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model semantics of the extended framework (Extended RDF) is defined, extending RDF(S) se-
mantics. A distinctive feature of our theory, which is based on partial logic, is that both truth
and falsity extensions of properties and classes are considered, allowing for truth value gaps.
Our framework supports both closed-world and open-world reasoning through the explicit rep-
resentation of the particular closed-world assumptions and the ERDF ontological categories of
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Abstract. Ontologies and automated reasoning are the building blocks
of the Semantic Web initiative. Derivation rules can be included in an
ontology to define derived concepts based on base concepts. For exam-
ple, rules allow to define the extension of a class or property based on
a complex relation between the extensions of the same or other classes
and properties. On the other hand, the inclusion of negative information
both in the form of negation-as-failure and explicit negative information
is also needed to enable various forms of reasoning. In this paper, we
extend RDF graphs with weak and strong negation, as well as deriva-
tion rules. The ERDF stable model semantics of the extended framework
(Extended RDF) is defined, extending RDF(S) semantics. A distinctive
feature of our theory, which is based on partial logic, is that both truth
and falsity extensions of properties and classes are considered, allowing
for truth value gaps. Our framework supports both closed-world and
open-world reasoning through the explicit representation of the partic-
ular closed-world assumptions and the ERDF ontological categories of
total properties and total classes.
Keywords: Extended RDF ontologies, negation, rules, semantics.

1 Introduction

The idea of the Semantic Web is to describe the meaning of web data in a way
suitable for automated reasoning. This means that descriptive data (meta-data)
in machine readable form are to be stored on the web and used for reasoning.
Due to its distributed and world-wide nature, the Web creates new problems for
knowledge representation research. In [7], the following fundamental theoretical
problems have been identified: negation and contradictions, open-world versus
closed-world assumptions, and rule systems for the Semantic Web. For the time
being, the first two issues have been circumvented by discarding the facilities to
introduce them, namely negation and closed-world assumptions. Though the web
ontology language OWL [29], which is based on description logic (DL), includes a
form of classical negation through class complements, this form is limited. This
is because, to achieve decidability, classes are formed based on specific class
constructors and negation on properties is not considered. Rules constitute the



next layer over the ontology languages of the Semantic Web and, in contrast to
DL, allow arbitrary interaction of variables in the body of the rules. The widely
recognized need of having rules in the Semantic Web [22, 34] has restarted the
discussion of the fundamentals of closed-world reasoning and the appropriate
mechanisms to implement it in rule systems, such as the computational concept
of negation-as-failure.

The RDF(S)5 recommendation [18] provides the basic constructs for defining
web ontologies and a solid ground to discuss the above issues. RDF(S) is a special
predicate logical language that is restricted to existentially quantified conjunc-
tions of atomic formulas, involving binary predicates only. Due to its purpose,
RDF(S) has a number of special features that distinguish it from traditional
logic languages:
1. It uses a special jargon, where the things of the universe of discourse are

called resources, types are called classes, and binary predicates are called
properties. Like binary relations in set theory, properties have a domain and
a range. Resources are classified with the help of the property rdf :type (for
stating that a resource is of type c, where c is a class).

2. It distinguishes a special sort of resources, called literal values, which are
denotations of lexical strings.

3. Properties are resources, that is, properties are also elements of the universe
of discourse. Consequently, it is possible to state properties of properties, i.e.
make statements about predicates.

4. All resources, except anonymous ones and literal values, are named with the
help of a globally unique reference schema, called Uniform Resource Identifier
(URI), that has been developed for the Web.

5. RDF(S) comes with a non-standard model-theoretic semantics developed by
Pat Hayes on the basis of an idea of Christopher Menzel, which allows self-
application without violating the axiom of foundation. An example of this
is the provable sentence stating that rdfs:Class, the class of all classes, is an
instance of itself.

The predefined vocabulary of RDF comes in two layers:

1. The basic RDF layer, which includes the terms rdf :type and rdf :Property.
2. The RDF Schema (RDFS) layer, which includes the terms: rdfs:Resource,

rdfs:Literal, rdfs:Class, rdfs:Datatype, rdfs:domain, rdfs:range,
rdfs:subClassOf , and rdfs:subPropertyOf .

However, RDF(S) does not support negation and rules. In [39], it was ar-
gued that a database, as a knowledge representation system, needs two kinds of
negation, namely weak negation ∼ (expressing negation-as-failure or non-truth)
and strong negation ¬ (expressing explicit negative information or falsity) to
be able to deal with partial information. In [40], this point was made for the
Semantic Web as a framework for knowledge representation in general. In the
present paper we make the same point for the Semantic Web language RDF and
show how it can be extended to accommodate the two negations of partial logic
[19], as well as derivation rules. We call the extended language Extended RDF
and denote it by ERDF . The model-theoretic semantics of ERDF, called ERDF
stable model semantics, is developed based on partial logic [19].
5 RDF(S) stands for Resource Description Framework (Schema).
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In partial logic, relating strong and weak negation at the interpretation level
allows to distinguish four categories of properties and classes. Partial properties
are properties p that may have truth-value gaps and truth-value clashes, that is
p(x, y) is possibly neither true nor false, or both true and false. Total properties
are properties p that satisfy totalness, that is p(x, y) is true or false (but pos-
sibly both). Coherent properties are properties p that satisfy coherence, that is
p(x, y) cannot be both true and false. Classical properties are total and coherent
properties. For classical properties p, the classical logic law applies: p(x, y) is
either true or false. Partial, total, coherent, and classical classes c are defined
similarly, by replacing p(x, y) by rdf :type(x, c).

Partial logic allows also to distinguish between predicates (i.e. classes and
properties) that are completely represented in a knowledge base and those that
are not. The classification if a predicate is completely represented or not is up
to the owner of the knowledge base: the owner must know for which predicates
there is complete information and for which there is not. Clearly, in the case of
a completely represented (closed) predicate p, non-truth (as shown by negation-
as-failure) implies falsity, and the underlying completeness declaration has also
been called Closed-World Assumption (CWA) in the AI literature. Semantically,
a completeness declaration for a predicate p implies that p is total and, hence,
the class of closed predicates is a subclass of the class of total predicates.

