
A3-D4

Personalization for the Semantic Web II

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Hannover/A3-D4/D/PU/b1
Responsible editors: Nicola Henze
Reviewers: Matteo Baldoni, Lilia Cheniti-Belcadhi
Contributing participants: Hannover, Heraklion, Goettingen, Munich, Vienna,

Turin, Warsaw
Contributing workpackages: A3
Contractual date of deliverable: 31 August 2005
Actual submission date: 29 August 2005

Abstract
This report provides an overview of the achievements of working group A3 for bringing person-
alization functionality to the Semantic Web. It continues the work started in the deliverable
A3-D1 which gave an overview on personalization know-how of partners in A3. In the deliver-
able at hand, we report on our achievements on reasoning for personalization in the Semantic
Web (see Section 2), and particular personalization methods (see Section 3). Prototypes and
applications will be discussed in deliverable A3-D6 (month 24).

Keyword List
semantic web, reasoning, personalization

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2005.

ii

Personalization for the Semantic Web II

Grigoris Antoniou1, Matteo Baldoni2, Cristina Baroglio2, Robert Baumgartner3,
François Bry4, Nicola Henze5, Wolfgang May6, Viviana Patti2, Slawomir T.

Wierzchon7

1 Institute of Computer Science – FORTH
Heraklion Crete, Greece
antoniou@ics.forth.gr

2 Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,patti}@di.unito.it

3 Institut für Informationssysteme
Technische Universität Wien, Austria

baumgart@dbai.tuwien.ac.at
4 Research Center L3S &

ISI- Knowledge-Based Systems, University of Hannover,
Appelstr. 4, D-30167 Hannover, Germany

henze@l3s.de
5 Institut für Informatik

Ludiwg-Maximilians-Universität München, Germany
francois.bry@ifi.lmu.de

6 Institut für Informatik
Universität Göttingen, Germany

may@informatik.uni-goettingen.de
7 Institute of Computer Science – Polish Academy of Sciences

Ordona 21, 01-237 Warsaw, Poland
stw@ipipan.waw.pl

29 August 2005

Abstract
This report provides an overview of the achievements of working group A3 for bringing person-
alization functionality to the Semantic Web. It continues the work started in the deliverable
A3-D1 which gave an overview on personalization know-how of partners in A3. In the deliver-
able at hand, we report on our achievements on reasoning for personalization in the Semantic
Web (see Section 2), and particular personalization methods (see Section 3). Prototypes and
applications will be discussed in deliverable A3-D6 (month 24).

Keyword List
semantic web, reasoning, personalization

iv

Contents

1 Executive Summary 1

2 Reasoning Methods for Personalization in the Semantic Web 1
2.1 Overview on “Reasoning Methods for Personalization in the Semantic Web” . . . 2
2.2 Personalization: From the World Wide Web to the Semantic Web 2

3 Personalization Techniques 3
3.1 Planning and Reasoning about Actions . 3
3.2 Adaptive Hypermedia Approach to Personalization 5
3.3 Rule-based User Modeling: Application to e-Learning domain 6

4 Conclusion 6

5 Acknowledgment 7

6 Appendix 9

v

vi

1 Executive Summary

The work in working group A3 is centered around three axes: In the first axis, we research
foundations for personalization and adaptation in the Semantic Web, and in particular aim at
logical frameworks for describing and characterizing appropriate personalization functionality.
This axis is therefore called Adaptive Functionality. The second axis is on deploying per-
sonalization functionality in systems and prototypes – the Testbeds-axis. In the third axis,
we develop a personalized information system for the Semantic Web: a personalized Web
portal for the REWERSE network.

This report belongs to the Adaptive Functionality axis and provides an overview of the
achievements of working group A3 on researching personalization functionality for the Semantic
Web. The good integration between the researchers of group A3 has been successfully continued
and is also visible by observing the authors of papers attached to this deliverable.

The present report continues the work started in deliverable A3-D1, in which we gave an
overview on personalization know-how of partners in A3, and in REWERSE. In this deliverable,
we particularly report about:

1. Reasoning Methods for Personalization in the Semantic Web:

(a) how personalization based on reasoning can be realized in the Semantic Web

(b) how personalization techniques for the World Wide Web and the Semantic Web can
be characterized

2. Techniques for Personalization:

(a) how personalization can be realized by employing planning and reasoning about
actions

(b) how personalization based on adaptive hypermedia can be realized and general-
ized to achieve re-usable, encapsulated personalization functionality for the Semantic
Web

(c) how rule-based user modeling for the Semantic Web can be achieved

2 Reasoning Methods for Personalization in the Semantic
Web

The Semantic Web vision of a next generation Web, in which machines are enabled to under-
stand the meaning of information in order to better inter-operate and better support humans in
carrying out their tasks, is very appealing and fosters the imagination of smarter applications
that can retrieve, process and present information in enhanced ways. In this vision, a particular
attention should be devoted to personalization: By bringing the user’s needs into the center
of interaction processes, personalized Web systems overcome the one-size-fits-all paradigm and
provide individually optimized access to Web data and information.

1

2.1 Overview on “Reasoning Methods for Personalization in the Se-
mantic Web”

Members of the working groups I1, I2, I4, I5, and A3 have worked together to discuss recent
approaches for using rules and rule-languages in the logic layer of the Semantic Web, and for
supporting approaches to personalization in the Semantic Web. Special attention has been
given to the important aspects of evolution, updates and events, and their consequences for
personalization and reasoning. Approaches to personalization via reasoning about actions has
exemplified for different scenarios, and Web Service-based architectures for personalization have
been discussed.

More details can be found in

• Grigoris Antoniou, Matteo Baldoni, Cristina Baroglio, Robert Baumgartner,
Francois Bry, Thomas Eiter, Nicola Henze, Marcus Herzog, Wolfgang May,
Viviana Patti, Sebastian Schaffert, Roman Schindlauer, Hans Tompits: Rea-
soning Methods for Personalization on the Semantic Web. Annals of Mathe-
matics, Computing & Teleinformatics (AMCT), Vol.2, No., 1, pp 1-24.

• M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an ap-
proach based on logic agents and reasoning about actions. Artificial Intelligence
Review, 22(1):3-39, 2004.

See Appendix.

2.2 Personalization: From the World Wide Web to the Semantic Web

Approaches to personalization have been investigated since the early days of the World Wide
Web. Two major “schools of thoughts” can be distinguished in the WWW-case: Approaches
for personalization which work on the so-called Web graph (these are the Web mining-based
approaches to personalization), and those approaches which work on reasonably small but well-
defined subgraphs of the Web (these are adaptive hypermedia approaches to personalization). In
order to establish personalization on the Semantic Web, it is essential to study personalization
techniques on the World Wide Web, learn from research findings and use the possibilities of
machine-processable semantic descriptions of Web resources provided in the Semantic Web
(including languages as well as architectures and other technologies) to overcome problems and
gaps reported in the WWW-case. The investigations of members of working group A3 resulted
in an article which contains a thorough analysis of personalization techniques in the World
Wide Web, discusses approaches for generalizing these techniques to the Semantic Web, and
outlines alternative approaches for the Semantic Web-case.

More details can be found in Matteo Baldoni, Cristina Baroglio, Nicola Henze: Per-
sonalization for the Semantic Web. Reasoning Web, First International Summer
School, LNCS Tutorials vol. 3564, pp. 183-211, Springer, 2005. See Appendix.

2

3 Personalization Techniques

3.1 Planning and Reasoning about Actions

Another line of research has investigated the use of reasoning techniques in order to obtain
forms of personalization. The study has involved two application areas: that of educational
systems and the emerging area of web services. In both cases, the idea that we explored is to
base adaptation on the reasoning capabilities of a rational agent, built by means of a declarative
language.

For what concerns the former application domain, the focus was put on the possible uses
of three different reasoning techniques, namely planning, temporal projection, and temporal
explanation, which have been developed for allowing software agents to build action plans and
to verify whether some properties of interest hold after the application of given sequences of
actions. In both cases actions are –usually– not executed in the real world but their execution
is simulated “in the mind” of the system, which has to foresee their effects (or their enabling
causes) in order to build solutions. A group of agents, called reasoners, works on a dynamic
domain description, where the basic actions that can be executed are of the kind “attend course
X” and where also complex professional expertise can be described. Effects and conditions of
actions (courses) are essentially given in terms of a set of abstract competences, which are
connected by causal relationships. The set of all the possible competences and of their relations
defines an ontology. This multi-level description of the domain bears along many advantages.
On the one hand, the high modularity that this approach to knowledge description manifests
allows course descriptions as well as expertise descriptions to be added, deleted or modified,
without affecting the system behavior. On the other hand, working at the level of competences
is close to human intuition and enables the application of both goal-directed reasoning processes
and explanation mechanisms.

The reasoning process that supports the definition of a study plan, aimed at reaching a
certain learning goal, either computes over the effects of attending courses (given in terms of
competence acquisition, credit gaining, and the like) or over those conditions that make the
attendance of a course reasonable from the educator point of view. The logic approach also
enables the validation of student-given study plans with respect to some learning goal of interest
to the student himself.

The same mechanisms can be used for composing, in an automatic and goal-driven way,
learning objects that are represented according to the SCORM standard of representation. This
kind of descriptions, in fact, account also for a semantic annotation in terms of preconditions
and learning objectives, that allows the interpretation of learning objects as actions.

More details can be found in:

• M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an approach based
on logic agents and reasoning about actions. Artificial Intelligence Review, 22(1):3-39,
2004.

• M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about learning object
metadata for adapting SCORM courseware. In L. Aroyo and C. Tasso, editors, AH 2004:
Workshop Proceedings, Part I, International Workshop on Engineering the Adaptive Web,
EAW’04: Methods and Technologies for personalization and Adaptation in the Semantic
Web, pages 4-13, Eindhoven, The Netherlands, August 2004. Technische Universiteit
Eindhoven.

3

Reasoning techniques can also be used for automatically retrieving and composing web ser-
vices in order to accomplish (complex) tasks of interest, respecting the constraints and the
preferences of the user. In this case, the reasoning process works on a declarative description of
the communication policies that are followed by the services, which are to be included in their
documentation. The approach that was proposed is set in the Semantic Web field of research
and inherits from research in the field of multi-agent systems. By taking the abstraction of
web services as software agents, that communicate by following predefined, public and sharable
interaction protocols, the possible benefits, provided by a declarative description of their com-
municative behavior, in terms of personalization of the service selection and composition have
been studied. The approach models the interaction protocols provided by web services by a
set of logic clauses representing policies, thus at high (not at network) level. A description
by policies is definitely richer than the usual service profile description consisting in the input
and output, precondition and effect properties usually taken into account for the matchmaking.
Moreover having a logic specification of the protocol, it is possible to reason about the effects of
engaging specific conversations, and, on this basis, to perform many tasks in an automatic way;
in particular, selection and composition. Actually, the approach that has been proposed can be
considered as a second step in the matchmaking process, which narrows a set of already selected
services and performs a customization of the interaction with them. Indeed, the problem that
this proposal faces can intuitively be described as looking for a an answer to the question “Is it
possible to make a deal with this service respecting the user’s goals?”. Given a representation
of the service in terms of logic-based interaction policies and a representation of the customer
needs as abstract goals, expressed by a logic formula, logic programming reasoning techniques
are used for understanding if the constraints of the customer fit in with the policy of the service.

More specifically, we have presented an approach to web service selection and composition
that is based on reasoning about conversation protocols, within the framework of an agent
language, DyLOG, based on a modal logic of action and beliefs. The approach extends with
communication the proposal to model rational agents in [1]. Since the interested was on rea-
soning about the local mental state’s dynamics, this approach differs from other logic-based
approaches to communication in multi-agent systems, as the one taken in [12], where commu-
nicative actions affect the global state of a system, Actually, the target of these latter approaches
is to prove global properties of the overall multi-agent system execution. The focus on the in-
ternal specification of interaction protocols for planning dialogue’s moves is closer to [11], where
negotiation protocols, expressed by sets of dialogue constraints, are included in the agent pro-
gram and used for triggering dialogues that achieve goals. However such an approach does
not support plan extraction and it cannot exploit information about the others, that instead is
supplied by nested beliefs.

More details can be found in

• M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction protocols
for web service composition. In M. Bravetti and G. Zavattaro, editors, Proc. of 1st Int.
Workshop on Web Services and Formal Methods, WS-FM 2004, volume 105 of Electronic
Notes in Theoretical Computer Science, pages 21-36. Elsevier Science Direct, 2004.

• M. Baldoni, C. Baroglio, L. Giordano, A. Martelli, and V. Patti. Reasoning about com-
municating agents in the semantic web. In F. Bry, H. Henze, and J. Maluszynski, editors,
Proc. of the 1st International Workshop on Principle and Practice of Semantic Web Rea-
soning, PPSWR 2003, volume 2901 of LNCS, pages 84-98, Mumbai, India, December
2003. Springer.

4

3.2 Adaptive Hypermedia Approach to Personalization

In the area of adaptive hypermedia, research has been carried out to understand how per-
sonalization and adaptation strategies can be successfully applied in hypertext systems and
hypertext like environments. It has been stated that in the area of adaptive hypermedia and
of adaptive web–based systems, the focus of developed systems has been so far on closed world
settings. This means that these systems work on a fixed set of resources which are normally
known to the system designers at design time (see the discussion on closed corpus adaptive
hypermedia [3]). This observation also relates to the fact that the issue of authoring adap-
tive hypermedia systems is still one of the most important research questions in this area,
see e. g. [2]. A generalization of adaptive hypermedia to an Adaptive Web [4] depends there-
fore on a solution of the closed corpus problem in adaptive hypermedia. Within the Personal
Reader project (www.personal-reader.de), we propose an architecture for applying some of the
techniques developed in adaptive hypermedia to an open corpus. A modular framework of com-
ponents / services - for providing the user interface, for mediating between user requests and
available personalization services, for user modeling, for providing personal recommendations
and context information, et cetera, is the core of the Personal Reader framework [10].

More details can be found in

• Stefan Decker, Michael Sintek, Andreas Billig, Nicola Henze, Peter Dolog,
Wolfgang Nejdl, Andreas Harth, Andreas Leicher, Susanne Busse, Jörn Guy
Süß, Zoltan Mikols, Jose-Luis Ambite, Matthew Weathers, Gustaf Neumann,
Uwe Zdun: Triple - and RDF Rule Language with Context and Use Cases.
W3C Workshop on Rule Languages for Interoperability, 27-28. April 2005,
Washington, D.C., USA.

• Fabian Abel, Robert Baumgartner, Adrian Brooks, Christian Enzi, Georg Got-
tlob, Nicola Henze, Marcus Herzog, Matthias Kriesell, Wolfgang Nejdl, Kai
Tomaschewski: The Personal Publication Reader. Semantic Web Challenge,
4th International Semantic Web Conference, November 6-10 2005, Galway,
Ireland.

• Nicola Henze: Personal Readers: Personalized Learning Object Readers for
the Semantic Web. 12th International Conference on Artificial Intelligence in
Education, AIED’05, 18-22 July 2005, Amsterdam, The Netherlands.

• Robert Baumgartner, Nicola Henze, and Marcus Herzog: The Personal Publi-
cation Reader: Illustrating Web Data Extraction, Personalization and Reason-
ing for the Semantic Web. European Semantic Web Conference ESWC 2005,
Heraklion, Greece, May 29 - June 1 2005.

• Robert Baumgartner, Christian Enzi, Nicola Henze, Marc Herrlich, Marcus
Herzog, Matthias Kriesell, and Kai Tomaschewski: Semantic Web enabled In-
formation Systems: Personalized Views on Web Data. International Ubiqui-
tous Web Systems and Intelligence Workshop (UWSI 2005), Co-located with
ICCSA 2005, Suntec Singapore, 9-12 May 2005.

• Nicola Henze: A Definition of Adaptive Educational Hypermedia Systems. Ar-
ticle in the forthcoming Encyclopedia of Multimedia by Springer.

5

3.3 Rule-based User Modeling: Application to e-Learning domain

User modeling is concerned with gathering, discovering, deducing, and providing knowledge
about users to supply user centered adaptation components with information needed in adapta-
tion decisions. In our work, we have studied approaches to rule-based user modeling particularly
in the e-learning domain.

In [9], we have proposed an approach for dynamically generating personalized hypertext
relations powered by reasoning mechanisms over distributed RDF annotations. We have shown
an example set of reasoning rules that decide for personalized relations to example pages given
some page. Several ontologies have been used which correspond to the components of an
adaptive hypermedia system: a domain ontology (describing the document space, the relations
of documents, and concepts covered in the domain of this document space), a user ontology
(describing learner characteristics), and an observation ontology (modeling different possible
interactions of a user with the hypertext). For generating hypertext structures, a presentation
ontology has been introduced.

Based on this general approach for characterizing e-Learning with ontological descriptions
and reasoning approaches, we have concentrated on approaches to rule-based learning modeling
[9, 8], and rule-based methods for learner assessment [5, 6, 7].

More details can be found in

• Nicola Henze, Peter Dolog, and Wolfgang Nejdl: Reasoning and Ontologies
for Personalized E-Learning. Educational Technology & Society, 2004, Vol. 7,
Issue 4.

• Lilia Cheniti-Belcadhi, Rafik Braham, Nicola Henze, and Wolfgang Nejdl: A
Generic Framework for Assessment in Adaptive Educational Hypermedia. Pro-
ceedings of the IADIS WWW / Internet 2004 Conference, October 2004, Madrid,
Spain.

• Peter Dolog and Michael Schäfer. Learner modeling on the semantic web.
In Proc. of PerSWeb 2005 Workshop: Workshop on Personalization on the
Semantic Web: 10th International Conference, UM 2005, Edinburgh, Scotland,
UK, July 2005.

• Lilia Cheniti-Belcadhi, Nicola Henze, Rafik Braham: Towards a Service Based
Architecture for Assessment. Proceedings of the Thirteenth GI-Workshop on
Adaptation and User Modeling in interactive Systems (ABIS 05), October 2005,
Saarbrücken, Germany.

• Lilia Cheniti-Belcadhi, Nicola Henze, Rafik Braham: An Assessment Frame-
work for eLearning in the Semantic Web. Proceedings of the Twelfth GI- Work-
shop on Adaptation and User Modeling in interactive Systems (ABIS 04), Oc-
tober 2004, Berlin, Germany.

4 Conclusion

This report summarizes the achievements of working group A3 on transforming and applying
personalization techniques for the Semantic Web. Working group A3 has investigated on rea-
soning methods for personalization in the Semantic Web (together with working groups I1, I2,

6

I4, I5), and provided an in-depths analysis on personalization techniques in the World Wide
Web and the Semantic Web.

Additionally, research on specific personalization techniques has yield to insights on how to
transform existing personalization techniques to the Semantic Web, or to adopt new techniques
for the Semantic Web. In particular, A3 has been focusing on personalization techniques based
on reasoning about actions, transforming and adopting adaptive hypermedia techniques, and
rule-based user/learner modeling.

5 Acknowledgment

We would like to thank Lilia Cheniti-Belcadhi and Peter Dolog for their discussions and con-
tributions to learner modeling.
This research has been co-funded by the European Commission and by the Swiss Federal Of-
fice for Education and Science within the 6th Framework Program project REWERSE num-
ber 506779 (cf. http://rewerse.net).

7

http://rewerse.net

References

[1] Baldoni, M., Giordano, L., Martelli, A., and Patti, V. Programming Rational
Agents in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation 8, 5 (2004), 597–635.

[2] Bra, P. D., Aerts, A., Smits, D., and Stash, N. AHA! Version 2.0: More Adaptation
Flexibility for Authors. In Proceedings of the AACE ELearn’2002 conference (Oct. 2002).

[3] Brusilovsky, P. Adaptive Hypermedia. User Modeling and User-Adapted Interaction
11 (2001), 87–110.

[4] Brusilovsky, P., and Maybury, M. The Adaptive Web. Communications of the ACM,
2002.

[5] Cheniti-Belcadhi, L., Henze, N., and Braham, R. An Assessment Framework for E-
Learning in the Semantic Web. In Proceedings of the Twelfth GI- Workshop on Adaptation
and User Modeling in interactive Systems (ABIS 04) (Berlin, Germany, October 2004).

[6] Cheniti-Belcadhi, L., Henze, N., and Braham, R. A Framework for dynamic As-
sessment for Adaptive Content Presentation in Educational Hypermedia. In Proceedings
of the IADIS WWW / Internet 2004 Conference (Madrid, Spain, October 2004).

[7] Cheniti-Belcadhi, L., Henze, N., and Braham, R. Towards a service based archi-
tecture for assessment. In Proceedings of the Thirteenth GI- Workshop on Adaptation and
User Modeling in interactive Systems (ABIS 05) (Saarbrücken, Germany, October 2005).

[8] Dolog, P., and Schäfer, M. Learner modeling on the semantic web. In nternational
Workshop on Personalization on the Semantic Web PersWeb’05 (Edinburgh, UK, July
2005).

[9] Henze, N., Dolog, P., and Nejdl, W. Reasoning and Ontologies for Personalized
e-Learning. Educational Technology & Society 7, 4 (2004).

[10] Henze, N., and Kriesell, M. Personalization Functionality for the Semantic Web:
Architectural Outline and First Sample Implementation. In 1st International Workshop
on Engineering the Adaptive Web (EAW 2004) (Eindhoven, The Netherlands, 2004).

[11] Sadri, F., Toni, F., and Torroni, P. Dialogues for Negotiation: Agent Varieties and
Dialogue Sequences. In Proc. of ATAL’01 (Seattle, WA, 2001).

[12] Shapiro, S., Lespance, Y., and Levesque, H. J. Specifying communicative multi-
agent systems. In Agents and Multi-Agent Systems - Formalisms, Methodologies, and
Applications (1998), vol. 1441 of LNAI, Springer-Verlag, pp. 1–14.

8

6 Appendix

The appendix includes two overview papers on personalization for the Semantic Web which
have been published in Journals or are included into books:

• Grigoris Antoniou, Matteo Baldoni, Cristina Baroglio, Robert Baumgartner, Francois Bry,
Thomas Eiter, Nicola Henze, Marcus Herzog, Wolfgang May, Viviana Patti, Sebastian
Schaffert, Roman Schindlauer, Hans Tompits: Reasoning Methods for Personalization
on the Semantic Web. Annals of Mathematics, Computing & Telefinformatics (AMCT),
Vol.2, No., 1, pp 1-24.

• Matteo Baldoni, Cristina Baroglio, Nicola Henze: Personalization for the Semantic Web.
Reasoning Web, Springer LNCS, 2005.

Further, it contains one selected paper for each personalization technique described in section
3:

Planning and Reasoning about Actions: M. Baldoni, C. Baroglio, and V. Patti: “Web-
based adaptive tutoring: an approach based on logic agents and reasoning about actions.”
Artificial Intelligence Review, 22(1):3-39, 2004.

Immune-based Recommendation Technique: Slawomir Wierzchon: ”Artificial immune
system approach to adaptation” To be published as a book chapter by the Institute
of System Research of Polish Academy of Sciences.

Adaptive Hypermedia Approach to Personalization: Fabian Abel, Robert Baumgart-
ner, Adrian Brooks, Christian Enzi, Georg Gottlob, Nicola Henze, Marcus Herzog, Matthias
Kriesell, Wolfgang Nejdl, Kai Tomaschewski: The Personal Publication Reader. Seman-
tic Web Challenge, 4th International Semantic Web Conference, November 6-10 2005,
Galway, Ireland. Rated among the top-5 submissions for the Semantic Web Challenge

Rule-based User Modeling: Nicola Henze, Peter Dolog, and Wolfgang Nejdl: Reasoning
and Ontologies for Personalized E-Learning. Educational Technology & Society, 2004,
Vol. 7, Issue 4.

9

ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24 1

Reasoning Methods for
Personalization on the Semantic Web

Grigoris Antoniou
Institute of Computer Science – FORTH

Heraklion Crete, Greece

antoniou@ics.forth.gr

Matteo Baldoni, Cristina Baroglio, Viviana Patti
Dipartimento di Informatica

Universit̀a degli Studi di Torino, Torino, Italy

{baldoni,baroglio,patti }@di.unito.it

Robert Baumgartner, Thomas Eiter, Marcus Herzog, Roman Schindlauer, Hans Tompits
Institut für Informationssysteme

Technische Universität Wien, Austria

{baumgart,herzog }@dbai.tuwien.ac.at, {eiter,roman,tompits }@kr.tuwien.ac.at

François Bry, Sebastian Schaffert
Institut für Informatik

Ludiwg-Maximilians-Universiẗat München, Germany

{francois.bry, sebastian.schaffert }@ifi.lmu.de

Nicola Henze
Information Systems Institute – Semantic Web Group,

University of Hannover, Germany

henze@kbs.uni-hannover.de

Wolfgang May
Institut für Informatik

Universiẗat Göttingen, Germany

may@informatik.uni-goettingen.de

Abstract— The Semantic Web vision of a next genera-
tion Web, in which machines are enabled to understand
the meaning of information in order to better inter-
operate and better support humans in carrying out their
tasks, is very appealing and fosters the imagination of
smarter applications that can retrieve, process and present
information in enhanced ways. In this vision, a particular
attention should be devoted topersonalization: By bringing
the user’s needs into the center of interaction processes,
personalized Web systems overcome the one-size-fits-all
paradigm and provide individually optimized access to
Web data and information. In this paper, we provide an
overview of recent trends for establishing personalization
on the Semantic Web: Based on a discussion on reasoning
with rule- and query languages for the Semantic Web, we
outline an architecture for service-based personalization,
and show results in personalizing Web applications.

Index Terms— semantic web, personalization, reasoning
for the semantic web, rule languages, query languages,
web data extraction

I. I NTRODUCTION

T He aim of the Semantic Web initiative [27] is to
advance the state of the current Web through the

use of semantics. More specifically, it proposes to use
semantic annotationsto describe the meaning of certain
parts of Web information. For example, the Web site
of a hotel could be suitably annotated to distinguish
between hotel name, location, category, number of
rooms, available services etc. Such meta-data could
facilitate the automated processing of the information
on the Web site, thus making it accessible to machines
and not primarily to human users, as it is the case today.

However, the question arises as to how the semantic
annotations of different Web sites can be combined, if
everyone uses terminologies of their own. The solution
lies in the organization of vocabularies in so-calledon-
tologies. References to such shared vocabularies allow

ISSN 1109-9305c© 2004 AMCT

2 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

interoperability between different Web resources and
applications. For example, a geographic ontology could
be used to determine that Crete is a Greek island and
Heraklion a city on Crete. Such information would be
crucial to establish a connection between a requester
looking for accommodation on a Greek island, and a
hotel advertisement specifying Heraklion as the hotel
location.

At the writing time of this paper, there are recom-
mendations by the World Wide Web Consortium for the
lower layers of the Semantic Web tower, including the
ontology layer of the Semantic Web. The logic layer,
residing on top of the semantic languages and ontology
languages, is still to shape.

In this paper, we take a certain perspective on rea-
soning, rule- and query languages for the Semantic
Web: We investigate the required expressiveness of
reasoning languages for the Semantic Web which foster
personalized Web applications. After a brief introduc-
tion to the Semantic Web (Section II, we introduce
rule languages for the Semantic Web, with particular
notion to nonmonotonic rules (Section III). Aspects of
evolution, updates and events are discussed in the subse-
quent section, exemplified by an event-condition-action
approach. Reasoning about actions for implementing
personalization is described in Section V.

We then turn attention to mechanisms and applica-
tions for maintaining effective reasoning and rule-based
approaches: For querying and transforming semantic
descriptions, we discuss theXcerpt language (Section
VI). An approach to automatically generate semantic
descriptions by Web data extraction is provided by the
Lixto Suite(Section VII). The last section finally goes
practical and describes thePersonal Reader Frame-
work for personalization services on the Semantic Web,
which integrates ideas from the previous sections. We
outline the service-based architecture of the Personal
Reader framework, and describe first example Readers
for two application domains.

II. REASONING AND THE SEMANTIC WEB: STATE

OF THE ART

The development of the Semantic Web proceeds in
steps, each step building a layer on top of another.
At the bottom layer we findXML, a language that
lets one write structured Web documents with a user-
defined vocabulary. XML is particularly suitable for
sending documents across the Web, thus supporting
syntactic interoperability.RDF [22] is the basic Seman-
tic Web language for writing simple statements about
Web objects (called resources and identified uniquely
by a URI, a Universal Resource Identifier). Statements
are triples composed of a binary predicate linking
together two resources; they are logically represented

as logical factsP (x, y). RDF Schema[30] provides a
simple language for writing ontologies. Objects sharing
similar characteristics are put together to formclasses.
Examples for classes are hotels, airlines, employees,
rooms, excursions etc. Individuals belonging to a class
are often referred to as instances of that class. Binary
properties (such asworks for) are used to establish
connections between classes. The application of predi-
cates can be restricted through the use ofdomain and
range restrictions. For example, we can restrict the
propertyworks for to apply only to employees (domain
restriction), and to have as value only companies (range
restriction).

Classes can be put together in hierarchies through
the subclass relationship: a classC is a subclass of
a classD if every instance ofC is also an instance
of D. For example, the class of island destinations
is a subclass of all destinations: every instance of an
island destination (e.g. Crete) is also a destination. The
hierarchical organization of classes is important due to
the notion of inheritance: once a classC has been
declared a subclass ofD, every known instance ofC is
automaticallyclassified also as instance ofD. This has
far-reaching implications for matching customer prefer-
ences to service offerings. For example, a customer may
wish to make holidays on an indonesian island. On the
other hand, the hotel Noosa Beach advertises its location
to be Bali. It is not necessary (nor is it realistic) for the
hotel to add information that it is located in Indonesia
and on an island; instead, this information is inferred
by the ontology automatically.

But there is a need for more powerful ontology
languages that expand RDF Schema and allow the
representations of more complex relationships between
Web objects. For example, cardinality constraints (every
course must be taught by at least one lecturer) and spe-
cial properties of predicates (e.g. transitivity, symmetry
etc.). Ontology languages, such asOWL [40], are built
on the top of RDF and RDF Schema. For an easy yet
comprehensive introduction to the Semantic Web see
[5].

So far, reasoning on the Semantic Web is mostly
reasoning about knowledge expressed in a particular
ontology. This is possible because ontology languages
are formal languages, which, for example, allow us to
reason about:

• Class membership: If x is an instance of classC,
and C is a subclass ofD, then we can infer that
x is an instance ofD.

• Equivalence of classes: If classA is equivalent to
classB, andB is equivalent to classC, then we
can infer thatA is equivalent toC.

• Consistency: If we have declared that classesC
andD are disjoint, andx is an instance of bothC

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 3

andD, then there is an error.
• Classification: If we have declared that certain

property-value pairs are sufficient conditions for
membership in classA, then if an individualx
satisfies such conditions, we can conclude thatx
must be an instance ofA.

Derivations such as the preceding can be mademechan-
ically instead of being made by hand. Such reasoning
support is important because it allows one to:

• check the consistency of an ontology and the
knowledge,

• check for unintended clashes between classes,
• automatically classify instances of classes.

Automated reasoning support allows one to check many
more classes than could be checked manually. Checks
like the preceding ones are valuable for designing large
ontologies, where multiple authors are involved, and for
integrating and sharing ontologies from various sources.

A. Introducing Rules

At present, the highest layer that has reached suffi-
cient maturity is the ontology layer in the form of the
description logic-based language OWL [40]. The next
step in the development of the Semantic Web will be
the logic and proof layers, and rule systems appear to
lie in the mainstream of such activities. Moreover, rule
systems can also be utilized in ontology languages. So,
in general rule systems can play a twofold role in the
Semantic Web initiative:

(a) they can serve as extensions of, or alternatives to,
description logic-based ontology languages; and

(b) they can be used to develop declarative systems
on top of (using) ontologies.

Reasons why rule systems are expected to play a key
role in the further development of the Semantic Web
include the following:

• Seen as subsets of predicate logic, monotonic rule
systems (Horn logic) and description logics are
orthogonal; thus they provide additional expressive
power to ontology languages.

• Efficient reasoning support exists to support rule
languages.

• Rules are well known in practice, and are rea-
sonably well integrated in mainstream information
technology, such as knowledge bases, etc.

As an exemplary application, rules can be a natural
means for expressing personalization information. For
example, the following rules says that “IfE is an
exercise related to conceptC and personX has read
the material onC, thenE can be presented toX.

exercise(E, C), hasRead(X, C)→ presentExercise(E, X)

A more thorough discussion of personalization rules
is found in Section VIII-B.

Possible interactions between description logics and
monotonic rule systems were studied in [55]. Based on
that work and on previous work on hybrid reasoning
[69] it appears that the best one can do at present
is to take the intersection of the expressive power of
Horn logic and description logics; one way to view this
intersection is the Horn-definable subset of OWL.

One interesting research thread deals with the ex-
change of rule sets between applications, making use
of Semantic Web languages. Works in this direction
include the RuleML initiative [87], based on the XML
and RDF languages, and SWRL [61], a recent proposal
based on OWL.

A few implementations of rule systems, tailored to
reasoning on the Web, exist yet. The most important
systems are Mandarax [73] and Triple [91].

III. N ONMONOTONIC RULES FOR THESEMANTIC

WEB

Apart from the classical rules that lead to monotonic
logical systems, recently researchers started to study
systems capable of handlingconflicts among rules.
Generally speaking, the main sources of such conflicts
are:

• Default inheritance within ontologies.
• Ontology merging, where knowledge from differ-

ent sources is combined.
• Rules with exceptions as a natural representation

of business rules.
• Reasoning with incomplete information.

Defeasible reasoning[4] is a simple rule-based ap-
proach to reasoning with incomplete and inconsistent
information. It can represent facts, rules, and priorities
among rules. The main advantage of this approach is
the combination of two desirable features: enhanced
representational capabilities allowing one to reason with
incomplete and contradictory information, coupled with
low computational complexity compared to mainstream
nonmonotonic reasoning. The main features of this
approach are:

• Defeasible logics are rule-based, without disjunc-
tion.

• Rules may support conflicting conclusions.
• The logics are skeptical in the sense that conflicting

rules do not fire. Thus consistency is preserved.
• Priorities on rules may be used to resolve some

conflicts among rules.
• The logics take a pragmatic view and have low

computational complexity.

Recent system implementations, capable of reasoning
with monotonic rules, nonmonotonic rules, priorities,
RDF data and RDF Schema ontologies, are DR- DE-
VICE [14] and the system in [3].

4 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Answer Set Programsare nonmonotonic logic pro-
grams based on the Answer Set Semantics by Gelfond
and Lifschitz [49], which use extended logic programs
for reasoning and problem solving by considering possi-
ble alternative scenarios. Apart from expressing knowl-
edge by facts and disjunctive rules in a declarative way,
ASP is capable of handling incomplete information and
default knowledge. Furthermore, user preferences and
desires can be accommodated using constructs for ex-
pressing priorities and weak constraints (i.e., constraints
that can be violated at a penalty). Several very efficient
implementations of ASP reasoners exist, e.g., smodels
[81] and DLV [67], the latter providing frontends for
preferences extensions as well as brave and cautious
reasoning. These systems offer gradually expressiveness
complexity in alignment with the (lower) complexity of
syntactic fragments.

With respect to an application in the domain of the
Semantic Web, the advantages of ASP are:

• High expressiveness.
• Declarative semantics.
• Model generation in addition to inference

Model generation enables a problem-solving paradigm
in which the solutions of a problem instance are declar-
atively encoded by the models of the logic program.

Using ASP in the context of the Semantic Web
has first been proposed by [60]. A recent extension
of ASP programs provides an interface to description
logic knowledge bases (such as OWL ontologies) [44],
[45]; such extended programs, so-calleddl-programs,
may contain queries to the ontology. This formalism
allows a flow of knowledge from the ontology to the
logic program and back, exploiting the possibilities
of handling terminological knowledge in a nonmono-
tonic application. A prototype implementation via Web-
interface is available.

IV. EVOLUTION , UPDATES AND EVENTS

Personalization of the Web heavily depends on dy-
namic aspects: it is not given a priori, but it isadaptive–
i.e., evolving, and reacting upon events, e.g., inputs of
the user. Furthermore, personalization is often imple-
mented viareactive behavior – i.e., by (personalized)
rules that specify what to do in a given situation.

In [74], we have discussed generic query (see also
above section), update, and event languages for the Se-
mantic Web. Evolution of the Web is a twofold aspect:
on today’s Web, evolution means mainly evolution of
individual Web sites that are updated locally. In contrast,
considering the Web and the Semantic Web as a “living
organism” thatconsistsof autonomous data sources, but
that will show a global “behavior” leads to a notion
of evolution of the Web ascooperative evolutionof

its individual resources. Personalization aspects deal
primarily with local evolution (e.g., that a portal site
adapts to evolving profiles of its registered users) and
local reactivity (reacting on a user’s interaction). But, in
the “background”, the personalization also potentially
affects the global communication of the node (e.g.,
to gather special information that a user requests, or
to react on remote events that are relevant to some
of its users), and, the more “intelligent” such Web
nodes get, the more they need global communication to
deal with the requirements of being personalized. Even
more, there can be data exchange about personalization
aspects (user profiles) between personalized nodes (al-
though, here also non-technical issues, what a node is
entitled to tell another about a user, come into play).

In the same way as proposed in [74], for languages
for evolution and reactivityin the Semantic Web, we
recommend to follow a modular approach. The first
step is to provide local personalization of a node that
is –at the beginning– part of the conventional Web
(see e.g., [57]). The next steps then (i) extend the
results to local personalization of the Semantic Web
(i.e., semantics-based personalization), (ii) enhance per-
sonalization to a “semantic” service (i.e., an ontology
for personalization), and (iii) then apply Semantic Web
reasoning on the personalization level. In addition to
the global language aspects sketched above, the internal
mechanisms for evolution of the local personalization
base, e.g., as evolution of a logic program, are to be
considered [2], [42].

When considering evolution of and events on the
Web, two aspects must be taken into account: there are
“local” updates that apply to a given Web site only; and
there are changes in distributed scenarios that must be
propagated from one Web site to another. This means,
that in addition to local update languages there must
be a declarative, semantic framework for generically
handling andcommunicatingchanges (in general, not as
explicit updates, but as changes of a situation, described
wrt. a combined ontology of the application and of
generic events).

During the development of (generic) languages for
evolution and reactivity, personalized nodes will seam-
lessly be integrated with the application scenarios to
be developed. In course, reactive functionality will be
employed for implementing personalization and adap-
tivity (as shown below, by integrating suitable sublan-
guages for (atomic) events and actions into the generic
languages). Analogously, personalization and adaptivity
will be subject of local and global evolution.

A. Language Paradigm: ECA Rules

According to [74], we propose an approach that is
in general based on rules, more specifically,reactive

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 5

rules according to theEvent-Condition-Action(ECA)
paradigm for the specification of reactivity. An impor-
tant advantage of them is that thecontentof the commu-
nication can be separated from thegeneric semanticsof
the rules themselves. Cooperative and reactive behavior
is then based on events (e.g., an update at a data source
where possibly others depend on): If a resource detects
a relevant event (either it is delivered explicitly, or it is
in some way communicated or detectable on the Web),
conditions are checked (either simple data conditions,
or e.g. tests if the event is relevant, trustable etc.),
which are queries to one or several nodes and are to be
expressed in the proposed query language. Finally, an
appropriate action is taken (e.g., updating own informa-
tion accordingly). This action can also be formulated as
a transaction whose ACID properties ensure that either
all actions in a transaction are performed, or nothing of
is done. The actions in course raise again events (either
explicit updates, or visible as application-level events).

The focus of the development is on appropriate sub-
languages for rules, events, conditions (that are in fact
queries) and for the action part of the rules that continue
the separation between application-specificcontentsand
generic patterns (e.g. for composite events).

a) Events.: An (atomic) event is in general any
detectable occurrence on the Web, i.e., (local) system
events, incoming messages including queries and an-
swers, transactional events (commit, confirmations etc),
updates of data anywhere in the Web, or any occur-
rences somewhere in an application, that are (possibly)
represented in explicit data, or signaled as the event
itself. For theseatomic events, it must also be distin-
guished between the event itself (carrying application-
specific information), and its metadata, like the type of
event (update, temporal event, receipt of message, . . .),
time of occurrence, the time of detection/receipt (e.g.,
to refuse it, when it had been received too late), the
event origin or its generator (if applicable; e.g. in terms
of its URI).

Reactive rules often do not specify reactions on
atomic events, but use the notion ofcomposite events,
e.g., “when E1 happened and thenE2 and E3, but
not E4 after at least 10 minutes, then doA”. Complex
events are usually defined in terms ofevent algebras.
Thus, a declarative language for describing composite
events is required, together with algorithms for han-
dling composite events. This language should not be
concerned with what the information contained in the
event might be, but only with types of events. For
making events themselves part of the Semantic Web, an
ontology of composite events has to be defined, together
with mappings from and to given event algebras and
their implementations.

An important aspect is the integrability of the event

meta language, the event contents languages, and the
query language. It is desirable that the specification of
composite events can be combined with requirements on
the state of resources at given intermediate timepoints,
e.g. “when at timepointt1, a cancellation comes in
and somewhere in the past, a reservation request came
in in a timepoint when all seats were booked, then,
the cancellation is charged with an additional fee”. In
this case, the composite event handler has to state a
query at the moment when a given event arrives. For
being capable of describing these situations, a logic (and
system) that deals with sequences of events and queries
is required. Such approaches have e.g. been presented
in Transaction Logic[29]; we will also investigate the
use of Evolving Logic Programs [1] for this purpose.

So, several integrated languages have to be defined:
the surrounding language for composite events, a lan-
guage for atomic events and their metadata, and lan-
guages for expressing the contents of different types of
events – e.g., one language based on an ontology for
personalization. Note that an ontology for describing
data that is relevant to personalization is needed, and
a related language for events that are relevant for
personalization is required.

b) Events, Knowledge, and Rules.:The view de-
scribed up to this point is to result in an infrastructure
for evolution and reactivity on the Web based on reac-
tion rules that define the behavior of resources upon
detection of events. These are in general composite
events, based on atomic, application-level ones. Local
knowledge is defined by facts, derivation rules, and
reaction rules. All of this local knowledge is encoded
in XML, and is updatable, in the sense that the update
language to be developed must be capable of changing
both facts, derivation rules and reactive rules. Here we
may rely on the studies done in the context of logic
programming about updating derivation and reactive
rules [2].

B. Evolution and Reactivity for Personalization

Concepts for personalization and adaptivity will be
implemented and supported by the above framework.
“Plain” evolving and reactive applications will provide
scenarios where personalization is then applied. Ex-
pressing personalization by (ECA-) rules is a usual
way in today’s approaches, which is then extended to a
semantic level in various aspects.

For Semantic Web applications, personalization func-
tionality is built upon an ontology-based user model.
The ECA rules that implement personalized behavior
use –inside the generic languages for the rules and
for composite events– sublanguages that combine the
user modeling ontology with the respective ontology of
application-specific events.

6 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

There will prospectively be “typical” rule patterns
(i.e., typical structures of composite events that include
typical atomic events, and typical action patterns) for
expressing personalization issues. These patterns are
then “parameterized” by atomic events, special condi-
tions, and actions to yield a certain rule which then
belongs to the behavior base of an application. As stated
above, this behavior base is also subject to evolution of
several kinds:

• reactivity-controlled evolution, which adapts the
behavior base according to events on the Web (e.g.,
when adapting the personal portfolio tracker when
a stock to be traced is moved from MDAX to
DAX),

• reactivity-controlled evolution, which adapts the
behavior base according to changes in the user’s
profile (e.g., when he is not longer eligible for
student tarifs in trains),

• users are enabled to change these rules interac-
tively (via an appropriate graphical interface),

• intelligent evolution by reasoning about the behav-
ior base, etc.

In the context of evolution and reactivity, personaliza-
tion does not only mean personalized access to the
Web –as implemented in today’s portals–, but also
personalized behavior that is able to raise events. A
customer e.g. may have a personalized Web agent for
bidding at ebay or for trading stocks. The behavior of
such agents is preferably again expressed by ECA rules
that can evolve in the same way as described above.

C. Knowledge Base Update and Reasoning About

As pointed out above, the dynamic nature of the
desired infrastructure for describing evolution and re-
activity on the Web requires not only the capability of
updating facts, but also the capability of updating rules.
Such updates can be handled in different ways. On the
one hand, updates can be performed on anad hocbasis
in a static environment, exploiting and adapting methods
from the area of knowledge base revision and belief
change, see e.g. [48], [92]. On the other hand, and this is
for a dynamic environment crucial, updates may occur
event-driven. The nature and circumstances of the event
which occurred may determine the way in which an
entailed update has to be incorporated into the current
rule and knowledge base. Here, personalization comes
into play since each user might have his or her own view
on how this update should materialize. This is supported
by user-definableupdate policies, like event-condition-
action rules, in which the general change behaviour
according to the desires and preferences of the user
can be described at a generic level. For instance, the
user may define rules which suppress certain unwanted

information, or propagate information to parts of the
knowledge base which are semantically connected at
the meta level.

We envisage a general formal model for express-
ing different such update approaches, following the
method put forth in [43] for capturing different update
approaches in the context of (possibly nonmonotonic)
knowledge bases. More specifically, such a formal
model has different components, taking care of the kind
of language, the knowledge base, the change actions,
an update policy, etc. under consideration, which can be
instantiated in a suitable manner. The accommodation of
more general evolving logic programs [1] in it remains
to be explored. Moreover, such a formal model provides
the basis for defining a temporal logic language for ex-
pressing different properties of the evolving knowledge
base on top, based on a well-defined semantics. This
logical language, in turn, can be used to specify and
study general inference and reasoning tasks associated
with evolving knowledge and rule bases.

