EU-Rent domain model

rental
reservation date
pick up date
expected return date
actual return date
/rental price
start date
end date

branch
branch name
branch address
branch postcode

*

pick up branch

1

return branch1 *

car model
car model name
manufacturer name
body style
engine size
fuel type

rental car
body number
odometer reading
damage code
last maintenance date
service reading
registration number
registration location
acquisition date
disposal date

car group
car group name
daily rate

person
forename
surname
address
postcode
country

bad experience
bad experience code
bad experience note

*
1

1

additional driver

*

1 *

1

*

owner

1 *

owns / is owned by

rented car0..1

*

is assigned to

* 1

requested model0..1

*
is requested for / requests

1*

upgrade car group

0..1

*

«role type»
customer

date last rental

«role type»
loyalty club member
loyalty club number
points balance

«role type»
points rental

points rental price

«role type»
money rental

base rental price
/lowest rental price

*

1

local area
name

/qualified driver

/barred driver

driver license
exp date

1

0..1

storage branch

1

stored car

*

stores / is stored at

1

*

*

1

is included / includes

«phase type»
/rental car

scheduled for service

*

/available car

*

/is available at

«phase type»
reserved

rental

«phase type»
opened
rental

«phase type»
closed
rental

 44

8.4.1. EU-Rent vocabulary definition
Branch

branch
Definition: EU-Rent facility from which rental cars are picked up and to

which rental cars are returned
return branch

Concept type: role
Definition: branch in the rental where rented car is returned

pick-up branch
Concept type: role
Definition: branch in rental where rented car is picked up

storage branch
Concept type: role
Definition: branch where rental car is stored

branch is included in local area

Constraint: Each branch is included in exactly one local area
branch stores rental car

Constraint: Each branch stores several rental cars
When a rental is booked the branch, from which the rented car is to be picked up must
be specified. If a one-way rental is required, the return branch must also be specified -
otherwise the rented car must be returned to the pick-up branch.
Rental Car

rental car
Definition: vehicle owned by EU-Rent and rented to its customers

rented car
Concept type: role
Definition: the rented car is assigned to the rental

available car
Concept type: role
Definition: a rental car that is available at the branch

rental car scheduled for service
Concept type: role
Definition: a rental car that has maintenance date more than 3 months

OR service reading is more than 5000 km
available car is available at the branch

Concept type: derived fact type
Definition: a rental car that is stored at the branch AND NOT assigned to

a rental AND is NOT a rental car scheduled for service
rental car has car model

Concept type: is-property-of fact type

rental car is stored at storage ranch
Constraint: Each rental car is stored at most one branch.

rented car is assigned to rental
Constraint: A rental car can be assigned to several rentals, but rental

periods should not overlap
rental car is owned by the local area

 45

Constraint: Each rental car is owned by at most one local area.
A rental car, owned by a EU-Rent branch and rented to customers.
Attribute Description

body number Assigned by manufacturer. Together with manufacturer
name (in Car Model) provides a unique business identifier
for car

odometer reading Kilometers recorded since acquisition

damage code Indicates type of damage sustained by car (if damaged)

Service reading Kilometers recorded since last service maintenance

last maintenance date Date of last maintenance

registration number Registration or license number, as issued by vehicle
licensing authority

registration location Location within country (state, canton, city etc) in which car
is registered. Not applicable for some countries

acquisition date Date on which car first became available for rental

disposal date Date on which car was sold or written off (if no longer
owned by EU-Rent)

Person

additional driver
Concept type: role
Definition: a person that is allowed to drive the rented car of a rental and

not a customer
customer

Concept type: role
 Definition: a person who is contactually responsible for the rented car of a

rental
barred driver

Concept type: derived role
 Definition: a person who has 3 or more bad experience records.
 Note: barred driver is not allowed to drive a rental car of a rental
qualified driver

Concept type: derived role
Definition: a person with age over 21 and his driving licence is valid

customer has date last rental

date last rental

Definition: The date of last rental by the customer
loyalty club member

Concept type: role
 Definition: a customer who has been identified as one who can drive the

rented car of a loyalty club rental
 Note: loyalty club member pays only by points and has no other

 discounts
loyalty club member has loyalty club number

 46

loyalty club member has points balance

person has bad experience

Constraint: person may have no more than 3 bad experience.

Rental

return branch
Concept type: role
Definition: a branch in a rental where rented car is returned

pick-up branch
Concept type: role
Definition: a branch in a rental where rented car is picked up

rental
Definition: fact type that is ‘customer agrees to rent from pick-up

branch’
Description: A contract between a customer and EU-Rent to rent a

rental car.
Constraint: Any change to the pick-up date/time of a rental must

specify a date/time later than the (real world) current
date/time.

Constraint: For a rental, after rental pick-up, none of the following
may be changed: requested car group, requested car
model, pick-up date/time.

reserved
Concept type: role
Definition: rental car of the rental has not been picked up yet

opened
Concept type: role
Definition: customer of the rental has picked up rental car

closed
Concept type: role
Definition: customer of the rental has returned rental car

rental has car group
Concept type: is-property-of fact type
Note: The customer may request a change of car group at

any time between rental booking and pick-up, but the
rental must always have a car group.

rental requests car model
Concept type: is-property-of fact type
Note: car model is an option that the renter may request at

any time between rental booking and pick-up. EU-Rent
accepts the request as a preference when allocating
cars to rentals, but does not guarantee to provide a car
of the requested model.

rental has pick-up branch
Concept type: is-property-of fact type
Note: The pick-up branch cannot be changed. If the renter

wishes to do so, EU-Rent regards it as a cancellation
and a new rental.

rental has return branch

 47

Concept type: is-property-of fact type
 Note: The return branch is usually the same as the pick-up

branch, but may be different. It may be changed at any
time up to the end of the rental, but the rental must
always have a return branch.

rental has bad experience
Constraint: the rental may have no more than 3 bad experience

records
money rental

Concept type: role
Definition: rental that is paid with money, not loyalty club points

lowest rental price
Concept type: derived attribute
Definition: lowest rental price that is honored for a money rental.

The lowest rental price is recalculated by applying
discounts to the base rental price at every touch point
(reservation, pick-up, return, etc.), provided that the car
group is not changed.

base rental price
Definition: the estimated price of rental before any discounts have

been applied
points rental

Concept type: role
Definition: the rental, which is paid by loyalty club points and

assigned to loyalty club member
points rental price

Definition: The price of a points rental in points
A Rental starts with a rental reservation, which must specify a pick-up Branch, a
return Branch and a Car Group. A specific car model may be requested.
A specific car is assigned to the Rental in time for pick-up by the customer.
Attribute Description

reservation date

pick up date

expected return date

actual return date

rental price Derived attribute, stores the actual price of the rental when
all discounts have been applied

start date The start date of the rental, defined during reservation

end date The end date of the rental, defined during reservation