However, in this paper we do not consider completeness declarations, but a
somewhat weaker variant, which takes the form of default rules and which we
call completeness assumptions. Such a completeness assumption for closing a
partial property p by default may be expressed in ERDF by means of the rule
¬p(?x, ?y) ← ∼p(?x, ?y) and for a partial class c, by means of ¬rdf :type(?x, c) ←
∼rdf :type(?x, c)). In the case of a total predicate p, such a default rule is not
applicable because the implicit LEM-disjunctions p(c) ∨ ¬p(c) prevent the pref-
erential entailment of ∼p(c). That is, in the case of such open total (and also
in the case of open partial) predicates, explicit negative information has to be
supplied along with ordinary (positive) information for allowing to infer negated
statements.

Unfortunately, neither classical logic nor Prolog supports this distinction
between closed and open predicates. Classical logic supports only open-world
reasoning. On the contrary, Prolog supports only closed-world reasoning, as
negation-as-failure is the only negation mechanism supported. For arguments
in favor of the combination of closed and open world reasoning in the same
framework, see [3].

Specifically, in this paper:

1. We extend RDF graphs to ERDF graphs with the inclusion of strong nega-
tion, and then to ERDF ontologies (or ERDF knowledge bases) with the
inclusion of general derivation rules. ERDF graphs allow to express existen-
tial positive and negative information, whereas general derivation rules allow
inferences based on formulas built using the connectives ∼, ¬, ⊃, ∧, ∨ and
the quantifiers ∀, ∃.

2. We extend the vocabulary of RDF(S) with the terms erdf :TotalProperty
and erdf :TotalClass, representing metaclasses of total properties and total
classes, on which the open-world assumption applies.

3. We extend RDFS interpretations to ERDF interpretations including both
truth and falsity extensions for properties and classes. Then, we define co-
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herent ERDF interpretations by imposing coherence on all properties. In the
developed model-theoretic semantics of ERDF, we consider only coherent
ERDF interpretations. Thus, total properties and classes become synony-
mous to classical properties and classes.

4. We extend RDF graphs to ERDF formulas that are built from positive triples
using the connectives ∼, ¬, ⊃, ∧, ∨ and the quantifiers ∀, ∃. Then, we define
ERDF entailment between two ERDF formulas, extending RDFS entailment
between RDF graphs.

5. We define the ERDF models, Herbrand interpretations, minimal Herbrand
models, and stable models of ERDF ontologies. We show that stable model
entailment on ERDF ontologies extends ERDF entailment on ERDF graphs,
and thus it also extends RDFS entailment on RDF graphs.

6. We show that if all properties are total, classical (boolean) Herbrand model
reasoning and stable model reasoning coincide. In this case, we make an
open-world assumption for all properties and classes.

A distinctive feature of the developed semantics with respect to [19] is that
properties and classes are declared as total on a selective basis, by extending
RDF(S) with new built-in classes and providing support for the respective on-
tological categories. In contrast, in [19], the choice of partial or total should be
taken for the complete set of predicates. Thus, the approach presented here is,
in this respect, more flexible and general.

The rest of the paper is organized as follows: In Section 2, we present the
truth tables of partial logic for weak and strong negation. In Section 3, we
extend RDF graphs to ERDF graphs and ERDF formulas. Section 4 defines
ERDF interpretations and ERDF entailment. We show that ERDF entailment
extends RDFS entailment. In Section 5, we define ERDF ontologies and the
Herbrand models of an ERDF ontology. In Section 6, we define the stable models
of an ERDF ontology and show that stable model entailment extends RDFS
entailment. Section 7 shows that the developed ERDF model theory can be seen
as a Tarski-style model theory. Section 8 reviews related work and Section 9
concludes the paper, including future work. The main definitions of RDF(S)
semantics are reviewed in Appendix A. Appendix B includes the proofs of the
Propositions, presented in the paper.

2 Partial logic semantics for weak and strong negation

In natural language, there are (at least) two kinds of negation: a weak negation
expressing non-truth (in the sense of “she doesn’t like snow” or “he doesn’t
trust you”), and a strong negation expressing explicit falsity (in the sense of
“she dislikes snow” or “he distrusts you”). Notice that the classical logic law of
the excluded middle holds only for the weak negation (either “she likes snow” or
“she doesn’t like snow”), but not for the strong negation: it does not hold that
“he trusts you” or “he distrusts you”; he may be neutral and neither trust nor
distrust you.

A number of knowledge representation formalisms and systems (see, e.g.,
[17, 39, 25, 1, 35, 9]) follow this distinction between weak and strong negation
in natural language. However, many of them do not come with a Tarski-style
model-theoretic semantics.
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Classical (two-valued) logic cannot account for two kinds of negation because
two-valued (Boolean) truth functions do not allow to define more than one nega-
tion. The simplest generalization of classical logic that is able to account for two
kinds of negation is partial logic [19], which gives up the classical bivalence prin-
ciple, that is that a statement is either true or false. Partial logic supports two
kinds of negation, namely weak negation (∼), expressing non-truth, and strong
negation (¬), expressing falsity, based on the notion of partial interpretation.
Specifically, let I be a partial interpretation. A literal6 of a partial predicate is
(a) true according to I if I satisfies L (I |= L), (b) not-true if I doesn’t satisfy
L (I 6|= L), (c) false if I satisfies ¬L (I |= ¬L), and (d) undefined or unknown
if L is neither true nor false. Note that a not-true literal is either false or
undefined.

In partial logic, it holds I |= ∼L iff I 6|= L. Additionally, the double negation
forms ¬¬L and ¬ ∼ L collapse to L, while the double negation form ∼ ¬L does
not collapse: not disliking snow does not amount to liking snow.