V. PERSONALIZATION BY REASONING ABOUT

ACTIONS

Reasoning about action and change is a kind of
temporal reasoning where, instead of reasoning about
time itself, we reason onphenomenathat take place
in time. Indeed, theories of reasoning about action and
change describe adynamic worldchanging because of
the execution of actions. Properties characterizing the
dynamic world are usually specified by propositions
which are calledfluents. The wordfluent stresses the
fact that the truth value of these propositions depends
on time and may vary depending on the changes which
occur in the world.

The problem of reasoning about the effects of actions
in a dynamically changing world is considered one
of the central problems in knowledge representation
theory. Different approaches in the literature took dif-
ferent assumptions on the temporal ontology and then
they developed different abstraction tools to cope with
dynamic worlds. However, most of the formal theories
for reasoning about action and change (action theories)
describe dynamic worlds according to the so-called
state-action model. In the state-action model the world
is described in terms of states andactionsthat cause the
transition from a state to another. Typically it is assumed
that the world persists in its state unless it is modified
by an action’s execution that causes the transition to a
new state (persistency assumption).

The main target of action theories is to use a logical
framework to describe the effects of actions on a world
where all changes are caused by the execution of
actions. To be precise, in general, a formal theory for

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 7

representing and reasoning about actions allows us to
specify:

• causal laws, i.e. axioms that describe domain’s
actions in terms of theirpreconditionand effects
on the fluents;

• action sequences that are executed from the initial
state;

• observationsdescribing the value of fluents in the
initial state;

• observationsdescribing the value of fluents in later
states, i.e after some action’s execution.

The termdomain descriptionis used to refer to a set
of propositions that express causal laws, observations
of the fluents values in a state and possibly other
information for formalizing a specific problem. Given
a domain description, the principal reasoning tasks are
temporal projection(or prediction),temporal explana-
tion (or postdiction) andplanning.

Intuitively, the aim of temporal projection is to
predict an action’s future effects based on even par-
tial knowledge about the current state (reasoning from
causes to effect). On the contrary, the target oftemporal
explanation is to infer something on the past states
of the world by using knowledge about the current
situation. The third reasoning task, planning, is aimed at
finding an action sequence that, when executed starting
from a given state of the world, produces a new state
where certain desired properties hold.

Usually, by varying the reasoning task, a domain
description may contain different elements that provide
a basis for inferring the new facts. For instance, when
the task is to formalize the temporal projection problem,
a domain description might contain information on (a),
(b) and (c), then the logical framework might provide
the inference mechanisms for reconstructing informa-
tion on (d). Otherwise, when the task is to deal with the
planning problem, the domain description will contain
the information on (a), (c), (d) and we will try to infer
(b), i.e. which action sequence has to be executed on
the state described in (c) for achieving a state with the
properties described in (d).

An important issue in formalization is known as the
persistency problem. It concerns the characterization of
the invariants of an action, i.e. those aspects of the
dynamic world that are not changed by an action. If
a certain fluentf representing a fact of the world holds
in a certain state and it is not involved by the next
execution of an actiona, then we would like to have an
efficient inference mechanism to conclude thatf still
hold in the state resulting froma’s execution.

Various approaches in the literature can be broadly
classified in two categories: those choosing classical
logics as the knowledge representation language [63],
[76] and those addressing the problem by using non-

classical logics [36], [52], [84], [90] or computational
logics [11], [13], [50], [72]. Among the various logic-
based approaches to reasoning about actions one of the
most popular is still the situation calculus, introduced
by Mc Carthy and Hayes in the sixties [76] to capture
change in first order classical logic. The situation calcu-
lus represents the world and its change by a sequence
of situations. Each situation represents a state of the
world and it is obtained from a previous situation by
executing an action. Later on, Kowalski and Sergot
have developed a different calculus to describe change
[63], called event calculus, in which eventsproducing
changes are temporally located and they initiate and
terminate action effects. Like the situation calculus, the
event calculus is a methodology for encoding actions
in first-order predicate logic. However, it was originally
developed for reasoning about events and time in a
logic-programming setting.

Another approach to reasoning about actions is the
one based on the use of modal logics. Modal logics
adopts essentially the same ontology as the situation
calculus by taking the state of the world as primary and
by representing actions as state transitions. In particular,
actions are represented in a very natural way by modal-
ities whose semantics is a standard Kripke semantics
given in terms of accessibility relations between worlds,
while states are represented as sequences of modalities.

Both situation calculus and modal logics influenced
the design of logic-based languages for agent program-
ming. Recently the research about situation calculus
gained a renewed attention thanks to the cognitive
robotic project at University of Toronto, that has lead
to the development of a high-level agent programming
language, called GOLOG, based on a theory of actions
in situation calculus [68]. On the other hand, inDyLOG
[12], a modal action theory has been used as a basis
for specifying and executing agent behaviour in a logic
programming setting, while the language IMPACT is an
example of use of deontic logic for specifying agents:
the agent’s behavior is specified by means of a set of
rules (the agent program) which are suitable to specify,
by means of deontic modalities, agent policies, that is
what actions an agent is obliged to take in a given state,
what actions it is permitted to take, and how it chooses
which actions to perform.

Let us now show how these concepts can be useful
in the Semantic Web, by describing two scenarios
where personalization is required. The idea of exploiting
reasoning techniques for obtaining adaptation derives
from the observation that in many application domains
the goal of the user and the interaction occurring with
a resource play a fundamental role.

8 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

A. Reasoning about Web Services

In the first scenario that we consider, the action
metaphor is used for describing (and handling)Web
services. Generally speaking, a Web service can be
seen as any device that can automatically be accessed
over the Web. It may alternatively be a software system
or a hardware device; a priori no distinction is made.
The main difference between a Web service and other
devices that are connected to a network stands in the
kind of tasks that can be performed: a Web service
can be automatically retrieved after a search (that can
be thought of as analogous to finding Web pages by
means of a search engine, given a set of keywords), it
can be automatically invoked, composed with other Web
services so to accomplish more complex tasks, it must
be possible to monitor its execution, and so on. In order
to allow the execution of these tasks, it is necessary
to enrich the Web service with a machine-processable
description, that contains all the necessary information,
such as what the service does, which inputs it requires,
which results are returned, and so forth. A lot of
research is being carried on in this area and none of the
problems that we have just enumerated has met its final
solution yet. Nevertheless, there are some proposals,
especially due to commercial coalitions, of languages
that allow the description of the single services, and
their interoperation. In this line, the most successful are
WSDL [93] and BPEL4WS. This initiative is mainly
carried on by the commercial world, with the aim
of standardizing registration, look-up mechanisms and
interoperability,

Among the other proposals, OWL-S [82] (formerly
DAML-S [38]) is more concerned with providing
greater expressiveness to service description in a way
that can bereasoned about[34]. In particular, a service
description has three conceptual levels: theprofile, used
for advertising and discovery, theprocess model, that
describes how a service works, and thegrounding,
that describes how an agent can access the service.
In particular, the process model describes a service as
atomic, simple or composite in a way inspired by the
language GOLOG and its extensions [51], [68], [77].
In this perspective, a wide variety of agent technologies
based upon theaction metaphorcan be used. In fact,
we can view a service as an action (atomic or complex)
with preconditions and effects, that modifies the state
of the world and the state of agents that work in the
world. The process model can, then, be viewed as the
description of such an action; therefore, it is possible
to design agents, which apply techniques for reasoning
about actions and change to Web service process models
for producing new, composite, and customized services.

Quoting McIlraith [78]: “[. . .] Our vision is that
agents will exploit user’s constraints and preferences

to help customize user’s requests for automatic Web
service discovery, execution, or composition and in-
teroperation[. . .]”. In different words, personalization
is seen asreasoningabout the user’s constraints and
preferences and about theeffects, on the user’s knowl-
edge and on the world, of theaction “interact with a
Web service”. Techniques for reasoning about actions
and change are applied to produce composite and cus-
tomized services.

We claim that a better personalization can be
achieved by allowing agents to reason also about the
conversation protocolsfollowed by Web services. Con-
versation protocols rule the interactions of a service
with its interlocutors: the protocol defines all the possi-
ble “conversations” that the service can enact. Roughly
speaking, we can consider it as a procedure built upon
atomic speech acts. So far, however, OWL-S does not
represent in a way that can be reasoned about, the
communicative behaviour of a service. Let us explain
with a simple example how this would be useful: an
agent, which is a user’spersonal assistant, is requested
to book a ticket at a cinema where they show a certain
movie; as a further constraint, the agent does not have to
use the user’s credit card number along the transaction.
While the first is theuser’s goal, the additional request
constrains the way in which the agent willinteractwith
the service. In this case, in order to personalize the
interaction according to the user’s request, it is indeed
necessary to reason about the service communications.

In [7] a Web service is supposed to follow some
(possibly non-deterministic) procedure for interacting
with other services/agents. The authors show that by
reasoning on the (explicitly given) conversation proto-
cols followed by Web services, it is possible to achieve
a better personalizationof the service fruition. More
recently, the same authors have shown that the same
kind of reasoning can be exploited forcomposinga
set of Web services, which must interoperate in order
to accomplish a complex task, that none of them can
execute by itself alone. Consider, as an example, the
organization of a journey: it is necessary to find and
make work together services for finding a flight, renting
a car, making a reservation at some hotel, maybe the
user’s personal calendar, etc. All services that have been
developed independently and for simpler purposes. The
problem of describing and reasoning about conversation
protocols is faced in anagent logic programmingset-
ting, by exploiting the reasoning capabilities of agents
written in theDyLOG language, introduced in [12]. In
particular, integrated in the language, a communication
kit [8], [83] allows reasoning about the possible inter-
actions ruled by a protocol by answering to existential
queries of the kind: is there a possible execution of the
protocol, after which a set of beliefs of interest (or goal)

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 9

will be true in the agent’s mental state?

B. Reasoning about Learning Resources

The second scenario is set in an e-learning frame-
work: a system has to manage a repository of learning
resources, helping users to retrieve the documentation
that they need, for acquiring some desired expertise.
The goal of the system is returning apersonalized
reading sequencethrough a (sub)set of the available
resources, that will allow the specific user to reach
his/her learning goal. Notice that resources may be of
different kinds, e.g. text, examples, tests, programming
patterns, references to books, and so forth.

The same learning object can be used in different
reading sequences, maybe aimed at different learning
goals. Moreover, a sequence might contain learning ob-
jects that are physically located in different repositories.

Based on the experience gained in previous work [9],
[10], an approach is to carry on the construction of
reading sequences by means of techniques for reasoning
about actions, like planning and temporal explanation,
applying them to semantically annotated learning re-
sources. Indeed, also in this scenario the adoption
of the “action metaphor” is quite straightforward: a
learning resourcecan, in fact, be considered as anac-
tion, with preconditions (what the student should know
for understanding the knowledge contents) and effects
(what the student is supposed to learn by reading the
resource) on the knowledge of the reader. This choice
is also supported by research in pedagogy that shows
that human learning is goal-driven, and the notions of
prerequisite and effect (in our case, knowledge gain)
play a fundamental role. In the action-based represen-
tation of learning resources, prerequisites and effects
are supposed to be expressed by means of “knowledge
entities”, i.e. terms from a reference ontology.

In this scenario the goal of personalization is to
produce reading sequences that fit the specific user’s
characteristics (i.e. users with different initial knowl-
edge will be suggested different solutions) and the
user’s learning goal. Notice that, differently than what
happens in other approaches, adaptation occurs at the
level of thereading sequencerather than at the level of
page contents (no link hiding or semaphore annotation
is supposed to be used), and it is done w.r.t. the user’s
learning goal.

Many reasoning techniques can be applied in this
scenario. One way for building personalized reading
sequences is to apply planning techniques; on the other
hand, temporal explanation can be used to motivate the
user to read documents, that apparently have no direct
relation to the learning goal. Also techniques for dealing
with failure and replanning are useful: failure occurs
when a user is not satisfied of the proposed solution,

on the whole or of part of it, and the system is asked to
find alternatives.Non-monotonicreasoning techniques
could help in this case.

In the literature, it is possible to find programming
languages based on action logics (likeDyLOG and
GOLOG) that support some of the mentioned reasoning
techniques and many others. For instance, inDyLOG
it is possible to exploit a kind of planning, known as
procedural planning, that rather than combining in all
the possible ways the available actions (documents, or
resources) searches for solutions in a restricted space,
consisting of the set of possible executions of a given
procedure. In this case the procedure describes the
general schema of the solution to be found, which is
kept separate from the specific resources. At planning
time, depending on the initial situation and on the
available resources, a solution will be built. The use of
procedures as schemas allows the achievement of a form
of personalization that not only depends on the user’s
characteristics and goal (whose description is contained
in the initial state) but it also depends on preferences
given by the providers of the resources. In the scenario
in issue, the procedure would correspond to alearning
strategydescribed by the lecturer of the course, which
takes into account the experience of the teacher and
his/her preferences on how the topic should be thought.

VI. X CERPT: A QUERY AND TRANSFORMATION

LANGUAGE FORWEB AND SEMANTIC WEB

APPLICATIONS

Querying the Web, i.e. retrieving Web and Seman-
tic Web data using queries expressed in a high level
language, can considerably ease the realization of per-
sonalized information systems on the Web. Doing this
using a query language capable of deduction can fur-
ther simplify conceiving and implementing personalized
information systems on the Web.

Xcerpt [24], [89], [94] is an experimental deductive
query language developed at the Institute for Informat-
ics of the University of Munich since 2001.

The goal of the Xcerpt project is to investigate ways
to ease realizing Web as well as Semantic Web appli-
cations, in particular realizing personalized information
systems on the Web. One might see the Semantic Web
meta-data added to today’s Web as semantic indexes
similar to encyclopedias. A considerable advantage over
conventional encyclopedias printed on paper is that
the relationships expressed by Web meta-data can be
followed by computers, very much like hyperlinks can
be followed by programs, and be used for drawing
conclusion using automated reasoning methods:

For the Semantic Web to function, computers
must have access to structured collections of
information and sets of inference rules that

10 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

they can use to conduct automated reasoning.
[28]

A central principle of the Web query language Xcerpt
presented in this section is that a common query lan-
guage capable of inference to be used for querying
both the conventional Web and the Semantic Web is
desirable and possible. This working hypothesis is one
of the salient features of Xcerpt which makes it different
from all Web as well as Semantic Web query languages
developed so far.

1) Xcerpt’s Principles:
a) Referential Transparency.:Referential trans-

parency means that, within a definition scope, all occur-
rences of an expression have the same value, i.e. denote
the same data. Referentially transparent programs are
easier to understand and therefore easier to develop,
to maintain, and to optimize. Referential transparency
surely is one of the essential properties a query language
for the Web should satisfy.

b) Answer-Closedness.:We call “answer-closed”
a query language such that replacing a subquery in a
compound query by possible (not necessarily actual) an-
swers always yields a syntactically valid query. Answer-
closed query languages ensure in particular that every
data item, i.e. every possible answer to some query, is a
syntactically valid query. Functional programs can – but
need not – be answer-closed. Answer-closedness eases
the specification of queries because it keeps limited the
unavoidable shift in syntax from the data sought for,
i.e. the expected answer, and the query specifying these
data. Xcerpt is answer-closed.

c) Answers as Arbitrary XML Data.:XML is
the lingua franca of data interchange on the Web.
As a consequence, answers should be expressible as
every possible XML application. This includes both text
without markup and freely chosen markup and structure.
This requirement is obvious and widely accepted for
conventional Web query languages but it is not enforced
by many Semantic Web query languages.

d) Answer Ranking and Top-k Answers.:It is
often desirable to rank answers according to some
application-dependent criteria. It is desirable that Web
and Semantic Web query languages offer (a) basic
means for specifying ranking criteria and, for efficiency
reasons, (b) evaluation methods computing only the top-
k answers (i.e. a given number k of best-ranked answers
according to a user-specified ranking criterium). Xcerpt
supports the specification of orders on XML documents
and the retrieval of k answers of a query, possibly sorted
according to a specified order.

e) Pattern Queries.:Xcerpt uses patterns for bind-
ing variables in query expressions instead of path ex-
pressions – like e.g. the Web query languages XQuery
and XSLT. Query patterns are especially well-suited for

a visual language because queries have a structure very
close to that of possible answers.

f) Incomplete Query Specifications.:Incomplete
queries specifying only part of data to retrieve, e.g. only
some of the children of an XML element (referring to
the tree representation of XML data called “incomplete-
ness in breadth”) or an element at unspecified nesting
depth (referring to the tree representation of XML data
called “incompleteness in depth”), are important on
the conventional Web because of its heterogeneity: one
often knows part of the structure of the XML documents
to retrieve. For similar reasons, incomplete queries are
important on the Semantic Web. Xcerpt supports queries
that are incomplete in breadth, in depth, with respect to
the element order, and because of optional elements or
attributes.

g) Incomplete Data Selections.:Because Web
data are heterogeneous in their structures, one is of-
ten interested in “incomplete answers”. Two kinds of
incomplete answers can be considered. First, one might
not be interested in some of the children of an XML
(sub)document retrieved by a query. Second, one might
be interested in some child elements if they are avail-
able, but would accept answers without such elements.
Xcerpt’s constructexcept gives rise to discard a child
of an element retrieved by a query, i.e. to express
queries of the first kind. Xcerpt’s constructoptional
gives rise to select elements only if available, i.e. to
express queries of the second kind.

h) Rule-Based, Chaining, and Recursion.:Rules
are understood here as means to specify novel, maybe
virtual data in terms of queries, i.e. what is called
“views” in (relational) databases, regardless of whether
this data is materialized or not. Views, i.e. rule-defined
data are desirable for both conventional and Semantic
Web applications. Xcerpt supports (unrestricted) recur-
sion on possibly cyclic data (relying on a so-called
“memorization” or “tabulation” technique).

i) Separation of Queries and Constructions.:Two
standard and symmetrical approaches are widespread, as
far as query and programming languages for the Web
are concerned:

• queries or programs are embedded in a Web page
or Web page skeleton giving the structure of an-
swers or data returned by calls to the programs

• parts of a Web page specifying the structure of the
data returned to a query or program evaluation are
embedded in the queries or programs.

It is a thesis of the Xcerpt project that both approaches
to queries or programs are hard to read (and, therefore,
to write and to maintain). Instead of either approach,
Xcerpt strictly separates queries and “constructions”,
i.e. expressions specifying the structure of answers.
With Xcerpt, constructions are rule heads and queries

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 11

are rule bodies. In order to relate a rule’s construction,
i.e. the rule’s head, to a rule’s query, i.e. the rule’s body,
Xcerpt uses (logic programming) variables.

j) A Query Language for both the Standard Web
and the Semantic Web.:A thesis underlying the Xcerpt
project is that a common query language for both
conventional Web and Semantic Web applications is
desirable.

k) Specific Reasoning as Theories.:Many practi-
cal applications require special forms of reasoning. For
this reason, it is desirable that a query language for
the (conventional and Semantic) Web can be extended
with so-called “theories” implementing specific forms
of reasoning.

l) Two Syntaxes: XML Syntax and Compact Hu-
man Readable Syntax.:While it is desirable that a
query language for the (conventional and/or Semantic)
Web has an XML syntax, because it makes it easier to
exchange query programs on the Web and to manipulate
them using the query language, a second, more compact
syntax easier for human being to read and write is
desirable.

2) Flavors of Xcerpt: Xcerpt’s Core Constructs:An
Xcerpt program consists of at least one goal and of some
(possibly zero) rules. Goals and rules are built from
data, query, and construct terms representing respec-
tively XML documents, query, and XML documents
constructed from the answers to queries.

Data, query, and construct terms represent tree-like
(or graph-like) structures. In data, query, and construct
terms, square brackets (i.e. []) denote ordered term
specification (as in standard XML), i.e. the matching
subterms in the queried resource are required to be
in the same order as in the query term. Curly braces
(i.e. { }) denote unordered term specification (as is
common in databases), i.e. the matching subterms in
the queried resource may be in arbitrary order. Single
(square or curly) braces (i.e. [] and{ }) denote that
a matching term must contain matching subterms for
all subterms of a term and may not contain additional
subterms (total term specification). Double braces (i.e.
[[]] and {{ }}) denote that the data term may contain
additional subterms as long as matching partners for
all subterms of the query term are found (partial term
specification).

Non-tree graph structures are expressed using refer-
ences, i.e. symbolic addresses: The constructid @ t
is a defining occurrence of the identifierid as reference
handle of a termt and the construct̂id is a referring
occurrence.

a) Data terms: represent XML documents (we
speak of “XML in disguise”). They are similar to
ground functional programming expressions and logical
atoms. Data terms may only contain single square and

curly braces, but no double braces expressing partial
specifications, as an XML document is complete.

The data term in Figure 1 is the shortened representa-
tion of an article in Xcerpt syntax. Note that some parts
of the article use unordered term specification (e.g. the
author entries) since the order is irrelevant.

b) Query terms: are partial patterns that are
matched with data terms, augmented by an arbitrary
number of variables for selecting data items from a data
term. In addition to the constructs used in data terms,
query terms have the following additional properties:

1) partial specifications omitting subterms irrelevant
to the query are possible (indicated by double
square brackets [[]] or curly braces{{ }}),

2) it is possible to specify subterms at arbitrary depth
using the constructdesc),

3) query terms may contain term variables and label
variables to “select” data.

In the following examples, upper case characters are
chosen for variables. The Xcerpt constructX -> t
(read “X as t ”) associates a variable to a query term,
so as to specify a restriction of its bindings. The Xcerpt
constructdesc (read “descendant”) is used to specify
subterms at arbitrary depth. Suppose that the articles
of the proceedings of a conference are contained in
a proceedings element. The following query term
selects title and author pairs for each article:

proceedings {{
article {{

var T -> title {{ }},
var A -> author {{ }}

}}
}}

Query terms (in general containing variables) are
unified with data or construct terms (in which variables
may occur) using a non-standard unification expecially
conceived for Xcerpt and called simulation unification
[33]. Simulation unification is based on “graph simula-
tion”, a relation similar to graph homomorphisms.

The result of unifying a query term with a data term
(construct term, resp.) is a set of substitutions for the
variables in the query term (in the query term and con-
struct term, resp.), where each substitution represents
an alternative solution.

c) Construct terms:serve to reassemble variables
(the bindings of which are specified in query terms) so
as to construct new data terms. They may only contain
single brackets (i.e. [] or{ }) and variables, but no
partial specification (i.e. no double braces [[]] or{{ }})
or variable restrictions (i.e.x -> t). The rationale
of this is to keep variable specifications within query
terms, ensuring a strict separation of purposes between
query and construct terms. The following construct term
creates an Author-Title pair wrapped in a “result ”
element:

12 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 1. Representation of an article in Xcerpt syntax
paper [

front [
title ["Reasoning Methods for Personalization

on the Smantic Web "],
author {

fname ["Grigoris"],
surname ["Antoniou"],
address { ... },
bio [...]

},
author {

fname ["Nicola"],
surname ["Henze"],
address { ... },
bio [...]

},
],
body [

section [
title ["Introduction"],],
...

],
rear [

acknowl [...],
bibliog {

bibitem [
bib ["XQuery"],
pub ["XQuery: The XML Query Language ..."]

],
...

}
]

]

result {
var A, var T

}

In a construct term, the Xcerpt constructall t
serves to collect (in the construct term) all instances oft
that can be generated by alternative substitutions for the
variables int (returned by the associated query terms
in which they occur). Likewise,some n t serves to
collect at mostn instances oft that can be generated in
the same manner. Referring to the previous query, the
following construct term creates a list of publications
for each author:

results {
result {

var A,
all var T

}
}

Referring again to the previous query, the following
construct term collects all titles for each author:

results {
all result { var A, all var T }

}

Referring again to the previous query, the following
construct term collects all titles for each author:

results {
all result { all var A, var T }

}

d) Queries: Query terms are (atomic)queries.
Query terms can be “and” or “or”-connected yielding
(complex) queries. A query is always (implicitly or
explicitly) associated with a resource, i.e. the program
itself, an external Xcerpt program or an (XML or
other) document specified by a URI (uniform resource
identifier). All occurrences of a variable in a query
term and in and-connected queries are always evaluated
identically: this is the usual approach to variable binding
in the database query language SQL and in logic
programming. The query in Figure 2 selects all authors
that have published an article in the proceedings of the
2003 and 2004 venues of a conference (it is assumed
that the articles are contained in aproceedings03
resp.proceedings04 element):

e) Construct-query rules and goals.:An Xcerpt
program consists of zero or moreconstruct-query rules,
one or moregoals and zero or more data terms. In
particular, an XML document, i.e. a data term, is an
Xcerpt program. Rules and goals have the forms:

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 13

Fig. 2. An example query
and {

in { resource { "file:proceedings03.xml" },
desc author {{

fname { var First }, surname { var Last }
}}

},
in { resource { "file:proceedings04.xml" },

desc author {{ fname { var First }, surname { var Last }
}}

}
}

CONSTRUCT construct term
FROM query
END

GOAL construct term
FROM query
END

where aconstruct term is constructed depend-
ing on the evaluation of aquery , i.e. shared variables.

f) Further constructs.:Besides the core constructs
presented above, Xcerpt has so-called “advanced con-
structs”. These constructs give rise to expressing (1)
functions and aggregations (such as count, average,
etc.), (2) that part of a query is “optional”, i.e. to be
retrieved only if present in the data considered, (3)
to express positions of subterms searched for, and (4)
negation in queries. Xcerpt’s advanced constructs are
detailed in [89].

3) Languages Related to Xcerpt:Two companion
languages of Xcerpt deserve to be mentioned: visXcerpt
and XChange. visXcerpt [23], [25] is a visual language
based on the same principles as the textual language
presented above. XChange is a reactive language based
on Xcerpt for expressing updates and exchanging events
on the Web [31], [32].

VII. W EB DATA EXTRACTION

If, on a hand, today the Semantic Web [27] is still
a vision, on the other, theunstructured Webalready
contains millions of documents which are not queryable
as a database and heavily mix layout and structure.
Moreover, they are not annotated at all. There is a huge
gap between Web information and the qualified, struc-
tured data as usually required in corporate information
systems. According to the vision of the Semantic Web,
all information available on the Web will be suitably
structured, annotated, and qualified in the future. How-
ever, until this goal is reached, and also, towards a faster
achievement of this goal, it is absolutely necessary to
(semi-)automatically extract relevant data from HTML
documents and automatically translate this data into a
structured format, e.g., XML. Once transformed, data

can be used by applications, stored into databases or
populate ontologies.

Whereas information retrieval targets to analyze and
categorize documents, information extraction collects
and structures entities inside of documents. For Web
information extraction languages and tools for access-
ing, extracting, transforming, and syndicating the Data
on the Web are required. The Web should be useful
not merely for human consumption but additionally for
machine communication. A program that automatically
extracts data and transforms it into another format
or markups the content with semantic information is
usually referred to aswrapper. Wrappers bridge the
gap between unstructured information on the Web and
structured databases.

A number of classification taxonomies for wrapper
development languages and environments have been
introduced in various survey papers [47], [64], [66].

High-level languages have been developed for Web
extraction. Thesestand-alone wrapper programming
languagesinclude Florid [75], Jedi [62], Tsimmisand
Araneus[6]. In general, all manual wrapper generation
languages are difficult to use by laypersons.

Machine learning approachesgenerally rely on learn-
ing from examples and counterexamples of a large
number of Web pages (Stalker [80], Davulcu et al.
[39], Wien [65]). The RoadRunner[37] approach does
not need labelled examples, but derives rules from a
number of given pages by distinguishing the structure
and the content. It uses an interesting generation of
pattern names based on offset-criteria in addition to
the applied semi-structured wrapping technology. Some
approaches such as [46] offer generic wrapping tech-
niques. Such approaches have the advantage that they
can wrap arbitrary Web pages never seen before, on the
other hand the disadvantage that they are restricted to
particular domains (such as detecting addresses).

Interactive approaches allow for semi-automatic ex-
traction generation and offer convenient visual dia-
logues to generate a wrapper based on a few examples
and user interaction.Supervised interactive wrapper

14 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 3. Lixto Visual Wrapper: Wrapping Publication Pages

generationtools includeW4F [88], XWrap[70], Wiccap
[71], SGWrap[79], and Wargo [85] and DEByE [86].
In general, many systems neglect the capabilities of
Deep Web navigation such as form filling; however, in
practice this is highly required, as most information is
hidden somewhere in the Deep Web [26].

A. Lixto

Lixto [17] is a methodology and tool for visual
and interactive wrapper generation developed at the
University of Technology in Vienna. It allows wrapper
designers to create so-called “XML companions” to
HTML pages in a supervised way. As internal language,
Lixto relies on Elog. Elog is a Datalog-like language
especially designed for wrapper generation. Examples
of programs in Elog are given in [16]. The Elog
language operates on Web objects, that are HTML
elements, lists of HTML elements, and strings. Elog
rules can be specified fully visually without knowledge
of the Elog language. Web objects can be identified
based on internal, contextual, and range conditions and
are extracted as so-called “pattern instances”.

In [53], [54], the expressive power of a kernel frag-
ment of Elog has been studied, and it has been shown
that this fragment captures monadic second order logic,
hence is very expressive while at the same time easy to
use due to visual specification.

Besides expressiveness of a wrapping language, ro-
bustness is one of the most important criteria. Infor-
mation on frequently changing Web pages needs to be
correctly discovered, even if e.g. a banner is introduced.

Visual Wrapper offers robust mechanisms of data
extraction based on the two paradigms of tree and string

extraction. Moreover, it is possible to navigate to further
documents during the wrapping process. Predefined
concepts such such as “is a weekday” and “is a city” can
be used. The latter is established by connecting to an
ontological database. Validation alerts can be imposed
that give warnings in case user-defined criteria are no
longer satisfied on a page.

Visually, the process of wrapping is comprised of
two steps: First, the identification phase, where relevant
fragments of Web pages are extracted (see Figure 3).
Such extraction rules are semi-automatically and vi-
sually specified by a wrapper designer in an iterative
approach. This step is succeeded by the structuring
phase, where the extracted data is mapped to some
destination format, e.g. enriching it with XML tags.
With respect to populating ontologies with Web data
instances, another phase is required: Each information
unit needs to be put into relation with other pieces of
information.

B. Visual Data Processing with Lixto

Heterogeneous environments such as integration and
mediation systems require a conceptual information
flow model. The usual setting for the creation of ser-
vices based on Web wrappers is that information is
obtained from multiple wrapped sources and has to
be integrated; often source sites have to be monitored
for changes, and changed information has to be au-
tomatically extracted and processed. Thus, push-based
information systems architectures in which wrappers
are connected to pipelines of postprocessors and in-
tegration engines which process streams of data are
a natural scenario, which is supported by the Lixto

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 15

Fig. 4. Lixto Transformation Server: REWERSE Publication Data Flow

Transformation Server [21], [59]. The overall task of
information processing is composed into stages that
can be used as building blocks for assembling an
information processing pipeline. The stages are to

• acquire the required content from the source loca-
tions; this component resembles the Lixto Visual
Wrapper plus Deep Web Navigation;

• integrate and transform content from a number of
input channels and tasks such as finding differ-
ences, and

• format and deliver results in various formats and
channels and connectivity to other systems.

The actual data flow within the Transformation
Server is realized by handing over XML documents.
Each stage within the Transformation Server accepts
XML documents (except for the wrapper component,
which accepts HTML), performs its specific task (most
components support visual generation of mappings),
and produces an XML document as result. This result is
put to the successor components. Boundary components
have the ability to activate themselves according to
a user-specified strategy and trigger the information
processing on behalf of the user. From an architectural
point of view, the Lixto Transformation Server may
be conceived as a container-like environment of visu-
ally configured information agents. The pipe flow can
model very complex unidirectional information flows
(see Figure 4). Information services may be controlled
and customized from outside of the server environment
by various types of communication media such as Web
services.

C. Web Data Extraction Application Domains

Better software connections are a key challenge to
rapid progress in collaborative and e-commerce appli-
cations. Rather than waiting for suppliers to recode
entire applications to Web service and Semantic Web
standards, one can choose the route to better Web
connectivity, using today’s existing systems. Extraction
technologies help to unfold the structure of the desired
pieces of information from HTML documents and trans-
late it into XML in a very cost-effective way.

With Lixto some functions that will be tangible only
in the future Semantic Web are already turning into
reality today. Lixto applications collect data, transform
the information into a homogeneous structure and syn-
dicate the semantically enriched data to applications or
devices. Lixto’s advantages in respect to other wrapper
tools and screen-scrapers are its high flexibility, robust-
ness, expressiveness, usability, and its ability to provide
interfaces to various data formats and delivery channels
[19], [20].

The application domains of extraction technolo-
gies are manifold. They e.g. include automatizing
portal-based interactions between automotive suppliers,
repackaging content for mobile devices, monitoring e.g.
price and news data for business intelligence frame-
works, and updating address data for CRM databases
[15], [18]. Moreover, Web data harvested and syndi-
cated by Lixto can be ideally used by personalization
systems, e.g. to offer personalized views on extracted
news or publications, as described in Section VIII-D.

16 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 5. Architecture of the Personal Reader framework, showing the different components of the Personal Reader: Visualization (user
interface), the Personal Reader backbone (consisting of the Connector services, the Reasoning service(s)), and some data-provision services,
for RDF data and for the connection with some database for storing user profile information.

VIII. P ERSONALIZATION SERVICES FOR THE

SEMANTIC WEB: THE PERSONAL READER

FRAMEWORK

How can we establish personalization for the Seman-
tic Web? Personalization can provide guidance, recom-
mendations, hints for a user browsing the Web, it makes
the retrieval process of information more effective, it
supports users in managing their view on information
on the Web, etc. To sum it up, personalization provides
an added valueor a service to the end user. One ap-
proach for bringing personalization functionality to the
(Semantic) Web is therefore to realizePersonalization
Web serviceswhich are offered to end user for selection
according to their convenience, or to applications for
retrieving and integrating additional functionality, as
discussed in Section V. In this section, we describe
two demonstrator applications for implementing person-
alization functionality in the Semantic Web, following
the approach discussed in Section IV: a Personal Reader
Instance for the e-Learning domain, and a Personal
Publication Reader.

A. Architectural Overview of the Personal Reader
Framework

The Personal Reader Framework1 is an environment
for designing, implementing and maintaining personal
Web-content Readers [41], [56]. These personal Web-
content Readers allow a user to browse information (the
Readerpart), and to access personal recommendations
and contextual information on the currently regarded
Web resource (thePersonalpart). We will briefly out-
line the underlying architecture of the Personal Reader

1www.personal-reader.de

framework, and discuss in more detail how personal-
ization services for two instances of Personal Readers
have been implemented.

The architecture of the Personal Reader is a rigorous
approach for applying recent Semantic Web technolo-
gies. A modular framework of Web services – for
constructingthe user interface, for mediatingbetween
user requests and currently available personalization
services, foruser modeling, and for offeringpersonal-
ization functionality– forms the basis for the Personal
Reader. The communications between all components /
services is syntactically based on RDF descriptions (see
Figure 5).

The common ”understanding” of the services is
realized by referring to semantics in the ontologies
which provide the valid vocabulary for describing func-
tionality, user interface components, requests, etc. In
particular, we employ the following ontologies for de-
scribing our objects of discourse, following the logic-
based definition of adaptive hypermedia systems [58]:

1) a domain ontology describing the application do-
main, and a document ontology.

2) a user model ontology (attribute–value pairs for
user characteristics, preferences, information on
the devices the user is using for accessing the
Personal Reader, etc.);

3) an observation ontology (for describing the dif-
ferent kinds of user observations made during
runtime);

4) and an adaptation ontology for describing the
adaptation functionality which is provided by the
adaptation services.

The underlying architecture of the Personal Reader
Framework allows to design, implement and maintain

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 17

Fig. 6. Determining details for the currently used learning resource
FORALL LO, LO_DETAIL detail_learningobject(LO, LO_DETAIL) <-

EXISTS C, C_DETAIL(detail_concepts(C, C_DETAIL)
AND concepts_of_LO(LO, C) AND concepts_of_LO(LO_DETAIL, C_DETAIL))
AND learning_resource(LO_DETAIL) AND NOT unify(LO,LO_DETAIL).

Personal Web Content Readers. In the following, we
describe two Personal Reader instances which have
been recently developed: A Personal Reader for the e-
Learning domain, and a Personal Publication Reader
developed for the publications of the Network of Ex-
cellence REWERSE2.

B. A Personal Reader Instance: Personal Reader for
e-Learning

Let us start with a specific scenario, involving a user,
Alice, interested in learning Java programming:

Alice is currently learning about variables
in Java by accessing some learning resource
in an online tutorial. During her studies she
realizes that she needs some clarifications on
naming variables. The Personal Reader shows
where detailed information on variables can
be found in this online tutorial, and also
points out recommended references for deeper
understanding. For ensuring that Alice un-
derstands the use of variables, the Personal
Reader provides several quizzes. When prac-
ticing, Alice does some of the recommended
exercises. For the chosen exercises, the Per-
sonal Reader provides Alice with appropriate
links to the Java API, and some already solved
exercises. A further source of information are
the JAVA FAQ references pointed out to Alice
by the Personal Reader.

The Personal Reader for e-Learning (PR-eL) provides
a learner with such a personal interface for studying
learning resources: thePersonal Annotation service
recommends the learner next learning steps to take,
points to examples, summary pages, more detailed
information, etc., and always recommends the most ap-
propriate of these information according to the learner’s
current knowledge, his/her learning style, learning goal,
background, etc.

We provide some examples of personalization rules
from the Personal Annotation services of the PR-eL for
learning the Java programming language. This Personal
Reader helps the learner to view the learning resources
from the Sun Java Tutorial [35], a freely available
online Tutorial on Java programming, in a context: more
details related to the topics of the learning resource,

2rewerse.net

the general topicsthe learner is currently studying,
examples, summaries, quizzes, etc. are generated and
enriched with personal recommendations according to
the learner’s current learning state.

For implementing the reasoning rules, we currently
use the TRIPLE [91] query and rule language for the
Semantic Web. Rules defined in TRIPLE can reason
about RDF-annotated information resources (required
translation tools from RDF to triple and vice versa
are provided). An RDF statement (which is a triple)
is written assubject[predicate -> object] .

RDF models are explicitly available in TRIPLE:
Statements that are true in a specific model are writ-
ten as ”@model”. This in particular is important for
constructing thetemporal knowledge basesas required
in the Personal Reader. Connectives and quantifiers for
building logical formulae from statements are allowed
as usual:AND, OR, NOT, FORALL, EXISTS, <- , -> ,
etc. are used.

In the following, we will describe some of the rules
that are used by the Personal Reader for learning
resources to determine appropriate adaptation strategies.

a) Providing a Context by Displaying Details of a
Learning Resource.:Generating links to more detailed
learning resources is an adaptive functionality in this
example Personal Reader.

The adaptation rule takes the isA hierarchy in
the domain ontology, in this case the domain on-
tology for Java programming, into account to deter-
mine domain concepts which are details of the cur-
rent concept or concepts that the learner is study-
ing on the learning resource. In particular, more
details for the currently used learning resource
are determined bydetail learningobject(LO,
LO DETAIL) , see Figure 6, whereLOandLO Detail
are learning resources, and whereLO DETAIL covers
more specialized learning concepts which are deter-
mined with help of the domain ontology.

N. B. the rule does neither require thatLO DETAIL
covers all specialized learning concepts, nor that it ex-
clusively covers specialized learning concepts. Further
refinements of this adaptation rule are of course possible
and should, in a future version of the Personal Reader,
be available as tuning parameters under control of the
learner. The rules for embedding a learning resource
into more general aspects with respect to the current
learning progress are similar.

18 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

b) Providing Pointers to Quizzes.:Another exam-
ple, Figure 7, of anadaptation rulefor generating em-
bedding context is the recommendation of quiz pages.
A learning resourceQ is recommended as a quiz for
a currently learned learning resourceLO if it is a quiz
(the rule for determining this is not displayed) and if
it provides questions to at least some of the concepts
learned onLO.

c) Calculating Recommendations.:Recommenda-
tions are personalized according to the current learning
progress of the user, e. g. with respect to the current set
of course materials. The rule in Figure 8 determines that
a learning resourceLO is recommended if the learner
studied at least one more general learning resource
(UpperLevelLO).

Additional rules deriving stronger recommendations
(e. g., if the user has studiedall general learning
resources), less strong recommendations (e.g., if one
or two of these haven’t been studied so far), etc., are
possible, too.

Recommendations can also be calculated with respect
to the current domain ontology, Figure 9. This is
necessary if a user is regarding course materials from
different courses at the same time.

However, the first recommendation rule, which rea-
sons within one course will be more accurate because
it has more fine–grained information about the course
and thus on the learning process of a learner taking part
in this course.

d) Reasoning Rules for User Modeling.:The Per-
sonal Reader requires only view information about
the user’s characteristics. Thus, for our example we
employed a very simple user model: This user model
traces the user’s path in the learning environment and
registers whenever the user has visited some learning
resource. This information is stored in the user’s profile,
which is bound to RDF as shown in Figure 10.

From this information, we derive whether a particular
user learned some concept. The rule in Figure 11 derives
all learned concepts.

Similarly, it can be determined whether a learning
object has been learned by a user.

C. A Personal Reader Instance: The Personal Publica-
tion Reader

Again, let us consider a scenario first for describing
the idea of the Personal Publication Reader:

Bob is currently employed as a researcher
in a university. Of course, he is interested
in making his publications available to his
colleagues, for this he publishes all his pub-
lications at his insitute’s Web page. Bob is
also enrolled in a research project. From time

to time, he is requested to notify the project
coordination office about his new publica-
tions. Furthermore, the project coordination
office maintains a member page where infor-
mation about the members, their involvement
in the project, research experience, etc. is
maintained.

Can we simplify this process? And, furthermore, can
we use this information to provide new, syndicated
information? From the scenario, we may conclude that
most likely the partners of a research project have their
own Websites where they publish their research papers.
In addition, information about the role of researchers
in the project like “Bob is participating mainly in
working group X, and working group X is strongly
cooperating with working groups Y and Z” might be
available. If we succeed in making this information
available to machines to reason about, we can derive
new information like: “This research paper of Bob is
related to working group X, other papers of working
group X on the same research aspects are A, B, and C,
etc.”

To realize a Personal Publication Reader (PR-R), we
extract the publication information from the various
websites of the partners in the REWERSE project: All
Web-pages containing information about publications of
the REWERSE network are periodically crawled and
new information is automatically detected, extracted
and indexed in the repository of semantic descriptions
of the REWERSE network (see Section VIII-D). This
information, together with extracted information on the
project REWERSE, on people involved in the project,
their research interests, etc., is used to provide more
information on each publication: who has authored
it, which research groups are related to this kind of
research, which other publications are published by the
research group, which other publications of the author
are available, which other publications are on the similar
research, etc. (see Section VIII-E)

D. Gathering Data for Semantic Web Applications

Each institute and organization offers access to its
publications on the Web. However, each presentation is
usually different, some use e.g. automatic conversions
of bibtexor other files, some are manually maintained.
Such a presentation is well suited for human con-
sumption, but hardly usable for automatic processing.
Consider e.g. the scenario that we are interested in all
publications of REWERSE project members in the year
2003 which contain the word “personalization” in their
title or abstract. To be able to formulate such queries
and to generate personalized views on heterogeneously
presented publications it is necessary to first have access
to the publication data in a more structured form.

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 19

Fig. 7. Adaptation rule example
FORALL Q quiz(Q) <-

Q[’http://www.w3.org/1999/02/22-rdf-syntax-ns#’:type ->
’http://ltsc.ieee.org/2002/09/lom-educational#’:’Quiz’]

FORALL Q, C concepts_of_Quiz(Q,C) <- quiz(Q) AND concept(C)
AND Q[’http://purl.org/dc/elements/1.1/’:subject -> C].

FORALL LO, Q quiz(LO, Q) <- EXISTS C (concepts_of_LO(LO,C)
AND concepts_of_Quiz(Q,C)).

Fig. 8. Recommending a resource
FORALL LO1, LO2 upperlevel(LO1,LO2) <-

LO1[’http://purl.org/dc/terms#’:isPartOf -> LO2].
FORALL LO, U learning_state(LO, U, recommended) <-

EXISTS UpperLevelLO (upperlevel(LO, UpperLevelLO)
AND p_obs(UpperLevelLO, U, Learned)).

Fig. 9. Recommendation with respect to the current domain ontology
FORALL C, C_DETAIL detail_concepts(C, C_DETAIL) <-

C_DETAIL[’http://www.w3.org/2000/01/rdf-schema#’:subClassOf -> C]
AND concept(C) AND concept(C_DETAIL).

FORALL LO, U learning_state(LO, U, recommended) <-
EXISTS C, C_DETAIL (concepts_of_LO(LO, C_DETAIL)

AND detail_concepts(C, C_DETAIL) AND p_obs(C, U, Learned)).

Fig. 10. Storing information in the user’s profile
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0="http://semweb.kbs.uni-hannover.de/rdf/l3s.rdf#" >

<rdf:Description rdf:about="http://semweb.kbs.uni-hannover.de/user#john">
<rdf:type rdf:resource="http://hoersaal..../rdf/l3s.rdf#User"/>
<j.0:hasVisited>http://java.sun.com/.../variables.html</j.0:hasVisited>

...