Literals of partial predicates are either true or not-true. However, a not-true
literal of a partial predicate is not necessarily false. Moreover, a literal can be
both true and false, allowing for inconsistencies. Thus, in the general case, weak
and strong negation are unrelated, as it is shown in the following satisfaction
table for partial predicates (c̄ denotes a sequence of constants c1, ..., cn, where
n is the degree of predicate p). Note that if ∼p(c̄) is satisfied by a partial inter-
pretation I then ¬p(c̄) might be satisfied or not. Similar is the case if ∼p(c̄) is
not satisfied by a partial interpretation I. The truth table for partial predicates
is also given below. In the truth table, t indicates that the literal is true but
not false, f indicates that the literal is false but not true, u indicates that
the literal is undefined, and b indicates that the literal is both true and false,
according to a partial interpretation I.

Satisfaction Table
partial predicates

p(c̄) ∼p(c̄) ¬p(c̄)

satisfies doesn’t satisfy any

doesn’t satisfy satisfies any

Truth Table
partial predicates

p(c̄) ∼p(c̄) ¬p(c̄)

t f f

f t t

u t u

b f b

Relating weak and strong negation results in special classes of predicates,
namely total, coherent, and classical. Total predicates are partial predicates,
for which non-truth implies falsity. Thus, an atom of a total predicate is true
or false (but possibly both). Specifically, interpretations of a total predicate p
should satisfy the axiom p(x̄)∨¬p(x̄) or, equivalently, the axiom ∼p(x̄) ⊃ ¬p(x̄)
(totalness). The satisfaction and truth tables for total predicates (according to
a partial interpretation I) are modified as follows:

6 A literal is an atom, the weak negation of an atom, or the strong negation of an
atom.
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Satisfaction Table
total predicates

p(c̄) ∼p(c̄) ¬p(c̄)

satisfies doesn’t satisfy any

doesn’t satisfy satisfies satisfies

Truth Table
total predicates

p(c̄) ∼p(c̄) ¬p(c̄)

t f f

f t t

b f b

Note that the truth table for total predicates is a subset of the truth table
for partial predicates, as a literal of a total predicate can never be undefined.
For example, in the case of a total predicate, such as authorOf, we have the
relationship that weak negation implies strong negation:

if I |= ∼authorOf(John, “Logic”) then I |= ¬authorOf(John, “Logic”),
and equivalently,

if I |= ∼ ¬authorOf(John, “Logic”) then I |= authorOf(John, “Logic”)

Coherent predicates are partial predicates whose atoms cannot be both true
and false, enforcing selective consistency. Specifically, interpretations of a co-
herent predicate p should satisfy the axiom ∼p(x̄)∨∼ ¬p(x̄) or, equivalently, the
axiom ¬p(x̄) ⊃ ∼p(x̄) (coherence). The satisfaction and truth tables for coher-
ent predicates (according to a partial interpretation I) are modified as follows:

Satisfaction table
Coherent predicates

p(c̄) ∼p(c̄) ¬p(c̄)

satisfies doesn’t satisfy doesn′tsatisfy

doesn’t satisfy satisfies any

Truth Table
Coherent predicates

p(c̄) ∼p(c̄) ¬p(c̄)

t f f

f t t

u t u

Note that the truth table for coherent predicates is a subset of the truth table
for partial predicates, as a literal of a coherent predicate can never be both true
and false. For example, in the case of a coherent predicate, such as killed, we
have the relationship that strong negation implies weak negation:

if I |= ¬killed(John, Peter) then I |= ∼killed(John, Peter),
and equivalently,

if I |= killed(John, Peter) then I |= ∼ ¬killed(John, Peter)

Classical predicates are both total and coherent predicates. Thus, literals of
classical predicates are either true or false, as in classical logic. The satisfaction
and truth tables for coherent predicates are modified as follows:

Satisfaction Table
classical predicates

p(c̄) ∼p(c̄) ¬p(c̄)

satisfies doesn’t satisfy doesn’t satisfy

doesn’t satisfy satisfies satisfies

Truth Table
classical predicates

p(c̄) ∼p(c̄) ¬p(c̄)

t f f

f t t

Note that weak and strong negation for classical predicates collapse. Thus,
the satisfaction and truth tables for classical predicates coincide with these of
classical logic. For example, in the case of a classical predicate, such as being an
odd number, non-truth and falsity are equivalent:
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I |= ¬odd(x) iff I 6|= odd(x) iff I |= ∼odd(x)
and equivalently,

I |= odd(x) iff I 6|= ¬odd(x) iff I |= ∼ ¬odd(x)

Thus, classical logic can be viewed as the degenerate case of partial logic when
all predicates are total.

Partial
Predicates

Predicates
Classical

Predicates Predicates
TotalCoherent

AND

Fig. 1. The subsumption hierarchy of predicate categories of Partial Logic

The subsumption hierarchy of predicate categories of partial logic is given
in Figure 1. Note that if all predicates are coherent, the categories of total and
classical predicates coincide.

In [19], the (partial logic) stable model semantics of a set of general derivation
rules7 are defined as a stable generated chain of partial interpretations. This
semantics can be viewed as a Tarski style model theory extending the answer
set semantics of an extended logic program (ELP )[17] (in the case that all
predicates are coherent). Indeed, according to our definitions of truth and falsity,
the satisfaction and truth tables of the answer set semantics coincide with these
for the coherent predicates of partial logic.

3 Extending RDF graphs with negative information

In this section, we extend RDF graphs to ERDF graphs, by adding strong nega-
tion. Moreover, we extend RDF graphs to ERDF formulas, which are built from
positive ERDF triples, the connectives ∼, ¬, ⊃, ∧, ∨, and the quantifiers ∀, ∃.

According to RDF concepts [24, 18], URI references are used as globally
unique names for web resources. An RDF URI reference is a Unicode string that
represents an absolute URI (with optional fragment identifier). It may be repre-
sented as a qualified name, that is a colon-separated two-part string consisting
of a namespace prefix (an abbreviated name for a namespace URI) and a local
name. For example, given the namespace prefix “ex” defined to stand for the
namespace URI “http://www.example.org/”, the qualified name “ex:Riesling”,
which stands for “http://www.example.org/Reisling”, is a URI reference.

A plain literal is a string “s”, where s is a sequence of Unicode characters,
or a pair of a string “s” and a language tag t, denoted by “s”@t. A typed literal

7 The body of a general derivation rule is built using all connectives and quantifiers,
whereas the head of the rule is built using the connectives ¬, ∧,∨.
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is a pair of a string “s” and a datatype URI reference d, denoted by “s”̂ d̂. For
example, “27”̂ ˆxsd:integer is a typed literal.

A (Web) vocabulary V is a set of URI references and/or literals (plain or
typed). We denote the set of all URI references by URI, the set of all plain
literals by PL, the set of all typed literals by T L, and the set of all literals by
LIT . It holds: URI ∩ LIT = ∅.

In our formalization, we consider a set Var of variable symbols, such that the
sets Var, URI, LIT are pairwise disjoint. In the main text, variable symbols are
explicitly indicated, while in our examples, variable symbols are prefixed by ?.

An RDF triple [24, 18] is a triple s p o., where s ∈ URI ∪ Var, p ∈ URI,
and o ∈ URI ∪ LIT ∪ Var, expressing that the subject s is related with the
object o through the property p. An RDF graph is a set of RDF triples. The
variable symbols appearing in an RDF graph are called blank nodes, and are,
intuitively, existentially quantified variables. In this paper, we denote an RDF
triple s p o. also by p(s, o). Below we extend the notion of RDF triple to allow
for both positive and negative information.

Definition 1 (ERDF triple). Let V be a vocabulary. A positive ERDF triple
over V (also called ERDF sentence atom) is an expression of the form p(s, o),
where s, o ∈ V ∪Var are called subject and object, respectively, and p ∈ V ∩URI
is called predicate or property.
A negative ERDF triple over V is the strong negation ¬p(s, o) of a positive
ERDF triple p(s, o) over V .
An ERDF triple over V (also called ERDF sentence literal) is a positive or
negative ERDF triple over V . ¤

We can also use the RDF-triple-like notation

s −p o .

for writing a negative ERDF triple and, as an option, use the + sign as a pred-
icate prefix for marking positive triples, like in the following example:

ex:Gerd −ex:likes ex:CabernetSauvignon .
ex:Anastasia +ex:likes ex:CabernetSauvignon .
ex:Gerd +ex:likes ex:Riesling .
ex:Carlos −ex:likes ex:Riesling .

For example, ex:likes(ex:Gerd, ex:Riesling) is a positive ERDF triple, ex-
pressing that Gerd likes Riesling, and ¬ex:likes(ex:Carlos, ex:Riesling) is a
negative ERDF triple, expressing that Carlos dislikes Riesling. Note that an
RDF triple is a positive ERDF triple with the constraint that the subject of
the triple is not a literal. For example, ex:nameOf(“Grigoris”, ex:Grigoris) is
a valid ERDF triple but not a valid RDF triple. Our choice of allowing liter-
als appearing in the subject position is based on our intuition that this case
can naturally appear in knowledge representation (as in the previous example).
Moreover, note that a variable in the object position of an ERDF triple in the
body of a rule, can appear in the subject position of the ERDF triple in the
head of the rule. Since variables can be instantiated by a literal, a literal can
naturally appear in the subject position of the derived ERDF triple.
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Definition 2 (ERDF formula). Let V be a vocabulary. We consider the log-
ical factors {∼,¬,∧,∨,⊃,∃,∀}, where ¬, ∼, and ⊃ are called strong negation,
weak negation, and material implication respectively. We denote by L(V ) the
smallest set that contains the positive ERDF triples over V and is closed with
respect to the following conditions: if F,G ∈ L(V ) then {∼F, ¬F, F∧G, F∨G,
F ⊃ G, ∃xF, ∀xF} ⊆ L(V ), where x ∈ Var. An ERDF formula over V is an
element of L(V ). We denote the set of variables appearing in F by Var(F ), and
the set of free variables8 appearing in F by FVar(F ). Moreover, we denote set
of URI references and literals appearing in F by VF . ¤

For example, let F = ∀?x ∃?y (rdf :type(?x, ex:Person) ⊃ ex:hasFather(?x, ?y))
∧ rdf :type(?z, ex:Person). Then, F is an ERDF formula over the vocabulary
V = {rdf :type, ex:Person, ex:hasFather} with Var(F ) = {?x, ?y, ?z} and
FVar(F ) = {?z}.

We will denote the sublanguages of L(V ) formed by means of a subset S of
the logical factors, by L(V |S). For example, L(V |{¬}) denotes the set of (positive
and negative) ERDF triples over V .

Definition 3 (ERDF graph). An ERDF graph G is a set of ERDF triples
over some vocabulary V . We denote the variables appearing in G by Var(G),
and the set of URI references and literals appearing in G by VG. ¤

Intuitively, an ERDF graph G represents an existentially quantified conjunc-
tion of ERDF triples. Specifically, let G = {t1, ..., tn} be an ERDF graph, and
let Var(G) = {x1, ...xk}. Then, G represents the formula ∃x1, ...xk t1∧...∧tn.
Following the RDF terminology [24], the variables of an ERDF graph are called
blank nodes and intuitively denote anonymous web resources.

For example, consider the ERDF graph G = {rdf :type(?x, ex:EuropeanCountry),
¬rdf :type(?x, ex:EUmember)}. Intuitively, G denotes the ERDF formula
∃?x (rdf :type(?x, ex:EuropeanCountry) ∧ ¬rdf :type(?x, ex:EUmember)), ex-
pressing that there is a European country which is not a European Union mem-
ber.

Note that as an RDF graph is a set of RDF triples [24, 18], an RDF graph is
also an ERDF graph.

4 ERDF Interpretations

In this section, we extend RDF(S) semantics by allowing for partial properties
and classes. In particular, we define ERDF interpretations and satisfaction of an
ERDF formula.

Below we define a partial interpretation as an extension of a simple interpre-
tation [18], where each property is associated not only with a truth extension
but also with a falsity extension allowing for partial properties.