Fig. 11. Rule deriving all learned concepts
FORALL C, U p_obs(C, U, Learned) <-

EXISTS LO (concepts_of_LO(LO, C) AND
U[’http://semweb.kbs.uni-hannover.de/rdf/l3s#’:hasVisited ->LO]).

Fig. 12. Sample RDF output entry
<rdf:Description rdf:about="http://www.example.org/id/16">

<rewerse:origin>University of Heraklion</rewerse:origin>
<rewerse:title>Describing Knowledge Representation Schemes:

A Formal Account</rewerse:title>
<rewerse:author>

<rdf:Seq>
<rdf:li rdf:resource="#Giorgos Flouris" />
<rdf:li rdf:resource="#Dimitris Plexousakis" />
<rdf:li rdf:resource="#Grigoris Antoniou" />

</rdf:Seq>
</rewerse:author>
<rewerse:year>2003</rewerse:year>
<rewerse:link>ftp://ftp.ics.forth.gr/tech-reports/2003/

2003.TR320.Knowledge_Representation_Schemes.pdf</rewerse:link>
<rewerse:abstract>The representation and manipulation of knowledge

has been drawing a great deal of attention since the early [...]
</rewerse:abstract>

</rdf:Description>

20 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

Fig. 13. Part of the Ontology on Researchers used in the Personal Publication Reader

Fig. 14. Example of a rule determining all authors of a publication
FORALL A, P all_authors(A, P) <-

EXISTS X, R (
P[’http://.../rewerse#’:author -> X]@’http:...#’:publications
AND X[R -> ’http://www.../author’:A]@’http:...#’:publications).

Fig. 15. Example rule determining the employer of a project member
FORALL A,I works_at(A, I) <-

EXISTS A_id,X (name(A_id,A)
AND ont:A_id[ont:involvedIn -> ont:I]@’http:...#’:researcher
AND ont:X[rdfs:subClassOf ->

ont:Organization]@rdfschema(’http:...#’:researcher)
AND ont:I[rdf:type -> ont:X]@’http:...#’:researcher).

In Section VII we discussed data extraction from the
Web and the Lixto methodology. Here, we apply Lixto
to regularly extract publication data from all REWERSE
members. As Figure 4 illustrates, the disks are Lixto
wrappers that regulary (e.g. once a week) navigate to
the page of each member (such as Munich, Hannover,
Eindhoven) and apply a wrapper that extracts at least
author names, publication titles, publication year and
link to the publication (if available). Figure 3 illustrates
the visual wrapper specification on the Munich page.

In the “XSL” components publication data is harmo-
nized to fit into a common structure and an attribute
“origin” is added containing the institution’s name. The
triangle in Figure 4 represents a data integration unit;
here data from the various institutions is put together
and duplicate entries are removed. IDs are assigned to
each publication in the next step. Finally, the XML data
structure is mapped to a predefined RDF structure (this
happens in the lower arc symbol in Figure 4) and passed

on to the Personal Publication Reader as described
below. A second deliverer component delivers the XML
publication data additionally in RDF. One sample RDF
output entry is depicted in Figure 12.

This Lixto application can be easily enhanced by
connecting further Web sources. For instance, abstracts
from www.researchindex.com can be queried for
each publication lacking this information and joined
to each entry, too. Moreover, using text categorization
tools one can rate and classify the contents of the
abstracts.

E. Content Syndication and Personalized Views

In addition to the extracted information on research
papers that we obtain as described in the previous
section, we collect the data about the members of
the research project from the member’s corner of the
REWERSE project. We have constructed an ontology
for describing researchers and their envolvment in

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 21

Fig. 16. Screenshot of the Personal Publication Reader

REWERSE. A part of this ontology can be seen in
Figure 13

All the collected information is then used in a Person-
alization service which provides the end user with an
interface for browsing publications of the REWERSE
project, and having instantly access to further infor-
mation on authors, the working groups of REWERSE,
recommended related publications, etc.

The Personalization service of the PR-R uses, similar
to the PR-eL, personalization rules for deriving new
facts, and for determining recommendations for the
user. As an example, the rule in Figure 14 determines
all authors of a publication:

Further rules combine information on these authors
from the researcher ontology with the author informa-
tion. E.g. the rule in Figure 15 determines the employer
of a project member, which might be a company, or
a university, or, more generally, some instance of a
subclass of an organization:

The screenshot in fig. 16 depicts the output of the
visualization service of the PR-R.

By further exploiting the Web service architecture
of the Personal Reader, it is possible tolink to the
PR other (reasoning) services, such as a personal se-
quencing service, implemented as a planner by exploit-
ing the action metaphor, or making use of the non-
monotonic reasoning functionality or the ECA paradigm

and expressiveness for more advanced personalization
functionality.

IX. A CKNOWLEDGEMENT

This research has been carried out in connection with
the Network of Excellence REWERSE3 which strives
for a (minimal) set of rule and reasoning languages for
the Semantic Web.

X. CONCLUSIONS

This paper discusses recent approaches for shaping
the logic layer of the Semantic Web, and for supporting
approaches to personalization in the Semantic Web. We
demonstrate approaches for rules and rule-languages in
the logic layer of the Semantic Web. Special attention is
devoted to the important aspects of evolution, updates
and events, and their consequences for personaliza-
tion and reasoning. Approaches to personalization via
reasoning about actions is examplified for different
scenarios.

Query- and transformation languages as well as Web
data extraction for maintaining and constructing se-
mantic descriptions are discussed. Finally, personalized
Web systems making use of these reasoning techniques,
semantic descriptions and extractions, are introduced.

3REWERSE - Reasoning on the Web, Network of Excellence
founded in the 6th European Framework Programme, rewerse.net

22 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

REFERENCES

[1] ALFERES, J. J., BROGI, A., LEITE, J. A., AND PEREIRA,
L. M. Evolving logic programs. InProceedings of the 8th Euro-
pean Conference on Logics in Artificial Intelligence (JELIA’02)
(2002), S. Flesca, S. Greco, N. Leone, and G. Ianni, Eds.,
vol. 2424 ofLNCS, Springer-Verlag, pp. 50–61.

[2] ALFERES, J. J., LEITE, J. A., PEREIRA, L. M., PRZYMUSIN-
SKA, H., AND PRZYMUSINSKI, T. C. Dynamic updates of non-
monotonic knowledge bases.The Journal of Logic Programming
45, 1–3 (2000), 43–70. A shorter version appeared in “Principles
of Knowledge Representation and Reasoning ’98”.

[3] ANTONIOU, G., BIKAKIS , A., AND WAGNER, G. A system
for nonmonotonic rules on the web. InProc. of RuleML-2004
(2004), Springer LNCS.

[4] ANTONIOU, G., BILLINGTON , D., GOVERNATORI, G., AND

MAHER, M. Representation Results for Defeasible Logic.ACM
Transactions on Computational Logic 2,2(2002), 255–287.

[5] ANTONIOU, G., AND VAN HARMELEN, F. A Semantic Web
Primer. MIT Press, 2004.

[6] ATZENI, P.,AND MECCA, G. Cut and paste. InProc. of PODS
(1997).

[7] BALDONI , M., BAROGLIO, C., MARTELLI , A., AND PATTI ,
V. Reasoning about interaction for personalizing web service
fruition. In Proc. of WOA 2003: Dagli oggetti agli agenti, sistemi
intelligenti e computazione pervasiva(Villasimius (CA), Italy,
September 2003), G. Armano, F. De Paoli, A. Omicini, and
E. Vargiu, Eds., Pitagora Editrice Bologna.

[8] BALDONI , M., BAROGLIO, C., MARTELLI , A., AND PATTI , V.
Reasoning about self and others: communicating agents in a
modal action logic. InProc. of ICTCS’2003(2003), vol. 2841
of LNCS, Springer, pp. 228–241.

[9] BALDONI , M., BAROGLIO, C., AND PATTI , V. Web-based
adaptive tutoring: an approach based on logic agents and rea-
soning about actions.Artificial Intelligence Review 22, 1 (2004),
3–39.

[10] BALDONI , M., BAROGLIO, C., PATTI , V., AND TORASSO, L.
Reasoning about learning object metadata for adapting scorm
courseware. InAH 2004: Workshop Proceedings, Part I, EAW
2004: Engineering the Adaptive Web(Eindhoven, Holland,
August 2004), L. Aroyo and C. Tasso, Eds., CS-Report 04-18,
Technische Universiteit Eindhoven, pp. 4–13.

[11] BALDONI , M., GIORDANO, L., MARTELLI , A., AND PATTI , V.
An Abductive Proof Procedure for Reasoning about Actions in
Modal Logic Programming. InProc. of NMELP’96(1997), J.
Dix et.al., Ed., vol. 1216 ofLNAI, Springer-Verlag, pp. 132–150.

[12] BALDONI , M., GIORDANO, L., MARTELLI , A., AND PATTI ,
V. Programming Rational Agents in a Modal Action Logic.
Annals of Mathematics and Artificial Intelligence, Special issue
on Logic-Based Agent Implementation 41, 2-4 (2004), 207–257.

[13] BARAL , C., AND SON, T. C. Formalizing Sensing Actions - A
transition function based approach.Artificial Intelligence 125,
1-2 (January 2001), 19–91.

[14] BASSILIADES, N., ANTONIOU, G., AND VLAHAVAS , I. A
defeasible logic system for the semantic web. InPrinciples and
Practice of Semantic Web Reasoning(2004), Springer LNCS
3208.

[15] BAUMGARTNER, R., EICHHOLZ, S., FLESCA, S., GOTTLOB,
G., AND HERZOG, M. Semantic Markup of News Items with
Lixto. In Annotation for the Semantic Web(2003).

[16] BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G. Declar-
ative Information Extraction, Web Crawling and Recursive
Wrapping with Lixto. InProc. of LPNMR(2001).

[17] BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G. Visual
web information extraction with Lixto. InProc. of VLDB(2001).

[18] BAUMGARTNER, R., FLESCA, S., GOTTLOB, G., AND HER-
ZOG, M. Building dynamic information portals - a case study
in the agrarian domain. InProc. of IS(2002).

[19] BAUMGARTNER, R., GOTTLOB, G., AND HERZOG, M. Lixto -
Halfway to the Semantic Web.OEGAI-Journal 1(2003), 19–24.

[20] BAUMGARTNER, R., GOTTLOB, G., HERZOG, M., AND

SLANY, W. Interactively Adding Web Service Interfaces to
Existing Web Applications. InProc. of SAINT(2004).

[21] BAUMGARTNER, R., HERZOG, M., AND GOTTLOB, G. Visual
programming of web data aggregation applications. InProc. of
IIWeb-03(2003).

[22] BECKETT, D. Rdf/xml syntax specification.
http://www.w3.org/TR/rdf-syntax-grammar/.

[23] BERGER, S., BRY, F., AND SCHAFFERT, S. A Visual Language
for Web Querying and Reasoning. InProceedings of Work-
shop on Principles and Practice of Semantic Web Reasoning,
Mumbai, India (9th–13th December 2003)(2003), vol. 2901 of
LNCS.

[24] BERGER, S., BRY, F., SCHAFFERT, S.,AND WIESER, C. Xcerpt
and visXcerpt: From Pattern-Based to Visual Querying of XML
and Semistructured Data. InProceedings of 29th Intl. Confer-
ence on Very Large Data Bases, Berlin, Germany (9th–12th
September 2003)(2003).

[25] BERGER, S., BRY, F.,AND WIESER, C. Visual Querying for the
Semantic Web. InProceedings of 23rd International Conference
on Conceptual Modeling, Shanghai, China (8th–12th November
2004) (2004).

[26] BERGMAN, M. K. The deep web: Surfac-
ing hidden value. BrightPlanet White Paper,
http://www.brightplanet.com/technology/deepweb.asp.

[27] BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The se-
mantic web.Scientific American(May 2001).

[28] BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The Se-
mantic Web – A new form of Web content that is meaningful
to computers will unleash a revolution of new possibilities.
Scientific American(May 2001).

[29] BONNER, A. J., AND K IFER, M. An overview of transaction
logic. Theoretical Computer Science 133(1994).

[30] BRICKLEY, D., AND GUHA , R. Rdf vocabulary description
language 1.0: Rdf schema. http://www.w3.org/TR/rdf-schema/.

[31] BRY, F., FURCHE, T., PĂTRÂNJAN, P.-L., AND SCHAFFERT,
S. Data Retrieval and Evolution on the (Semantic) Web: A
Deductive Approach. InProceedings of Workshop on Principles
and Practice of Semantic Web Reasoning, St. Malo, France (6th–
10th September 2004)(2004), REWERSE.

[32] BRY, F., AND PĂTRÂNJAN, P.-L. Reactivity on the Web:
Paradigms and Applications of the Language XChange. In20th
Annual ACM Symposium on Applied Computing (SAC’2005)
(2005).

[33] BRY, F., AND SCHAFFERT, S. Towards a Declarative Query and
Transformation Language for XML and Semistructured Data:
Simulation Unification. InProceedings of International Con-
ference on Logic Programming, Copenhagen, Denmark (29th
July–1st August 2002)(2002), vol. 2401 ofLNCS.

[34] BRYSON, J., MARTIN , D., MCILRAITH , S.,AND STEIN, L. A.
Agent-based composite services in DAML-S: The behavior-
oriented design of an intelligent semantic web, 2002.

[35] CAMPIONE, M., AND WALRATH , K. The java tutorial, 2003.
http://java.sun.com/docs/books/tutorial/.

[36] CASTILHO, M., GASQUET, O., AND HERZIG, A. Modal
tableaux for reasoning about actions and plans. InProc. ECP’97
(1997), S. Steel, Ed., LNAI, pp. 119–130.

[37] CRESCENZI, V., MECCA, G., AND MERIALDO, P. Roadrunner:
Towards automatic data extraction from large web sites. In
Proceedings of 27th International Conference on Very Large
Data Bases(2001), pp. 109–118.

[38] DAML-S. http://www.daml.org/services/daml-s/0.9/. version
0.9, 2003.

[39] DAVULCU , H., YANG, G., KIFER, M., AND RAMAKRISHNAN ,
I. Computational aspects of resilient data extractraction from
semistructured sources. InProc. of PODS(2000).

[40] DEAN, M., AND SCHREIBER, G. Owl web ontology language
reference. http://www.w3.org/TR/owl-ref/.

[41] DOLOG, P., HENZE, N., NEJDL, W., AND SINTEK , M. The Per-
sonal Reader: Personalizing and Enriching Learning Resources
using Semantic Web Technologies. InProccedings of the 3nd

G. ANTONIOU, M. BALDONI, C. BAROGLIO ET AL “REASONING METHODS FOR PERSONALIZATION ON THE SEMANTIC WEB” 23

International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH 2004)(Eindhoven, The Netherlands,
2004).

[42] EITER, T., FINK , M., SABBATINI , G., AND TOMPITS, H.
Declarative update policies for nonmonotonic knowledge bases.
In Logics for Emerging Applications of Databases, J. Chomicki,
R. van der Meyden, and G. Saake, Eds. Springer-Verlag, 2003,
ch. 3, pp. 85–129.

[43] EITER, T., FINK , M., SABBATINI , G., AND TOMPITS, H.
Reasoning about Evolving Nonmonotonic Knowledge Bases.
ACM Transactions on Computational Logic(2004). To appear.

[44] EITER, T., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOM-
PITS, H. Combining answer set programming with description
logics for the semantic web. InProceedings KR-2004(2004),
pp. 141–151. http://www.kr.tuwien.ac.at/staff/roman/semweblp/.

[45] EITER, T., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOM-
PITS, H. Well-founded semantics for description logic programs
in the semantic web. InProceedings RuleML 2004 Workshop,
ISWC Conference, Hiroshima, Japan(2004), Springer, pp. 81–
97. http://www.kr.tuwien.ac.at/staff/roman/semweblp/.

[46] ETZIONI , O., CAFARELLA , M., DOWNEY, D., KOK, S.,
POPESCU, A., SHAKED , T., SODERLAND, S., WELD, D. S.,
AND YATES, A. Web-Scale Information Extraction in Know-
ItAll (Preliminary Results). InProceedings of the World Wide
Web Conference 2004(2004).

[47] FLESCA, S., MANCO, G., MASCIARI, E., RENDE, E., AND

TAGARELLI , A. Web wrapper induction: a brief survey.Journal
of the ACM, 51(1)(2004).

[48] GABBAY, D., AND PH.SMETS, Eds. Handbook on Defeasible
Reasoning and Uncertainty Management Systems, vol. III: Be-
lief Change. Kluwer Academic, 1998.

[49] GELFOND, M., AND L IFSCHITZ, V. Classical negation in logic
programs and disjunctive databases. InIn New Generation
Computing (1991), vol. 9, pp. 365–385.

[50] GELFOND, M., AND L IFSCHITZ, V. Representing action and
change by logic programs.Journal of Logic Programming 17
(1993), 301–321.

[51] GIACOMO, G. D., LESP̀ERANCE, Y., AND LEVESQUE, H.
Congolog, a concurrent programming language based on the
situation calculus.Artificial Intelligence 121(2000), 109–169.

[52] GIORDANO, L., MARTELLI , A., AND SCHWIND, C. Dealing
with concurrent actions in modal action logic. InProc. ECAI-
98 (1998), pp. 537–541.

[53] GOTTLOB, G., AND KOCH, C. Monadic datalog and the ex-
pressive power of languages for Web Information Extraction.
In Proc. of PODS(2002).

[54] GOTTLOB, G., AND KOCH, C. Monadic Datalog and the Ex-
pressive Power of Web Information Extraction Languages.AI
Communications Vol.17/2(2004).

[55] GROSOF, B. N., HORROCKS, I., VOLZ, R., AND DECKER, S.
Description logic programs: Combining logic programs with
description logic. InTwelfth International World Wide Web
Conference(Budapest, Hungary, May 2003).

[56] HENZE, N., AND HERRLICH, M. The Personal Reader: A
Framework for Enabling Personalization Services on the Se-
mantic Web. InProceedings of the Twelfth GI- Workshop on
Adaptation and User Modeling in Interactive Systems (ABIS 04)
(Berlin, Germany, 2004).

[57] HENZE, N., AND KRIESELL, M. Personalization functionality
for the semantic web: Architectural outline and first sample
implementation. InProccedings of the 1st International Work-
shop on Engineering the Adaptive Web (EAW 2004), held at
the Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH 2004)(Eindhoven, The Netherlands, 2004).
To appear.

[58] HENZE, N., AND NEJDL, W. A logical characterization of
adaptive educational hypermedia.New Review of Hypermedia
10, 1 (2004).

[59] HERZOG, M., AND GOTTLOB, G. InfoPipes: A flexible frame-
work for M-Commerce applications. InProc. of TES workshop
at VLDB (2001).

[60] HEYMANS, S., AND VERMEIR, D. Integrating semantic web
reasoning and answer set programming. In Answer Set Pro-
gramming, Advances in Theory and Implementation, Proc. 2nd
Intl. ASP’03 Workshop, Messina, Italy (2003), pp. 194–208.

[61] HORROCKS, I., PATEL-SCHNEIDER, P., BOLEY, H.,
TABET, S., AND GROSOF, B. Swrl: A semantic
web rule language combining owl and ruleml.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[62] HUCK, G., FANKHAUSER, P., ABERER, K., AND NEUHOLD, E.
JEDI: Extracting and synthesizing information from the web. In
Proc. of COOPIS(1998).

[63] KOWALSKI , R., AND SERGOT, M. A Logic-based Calculus of
Events.New Generation of Computing 4(1986), 67–95.

[64] KUHLINS, S., AND TREDWELL, R. Toolkits for generating
wrappers. InNet.ObjectDays(2002).

[65] KUSHMERICK, N., WELD, D., AND DOORENBOS, R. Wrapper
induction for information extraction. InProc. of IJCAI (1997).

[66] LAENDER, A. H., RIBEIRO-NETO, B. A., DA SILVA , A. S.,
AND TEIXEIRA , J. S. A brief survey of web data extraction
tools. In Sigmod Record 31/2(2002).

[67] LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB,
G., PERRI, S., AND SCARCELLO, F. The DLV System for
Knowledge Representation and Reasoning.ACM Transactions
on Computational Logic(2004). To appear. Available via
http://www.arxiv.org/ps/cs.AI/0211004 .

[68] LEVESQUE, H. J., REITER, R., LESṔERANCE, Y., L IN , F.,AND

SCHERL, R. B. GOLOG: A Logic Programming Language for
Dynamic Domains.J. of Logic Programming 31(1997), 59–83.

[69] LEVY, A., AND ROUSSET, M.-C. Combining horn rules and de-
scription logics in carin.Artificial Intelligence 104(1-2)(1998),
165–209.

[70] L IU , L., PU, C., AND HAN , W. XWrap: An extensible wrapper
construction system for internet information. InProc. of ICDE
(2000).

[71] L IU , Z., LI , F., AND NG, W. K. Wiccap Data Model: Mapping
Physical Websites to Logical Views. InProceedings of the 21st
International Conference on Conceptual Modelling (ER2002)
(Tempere, Finland, October 7-11 2002).

[72] LOBO, J., MENDEZ, G., AND TAYLOR , S. R. Adding Knowl-
edge to the Action Description LanguageA. In Proc. of
AAAI’97/IAAI’97 (Menlo Park, 1997), pp. 454–459.

[73] The mandarax project. http://www.mandarax.org.
[74] MAY, W., ALFERES, J. J.,AND BRY, F. Towards generic query,

update, and event languages for the semantic web. InPrinciples
and Practice of Semantic Web Reasoning (PPSWR)(2004),
no. 3208 in LNCS, Springer, pp. 19–33.

[75] MAY, W., HIMMERÖDER, R., LAUSEN, G., AND LUDÄSCHER,
B. A unified framework for wrapping, mediating and restructur-
ing information from the web. InWWWCM(1999), Sprg. LNCS
1727.

[76] MCCARTHY, J.,AND HAYES, P. Some Philosophical Problems
from the Standpoint of Artificial Intelligence.Machine Intelli-
gence 4(1963), 463–502.

[77] MCILRAITH , S., AND SON, T. Adapting Golog for Program-
ming the Semantic Web. In5th Int. Symp. on Logical Formal-
ization of Commonsense Reasoning(2001), pp. 195–202.

[78] MCILRAITH , S. A., SON, T. C., AND ZENF, H. Semantic Web
Services.IEEE Intelligent Systems(March/April 2001), 46–53.

[79] MENG, X., WANG, H., LI , C., AND KOU, H. A schema-guided
toolkit for generating wrappers. InProc. of WEBSA2003(2003).

[80] MUSLEA, I., M INTON, S.,AND KNOBLOCK, C. A hierarchical
approach to wrapper induction. InProc. of 3rd Intern. Conf. on
Autonomous Agents(1999).

[81] NIEMELÄ , I., AND SIMONS, P. Implementation of the stable
model and well-founded semantics for normal logic programs.
In In J. Dix, U. Furbach, and A. Nerode, editors,Proc. 4th Inter-
national Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-97) (1997), Springer, pp. 420–429.

[82] OWLS. http://www.daml.org/services/owl-s/. version 1.0, 2004.
[83] PATTI , V. Programming Rational Agents: a Modal Approach

in a Logic Programming Setting. PhD thesis, Dipartimento

24 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 2, 2004, PP 1-24

di Informatica, Universit̀a degli Studi di Torino, Italy, 2002.
Available athttp://www.di.unito.it/˜patti/ .

[84] PRENDINGER, H., AND SCHURZ, G. Reasoning about action
and change. a dynamic logic approach.Journal of Logic, Lan-
guage, and Information 5, 2 (1996), 209–245.

[85] RAPOSO, J., PAN , A., ALVAREZ , M., HIDALGO , J., AND

V INA , A. The Wargo System: Semi-Automatic Wrapper Gener-
ation in Presence of Complex Data Access Modes. InProceed-
ings of DEXA 2002(Aix-en-Provence, France, 2002).

[86] RIBEIRO-NETO, B., LAENDER, A. H. F.,AND DA SILVA , A. S.
Extracting semi-structured data through examples. InProc. of
CIKM (1999).

[87] The rule markup initiative. http://www.ruleml.org.
[88] SAHUGUET, A., AND AZAVANT , F. Building light-weight wrap-

pers for legacy web data-sources using W4F. InProc. of VLDB
(1999).

[89] SCHAFFERT, S.,AND BRY, F. Querying the Web Reconsidered:
A Practical Introduction to Xcerpt. InProceedings of Extreme
Markup Languages 2004, Montreal, Quebec, Canada (2nd–6th
August 2004)(2004).

[90] SCHWIND, C. B. A logic based framework for action theories.
In Language, Logic and Computation(1997), J. Ginzburg et al.,
Ed., CSLI, pp. 275–291.

[91] SINTEK , M., AND DECKER, S. TRIPLE - an RDF Query, Infer-
ence, and Transformation Language. InInternational Semantic
Web Conference (ISWC)(Sardinia, Italy, 2002), I. Horrocks and
J. Hendler, Eds., LNCS 2342, pp. 364–378.

[92] WINSLETT, M. Updating Logical Databases. Cambridge Uni-
versity Press, 1990.

[93] WSDL. http://www.w3c.org/tr/2003/wd-wsdl12-20030303/.
version 1.2, 2003.

[94] http://xcerpt.org.

Personalization for the Semantic Web?

Matteo Baldoni1, Cristina Baroglio1, and Nicola Henze2

1 Dipartimento di Informatica, Università degli Studi di Torino
c.so Svizzera 185, I-10149, Torino, Italy

E-mail: {baldoni,baroglio}@di.unito.it
2 ISI - Semantic Web Group, University of Hannover,

Appelstr. 4, D-30167 Hannover, Germany
E-mail: henze@kbs.uni-hannover.de

Abstract. Searching for the meaning of the word “personalization” on
a popular search engine, one finds twenty-three different answers, includ-
ing “the process of matching categorized content with different end users
based on business rules ... upon page request to a Webserver”, “using
continually adjusted user profiles to match content or services to individ-
uals”, and also “real-time tailoring of displays, particularly Web pages,
to a specific customer’s known preferences, such as previous purchases”.
A little more generally, personalization is a process by which it is pos-
sible to give the user optimal support in accessing, retrieving, and stor-
ing information, where solutions are built so as to fit the preferences,
the characteristics and the taste of the individual. This result can be
achieved only by exploiting machine-interpretable semantic information,
e.g. about the possible resources, about the user him/herself, about the
context, about the goal of the interaction. Personalization is realized by
an inferencing process applied to the semantic information, which can be
carried out in many different ways depending on the specific task. The
objective of this paper is to provide a coherent introduction into issues
and methods for realizing personalization in the Semantic Web.

1 Introduction

Personalized information systems aim at giving the individual user optimal sup-
port in accessing, retrieving, and storing information. The individual require-
ments of the user are to be taken into account in such different dimensions like
the current task, the goal of the user, the context in which the user is requesting
the information, the previous information requests or interactions, the working
process s/he is involved in, the level of expertise, the device s/he is using to
display the information, the bandwidth and availability of the communication

? This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net). Matteo Baldoni and
Cristina Baroglio have also been supported by MIUR Cofin 2003 “Logic-based de-
velopment and verification of multi-agent systems (MASSiVE)” national project.

channel, the abilities (disabilities or handicaps) of the user, his/her time con-
straints, and many, many more. Different research disciplines have contributed
to explore personalization techniques and to evaluate their usefulness within var-
ious application areas: E.g. hypertext research has studied personalization in the
area of so-called adaptive hypertext systems, collaborative filtering research has
investigated recommender systems, artificial intelligence techniques have been
widely used to cluster Web data, usage data, and user data, reasoning and un-
certainty management has been adopted to draw conclusions on appropriate
system behavior, and so forth.

Many attempts have been done to apply personalization techniques to the
World Wide Web as a natural extension of work on hypertext and hyperme-
dia, however, the Web is an information space thought for human to human
communication, while personalization requires software systems (broadly speak-
ing “machines”) to take part to the interaction and help. Such systems require
knowledge to be expressed in a machine-interpretable format, which in the Web
is not available. The development of languages for expressing information in a
machine-processable form is characteristic of the Semantic Web initiative, as
Tim Berners-Lee pointed out since 1998. Over this knowledge layer, the use of
inferencing mechanisms is envisioned as a fundamental means for performing
a content-aware navigation, producing an overall behavior that is closer to the
user’s intuition and desire. This is the reason why the Semantic Web is the most
appropriate environment for realizing personalization. In other words, the Se-
mantic Web is deeply connected to the idea of personalization in its very nature.

In the following we will see how the notion of personalization applies to the
Semantic Web, overview the expectations, the mechanisms, the languages and
tools, and set the state of the art. The paper is organized as follows. Section 2
introduces personalization as the key feature of the Semantic Web. Section 3
reports the state of the art in personalized Web systems, mainly based on the
concept of “user model”. Section 4 explains how WWW adaptive systems can
take advantage of the Semantic Web. Conclusions follow.

2 Demands of personalization in the (Semantic) Web

The objective of the Semantic Web is a content-aware navigation and fruition
of the resources. This means being able, by means of proper mechanisms, to
identify those resources that better satisfy the requests not only on the basis
of descriptive keywords but also on the basis of knowledge. There is, in fact,
a general agreement that the use of knowledge increases the precision of the
answers. Such a knowledge, as we will see, represents different things, information
about the user, the user’s intentions, the context. One of the key features that
characterize the Semantic Web is that its answers are always personalized or
adapted so to meet specific requirements. It will not be the case that the answer
to a query about “book” will contain links to bookshops and links to travel
agencies. This Web of knowledge is currently being built on top of the more

traditional World Wide Web and requires the definition of proper languages and
mechanisms. Let us now introduce a few basic concepts.

The first key concept is that of user model, that is a machine-interpretable
representation of knowledge about the user. The user model, however, may con-
tain different kinds of information; depending on what the user model contains,
different reasoning technique might be necessary. Often the user model contains
general information, e.g. age and education. In this case, in the tradition of works
on personalization, the adaptation occurs at the level of information selection
and, especially, presentation. Different users better understand different ways of
explaining things. Choosing the best possible communication pattern is funda-
mental in application systems that supply a kind of information which, because
of its nature, might be difficult to understand but that it is important for the
user to comprehend. Think, for example, to health-care systems, where medical
information is supplied to persons of different age and education. In order for
this kind of task to be executed, it is necessary to enrich the data sources and the
data itself with semantic information. To this aim, one of the greatest difficulties
is to define adequate ontologies.

More and more frequently, however, the Semantic Web is not seen as an
information provider but as a service provider. This is actually in the line with
the latest view of the World Wide Web as a platform for sharing resources
and services. We can divide services in two families: “world services” and “web
services”. A world service is, for instance, a shop, a museum, a restaurant, whose
address, type and description is accessible over the Web. A Web service, instead,
is a resource, typically a software device, that can be automatically retrieved and
invoked over the Web, possibly by another service.

To begin with, let us consider services of the former kind, world services. The
scenarios in which these services are considered adopt user models, in which a
different kind of information is considered: the location of the user, which is sup-
posed to vary along time. Typically this information is not supplied by the user
but it is obtained by the system in a way that is transparent to him/her. In the
simplest case, the user (a tourist or a person who is abroad for work) describes
in a qualitative way a service of interest, as done with the regular Web browsers.
The answer, however, contains only information about world services that are
located nearby. The scenario can be made more complex if one adds the time
dimension. In this case the user is not necessarily interested in a service that is
available now, the system is requested to store the user’s desire and alert the
user whenever a matching event occurs, that refers to a service that is nearby.
As an example, consider a user who loves classical ballet. He is traveling, and has
just arrived at Moscow. After a couple of days he receives an SMS informing him
that in the weekend Romeo and Juliet is going to be held at the Boljsoi Theater
and that tickets are available. Notice that besides a different kind of informa-
tion contained in the user model, also the mechanism by which personalization
is obtained is very different from the previous case: here the answer changes
according to the context, in this case given by the position of the user in space
and time, and the answer is not always immediately subsequent the query. As

we have seen, in fact, a triggering mechanism is envisioned that alerts the user
whenever an event that satisfies the description occurs. The word “triggering
mechanism” makes one think of a sort of reactive system, nevertheless, many
alternatives might be explored and, in particular, inference mechanisms. More-
over, this approach is suitable also to a very different application domain, such
as ambient intelligence, where appliances are the world services to be handled.

Strongly related to these topics, the recent success of decentralized applica-
tions has caused a growing attention towards decentralized approaches to user
modeling. In this framework, the target applications include personal guides
for navigation or ambient devices, integrated Web-sites (e.g. newspapers), por-
tals (e.g. Yahoo), e-commerce Web-sites (e.g. Amazon), or recommender sites
(e.g. MovieLens). In ubiquitous environments distributed sensors follow a user’s
moves and, based on the tasks typically performed by him/her, on preferences
induced from history and on the specific characteristics of the given context,
perform adaptation steps to the ambient-dependent features of the supported
functionalities.

As a last observation, when the answer is time-delayed, as described, the
descriptions of the services (or more in general, of the events) of interest are
sometimes considered as part of the user model. In this case the user model
does not contain general information about the user but a more specific kind of
information. Alternatively, this can be seen as a configuration problem: I config-
ure a personalized assistant that will warn me when necessary. It is interesting
to observe that no-one considers these as queries. An example application is a
personalized agenda: the idea is to use an automatic configuration system for
filling the agenda of a tourist, taking into account his/her preferences and the
advertisements of cultural events in the visited area as they are published. In-
deed, filling the agenda could be considered as the topmost level of a system
that also retrieves services triggered by events and biased by the user’s location.
This kind of systems should perform also personalization w.r.t. the device by
which the user interacts with the system (mobile, laptop).

Many scenarios that refer to world services could naturally be extended so
as to include Web services. In this case, the meaning of localization should be
revised, if at all applicable, while the idea of combining services, as proposed
in the case of the tourist agenda, should be explored with greater attention;
Web service automatic composition is, actually, quite a hot topic as research
in the field proves [20, 5]. Both, Web-service-based and ubiquitous computing,
applications can be considered as conglomerates of independent, autonomous
services developed by independent parties. Such components are not integrated
at design time, they are integrated dynamically at run-time, according to the
current needs. A frequently used metaphor is a free-market of services where the
user buys a complex service, that is composed dynamically on the basis of the
available (smaller) services. For example, an e-learning course can be assembled
dynamically by composing learning objects stored in independent repositories.
The composition is performed so as to satisfy the specific characteristics of the
student. For instance, a vision-impaired student will be returned audio materials.

Another, orthogonal, case is the one in which the user model contains (or is
accompanied by) the description of what the user would like to achieve. There
are situations in which this description cannot be directly related to specific re-
sources or services, but it is possible to identify (or compose) a set of resources
so as to satisfy the user’s desires. In this case a planning process is to be en-
acted. Sometimes besides the planning process other reasoning techniques are
envisioned in order to supply a more complete support to the user. An appli-
cation domain in which the goal-driven approach seems particularly promising
is, once again, e-learning. In this case the goal is the learning goal of the user,
that is to say a high-level description of the knowledge that s/he would like to
acquire, and the plan contains the learning resources that the user should use for
acquiring the desired expertise. The whole interaction with the user is supposed
to be carried on through a browser. It is important to remark that students are
not the only kind of users of this sort of systems. Also teachers should access
them but with a different aim. For instance, a teacher might look for learning re-
sources for a new course that s/he will teach. A new notion is, then, introduced,
that of role. Not only user models contain general or specific information about
the users’ interests but they also contain the role that the user plays. Depending
on the role, different views might be supplied by the system (personalization at
the level of presentation) and different actions might be allowed. Rather than
being just one of the many features from a user model, the role could, actually,
be considered as orthogonal to it (the role is independent from the specific user).
Beyond e-learning, the concept of role is useful in many application domains. In
health care, there are patients and there are doctors and nurses. In tourism,
there are tourists and there are travel agencies.

Another basic concept is that of domain knowledge. For understanding the
meaning of this word, let us consider the intuitive application case of e-learning.
Here the system needs to be supplied with a body of knowledge that not only
contains the semantic description of the single learning resources, but it also
contains definitions of more abstract concepts, not directly related to the courses
and defined on the basis of other concepts. This knowledge is used to bias the
construction of solutions that make sense from a pedagogical point of view. The
use of a knowledge of this kind might be exported also to other application
domains, whenever similar reasoning techniques are adopted.

Summarizing, the goal of personalization in the Semantic Web is to make
easier the access to the right resources. This task entails two orthogonal pro-
cesses: retrieval and presentation. Retrieval consists in finding or constructing
the right resources when they are needed, either on demand or (as by the use
of automatic updates) when the information arises in the network. Once the
resources have been defined they are presented in the most suitable way to the
user, taking into account his/her own characteristics and preferences. To these
aims it is necessary to have a model of the user, that is, a representation of those
characteristics according to which personalization will occur. It is also necessary
to apply inferencing techniques which, depending on the task, might range from
the basic ontology reasoning mechanisms supplied by Description Logics (like

subsumption and classification) to the most various reasoning techniques devel-
oped in Artificial Intelligence.

3 Personalization in the World Wide Web

Personalization in the World Wide Web can be compared to creating individual
views on Web data according to the special interests, needs, requirements, goals,
access-context, etc. of the current beholder. The ideas and solutions for creating
these individual views are manifold and require interdisciplinary engagement:
human computer interaction specialists, e.g. for creating meaningful user inter-
faces with good usability rankings; artificial intelligence experts, e.g. for mining
Web data, or for creating dynamic and accurate models of users; and software
engineers for creating generic infrastructure for maintaining personalized views
on Web data, and for sufficient user interaction support.

In this article, we focus on those aspects of personalization which aim at
improving the selection, access and retrieval of Web resources. The creation of
appropriate user interfaces and user awareness is out of scope of this article.

Definition 1 (Personalizing the access to Web data) Personalizing the ac-
cess to Web data defines the process of supporting the individual user in finding,
selecting, accessing, and retrieving Web resources (or meaningful sub-sets of this
process).

With this definition, we can more precisely say that the process of person-
alization is a process of filtering the access to Web content according to the
individual needs and requirements of each particular user. We can distinguish
two different classes of filters: those filter which have been created for a cer-
tain hypermedia system, and those, which have been created for a network of
Web resources. The difference between these filters is in the way how they treat
the underlying document space: if they have precise information on the struc-
ture and relations between the documents (this means the hypertext system),
or whether they use dynamics and networking effects in the Web in order to
provide individual views on Web data.

The first class of filters has been investigated since the beginnings of the
nineties of the last century under the topic of Adaptive Hypermedia Systems.
The second belongs to Web Mining techniques, both Web usage and Web con-
tent mining. The personalized systems based on Web mining are often called
recommender systems, which are in focus of research since the mid-nineties of
the last century.

In the following, we describe techniques and methods for personalization in
the field of adaptive hypermedia (see Section 3.1), and Web mining (see Section
3.2). Afterwards, we will summarize approaches to user modeling.

3.1 Adaptive Hypermedia Systems

An adaptive hypermedia system enlarges the functionality of a hypermedia sys-
tem. It personalizes a hypermedia systems for the individual users: Each user has

her or his individual view and individual navigational possibilities for working
with the hypermedia system. A general definition of hypertext / hypermedia is
given in [58]:

Definition 2 (Hypertext) A set of nodes of text which are connected by links.
Each node contains some amount of information (text) and a number of links to
other nodes.

Definition 3 (Hypermedia) Extension of hypertext which makes use of mul-
tiple forms of media, such as text, video, audio, graphics, etc.

Discussions on the definitions of hypertext can be found for example in [24, 47].
The terms hypertext and hypermedia are often synonymous [47]. Throughout
this text, we use the term hypermedia. For a general, functionality-oriented defi-
nition of adaptive hypermedia systems, we follow the proposal of P. Brusilovsky
[17].

Definition 4 (Adaptive hypermedia system) “By adaptive hypermedia sys-
tems we mean all hypertext and hypermedia systems which reflect some features
of the user in the user model and apply this model to adapt various visible aspects
of the system to the user.”

The support of adaptive methods in hypermedia systems is advantageous if there
is one common system which serves many users with different goals, knowledge,
and experience, and if the underlying hyperspace is relatively large [17]. Adap-
tation of hypermedia systems is also an attempt to overcome the “lost in hy-
perspace problem” (for a discussion, see for example [47]). The user’s goals and
knowledge can be used for limiting the number of available links in a hypermedia
system.

Techniques in Adaptive Hypermedia. As we have explained, a hypermedia
system consists of documents which are connected by links. Thus, there are
generally two aspects which can be adapted to the users: the content and the
links. Let us begin with content level adaptation.

By adapting the content to a user, the document is tailored to the needs
of the user, for example by hiding too specialized information or by inserting
some additional explanations. According to [17], we can identify the following
methods for content level adaptation:

– Additional explanations: Only those parts of a document are displayed to a
user which fit to his goals, interest, tasks, knowledge, etc.

– Prerequisite explanations: Here the user model checks the prerequisites nec-
essary to understand the content of the page. If the user lacks to know some
prerequisites, the corresponding information is integrated in the page.

– Comparative explanations: The idea of comparative explanations is to explain
new topics by stressing their relations to known topics.

– Explanation variants: By providing different explanations for some parts of
a document, those explanations can be selected which are most suited for
the user. This extends the method of prerequisite explanations.

– Sorting: The different parts of a document are sorted according to their
relevance for the user.

The following techniques are used for implementing the above stated adaptation
methods [17]:

– Conditional text: Every kind of information about a knowledge concept is
broken into text parts. For each of these text parts, the required knowledge
for displaying it to the user is defined.

– Stretch text: Some keywords of a document can be replaced by longer de-
scriptions if the user’s actual knowledge requires that.

– Page or page fragment variants: Here, different variants of whole pages or
parts of them are stored.

– Frame based technique: This technique stores page and fragment variants into
concept frames. Each frame has some slots which present the page or page
fragments in a special order. Certain rules decide which slot is presented to
the user.

Content level adaptation requires sophisticated techniques for improved presen-
tation. The current systems using content level adaptation do so by enriching
their documents with meta information about prerequisite or required knowl-
edge, outcome, etc. The documents or fragments contained in these systems
have to be written more than once in order to obtain the different explanations.

Link Level Adaptation. By using link level adaptation, the user’s possibilities to
navigate through the hypermedia system are personalized. The following meth-
ods show examples for adaptive navigation support:

– Direct guidance: Guide the user sequentially through the hypermedia system.
Two methods can be distinguished, “next best” and “page sequencing” (or
“trails”). The former provides a next-button to navigate through the hyper-
text. The latter generates a reading sequence through the entire hypermedia
or through some part of it.

– Adaptive sorting: Sort the links of a document due to their “relevance” to
the user. The relevance of a link to the user is based on the system’s assump-
tions about him/her. Some systems sort links depending on their similarity
to the present page. Or by ordering them according to the required pre-
requisite knowledge. These methods are known as “similarity sorting” and
“prerequisite knowledge sorting”.

– Adaptive hiding: Limit the navigational possibilities by hiding links to irrele-
vant information. Hiding of links can be realized by making them unavailable
or invisible.

– Link annotation: Annotate the links to give the user hints about the content
of the pages they point to. The annotation might be text, coloring, an icon, or

dimming. The most popular method for link annotation (in the educational
area) is the so called “traffic light metaphor”. Here the educational state of
a link is estimated by the system with respect to the user’s actual knowledge
state. The link pointing to the page is then annotated by a colored ball. A
red ball in front of a link indicates that the user lacks some knowledge for
understanding the pages; thus the page is not recommended for reading. A
yellow ball indicates links to pages that are not recommended for reading;
this recommendation is less strict than in case of a red ball. A green ball is
in front of links which lead to recommended pages. Grey balls give the hint
that the content of the corresponding page is already known to the user.
Variants in the coloring exist. A mix of traffic light metaphor and adaptive
hiding is also used in some systems. For an evaluation about adaptive hiding
and adaptive navigation we refer to [67].

– Map annotation: Here, graphical overviews or maps are adapted with some
of the above mentioned methods.

Techniques for link level adaptation depend on the specific system and are, for
example, discussed in [17]. Here the assumptions that the system makes about
the user play an important role to decide what and how to adapt. Link level
adaptation restricts the number of links and thus the number of navigational
possibilities. It is useful to prevent the user from “getting lost in hyperspace”.
As in the case of content level adaptation, a description of the content of the
documents is required for implementing the adaptation tasks.

Case Study: Adaptive Educational Hypermedia Systems Adaptive ed-
ucational hypermedia systems (AEHS) have been developed and tested in vari-
ous disciplines and have proven their usefulness for improved and goal-oriented
learning and teaching. In this section, we propose a component-based logical
description of AEHS, in contrast to the functionality-oriented definition 4. This
component-based definition is motivated by Reiter’s theory of diagnosis [62]
which settles on characterizing systems, observations, and diagnosis in first-order
logic (FOL). We decompose adaptive educational hypermedia systems into ba-
sic components, according to their different roles: Each adaptive (educational)
hypermedia system is obviously a hypermedia system, therefore it makes as-
sumptions about documents and their relations in a document space. It uses a
user model to model various characteristics of individual users or user groups.
During runtime, it collects observations about the user’s interactions. Based on
the organization of the underlying document space, the information from the
user model and from the system’s observation, the adaptive functionality is pro-
vided.