Definition 4 (Partial interpretation). A partial interpretation I of a vocab-
ulary V consists of:

– A non-empty set of resources ResI , called the domain or universe of I.
8 Without loss of generality, we assume that a variable cannot have both free and

bound occurrences in F , and more than one bound occurrence.
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– A set of properties PropI .
– A vocabulary interpretation mapping IV

9: V ∩URI → ResI ∪ PropI .
– A property-truth extension mapping PTI : PropI → P(ResI ×ResI).
– A property-falsity extension mapping PFI : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .
– A set of literal values LVI ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : V → ResI ∪ PropI , called denotation, such that:

– I(x) = IV (x), ∀x ∈ V ∩URI.
– I(x) = x, ∀ x ∈ V ∩ PL.
– I(x) = ILI(x), ∀ x ∈ V ∩ T L. ¤

Definition 5 (Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation and a valuation). Let F, G be ERDF formulas and let I be a
partial interpretation of a vocabulary V . Let v be a mapping v : Var(F ) → ResI

(called valuation). If x ∈ Var(F ), we define [I +v](x) = v(x). If x ∈ V , we define
[I + v](x) = I(x).

– If F = p(s, o) then I, v |= F iff p ∈ V ∩URI, s, o ∈ V ∪Var, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PTI(I(p)).

– If F = ¬p(s, o) then I, v |= F iff p ∈ V ∩URI, s, o ∈ V ∪ V ar, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PFI(I(p)).

– If F = ∼G then I, v |= F iff VG ⊆ V and I, v 6|= G.
– If F = F1∧F2 then I, v |= F iff I, v |= F1 and I, v |= F2.
– If F = F1∨F2 then I, v |= F iff I, v |= F1 or I, v |= F2.
– If F = F1 ⊃ F2 then I, v |= F iff I, v |= ∼F1∨F2.
– If F = ∃x G then I, v |= F iff there exists mapping u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, and I, u |= G.
– If F = ∀x G then I, v |= F iff for all mappings u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, it holds I, u |= G.
– All other cases of ERDF formulas are treated by the following DeMorgan-style

rewrite rules expressing the falsification of compound ERDF formulas:
¬(F ∧G) → ¬F ∨ ¬G, ¬(F ∨G) → ¬F ∧ ¬G, ¬¬F → F, ¬ ∼ F → F ,
¬∃x F → ∀x ¬F, ¬∀x F → ∃x ¬F, ¬(F ⊃ G) → F∧¬G. ¤

Definition 6 (Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation). Let F be an ERDF formula and let I be a partial interpretation
of a vocabulary V . We say that I satisfies F , denoted by I |= F , iff for every
mapping v : Var(F ) → ResI , it holds I, v |= F. ¤

Similarly to first-order logic, the following proposition holds.

Proposition 1. Let F be an ERDF formula and let I be a partial interpretation
of a vocabulary V . Let u, u′ be mappings u, u′ : Var(F ) → ResI such that
u(x) = u′(x), ∀x ∈ FV ar(F ). It holds: I, u |= F iff I, u′ |= F .

Note that as an ERDF graph represents an existentially quantified conjunc-
tion of ERDF triples (that is, an ERDF formula), Definition 6 applies also to
ERDF graphs. Specifically, let G be an ERDF graph representing the formula
F = ∃x1, ...xk t1∧...∧tn. We will show that a partial interpretation I satisfies
the ERDF graph G (I |= G) iff I |= F .

The specific definition of ERDF graph satisfaction is given below, extending
satisfaction of an RDF graph [18] (see also Appendix A).
9 In the symbol IV , V stands for Vocabulary.
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Definition 7 (Satisfaction of an ERDF graph w.r.t. a partial interpre-
tation). Let G be an ERDF graph and let I be a partial interpretation of a
vocabulary V . Let v be a mapping v : V ar(G) → ResI . Then,

– I, v |= G iff ∀t ∈ G, I, v |= t.
– I satisfies the ERDF graph G, denoted by I |= G, iff there exists a mapping

v : V ar(G) → ResI such that I, v |= G. ¤

The following proposition is proved based on Proposition 1.

Proposition 2. Let G = {t1, ..., tn} be an ERDF graph and let V ar(G) =
{x1, ..., xk}. Let F be the ERDF formula ∃x1, ...xk t1∧...∧tn.
It holds: I |= G iff I |= F .

VRDF VRDFS

rdf :type rdfs:domain

rdf :Property rdfs:range

rdf :XMLLiteral rdfs:Resource

rdf :nil rdfs:Literal

rdf :List rdfs:Datatype

rdf :Statement rdfs:Class

rdf :subject rdfs:subClassOf

rdf :predicate rdfs:subPropertyOf

rdf :object rdfs:member

rdf :first rdfs:Container

rdf :rest rdfs:ContainerMembershipProperty

rdf :Seq rdfs:comment

rdf :Bag rdfs:seeAlso

rdf :Alt rdfs:isDefinedBy

rdf : i, ∀i ∈ {1, 2, ...} rdfs:label

rdf :value

Table 1. The vocabulary of RDF and RDFS

rdf :type(rdf :type, rdf :Property)
rdf :type(rdf :subject, rdf :Property)
rdf :type(rdf :predicate, rdf :Property)
rdf :type(rdf :object, rdf :Property)
rdf :type(rdf :first, rdf :Property)

rdf :type(rdf :rest, rdf :Property)
rdf :type(rdf :value, rdf :Property)
rdf :type(rdf : i, rdf :Property), ∀i ∈ {1, 2, ...}
rdf :type(rdf :nil, rdf :List)

Table 2. The RDF axiomatic triple

The vocabulary of RDF, VRDF , is a set of URI references in the rdf : namespace
[18], as shown in Table 1. The vocabulary of RDFS, VRDFS , is a set of URI ref-
erences in the rdfs: namespace [18], as shown in Table 1.
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The vocabulary of ERDF , VERDF , is a set of URI references in the erdf :
namespace. Specifically, the set of ERDF predefined classes is CERDF =
{erdf :TotalClass, erdf :TotalProperty}. We define VERDF = CERDF . Intu-
itively, instances of the metaclass erdf :TotalClass are classes c that satisfy to-
talness, meaning that each resource belongs to the truth or falsity extension of
c. Similarly, instances of the metaclass erdf :TotalProperty are properties p that
satisfy totalness, meaning that each pair of resources belongs to the truth or
falsity extension of p.

We are now ready to define an ERDF interpretation over a vocabulary V
as an extension of an RDFS interpretation [18] (see also Appendix A), where
each property and class is associated not only with a truth extension but also
with a falsity extension, allowing for both partial properties and partial classes.
Additionally, an ERDF interpretation gives special semantics to terms from the
ERDF vocabulary.

Definition 8 (ERDF interpretation). An ERDF interpretation I of a vo-
cabulary V is a partial interpretation of V ∪VRDF ∪VRDFS ∪VERDF , extended
by the new ontological categories ClsI ⊆ ResI for classes, TClsI ⊆ ClsI for
total classes, and TPropI ⊆ PropI for total properties, as well as the class-
truth extension mapping CTI : ClsI → P(ResI), and the class-falsity extension
mapping CFI : ClsI → P(ResI), such that:

1. x ∈ CTI(y) iff 〈x, y〉 ∈ PTI(I(rdf :type)), and
x ∈ CFI(y) iff 〈x, y〉 ∈ PFI(I(rdf :type)).

2. The ontological categories are defined as follows:
PropI = CTI(I(rdf :Property)) ClsI = CTI(I(rdfs:Class))
ResI = CTI(I(rdfs:Resource)) LVI = CTI(I(rdfs:Literal))
TClsI = CTI(I(erdf :TotalClass)) TPropI = CTI(I(erdf :TotalProperty)).

3. if 〈x, y〉 ∈ PTI(I(rdfs:domain)) and 〈z, w〉 ∈ PTI(x) then z ∈ CTI(y).
4. If 〈x, y〉 ∈ PTI(I(rdfs:range)) and 〈z, w〉 ∈ PTI(x) then w ∈ CTI(y).
5. If x ∈ ClsI then 〈x, I(rdfs:Resource)〉 ∈ PTI(I(rdfs:subclassOf)).
6. If 〈x, y〉 ∈ PTI(I(rdfs:subClassOf)) then x, y ∈ ClsI , CTI(x) ⊆ CTI(y), and

CFI(y) ⊆ CFI(x).
7. PTI(I(rdfs:subClassOf)) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PTI(I(rdfs:subPropertyOf)) then x, y ∈ PropI , PTI(x) ⊆ PTI(y), and

PFI(y) ⊆ PFI(x).
9. PTI(I(rdfs:subPropertyOf)) is a reflexive and transitive relation on PropI .

10. If x ∈ CTI(I(rdfs:Datatype)) then 〈x, I(rdfs:Literal)〉 ∈ PTI(I(rdfs:subClassOf)).
11. If x ∈ CTI(I(rdfs:ContainerMembershipProperty)) then 〈x, I(rdfs:member)〉 ∈

PTI(I(rdfs:subPropertyOf)).
12. If x ∈ TClsI then CTI(x) ∪ CFI(x) = ResI .
13. If x ∈ TPropI then PTI(x) ∪ PFI(x) = ResI ×ResI .
14. If “s”̂ r̂df :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI(“s”̂ r̂df :XMLLiteral) is the XML value of s, and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(rdf :XMLLiteral)).

15. If “s”̂ r̂df :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI(“s”̂ r̂df :XMLLiteral) ∈ ResI − LVI , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CFI(I(rdfs:Literal)).

16. I satisfies the RDF and RDFS axiomatic triples [18], shown in Table 2 and Table
3, respectively.

17. I satisfies the following triples, called ERDF axiomatic triples:
rdfs:subClassOf(erdf :TotalClass, rdfs:Class).
rdfs:subClassOf(erdf :TotalProperty, rdf :Property).

12



rdfs:domain(rdf :type, rdfs:Resource)
rdfs:domain(rdfs:domain, rdf :Property)
rdfs:domain(rdfs:range, rdf :Property)
rdfs:domain(rdfs:subpropertyOf, rdf :Property)
rdfs:domain(rdfs:subClassOf, rdfs:Class)
rdfs:domain(rdf :subject, rdf :Statement)
rdfs:domain(rdf :predicate, rdf :Statement)
rdfs:domain(rdf :object, rdf :Statement)
rdfs:domain(rdfs:member, rdfs:Resource)
rdfs:domain(rdf :first, rdf :List)
rdfs:domain(rdf :rest, rdf :List)
rdfs:domain(rdfs:seeAlso, rdfs:Resource)
rdfs:domain(rdfs:isDefinedBy, rdfs:Resource)
rdfs:domain(rdfs:comment, rdfs:Resource)
rdfs:domain(rdfs:label, rdfs:Resource)
rdfs:domain(rdfs:value, rdfs:Resource)
rdfs:range(rdf :type, rdfs:Class)
rdfs:range(rdfs:domain, rdfs:Class)
rdfs:range(rdfs:range, rdfs:Class)
rdfs:range(rdfs:subPropertyOf, rdf :Property)
rdfs:range(rdfs:subClassOf, rdfs:Class)
rdfs:range(rdf :subject, rdfs:Resource)
rdfs:range(rdf :predicate, rdfs:Resource)
rdfs:range(rdf :object, rdfs:Resource)
rdfs:range(rdfs:member, rdfs:Resource)
rdfs:range(rdf :first, rdfs:Resource)
rdfs:range(rdf :rest, rdf :List)
rdfs:range(rdfs:seeAlso, rdfs:Resource)
rdfs:range(rdfs:isDefinedBy, rdfs:Resource)
rdfs:range(rdfs:comment, rdfs:Literal)
rdfs:range(rdfs:label, rdfs:Literal)
rdfs:range(rdf :value, rdfs:Resource)
rdfs:subClassOf(rdf :Alt, rdfs:Container)
rdfs:subClassOf(rdf :Bag, rdfs:Container)
rdfs:subClassOf(rdf :Seq, rdfs:Container)
rdfs:subClassOf(rdfs:ContainerMembershipProperty, rdf :Property)
rdfs:subPropertyOf(rdfs:isDefinedBy, rdfs:seeAlso)
rdf :type(rdf :XMLLiteral, rdfs:Datatype)
rdfs:subClassOf(rdf :XMLLiteral, rdfs:Literal)
rdfs:subClassOf(rdfs:Datatype, rdfs:Class)
rdf :type(rdf : i, rdfs:ContainerMembershipProperty), ∀i ∈ {1, 2, ...}
rdfs:domain(rdf : i, rdfs:Resource), ∀i ∈ {1, 2, ...}
rdfs:range(rdf : i, rdfs:Resource), ∀i ∈ {1, 2, ...}