In this section, we will give a logic-based definition for AEHS. We have cho-
sen first order logic (FOL) as it allows us to provide an abstract, generalized
formalization. The notation chosen in this paper refers to [64]. The aim of this
logic-based definition is to accentuate the main characteristics and aspects of
adaptive educational hypermedia.

Definition 5 (Adaptive Educational Hypermedia System (AEHS)) An
Adaptive Educational Hypermedia System (AEHS) is a Quadruple

(DOCS, UM, OBS, AC)

with

DOCS: Document Space: A finite set of first order logic (FOL) sentences with
constants for describing documents (and knowledge topics), and predicates
for defining relations between these constants.

UM: User Model: A finite set of FOL sentences with constants for describing
individual users (user groups), and user characteristics, as well as predicates
and rules for expressing whether a characteristic applies to a user.

OBS: Observations: A finite set of FOL sentences with constants for describing
observations and predicates for relating users, documents/topics, and obser-
vations.

AC: Adaptation Component: A finite set of FOL sentences with rules for de-
scribing adaptive functionality.

The components “document space” and “observations” describe basic data (DOCS)
and run-time data (OBS). The user model and adaptation components process
this data, e.g. for estimating a user’s preferences (UM), or for deciding about
beneficial adaptive functionalities for a user (AC). A collection of existing AEHS,
described according to this logic-based formalism, is reported in [36, 35]. In these
works a characterization is given of the systems belonging to the first generation
of AEHS (e.g. Interbook [18]), to the second generation of adaptive educational
hypermedia systems (e.g. NetCoach [71] and KBS Hyperbook [34]), as well as of
a recent system, which is also an authoring framework for adaptive educational
hypermedia (AHA!2.0 [15]).

To make an example, let us then describe by the above formalism an AEHS,
called Simple, having the following functionality. Simple can annotate hypertext-
links by using the traffic light metaphor with two colors: red for non recom-
mended, green for recommended pages. Later, we will extend this system to
demonstrate the use (and the usefulness) of a domain model in an AEHS. Sim-
ple can be modeled by a quadruple (DOCSs, UMs, OBSs, ACs), whose elements
are defined as follows:

– DOCSs: This component is made of a set of n constants and a finite set
of predicates. Each of the constants represents a document in the document
space (the documents are denoted by D1, D2, . . ., Dn). The predicates define
pre-requisite conditions, i.e. they state which documents need to be studied
before a document can be learned, e.g. preq(Di, Dj) for certain Di 6= Dj

means that Dj is a prerequisite for Di. N.B.: This AEHS does not employ
an additional knowledge model.

– UMs: it contains a set of m constants, one for each individual user U1, U2,
. . ., Um.

– OBSs: A special constant (Visited) is used within the special predicate obs
to denote whether a document has been visited: obs(Di, Uj , Visited) is the
observation that a document Di has been visited by the user Uj .

– ACs: This component contains constants and rules. One constant (Recom-
mended for reading) is used for describing the values of the “learning state”
of the adaptive functionality, two constants (Green Icon and Red Icon) for
representing values of the adaptive functionality. The learning state of a
document is described by a set of rules of kind:

∀Ui∀Dj(∀Dkpreq(Dj , Dk) =⇒
obs(Dk, Ui, V isited)) =⇒

learning state(Dj , Ui, Recommended for reading)

This component contains also a set of rules for describing the adaptive link
annotation with traffic lights. Such rules are of kind:

∀Ui∀Dj learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Green icon)

or of kind:

∀Ui∀Dj¬learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Green icon)

We can extend this simple AEHS by using a knowledge graph instead of a
domain graph. The system, called Simple1, is able to give a more differentiated
traffic light annotation to hypertext links than Simple. It is able to recommend
pages (green icon), to show which links lead to documents that will become
understandable (dark orange icon), which might be understandable (yellow icon),
or which are not recommended yet (red icon). As in the previous case, let us
represent Simple1 by a quadruple (DOCSs1, UMs1, OBSs1, ACs1):

– DOCSs1: The document space contains all axioms of the document space of
Simple, DOCSs, but it does not contain any of the predicates. In addition, it
contains a set of s constants which name the knowledge topics T1, T2, . . ., Ts
in the knowledge space. It also contains a finite set of predicates, stating the
learning dependencies between these topics: depends(Tj , Tk), with Tj 6= Tk,
means that topic Tk is required to understand Tj .
The documents are characterized by predicate keyword which assigns a non-
empty set of topics to each of them, so ∀Di∃Tjkeyword(Di, Tj), but keep in
mind that more than one keyword might be assigned to a same document.

– UMs1: The user model is the same as in Simple, plus an additional rule which
defines that a topic Ti is assumed to be learned whenever the correspond-
ing document has been visited by the user. To this aim, Simple 1 uses the
constant Learned.
The rule for processing the observation that a topic has been learned by a
user is as follows (p obs is the abbreviation for “processing an observation”):

∀Ui∀Tj(∃Dkkeyword(Dk, Tj) ∧ obs(Dk, Ui, V isited)
=⇒ p obs(Tj , Ui, Learned)

– OBSs1: Are the same as in Simple.
– ACs1: The adaptation component of Simple1 contains two further constants

(w.r.t. Simple), representing new values for the learning state of a document.
Such constants are: Might be understandable and Will become understandable
(the meaning is intuitive). Two more constants are added for representing
new values for adaptive link annotation. They are: Orange Icon and Yel-
low Icon. Such constants appear in the rules that describe the educational
state of a document, reported hereafter.
The first rule states that a document is recommended for learning if all the
prerequisites to the keywords of this document have already been learnt:

∀Ui∀Dj(∀Tkkeyword(Dj , Tk) =⇒
(∀Tldepends(Tk, Tl) =⇒ p obs(Tl, Ui, Learned)

=⇒ learning state(Dj , Ui, Recommended for reading)))

The second rule states that a document might be understandable if at least
some of the prerequisites have already been learnt by this user:

∀Ui∀Dj(∀Tkkeyword(Dj , Tk) =⇒
(∃Tldepends(Tk, Tl) =⇒

p obs(Tl, Ui, Learned)
∧¬learning state(Dj , Ui, Recommended for reading)

=⇒ learning state(Dj , Ui,Might be understandable)))

The third rule entails that a document will become understandable if the
user has some prerequisite knowledge for at least one of the document’s
keywords:

∀Ui∀Dj(∃Tkkeyword(Dj , Tk) =⇒
(∃Tldepends(Tk, Tl) =⇒

p obs(Tl, Ui, Learned)
∧¬learning state(Dj , Ui,Might be understandable)

=⇒ learning state(Dj , Ui,Will become understandable)))

Four rules describe the adaptive link annotation:

1) ∀Ui∀Dj learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Green Icon)

2) ∀Ui∀Dj learning state(Dj , Ui,Will become understandable)
=⇒ document annotation(Dj , Ui, Orange Icon)

3) ∀Ui∀Dj learning state(Dj , Ui,Might be understandable)
=⇒ document annotation(Dj , Ui, Y ellow Icon)

4) ∀Ui∀Dj¬learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Red Icon)

Discussion: Why a logical characterization of adaptive (educational)
hypermedia is needed. With Brusilovsky’s definition of adaptive hypermedia,
we can describe the general functionality of an adaptive hypermedia system, and
we can compare which kind of adaptive functionality is offered by such a system.

In the literature, we can find reference models for adaptive hypermedia, e.g.
the AHAM Reference Model [16], or the Munich Reference Model [43]. Both the
AHAM and Munich Reference models extend the Dexter Hypertext Model [31],
and provide a framework for describing the different components of adaptive
hypermedia systems. In both cases, the focus is posed on process modeling and
on the engineering of adaptive hypermedia applications, so we can say that these
models are process-oriented.

However, a formal description of adaptive educational hypermedia, which al-
lows for a system-independent characterization of the adaptive functionality, is
still missing. Currently, we cannot answer a request like the following: “I want
to apply the adaptive functionality X in my system. Tell me what information
is required with the hypermedia-documents, which interactions at runtime need
to be monitored, and what kind of user model information and user modeling is
required”. At the moment, we can only describe the functionality with respect
to a specific environment, which means we can describe the functionality only
in terms of the system that implements it. We cannot compare different imple-
mentations nor can we benchmark adaptive systems. A benchmark of adaptive
systems would require at least a comparable initial situation, observations about
a user’s interactions with the system during some defined interaction period, be-
fore the result of the system is returned, the adaptive functionality as well as the
changes in the user model.

The logical definition of adaptive educational hypermedia given here focuses
on the components of these systems, and describes which kind of processing
information is needed from the underlying hypermedia system (the document
space), the runtime information which is required (observations), and the user
model characteristics (user model). The adaptive functionality is then described
by means of these three components, or more precisely: how the information from
these three components, the static data from the document space, the runtime-
data from the observations, and the processing-data from the user model, is
used to provide the adaptive functionality. The aim of this logical definition
of adaptive educational hypermedia is to provide a language for describing the
adaptive functionality, to allow comparison of adaptive functionality in a well-
grounded way, and to enable the re-use of an adaptive functionality in different
contexts and systems.

There is, actually, a need for a formalism expressing adaptive functionalities
in a system-independent and re-usable manner, which allows their application in
various contexts. In the educational context, a typical scenario where re-usable
adaptive functionality is required would be: Imagine a learner who wants to
learn a specific subject. The learner registers to some learning repository, which
stores learning objects. According to his/her current learning progress, some of
the learning objects which teach the subject s/he is interested in are useful, some

of them require additional knowledge that the learner does not have so far (in
accordance to his/her user model), and some might teach the subject only on the
surface and are too easy for this learner. This kind of situation has been studied
in adaptive educational hypermedia in many applications, and with successful
solutions. However, these solutions are specific to certain adaptive hypermedia
applications, and are hardly generalizable for re-use in different applications.
Another reason why the adaptive functionality is not re-usable today is related
to the so-called open corpus problem in adaptive (educational) hypermedia [33,
19], which states that currently, adaptive applications work on a fixed set of doc-
uments which is defined at the design time of the system, and directly influences
the way adaptation is implemented, e.g. that adaptive information like “required
prerequisites” is coded on this fixed set of documents.

3.2 Web Mining

In contrast to the approach in adaptive hypermedia, personalization with aid of
Web mining does not work on such well-defined corpora like a hypertext system.
Instead, it uses effects and dynamics in the network structure in order to detect
(virtual) relations between Web resources.

The World Wide Web is seen as the Web graph. In this graph, Web resources
are the nodes, and links between the Web resources are the edges. NB: as it is
practically impossible to create a complete snapshot of the World Wide Web
at a certain time point, this Web graph is not a completely known structure.
On the contrary, in the case of adaptive hypermedia systems, the underlying
hypermedia graph models completely the hypertext.

The approaches in Web Mining-based personalization are centered around
detecting relations between Web resources. These relations can be existing re-
lations, this means hyperlinks between Web resources, or virtual relations, this
means that two or more Web resources are related to each other but are not
connected via some hyperlink. These existing or virtual relations between Web
resources are mined on basis of the Web graph. We can distinguish two main
approaches for detecting the relations: Mining based on the content of the Web
resources, or mining based on the usage of the Web resources. The two approaches
can of course be combined.

Normally, Web Mining-based personalization has no external models like
domain or expert models, as those used in adaptive hypermedia, but instead
create dynamic models which grow with the number of Web resources integrated
into the model.

Recommendation Techniques for Web Mining. In the following, we sum-
marize major recommendation techniques according to Burke [21]. We can distin-
guish between content-based, collaborative, demographic, utility-based, and know-
ledge-based recommendations. Let U and I be respectively a set of users and a
set of items, and U denotes an individual user. Let us outline these techniques:

– Content-based recommendation:

• each user is assumed to operate independently of other users;
• recommendations can exploit information derived from document con-

tents;
• The system builds user models in the following way: initially, users apply

candidate profiles against their own preferences. For example, a candidate
user profile for the rating of today’s news article is presented, the user
can accept or reject the ratings for the articles. The profile is maintained
by exploiting keywords and content descriptors which contribute to the
rating of each article.
• The quality of the learnt knowledge is measured against the classical

measures of Information Retrieval, i.e. precision and recall (see e.g. [4]).
• The typical background consists of features of items in I, the typical

input to the mining process consists of the user’s ratings of some items
in I. A learning process is enacted that generates a classifier fitting the
user’s preferences, expressed by the ratings. The constructed classifier is
applied to all the items in I, for finding out which might be of interest.
• limitations:
∗ as in all inductive approaches, items must be machine-parsable or

with assigned attributes;
∗ only recommendations based on what the user has already seen be-

fore (and indicated to like) can be taken into account but negative
information is as well important;
∗ stability vs. plasticity of recommendations;
∗ no filtering based on quality, style, or point-of-view (only based on

content;

– Collaborative recommendations (social information filtering):

• This technique is basically a process of “word-of-mouth”, in fact the
items are recommended to a user based upon values assigned by other
people with similar taste. The underlying hypothesis is that people’s
tastes are not randomly distributed: there are general trends and pat-
terns within the taste of a person as well as between groups of people.
Also in this case a user model is to be built. To this aim the users are
initially required to explicitly rank some sample objects.
• The input used for computing the predictions is a set of “Ratings of

similar users”, where the similarity is measured on the basis of the user
profile values.
• The mining process begins with the identification of those users in U that

result similar to u, and extrapolates the possible interests and likings of
the user at issue from the ratings that similar users gave to items in I.

• Limitations:
∗ a critical mass of users is required before the system can make rec-

ommendations;
∗ how to get the first rating of a new object?
∗ stability vs. plasticity of recommendations.

Demographic recommendation, utility-based recommendation and knowledge-
based recommendation are variants which require additional data about the
user beyond rating of items:

– Demographic recommendations
In this case, demographic information about all the users in U is exploited:
similarly to the previous case, the users that are close to U are identified,
but in this case similarity is computed on the demographic data. Then, the
ratings of these users on items in I are used to produce recommendations to
the user at issue.

– Utility-based recommendations
In this case the preferences of U are coded by a utility function, which is
applied to all the items in I for defining recommendations.

– Knowledge-based recommendations
The knowledge-based approach to recommendation works on a description
of the user’s needs and on a body of knowledge that describes how items can
meet various needs. An inferencing process is used to match the description
of the user’s needs with the items that can help the user and, thus, are to
be recommended.

Case Study: Web Usage Mining in an online shop. In this case study, we
will see how we can improve selling strategies in an artificial online shop. Our
online shop sells a small variety of products. Our goal is to find out which items
are commonly purchased together in order to make for example some selected
frequent-customers special bundle-offers which are likely to be in their interest.

To detect relations between data items, the concept of association rules can
be used. Association rules aim at detecting uncovered relations between data
items, this means relationships which are not inherent in the data like functional
dependencies, and normally do not necessarily represent a sort of causality or
correlation between the items. A database in which an association rule is to be
found is viewed as a set of tuples: each tuple contains a set of items; the items
represent the items purchased, and the tuples denote the list of items purchased
together. For a definition of association rules, we follow [26]:

Definition 6 (Association Rule) Given a set of items I = {I1, I2, . . . , Im}
and a database of transactions D = {t1, t2, . . . , tn} where ti = {Ii1, Ii2, . . . Iik}
and Iij ∈ I, an association rule is an implication of the form X =⇒ Y , where
X,Y ⊂ I are sets of items classed itemsets and X ∩ Y = ∅.

To identify the “important” association rules, the two measures support and
confidence are used (see [26]):

Definition 7 (Support) The support (s) for an association rule X =⇒ Y is
the percentage of transactions in the database that contain X ∪ Y .

support(X =⇒ Y) =
|{ti ∈ D : X ∪ Y ⊂ ti}|

|D|

Definition 8 (Confidence / Strength) The confidence or strength (α)
for an association rule X =⇒ Y is the ratio of the number of transactions
that contain X ∪ Y to the number of transactions that contain X.

confidence(X =⇒ Y) =
|{ti ∈ D : X ∪ Y ⊂ ti}|
|{ti ∈ D : X ⊂ ti}|

The support measures how often the rule occurs in the database, while the
confidence measures the strength of a rule. Typically, large confidence values and
smaller support values are used, and association rules are mined which satisfy
at least a minimum support and a minimum confidence.

The hard part in the association rule mining process is to detect the high-
support (or frequent) item-sets. Computationally less costly is then the checking
of the confidence. Algorithms for uncovering frequent item-sets exist in the liter-
ature [26], most prominent is the Apriori-algorithm [1], which uses the property
of frequent itemsets that all subset of a frequent itemset must be frequent, too.

Example: An online Book Shop This (artificial) online book shop sells five differ-
ent books: Semantic Web, Winnie the Pooh, Data Mining, Faust, and Modern
Statistics.

Transaction Items
t1 Semantic Web, Winnie the Pooh, Data Mining
t2 Semantic Web, Data Mining
t3 Semantic Web, Faust, Data Mining
t4 Modern Statistics, Semantic Web
t5 Modern Statistics, Faust

Customer X is a very good customer, and to tighten the relationship to cus-
tomer X, we want to make a personal and attractive offer. We see him ordering
a book on “Semantic Web”. Which bundle offer might be interesting for him?
Which book shall we offer to a reduced price: Winnie the Pooh, Data Mining,
Faust, or Modern Statistics? We are looking for association rules which have a
minimum-support of 30% and a confidence of 50%. The association rules we are
interested in are thus :
Semantic Web =⇒ Data Mining support: 60%, confidence: 75 %
Semantic Web =⇒ Faust support: 20%, confidence: 25%
Semantic Web =⇒ Winnie the Pooh support: 20%, confidence: 25 %
Semantic Web =⇒ Modern Statistics support: 20%, confidence: 25 %

An often seen pattern is that the books “Semantic Web” and “Data Mining”
are bought together, and the association rule “Semantic Web =⇒ Data Mining”
satisfies the minimum support of 30%. In 60% of the cases in which customers
bought the book “Semantic Web”, they also bought the book “Data Mining”
(confidence: 60%). Thus, we decide to offer our valuable customer the book
“Data Mining” in a personal offer for an attractive price.

NB: The general “association rule problem” is to mine association rules which
satisfy a given support and confidence; in the above example, we simplify the
approach by asking whether a certain item is obtained in some association rule.

3.3 User Modeling

In a user model, a system’s estimations about the preferences, often performed
tasks, interests, and so forth of a specific end user (or group of users) are specified
(in the following, we will only refer to “the user” wherever a single user a suf-
ficient homogeneous group of users can be meant). We can distinguish between
the user profile and the user model. A User profile provides access to certain
characteristics of a user. These characteristics are modeled as attributes of the
user. Thus, a user profile of user U gives the instantiations of attributes for U at
a certain timepoint t. Instead, the task of the user model is to ascertain the val-
ues in the user profile of a user U . Thus, the user model must provide updating
and modification policies of the user profile, as well as instructions to detect and
evaluate incidents which can lead to update or modification processes. Methods
for drawing appropriate conclusions about the incidents must be given, as well
as mechanisms for detecting discrepancies in the modeling process. Advanced
user modeling approaches also provide mechanisms for dealing with uncertainty
in the observations about a user, appropriate error detection mechanisms, and
can prioterize the the conclusion on observed incidents.

A very simple user profile identifies all the pages that a user U has visited,
therefore, it is a set of couples:

(P, visited)

A simple user model which can create this-like user profiles contains the following
rule for interpreting incidents:

“if U visits page Pthen insert (P, visited) into the user profile of U”

An extension of this simple user model is to recognize the observation that a
user U has bookmarked some page P and note this in the user profile:

“if U bookmarks page Pthen insert (P, important) into the user profile of U”

We will not go into detail on user modeling in this article (for more in-depth
information refer to [41]). But even from this simple user models above, we can
see that interpretation about the user interactions is not at all an easy task.
E.g. if we observe a user U bookmarking a page P: How can we distinguish
that U has stored this page for future reference based on the content of the
page from the fact that U stored this page only because he liked the design
of the page? Can we really be sure that bookmarking expresses favor for a
page in contrast to denial? Appropriate mechanisms for dealing with uncertainty
in the observations about the user, and for continuous affirmation of derived
conclusions are essential for good user models (a good reference for studying
numerical uncertainty management in user modeling is e.g. given in [38]).

User modeling approaches for Adaptive Hypermedia can take advantage of
the underlying hypermedia structure or the domain models associated with the
hypermedia system. Task models, expert models, or other, external models are

used to model the user with respect to this external model. This approach is
called overlay modeling [30]. As an example, for educational hypermedia systems,
the learner’s state of knowledge is described as a subset of the expert’s knowledge
of the domain, hence the term “overlay”. Student’s lack of knowledge is derived
by comparing it to the expert’s knowledge.

The critical part of overlay modeling is to find the initial knowledge esti-
mation. The number of observations for estimating the knowledge sufficiently
well must be small. In addition, a student’s misconceptions of some knowledge
concepts can not be modeled. A great variety of approaches for user modeling
is available, see e.g. [42, 69]

User Modeling for Web Mining For Web Mining, the absence of a structured
corpus of documents leads to different approaches for user modeling. An interest
and/or content-profile of a user is generated (with the aid of classification or
clustering techniques from machine learning) based on observations about the
user’s navigation behavior. A stereotype user modeling approach [63] classifies
users into stereotypes: Users belonging to a certain class are assumed to have
the same characteristics. When using stereotype user modeling, the following
problem can occur: the stereotypes might be so specialized that they become
obsolete (since they consist of at most one user), or a user cannot be classified
at all.

Discussion The user modeling process is the core of each personalization pro-
cess, because here the system’s estimations about the user’s needs are specified.
If the system identifies the needs not correctly, the personalization algorithms
–regardless how good they are– will fail to deliver the expected results for this
erroneous modeled user.

3.4 Conclusion: Personalization in the World Wide Web

To develop systems which can filter information according to the requirements
of the individual, which can learn the needs of users from observations about
previous navigation and interaction behavior, and which can continuously adapt
to the dynamic interests and changing requirements is still one of the challenges
for building smart and successful Web applications. Although the necessity to
“support the users in finding what they need at the time they want” is obvious,
building and running personalized Web sites is still a cost-intensive venture which
sometimes underachieves [40].

Looking at the techniques in adaptive hypermedia, we can see that re-usability
of these techniques is still an unsolved problem. We require a formalism express-
ing adaptive functionality in a system-independent and re-usable manner, which
allows us to apply this adaptive functionality in various contexts, as it has been
done e.g. for the adaptive educational hypermedia systems (see Section 3.1).
Another reason why adaptive functionality is not re-usable today is related to
the so-called open corpus problem in adaptive hypermedia, which states that cur-
rently, adaptive applications work on a fixed set of documents which is defined at

the design time of the system, and directly influences the way adaptation is im-
plemented, e.g. that adaptive information like “required prerequisites” is coded
on this fixed set of documents. The introduction of standards for describing such
metadata is a step forwards - and is currently undertaken in the Semantic Web.

Looking at the personalization techniques based on Web mining, we can see
that the filtering techniques (content-based, collaborative-based, demographic-
based, utility-based, knowledge-based, or others) are limited as they require a
critical mass of data before the underlying machine learning algorithms produce
results of sufficient quality. Explicit, machine-readable information about single
Web resources as given in the Semantic Web could be used for improving the
quality of the input data for the algorithms.

4 Personalization for the Semantic Web

Functionalities for performing personalization require a machine-processable know-
ledge layer that is not supplied by the WWW. In the previous section we have
studied techniques for developing adaptive systems in the WWW with all the
difficulties and limitations brought by working at this level. Let us now see how
adaptive systems can evolve benefiting of the Semantic Web. In particular, since
the capability of performing some kind of inferencing is fundamental for ob-
taining personalization, let us see how the introduction of machine-processable
semantics makes the use of a wide variety of reasoning techniques possible, thus
widening the range of the forms that personalization can assume.

4.1 An overview

The idea of exploiting reasoning techniques for obtaining adaptation derives from
the observation that in many (Semantic Web) application domains the goal of
the user and the interaction occurring with the user play a fundamental role.
Once the goal to be achieved is made clear, the system strives for achieving it,
respecting the constraints and the needs of the user and taking into account
his/her characteristics. In this context, the ability of performing a semantic-
based retrieval of the necessary resources, that of combining the resources in a
way that satisfies the user’s goals, and, if necessary, of remotely invoking and
monitoring the execution of a resource, are fundamental. All these activities can
be performed by adopting automated reasoning techniques. To make an exam-
ple, suppose that, for some reason, a student must learn something about the
Semantic Web for a University course. Suppose that the student has access to a
repository of educational resources that does not contain any material under the
topic “Semantic Web”. Let us suppose, however, that the repository contains a
lot of information about XML-based languages, knowledge representation, on-
tologies, and so forth: altogether this information gives knowledge about the
Semantic Web, the problem is retrieving it. A classical search engine would not
be able to do it, unless the word “Semantic Web” is explicitly contained in the

documents. This result can be obtained only by a system that is able to draw
as an inference the fact that all these topics are elements of the Semantic Web.

In the Semantic Web every new feature or functionality is built as a new
layer that stands on top of the previous ones. Tim Berners-Lee has described
this process and structure as the “Semantic Web Tower”. In this representation
reasoning belongs to the logic and proof layers that lay on the ontology layer.
This vision allows the Semantic Web to be developed incrementally.

Data on the Web is basically considered as the set of the available Web re-
sources, each identified by a URI (uniform resource identifier). Such resources
are mainly represented by plain XML (eXtensible Markup Language) descrip-
tions. XML stands at the bottom of the tower. It allows a Web document to be
written in a structured way, exploiting a user-defined vocabulary. It is perfect as
a data interchange format, however, it does not properly supply any semantic
information. Sometimes, when the domain is very closed and controlled, the tags
can be considered as being associated with a meaning but the solution is risky
and the application as such cannot be safely extended.

Semantic annotation of data is done by means of RDF (Resource Descrip-
tion Framework). RDF [59] is the basic Semantic Web (XML-based) language for
writing simple statements about Web resources. Each statement is a binary pred-
icate that defines a relation between two resources. These predicates correspond
to logical facts. Given semantically-annotated data it is possible to perform some
kinds of reasoning. In particular, some query languages have been developed that
allow the automatic transformation of RDF-annotated data. Two of the main
query languages that are used to transform data encoded in RDF are TRIPLE
and RDQL. They are both quite simple in the inferencing that they allow.

TRIPLE [66] is a rule language for the Semantic Web which is based on Horn
logic and borrows many basic features from F-Logic but is especially designed
for querying and transforming RDF models. In contrast to procedural program-
ming languages, such as C or Java, it is a declarative language which shares
some similarities with SQL or Prolog. TRIPLE programs consist of facts and
rules, from which it is possible to draw conclusions for answering queries. The
language exploits reasoning mechanism about RDF-annotated information re-
sources; translation tools from RDF to TRIPLE and vice versa are provided. An
RDF statement, i.e. a “triple”, is written as subject[predicate -> object].
RDF models are explicitly available in TRIPLE: statements that are true in a
specific model are written as ”@model”. Connectives and quantifiers (e.g. AND,
OR, NOT, FORALL, EXISTS) for building logical formulae from statements are al-
lowed as usual.

RDQL [61] is a query language for RDF and is provided as part of the Jena
Semantic Web Framework [39] from HP labs, which also includes: an RDF API,
facilities for reading and writing RDF in RDF/XML, N3 and N-Triples, an OWL
API, and in-memory and persistent storage. RDQL provides a data-oriented
query model so that there is a more declarative approach to complement the
fine-grained, procedural Jena API. It is “data-oriented” in that it only queries
the information held in the models; there is no inference being done. Of course,

the Jena model may be “smart” in that it provides the impression that certain
triples exist by creating them on-demand. However, the RDQL system does not
do anything other than take the description of what the application wants, in the
form of a query, and returns that information, in the form of a set of bindings.

Going back to our example, by using RDF we could semantically annotate
the resources that give explanations about XML-based languages, ontologies,
knowledge representation, etc. However, the use that we want to do of such
resources requires that each of them is explicitly associated to every topic it
might have correlations with. This should be done even though some of the
topics are related with each other, for instance XML is related to RDF and
XML is related to Semantic Web, but also RDF is related to Semantic Web,
and ideally we could exploit such relations to infer properties of the available
resources. What is still missing is the possibility of expressing knowledge about
the domain.

RDF Schema [60] adds a new layer of functionalities by allowing the rep-
resentation of ontologies. This is done by introducing the notion of “class” of
similar resources, i.e. objects showing a set of same characteristics. Resources
are then viewed as “individuals” of some class. Classes can be divided in “sub-
classes”, the result is a hierarchical structure. From an extensional point of view,
every instance of a class is also an instance of its super-class, as such it inherits
the properties of that class. It is possible to exploit this mechanism to perform
simple inferences about instances and classes w.r.t. the hierarchical structure. A
more powerful ontology language is OWL [54] (Web Ontology Language). OWL,
the W3C standard for ontology representation, builds on top of RDF and RDF-
S and allows the representation of more complex relations, such as transitivity,
symmetry, and cardinality constraints.

It is possible to reason about ontologies by means of techniques that are typ-
ical of Description Logics. Basically, such techniques are aimed at classification,
that is, if a resource is an instance of a class, then it will also be an instance
of its super-classes. Also, if a resource satisfies a set of properties that define a
sufficient condition to belonging to a given class, then the resource is an instance
of that class. By means of these techniques we can satisfy the goal of the user
of our example: in fact, if we have an ontology in which Semantic Web has as
subclasses XML-based languages, knowledge representation, and so on, and we
have a set of resources that are individuals of such classes, it is possible to infer
that they are also individuals of Semantic Web. The introduction of these infer-
encing mechanisms is a fundamental step towards personalization, although in
order to have real personalization something more is to be done. Indeed, if two
different users are both interested in the Semantic Web the system will return
as an answer the same set of resources because it does not take into account any
information about them.

So far, reasoning in the Semantic Web is mostly reasoning about knowledge
expressed in some ontology and the ontology layer is the highest layer of the
Semantic Web tower that can be considered as quite well assessed. The layers
that lie on top of it, in particular the logic layer and the proof layer, are still

Fig. 1. The Semantic Web tower. Personalization occurs at the ontology layer but
mostly at the logic and proof layers.

at a primitive level. The lesson learnt from the analysis that we have done is
that for making some personalization we need to represent and reason about
knowledge and the Semantic Web offers this possibility. Let us, then, see what
kinds of knowledge are necessary for performing personalization.

4.2 Knowledge and reasoning about knowledge

A system that performs some kind of personalization needs to represent differ-
ent kinds of knowledge: knowledge about the user, knowledge about the user’s
purpose (sometimes considered as included in the user’s description), knowledge
about the context, knowledge about the resources that can be queried, retrieved
or composed, and domain knowledge that is used by the inferencing mechanism
for obtaining personalization.

Knowledge about the user can roughly be viewed as partitioned in generic
knowledge about the user’s characteristics and preferences and in “state” knowl-
edge. By the word “state knowledge” we hereby mean information that can
change and that is relevant w.r.t. a specific application system, such as which
exams have been passed in the case of e-learning.

A user’s goal most of the times is considered as being coincident with a query
but there are some distinctive features to take into account. First of all, a query
presupposes an answer, and it implies a selection process, that can be performed
by means of the most various techniques. The answer is supposed to be returned
within a few seconds. In some applications, however, the goal corresponds to
a general interest of the user. For example, the user might be a fan of a given
music band and whenever the band performs in the user’s town, s/he would like
to be informed automatically. In this case, we can view the goals as conditions
that can are embedded in rules: when some event satisfies a rule condition, the
rule is triggered and, typically, the user is warned in a way that can be subject
to further personalization (e.g. w.r.t. the physical device that is used –laptop,

mobile, hand-held–). In this case, the answer, that depends on location and time,
might be returned days or weeks after the rule has been set. Moreover, the same
rule might be activated many times by many different events. A third kind of
goal, that we have seen, is more abstract and not directly interpretable as a query.
It is, for instance, the case of a learning goal: a learning goal is a description of
the expertise that a user would like to acquire. The system uses this information
to build a solution that contains many Web resources, to be used as learning
materials. None of them is (possibly) directly tied with the learning goal; the
goal will be reached by the user if s/he will follow the proposed reading path. In
other words, the composition of resources is a means for reaching the goal.

In performing resource selection, also knowledge about the context plays a
very important part. In many applications, three kinds of contextual information
can be identified: location in time, location in space, and role. Location in time
and space is used for refining resource selection, that is, only those resources that
fit the context description, are shown. The context description is not necessarily
expressed by the user, since it might as well be obtained in other ways. In
ubiquitous and in ambient computing it could be returned by a sensor network.
Roles are predefined views, possibly with a limitation of the actions, that the role
players can execute. They are used to personalize the selection of information
sources, the selection of information and, of course, presentation.

For performing semantic-based processing on the Web it is necessary that
the Web resources are semantically annotated. This is normally done by means
of ontologies. Even though semantic annotation is not so much diffused, the
languages for writing such annotations are pretty well assessed. One of the major
difficulties is, actually, to retrieve –if any– an ontology that is suitable to the
application at hand, avoiding to write a new one unless really necessary.

The last kind of knowledge that is often necessary in personalization tasks,
that we called domain knowledge, is aimed at giving a structure to the knowledge.
Domain knowledge relates the ontological terms in a way that can be exploited by
other inferencing mechanisms, and not only to perform ontological reasoning. For
instance, planning is a useful reasoning technique for obtaining personalization;
there are proposals in the literature that suggest to bias the search of a plan
by introducing solution schemas, that correspond to abstract descriptions of
solutions that “make sense”. For instance, in the e-learning applications when
a course is constructed out of a set of available learning materials, the course
must “make sense” also from a pedagogical point of view, see [7]. One can then
imagine to have a high-level description of the structure of interest, not related to
specific materials, which is personalized and filled with contents on demand, in a
way that fits the specific user. Moreover, in many scenarios it is useful to express
some event-driven behavior (e.g. in the already mentioned touristic application
domain). It is especially at this level that rules can play a fundamental role in
the construction of personalization systems in the Semantic Web.

Beyond ontologies: some examples. The first scenario that we consider is
set in one of the leading application areas for personalization: education. The

most typical problem in this framework consists in determining an “optimal
reading sequence” through a hyper-space of learning objects (a learning object is
a resource with educational purposes). The word optimal does not mean that this
is absolutely the best solution, it means that it specifically fits the characteristics
and the needs of the given user. It is optimal for that user. So the aim is to
support the user in the acquisition of some desired knowledge by identifying a
reading path that best fits him/her. Considerable advancements have been yield
in this field, with the development of a great number of Web-based systems, like
ELM-Art [70], the KBS hyperbook system [34], TANGOW [22], WLog [6] and
many others, based on different, adaptive and intelligent technologies.

Different methods have been proposed on how to determine which reading
path to select or to generate in order to support in the best possible way the
learner’s navigation through the hyper-space. All of them require to go one step
beyond the ontology layer. In fact, pure ontological annotation and ontological
reasoning techniques (though necessary) are not sufficient to produce, in an au-
tomatic way, the desired sequencing. If in our ontology the class “Semantic Web”
is divided in the classes “XML-based languages”, “knowledge representation”,
and “ontologies” we will be able to conclude that each of the individuals that
belong to the sub-classes also belong to the super-class. What we cannot do is
to impose that the student will be presented resources about all such topics, be-
cause only the conjunction of the three will let him/her satisfy his/her learning
goal. Another thing that we cannot do is to impose that a given topic is pre-
sented before another one because only in this way the student will understand
them.

If, on the one hand, it is necessary to annotate the actual learning objects,
with the ontological terms that represent identifiable pieces of knowledge related
to the learning objects themselves, on the other, it is also necessary to structure a
domain knowledge in a way that it is possible to perform the personalization task.
The desire is to develop an adaptation component, that uses such a knowledge,
together with a representation of the user’s learning goal and of knowledge about
the user, for producing sequences that fit the user’s requirements and character-
istics, based on the available learning objects. Such an adaptation component
exploits knowledge representations that are not ontologies (though they use on-
tologies) and it exploits reasoning mechanisms that are not ontological reasoning
mechanisms. For instance, in the application domain that has been taken into
account, goal-directed reasoning techniques seem particularly suitable.

To this purpose, one solution is to interpret the learning resources as atomic
actions. In fact, each learning resource has a set of preconditions (competences
that are necessary for using it) and a set of effects (the supplied competences).
Competences can be connected by causal relationships. Rational agents could
use such descriptions and the user’s learning goal, expressed as well in terms
of competences, for performing the sequencing task. This is, for instance, the
solution adopted in the WLog system [6], which exploits techniques taken from
the research area of “reasoning about actions and change” (planning, temporal
projection, and temporal explanation) for building personalized solutions.

Another example concerns Web services. Generally speaking, a Web service
can be seen as any device that can automatically be accessed over the Web.
It may alternatively be a software system or a hardware device; a priori no
distinction is made. The main difference between a Web service and other de-
vices that are connected to a network stands in the kind of tasks that can be
performed: a Web service can be automatically retrieved by searching for the
desired functionality (in a way that is analogous to finding Web pages by means
of a search engine, given a set of keywords), it can be automatically invoked,
composed with other Web services so to accomplish more complex tasks, it must
be possible to monitor its execution, and so on. In order to allow the execution of
these tasks, it is necessary to enrich the Web service with a machine-processable
description, that contains all the necessary information, such as what the service
does, which inputs it requires, which results are returned, and so forth. A lot
of research is being carried on in this area and none of the problems that we
have just enumerated has met its final solution yet. Nevertheless, there are some
proposals, especially due to commercial coalitions, of languages that allow the
description of the single services, and their interoperation. In this line, the most
successful are WSDL [72] and BPEL4WS [14]. This initiative is mainly carried
on by the commercial world, with the aim of standardizing registration, look-up
mechanisms and interoperability.

Among the other proposals, OWL-S [55] (formerly DAML-S) is more con-
cerned with providing greater expressiveness to service description in a way that
can be reasoned about [20]. In particular, a service description has three con-
ceptual levels: the profile, used for advertising and discovery, the process model,
that describes how a service works, and the grounding, that describes how an
agent can access the service. In particular, the process model describes a service
as atomic, simple or composite in a way inspired by the language GOLOG and
its extensions [45, 50]. In this perspective, a wide variety of agent technologies
based upon the action metaphor can be used. In fact, we can view a service as
an action (atomic or complex) with preconditions and effects, that modifies the
state of the world and the state of agents that work in the world. The process
model can, then, be viewed as the description of such an action; therefore, it
is possible to design agents, which apply techniques for reasoning about actions
and change to Web service process models for producing new, composite, and
customized services.

Quoting McIlraith [51]: “[. . .] Our vision is that agents will exploit user’s
constraints and preferences to help customize user’s requests for automatic Web
service discovery, execution, or composition and interoperation [. . .]”. In differ-
ent words, personalization is seen as reasoning about the user’s constraints and
preferences and about the effects, on the user’s knowledge and on the world, of
the action “interact with a Web service”. Techniques for reasoning about actions
and change are applied to produce composite and customized services.

A better personalization can be achieved by allowing agents to reason also
about the conversation protocols followed by Web services. Conversation proto-
cols rule the interactions of a service with its interlocutors: the protocol defines

all the possible “conversations” that the service can enact. Roughly speaking,
we can consider it as a procedure built upon atomic speech acts. So far, however,
no language for Web service specification, e.g. OWL-S, allows the explicit rep-
resentation of the communicative behavior of Web services at an abstract level,
i.e. in a way that can be reasoned about. Let us, however, explain with a simple
example how this would be useful: an agent, which is a user’s personal assistant,
is requested to book a ticket at a cinema where they show a certain movie; as a
further constraint, the agent does not have to use the user’s credit card number
along the transaction. While the first is the user’s goal, the additional request
constrains the way in which the agent will interact with the service. In this case,
in order to personalize the interaction according to the user’s request, it is indeed
necessary to reason about the service communications. Another possible task of
the personal assistant is the organization of a journey: it is necessary to find and
make work together (compose) services for finding a flight, renting a car, making
a reservation at some hotel, maybe the user’s personal calendar, etc. All services
that have been developed independently and for simpler purposes.

Personalization may involve also other kinds of reasoning, that require knowl-
edge to be represented in other ways. Among them defeasible reasoning, which
allows taking into account degrees of preference represented as priorities be-
tween rules (e.g. DR-DEVICE [11]), Answer Set Programming [27], that can deal
with incomplete information and default knowledge, reactivity to events [48] (the
so called ECA rules –event, condition, action–), that allow the propagation of
knowledge updates through the Web. All these approaches and techniques con-
ceptually lie at the logic and proof layers of the Semantic Web tower and rely
on some kind of rule language.

Rule languages and rule systems are, actually, in the mainstream of research
in the Semantic Web area, especially for what regards exchange of rule sets
between applications. Works in this direction include initiatives for the definition
of rule markup languages. The aim of introducing rules is to support in a better
and wider way the interaction of systems with users as well as of systems with
other systems over the Web. Rule markup languages are designed so to allow the
expression of rules as modular, stand-alone units in a declarative way, and to
allow the publishing and interchange of rules among different systems. Different
perspectives can be considered [68]. Rules can be seen as statements that define
the terms of the domain, they can be seen as formal statements, which can be
directly mapped to executable statements of a software platform, and they can
also be considered as statements in a specific executable language.

Two examples of rule markup languages are RuleML [52] and SWRL [37].
The former is a deductive logic language based on XML and RDF. SWRL is a
more recent proposal aimed at adding to the OWL language, for defining Web
ontologies, the possibility of including Horn-like clauses. The idea is to add the
possibility of making deductive inferences that cannot be accomplished by the
ontology reasoning techniques. For instance, a consequence of this kind: if X has
a brother Y and X has a son Z, then Y is an uncle of Z.

The most important aspect of the standards is its adoption, which implies
a diffusion of the inference engines that implement them. The hope is that in
the near future browsers will support RuleML engines, SWRL engines, and so
forth, enabling the use of knowledge over the Web, in the same easy way in
which they currently support languages like Java and JavaScript. On the other
hand, besides the standards, the way is open for building, on top of the ontology
layer, languages that support heterogeneous reasoning mechanisms, that fit the
requirements of specific personalization problems. This is the reading key of the
following section, where a case study is presented together with reasoning tech-
niques for tackling the personalization task. Further examples of personalization
problems, reasoning techniques, and prototype systems can be found in [2].

4.3 Case study: personalization in an e-learning scenario

Let us focus on e-learning and see how reasoning can help personalization in
this context. We will begin with the annotation of the learning resources, then,
we will introduce some reasoning techniques, all of which exploit a new level of
knowledge thus allowing a better personalization.

A learning object can profitably be used if the learner has a given set of
prerequisite competences; by using it, the learner will acquire a new set of com-
petences. Therefore, a learning object can be interpreted as an action: in fact,
an action can be executed given that a set of conditions holds, and by executing
it, a set of conditions will become true. So, the idea is to introduce at the level
of the learning objects, some annotation that describes both their pre-requisites
and their effects. Figure 2 shows an example of how this could be done. To make
the example realistic, the annotation respects the standard for learning object
metadata LOM. LOM allows the annotation of the learning objects by means of
an ontology of interest (see for instance [56]), by using the attribute classifica-
tion. A LOM classification consists of a set of ontology elements (taxons), with
an associated role (the purpose). The taxons in the example are taken from the
DAML version of the ACM computer classification system ontology [53]. The
reference to the ontology is contained in the source element. Since the XML-
based representation is quite long, for the sake of brevity only two taxons have
been reported: the first (relational database) is necessary in order to understand
the contents of the learning object, while the other (scientific databases) is a
competence that is supplied by the learning object.

The proposed annotation expresses a set of learning dependencies between
ontological terms. Such dependencies can be expressed in a declarative formalism,
and can be used by a reasoning system. So, given a set of learning objects each
annotated in this way, it is possible to use the standard planners, developed by
the Artificial Intelligence community (for instance, the well-known Graphplan
[13]), for building the reading sequences. Graphplan is a general-purpose planner
that works in STRIPS-like domains; as all planners, the task that it executes is
to build a sequence of atomic actions, that allows the transition from an initial
state to a state of interest, or goal state. The algorithm is based on ideas used
in graph algorithms: it builds a structure called planning graph, whose main

<lom xmlns="http://www.imsglobal.org/xsd/imsmd_v1p2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.imsglobal.org/xsd/imsmd_v1p2 imsmd_v1p2p2.xsd">

<general>

<title>

<langstring>module A</langstring>

</title>

</general>

...

<classification>

<purpose>

...

<value><langstring>Prerequisite</langstring></value>

</purpose>

<taxonpath>

<source>

<langstring>http://daml.umbc.edu/ontologies/classification.daml

</langstring>

</source>

<taxon>

<entry>

<langstring xml:lang="en">relational database</langstring>

</entry>

</taxon>

</taxonpath>

</classification>

...

<classification>

<purpose>

...

<value><langstring>Educational Objective</langstring></value>

</purpose>

<taxonpath>

<source>

<langstring>http://daml.umbc.edu/ontologies/classification.daml

</langstring>

</source>

<taxon>

<entry>

<langstring xml:lang="en">scientific databases</langstring>

</entry>

</taxon>

</taxonpath>

</classification>

</lom>

Fig. 2. Excerpt from the annotation for the learning object ’module A’: “relational
database” is an example of prerequisite while “scientific databases” is an example of
educational objective.

property is that the information that is useful for constraining the plan search
is quickly propagated through the graph as it is built.

General-purpose planners search a sequence of interest in the whole space
of possible solutions and allow the construction of learning objects on the basis
of any learning goal. This is not always adequate in an educational application
framework, where the set of learning goals of interest is fairly limited and the
experience of the teachers in structuring the courses and the learning materials
is important. For instance, a teacher due to his/her own experience may believe
that topic A is to be presented before topic B, although no learning dependence
emerges from the descriptions of A and B. This kind of constraint cannot be
exploited by a general-purpose planner, being related to the teaching strategy
adopted by the teacher.

On the other hand, it is not reasonable to express schemas of this kind in
terms of specific learning objects. The ideal solution is to express the afore-
mentioned schemas as learning strategies, i.e. a rule (or a set of rules) that
specifies the overall structure of the learning object, expressed only in terms of
competences. The construction of a learning object can, then, be obtained by
refining a learning strategy according to specific requirements and, in particular,
by choosing those components that best fit the user.

Reasoning about actions. Reasoning about actions and change is a kind of
temporal reasoning where, instead of reasoning about time itself, one reasons
on phenomena that take place in time. Indeed, theories of reasoning about ac-
tions and change describe a dynamic world changing because of the execution
of actions. Properties characterizing the dynamic world are usually specified by
propositions which are called fluents. The word fluent stresses the fact that the
truth value of these propositions depends on time and may vary depending on
the changes which occur in the world.

The problem of reasoning about the effects of actions in a dynamically chang-
ing world is considered one of the central problems in knowledge representation
theory. Different approaches in the literature took different assumptions on the
temporal ontology and then they developed different abstraction tools to cope
with dynamic worlds. However, most of the formal theories for reasoning about
action and change (action theories) describe dynamic worlds according to the
so-called state-action model. In the state-action model the world is described in
terms of states and actions that cause the transition from a state to another.
Typically it is assumed that the world persists in its state unless it is modified
by an action’s execution that causes the transition to a new state (persistency
assumption).

The main target of action theories is to use a logical framework to describe
the effects of actions on a world where all changes are caused by the execution of
actions. To be precise, in general, a formal theory for representing and reasoning
about actions allows us to specify:

1. causal laws, i.e. axioms that describe domain’s actions in terms of their
precondition and effects on the fluents;

2. action sequences that are executed from the initial state;
3. observations describing the value of fluents in the initial state;
4. observations describing the value of fluents in later states, i.e after some

action’s execution.

The term domain description is used to refer to a set of propositions that
express causal laws, observations of the fluents values in a state and possibly
other information for formalizing a specific problem. Given a domain description,
the principal reasoning tasks are temporal projection (or prediction), temporal
explanation (or postdiction) and planning.

Intuitively, the aim of temporal projection is to predict an action’s future
effects based on even partial knowledge about the current state (reasoning from
causes to effect). On the contrary, the target of temporal explanation is to infer
something on the past states of the world by using knowledge about the current
situation. The third reasoning task, planning, is aimed at finding an action se-
quence that, when executed starting from a given state of the world, produces
a new state where certain desired properties hold.

Usually, by varying the reasoning task, a domain description may contain
different elements that provide a basis for inferring the new facts. For instance,
when the task is to formalize the temporal projection problem, a domain descrip-
tion might contain information on (1), (2) and (3), then the logical framework
might provide the inference mechanisms for reconstructing information on (4).
Otherwise, when the task is to deal with the planning problem, the domain de-
scription will contain the information on (1), (3), (4) and we will try to infer
(2), i.e. which action sequence has to be executed on the state described in (3)
for achieving a state with the properties described in (4).

An important issue in formalization is known as the persistency problem. It
concerns the characterization of the invariants of an action, i.e. those aspects
of the dynamic world that are not changed by an action. If a certain fluent f
representing a fact of the world holds in a certain state and it is not involved
by the next execution of an action a, then we would like to have an efficient
inference mechanism to conclude that f still hold in the state resulting from a’s
execution.

Various approaches in the literature can be broadly classified in two cate-
gories: those choosing classical logics as the knowledge representation language
[49, 44] and those addressing the problem by using non-classical logics [57, 23,
65, 29] or computational logics [28, 10, 46, 8]. Among the various logic-based ap-
proaches to reasoning about actions one of the most popular is still the situation
calculus, introduced by Mc Carthy and Hayes in the sixties [49] to capture change
in first order classical logic. The situation calculus represents the world and its
change by a sequence of situations. Each situation represents a state of the world
and it is obtained from a previous situation by executing an action. Later on,
Kowalski and Sergot have developed a different calculus to describe change [44],
called event calculus, in which events producing changes are temporally located
and they initiate and terminate action effects. Like the situation calculus, the
event calculus is a methodology for encoding actions in first-order predicate logic.

However, it was originally developed for reasoning about events and time in a
logic-programming setting.

Another approach to reasoning about actions is the one based on the use of
modal logics. Modal logics adopts essentially the same ontology as the situation
calculus by taking the state of the world as primary and by representing actions
as state transitions. In particular, actions are represented in a very natural way
by modalities whose semantics is a standard Kripke semantics given in terms of
accessibility relations between worlds, while states are represented as sequences
of modalities.

Both situation calculus and modal logics influenced the design of logic-based
languages for agent programming. Recently the research about situation calculus
gained a renewed attention thanks to the cognitive robotic project at University
of Toronto, that has lead to the development of a high-level agent programming
language, called GOLOG, based on a theory of actions in situation calculus [45].
On the other hand, in DyLOG [9], a modal action theory has been used as a basis
for specifying and executing agent behavior in a logic programming setting, while
the language IMPACT is an example of use of deontic logic for specifying agents:
the agent’s behavior is specified by means of a set of rules (the agent program)
which are suitable to specify, by means of deontic modalities, agent policies, that
is which actions an agent is obliged to take in a given state, which actions it is
permitted to take, and how it chooses which actions to perform.

Introducing learning strategies. Let us now show how the schemas of solu-
tion, or learning strategies, can be represented by means of rules. In particular,
we will use the notation of the language DyLOG.

Learning strategies, as well as learning objects, should be defined on the
basis of an ontology of interest. One common need is to express conjunctions or
sequences of learning objects. So for instance, one can say that in his/her view,
it is possible to acquire knowledge about database management only by getting
knowledge about all of of a given set of topics, and, among these, relational
databases must be known before distributed databases are introduced.

An example that is particularly meaningful is preparing the material for a
basic computer science course: the course may have different contents depend-
ing on the kind of student to whom it will be offered (e.g. a Biology student,
rather than a Communication Sciences student, rather than a Computer Sci-
ence student). Hereafter, we consider the case of Biology students and propose
a DyLOG procedure, named ’strategy(’informatics -for biologists’)’. This proce-
dure expresses, at an abstract level, a learning strategy for guiding a biology
student in a learning path, which includes the basic concepts about how a com-
puter works, together with a specific competence about databases. Notice that
no reference to specific learning objects is done.

strategy(′informatics for biologists′) is
achieve goal(has competence(′computer system organization′)) ∧
achieve goal(has competence(′operating systems′)) ∧
achieve goal(has competence(′database management′)).

. . .
achieve goal(has competence(′database management′)) is

achieve goal(has competence(′relational databases′)) ∧
achieve goal(has competence(′query languages′)) ∧
achieve goal(has competence(′distributed databases′)) ∧
achieve goal(has competence(′scientific databases′)).

strategy is defined as a procedure clause, that expresses the view of the strat-
egy creator on what it means to acquire competence about computer system
organization, operating systems, and database management.

Suppose that module A is the name of a learning object. Interpreting it as an
action, it will have preconditions and effects expressed as in Figure 2. We could
represent module A and its learning dependencies in DyLOG in the following
way:

access(learningObject(′module A′)) possible if
has competence(′distributed database′) ∧
has competence(′relational database′).

access(learningObject(′module A′)) causes
has competence(′scientific databases′).

Having a learning strategy and a set of annotated learning objects, it is pos-
sible to apply procedural planning (supplied by the language) for assembling a
reading path that is a sequence of learning resources that are annotated as re-
quired by the strategy. Opposite to general-purpose planners, procedural plan-
ning searches for a solution in the set of the possible executions of a learning
strategy. Notice that, since the strategy is based on competences, rather than
on specific resources, the system might need to select between different courses,
annotated with the same desired competence, which could equally be selected
in building the actual learning path. This choice can be done based on external
information, such as a user model, or it may be derive from a further interaction
with the user. Decoupling the strategies from the learning objects results in a
greater flexibility of the overall system, and simplifies the reuse of the learning
objects. As well as learning objects, also learning strategies could be made public
and shared across different systems.

Other approaches to rule-based personalization in an e-learning sce-
nario The above example is just one possible way in which personalization
can be realized in the Semantic Web in a practical context. Remaining in the e-
learning application domain, many other forms of personalization can be thought
of, which require other approaches to rule representation and reasoning. Here-
after, we report another example that is taken from a real system. The per-
sonalization rules that we will see realize some of the adaptation methods of
adaptive educational hypermedia systems (see Section 3.1). The application sce-
nario is a Personal Reader3 [32, 12] for learning resources. This Personal Reader
3 http://www.personal-reader.de

helps the learner to view the learning resources in a context: In this context,
more details related to the topics of the learning resource, the general topics the
learner is currently studying, examples, summaries, quizzes, etc. are generated
and enriched with personal recommendations according to the learner’s current
learning state [32, 25]. Let us introduce and comment some of the rules that
are used by the Personal Reader for learning resources to determine appropri-
ate adaptation strategies. These personalization rules have been realized using
TRIPLE.

Generating links to more detailed learning resources is an adaptive functional-
ity in this example Personal Reader. The adaptation rule takes the isA hierarchy
in the domain ontology, in this case the domain ontology for Java programming,
into account to determine domain concepts which are details of the current
concept or concepts that the learner is studying on the learning resource. In par-
ticular, more details for the currently used learning resource is determined by
detail learningobject(LO, LO DETAIL) where LO and LO Detail are learn-
ing resources, and where LO DETAIL covers more specialized learning concepts
which are determined with help of the domain ontology.

FORALL LO, LO_DETAIL detail_learningobject(LO, LO_DETAIL) <-

EXISTS C, C_DETAIL(detail_concepts(C, C_DETAIL)

AND concepts_of_LO(LO, C) AND concepts_of_LO(LO_DETAIL, C_DETAIL))

AND learning_resource(LO_DETAIL) AND NOT unify(LO,LO_DETAIL).

Observe that the rule does neither require that LO DETAIL covers all special-
ized learning concepts, nor that it exclusively covers specialized learning con-
cepts. Further refinements of this adaptation rule are of course possible. The
rules for embedding a learning resource into more general aspects with respect
to the current learning progress are similar.

Another example of a personalization rule for generating embedding context
is the recommendation of quiz pages. A learning resource Q is recommended as
a quiz for a currently learned learning resource LO if it is a quiz (the rule for
determining this is not displayed) and if it provides questions to at least some
of the concepts learned on LO.

FORALL Q quiz(Q) <-

Q[’http://www.w3.org/1999/02/22-rdf-syntax-ns#’:type ->

’http://ltsc.ieee.org/2002/09/lom-educational#’:’Quiz’]

FORALL Q, C concepts_of_Quiz(Q,C) <-

quiz(Q) AND concept(C) AND

Q[’http://purl.org/dc/elements/1.1/’:subject -> C].

FORALL LO, Q quiz(LO, Q) <-

EXISTS C (concepts_of_LO(LO,C) AND concepts_of_Quiz(Q,C)).

Recommendations are personalized according to the current learning progress
of the user, e. g. with respect to the current set of course materials. The following
rule determines that a learning resource LO is recommended if the learner studied
at least one more general learning resource (UpperLevelLO):

FORALL LO1, LO2 upperlevel(LO1,LO2) <-

LO1[’http://purl.org/dc/terms#’:isPartOf -> LO2].

FORALL LO, U learning_state(LO, U, recommended) <-

EXISTS UpperLevelLO (upperlevel(LO, UpperLevelLO) AND

p_obs(UpperLevelLO, U, Learned)).

Additional rules deriving stronger recommendations (e. g., if the user has
studied all general learning resources), less strong recommendations (e.g., if one
or two of these haven’t been studied so far), etc., are possible, too. Recommen-
dations can also be calculated with respect to the current domain ontology. This
is necessary if a user is regarding course materials from different courses at the
same time.

FORALL C, C_DETAIL detail_concepts(C, C_DETAIL) <-

C_DETAIL[’http://www.w3.org/2000/01/rdf-schema#’:subClassOf -> C]

AND concept(C) AND concept(C_DETAIL).

FORALL LO, U learning_state(LO, U, recommended) <-

EXISTS C, C_DETAIL (concepts_of_LO(LO, C_DETAIL)

AND detail_concepts(C, C_DETAIL) AND p_obs(C, U, Learned)).

However, the first recommendation rule, which reasons within one course
will be more accurate because it has more fine–grained information about the
course and therefore on the learning process of a learner taking part in this
course. Thus, a strategy is to prioritize those adaptation rule which take most
observations and data into account, and, if these rules cannot provide results,
apply less strong rules. This can be realized by defeasible rules [3]: Priorities are
used to resolve conflicts, e.g. by giving external priority relations (N.B.: these
external priority relations must be acyclic). For example: Rule r1 determines
that the learning state of a learning object is recommended for a particular user
if the user has learnt at least one of the general, introductory learning objects
in the course, while r2 says that a learning object is not recommended if the
learner has not learnt at least one of the more general concepts. In the following
code, r1 > r2 defines a degree of preference: only when the first rule cannot be
applied, the system tries to apply the second.

r1: EXISTS UpperLevelLO (upperlevel(LO, UpperLevelLO) AND

p_obs(UpperLevelLO, U, Learned))

=> learning_state(LO, U, recommended)

r2: FORALL C, C_DETAIL (concepts_of_LO(LO, C_DETAIL)

AND detail_concepts(C, C_DETAIL) AND NOT p_obs(C, U, Learned)

=> NOT learning_state(LO, U, recommended)

and r1 > r2.

5 Conclusions

Personalization, which has become one of the major endeavors of research over
the Web, has been studied since the mid 90’s in fields like Adaptive Hypermedia
and Web Mining. In Adaptive Hypermedia each user has a personalized view of
the hypermedia system as well as individual navigation alternatives. Personal-
ization is carried out either selecting the proper level of contents, that the user
can read, or by modifying the set of links to other documents (for instance by
hiding certain connections). Web Mining, on the other hand, is mostly concerned
with the identification of relations between Web resources which are not directly
connected through links. These new relations can be induced on the basis of
resource contents or on the basis of regularities in the behavior of a set of inde-
pendent users. All these approaches have been applied to the WWW, allowing
the realization of adaptive systems even in absence of a universally agreed se-
mantics and of standard languages and tools for representing and dealing with
semantics. This heterogeneity entails some limitations. In fact, any technique
used to deliberate whether a certain resource or link is to be shown to the user
requires a lot of information, about the user, about the reasons for which the
user should access that resource, and so on. Actually, most of the early person-
alization systems either managed “closed-world” resources, as it was the case of
many systems for e-learning that handled given repositories of learning materials
as well as of e-commerce tools, or they were based on user models refined during
the direct interaction with the user.

The birth of the Semantic Web brought along standard models, languages,
and tools for representing and dealing with machine-interpretable semantic de-
scriptions of Web resources, giving a strong new impulse to research on personal-
ization. Just as the current Web is inherently heterogeneous in data formats and
data semantics, the Semantic Web will be heterogeneous in its reasoning forms
and the same will hold for personalization systems developed in the Semantic
Web. In this lecture we have analyzed some possible applications of techniques
for reasoning about actions and change and of techniques for reasoning about
preferences, the so called defeasible logic, but, indeed, the availability of a variety
of reasoning techniques, all fully integrated with the Web, opens the way to the
design and the development of forms of interaction and of personalization that
were unimaginable still a short time ago. To this aim it is necessary to integrate
results from many areas, such as Multi-Agent Systems, Security, Trust, Ubiq-
uitous Computing, Ambient Intelligence, Human-Computer Interaction and, of
course, Automated Reasoning.

This paper is just an introduction to personalization over the Semantic Web,
that presents issues, approaches, and techniques incrementally. We have started
from the World Wide Web and, then, moved to more abstract levels step by
step towards semantics and reasoning, a pattern that follows the classical view
of the Semantic Web as a tower of subsequent layers. More than being exhaustive
w.r.t all the different techniques and methods that have been proposed in the
literature, we have tried to give a complete overview, that includes historical
roots, motivations, interconnections, questions, and examples. In our opinion,

personalization plays a fundamental role in the Semantic Web, because what
is the Semantic Web but a knowledge-aware Web, able to give each user the
answers that s/he expects? Research in this field is at the beginning.

Acknowledgements

The authors are indebted with all the researchers who took part to the stimulat-
ing discussions during the meetings of REWERSE and in particular of working
group A3 in Munich and Hannover. Special thanks to Viviana Patti and Laura
Torasso, who actively contribute to the project.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases (VLDB), 1994.

2. G. Antoniou, M. Baldoni, C. Baroglio, R. Baungartner, F. Bry, T. Eiter, N. Henze,
M. Herzog, W. May, V. Patti, S. Schaffert, R. Schidlauer, and H. Tompits. Rea-
soning methods for personalization on the semantic web. Annals of Mathematics,
Computing & Teleinformatics (AMCT), 2(1):1–24, 2004.

3. G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, 2004.

4. R. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM
Press, 1999.

5. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction
protocols for web service composition. In M. Bravetti and G. Zavattaro, editors,
Proc. of 1st Int. Workshop on Web Services and Formal Methods, WS-FM 2004,
volume 105 of Electronic Notes in Theoretical Computer Science, pages 21–36.
Elsevier Science Direct, 2004.

6. M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an approach
based on logic agents and reasoning about actions. Artificial Intelligence Review,
22(1), September 2004.

7. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about learning
object metadata for adapting scorm courseware. In L. Aroyo and C. Tasso, editors,
Proc. of Int. Workshop on Engineering the Adaptive Web, EAW’04: Methods and
Technologies for personalization and Adaptation in the Semantic Web, pages 4–13,
Eindhoven, The Netherlands, August 2004.

8. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. An Abductive Proof Procedure
for Reasoning about Actions in Modal Logic Programming. In J. Dix et al., editor,
Proc. of NMELP’96, volume 1216 of LNAI, pages 132–150. Springer-Verlag, 1997.

9. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

10. C. Baral and T. C. Son. Formalizing Sensing Actions - A transition function based
approach. Artificial Intelligence, 125(1-2):19–91, January 2001.

11. N. Bassiliades, G. Antoniou, and I. Vlahavas. A defeasible logic system for the
semantic web. In In Proc. of Principles and Practice of Semantic Web Reasoning
(PPSWR04), volume 3208 of LNCS. Springer, 2004.

12. Robert Baumgartner, Nicola Henze, and Marcus Herzog. The personal publication
reader: Illustrating web data extraction, personalization and reasoning for the se-
mantic web. In Proceedings of 2nd European Semantic Web Conference, Heraklion,
Greece, May 2005.

13. A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281–300, 1997.

14. BPEL4WS. http://www-106.ibm.com/developerworks/library/ws-bpel. 2003.

15. P. De Bra, A. Aerts, D. Smits, and N. Stash. AHA! version 2.0: More adapta-
tion flexibility for authors. In Proceedings of the AACE ELearn’2002 conference,
October 2002.

16. P. De Bra, G.J. Houben, and H. Wu. AHAM: A dexter-based reference model for
adaptive hypermedia. In ACM Conference on Hypertext and Hypermedia, pages
147–156, Darmstadt, Germany, 1999.

17. P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling
and User Adapted Interaction, 6(2-3):87–129, 1996.

18. P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based Educations for All: A Tool
for Development Adaptive Courseware. In Proceedings of the Sevenths Interna-
tional World Wide Web Conference, WWW’98, 1998.

19. Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted Inter-
action, 11:87–110, 2001.

20. J. Bryson, D. Martin, S. McIlraith, and L. A. Stein. Agent-based composite services
in DAML-S: The behavior-oriented design of an intelligent semantic web. In J. Liu
N. Zhong and Y. Yao, editors, Web Intelligence. Springer-Verlag, Berlin, 2002.
Agent-Based Composite Services in DAML-S: The Behavior-Oriented Design of
an Intelligent Semantic Web.

21. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12:331–370, 2002.

22. R.M. Carro, E. Pulido, and P. Rodruez. Dynamic generation of adaptive internet-
based courses. Journal of Network and Computer Applications, 22:249–257, 1999.

23. M. Castilho, O. Gasquet, and A. Herzig. Modal tableaux for reasoning about
actions and plans. In S. Steel, editor, Proc. ECP’97, LNAI, pages 119–130, 1997.

24. P. de Bra. Hypermedia structures and systems: Online Course at Eindhoven Uni-
versity of Technology, 1997. http://wwwis.win.tue.nl/2L690/.

25. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. The Personal Reader: Personalizing
and Enriching Learning Resources using Semantic Web Technologies. In Proc. of
the 3rd International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems (AH 2004), Eindhoven, The Netherlands, 2004.

26. M. H. Dunham, editor. Data Mining. Prentice Hall, 2003.

27. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9, 1991.

28. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–321, 1993.

29. L. Giordano, A. Martelli, and C. Schwind. Dealing with concurrent actions in
modal action logic. In Proc. ECAI-98, pages 537–541, 1998.

30. I.P. Goldstein. The genetic graph: A represenation for the evolution of procedural
knowledge. In D. Sleeman and J.S.Brown, editors, Intelligent Tutoring Systems.
Academic Press, 1982.

31. F. Halasz and M. Schwartz. The Dexter hypertext reference model. Communica-
tions of the ACM, 37(2):30–39, 1994.

32. N. Henze and M. Kriesell. Personalization Functionality for the Semantic Web:
Architectural Outline and First Sample Implementation. In Proccedings of the 1st
International Workshop on Engineering the Adaptive Web (EAW 2004), co-located
with AH 2004, Eindhoven, The Netherlands, 2004.

33. N. Henze and W. Nejdl. Extendible adaptive hypermedia courseware: Integrating
different courses and web material. In Proccedings of the International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2000), Trento,
Italy, 2000.

34. N. Henze and W. Nejdl. Adaptation in open corpus hypermedia. IJAIED Special
Issue on Adaptive and Intelligent Web-Based Systems, 12, 2001.

35. N. Henze and W. Nejdl. Logically characterizing adap-
tive educational hypermedia systems. Technical report,
University of Hannover, April 2003. http://www.kbs.uni-
hannover.de/Arbeiten/Publikationen/2003/TechReportHenzeNejdl.pdf.

36. N. Henze and W. Nejdl. A logical characterization of adaptive educational hyper-
media. New Review of Hypermedia, 10(1), 2004.

37. I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, and B. Grosof.
SWRL: a semantic web rule language combining OWL and RuleML, 2004.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521.

38. A. Jameson. Numerical uncertainty management in user and student modeling:
An overview of systems and issues. User Modeling and User Adapted Interaction,
5(3/4):193–251, 1996.

39. Jena - A Semantic Web Framework for Java, 2004. http://jena.sourceforge.net/.
40. Jupiter Research Report, October 14th, 2003.

http://www.jupitermedia.com/corporate/releases/03.10.14-newjupresearch.html.
41. A. Kobsa. User modeling: Recent work, prospects and hazards. In M. Schneider-

Hufschmidt, T. Kühme, and U. Malinowski, editors, Adaptive User Interfaces:
Principles and Practice. Elvesier, 1993.

42. A. Kobsa. Generic user modeling systems. User Modeling and User-Adapted In-
teraction, 11:49–63, 2001.

43. N. Koch. Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-
Maximilians-Universitt Mnchen, 2001.

44. R. Kowalski and M. Sergot. A Logic-based Calculus of Events. New Generation
of Computing, 4:67–95, 1986.

45. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59–83, 1997.

46. J. Lobo, G. Mendez, and S. R. Taylor. Adding Knowledge to the Action Description
Language A. In Proc. of AAAI’97/IAAI’97, pages 454–459, Menlo Park, 1997.

47. D. Lowe and W. Hall. Hypermedia and the Web. J. Wiley and Sons, 1999.
48. W. May, J.J. Alferes, and F. Bry. Towards generic query, update, and event lan-

guages for the semantic web. In in Proc. of Principles and Practice of Semantic
Web Reasoning (PPSWR04), volume 3208 of LNCS. Springer, 2004.

49. J. McCarthy and P. Hayes. Some, Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence, 4:463–502, 1963.

50. S. McIlraith and T. Son. Adapting Golog for Programming the Semantic Web. In
5th Int. Symp. on Logical Formalization of Commonsense Reasoning, pages 195–
202, 2001.

51. S. A. McIlraith, T. C. Son, and H. Zenf. Semantic Web Services. IEEE Intelligent
Systems, pages 46–53, March/April 2001.

52. Rule ML. http://www.ruleml.org.
53. Association of Computing Machinery. The ACM computer classification system,

2003. http://www.acm.org/class/1998/.
54. OWL, Web Ontology Language, W3C Recommendation, February 2004.

http://www.w3.org/TR/owl-ref/.
55. OWL-S: Web Ontology Language for Services, W3C Submission, November 2004.

http://www.org/Submission/2004/07/.
56. W. Nejdl P. Dolog, R. Gavriloaie and J. Brase. Integrating adaptive hypermedia

techniques and open rdf-based environments. In Proc. of The 12th Int. World
Wide Web Conference, Budapest, Hungary, 2003.

57. H. Prendinger and G. Schurz. Reasoning about action and change. a dynamic logic
approach. Journal of Logic, Language, and Information, 5(2):209–245, 1996.

58. R. Rada. Interactive Media. Springer, 1995.
59. RDF. http://www.w3c.org/tr/1999/rec-rdf-syntax-19990222/. 1999.
60. RDFS. http://www.w3.org/tr/rdf-schema/. 2004.
61. RDQL - query language for RDF, Jena, 2005. http://jena.sourceforge.net/

RDQL/.
62. R. Reiter. A theory of diagnosis from first principles. Artifical Intelligence, 32,

1987.
63. E. Rich. User modeling via stereotypes. Cognitive Science, 3:329–354, 1978.
64. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.
65. C. B. Schwind. A logic based framework for action theories. In J. Ginzburg et al.,

editor, Language, Logic and Computation, pages 275–291. CSLI, 1997.
66. M. Sintek and S. Decker. TRIPLE - an RDF Query, Inference, and Transformation

Language. In I. Horrocks and J. Hendler, editors, International Semantic Web
Conference (ISWC), pages 364–378, Sardinia, Italy, 2002. LNCS 2342.

67. M. Specht. Empirical evaluation of adaptive annotation in hypermedia. In ED-
Media and ED-Telekom, Freiburg, Germany, 1998.

68. G. Wagner. Ruleml, swrl and rewerse: Towards a general web rule lan-
guage framework. SIG SEMIS Semantic Web and Information Systems, 2004.
http://www.sigsemis.org/articles/copy of index html.

69. Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Machine learning for
user modeling. User Modeling and User-Adapted Interaction, 11:19–29, 2001.

70. G. Weber and P. Brusilovsky. ELM-ART: An Adaptive Versatile System for Web-
based Instruction. IJAIED Special Issue on Adaptive and Intelligent Web-Based
Systems, 12, 2001.

71. G. Weber, H.C. Kuhl, and S. Weibelzahl. Developing adaptive internet based
courses with the authoring system NetCoach. In Proc. of the Third Workshop on
Adaptive Hypermedia, AH2001, 2001.

72. WSDL. http://www.w3c.org/tr/2003/wd-wsdl12-20030303/. version 1.2, 2003.

Artificial Intelligence Review 22: 3–39, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

3

Web-Based Adaptive Tutoring: An Approach Based on Logic
Agents and Reasoning about Actions

MATTEO BALDONI, CRISTINA BAROGLIO and VIVIANA PATTI
Dipartimento di Informatica, Università degli Studi di Torino, C.so Svizzera, 185,
I-10149 Torino, Italy (E-mails: {baldoni; baroglio; patti}@di.unito.it)

Abstract. In this paper we describe an approach to the construction of adaptive tutoring
systems, based on techniques from the research area of Reasoning about Actions and Change.
This approach leads to the implementation of a prototype system, having a multi-agent archi-
tecture, whose kernel is a set of rational agents, programmed in the logic programming
language DyLOG. In the prototype that we implemented the reasoning capabilities of the
agents are exploited both to dynamically build study plans and to verify the correctness of
user-given study plans with respect to the competence that the user wants to acquire.

Keywords: adaptive systems, curriculum sequencing, curricula validation, logic program-
ming, multiagent systems, reasoning about actions, web-based tutoring

1. Introduction

This work investigates the use of an agent logic language, based on reasoning
about action effects, for performing adaptive tutoring tasks in the context
of a Web-based educational application. Adaptation in Web-based educa-
tional systems is a hot research topic attracting greater and greater attention
(Brusilovsky, 2001), especially after the spreading of web technologies. Many
research teams have implemented Web-based courseware and other educa-
tional applications based on different, adaptive and intelligent technologies,
with the common goal of using knowledge about the domain, about the
student and about the teaching strategies in order to support flexible, person-
alized learning and tutoring (Weber and Brusilovsky 2001; Henze and Nejdl
2001; Carro et al. 1999; Macías and Castells 2001).

The problem that we faced is to provide personalized support to users
(students, in our case) in the definition process of study plans, a study plan
being a sequence of courses that the student should attend. The idea that we
explored is to base adaptation on the reasoning capabilities of a rational
agent, built by means of a logic language. In particular, we focused on
the possible uses of three different reasoning techniques, namely planning,
temporal projection, and temporal explanation, which have been developed
for allowing software agents to build action plans and to verify whether some

4 MATTEO BALDONI ET AL.

properties of interest hold after the application of given sequences of actions.
In both cases actions are – usually – not executed in the real world but their
execution is simulated “in the mind” of the system, which has to foresee their
effects (or their enabling causes) in order to build solutions. In our applic-
ation framework, a group of agents, called reasoners, works on a dynamic
domain description, where the basic actions that can be executed are of the
kind “attend course X” and where also complex professional expertise can
be described. Effects and conditions of actions (courses) are essentially given
in terms of a set of abstract competences, which are connected by causal
relationships. The set of all the possible competences and of their relations
defines an ontology. This multi-level description of the domain bears along
many advantages. On the one hand, the high modularity that this approach
to knowledge description manifests allows course descriptions as well as
expertise descriptions to be added, deleted or modified, without affecting the
system behavior. On the other hand, working at the level of competences is
close to human intuition and enables the application of both goal-directed
reasoning processes and explanation mechanisms.

The reasoning process that supports the definition of a study plan, aimed at
reaching a certain learning goal, either computes over the effects of attending
courses (given in terms of competence acquisition, credit gaining, and the
like) or over those conditions that make the attendance of a course reasonable
from the educator point of view. The logic approach also enables the valida-
tion of student-given study plans with respect to some learning goal of interest
to the student himself. Basically, the reasons for which a study plan may be
wrong are two: either the course sequence is not correct or by attending that
plan the student will not acquire the desired competence. In both cases our
reasoning mechanism allows the system to detect the weak points in the plan
proposed by the student and to return a precious feedback.

Summarizing, the adaptive services currently supplied by our rational
agents are: study plan construction, student-given study plan validation, and,
in case of validation failure, explanation of the reasons for which a student-
given plan is not correct. Notice that our tutoring system is not required to
monitor the students progress, its only target being study plan definition. In
this perspective, our task resembles curriculum sequencing problems, where
an “optimal reading sequence” through a hyper-space of information sources
is to be found. We can consider in fact courses (or, at least, course descrip-
tions) as information sources. The main difference with respect to many
applicative domains, where curriculum sequencing is used, is that in our
framework the whole path is to be constructed before the student begins to
attend the courses. Therefore, we cannot apply methods that construct the
solution one step at a time, always returning the next best step. We actually

WEB-BASED ADAPTIVE TUTORING 5

propose a multi-step methodology, that builds complete, personalized study
plans (see the conclusions for a deeper comparison with other curriculum
sequencing techniques).

A key feature that allows an agent of the kind described above to adapt to
each single user is its capability of tackling mental attitudes, such as beliefs
and intentions. In fact, the agent can adopt a student’s learning goal and find
a way for achieving it, which fits that specific student’s interest and takes
into account the student’s current knowledge. As we will see, the identified
solution can, then, be further adapted by interacting with the user during the
solution presentation phase. Intention, as well as belief and action, has intens-
ively been studied in logics and in logic programming (Scherl and Levesque
1993; Gelfond and Lifschitz 1993). We used an agent logic programming
language, called DyLOG (Baldoni et al. 2001b; Patti 2002), that is based on
a modal formal theory of actions and allows reasoning about action effects
in a dynamically changing environment. The language will be described in
the following sections, while its setting in the logic programming literature is
given in the conclusions.

Users interact with the system that we implemented, Wlog,1 by means
of a web browser. All the communication with the system is performed by
means of a set of dynamically generated web pages, in a process that can be
considered a very simple form of conversation. In this perspective, the use
of mental attitudes could recall some works on cooperative dialogue systems
in the field of Natural Language, and in particular (Bretier and Sadek 1997);
however, there are some differences. Bretier and Sadek proposed a logic of
rational interaction for implementing the dialogue management components
of a spoken dialogue system. This work is based, like the DyLOG language,
on dynamic logic; nevertheless, while they exploit the capability of reasoning
on actions and intentions in order to produce proper dialogue acts, we use
them to produce solutions to the users’ problems.

The article is organized as follows. Section 2 describes the application
framework and informally introduces some key elements of our work: the
notion of course, the notion of competence, the tasks that we have tackled.
Section 3 introduces the DyLOG language and explains how both the domain
knowledge and knowledge about the student are represented; moreover, this
section explains how courses can be interpreted as actions and the forms
of interaction that the language supports. Section 4 explains our interpreta-
tion of adaptive tutoring services as “reasoning about actions” tasks. Three
kinds of reasoning processes are introduced: temporal projection, temporal
explanation, and planning. We will see how rational agents, that can perform
these kinds of reasoning, can accomplish the tutoring tasks that are described
in Section 2. In Section 5, we show how DyLOG can be used not only for

6 MATTEO BALDONI ET AL.

representing the domain knowledge but also for programming the reasoners
that perform the various tasks. Finally, Section 6 describes the implemented
system; conclusions follow.

2. The Virtual Tutor Domain

In Italian universities students must list the courses that they want to attend in
their years as undergraduate students. Every year they have the possibility to
change this list (called study plan) according to their recent experiences and
personal taste. Study plans should be compiled according to given guidelines
and their consistency is verified by university professors.

Both the definition and the validation of study plans are time-consuming,
difficult tasks. For instance, students tend to be attracted by courses whose
names recall graphics, multimedia, or the web, disregarding those that supply
the necessary theoretical backgrounds. One of the main reasons of this
behavior is that when asked to build a study plan, students tend to be attracted
by those courses that are described by keywords, which can intuitively be
associated to the professional expertise they are interested in (the student’s
learning goal). On the other hand, also study plan verification is a difficult
and time-consuming task for professors, which requires knowledge about
each student situation (which courses have been attended and passed, if and
what the student studied abroad, and so forth) as well as knowledge about
each course (prerequisites, topics that are taught) and the general guidelines
that constrain the possible alternatives. In order to resolve the possible incon-
sistencies of a student-defined study plan, it is often necessary for students to
meet a tutor and discuss with him/her both their intentions and some of their
specific choices.

For all these reasons it would be very useful to have a software assistant
that helps both students and professors in all of the different phases of
plan construction and validation. Taking a look at the literature, study plan
construction can be interpreted as a special case of curriculum, or page,
sequencing. Curriculum sequencing is a well-known technique in the field
of Adaptive Educational Hypermedia (AEH) (Stern and Woolf 1998; Brusil-
ovsky 2000; Weber and Brusilovsky 2001; Henze and Nejdl 2001; Baldoni et
al. 2002); it is commonly used in this field to personalize, in an intelligent
way, the navigation of a student in a hyperspace of information sources.
Although the granularity and the type of information source depend on the
specific application domain and can widely vary (an information source may
be a definition, a page, a web site), they are usually considered as being
atomic and thus they are handled as single unstructured objects. In the special
case of our application domain, study plan construction can be described

WEB-BASED ADAPTIVE TUTORING 7

Figure 1. The action of attending the Programming Lab course.

Figure 2. As an example, this is a little excerpt from our competence-based knowledge model.

as a curriculum sequencing task where the atomic units of information that
compose the hyperspace are course descriptions.

Our approach to study plan construction is based on the observation that it
is quite natural to represent each course as an action: the action of attending
the course. For instance, Figure 1 describes a Programming Lab course as the
action of “attending a Programming Lab course”, which can be executed if
an action “attend a Programming Theory course” has already been executed.
The execution of the action “attend a Programming Lab course” has as an
effect the acquisition of knowledge about Java and Event programming. Part
of an action effects can be subject to more specific conditions; in the example
a student can understand comparisons with C programming if he already
knows the C language; observe, however, that it is not necessary to know C
for attending the course. As underlined by the example, in this perspective a
course can be fully described by two sets of conditions: the conditions that are
to be satisfied before the course can be attended and the conditions that ideally
become true by attending it (i.e., the knowledge that the student is supposed
to acquire by attending the course). Besides references to explicit courses, all
preconditions and outcomes are given in terms of knowledge elements, that in
our approach are described separately: we call them competences. Generally,
competences are not atomic and can be seen as composed of smaller pieces
of competence, related to one another. The set of all the pieces of competence
and the set of their relations define an ontology, which is a knowledge model
of the learning domain. The ontology also defines the vocabulary of the terms
used to write the course descriptions which belong to our hyperspace of infor-
mation sources; last but not least, competences are also used to describe the
students’ learning goals.

8 MATTEO BALDONI ET AL.

Knowledge models can be defined in different ways by describing the
relationships among the various elements; our ontology is built upon a
set of causal relations. Figure 2 shows an example: the two-level tree
on the left represents the fact that having competence about “data struc-
tures”, “algorithms”, and “programming languages” causes to have compet-
ence about “programming”. The rules on the right say that competence
about “programming languages” can be achieved by (alternatively) acquiring
competence either about the “C”, the “Java”, or the “Prolog” programming
language.

In this framework, study plan construction can be interpreted as a
reasoning about actions task: the task of finding a sequence of courses that,
once attended, will allow a student to achieve his learning goal. Interpreting
courses as actions, described in terms of a common vocabulary, has another
advantage: it enables the application of other reasoning mechanisms that are
very helpful in the construction of an AEH system. For example, it is possible
to validate the correctness of a student-given plan in an automatic way or, as
we will explain in the following sections, to build systems that to some extent
“discuss” with a student explaining what is wrong in a submitted study plan.

3. Representing the Domain in DyLOG

In our work, we have developed a multi-agent system, Wlog, whose archi-
tecture will be described in Section 6, that performs the tasks described in
the previous section. The system’s kernel is a set of rational agents, called
reasoners, that have been implemented in the agent programming language
DyLOG. In the current and in the following section we will respectively
explain how it is possible to represent both the domain knowledge and the
agents’ behaviour by using the DyLOG language and how it is possible to
interpret adaptive tutoring services as reasoning about actions tasks.

The reader who would like to learn more about the DyLOG language will
find a thorough description of it in (Baldoni et al. 2001b; Patti 2002).

3.1. The DyLOG agent programming language

DyLOG is a language for programming agents based on a logical theory for
reasoning about action and change in a modal logic programming setting.
Agents are entities that read, understand, modify, or more generally interact
with their environment by performing actions. Therefore, an agent’s behavior
can be fully described in a non-deterministic way by giving the set of actions
that it can perform.

WEB-BASED ADAPTIVE TUTORING 9

Actions have preconditions to their application, which may be conditions
either about the external world or about the agent internal state, and they
produce expected effects. This situation recalls what we said about courses:
a course has preconditions and it has effects on the knowledge of the student.
An action effect may also cause further effects, which do not directly derive
from the execution of that action but from a set of causal rules which depend
on the domain and that are triggered automatically when some conditions
become true. For instance, let us think to a robot that plugs in an iron: an
indirect effect of this action is that the iron becomes hot. The robot did not
heat the iron but it caused its increase of temperature by plugging it in.

3.2. States: Representing the knowledge of a student

We have mentioned that actions can be applied only if their preconditions
are true. Once applied, actions produce changes either to the world or to the
agent’s knowledge. We can, then, think to the whole reasoning process as a
sequence of transitions between states. Our states represent the knowledge
that the agent has about the world and not the state of the world itself (which
we do not model). A state can also be seen as the result of an action sequence,
applied to some initial state. Technically speaking, a state consists of a set
of fluents, i.e., properties whose truth value may change over the time. In
general we cannot assume that the value of each fluent in a state is known to
an agent, so we want to have both the possibility of representing that some
fluents are unknown and the capability of reasoning about the execution of
actions on incomplete states. To explicitly represent the unknown value of
some fluents, in (Baldoni et al. 2001b) we introduced an epistemic level in our
representation language. In particular, we introduced an epistemic operator B,
to represent the beliefs an agent has about the world: Bf means that the fluent
f is known to be true, B¬f means that the fluent f is known to be false.
A fluent f is undefined when both ¬Bf and ¬B¬f hold at the same time
(¬Bf∧¬B¬f). For expressing that a fluent f is undefined, we write u(f).
Thus each fluent can have one of the three values: true, false or unknown.

Nevertheless, in our implementation of DyLOG (and, for the sake of
simplicity, also in the following description) we do not explicitly use the
epistemic operator B: if a fluent f (or its negation ¬f) is present in a state, it
is intended to be believed, unknown otherwise. This choice is due to the fact
that operator B is indeed very useful when an agent induces some informa-
tion (fluent values) about the world and, thus, it cannot be certain about it.
Uncertainty is not present in the case that we currently tackle, although the
possibility of dealing with uncertainty will allow us, in future work, to enrich
our agents with the capability of carrying on complex dialogues with the user,
in the line of the works of (Bretier and Sadek 1997).

10 MATTEO BALDONI ET AL.

In our application, a state contains fluents that capture those pieces of
information about a student’s education, that a rational agent believes to be
true at a certain time. In particular, the fluents that we use represent:

1. the set of already attended courses: for each attended course and for each
competence, that is a direct effect of attending that course, there is a fluent
knows(course, competence) that records the way in which the compet-
ence was acquired. Observe that if a course supplies many competences
the state will contain as many fluents knows(course, competence). We call
the competences that are direct effects of actions basic competences;

2. the competences that the student has acquired: the state also contains
a fluent has_competence(competence) for each competence that the
student has, independently from the way it has been acquired;

3. the learning goal of the student: in this case we use the fluent
requested(goal). Notice that we do not strictly partition the set of all the
competences in a set of derived competences that is disjunct from a set of
the basic competences (related to courses); actually, a same competence
may be acquired in different ways: it could either be obtained by learning
the smaller pieces of competence it is made of or it could be obtained by
attending a single course, if any is available, aimed at teaching that topic.
This characteristic is particularly important in the perspective of building
an open system, in which courses can be added or removed along time.

As an example, a state may contain the following fluents:

(a) knows(‘programming lab’, ‘java’).
(b) knows(‘programming lab’, ‘event programming’).
(c) has_competence(‘programming languages’).
(d) requested(has_competence(curriculum(‘web application’)).

Fluents (a) and (b) mean that a student has passed the programming course
lab exam, thus acquiring the basic competences java and event programming.
The student also acquired the derived competence programming languages,
see fluent (c). Eventually, fluent (d) states that the student’s goal is to acquire
the competences supplied by the “web applications” curriculum.

3.3. Course as actions

In DyLOG, primitive actions are the basic building blocks for defining an
agent’s behavior. From a modal logic point of view, each primitive action a
is represented by a modality [a] (box a). The meaning of the formula [a]α is
that α holds after any execution of action a. We can also write: 〈a〉α (possible
a), whose meaning is that there is a possible execution of action a after which

WEB-BASED ADAPTIVE TUTORING 11

α holds. The special modality � (box) is used to denote those formulas that
hold in all states, i.e., after any action sequence.

The direct and indirect effects of primitive actions on states are described
by simple action laws, which consist of action laws, precondition laws, and
causal laws. Intuitively, an action can be executed in a state s if the precon-
ditions to the action hold in s; the execution of the action modifies the state
according to the action and causal laws. We also assume that the value of a
fluent persists from one state to the next one, if the action does not cause it to
change. In the following we will define the simple action laws giving also the
syntax that we use in the language for defining them and, last but not least,
their representation in the modal logic framework.

1. Action laws define direct effects of primitive actions on a fluent and can
also be used for representing action conditional effects. In the language
they have the form:

a causes F if Fs (1)

where a is a primitive action name, F is a fluent, and Fs is a fluent
conjunction, meaning that action a has effect F, when executed in a state
where the fluent precondition Fs holds. The modal logic representation
for this rule is �(F s → [a]F).

2. Precondition laws allow action preconditions, i.e., those conditions
which make an action executable in a state, to be specified. In DyLOG
they are written as:

a possible if Fs (2)

meaning that when the fluent conjunction Fs holds in a state, the execu-
tion of action a is possible in that state. The modal logic representation
of precondition laws is �(F s → 〈a〉true).

3. Causal laws are used to express causal dependencies among fluents and,
then, to describe indirect effects of primitive actions. In the language they
are written as:

F if Fs (3)

meaning that the fluent F holds if the fluent conjunction Fs holds too. The
modal logic representation of such rules is �(F s → F).