Table 3. The RDFS axiomatic triples
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Note that the semantic conditions of ERDF interpretations may impose con-
straints to both the truth and falsity extensions of properties and classes. For
example, consider semantic condition 6 of Definition 8 and assume that 〈x, y〉 ∈
PTI(I(rdfs:subClassOf)). Then, I should satisfy not only CTI(x) ⊆ CTI(y),
but also CFI(y) ⊆ CFI(x). Similar is the case for semantic conditions 8, 12, 13,
14, and 17.

Definition 9 (Coherent ERDF interpretation). An ERDF interpretation
I of a vocabulary V is coherent iff for all x ∈ PropI , PTI(x) ∩ PFI(x) = ∅. ¤

Coherent ERDF interpretations enforce the constraint that a pair of resources
cannot belong to both the truth and falsity extensions of a property. Intuitively,
this means that an ERDF triple cannot be both true and false. Since rdf :type
is a property, this constraint also implies that a resource cannot belong to both
the truth and falsity extensions of a class.

Proposition 3. Let I be a coherent ERDF interpretation of a vocabulary V .
It holds: ∀x ∈ ClsI , CTI(x) ∩ CFI(x) = ∅.

Thus, all properties and classes of coherent ERDF interpretations are coher-
ent.

In the rest of the document, we consider only coherent ERDF interpretations.
This means that referring to an “ERDF interpretation”, we implicitly mean a
“coherent” one.

According to RDFS semantics [18], the only source of RDFS-inconsistency is
the appearance of an ill-typed XML literal l in the RDF graph, in combination
with the derivation of the RDF triple “x rdf :type rdfs:Literal.” by the RDF
and RDFS entailment rules, where x is a blank node allocated to l (for details,
see [18]) Such a triple is called XML clash. An ERDF graph can be ERDF-
inconsistent10, not only due to the appearance of an ill-typed XML literal in the
ERDF graph (in combination with the semantic condition 15), but also due to
the additional semantic condition for coherent ERDF interpretations.

For example, let p, q, s, o ∈ URI and let G = {p(s, o), rdfs:subPropertyOf(p,
q), ¬q(s, o)}. Then, G is ERDF-inconsistent, since there is no (coherent) ERDF
interpretation that satisfies G.

The following proposition shows that for total properties and total classes of
(coherent) ERDF interpretations, weak negation and strong negation coincide
(boolean truth values).

Proposition 4. Let I be an ERDF interpretation of a vocabulary V and let
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,

1. For all p, s, o ∈ V ′, such that I(p) ∈ TPropI , it holds:
I |= ∼p(s, o) iff I |= ¬p(s, o) (equivalently, I |= p(s, o) ∨ ¬p(s, o)).

2. For all x, c ∈ V ′ such that I(c) ∈ TClsI , it holds:
I |= ∼rdf :type(x, c) iff I |= ¬rdf :type(x, c)
(equivalently, I |= rdf :type(x, c) ∨ ¬rdf :type(x, c)).

10 Meaning that there is no (coherent) ERDF interpretation that satisfies the ERDF
graph.
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Definition 10 (Classical ERDF interpretation). A (coherent) ERDF in-
terpretation I of a vocabulary V is classical iff for all x ∈ PropI , PTI(x) ∪
PFI(x) = ResI ×ResI . ¤

A classical ERDF interpretation is close to an interpretation of classical logic,
since for every formula F , weak and strong negation coincide.

Proposition 5. Let I be an ERDF interpretation of a vocabulary V and let
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,

1. If TPropI = PropI then I is a classical ERDF interpretation.
2. If I is a classical ERDF interpretation and F is an ERDF formula over V ′

such that I(p) ∈ PropI , for every property p in F , then it holds:
I |= ∼F iff I |= ¬F (equivalently, I |= F ∨ ¬F ).

Below we define ERDF entailment between two ERDF formulas or ERDF
graphs.

Definition 11 (ERDF Entailment). Let F, F ′ be ERDF formulas or ERDF
graphs. We say that F ERDF-entails F ′ (F |=ERDF F ′) iff for every ERDF
interpretation I, if I |= F then I |= F ′. ¤

For example, let F = ∀?x ∃?y (rdf :type(?x, ex:Person) ⊃ ex:hasFather(?x, ?y))
∧ rdf :type(ex:John, ex:Person), and let F ′ = ∃?y ex:hasFather(ex:John, ?y)
∧ rdf :type(ex:hasFather, rdf :Property). Then F |=ERDF F ′.

The following proposition shows that an RDF graph is RDFS satisfiable iff
it is ERDF satisfiable. Thus, an RDF graph can be ERDF-inconsistent only due
to an XML clash.

Proposition 6. Let G be an RDF graph such that VG∩VERDF = ∅. Then, there
is an RDFS interpretation that satisfies G iff there is an ERDF interpretation
that satisfies G.

The following proposition shows that ERDF entailment extends RDFS en-
tailment [18] (see also Appendix A) from RDF graphs to ERDF formulas. In
other words, ERDF entailment is upward compatible with RDFS entailment.

Proposition 7. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅ and
VG′ ∩ VERDF = ∅. Then, G |=RDFS G′ iff G |=ERDF G′.

5 ERDF Ontologies

In this section, we define an ERDF ontology as a pair of an ERDF graph G and
a set P of ERDF rules. ERDF rules should be considered as derivation rules
that allow us to infer more ontological information based on the declarations in
G. Moreover, we define the Herbrand interpretations and the Herbrand models
of an ERDF ontology.