In the tutoring system that we have implemented, each course is inter-
preted as the action of attending that course, therefore it is represented as
a set of simple action laws. As an example, consider Figure 3, in which
the representation in DyLOG of the “Programming Lab” course described in

12 MATTEO BALDONI ET AL.

(a) attend(course(‘programming lab’)) possible if

knows(‘programming theory’,_).

(b) attend(course(‘programming lab’)) causes

knows(‘programming lab’,‘java’).

(c) attend(course(‘programming lab’)) causes

knows(‘programming lab’,‘event programming’).

(d) attend(course(‘programming lab’)) causes

knows(‘programming lab’,‘C and java relationship’) if

has_competence(‘C language’).

(e) attend(course(‘programming lab’)) causes credit(B1) if

get_credits(‘programming lab’,C) ∧
credit(B) ∧ (B1 is B + C).

(f) has_competence(‘programming’) if

has_competence(‘data structures’) ∧
has_competence(‘algorithms’) ∧
has_competence(‘programming languages’).

(g) has_competence(‘programming languages’) if

has_competence(‘java language’).

(h) has_competence(Competence) if

knows(_,Competence).

Figure 3. Precondition, action, and causal laws.

Figure 1 is shown. Rule (a) states that the action attend(course(‘programming
lab’)) can be executed if the action of attending the “programming theory”
course has already been executed. Action laws (b)–(c) describe the uncondi-
tional effects of the action execution: adding the “programming lab” course
causes to have competence about Java and event programming. Action law
(d) describes the conditional effect of the action at issue. Finally, action law
(e) updates other fluents (credit) that control the length of the desired study
plan. Rules (f) and (g) describe the indirect effects of having a competence;
they are used for inferring the higher-level competences of a student based
on his known competences. Finally, since the agent reasons on the student’s
competences independently from how they were obtained, rule (h) states that
if a competence is a direct effect of attending a course (the underscore in
knows(_,Competence) means that we do not care which course was actually
attended) it will be a student’s competence (has_competence(Competence)).

3.4. Curriculum schemas as procedures

So far, we have seen the basic building blocks of the DyLOG language.
However, in order to be able to represent behaviour strategies we need

WEB-BASED ADAPTIVE TUTORING 13

some compound syntax element. This is given by procedure clauses, which
allow us to define complex actions. More precisely, in our language complex
actions are defined as procedure clauses on the basis of primitive actions,
sensing actions, test actions2 and other complex actions. A complex action is
a collection of procedure clauses of the form:

p0 is p1, . . . , pn(n ≥ 0) (4)

where p0 is the name of the procedure and pi , i = 1, . . . , n, is either a
primitive action, a sensing action, a test action, or a procedure name (i.e.,
a procedure call). Procedures can be recursive and are executed in a goal
directed way, similarly to standard logic programs, and their definitions can
be nondeterministic as well as in Prolog.

From a theoretical point of view, procedure clauses have to be regarded
as axiom schemas of the logic. More precisely, each procedure clause p0 is
p1, . . . , pn, can be regarded as the axiom schema:

〈p1〉〈p2〉 . . . 〈pn〉ϕ ⊃ 〈p0〉ϕ.

Its meaning is that if in a state there is a possible execution of p1, followed
by a possible execution of p2, and so on up to pn, then in that state there is a
possible execution of p0.

In the curriculum sequencing application, procedures schematize the way
for acquiring professional expertise. For instance, in Figure 4 we report a
little part of the procedures that describe how to acquire a web applica-
tions expertise. In particular, we have expanded only part of the procedures
for acquiring competence about programming. This example will be further
discussed in the following sections.

3.5. Interaction as sensing and suggesting actions

In the previous sections we have explained that in our approach agents keep
a mental state of the situation that they are currently tackling, which is modi-
fied by action execution. Generally speaking, however, the agent’s knowledge
may be incomplete so, in order to understand which actions can be applied, it
is sometimes necessary to acquire new information from the outer world. To
this aim, we have studied and integrated in the formal account of the language
some informative actions, whose outcome is not under the agent’s control but
depends on the environment; such actions are called sensing actions. The
difference with respect to the other kinds of actions, that we have seen so far,
is that they allow an agent to acquire knowledge about the value of a fluent f
rather than to change it.

14 MATTEO BALDONI ET AL.

(a) achieve_goal(has_competence(curriculum(‘web applications’))) is

achieve_goal(has_competence(‘first year competences’)) ∧
achieve_goal(has_competence(‘database’)) ∧
achieve_goal(has_competence(‘ai’)) ∧
achieve_goal(knows(‘distributed systems’_)) ∧
achieve_goal(has_competence(‘web technology’)).

(b) achieve_goal(has_competence(‘first year competences’)) is

. . .

achieve_goal(has_competence(‘programming’)) ∧
. . .

(c) achieve_goal(has_competence(‘programming’)) is

achieve_goal(has_competence(‘data structures’)) ∧
achieve_goal(has_competence(‘algorithms’)) ∧
achieve_goal(has_competence(‘programming languages’)).

(d) achieve_goal(has_competence(‘programming languages’)) is

achieve_goal(has_competence(‘c’)).

(e) achieve_goal(has_competence(‘programming languages’)) is

achieve_goal(has_competence(‘java’)).

(f) achieve_goal(has_competence(‘programming languages’)) is

achieve_goal(has_competence(‘prolog’)).

Figure 4. Procedure clauses.

(a) achieve_goal(knows(Course,Competence)) is

Course �= generic ∧
attend(Course).

(b) achieve_goal(knows(generic,Competence)) is

?u(knows(generic,Competence)) ∧
offer_course_on(Competence) ∧
?course_on(Competence,Course) ∧
attend(Course).

(c) offer_course_on(_) possible if true.

(d) offer_course_on(Keyword) suggests course_on(Keyword,_).

Figure 5. Suggesting actions.

In DyLOG direct effects of sensing actions are represented by using
knowledge laws that have form:

s senses f (5)

meaning that action s causes to know whether f holds.

WEB-BASED ADAPTIVE TUTORING 15

Figure 6. An example of selection of courses to offer for constructing a web applications
curriculum.

In the current application, sensing actions are used also for allowing the
agent to interact with the user. In the simplest case, the user is explicitly
requested to enter the truth value of a fluent. This kind of interaction, however,
is not sufficient, because rather than asking for a fluent’s truth value, it is
often more useful to offer a set of alternatives to the user, among which he
will make a choice. To this aim, we have defined a special subset of sensing
actions, called suggesting actions. For representing the effects of such actions
we use the notation:

s suggests f (6)

meaning that action s suggests a (restricted) set of values for fluent f and
causes to know the value of f.

Formally, the difference w.r.t. standard sensing actions is that while those
consider as alternative values for a given fluent its whole domain, suggesting
actions offer only a subset of it. The agent has an active role in selecting the
possible values among which the user chooses: only those values that lead
to fulfill the goal will be selected. Such values are identified by means of a
reasoning process. After reasoning about a given problem, the agent finds a
set of alternative items that are equivalent w.r.t. the task of achieving a given
goal. Since using one or the other is equivalent, the reasoner may decide to
leave the choice up to the user.

For example, let us consider again our application. We have seen that
procedures are used to schematize the way to achieve a certain professional
expertise in terms of simpler competences to acquire. We have also intro-
duced basic competences, saying that they are all those competences that

16 MATTEO BALDONI ET AL.

are supplied by single courses; more than one course could supply the same
competence but the system does not necessarily present all of the alternatives
to the student. Figure 6 shows an example where the agent is helping a student
to build a bioinformatics study plan: at a certain point of the plan construc-
tion, the agent finds four alternative courses that give competence about
“programming languages”, however, only two subtrees allow the student to
get competence about imperative languages, necessary for a bioinformatics
curriculum (i.e., the actual learning goal). The other branches are cut during
the reasoning phase and the corresponding courses are not offered to the
student. In different words, only those alternatives that open paths that will
lead to the fulfillment of the user’s learning goal will be selected. Afterwards,
the choice can be left to the user: in fact, whatever the choice, the goal will
be reached.

Let us now consider our agent implementation. Professional expertise
definitions that, as we will see, are used for accomplishing the task of building
a study plan, are expressed by means of the procedure achieve_goal, as
reported in Figure 4. The achieve_goal definition encompasses also two
cases, that are described in Figure 5:

rule (a) – some specific course is requested: knows(Course,Competence)
rule (b) – some competence is requested: knows(generic,Competence).3

Rule (a) states that if a specific course is requested, this is to be added
to the study plan (action attend(Course)). Rule (b), instead, formalizes the
case in which we are not interested in a specific course, therefore, the agent
searches for all of the possible alternatives and suggests them to the user,
waiting for his choice. In the agent implementation the suggesting action
aimed at offering a set of alternative courses is offer_course_on, see rules (c)
and (d). In particular, the possible alternatives are extracted from the domain
knowledge by course_on in rule (d).

4. Tutoring Adaptive Services as Reasoning about Action Tasks

In Section 3 a representation of the virtual tutor domain in terms of a
DyLOG domain description has been introduced. On this basis, we can inter-
pret the adaptive services described in Section 2 – building and validating
personalized curricula – as “reasoning about actions” tasks.

In general, given a domain described in a logic action framework, the main
kinds of reasoning tasks that can be performed are temporal projection (or
prediction), temporal explanation (or postdiction) and planning (Sandewall,
1994). Intuitively, temporal projection is a method for reasoning from causes
to effects; its aim is to predict the effects of actions, that have not been

WEB-BASED ADAPTIVE TUTORING 17

executed yet, based on (even partial) knowledge about the current state. On
the contrary, by performing temporal explanation an agent considers some
facts as effects of already executed actions and reasons about the possible
causes that produced them. In different words, the aim of temporal expla-
nation is to infer knowledge about the past states of the world, starting from
some knowledge about the current state. The third reasoning task, planning, is
probably the best known of the three; it is aimed at finding an action sequence
that, when executed starting from a given state of the world, produces a
new state where certain desired properties hold. All such reasoning tasks are
supported by DyLOG.

In the following, we show how we interpreted the problem of person-
alized curricula construction as a procedural planning problem. Then, we
describe how we interpreted the problem of validating a user-given plan as
a temporal projection problem and how to exploit a simple temporal explana-
tion mechanism for helping the student to understand the reasons of validation
failure.

4.1. Building personalized curricula by procedural planning

Generally speaking, the planning problem amounts to determine, given an
initial state s, if there is a sequence of actions that, when executed in s, leads
to a goal state, in which a desired condition Fs holds.

In the DyLOG framework we consider a specific instance of the planning
problem, in which we wonder if there is a possible execution of a procedure
p, leading to a state in which some condition Fs holds, Fs being a set of
fluents. In the modal language, this problem is expressed by the query 〈p〉Fs,
which is to be read: “given a procedure p, is there a terminating execution of
p (i.e., a finite sequence of primitive actions), leading from an initial state,
that corresponds to the current situation, to a state in which Fs holds?”. In
DyLOG we refer to this query with the English-like notation:

Fs after p (7)

Intuitively, the terminating executions of p that lead to the goal state are plans
to bring about Fs. Indeed, the procedure constrains the space in which the
plan is sought for; in the literature, this reformulation is known as procedural
planning. In the curriculum sequencing application, procedures schematize
how to acquire professional expertise (see the previous section), whereas Fs
expresses the set of competences that a student would like to acquire. The
student, who asked for support in the construction of a study plan, may have
already acquired some of the necessary competences before the study plan
construction; in that case, the fluents that express his current expertise will be
part of the initial state.

18 MATTEO BALDONI ET AL.

The execution of the above query returns as a side-effect an execution
trace of p, i.e., one of the terminating sequences a1, . . . , an of primitive
actions leading to the final state. Such a trace can either be a linear or, when
the procedure contains sensing or suggesting actions, a conditional plan. In
fact, if some of the pi’s include sensing or suggesting actions, the obtained
execution trace contains also the foreseen communication acts with the user.
Due to the fact that their outcomes are unknown at planning time, all the
possible alternatives are to be taken into account; therefore, we will obtain a
conditional plan, whose branches correspond each to one of the alternative
values. It is important to remark that only those values that lead to success
will be taken into account and will produce a branch in the conditional plan.

In Figure 4, a set of procedures describing how to acquire the body of
competence for a web applications curriculum is shown. Let us suppose that
our student asked to be supported in the design of a study plan for becoming
an expert of web applications with the further requirement of acquiring
competence about graph theory. Furthermore, suppose the student also added
some constraints on the length of the plan: it should not exceed 132 credits.
This request can be expressed by the query:

{has_competence(‘graph theory’), credit(C), (C ≤ 132)}
after achieve_goal(has_competence(‘web applications’))

where the set of conditions {has_competence(‘graph theory’), credit(C), (C
≤ 132)} is the set Fs, which the student wishes to hold after the execu-
tion of the procedure achieve_goal(has_competence(‘web applications’)). If
such an execution trace exists, it will correspond to a personalized study
plan because, besides achieving the main learning goal has_competence(‘web
applications’), it will also fulfill the additional requirements contained in Fs
by supplying the competence graph theory and not exceeding 132 credits. Let
us suppose that our student is not a beginner because he already attended the
first year university studies and also some courses that supply the database
competence. The system will suggest a course sequence for achieving only
the missing competences, which (with reference to Figure 4) are artificial
intelligence, distributed systems and web technology. Figure 7 sketches the
conditional plan that results from planning in the described situation. The
plan specifies a set of courses that the student is recommended to attend. The
branching points of the conditional plan are to be interpreted as questions that
will be posed to the student at execution time; by answering all the questions
the student will select one of the alternative study plans. Queries are inserted
in the conditional plan during its construction. In fact, when the planning
process finds that different courses supply a required competence, it intro-
duces an interactive action for offering all of the alternatives to the student.

WEB-BASED ADAPTIVE TUTORING 19

Figure 7. An example of conditional plan for a personalized curriculum in “web applications”,
that does not exceed the requested 132 credits and guarantees to acquire competence on graph
theory.

Further suggestions are committed to the user’s choice. For instance, in the
plan above after recommending the student to attend the “intelligent systems”
course, the system offers the student the choice between two different courses
– i.e., “statistics” and “operations research” – which supply competence on
probability and statistics. Further recommendations depend on the student’s
decision. For instance, when the preferred option is “operations research”
(right subtree, Figure 7), the “graph theory” course is not added to the study
plan, because the “operations research” course already provides the compet-

20 MATTEO BALDONI ET AL.

ence that this course supplies. At the end of that path another branching point
corresponds to a query where the student must choose between two courses
(“multimedia” and “graphics I”) that supply competence on static graphics.
Notice that such a choice is not given in case the student previously selected
the “statistics” course. This is because of the user’s constraint on credits. In
fact, at the bottom of the left subtree of Figure 7 only one of the courses
allows the system to build a study plan that does not exceed 132 credits. The
“multimedia” course is too long (the study plan would be 6 credits longer
than requested), therefore, it is not taken into account.

Finally, let us stress that all of the branches of the conditional plan lead to
a state where the condition to have competence on graph theory is satisfied.
Intuitively, it means that, no matter the alternatives preferred by the user
during the actual interaction, it is guaranteed that the resulting study plan
leads to the fulfillment of the learning goal. The addition of further require-
ments about the competence to achieve affects the generated conditional plan,
causing the cut of some branches. If, for instance, our student asks also for
competence about audio, since such competence is provided only by the
“multimedia” course, the system would insert in the conditional plan only
those paths that contain the “multimedia” course; with reference to Figure 7,
those paths that contain the “graphic I” course would be cut.

4.2. Validation of curricula by temporal projection

Another reasoning process that is extremely interesting in the context of
personalized course sequencing is the validation of a student-given study
plan. In this case, after defining the course sequence according to his personal
taste and interests, the student asks the system if it satisfies the learning
dependencies of the domain, allowing to achieve some desired learning goal
(some specific expertise).

This task can easily be interpreted as a temporal projection problem. In
spoken words, the temporal projection problem is defined as: “given an initial
state s and an action sequence a1, . . . , an, does the condition Fs hold after the
execution of the action sequence?”. Differently than in planning, in this case
the action sequence is given. In the logical framework that we defined, we
formalize the temporal projection task by means of the query:

〈a1〉 . . . 〈an〉Fs

where each ai is a primitive action and Fs is a conjunction of fluents.
Notice that, since the primitive actions defined in our domain descriptions are
deterministic w.r.t. the epistemic state, the equivalence 〈a〉Fs ≡ [a]Fs∧〈a〉

holds for all the actions a that are defined in the domain description. There-

WEB-BASED ADAPTIVE TUTORING 21

fore, the success of the existential query 〈a1〉 . . . 〈an〉Fs entails the success of
the universal query [a1] . . . [an]Fs.

In DyLOG we represent the query that formalizes the temporal projection
task by the English-like notation:

Fs after a1, . . . , an

In the curriculum sequencing context, the sequence of actions is a
sequence of courses c1, . . . , cn to attend while the final condition Fs is a set of
desired competences. The temporal projection task can then be read as “Given
the initial student background, can the student acquire the set of competences
Fs by attending the course sequence c1, . . . , cn?”. In the implementation this
query becomes:

Fs after attend(course(c1)); . . . ; attend(course(cn)) (8)

where Fs is the student’s learning goal.
As a first, simple example, let us consider a student, who asks his tutor

if, by attending the course sequence “programming theory” followed by
“programming lab” – in the given order –, he will acquire competence
about event programming (which is the student’s learning goal). Let us
also suppose that the student has no previously acquired competence about
programming or other related topics. The corresponding DyLOG query will
be:

has_competence(‘event programming’) after
attend(course(‘programming theory’));
attend(course(‘programming lab’))

Since all the learning dependencies are respected and attending the “program-
ming lab” course causes the acquisition of competence about event program-
ming (see Figure 3), the validation of this query will succeed.

Indeed in our framework validation may fail for two reasons: either the
preconditions to one of the actions do not hold in the state in which the action
is executed (sequencing problem) or the learning goal is not achieved. For
instance, the query:

has_competence(‘event programming’) after
attend(course(‘programming lab’));
attend(course(‘programming theory’))

would fail because the “programming lab” course cannot be attended if the
student does not have competence about programming theory, which is the
effect of attending the “programming theory” course. On the other hand, the
query:

22 MATTEO BALDONI ET AL.

has_competence(‘multimedia’) after
attend(course(‘programming theory’));
attend(course(‘programming lab’))

would fail because none of the two courses in the sequence allows the
student to acquire competence in multimedia, although the action sequencing
is correct.

4.3. Explanation of validation failure by temporal explanation

As we have seen above, the validation of a user-built plan may fail for
different reasons: the plan may be wrong because it does not allow to reach
the final desired competence (the action sequence is correct but it does not
lead to the learning goal) or because the sequencing does not respect some of
the learning dependencies (the student does not have the necessary compet-
ence for attending the next course in the plan). In either case, it is extremely
important to return a feedback to the user about the reasons of validation
failure, in order to support plan correction.4

Course sequencing is, actually, quite a special application domain. Its
peculiarity is that competences can only be added. Intuitively, no new course
will ever erase from the students’ memory the concepts acquired in previous
courses. More formally, the domain is monotonic. This consideration is very
helpful in the definition of a failure explanation mechanism; the one that we
propose is based on the notion of state completion and exploits a mechanism
known as temporal explanation. The information that we compute to return
as a feedback is the set of competences that the student should already have
in order for the plan to be valid. So, for instance, if a student adds to his
study plan the course “programming lab” but, standing to the information
that the system has, the student does not have notions about “programming
theory”, the system will tell the student that he can attend his plan only if he
already has notions about programming theory, otherwise he will not be able
to understand the contents of the “programming lab” course.

More formally, a task of temporal explanation amounts to reconstruct,
starting from some given observations, what has happened (more gener-
ally, what should have happened) in order for those observations to be true.
For dealing with temporal explanation, we adopt an abductive approach by
determining the assumptions on the initial state that are needed for explaining
observations on later states. In the case of courses and study plans, such
assumptions will be a set of competences: all those competences that the
student did not declare to have and that are not supplied by the courses in
the sequence up to a state in which they result to be necessary. The intuitive
idea is that a study plan is always applicable, given that the student has as
background knowledge the missing competences.

WEB-BASED ADAPTIVE TUTORING 23

While the reasoning mechanisms of planning and temporal projection,
used in Sections 4.2 and 4.1, are based on the proof procedure described in
(Baldoni et al. 2001b), temporal explanation is based on the work contained
in (Baldoni et al. 1997). In that work an abductive proof procedure is defined
in terms of an auxiliary nondeterministic procedure support, which carries
out the computation for the monotonic part of the action language. Given a
domain description � and a query of form:

Fs after attend(course(c1)); . . . ; attend(course(cn))

let us pose, for the sake of simplicity, Q = 〈attend(course(c1))〉 . . .

〈attend(course(cn))〉Fs, then, the procedure support(Q,�), described here-
after, returns an abductive support for the query Q in �, which is a set � of
abducibles that, when added to the domain description, allows us to derive
our query:

� ∪ � �vs [add(course(c1))] . . . [add(course(cn))]Fs

Briefly, abducibles are atomic propositions of the form M[a1]. . .[an]F (F
being a fluent), where M is not to be regarded as a modality: this notation
has been adopted in analogy to default logic and M[a1]. . .[an]F means that F
is consistent after the execution of the sequence of actions a1, . . . , an.

All the details concerning the implementation of the monotonic part of the
language are hidden in the definition of the procedure support, and they can
be ignored by the abductive procedure. The abductive procedure is defined in
the style of Eshghi and Kowalski’s abductive procedure for logic programs
with negation as failure (Eshghi and Kowalski 1989), and it is similar to the
procedures proposed in (Toni and Kakas 1995) to compute the acceptability
semantics. Here we report only the support procedure, that was modified in
the following way, while the abductive procedure remained unchanged (see
(Baldoni et al. 1997, Section 4):

1. a1, . . . , am �vs
 with ∅;
2. a1, . . . , am �vs F with � if

a) a1, . . . , am−1 �vs F s′ with �, where m > 0 and �(F s′ ⊃ [am]F) ∈
�; or

b) a1, . . . , am−1 �vs F with �1 and � = �1 ∪ {M[a1, . . . , am]F }; or
c) m = 0 and � = ∅ if F ∈ S0, � = {MF } otherwise;

3. a1, . . . , am �vs F s1 ∧ Fs2 with �1 ∪ �2 if a1, . . . , am �vs F s1 with �1

and a1, . . . , am �vs F s2 with �2;
4. a1, . . . , am �vs Ml with � if a1, . . . , am �vs Bl with �;
5. a1, . . . , am �vs [a′

1, a
′
2; . . . ; a′

n]Fs with �1 ∪ �2 if a1, . . . , am �vs F s′
with �1 and a1, . . . , am, a �vs [a′

2; . . . ; a′
n]Fs with �2.

24 MATTEO BALDONI ET AL.

(a) attend(course(‘database’)) possible if

has_competence(‘matrices’) ∧
has_competence(‘dynamic structures’).

(b) attend(course(‘database’)) causes

knows(‘database’,‘db’).

(c) attend(course(‘database’)) causes credit(B1) if

get_credits(‘database’,C) ∧ credit(B) ∧ (B1 is B + C).

Figure 8. Action and precondition laws for the course database.

To prove a fluent F, we can either select a clause in the domain description �,
rule 2(a), or add a new assumption to the assumption set �, rule 2(b) and 2(c).
A query 〈a1〉 . . . 〈am〉Fs can be derived from a domain description � with
assumptions � if, using the rules above, we can derive ε �vs [a1] . . . [am]Fs.

As an example, let us consider again a student who would like to acquire
competence about event programming, this time by attending the courses
“database” and “programming lab” in the given order. Let us suppose
that, standing to the information that the system has, the student has no
notion about programming theory, which is a prerequisite for attending the
programming lab course (Figure 3, clause (a)), nor about dynamic structures
and matrices, that is necessary in order to attend the “database” course
(Figure 8). The request of the student is represented by the following query:

(q1) has_competence(‘event programming’) after
attend(course(‘database’));
attend(course(‘programming lab’))

Given a domain description �, that includes both the simple action laws for
“programming lab” and the simple action laws for the course “database”,
the proof procedure returns a support � for the query (q1), that contains the
following assumptions on the initial state: MB has_competence (‘matrices’),
MB has_competence (‘dynamic structures’) and MB knows (‘programming
theory’, ‘object languages’). Intuitively, � is the tutor feedback about the
proposed plan, which can be read as: “The plan that you proposed would
allow you to learn event programming if you already had notions about
programming theory, matrices and dynamic structures”.

This failure explanation mechanism is quite simple and we would like
to remark that it works due to the monotonicity of the domain that we are
tackling, where new courses are not supposed to erase from the students’
memory the concepts acquired in previous courses.

WEB-BASED ADAPTIVE TUTORING 25

5. The Virtual Tutor as a Logic Agent

In our work we used the DyLOG language not only for representing the
knowledge domain (as described in details in the previous sections) but also
for programming the agents that use such a knowledge, i.e., for implementing
the reasoners. In the specific application that we are presenting, at a very
high-level reasoners have the following behavior:

1. acquire a problem definition from the user;
2. acquire the initial situation;
3. solve the problem and present a solution to the user;
4. further adapt the solution by interacting with the user.

Sometimes the solution can be achieved with no further interaction; more
generally, however, the agent will ask the user for further information or
for choosing among equivalent (w.r.t. the goal) alternatives, when it is the
case. The whole communication between the two actors (the reasoner and the
user) takes place by means of web pages that are constructed on the fly for
presenting (requesting) information to (from) the user. Of course, although at
an abstract level the different kinds of problem are fixed (“help me to build
a study plan” or “validate this study plan”), there may be a wide variety of
specific interests and interactions depending on the user and on his/her goals
and situation. For each triple 〈user,goal,situation〉, a specific interaction will
occur and, therefore, an ad hoc web page sequence will be generated.

Our reasoners are executed by the DyLOG interpreter, which is a straight-
forward implementation of the language proof procedure (Baldoni et al.
2001b). Every primitive action has some code associated to it, that is to be
performed when the action is executed (the association is done by means
of the keyword performs); such a code actually produces the effects of the
action in the world. For instance, when the reasoner must show some infor-
mation to the user, it executes a showpage action, which has associated some
code for asking another agent, the actual execution device (see Section 6),
to show an appropriate web page to the user. As a consequence, when the
interpreter executes an action it must commit to it and it is not allowed to
backtrack by retracting the effects of the executed action.5

However, reasoners perform rational tasks by reasoning about actions
effects. In Section 4 we have seen that all the different kinds of reasoning
exploit a query of the form Fs after p; the language interpreter provides a
few meta-predicates for reasoning about actions in order to answer to this
kind of query. More specifically, the meta-predicate:

plan(F s afterp, as)

26 MATTEO BALDONI ET AL.

extracts a primitive action sequence as that, given a specific initial state, is
a possible execution of procedure p that leads to a state in which Fs holds.
Procedure plan works by executing p in the same way as the language inter-
preter with a main difference: primitive actions are executed “in the mind
of the reasoner”, without any effect on the external environment and, as a
consequence, they are backtrackable. The meta-predicate plan is used both
to perform study plan construction (see Section 4.1) and for validation (see
Section 4.2). The explanation of validation failure, instead, is accomplished
by means of the meta-predicate explain(Fs after as,d), that collects in d all
the fluents that should be true in the initial state in order for Fs to hold after
the execution of the sequence as of primitive actions.

5.1. Implementing the virtual tutor in dyLOG

The behaviour of a reasoner is described by a collection of procedures. In
the case of study plan construction, see Section 4.1, the top level procedure,
called advice, extracts a plan that will be executed. In the following, a ques-
tion mark in front of a fluent means that the value of that fluent is to be
checked. So, for instance, ?requested(Curriculum) will check which profes-
sional expertise the student declared to be interested in. In this case the fluent
has a predefined finite domain.

(R1) advice(Plan) is
ask_user_preferences ∧ ?requested(Curriculum) ∧
plan(credits(C) ∧ max_credits(B) ∧ (C ≤ B)after

achieve_goal(has_competence(Curriculum),Plan) ∧ Plan.

Intuitively, the reasoner asks the student what kind of final expertise he wants
to achieve and his background knowledge (e.g., if he already attended some
of the possible courses). Afterwards, it adopts the user’s goals and builds
a conditional plan for reaching them, predicting also the future interactions
with the user. That is, if it finds different courses that supply a same compet-
ence, whose prerequisites are satisfied, it plans to ask the user to make a
choice. plan is the meta-predicate that actually builds the plan, in this case
by extracting those executions of the procedure achieve_goal that satisfy the
user’s goals as well as the further conditions that are possibly specified (e.g.,
that the number of credits gained by following the study plan is not bigger
than a predefined maximum).6

Eventually the conditional plan that is returned by the reasoning process
is executed. This means that the code that is associated to every primitive
or suggesting action, that is part of the returned plan, is executed, possibly
modifying the environment. In our application a plan can only consist of
two different kinds of actions: the primitive action attend and the suggesting

WEB-BASED ADAPTIVE TUTORING 27

action offer_course_on (see Section 3.5). Rules (R2) and (R3) contain the
code associated to such actions:

(R2) attend(Course) performs (
showCourse(Course)).

(R3) offer_course_on(Keyword) performs (
build_question(Keyword_Question) ∧
ask_choice(Question,Choice)).

showCourse is a Prolog predicate that performs a FIPA-like communica-
tion with the executor (see next section) for commanding the visualization
of a web page containing all the information about the course Course. The
predicate build_question composes a question that suggests a set of alter-
native courses to the user asking for his preference; the question is stored
into variable Question. Last but not least, ask_choice takes care of asking the
composed question to the user, and then waits for the answer (which is stored
in the variable Choice).

Initially the agent does not have explicit goals, because no interaction with
the student has been performed. The student’s inputs are obtained after the
first interaction phase, carried on by the procedure ask_user_preferences:

(R4) ask_user_preferences is
verify_student_competence ∧
offer_curriculum_type.

verify_student_competence is an action that allows the system to acquire
knowledge about the current student’s situation: mainly, which courses have
been attended and successfully passed. offer_curriculum_type, instead, is
used to acquire knowledge about the professional expertise the student would
like to achieve. In Section 3.5, we have seen that in DyLOG information
is acquired by means of special actions, called sensing actions. Differently
than “normal” actions, they increase (or revise) the knowledge of the agent
but they do not change its environment; indeed, offer_curriculum_type is an
example of sensing action:

(R5) offer_curriculum_type possible if true.
(R6) offer_curriculum_type senses requested(Curriculum).

It is defined by means of both a precondition law that states that this action
can always be executed (R5) and a sensing action law (R6), which states
that, after the execution of offer_curriculum_type, the value of the fluent
requested(Curriculum) – used in (R1) – will be known. Here the goal
adoption occurs: the goal of the user becomes the goal of the reasoner.

28 MATTEO BALDONI ET AL.

In the case of study plan validation, see Section 4.2, the top level pro-
cedure is check_study_plan. This procedure – see (R7) –, after executing
verify_student_competence that we have already explained, first interacts
with the student so to get the study plan that he built (ask_curriculum(Plan))
and then asks him to input the competences he is interested in (ask_
desired_competence(Competence)). Afterwards, it executes Check(Plan,
Competence), which performs the actual validation.

(R7) check_study_plan is
verify_student_competence ∧
ask_curriculum(Plan) ∧
ask_desired_competence(Competence)∧
check(Plan,Competence).

(R8) check(Plan,Competence) is
plan(Competence after Plan,_) ∧
showpage(“Your plan is OK”).

(R9) check(Plan,Competence) is
showpage(“Your plan is not OK”) ∧
explain(Competence after Plan,Delta) ∧
showpage(“Explanation:”,Delta).

(R8) uses again the meta-predicate plan, which executes the query Compet-
ence after Plan; however, in this case, we are only interested in checking if
the sequence of actions contained in Plan allows to achieve the requested
competences: for this reason we discard the meta-predicate return value
(second argument). The agent will return to the user an appropriate feed-
back by using the primitive action showpage, according to the result of the
validation procedure. If the plans turns out to be wrong, rule (R9) executes
the metapredicate explain, which, according to the approach described in
Section 4.3, collects in variable Delta a list of competences that the student
should already have in order to acquire the target Competences by following
Plan.

6. The Multiagent System

Wlog, the prototype system that we developed, has the multi-agent architec-
ture that is sketched in Figure 10. Agent technology allows complex systems
to be easily assembled by means of the creation of distributed artifacts, that
can accomplish their tasks through cooperation and interaction. Systems of
this kind have the advantage of being modular and, therefore, flexible and

WEB-BASED ADAPTIVE TUTORING 29

Figure 9. Interacting with Wlog.

Figure 10. A sketch of Wlog architecture.

scalable. So, on one hand, each module can be developed by exploiting the
best, specific technology for the service that it supplies, on the other, new
components can be added for supporting either new functions or a wider
number of users.

Wlog consists mainly of two kinds of agents: reasoners and executors.
Reasoners are written in DyLOG, whereas executors are Java servlets
embedded in a Tomcat web server. Executors are the interface between the
rational agents and the users; they mainly produce HTML pages, driven
by the directives sent by reasoners, and they forward the collected data to
the reasoners themselves. Reasoners collect inputs from the users (prefer-
ences, goals, information about the current educational situation) and invoke
the inference mechanism of the DyLOG language (see Section 4) on the
domain knowledge model in order to accomplish one of the possible adaptive
services, i.e., building a study plan or validating a student-given study plan.

30 MATTEO BALDONI ET AL.

As we have seen, also the domain knowledge model is defined in the DyLOG
language. We would like to remark that while the use of DyLOG for repre-
senting the knowledge model and performing inferences is fundamental, the
agent implementation described in Section 5 is written in DyLOG for conveni-
ence and it could, actually, be written in other programming languages,
such as Java, the important thing being that the implementations call the
DyLOG meta-predicates plan and explain, which perform the actual reasoning
process.

The communication among the agents has the form of a FIPA-like
message exchange in a distributed system (FIPA 1997). Each agent is identi-
fied by its location, which can be obtained by other agents from a facilitator,
and has a private mailbox where it receives messages from other agents.

6.1. Interaction between a tutor, an executor, and a user

A user accesses the system by means of a normal web browser (Figure 9);
from this moment until the end of the interaction, the user will be served by
an executor. First the executor looks for a free reasoner by consulting the
facilitator; since at the moment reasoners are not differentiated and can all
perform all the different kinds of reasoning, that we have described in the
previous sections, if any is available the interaction will begin.

Supposing that the previous step was successful, the user selects the
service he is interested in and starts his interaction with the system. The
next step will be the declaration of the user’s goal, e.g., “I want to become
an expert of web applications”. The user’s goal is adopted by the reasoner,
that will start a conversation aimed at collecting information about the user’s
current situation. For instance, in the case of study plan construction the user
will be asked about successfully passed exams. In the case of study plan
validation, instead, the system will ask the study plan to validate. Of course, if
our reasoning system were integrated in a wider system that is, for instance,
connected with the secretariat databases, part of the information would be
available without asking and the resulting interaction with the user would be
simpler, although the kernel of the system would not change. At this point it is
extremely interesting to understand how the interaction between the reasoner
and the executor is carried on.

Figure 11, reports a finite state automaton, that represents the interaction
protocol between the members of each couple 〈reasoner, executor〉. States
are numbered and arcs are labelled with the speech acts that cause the various
transitions. Different shading on states are used for specifying which agent
will continue the conversation (white for the executor, gray for the reasoner).
States with double border are terminating states.

WEB-BASED ADAPTIVE TUTORING 31

Figure 11. Communication protocol between an executor and a reasoner.

The part of graph that contains the states q1 through q4 encodes the
connection of an executor with a reasoner (initialization phase). The part
of graph consisting of the q5 − q10 states rules the actual action-execution
cycle, i.e., the execution of primitive actions, commanded by the reasoner
and performed by the executor. As we have seen in the previous Sections,
in the application hereby described only a little number of primitive
actions are defined: those necessary for sensing the inputs from the user
plus attend(Course) and offer_course_on(Keyword). The former causes the
description of a course to be displayed to the user, the latter causes an inter-
action in which, first, some alternatives are shown and, then, the user’s choice
is expected. Whenever a primitive action is executed an appropriate web
page is to be produced and sent to the user’s browser. The action-execution
cycle takes care of this phase. The reasoner sends the executor the request of
showing an HTML page by means of the request FIPA speech act from q5 to
q6, completed with values that specify what to show, suggest or sense. The
executor composes a proper HTML page and sends it to the user’s browser;
sometimes the page will contain a form to be filled. In either cases, when
the user finishes to consult/fill the page/form, he asks the system to continue
by clicking a button. The executor, then, informs the reasoner that the page
has been consulted and, if necessary, also transmits to the reasoner the user’s

32 MATTEO BALDONI ET AL.

data (inform() speech act from q9 to q5). Afterwards, it waits for the next
command.

Both agents perform various controls on the messages that they receive,
for guaranteeing the integrity of the interaction. For instance, if an executor
receives a command from a reasoner, which is not serving its user, it will
refuse to execute it. The same would happen if it were asked to execute an
action that is not allowed in the current state. So if it has sent to the user’s
browser a form and it has not received any information in return, it will refuse
to send to the browser any other page.

7. Conclusion and Related Work

In this article, we have presented an approach to adaptive tutoring, based
on the use of a logic programming language that supports reasoning about
actions and change. In our approach a group of agents, called reasoners,
works on a real-world domain description, given in terms of a set of compet-
ences, which are connected by causal relationships. The set of all the possible
competences and of their relations defines an ontology. This multi-level
description of the domain bears along many advantages. The most straightfor-
ward is the simplicity of use of the system: on the one hand, no initialization
phase is required (differently than in other, e.g., statistical, approaches); on
the other hand, we can add, delete, modify course descriptions as well as
expertise descriptions without affecting the system behavior because of the
high modularity that this approach to knowledge description manifests. Last
but not least, working at the level of competences is close to human intu-
ition and enables both goal-directed reasoning processes and explanation
mechanisms.

The logic approach also enables the validation of student-given study
plans with respect to some learning goal of interest to the student himself.
Basically the reasons for which a study plan may be wrong are two: either
the sequentialization of courses is not correct or by attending that plan the
student will not acquire the desired competence. In both cases we can detect
all the weak points in the plan and return a precious feedback to the user. An
interesting extension would be to automatically build what, according to the
terminology proposed in (Baral et al. 2000), is known as a repair plan: an
automatic correction of the wrong proposal. At the moment, however, we do
not enact repair-planning policies. In fact, although at a first glance, it could
seem that repairing a study plan means to complete it by adding some missing
courses, the problem is actually not trivial. For instance, what to do if the
patched plan violates some constraint (e.g., it is too long)? Should the system
eliminate courses that the student chose but that are not really necessary for

WEB-BASED ADAPTIVE TUTORING 33

acquiring the declared learning goal? What about adaptation in this case? We
believe that repairing requires a close interaction between the system and the
user, whose dynamics are yet to be investigated.

In our implementation, both the study plan construction and the study plan
validation tasks are performed on-line. In the case of planning we could actu-
ally have followed an alternative approach: to build off-line the most general
conditional plan for each professional expertise and to limit the on-line phase
to a tree pruning, according to the inputs given by the user. However, this
solution would not be efficient in the case in which the user asks to build a
plan for achieving a generic set of competences (rather than a professional
expertise out of the set offered by the system) nor in the case of plan valid-
ation. In fact, discovering whether a sequence of actions is an instance of a
schema by matching the schema tree has a higher computational complexity
than verifying its correctness by applying temporal projection, which is linear
in the number of the elements in the sequence.

The approach that we proposed can generally be adopted for building
recommendation systems. For instance, besides the application that we
presented in this article, we used procedural planning also for building a
prototype system that helps users to assemble personal computers according
to their needs (Baldoni et al. 2001a). However, it is possible to widen the set
of possible applications moving to the design of virtual supervisors. Presently
we are, actually, working at a new application in which a student learns how
to use an application software in a learning by doing framework. A virtual
tutor silently monitors the user by verifying if and how he/she reaches a
learning goal proposed by the system. One of the problems to solve in this
context is to ignore useless actions, that the user performs either because
he/she has little acquaintance with the software or because he/she is actually
exploring menus and commands. Systems for helping the users to familiarize
with softwares are already being developed, the problem is that usually they
are simulators, whose design and implementation are very expensive. By
reasoning on the user’s actions, we think that the production of such systems
would be simplified.

7.1. Other approaches to curriculum sequencing

In the Information Technology society, the field of adaptive hypermedia
applied to educational issues is attracting greater and greater attention (Brusil-
ovsky 2001). In the last few years considerable advancements have been
yield in the area, with the development of a great number of systems, like
ELMArt (Weber and Brusilovsky 2001), the KBS hyperbook system (Henze
and Nejdl 2001), TANGOW (Carro et al. 1999), the authoring tool for course
designing ATLAS (Macías and Castells 2001) and many others. Among the

34 MATTEO BALDONI ET AL.

technologies used in Web-based education for supporting student adaptation
and guidance, curriculum sequencing is one of the most popular. Different
methods have been proposed on how to determine which reading (or study)
path to select or to generate in order to support in an optimal way the learner
navigation through the hyperspace of knowledge items, see e.g. (Brusilovsky
2000; Weber and Brusilovsky 2001; Stern and Woolf 1998; Henze and Nejdl
2001).

In the last sections we described the usefulness of three techniques
for reasoning about actions, based on logic, in a curriculum sequencing
applicative framework; in the following we compare our application with
some other Adaptive Educational Hypermedia systems which also implement
curriculum sequencing even if in slightly different application frameworks.
Our analysis will not be exhaustive – we have focused on a set of representa-
tive systems – and it is inspired by the concept-driven comparison framework
defined in (Baldoni et al. 2002).

Let us start with the KBS Hyperbook System (Henze and Nejdl 1999,
2000), an AEH system which personalizes the access to information
according to the particular needs of a student. KBS implements various
adaptational functionalities, among which the generation and proposal of
reading sequences through a hyperspace of information sources about Java
programming. As in our case, in the KBS Hyperbook framework knowledge
and actual information units are kept separate. The learning dependen-
cies, used by the adaptation component of the system for the sequencing
task, are expressed at the knowledge level. They are stored in a so called
knowledge model, which contains the knowledge prerequisites required for
understanding some concept, as well as the resulting knowledge. Curriculum
sequencing allows the KBS system to compile a multi-step sequence of
pages for helping a user to reach a certain learning goal. Such a sequence
is compiled by following a stochastic approach that performs a depth first
traversal of the knowledge model.

Our work also focuses on dependencies among knowledge elements
(competences), even though, when necessary, also dependencies among the
actual information items (the courses) can be expressed. As a difference,
while sequencing in Henze and Nejdl (1999) is based upon a Bayesian
approach, producing a partial order of knowledge elements, we adopted a
symbolic approach based on a modal logic theory of action. In KBS depend-
encies between knowledge elements have the form K1 < K2, expressing
the fact that K1 should be learned before K2. Therefore, the inferencing
mechanism that enables the system to understand the dependencies between
sets of knowledge elements is the transitive closure of the “<” relation. In
our case, since information items are represented as “attend course” actions

WEB-BASED ADAPTIVE TUTORING 35

that require or produce competences (our knowledge elements), the depend-
encies between information items and knowledge elements emerge by logical
reasoning about “attend course” actions, using all the information modelled in
the action theory. Indeed learning dependencies are inferred by logical deriv-
ation not only from the knowledge elements, which are in the precondition
and effects of the courses, but also from the hierarchical structure among
knowledge elements, encoded by causal laws, and from the specification of
schematic professional expertises expressed by procedures.

One characteristic of our approach, the decoupling of knowledge from
the set of the courses that are available at a specific time, makes it suitable
to extensions to a more open framework and, in particular, to the develop-
ment of open systems, where different sources of information are integrated.
An example application could be supporting those students that apply to
the Erasmus (or other) interchange program in choosing a set of courses to
attend abroad. In this context an advantage of our approach is that, due to the
fact that by means of DyLOG procedures we can express different composi-
tion strategies, we could specify different teaching policies (organizations of
information presentation).

In the ELM-Art system (Weber and Brusilovsky 2001) curriculum sequen-
cing is used for compiling a sequence of hypermedia documents that a student
will follow for reaching a certain learning goal. As a difference with respect
to KBS, in ELM-Art there is no distinction between knowledge elements and
information items, thus the learning dependencies used by the adaptation
component are coded at the level of the information units. Based on this
model of dependencies, the system does not produce a multi-step reading
sequence but suggests to the student the next best page to visit, which is
calculated based on the reading path actually followed by the student and
on the page prerequisites. A similar approach is taken in ACE (Specht and
Oppermann 1998), a WWW-based tutoring framework that influenced the
development of the recent WIND project (Specht et al. 2002). In ACE the
domain model is built on a conceptual network of learning units: it describes
a set of learning units and their interrelations and dependencies, without
drawing a distinction among knowledge elements and information units.
Besides prerequisite relationships among units, that specify a partial order
of units in the learning space, the model can contain also a default curriculum
sequence. The combination of these elements is used for adapting the student
learning sequence step by step, according to the student’s current knowledge.
In particular ACE computes the next best unit to work on, depending on the
probabilistic overlay model of a learner’s knowledge and the prerequisites of
the possible next units.

36 MATTEO BALDONI ET AL.

MetaLinks (Murray 2002), an authoring tool for adaptive hyperbooks,
implements a functionality, “the narrative flow”, that allows it to suggest
step by step a reading path in a hyperspace of documents. Instead of coding
learning dependencies in the usual way, i.e., by associating preconditions
and outcomes to information units, MetaLinks represents decompositional
dependencies by structuring the documents hierarchically in a way that
parents are introductions or summaries of their children, while children detail
the matter introduced by the parents. Based on this structure, the next page
to visit is suggested by adopting a breadth first visit strategy, that exploits the
concept of sibling, allowing a horizontal reading of the hierarchy: the next
page to visit must be at the same level in the hierarchy of the current one,
which intuitively means that they contain information at the same level of
granularity.

7.2. DyLOG in the context of the literature about agent programming
languages

The language that we used for programming our reasoners and for imple-
menting the adaptive intelligent services provided by our tutoring system is
DyLOG, a logic language developed in (Baldoni et al. 2001b; Patti 2002) with
the aim of modelling and programming agents with reasoning capabilities.
Formalizing rational agents by means of logic languages is one of the main
topics of interest in the AI community (Levesque et al. 1997; Hindriks et al.
2001; Herzig and Longin 2002) and recent years have witnessed a growing
interest in non-classical logics, such as modal and non-monotonic logics,
because of their capability of representing and reasoning about structured
and dynamic knowledge. Nonetheless, there is a gap between the expressive
power of agent logical models and the practical implementation of agent
systems, mainly due to the computational difficulties to verify that properties
granted by the models hold also in the implemented systems. Indeed, the
leading idea in developing DyLOG was to integrate the expressive capabilities
of modal logic and non-monotonic reasoning techniques, within the logic
programming framework, in order to define a language which can be used
both for specifying and for programming agents, bridging the gap mentioned
above.

DyLOG is based on a modal action theory that has been developed in
(Baldoni et al. 1997, 2001b; Giordano et al. 2000; Patti 2002). The logical
framework allows us to deal with complex actions as well as with sensing
actions, and to address the most classical reasoning about actions tasks, such
as planning, temporal projection and postdiction. In general the framework
allows the user to specify the behavior of an intelligent (goal directed or
reactive) agent, that chooses a course of actions conditioned on its beliefs on

WEB-BASED ADAPTIVE TUTORING 37

the environment and that can use sensors and communication for acquiring
or updating its knowledge on the real world. The reasoning capabilities
supported by the language were essential in the implementation of the
adaptive intelligent services provided by our virtual tutor. Moreover, there
was a major advantage in using DyLOG in the current work, rather than other
languages, developed in the literature for reasoning about dynamic domains
and for agent programming, such as GOLOG (Levesque et al. 1997): DyLOG
has a sound proof procedure, which practically allows reasoners to perform
the planning task in presence of sensing. The consequence, in our applica-
tion framework, is that we can treat the problem of interactively generating
adapted study plans as a conditional plan extraction problem.

The adoption of modal logic in order to tackle reasoning about actions and
change, is common to many proposals, such as (De Giacomo and Lenzerini
1995; Prendinger and Schurz 1996; Castilho et al. 1997), and it is motivated
by the fact that modal logic allows a very natural representation of actions
as state transitions. Since the mental attitudes used for describing agents are
usually represented as modalities, our modal action theory is also well suited
to incorporate such attitudes. The formalization of complex actions draws
considerably from dynamic logic, and it refers to a Prolog-like paradigm:
complex actions are defined through (possibly recursive) definitions, given
by means of Prolog-like clauses. The nondeterministic choice among actions
is allowed by defining sets of alternative clauses.

Acknowledgements

We would like to thank prof. Alberto Martelli, Alessandro Chiarotto, Andrea
Molia and Laura Torasso for their precious support.

Notes

1 Technical information about the Wlog system can be found at the URL: http://
www.di.unito.it/∼alice.
2 Test actions are needed for testing if some fluent holds in the current state and for expressing
conditional complex actions. They are written as “?Fs”, where Fs is a fluent conjunction.
3 The atom generic is used to express that we do not care about which course supplies a given
competence.
4 Currently we do not tackle the problem of building repair plans, aimed at fixing a student-
given, wrong study plan.
5 Thus procedures are deterministic or at most they can implement some “don’t care”
determinism.

38 MATTEO BALDONI ET AL.

6 Note that the above formulation of the behaviour of the agent, bears many similarities with
agent programming languages based on the BDI paradigm such as dMARS (d’Inverno et al.
1997). As in dMARS, plans are triggered by goals and are expressed as sequences of primitive
actions, tests or goals.

References

Baldoni, M., Baroglio, C., Chiarotto, A. & Patti, V. (2001a). Programming Goal-driven Web
Sites using an Agent Logic Language. In Ramakrishnan, I. V. (ed.) Proc. of the Third
International Symposium on Practical Aspects of Declarative Languages, Vol. 1990 of
LNCS. Las Vegas, Nevada, USA, 60–75. Springer.

Baldoni, M., Baroglio, C., Henze, N. & Patti, V. (2002). Setting up a Framework for
Comparing Adaptive Educational Hypermedia: First Steps and Application on Curriculum
Sequencing. In Proc. of ABIS-Workshop 2002: Personalization for the Mobile World,
Workshop on Adaptivity and User Modeling in Interative Software Systems. Hannover,
Germany, 43–50.

Baldoni, M., Giordano, L., Martelli, A. & Patti, V. (1997). An Abductive Proof Procedure for
Reasoning about Actions in Modal Logic Programming. In Dix J. et al. (eds.) Proc. of
NMELP’96, Vol. 1216 of LNAI, 132–150. Springer-Verlag.

Baldoni, M., Giordano, L., Martelli, A. & Patti, V. (2001b). ‘Reasoning about Complex
Actions with Incomplete Knowledge: A Modal Approach. In Restivo, A., Ronchi Della
Rocca, S. & Roversi, L. (eds.) Proc. of Theoretical Computer Science, 7th Italian
Conference, ICTCS’2001, Vol. 2202 of Lecture Notes in Computer Science, 405–425.
Springer.

Baral, C., McIlraith, S. A. and Son, T. C. (2000). Formulating Diagnostic Problem Solving
Using an Action Language with Narratives and Sensing. In Principles of Knowledge
Representation and Reasoning, KR 2000, 311–322.

Bretier, P. & Sadek, D. (1997). A Rational Agent as the Kernel of a Cooperative
Spoken Dialogue System: Implementing a Logical Theory of Interaction. In Müller, J.,
Wooldridge, M. & Jennings, N. (eds.) Intelligent Agents III, Proc. of ECAI-96 Work-
shop on Agent Theories, Architectures, and Languages (ATAL-96), Vol. 1193 of LNAI.
Springer-Verlag.

Brusilovsky, P. (2000). Course Sequencing for Static Courses? Applying ITS Techniques in
Large-ScaleWeb-Based Education. In Proceedings of the fifth International Conference on
Intelligent Tutoring Systems ITS 2000. Montreal, Canada.

Brusilovsky, P. (2001). Adaptive Hypermedia. User Modeling and User-Adapted Interaction
11: 87–110.

Carro, R., Pulido, E. & Rodriguez, P. (1999). Dynamic Generation of Adaptive Internet-Based
Courses. Journal of Network and Computer Applications 22: 249–257.

Castilho, M., Gasquet, O. & Herzig, A. (1997). Modal Tableaux for Reasoning about Actions
and Plans. In Steel, S. (ed.) Proc. ECP’97, 119–130.

De Giacomo, G. & Lenzerini, M. (1995). PDL-based Framework for Reasoning about Actions.
In Proc. of AI∗IA ’95, Vol. 992 of LNAI, 103–114.

d’Inverno, M., Kinny, D., Luck, M. & Wooldridge, M. (1997). A Formal Specification of
dMARS. In Proc. of ATAL’97, Vol. 1365 of LNAI, 155–176.

Eshghi, K. & Kowalski, R. (1989). Abduction Compared with Negation by Failure. In Proc.
6th ICLP’89. Lisbon, 234–254.

FIPA (1997). FIPA 97, Specification Part 2: Agent Communication Language. Technical
report, Foundation for Intelligent Physical Agents.

WEB-BASED ADAPTIVE TUTORING 39

Gelfond, M. & Lifschitz, V. (1993). Representing Action and Change by Logic Programs.
Journal of Logic Programming 17: 301–321.

Giordano, L., Martelli, A. & Schwind, C. (2000). Ramification and Causality in a Modal
Action Logic. Journal of Logic and Computation 10(5): 625–662.

Henze, N. & Nejdl, W. (1999). Bayesian Modeling for Adaptive Hypermedia Systems. In
Proc. of ABIS99, 7. GI-Workshop Adaptivität und Benutzermodellierung in Interaktiven
Softwaresystemen. Magdeburg.

Henze, N. & Nejdl, W. (2000). Extendible Adaptive Hypermedia Courseware: Integrating
Different Courses and Web Material. In Brusilovsky, P., Stock, O. & Strapparava, C. (eds.)
Adaptive Hypermedia and Adaptive Web-Based Systems, International Conference, AH
2000, 109–120.

Henze, N. & Nejdl, W. (2001). Adaptation in Open Corpus Hypermedia. IJAIED Special Issue
on Adaptive and Intelligent Web-Based Systems 12: 325–350.

Herzig, A. & Longin, D. (2002). Sensing and Revision in a Modal Logic of Belief and Action.
In van Harmelen, F. (ed.) Proc. of 15th European Conference on Artificial Intelligence,
ECAI 2002. Lyon, France, 307–311. IOS Press.

Hindriks, K. V., de Boer, F., van der Hoek, W. & Meyer, J. (2001). Agent Programming with
Declarative Goals. In Castelfranchi, C. & Lespérance, Y. (eds.) Intelligent Agents VII.
Agent Theories, Architectures and Languages, Vol. 1986 of LNAI, 228–243. Springer-
Verlag.

Levesque, H. J., Reiter, R., Lespérance, Y. Lin, F. & Scherl, R. B. (1997). GOLOG: A Logic
Programming Language for Dynamic Domains. J. of Logic Programming 31: 59–83.

Macías, J. A. & Castells, P. (2001). Interactive Design of Adaptive Courses. In Ortega, M. &
Bravo, J. (eds.) Computer and Education – Towards an Interconnected Society, 235–242.
Kluwer Academic Publishers.

Murray, T. (2002). MetaLinks: Authoring and Affordances for Conceptual and Narrative Flow
in Adaptive Hyperbooks. International Journal of Artificial Intelligence in Education, to
appear.

Patti, V. (2002). Programming Rational Agents: a Modal Approach in a Logic Programming
Setting. Ph.D. thesis, Dipartimento di Informatica, Università degli Studi di Torino, Italy.
Available at http://www.di.unito.it/∼patti/.

Prendinger, H. & Schurz, G. (1996). Reasoning about Action and Change. A Dynamic Logic
Approach. Journal of Logic, Language, and Information 5(2): 209–245.

Sandewall, E. (1994). Features and Fluents. The Representation of Knowledge about Dynam-
ical Systems, Vol. I. Oxford University Press.

Scherl, R. & Levesque, H. J. (1993). The Frame Problem and Knowledge-producing Actions.
In Proc. of the AAAI-93. Washington, DC, 689–695.

Specht, M., Kravcik, M., Klemke, R., Pesin, L. & Hüttenhain, R. (2002). Personalized
eLearning and eCoaching in WINDS. In Proc. of Workshop on Integrating Technical and
Training Documentation, ITS 2002. San Sebastian, Spain.

Specht, M. & Oppermann, R. (1998). ACE – Adaptive Courseware Environment. The New
Review of Hypermedia and Multimedia 4: 141–162.

Stern, M. & Woolf, B. (1998). Curriculum Sequencing in a Web-Based Tutor. In Proc. Of
Intelligent Tutoring Systems 1998, Vol. 1452 of LNCS. Springer.

Toni, F. & Kakas, A. (1995). Computing the Acceptability Semantics. LNAI 928: 401–415.
Weber, G. & Brusilovsky, P. (2001). ELM-ART: An Adaptive Versatile System for Webbased

Instruction. IJAIED Special Issue on Adaptive and Intelligent Web-Based Systems 12(4):
351–384.

Artificial immune system approach to adaptation
Sławomir Wierzchoń, Warsaw

1 Introduction

Immune algorithms, IAs for short, are representatives of still growing family of biologically
inspired algorithms, like genetic algorithms, ant algorithms, particle swarm algorithms, etc. –
consult [7] for extensive review of such algorithms and their applications. Shortly speaking, IAs
are inspired by works on theoretical immunology and some mechanisms, described in Section
1.1, used by the natural immune system to cope with external and internal invaders. IAs are
adaptive algorithms in which learning takes place by evolutionary mechanisms similar to
biological evolution. Their adaptability relies on continuous generation of novel elements to
handle varying set of situations and on deletion of inefficient elements. Hence, IAs can be
viewed as an instance of “generate-and-test” algorithm or, as proposed in [10], as an instance of
an algorithm that adapt by innovation, i.e. by constant generation of “something genuinely
new”. Since the aim of natural immune system is production of antibodies (or
immunoglobulins) that are able to neutralize external intruders called antigens, we call the
problem to be solved as antigen, and the aim of an IA is production of antibody being a solution
to this problem.

This new paradigm offers some exciting possibilities of designing flexible algorithms that: (i)
adapt to new situations as well as (ii) solve problems that are similar to already solved
problems. Particularly, the mechanism of so-called primary immune response (described in
Section 1.1) allows solving new problems, i.e. the system produces antibodies (i.e. solution) that
can bind to a new pathogen (i.e. problem to be solved). On the other hand, secondary immune
response, search for antibodies that can bind successfully pathogens structurally similar to
already recognized pathogens. One of conceptual tools explaining how the population of
antibodies is controlled is the theory of idiotypic networks proposed by N.K. Jerne in 1974.
According to this theory, interactions among antibodies of different type, as well as among
antibodies and pathogens result in emergent properties like learning and memory, self-tolerance,
and size and diversity of immune repertoire. Broadly speaking, the evolution of the immune
network is governed by the set of differential equations of general form:

Rate of
population
variation

=

Network
stimulation

–

Network
suppresion

+

Influx
of new
clones

–

Death of
unstimulated
clones

(*)

Section 1.2 offers detailed description of such a model originally proposed in the paper [11].
Although its authors recognized very soon that “the kinetic equations used in our original paper
were highly idealized” ([9], p. 172) this model still inspires many works in the field of Artificial
immune systems (AISs for brevity). It would be interesting to review alternative models used in
theoretical immunology with the hope, that these models will improve behavior of currently
designed AISs. Such a review can be found in [16], [20], [23].

1.1 Basic notions from immunology
The main actors of the adaptive immune system are so-called lymphocytes, i.e. white blood
cells. Briefly, we distinguish lymphocytes of type B (or B-cells) and lymphocytes of type T (or
T cells).

 1

Each B-cell admits about 105 receptors located on its surface and called antibodies (or
immunoglobulin). These antibodies are soluble proteins which have high affinity towards
antigens. The key portion of antigen that is recognized by the antibody is called “epitope”; it can
be viewed as the identifier of that antigen. Similarly, the “paratope” is a specific region of
antibody that attach to the epitope. The antigenic determinant of an antibody (i.e. its epitope) is
referred to as “idiotope”. The set of idiotopes that characterizes an antibody is called its
“idotype”.

Real paratope and epitope are 3D molecules. If they are complementary with respect to their
geometric or physico-chemical characteristics, we say that the paratope recognizes just
introduced epitope; alternatively, we say that the paratope has high affinity with the epitope. To
study analytically the interactions among paratopes and epitopes, Perelson and Oster assumed in
[19] that the structural characteristics of these molecules can be adequately specified by a finite
list of d parameters. The set of all possible lists form so-called “shape-space”1, which typically
is assumed to be a d-dimensional vector space, usually d-dimensional Euclidean or Hamming
space. This way the affinity between paratope and epitope can be specified as a function of
distance between two d-dimensional vectors representing these objects (i.e. points in referential
shape-space).

Suppose a large number of copies of a specific, and never seen, antigen are introduced into an
organism. Once a sufficient number of paratopes binds the epitopes describing just introduced
antigen, so-called primary immune response occurs. It relies upon clonal expansion and somatic
hypermutation. The former term means rapid replication of those B-cells which have a high
affinity to the antigen. To “tune” molecular shapes of the paratopes characterizing produced
clones to the shapes of invading epitopes, each clone is subjected very intensive mutation what
leads to variation of immune response. Mutated clones with highest affinity to the antigen are
subjected further expansion and cloning, while mutants with lowest affinity are removed from
the organism. The process is continued until the concentration of epitopes decreases below
sufficiently low threshold. This is the core mechanism of so called “clonal selection theory”.

It should be noted that during primary immune response the interaction with T-cells is crucial to
the dynamics of the system. These lymphocytes control the activity of B-cells and they may
have excitatory or inhibitory role. A reader interested in details on how B- and T-cells cooperate
is referred to e.g. [15].

A crucial effect of all these interactions is that the response to a new antigen has a bell-shaped
form. There exists a minimum concentration (θ1) of epitopes that will elicit the immune
response while for very high concentration of epitopes (exceeding the second threshold θ2 >>
θ1) the response decreases. In other words, in the immune system we observe low- and high-
dose tolerance i.e. lack of any reaction against antigens. Only medium dose of the antigen
causes immune response manifested with rapid production of antibodies. In theoretical
immunology the response function f(hi), representing the concentration of antibodies of i-th
type, is modeled by the equation (see e.g. [20])

)()(
)(

2

2

1 ii

i
i hh

h
hf

+θ
θ

⋅
+θ

= (1)

where hi stands for the “field” representing the strength of influence of all epitopes present in
the system on a given antibody. Usually, if mij stands for the affinity between i-th paratope and

1 It has been observed in [2] that the idea of shape space may be misleading in theoretical studies and may produce

artifacts which do not reflect any underlying biological reality what means that it should be used with caution.

 2

j-th epitope, xj denotes concentration of j-th epitope, and N is the number of different types of
epitopes then the field hi is computed according to the equation

hi = ∑j=1, ..., N mij⋅xj (2)

Equation (2) says that i-th antibody can be stimulated by all the epitopes present in the
organism, no matter they come from antigens or other antibodies constituting given immune
system. This is because a new antibody, say Ab1, generated e.g. through somatic mutation is a
new protein for the organism, and its intensive reproduction during clonal expansion causes new
immune response resulting in production of antibody of other type, say Ab2. In summary, the
production of antibody Abi stimulates production of other types of antibodies2 and these
subsequent generations of proteins form a kind of network called by Jerne “idiotypic network”
(consult [17], or [11] for details). Its characteristic feature is that it can be maintained even in
the absence of antigens inducing immune response. This is due to symmetric interactions
between antibodies: if Abi stimulates Abi+1 then Abi+1 stimulates production of Abi. Since
antibody Ab1 was induced by an antigen Ag, one of its descendants3, Abi, must have epitope
structurally similar to the epitope characterizing the Ag. It is obvious that during absence of the
antigen Ag the antibody Abi will maintain production of other antibodies belonging to the chain
Ab1 → … → Abi … resembling auto-catalytic loop (consult [11] or [9]). Now, if the antigen Ag
enters the organism next time, its shape is “remembered” by such a loop and effective
antibodies are produced almost immediately. This phenomenon is referred to as “immune
memory” and fast production of effective antibodies is termed “secondary immune response”.
The set of antibodies with epitopes structurally similar to the epitopes characterizing the already
introduced antigen is said to be “internal image” of the antigen. The ability of producing
internal image of any antibody seems to be very promising for creation of pattern recognition
systems.

The notions of pattern recognition and immunological memory in the theory of clonal selection
and idiotypic network theory are quite different. As stated by Lord in [18], “In the clonal
selection theory, recognition is the amplified response of a few specific cells and elimination of
an antigenic stimulus through numeric superiority; memory is the persistence of a population of
specific cells. In idiotypic networks, recognition is the systemic disruption of a dynamic
equilibrium and the creation of a new equilibrium with different population and lineages;
memory is the persistence of a network of anti-idiotypic reactions around a population of
specific cells.”

1.2 Mathematical model of the immune network

Many different mathematical approaches have been developed to reproduce and analyze the
main immune functions. Particularly, Jerne’s hypothesis of idiotypic networks inspired a series
of models describing the interactions between B-cell clones. The goal of mathematical modeling
in theoretical immunology it to “deduce macroscopic properties of the system from the
properties and interactions among the elementary components” [20]. Broadly speaking we
distinguish between continuous and discrete models. Ordinary differential equations are typical
for the first group of models; they often resemble ecological models. These models can be
labeled as “B-models” if no distinction between free and cell-bound antibodies is made, and
“AB-models” if both forms of antibodies are described. Surprisingly, both B- and AB-models
lead to similar conclusions as regards the fixed point properties (stable fixed points for
dynamics are necessary for achieving tolerance in a model), [2]. It is important, since immune
memory can be potentially modeled by a fixed point of the network, [9], and the fixed points of

2 This idea was confirmed experimentally. Namely, it was observed that e.g. in the case of polio virus infection, Ab2

has the internal image of polio antigen. It means that Ab2 is induced by the paratope of Ab1 rather than by its
idiotype. See: Fons, U., et al., “From Jenner to Jerne: towards idiotypic vaccines”. Immunol. Rev. 90:93-113, 1986

3 and called anti-idiotypic antibody

 3

the differential models corresponds to the immune memory. Cellular automata, on the other
hand, are commonly used in the second group of models. An advantage of cellular automata
over differential equations model is its numerical stability. Further the dynamics of cellular
automata models can be easily tuned so as to mimic the behavior of the real system, and it does
not rely on global information (consult [18] for a deeper discussion). A reader interested in
detailed description of these models is referred to [20], [12], [13] and [8].

Below we briefly describe the “bit-string model” proposed in [11] and commonly used by the
AIS community. This model takes into account only interactions among paratopes and epitopes
of antibodies and antigens represented by binary strings ignoring interactions among B-cells and
other agents of the immune system (e.g. T-cells, macrophages, etc). Interestingly, this model
can be used to study both clonal selection and idiotypic networks theory. The affinity mij
between i-th epitope and j-th paratope is computed here in a way reflecting partial matching
between the two molecules. The dynamics of the system consisting of N antibody types with
concentrations {x1, …, xN} and M antigens with concentrations {y1, …, yM} is described by the
following system of ordinary differential equations:

)()()()()()()(
)(

3
1 1

2
1

1 txktytxmtxtxmktxtxmk
dt

tdx
i

N

j

M

j
jijijiij

N

j
jiji

i −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⋅= ∑ ∑∑

= ==

, i = 1, …, N (3a)

The first term in equation (3a) represents the stimulation of i-th paratope by the epitope of an
antibody of type j, the second term represents the suppression of antibody of type i when its
epitope is recognized by the paratope of type j, third term represents the stimulation of i-th
antibody by the antigens, and the last term models the tendency of cells to die. The parameter k1
is a rate constant that depends on the number of collisions per unit time and the rate of antibody
production stimulated by a collision. Constant k2 represents a possible inequality between
stimulation and suppression and constant k3 represents the rate of natural death. The process of
elimination of antigens from the system describes the set of ordinary differential equations
proposed in [10]:

∑
=

−=
N

i
jiij

j tytxmc
dt

tdy

1
)()(

)(
, j = 1, …, M (3b)

where c is an arbitrary constant. The model was used by Bagley et al. [1] who studied another
important concept of theoretical immunology – plasticity in an immune network, i.e. the process
of removing and recruiting certain types of antibodies from/into the network. This process
enables the immune system to decide which idiotypic determinants should be included/removed
in/from the network without referring to an explicit fitness function. Consequently, the network
is flexible and is able to modify its structure. Soon, it became obvious, [9], that the model is too
simple to describe emergence of a self-asserted structure which would be able to sustain
immune functions. Thus in [1] the authors proposed another model similar to the B-model while
in [9] they introduced a counterpart of the “AB-model”.

2 Immune-based recommenders
This section briefly describes theoretical foundations of an immune-based recommender as well
as its implementation.

2.1 Theoretical foundations

 4

Immune-based recommender system was proposed by Cayzer and Aickelin in [4], [5] and [6].
Their aim was to apply idiotypic effects to mimic “intelligent” behavior of immune agents and
to tune it to the problem of “intelligent” preference matching and recommendation. They used
publicly accessible software SWAMI, [14]. Its central part acts according to the pseudocode

1. select a set T of test users randomly from the database
2. for each test user t
 2a. hide a vote of the user t from predictor
 2b. from remaining votes of user t create a new training

user t’
 2c. select neighborhood of k reviewers based on t’
 2d. use neighborhood to predict vote
 2e. compare this with actual vote and collect statistics
3. Return final statistics

Pseudocode 1. Main part of SWAMI prediction

Steps (2c) and (2d) are implementation-dependent (i.e. they depend on the similarity/correlation
measure used to compare different users).

The SWAMI package uses EchMovie4 database in which 2,811,983 votes taken from 72,916
users on 1,628 films are recorded. The algorithm acts according to a “standard” recipe: it uses
information from a neighborhood to make useful predictions and recommendations.

Each user u is encoded as the n-tuple u = {{id1, score1}, {idn, scoren}} where id stands for the
unique identifier of the movie being rated and score ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} stands for the
evaluation of that movie by the user. The most popular measure of similarity between two users
u and v is the Pearson measure

∑ ∑
∑

= =

=

><−><−

><−><−
=

n
i

n
i ii

n
i ii

vvuu

vvuu
vur

1 1
22

1

)()(

))((
),((4)

where n is the number of overlapping votes (i.e. movies evaluated by both u and v), ui is the
vote of user u for i-th movie, and <u> is the average vote of user u over all movies seen by him.
Then the predicted vote of the active user u for j-th movie, uj, is a weighted sum of the votes of
the other users

 (5) ∑

∈

><−⋅κ+>=<
)(

))(,(
uNv

jj vvvuwuu

where N(u) stands for the neighborhood of u, and κ is a normalizing constant such that the
absolute values of the weights w sum to unity. In general w(u, v) is any measure reflecting
distance, correlation, or similarity between users u and v.

Cazyer and Aickelin proposed to use as w(u, v) the next measure

 w(u, v) = r(u, v)⋅xv (6)

where r(u, v) is Pearson correlation score and xv is the concentration of the antibody
corresponding to the user v. This concentration is computed from simplified equation (3a)
which now takes the form

4 available from http://www.research.compaq.com/SRC/eachmovie.

 5

)(|),(|
)(

|),(|
)(

3
2

1 txkxxavr
Abcard

k
uvrk

dt
tdx

v
Aba

va
v −⋅⋅−⋅= ∑

∈

, v ∈ Ab (7)

Here it is assumed that: (a) antigen is the user for whom we make prediction, (b) the set Ab of
antibodies form other test users, (c) the affinity measure muv in equation (3a) is defined as the
absolute value of Pearson score r(u, v). Particularly, from (a) it follows that we have only one
antigen in the system and its concentration is fixed.

In the Pearson predictor, neighborhood selection is based on choosing the k users with best
absolute correlation scores (k is a predefined neighborhood size). A disadvantage of such an
approach is that not every potential neighbor rated predicted movie. A set of differential
equation (7) allows to choose neighbors in a more elaborated way. The whole procedure can be
described by the next pseudocode, [4]:

1. Initialize AIS
2. Encode user for whom to make prediction as antigen, u
3. while ((AIS not stabilized) & (reviewers available))
 3a. Add next user as an antibody, v
 3b. Calculate matching score r(u,v)
 3c. Calculate matching scores between v and other antibodies
 3d. while ((AIS at full size) & (AIS not stable)
 3dα. iterate AIS

Pseudocode 2. Immune-based creation of neighborhood for a given antigen

The AIS, described by the set of differential equations (7), is considered as stable if after ten
iterations its size does not change. Hence, stabilization means that “good” candidate neighbors
have been identified; typically “poor” neighbors are washed out from the system after a few
iterations. As stated in [4], “we require a set of antibodies that are a close match but which at
the same time distinct from each other for successful recommendation. This is where we
propose to harness the idiotypic effects of binding antibodies to similar antibodies to encourage
diversity”. Particularly, the pool contains antibodies (users) that are both positively and
negatively correlated (in the sense of Pearson r coefficient) with a given antigen; this increases
the diversity of neighboring antibodies.

This description suggests further modification for the AIS. First of all we should experiment
with different definitions of the affinity measure muv (e.g. cosine measure, etc.). Introducing
non-symmetric affinity measure we can also test both suppressive and stimulatory effects of
other antibodies. These last effects are omitted in the equation (7). We can also experiment with
other types of equations used in theoretical immunology.

2.2 Prototypical re-implementation

To get an idea on how the approach works, a re-implementation (in Java environment) of
Cayzer and Aickelin approach was performed. Like in original approach the system collaborates
with SWAMI package.

All the algorithms used during prediction must implement interface Predictor and – obviously
– they must define body of the implemented methods. Classes of all the algorithms are placed in
the package edu.berkeley.swami.predict.

Interface Predictor:
This interface is an element of the SWAMI package; it is a bridge between testing module and
concrete predictor. This interface contains two two basic methods:

 6

- train() – a method called during loading test data.
- predictRating() – basic method used during predictor. It returns prediction for a given

movie.

There are four classes implementing Predictor interface. The first two classes,
PredictByUserAverage and PredictByMovieAverage return values which can be used as
reference values allowing to assess the quality of a given predictor. The former class returns
average value of all scores of an active user, while the later returns average evaluation of a
given movie by all the users. Below we briefly describe two remaining classes

Class SimplePearsonPredictor: This class implements simple predictor in which correlation
between users is defined in terms of Pearson coefficient. It basic methods are:

- computePearson() – computes Pearson score according to the equation (4)
- findNeigbors() – finds k neighbors with highest absolute value of Pearson score.
- didReviewerRateMovie() – checks if the reviewer has evaluated a given movie.
- addToNeigborsOrDont() – decides if a given user shoul be included to the

neighborhood.

Class AisPredictor: This class implements immune-based predictor. Its most important methods
are:

- addIntialNeighbors() – initializes a group of best neighbors of a given user (antibody).
- addOrDontToNeigborhood() – decides if a given user should be added to the neighbors.
- constructNeighborhood() – produces the list of neighbors.
- constructReviewer() – creates instance (object) of Reviewer class by using an identifier

taken from the test set.
- startAisSystem() – runs immune-based prediction algorithm which is placed in the class

AisEngine.

Immune-based recommender implements two interfaces: MatchingFunction and AisConstans.
The main class of this recommender is AisEngine. It is responsible for the interactions between
antibodies and antigen.

Interface AisConstans: It contains only variables (corresponding to the parameters of the
system):

- DEFAULT_OVERLAP_PENALTY – threshold representing minimal value of
overlaping scores nedded to compute Pearson coefficient.

- DEFAULT_KEEP_IN_MEMORY – determines if the test set shoul be kept in memory
or shoul be read from file in each prediction.

- STIMULATION_RATE – stimulation rate (k1 coefficient).
- SUPPRESSION_RATE – suppression rate (k2 coefficient).
- DEATH_RATE – death rate (k3 coefficient).
- MAX_CONCENTRATION – maximal concentration of an antibody (= 100).
- MIN_CONCENTRATION – minimal concentration of an antibody (= 0).
- INITIAL_CONCENTRATION – initial concentration of an antibody (= 10).
- LOW_CONCENTRATION – if the concentration of an antibody is below this threshold

value, the antibody is deleted from the system.
- USE_CONCENTRATION – informs if the concentration value is needed by predictor.
- USE_ABSOLUTE_VALUE – informs if the absolute value of a similarity measure is

needed by predictor.
- NUMBER_OF_ANTIBODIES – maximal number of antibodies in the system.
- AIS_STABILIZATION_VALUE – number of iterations after which stabilization is tested.
- USE_CONCENTRATION_IN_PREDICTION – parametr informuje nas o tym czy

używamy koncentracji danego przeciwciała podczas predykcji.

 7

- TOP_N_RECOMMENDATION_VALUE – number of best top recomendations returned
by the recommender.

- REVIEWERS_SIZE – total size of training and test data.

Class AisEngine: This is engine for all the algorithms which use artificial idiotypic network.
This class implements equation (7). This class is used by the classes AisPredictor,
AisPredictorTest (the immune-based recommender) and AisPredictorFrame (a version of the
recommender with graphical interface). Its basic methods are:

- addAntigen() – adds antigen to the system.
- addAntibody() – adds antibody to the system.
- getAntigen() – gets antigen with a given identifier.
- getAntibody() – gets antibody with a given identifier.
- removeAntigen() – deletes antigen with a given identifier.
- removeAntibody() – deletes antigen with a given identifier.
- isAisAtFullSize() – checks if the size of antibodies included to the system equals the

parameter NUMBER_OF_ANTIBODIES.
- isAisStable() – checks if the system is stable, i.e. if during AIS_STABILIZATION-

_VALUE its size has not changed.
- tryToRemoveLowAntibodies() – removes antibody if its concentration is below

LOW_CONCENTRATION threshold.
- initialise() – initializes AIS: assigns initial concentration to all antibodies and antigen.
- reset() – resets AIS.
- clearAntigens() – removes all antigens from the AIS.
- clearAntibodies() – removes all antibodies from the AIS.
- isMaximumConcentration() – checks if there is antibody with maximal concentration

defined by MAX_CONCENTRATION parameter.
- addAntigenMatches() – computes similarity measures between a given antigen and all

antibodies.
- addAntibodyMatches() – computes similarity measures among all the antibodies.
- iterate() – solves equation (7) and controls all the interactions between antigen and

antibodies and among the anibodies.

Class AisPredictorTest: It is responsible for making prediction. Its basic methods are:

- constructReviewerHideVote() – creates instance of the class Reviewer and hides a given
vote of this user.

- predictionMAE() – computes mean absolute error of prediction according to the
equation MAE = ∑|actual_score – predicted_score|/n, where n is the number of
predictions

- meanAccuracyOfRecomendations() – computes Kendall’s Tau (τ) statistics (consult eq.
(6) in [4]).

- constructOverlappedFilmList() – creates list of movies evaluated both by the active user
and by his neighbors.

- disJointDataSets() – divides dataset into test set and training set.
- getMoviesFromReviewer() – reads all movies evaluated by a given user.
- computeRecall() – computes recall value of the recommendation.
- computePrecision() – computes precision value of the recommendation.

The interface MatchingFunction allows to use any similarity measure (Pearson measure and
Cosine measure in current implementation).

Our preliminary experiments – reported in Annex c) – show that the immune approach is
comparable with other “classical” approaches and results produced by the system are even
slightly better. Our further effort will be focused on experimenting with other than Pearson
match–measures (for example, cosine measure behaves definitely poorly in comparison with
Pearson correlation) and on modification of the dynamics of the equation (*).

 8

3. Plastic clustering
The idea of plastic clustering, proposed in [21] and [22] is closely related to the already
presented application of the idiotypic theory. Plastic clustering was invented to create keyword
map as well as document clusters. The algorithm is as follows:

1. Extract keywords (nouns) from a document set. (In all studies only keywords contained in

more than two documents were extracted)
2. Construct keyword network by connecting the extracted keyword ki to other keywords kj,

or to other documents dj:
 (a) Connection between ki and kj (Dij stands for the number of documents containing both

the keywords):
 Strong connection (SC): Dij ≥ Tk
 Weak connection (WC): 2 < Dij < Tk
 (b) Connection between ki and dj (TFij stands for the term frequency of ki in dj):
 Strong connection (SC): TFij ≥ Td
 Weak connection (WC): 0 < TFij < Td
3. Calculate keywords’ activation values on the constructed network based on the immune

network model
4. Extract the keywords with highest concentration and treat them as landmarks.
5. Generate document clusters according to the landmarks.
 Pseudocode 3. Plastic clustering

Here the keywords are treated as antibodies and documents as antigens. As the immune network
model, so-called B-model has been adopted:

))((b
b
ii

i khfxs
dt
dx

−⋅+= (8a)

 (8b) ∑ ∑+=
j j

j
g
ijj

b
ij

b
i yJxJh

 i
g
ig

i xhkr
dt

dy
⋅−=)((8c)

 (8d) ∑=
j

j
g
ij

g
i xJh

p
hh

h
hf ⋅

+θ
θ

⋅
+θ

=
)()(

)(
2

2

1
 (8e)

Here xi and yi are the concentration values of antibody and antigen, respectively. The s is a
source term modeling a constant cell flux from the bone marrow and r is a reproduction rate of
the antigen; kb and kg are the decay terms of the antibody and antigen, respectively. The Jb

ij and
Jg

ij ∈ {0, WC, SC} indicate the strength of the connectivity between the antibodies i and j, and
that between antibody i and antigen j, respectively. Typical values of these parameters are
given in the table below:

parameter value parameter value
s 10 xi(0) 10
r 0.01 yi(0) 105

kg 10-4 Tk 3
kb 0.4 Td 3
θ1 103 SC 1
θ2 106 WC 10-3

 p 1

 9

References

[1] Bagley, R.J., Farmer, J.D., Kauffman, S.A., Packard, N.H., Perelson, A.S., Stadnyk, I.M.
Modeling adaptive biological systems. BioSystems 23: 113-138, 1989.

[2] Bonabeau, E. A simple model for the statistics of events in idiotypic networks. BioSystems,
39: 25-34, 1996

[3] Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive algorithms for
collaborative filtering. Proc. of the 14th Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann 1998, pp. 43-52

[4] Cayzer, S. Aickelin U. A recommender system based on the immune system. HP
Laboratories, Bristol, HPL-2002-1

[5] Cayzer, S. Aickelin U. A recommender system based on the immune network. Proc.
CEC2002, Honolulu, USA, pp. 807-813

[6] Cayzer, S. Aickelin U. On the effects of idiotypic interactions for recommendation
communities in artificial immune systems. Proc. of the 1st Internat. Conference on Artificial
Immune Systems, ICARIS’2002, University of Kent at Canterbury, 2002, pp. 154-160

[7] Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, McGraw-Hill 1999
[8] De Castro, L.N, Timmis, J. Artificial Immune Systems: A New Computational Intelligence

Approach. Springer-Verlag, London, Berlin, Heidelberg 2002
[9] Farmer, J.D. A Rosetta Stone for connectionism. Physica D, 42: 153-187, 1990

[10] Farmer, J.D., Kauffman, S.A., Packard, N.H., Perelson, A.S. Adaptive dynamic networks as
models of the immune system and autocatalytic set. Ann. of the N.Y. Acad. of Sci., 504:118-
131, 1987

[11] Farmer, J.D., Packard, N.H., Perelson, A.S. The immune system, adaptation, and machine
learning. Physica D, 22:187-204, 1986

[12] Faro, J., Velasco, S. Studies on a recent class of network models of the immune system. J.
theor. Biol., 164: 271-290, 1993

[13] Faro, J., Carneiro, J. Velasco, S. Further studies on the problem of immune network
modelling. J. theor. Biol., 184: 405-421, 1997

[14] Fisher, D. et al. SWAMI: a framework for collaborative filtering algorithm development
and evaluation (available from http://guir.cs.berkeley.edu/projects/swami/).

[15] Hofmeyr, S.A. Introduction to the immune system. In: L.A. Segel, I. Cohen (eds.) Design
Principles for the Immune System and Other Distributed Autonomous Systems, Santa Fe
Institute Studies in the Sciences of Complexity. New York: Oxford University Press 2001

[16] Itaya, S., Uezu, T. Analysis of an immune network dynamical system model with a small
number of degrees of freedom. Progress in Theoretical Physics, 104: 903-924, 2000

[17] Jerne N.J. Idiotypic networks and other preconceived ideas. Immunol. Rev. 79: 5-25,1984
[18] Lord, C.C. An emergent model of immune cognition. MSc Thesis. Information Networking

Institute, Cornegie Mellon University, Pittsburgh, PA, 2003 (available from
http://www.andrew.cmu.edu/user/clord/Portfolio/ Thesis.pdf)

[19] Perelson, A.S., Oster, G.F. The shape space model. J. theor. Biol., 81: 645-670, 1979
[20] Perelson, A., Weisbuch, G. Immunology for physicists. Reviews of Modern Physics, 69:

1219-1265, 1977
[21] Takama, Y. and Hirota, K. Application of immune network model to keyword set

extraction with variety. 6th Int’l Conf. on Soft Computing (IIZUKA2000), pp. 825-830
[22] Takama, Y. and Hirota, K. Web information visualization method employing immune

network model for finding topic stream from document-set sequence. J. of New Generation
Computing, 21: 49-59, 2003

[23] Wierzchoń, S.T. Idiotypic networks as the metaphor for immune algorithms (submitted)

 10

Annex a) Class diagram of the algorithms tested in SWAMI package

 11

Annex b) Class diagram of the immune recommender.

 12

Annex c) Exemplary results for SWAMI package (40% of input data are used)
 Metrics

Type of tested algorithm Number of
votes MAE Variation of

MAE
Weighted

Avg.
Probability

P
Average time
(in seconds)

Averaged
error

5 1.29 0.95 2.61 0.47 0.000 -0.28
20 1.18 0.69 2.08 0.48 0.000 0.14
40 0.94 0.74 1.63 0.40 0.000 -0.45

By User Average

A 0.99 0.51 1.48 0.41 0.000 -0.12
5 1.16 0.66 1.90 0.69 0.414 -0.12

20 0.94 0.62 1.37 0.60 0.197 0.05
40 0.94 0.36 1.19 0.68 0.113 -0.59

Standard
prediction
algorithm

By Movie Average

A 0.98 0.69 1.20 0.60 0.092 -0.17
5 1.15 0.71 2.07 0.61 0.049 0.20

20 0.95 0.50 1.47 0.73 0.077 0.60
40 0.78 0.36 1.06 0.72 0.099 0.17

Pearson
correlation

A 0.90 0.47 1.20 0.62 0.091 0.33
5 1.16 0.68 2.12 0.63 0.006 0.15

20 0.98 0.59 1.62 0.72 0.006 0.52
40 0.76 0.45 1.13 0.64 0.007 0.08

Clustered Pearson
algorithm

A 0.92 0.46 1.23 0.59 0.007 0.24
5 1.16 0.78 2.22 0.63 14.122 0.13

20 1.02 0.52 1.66 0.72 5.861 0.49
40 0.73 0.39 1.09 0.72 3.648 0.09

Advanced
prediction
algorithm

Immune algorithm

A 0.92 0.49 1.28 0.61 3.497 0.22

Ideal prediction algorithm 0 0 0 1 0 0

A – all votes of a user (except the vote for which prediction is performed).
P – probability of correct binary (“good/bad”) prediction of the user vo

 13

 14

The Personal Publication Reader

Fabian Abel1, Robert Baumgartner2,3, Adrian Brooks3, Christian Enzi2,
Georg Gottlob2,3, Nicola Henze1, Marcus Herzog2,3, Matthias Kriesell4,

Wolfgang Nejdl1, and Kai Tomaschewski1

1 Research Center L3S & Information Systems Institute, University of Hannover,
{abel,henze,nejdl,tomaschewski}@kbs.uni-hannover.de

2 DBAI, Institute of Information Systems, Vienna University of Technology
{baumgart,enzi,gottlob,herzog}@dbai.tuwien.ac.at

3 Lixto Software GmbH, Donau-City-Strasse 1/Gate 1, 1220 Vienna, Austria
{baumgartner,brooks,gottlob,herzog}@lixto.com

4 Inst. f. Math. (A), University of Hannover
kriesell@math.uni-hannover.de

Abstract. This application demonstrates how to provide personalized,
syndicated views on distributed web data using Semantic Web technolo-
gies. The application comprises four steps: The information gather-
ing step, in which information from distributed, heterogenous sources
is extracted and enriched with machine-readable semantics, the oper-
ation step for timely and up-to-date extractions, the reasoning step
in which rules reason about the created semantic descriptions and addi-
tional knowledge-bases like ontologies and user profile information, and
the user interface creation step in which the RDF-descriptions re-
sulting from the reasoning step are interpreted and translated into an
appropriate, personalized user interface. We have developed this appli-
cation for solving the following real-world problem: We provide person-
alized, syndicated views on the publications of a large European research
project with more than twenty geographically distributed partners and
embed this information with contextual information on the project, its
working groups, information about the authors, related publications, etc.

keywords: web data extraction, web data syndication, personalized views.

Introduction

In today’s information society, the World Wide Web plays a prominent role for
disseminating and retrieving information: lots of useful information can be found
in the web, from train departure tables to consultation hours, from scientific
data to online auctions, and so on. While this information is already available
for consumption by human users, we lack applications that can collect, evaluate,
combine, and re-evaluate this information. Currently, users retrieve online con-
tent in separate steps, one step for each information request, and evaluate the
information chunks afterwards according to their needs: e.g. the user compares

the train arrival time with the starting time of the meeting he is requested to
participate in, etc. Another common scenario for researchers is that a user reads
some scientific publication, gets curious about the authors, other work of the au-
thors, on related work targeting on similar research questions, etc. Linking these
information chunks together is a task that can currently not be performed by
machines. In our application, we show how to solve this information integration
problem for the latter mentioned “researcher scenario”. We show, how to

1. extract information from distributed and inhomogeneous sites, and create
semantic descriptions of the extracted information chunks,

2. maintain the web data extraction to ensure up-to-date information and se-
mantic descriptions,

3. reason about the created semantic descriptions and additional, ontological
knowledge, and

4. create syndicated, personalized views on web information.

The Personal Publication Reader (PPR) extends the idea of Semantic Portals
like e.g. SEAL [4] or others with the capability of extracting and syndicating
web data from various, distributed sites or portals which do not belong to the
ownership of the application itself.

1 Extraction & Annotation with Semantic Descriptions

In our application, the web pages from which we extract the information are
maintained by partners of the research project REWERSE, thus the sources
of the information are distributed and belong to different owners which pro-
vide their information in various ways and formats (HTML, Java-script, PHP-
generated pages, etc.). Moreover, in each list, authors, titles and other entities
are potentially characterized in a different way, and different order criteria are
enforced (e.g. by year or by name). Such a web presentation is well suited for
human consumption, but hardly usable for automatic processing. Nevertheless,
the web is the most valuable information resource in this scenario. In order to
access and understand these heterogeneous information sources one has to apply
web extraction techniques. The idea of our application is to “wrap” these hetero-
geneous sources into a formal representation based on Semantic Web standards.
In this way, each institution can still maintain their own publication list and at
the same way we can offer an integrated and personalized view on this data by
regularly extracting web data from all member sites.

This application is open in the sense that it can be extended in an easy
way, i.e. by connecting additional web sources. For instance, abstracts from
www.researchindex.com can be queried for each publication lacking this in-
formation and joined to each entry. Moreover, using text categorization tools
one can rate and classify the contents of the abstracts. Another possibility is
to extract organization and person data from the institution’s web pages to in-
form the ontology to which class in the taxonomy an author belongs (such as
full professor). Web extraction and annotation in the PPR is performed by the

Lixto Suite. Web data extraction is a hot topic in both the academic and com-
mercial domain – for an extensive overview of methods and tools refer to [3].
First, with the Lixto Visual Wrapper [1] for each type of web site a so-called
wrapper is created; the application designer visually and semi-automatically de-
fines the characteristics of publication elements on particular web sites based on
characteristics of the particular HTML presentation and some possible domain
knowledge. After a wrapper has been generated it can be applied to a given web
site (e.g. publications of University of Munich) to generate an “XML companion”
that contains the relevant information stored in XML using (in this application
context meaningful) XML tags.

2 Extraction Maintenance

In the next step, in the Lixto Transformation Server application designer visually
composes the information flow from web sources to an RDF presentation that
is handed over to the PPR once a week. Then the application designer defines a
schedule how often which web source is queried and how often the information
flow is executed. Additionally, deep web navigation macros possibly containing
logins, cookies and web forms as well as iteration over forms are created. As a
next step in the data flow, the data is harmonized to fit into a common structure,
and e.g. an attribute “origin” is added containing the institution’s name, and
author names are harmonized by being mapped to a list of names known by
the system. Finally, the XML data structure is mapped to a pre-defined RDF
schema structure. Once the wrappers are in place, the complete application runs
without further human interference, and takes care of publication updates. In
case future extractions fail the application designers will receive a notification.

3 Reasoning for Syndicated & Personalized Views on
Distributed Web Data

In addition to the extracted dynamic information, we maintain data about the
members of the research project from the member’s corner of the REWERSE
project web site. We have constructed an ontology for describing researchers
and their involvement in scientific projects like REWERSE, which extends the
known Semantic Web Research Community Ontology (http://ontobroker.
semanticweb.org/ontos/swrc.html) with some project-specific aspects.

Personalization rules reason about all this dynamic and static data in order
to create syndicated and personalized views. As an example, the following rule
(using the TRIPLE[5] syntax) determines all authors of a publication:

FORALL A, P authors(A, P) <- P[dc:creator -> A]@’http:..’:publications.

In this rule, @’http:..’:publications is the name of the model which
contains the RDF-descriptions of the extracted publication informations. Further
rules combine information on these authors from the researcher ontology with
the author information. E.g. the following rule determines the employer of a

project member, which might be a company, or a university, or, in general, some
instance of a subclass of an organization (see line three below: here, we query
for some subclass (direct or inferred) of the class “Organization”):

FORALL A,I works_at(A, I) <- EXISTS A_id,X (name(A_id,A)

AND ont:A_id[ont:involvedIn -> ont:I]@’http:...#’:researcher

AND ont:X[rdfs:subClassOf -> ont:Organization]@rdfschema(’..’:researcher)

AND ont:I[rdf:type -> ont:X]@’http:...#’:researcher).

Disambiguation of results – here especially resource identification problems
caused by varying author names – is achieved by an additional name identifica-
tion step. For a user with specific interests, for example “interest in personalized
information systems”, information on respective research groups in the project,
on persons working in this field, on their publications, etc., is syndicated.

4 User Interface Provision

We run the PPR within our Personal Reader framework for designing, imple-
menting and maintaining personal Web Content Readers [2]. These personal
Web Content Readers allow a user to browse information (the Reader part),
and to access personal recommendations and contextual information on the cur-
rently regarded web resource (the Personal part). For the PPR, we instantiated
a personalization Web service in our Personal Reader framework which holds the
above mentioned rules. An appropriate visualization Web service for displaying
the results of the reasoning step (which are provided as RDF documents and
refer to an ontology of personalization functionality) has been implemented.

Availability of the Personal Publication Reader

The concept of the Personal Publication Reader and its functionality are sum-
marized in a video, and so are the web data extraction and maintenance tasks.
All demonstration videos and access to the application itself are available via
http://www.personal-reader.de/semwebchallenge/sw-challenge.html.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proc. of VLDB, 2001.

2. N. Henze and M. Kriesell. Personalization Functionality for the Semantic Web:
Architectural Outline and First Sample Implementation. In 1st Int. Workshop on
Engineering the Adaptive Web (EAW 2004), Eindhoven, The Netherlands, 2004.

3. S. Kuhlins and R. Tredwell. Toolkits for generating wrappers. In Net.ObjectDays,
2002.

4. A. Maedche, S. Staab, N. Stojanovice, and R.Studer. Semantic portal - the seal ap-
proach. In D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors, Spinning
the Semantic Web, pages 317–359. MIT-Press, 2003.

5. M. Sintek and S. Decker. TRIPLE - an RDF Query, Inference, and Transformation
Language. In International Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

Reasoning and Ontologies for Personalized E-Learning in
the Semantic Web

Nicola Henze1, Peter Dolog2, and Wolfgang Nejdl1,2

1ISI- Knowledge-Based Systems,

University of Hannover, Appelstr. 4, D-30167 Hannover, Germany

{henze,nejdl}@kbs.uni-hannover.de

2 L3S Research Center,

University of Hannover, Expo Plaza 1, D-30539 Hannover, Germany

{dolog, nejdl}@learninglab.de

Abstract:

The challenge of the semantic web is the provision of distributed information with well
defined meaning, understandable for different parties. Particularly, applications should be able
to provide individually optimized access to information by taking the individual needs and
requirements of the users into account. In this paper we propose a framework for personalized
e-Learning in the semantic web and show how the semantic web resource description formats
can be utilized for automatic generation of hypertext structures from distributed metadata.
Ontologies and metadata for three types of resources (domain, user, and observation) are
investigated. We investigate a logic-based approach to educational hypermedia using
TRIPLE, a rule and query language for the semantic web.

keywords:

Educational hypermedia, Semantic web, Ontologies, Adaptive hypermedia, Reasoning
on the semantic web.

Introduction
The vision of the semantic web is to enable machines to interpret and process information in
the world wide web in order to better support humans in carrying out their various tasks with
the web. Several technologies have been developed for shaping, constructing and developing
the semantic web. Many of the so far developed semantic web technologies provide us with
tools for describing and annotating resources on the web in standardized ways, e.g. with the
Resource Description Framework (RDF [RDF, 2002]) and its binding to XML (eXtensible
Markup Language [XML, 2003]). In this paper we will show how semantic web technologies
and in particular ontologies can be used for building adaptive educational hypermedia
systems. Adaptive educational hypermedia systems are able to adapt various visible aspects of
the hypermedia systems to the individual requirements of the learners and are very promising
tools in the area of e-Learning: Especially in the area of e-Learning it is important to take the
different needs of learners into account in order to propose learning goals, learning paths, help
students in orienting in the e-Learning systems and support them during their learning
progress.

We propose a framework for such adaptive or personalized educational hypermedia systems
for the semantic web. The aim of this approach is to facilitate the development of an adaptive
web as envisioned e.g. in [Brusilovsky and Maybury, 2002]. In particular, we show how rules
can be enabled to reason over distributed information resources in order to dynamically derive
hypertext relations. On the web, information can be found in various resources (e.g.
documents), in annotation of these resources (like RDF-annotations on the documents
themselves), in metadata files (like RDF descriptions), or in ontologies. Based on these
sources of information we can think of functionality allowing us to derive new relations
between information.

Imagine the following situation: You are currently writing e-Learning materials for higher
education. Especially in e-Learning, it is important to overcome the one-size-fits-all approach
and provide learners with individual learning experiences. Learners have different
requirements (like their individual learning style, their actual progress in the learning process,
their individual background knowledge, but also more technical requirements like the device
they are currently using for accessing the E-Learning materials, etc.). The e-Learning system
you would like to use should provide such a personalized delivery of e-Learning materials.
How can you describe instructional material in a way allowing for personalized e-Learning?

In our solution for personalized e-Learning systems we envision personal learning services
capable of interpreting metadata-annotated learning resource, understanding their annotations
with respect to standard ontologies for learning materials like e.g. LOM [LOM, 2002] or IMS
[IMS, 2002]), and also with respect to specific domain ontologies which describe the
particular subject being taught. To enable personalized delivery of the learning resources,
ontologies for describing the learner and observations about the learner's interactions with the
e-Learning system are required to characterize and model a learners current profile.

Each personal learning service possess reasoning rules for some specific adaptation purposes.
These rules query for resources and metadata, and reason over distributed data and metadata
descriptions. A major step for reasoning after having queried user profile, domain ontology
and learning objects is to construct a temporally valid task knowledge base as a base for
applying the adaptation rules. The concluded results of these personal learning services are
described using the presentation format of the open hypermedia standard.

The paper is structured as follows: In the following section, we will compare our approach
with related work. Section 3 describes the representation of resources with semantic web
technologies, and shows our use of a domain, user, and observation ontologies. Section 4
discusses our approach to generate hypertext structures / associations, and an example set of
rules for dynamically generating personalized associations between information. A
comparison of our approach to related work and a conclusion end the paper.

Related Work
To describe and implement personalized e-Learning in the semantic web, there are at least
three related research areas which contribute: open hypermedia, adaptive hypermedia,, and
reasoning for the semantic web. Open hypermedia is an approach to relationship management
and information organization for hypertext-like structure servers. Key features are the
separation of relationships and content, the integration of third party applications, and
advanced hypermedia data models allowing, e.g., the modeling of complex relationships . In
open hypermedia, data models like FOHM (Fundamental Open Hypertext Model) [Millard
et al., 2000] and models for describing link exchange formats like OHIF (Open Hypermedia

Interchange format) [Gronbaek et al., 2000] have been developed. The use of ontologies for
open hypermedia has e.g. been discussed in [Kampa et al., 2001]. Here, an ontology is
employed that clarifies the relations of resources. On base of this ontology, inference rules
can derive new hypertext relations. In [Weal et al., 2001] the open hypermedia structures are
used as an interface to ontology browsing. The links at the user interface are transformed to
queries over ontology. Thus links serves as contexts for particular user.

The question whether conceptual open hypermedia is the semantic web has been discussed in
[Bechhofer et al., 2001]. In [Carr et al., 2001], a metadata space is introduced, where the
openness of systems and their use of metadata is compared. On the metadata dimension (x-
axis), the units are the use of keywords, thesauri, ontologies, and description logic. The y-axis
describes the openness dimension of systems starts from CD ROM / file system, Internet, Web,
and ends with Open systems. Our approach can be seen as employing reasoning capabilities
for Web-resources, or, concrete, to be on the crossings of description logic in the metadata
dimension and Web in the openness dimension.

Adaptive hypermedia has been studied normally in closed worlds, i.e. the underlying
document space / the hypermedia system has been known to the authors of the adaptive
hypermedia system at design time of the system. As a consequence, changes to this document
space can hardly be considered: A change to the document space normally requires the
reorganization of the document space (or at least some of the documents in the document
space). To open up this setting for dynamic document or information spaces, approaches for
so called open corpus adaptive hypermedia systems have been discussed [Brusilovsky,
2001,Henze and Nejdl, 2001]. Our approach to bring adaptive hypermedia techniques to the
web therefore contribute to the open corpus problem in AH. The relation of adaptive
hypermedia and open hypermedia has for example been discussed in [Bailey et al., 2002].

In our approach, we use several ontologies for describing the features of domains, users, and
observations. Compared to the components of adaptive hypermedia systems [Henze and
Nejdl, 2003], an ontology for adaptive functionality is missing. However, such an ontology
can be derived using the "updated taxonomy of adaptive hypermedia technologies" in
[Brusilovsky, 2001]. Reasoning over these distributed ontologies is enabled by the RDF-
querying and transformation language TRIPLE. Related approaches in the area of querying
languages for the semantic web can be found, e.g., in [Bry and Schaffert, 2002]. Here, a rule-
based querying and transformation language for XML is proposed. A discussion of the
interoperability between Logic programs and ontologies (coded in OWL or DAML+OIL) can
be found in [Grosof et al., 2003].

Reasoning in open worlds like the semantic web is not fully explored yet, sharing and reusing
of resources with high quality is still an open problem. In this paper, we discussed first ideas
on the application of rules and rule-based querying and transformation language for the
domains of open hypermedia and adaptive hypermedia.

Representation of Resources
Semantic web technologies like the Resource Description Format (RDF) [Lassila and Swick,
2002] or RDF schema (RDFS) [RDF, 2002] provide us with interesting possibilities. RDF
schemas serve to define vocabularies for metadata records in an RDF file. RDF schemas can
be used to describe resources, e.g. the RDF bindings of Learning Object Metadata
(LOM) [Nilsson, 2001] can be used for these purposes, or RDF bindings of Dublin

Core [Dublin Core, 2004]. There is no restriction on the use of different schemas together in
one RDF file or RDF model. The schema identification comes with attributes being used from
that schema so backward dereferencing is again easily possible.

For example the RDF model of a lecture can use an attribute subject from Dublin Core
Standard together with isPartOf from dublin core metadata terms, etc. Part of an RDF-
description for a course on Java programming can be seen in the following example. We have
annotated the online version of the Sun Java tutorial [Campione and Walrath, 2000], which is
a freely available online tutorial on Java programming.

<?xml version="1.0" encoding="iso-8859-1"?>

<rdf:RDF xml:lang="en"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms#">

<rdf:Description
rdf:about="http://java.sun.com/docs/books/tutorial/index.html">
 <rdf:type rdf:resource="http://ltsc.ieee.org/2002/09/lom-
educational#lecture"/>
 <dc:title>The Java Tutorial (SUN)</dc:title>
 <dc:description>A practical guide for programmers with hundreds of

complete, working examples and dozens of trails - groups of lessons
on a particular subject.

 </dc:description>
...
</rdf:Description>

<rdf:Description rdf:about="Object-Oriented_Programming_Concepts">
 <dc:title>Object-Oriented Programming Concepts</dc:title>
 <dcterms:isPartOf
rdf:resource="http://java.sun.com/docs/books/tutorial/index.html"/>
 <dcterms:hasPart>
 <rdf:Seq>
 <rdf:li rdf:resource="#What_Is_an_Object"/>
 <rdf:li rdf:resource="#What_Is_a_Message" />
 <rdf:li rdf:resource="#What_Is_a_Class"/>
 <rdf:li rdf:resource="#What_Is_Inheritance"/>
 <rdf:li rdf:resource="#What_Is_an_Interface"/>
 <rdf:li
rdf:resource="#How_Do_These_Concepts_Translate_into_Code"/>
 <rdf:li rdf:resource="#Questions_and_Exercises_Object-
Oriented_Concepts"/>
 </rdf:Seq>
 </dcterms:hasPart>
</rdf:Description>

....

<rdf:Description rdf:about="What_Is_an_Object">
 <dc:title>What Is an Object?</dc:title>
 <dc:description>An object is a software bundle of related variables
 and methods. Software objects are often used to model real-world
 objects you find in everyday life. </dc:description>
 <dc:language rdf:resource=
 "http://www.kbs.uni-hannover.de/~henze/lang.rdf#en"/>
 <dc:subject rdf:resource=

 "http://www.kbs.uni-hannover.de/~henze/java.rdf#OO_Objects"/>
 <dcterms:isPartOf rdf:resource="#Object-Oriented_Programming_Concepts"/>
</rdf:Description>

...

</rdf:RDF>

While RDF schema provides a simple ontology language, more powerful ontology languages
which reside on top of RDF and RDF schema are available, too. For example, ontology
languages like DAML+OIL [DAML+OIL, 2001] (the joint initiative of DAML (Darpa Agent
Markup Language) and OIL (Ontology Inference Layer)) provide ontology layers on top of
RDF / XML. Recently, OWL [OWL, 2003] (Web Ontology Language) has been developed,
further enriching RDF.

An open question is how we can combine reasoning mechanisms on these (distributed)
metadata and data resources, in order to generate hypertext presentations, link structures, etc.,
to bring the interoperability ideas from OHS to the WWW. This section will first describe
semantic web tools that we employ in our approach, and then describe some structures for
metadata components which allow us to generate link structures according to user features.

Bringing together Resources and Reasoning

On top of the RDF and ontology-layer, we find the layer of logic in the semantic web tower,
or, more recently, the layers of rules and logic framework [Berners-Lee, 2002]. In our
approach, the communication between reasoning rules and the open information environment
will take place by exchanging RDF annotations: the rules reason over distributed RDF-
annotations, results will be given back as RDF-files, too.

A rule language especially designed for querying and transforming RDF models is TRIPLE
[Sintek and Decker, 2002]. Rules defined in TRIPLE can reason about RDF-annotated
information resources (required translation tools from RDF to triple and vice versa are
provided).

TRIPLE supports namespaces by declaring them in clause-like constructs of the form
namespaceabbrev := namespace, resources can use these namespaces abbreviations.

sun_java := "http://java.sun.com/docs/books/tutorial".

Statements are similar to F-Logic object syntax: An RDF statement (which is a triple) is
written as subject[predicate → object]. Several statements with the same subject
can be abbreviated in the following way:

sun_java:'index.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial].

RDF models are explicitly available in TRIPLE: Statements that are true in a specific model
are written as "@model", e.g.

doc:OO_Class[rdf:type->doc:Concept]@results:simple.

Connectives and quantifiers for building logical formulae from statements are allowed as
usual, i.e. ∧, ∨, ¬, ∀, ∃, etc. For TRIPLE programs in plain ASCII syntax, the symbols AND,
OR, NOT, FORALL, EXISTS, <-, ->, etc. are used. All variables must be introduced via
quantifiers, therefore marking them is not necessary.

Domain Ontologies

First of all we need to determine a domain ontologies. Domain ontologies comprise usually
classes (classifies objects from a domain) and relationships between them. One possible
domain in hypermedia application can be a domain of documents and concepts described in
an application domain.

Figure 1: Ontology of documents

A simple ontology for documents and their relationships to other components is depicted in
fig. 1. The class Document is used to annotate a resource which is a document. Documents
describe some concepts. We use class Concept to annotate concepts. Concepts and documents
are related through dc:subject property. Documents can be ordered by dcterms:requires
relationship. Concepts and documents have a certain role in their collaboration in certain
document. We represent these facts by instances of DocumentRole class and its two
properties: isPlayedIn and isPlayedBy. Concepts, document roles and concept roles can
form hierarchies. We define subRoleOf, subConceptRoleOf, and subConceptOf properties
for these purposes. Concepts play a certain role in a document. We recognize Introduction
and FullDescription concept roles.

Figure 2: Ontology for documents types

Document can have a type. Figure 2 depicts the ontology with several document types for
educational domain. The most general document type is Educational Material.
Educational Material has two subtypes: Course Material and Examination Material.
Examination Material can be further specialized to Project Task, Exam Task, and Exam.
The Exam can consist of the Exam Task-s.

Course Material can be further specialized into Lecture, Example, LectureNote, Course,
Exercise, and Project Assignment.

The document roles represent intended usage of the document in general. When a document is
authored it is already known whether it will be a Lecture, Example and so on and it hardly fits
to another role. Besides document roles, we recognize document types as well. Document
types represent different context of a document. It means that we can differentiate at least
between examination and study material. These are represented as separate document types
StudyMaterial and ExaminationMaterial.

Figure 3 depicts Programming_Strategies concept with its subconcepts: Object_Oriented,
Imperative, Logical, and Functional. OO_Class, OO_Method, OO_Object,
OO_Inheritance, and OO_Interface are depicted as subconcepts of Object_Oriented.

Figure 3: Concept ontology for Java e-lecture

Above described ontologies are used then in annotations of concrete documents/resources. An
example of such resource can be a page describing sun_java:'java/concepts/class.html'.
Following example shows how such a page can be annotated based on ontologies.

sun_java:'java/concepts/class.html'[
rdf:type->doc:Document;
dc:subject->doc:OO_Class].

doc:OO_Class[
rdf:type->doc:Concept;
doc:isPrerequisiteFor->doc:OO_Inheritance;
doc:subConceptOf->doc:Classes_and_objects].

doc:ClassesIntroduction[
rdf:type->doc:ConceptRole;
doc:isPlayedBy->doc:OO_Class;
doc:isPlayedIn->sun_java:'java/concepts/class.html';
doc:hasType->doc:Introduction].

doc:Introduction[
rdf:Type->doc:ConceptRoleType;
doc:subConceptRoleOf->doc:Cover].

The page is a document (RDF type Document). It describes information about classes. Thus it
is annotated with OO_Class concept covered in the page. The OO_Class concept is annotated
with type Concept and is subconcept of the Classes_and_objects concept. The OO_Class
concept is prerequisite for the OO_Inheritance. A page can have prerequisites. Then the
dcterms:requires property can be used in the annotation.

The OO_Class concept plays a role of introduction in the
sun_java:'java/concepts/class.html' document. This is annotated by
ClassesIntroduction resource, which is of type ConceptRole. The reference to OO_Class
concept and the document where it plays the introduction role is annotated by using properties
isPlayedBy and isPlayedIn respectively. The role has type Introduction. The Introduction
is of type ConceptRoleType and is subtype of Cover concept role type.

Users

Data about a user serves for deriving contextual structures. It is used to determine how to
adapt the presentation of hypertext structures. Here we define an ontology for a user profile
based on IEEE Personal and Private Information (PAPI) [IEEE, 2000]. PAPI distinguishes
personal, relations, security, preference, performance, and portfolio information. The
personal category contains information about names, contacts and addresses of a user.
Relations category serves as a category for specifying relationships between users (e.g.
classmate, teacherIs, teacherOf, instructorIs, instructorOf, belongsTo, belongsWith). Security
aims to provide slots for credentials and access rights. Preference indicates the types of
devices and objects, which the user is able to recognize. Performance is for storing
information about measured performance of a user through learning material (i.e. what does a
user know). Portfolio is for accessing previous experience of a user. Each category can be
extended. For more discussion on learner modeling standards see for example [Dolog and
Nejdl, 2003].

Figure 4 depicts an example of an ontology for a learner profile. The ontology is based on
performance category of PAPI. We are storing sentences about a learner which has a
Performance. The Performance is based on learning experience (
learningExperienceIdentifier), which is taken from particular document. The experience
implies a Concept learned from the experience, which is maintained by
learningCompetency property. The Performance is certified by a Certificate, which is
issued by a certain Institution. The Performance has a certain PerformanceValue, which
is in this context defined as a float number and restricted to interval from 0 to 1.

Figure 4: Ontology for learner performance

Another possibility to restrict the PerformanceValue is to define it with a range of LevelOf
Knowledge. Then the instances of the class can be taken as measures of the learner
performance.

The example of simple learner profile can look as follows.

user:user2[
 rdf:type -> learner:Learner;
 learner:hasPerformance -> user:user2P].

user:user2P[
 rdf:type->learner:Performance;
 learner:learningExperienceIdentifier-
>sun_java:'java/concepts/object.html';
 learner:learningCompetency->doc:OO_Object;
 learner:CertifiedBy->KBScerturi:C1X5TZ3;
 learner:PerformanceValue->0.9
].

KBScerturi:C1X5TZ3[
rdf:type->learner:Certificate;
learner:IssuedBy->KBSuri:KBS
].

KBSuri:KBS[
rdf:type->learner:Institution
].

The learner user2 has the performance (user2P) record. The performance contains a learning
experience about the KBS Java objects resource. The concept covered in the resource is stored
in the performance as well. Then a certificate about the performance with performance value
and institution who issued the certificate is recorded into the learner performance as well.

Observations

During runtime, users interact with a hypertext system. The user's interactions can be used to
draw conclusions about possible user interests, about user's goal, user's task, user's
knowledge, etc. These concluded user features can, as described in the previous section, be
used for providing personalized views on hypertexts. An ontology of observations should
therefor provide a structure of information about possible user observations, and - if
applicable - their relations and/or dependencies.

A simple ontology for observations is depicted in fig. 5. The ontology allow us to instantiate
facts that a Learner has interacted with (hasInteraction property) with a particular
Document (isAbout property) via an interaction of a specific type (InteractionType).
The interaction has taken place in a time interval between beginTime and endTime, and has a
certain level (Level) associated, the ObservationLevel. Several events (see next section)
can contribute to an interaction. Example of InteractionTypes are of kind access,
bookmark, annotate, examples for ObservationLevels are that a user has visited a page,
has worked on a project, has solved some exercise, etc.

Figure 5: Ontology for observations

Generating Hypertext Structures
Hypertext structures as described in several works on open hypermedia (see e.g [Millard et al.,
2000]) can be generated from metadata reported in the previous section. We do not store the
hypertext structures on servers as first class entities but we allow to generate such structures
on the fly. In order to generate such hypertext structures we need an ontology for structures.
Then transformation rules can be used to generate instances of that structure.

Presentation Ontology

A presentation ontology is used for describing structure relevant for visualization. Such an
ontology adapted from FOHM [Millard et al., 2000] is depicted in fig. 6.

Figure 6: A part of presentation ontology

The main element of the ontology is the Association. Like in [Millard et al., 2000], the
Association is built from three components: Bindings, RelationType, and
StructuralType (in FOHM they refer to it as Cartesian product of bindings, relation type
and structural type). These three components (classes) are related to association through
hasBindings, hasRelationType, and hasStructuralType properties.

Bindings references a particular Resource on the web (document, another association, etc.),
and Feature-s. A Feature can be a Direction, Shape, etc. Entries for Direction are
depicted in figure 7b, entries for Shape are depicted in the figure 7c.

The RelationType has a Name which is a string. The RelationType also points to the
FeatureSpaces. Entries for the FeatureSpaces are depicted in figure 7a. A
StructuralType is one of stack, link, bag, or sequence of resources.

In addition, Association can have associated events (e.g. click events for processing user
interactions) through hasEvent property, and an annotation (e.g. green/red/yellow icon from
traffic light metaphor technique from adaptive hypermedia) through hasAnnotation
property.

 (a) (b) (c)

Figure 7: Members of Collection of: (a) Feature Spaces, (b) Direction, (c) Shape.

The hasEvent property defines an event which is provided within the document (to be able to
get appropriate observation). Whenever the event is generated observation reasoning rules
assigned to this type of event are triggered. The represents property references a resource,
which is stored in observations about learner, after an event is generated as well.

FOHM introduces context and behavior objects. Filtering and contextual restrictions maintained
by the context objects in FOHM is substituted by more richer reasoning language and rules in
our approach. On the other hand, interactions and observations together with events substitute
the notion of behavior objects.

Reasoning Rules

In this chapter we show how rules are employed to reason over distributed information
sources (ontologies, user profile information, resource descriptions). The communication
between reasoning rules and the open information environment will take place by exchanging
RDF annotations [RDF, 2002]. Rules are encoded in the TRIPLE rule language (see section
3.1). For further examples on adaptation rules we refer the reader to [Dolog et al., 2003].

In the following, we provide a set of rules that can be used to construct an example-relation
between resources. Assume a user U is visiting some page D. An example, illustrating the
content of this page, can be found by comparing the concepts explained on the current page
with the concepts shown on an example page. Several grades of how good an example is can
be derived.

The easiest way for deriving an example-relation to a page D is by ensuring that each concept
on D is covered by the example E:

FORALL D, E example(D,E) <-
 studyMaterial(D) AND example(E) AND
 EXISTS C1 (D[dc:subject->C1]) AND
 FORALL C2 (D[dc:subject->C2] -> E[dc:subject->C2]).

The second line in the rule above ensures that D is StudyMaterial and E is an Example
(according to the ontology of documents "docs"). The third rule is verifying that D really is
about some measurable concept - thus there exists a metadata annotation like dc:subject.

The fourth line then really expresses what our rule should check: Whether each concept on D
will be explained in the example E.

Another possibility is to provide relations to examples that cover exactly the same concepts as
a page D:

FORALL D, E exact_example(D,E) <-
 studyMaterial(D) AND example(E) AND
 EXISTS C1 (D[dc:subject->C1]) AND
 FORALL C1 (D[dc:subject->C1] -> E[dc:subject->C1]) AND
 FORALL C2 (E[dc:subject->C2] -> D[dc:subject->C2]).

The second and third line in this rule are the same as in the previous rule. The fourth and fifth
line ensure that each concept on D is covered on E and vice versa.

If we want to show examples which might illustrate only some aspects of a page D, we can
derive relations to weaker examples by

FORALL D, E weaker_example(D,E) <-
 studyMaterial(D) AND example(E) AND
 EXISTS C (D[dc:subject->C] AND E[dc:subject->C]).

which is be valid whenever at least on concept explained on D is part of the example E.

From the area of adaptive hypermedia, several methods and techniques have been provided to
adapt the navigation and / or the content of a hyperspace to the needs, preferences, goals, etc.
of each individual user. In [Henze and Nejdl, 2003] we have provided a logical characterization
of adaptive educational hypermedia based on First Order Logic (FOL). There, an adaptive
educational hypermedia system is described in FOL as a quadruple consisting of a document
space - a hypermedia system which document nodes and their relations, a user model for
modeling and inferencing on various individual characteristics of a user, an observation
component which is responsible for monitoring a user's interaction with the system, and an
adaptation component which consists of rules which describe adaptive functionality. A way to
implement open adaptive hypermedia system is shown in [Dolog et al., 2003]. In this paper, we
will use adaptive hypermedia to provide personalized associations. We can think of a
personalized pedagogical recommendation of examples: The best example is an example that
shows the new things to learn in context of already known / learned concepts: This would
embed the concepts to learn in the previous learning experience of a user. The rule for derive
this best_example is as follows:

FORALL D, E, U best_example(D,E,U) <-
 studyMaterial(D) AND example(E) AND user(U) AND example(D,E) AND
 FORALL C ((E[dc:subject->C] AND NOT D[dc:subject->C]) ->
 p_obs(C, U, Learned)).

The rule for determining whether a user has learned some concept C (p_obs(C, U,
Learned) is derived by checking the characteristics of the user profile. A concept is assumed
to be learned if we find a Performance of this user via the user profile, which is related to the
concept in question.

FORALL C, U p_obs(C, U, Learned) <- user(U) AND concept(C) AND
 EXISTS P (U[learner:hasPerformance->P] AND user_performance(P) AND
 P[learner:learningCompetency->C]).

The results of these rules (on the RDF-annotated and to triple translated resources provided in
the Appendix) is e.g. that a page on "objects in Java (object.html)" can be related to pages
which show "concepts of object orientation in Java (practical.html)" or "objects and methods
in Java (objects_methods.html)". These relations are derived by using the general "example"-
rule:

D = sun_java:'java/concepts/object.html', E =
sun_java:'java/concepts/practical.html'
D = sun_java:'java/concepts/object.html', E =
kbs_java:'java_script/examples/objects_methods.html'

The "exact_example-rule" from above derives for this data set that only the "overview on
object-orientation in Java (OO_overview.html)" has an exact matching example.

D = kbs_java:'java_script/concepts/OO_overview.html',
E = sun_java:'java/concepts/practical.html'

The "weaker_example-rule" suggest the same example page (practical.html) which exactly
fits to the document OO_overview.html also to pages about only some aspects like "methods
in Java (message.html).

D = sun_java:'java/concepts/message.html',
E = sun_java:'java/concepts/practical.html'

The "best_example" for a user who is currently visiting a page on "methods in Java
(message.html)" and who has already knowledge about "objects in java" is an example
illustrating these two concepts (object_methods.html). In the data set provided in the
appendix, user2 is currently in this position.

D = sun_java:'java/concepts/message.html',
E = kbs_java:'java_script/examples/objects_methods.html',
U = user:user2

Further rules for generating personalized hypertext associations can be used by more
extensive use of facts from domain, user, and observation ontology. E.g. the mentioned
subConceptOf relationship in the concept-ontology of the java application domain can be for
example utilized to recommend either more general documents introducing a concept of
programming strategies in general, or to recommend more specific documents (resources)
about object oriented programming strategy based on requirements, level of knowledge, or
interest of a user.

Sequencing relationship is another relationship which can be used to recommend documents.
A document (resource) which describes a concept (the concept appears in dc:subject slot in
metadata about the document) from the beginning of the sequence will be recommended
sooner than a document which describes a concept from the end of such a sequence.

A dependency relationship referring to whether a concept depends on another concept can be
used as well. It can be used to recommend documents which describe dependent concepts
together with a document describing a concept which was recommended by another rule.

Conclusion and Further Work
In this paper, we have proposed an approach for dynamically generating personalized
hypertext relations powered by reasoning mechanisms over distributed RDF annotations. We
have shown an example set of reasoning rules that decide for personalized relations to
example pages given some page. Several ontologies have been used which correspond to the
components of an adaptive hypermedia system: a domain ontology (describing the document
space, the relations of documents, and concepts covered in the domain of this document
space), a user ontology (describing learner characteristics), and an observation ontology
(modeling different possible interactions of a user with the hypertext). For generating
hypertext structures, a presentation ontology has been introduced. We have been developing a
demonstrator system showing the realization of the formalizm we presented in this paper.
This demonstrator, the Personal Reader [Dolog et al., 2004a], generates a personalized conceptual
context of learning resources. This context is generated by using adapation rules like those
presented in this paper, and integrates this technology with a personalized search facility
[Dolog et al., 2004b].

In further work, we plan to extend our demonstrator, and to investigate how to employ further
ontologies like an ontology for educational models. This will enable us to add additional rules
to enhance adaptive functionality based on the facts modeled in the knowledge-base by
utilizing additional relationships.

Bibliography

[Bailey et al., 2002] Bailey, C., Hall, W., Millard, D., and Weal, M. (2002).
Towards open adaptive hypermedia. In Proccedings of the 2nd International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2002), Malaga, Spain.

[Bechhofer et al., 2001] Bechhofer, S., Carr, L., Goble, C., and Hall, W. (2001). Conceptual
open hypermedia = the semantic web? In Second International Workshop on the Semantic
Web, Hong Kong, China.

[Berners-Lee, 2002] Berners-Lee, T. (2002). The semantic web - mit/lcs seminar.
http://www.w3c.org/2002/Talks/09-lcs-sweb-tbl/.

[Brusilovsky, 2001] Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-
Adapted Interaction, 11(1-2):87-100.

[Brusilovsky and Maybury, 2002] rusilovsky, P. and Maybury, M. (2002). The Adaptive Web.
Communications of the ACM.

[Bry and Schaffert, 2002] Bry, F. and Schaffert, S. (2002). A gentle introduction into xcerpt, a
rule-based query and transformation language for xml.
In International Workshop on Rule Markup Languages for Buisiness Rules on the Semantic
Web, Sardinia, Italy.

[Campione and Walrath, 2000] Campione, M. and Walrath, K. (2000). The Java(TM)
Tutorial: A Short Course on the Basics (3rd Edition). Addison-Wesley.

[Carr et al., 2001] Carr, L., Bechhofer, S., Goble, C., and Hall, W. (2001). Conceptual linking:
Ontology-based open hypermedia. In Proceedings of the Tenth International World Wide Web
Conference, Hongkong.

[DAML+OIL, 2001] DAML+OIL (2001). DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index.html.

[Dolog et al., 2003] Dolog, P., Henze, N., Nejdl, W., and Sintek, M. (2003). Towards an
adaptive semantic web. In Principles and Practive of Semantic Web Reasoning (PPSWR'03),
Mumbay, India.

[Dolog et al., 2004a] Dolog, P., Henze, N., Nejdl, W., and Sintek, M. (2004a). The personal
reader: Personalizing and enriching learning resources using semantic web technologies.
Technical report, Univ. of Hannover. submitted for publication.

[Dolog et al., 2004b] Dolog, P., Henze, N., Nejdl, W., and Sintek, M. (2004b).
Personalization in distributed e-learning environments. In International World Wide Web
Conference, New York, USA.

[Dolog and Nejdl, 2003] Dolog, P. and Nejdl, W. (2003). Challenges and benefits of the
semantic web for user modelling. In International Workshop on Adaptive Hypermedia and
Adaptive Web-based Systems (AH 2003), Budapest, Hungary.

[Dublin Core, 2004] Dublin Core (2004).
Dublin Core. http://dublincore.org/.

[Gronbaek et al., 2000] Gronbaek, K., Sloth, L., and Bouvin, N. O. (2000). Open hypermedia
as user controlled meta data for the web. In Ninth International World Wide Web Conference,
pages 554-566, Amsterdam, The Netherlands.

[Grosof et al., 2003] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description
logic programs: Combining logic programs with description logic. In Twelth International
World Wide Web Conference, Budapest, Hungary.

[Henze and Nejdl, 2001] Henze, N. and Nejdl, W. (2001). Adaptation in open corpus
hypermedia. IJAIED Special Issue on Adaptive and Intelligent Web-Based Systems, 12.

[Henze and Nejdl, 2003] Henze, N. and Nejdl, W. (2003). Logically characterizing adaptive
educational hypermedia systems. In International Workshop on Adaptive Hypermedia and
Adaptive Web-based Systems (AH 2003), Budapest, Hungary.

[IEEE, 2000] IEEE (2000). IEEE P1484.2/D7, 2000-11-28. draft standard for learning
technology. public and private information (papi) for learners (papi learner).
Available at: http://ltsc.ieee.org/wg2/. Accessed on October 25, 2002.

[IMS, 2002] IMS (2002). IMS: Standard for Learning Objects. http://www.imsglobal.org/.

[Kampa et al., 2001] Kampa, S., Miles-Board, T., Carr, L., and Hall, W. (2001). Linking with
meaning: Ontological hypertext for scholars. Technical report, University of Southampton.
citeseer.nj.nec.com/kampa01linking.html.

[Lassila and Swick, 2002] Lassila, O. and Swick, R. (2002).
W3c resource description framework (rdf) model and syntax specification. Available at:
http://www.w3.org/TR/REC-rdfsyntax/. Accessed on October 25, 2002.

[LOM, 2002] LOM (2002). LOM: Draft Standard for Learning Object Metadata.
http://ltsc.ieee.org/wg12/index.html.

[Millard et al., 2000] Millard, D. E., Moreau, L., Davis, H. C., and Reich, S. (2000).
FOHM: a fundamental open hypertext model for investigating interoperability between
hypertext domains. In 11th ACM Conference on Hypertext and Hypermedia, pages 93-102,
San Antonio, Texas, USA.

[Nilsson, 2001] Nilsson, M. (2001). Ims metadata rdf binding guide.
http://kmr.nada.kth.se/el/ims/metadata.html.

[OWL, 2003] OWL (2003). OWL. http://www.w3.org/2001/sw/WebOnt/.

[RDF, 2002] RDF (2002). Resource Description Framework (RDF) Schema Specification 1.0.
http://www.w3.org/TR/rdf-schema.

[Sintek and Decker, 2002] Sintek, M. and Decker, S. (2002).
Triple - an rdf query, inference, and transformation language. In Horrocks, I. and Hendler, J.,
editors, International Semantic Web Conference (ISWC), pages 364-378, Sardinia, Italy.
LNCS 2342.

[Weal et al., 2001] Weal, M. J., Hughes, G. V., Millard, D. E., and Moreau, L. (2001).
Open hypermedia as a navigational interface to ontological information spaces. In
Proceedings of the twelfth ACM conference on Hypertext and Hypermedia, pages 227-236.
ACM Press.

[XML, 2003] XML (2003). XML: extensible Markup Language. http://www.w3.org/XML/.

Appendix: Set of Rules for Deriving Relations between
Information Pages and Examples
daml := "http://www.daml.org/.../daml+oil#".
rdf := "http://www.w3.org/1999/02/22-rdf-syntax-ns#".
doc := "http://www.example.org/doc#".

results := "http://www.results.org/results#".
sun_java := "http://java.sun.com/docs/books/tutorial/".
kbs_java := "http://www.kbs.uni-hannover.de/".
java := "http://www.kbs.uni-hannover.de/~henze/java.rdf#".

@results:data{
sun_java:'index.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial].
sun_java:'java/index.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial].
sun_java:'java/concepts/index.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial].
sun_java:'java/concepts/object.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial;
 dc:subject->java:'OO_Object'].
sun_java:'java/concepts/message.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial;
 dc:subject->java:'OO_Method'].
sun_java:'java/concepts/class.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial;
 dc:subject->java:'OO_Class'].
sun_java:'java/concepts/inheritance.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial;
 dc:subject->java:'OO_Inheritance'].
sun_java:'java/concepts/interface.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial;
 dc:subject->java:'OO_Interface'].
sun_java:'java/concepts/practical.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:Example;
 dc:subject->java:'OO_Object';
 dc:subject->java:'OO_Method';
 dc:subject->java:'OO_Class';
 dc:subject->java:'OO_Inheritance';
 dc:subject->java:'OO_Interface'].

kbs_java:'java_script/examples/objects_methods.html'[rdf:type-
>doc:Document;
 doc:hasDocumentType->doc:Example;
 dc:subject->java:'OO_Object';
 dc:subject->java:'OO_Method'].
kbs_java:'java_script/concepts/OO_overview.html'[rdf:type->doc:Document;
 doc:hasDocumentType->doc:StudyMaterial;
 dc:subject->java:'OO_Object';
 dc:subject->java:'OO_Method';
 dc:subject->java:'OO_Class';
 dc:subject->java:'OO_Inheritance';
 dc:subject->java:'OO_Interface'].

java:'OO_Object'[rdf:type->doc:Concept;
 doc:isPrerequisiteFor->java:'OO_Method'].

java:'OO_Method'[rdf:type->doc:Concept;
 doc:isPrerequisiteFor->java:'OO_Class'].

java:'OO_Class'[rdf:type->doc:Concept;
 doc:isPrerequisiteFor->java:'OO_Inheritance'].

java:'OO_Inheritance'[rdf:type->doc:Concept;
 doc:isPrerequisiteFor->java:'OO_Interface'].

user:user1[
 rdf:type -> learner:Learner;
 learner:hasPerformance -> user:user1P].

user:user1P[
 rdf:type->learner:Performance].

user:user2[
 rdf:type -> learner:Learner;
 learner:hasPerformance -> user:user2P].

user:user2P[
 rdf:type->learner:Performance;
 learner:learningCompetency -> java:'OO_Object'].
}

@results:simple{

 FORALL O,P,V O[P->V] <-
 O[P->V]@results:data.

 FORALL D document(D) <- D[rdf:type->doc:Document].
 FORALL C concept(C) <- C[rdf:type->doc:Concept].
 FORALL U user(U) <- U[rdf:type->learner:Learner].
 FORALL P user_performance(P) <- P[rdf:type->learner:Performance].
 FORALL E example(E) <- document(E) AND
 E[doc:hasDocumentType->doc:Example].
 FORALL E studyMaterial(E) <- document(E) AND
 E[doc:hasDocumentType->doc:StudyMaterial].

 FORALL C, U p_obs(C, U, Learned) <- user(U) AND concept(C) AND
 EXISTS P (U[learner:hasPerformance->P] AND user_performance(P) AND
 P[learner:learningCompetency->C]).

 FORALL D, E example(D,E) <-
 studyMaterial(D) AND example(E) AND
 EXISTS C1 (D[dc:subject->C1]) AND
 FORALL C2 (D[dc:subject->C2] -> E[dc:subject->C2]).

 FORALL D, E exact_example(D,E) <-
 studyMaterial(D) AND example(E) AND
 EXISTS C1 (D[dc:subject->C1]) AND
 FORALL C1 (D[dc:subject->C1] -> E[dc:subject->C1]) AND
 FORALL C2 (E[dc:subject->C2] -> D[dc:subject->C2]).

 FORALL D, E weaker_example(D,E) <-
 studyMaterial(D) AND example(E) AND
 EXISTS C (D[dc:subject->C] AND E[dc:subject->C]).

 FORALL D, E, U best_example(D,E,U) <-
 studyMaterial(D) AND example(E) AND user(U) AND example(D,E) AND
 FORALL C ((E[dc:subject->C] AND NOT D[dc:subject->C]) ->
 p_obs(C, U, Learned)).

}

/* Several Views */
FORALL D, E <- example(D, E)@results:simple.
FORALL D, E <- exact_example(D, E)@results:simple.
FORALL D, E <- weaker_example(D, E)@results:simple.
FORALL D, E, U <- best_example(D, E, U)@results:simple.

	Executive Summary
	Reasoning Methods for Personalization in the Semantic Web
	Overview on ``Reasoning Methods for Personalization in the Semantic Web''
	Personalization: From the World Wide Web to the Semantic Web

	Personalization Techniques
	Planning and Reasoning about Actions
	Adaptive Hypermedia Approach to Personalization
	Rule-based User Modeling: Application to e-Learning domain

	Conclusion
	Acknowledgment
	Appendix