Definition 12 (ERDF rule, ERDF program). An ERDF rule r over a vo-
cabulary V is an expression of the form: G ← F , where F ∈ L(V ) ∪ {true}
is called condition and G ∈ L(V |{¬}) is called conclusion. We assume that no
bound variable in F appears free in G. We denote the set of variables and the
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set of free variables of r by Var(r) and FVar(r)11, respectively. Additionally, we
write Cond(r) = F and Concl(r) = G.
An ERDF program P is a set of ERDF rules over some vocabulary V . We denote
the set of URI references and literals appearing in P by VP . ¤

For example, the following derivation rule r is an ERDF rule:

ex:allRelated(?P, ?R) ← ∀?p rdf :type(?p, ?P ) ⊃
∃?r rdf :type(?r, ?R) ∧ ex:related(?p, ?r),

indicating that between two class P,R it holds ex:allRelated(P,R) if for all
instances p of the class P , there is an instance r of the class R such that it holds
ex:related(p, r). It holds Var(r) = {?P, ?R, ?p, ?r} and FVar(r) = {?P, ?R}.

When Cond(r) = true and V ar(r) = {}, rule r is also called ERDF fact. We
assume that for every partial interpretation I, it holds I |= true.

Intuitively, an ERDF ontology is the combination of (i) an ERDF graph G
containing (implicitly existentially quantified) positive and negative information,
and (ii) an ERDF program P containing derivation rules (whose free variables
are implicitly universally quantified).

Definition 13 (ERDF ontology). An ERDF ontology (or knowledge base) is
a pair O = 〈G, P 〉, where G is an ERDF graph and P is an ERDF program. ¤

The following definition defines the models of an ERDF ontology.

Definition 14 (Satisfaction of an ERDF rule and an ERDF ontology).
Let I be an ERDF interpretation of a vocabulary V .
– We say that I satisfies an ERDF rule r, denoted by I |= r, iff: For all

mappings v : Var(r) → ResI such that I, v |= Cond(r), it holds I, v |=
Concl(r).

– We say that I satisfies an ERDF ontology O = 〈G,P 〉 (also, I is a model
of O), denoted by I |= O, iff I |= G and I |= r, ∀ r ∈ P . ¤

In this paper, existentially quantified variables in ERDF graphs are handled
by
skolemization, a syntactic transformation commonly used in automatic infer-
ence systems for removing existentially quantified variables.

Definition 15 (Skolemization of an ERDF graph). Let G be an ERDF
graph. The skolemization function of G is an 1:1 mapping skG : Var(G) → URI,
where for each x ∈ Var(G), skG(x) is an artificial URI, denoted by G:x. The set
skG(Var(G)) is called the Skolem vocabulary of G.
The skolemization of G, denoted by sk(G), is the ground ERDF graph derived
from G after replacing each variable x ∈ Var(G) by skG(x). ¤

Intuitively, the Skolem vocabulary of G (that is, skG(V ar(G))) contains arti-
ficial URIs giving “arbitrary” names to the anonymous entities whose existence
was asserted by the use of blank nodes in G.

For example, let G = {rdf :type(?x, ex:EuropeanCountry), ¬rdf :type(?x,
ex:EUmember)}. Then sk(G) = {rdf :type(skG(?x), ex:EuropeanCountry),
¬rdf :type(skG(?x), ex:EUmember)}.

As the following proposition shows, skolemization preserves satisfiability.
11 FVar(r) = FVar(F ) ∪ FVar(G).
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Proposition 8. Let G be an ERDF graph. There is an ERDF interpretation
that satisfies G iff there is an ERDF interpretation that satisfies sk(G).

Below we show that if an ERDF interpretation satisfies the skolemization of
an ERDF graph then it also satisfies the original graph.

Proposition 9. Let G be an ERDF graph and let I be an ERDF interpretation.
Then, I |= sk(G) implies I |= G.

The following proposition expresses that the skolemization of an ERDF graph
has the same entailments as the original graph, provided that these do not con-
tain URIs from the skolemization vocabulary.

Proposition 10. Let G be an ERDF graph and F be an ERDF formula such
that VF ∩ skG(V ar(G)) = ∅. It holds: G |=ERDF F iff sk(G) |=ERDF F .

Below we define the vocabulary of an ERDF ontology O.

Definition 16 (Vocabulary an ERDF ontology). Let O = 〈G, P 〉 be an
ERDF ontology. The vocabulary of O is defined as VO = Vsk(G) ∪ VP ∪ VRDF ∪
VRDFS ∪ VERDF . ¤

Note that the vocabulary of an ontology O = 〈G,P 〉 contains the skolemiza-
tion vocabulary of G.

Let O = 〈G,P 〉 be an ERDF ontology. We denote by ResH
O the union of

VO and the set of XML values of the well-typed XML literals in VO minus the
well-typed XML literals.

The following definition defines the Herbrand interpretations and the Her-
brand models of an ERDF ontology.

Definition 17 (Herbrand interpretation, Herbrand model of an ERDF
ontology). Let O = 〈G,P 〉 be an ERDF ontology and let I be an ERDF
interpretation of VO. I is a Herbrand interpretation of O iff:

– ResI = ResH
O .

– IV (x) = x, for all x ∈ VO ∩URI.
– ILI(x) = x, if x is a typed literal in VO other than a well-typed XML literal,

and ILI(x) is the XML value of x, if x is a well-typed XML literal in VO.

We denote the set of Herbrand interpretations of O by IH(O).
A Herbrand interpretation I of O is a Herbrand model of O iff I |= 〈sk(G), P 〉.
We denote the set of Herbrand models of O by MH(O). ¤

Note that if I is a Herbrand interpretation of an ERDF ontology O then
I(x) = x, for each x ∈ VO other than a well-typed XML literal.

Obviously, every Herbrand model of an ERDF ontology O is a model of O.

6 Minimal Herbrand Interpretations and Stable Models

In the previous section, we defined the Herbrand models of an ERDF ontology
O. However, not all Herbrand models of O are desirable. In this section, we
define the intended models of O, called stable models of O, based on minimal
Herbrand interpretations. In particular, defining the stable models of O, only
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the minimal interpretations from a set of Herbrand interpretations that satisfy
certain criteria are considered.

For example, let p, s, o ∈ URI, let G = {p(s, o)}, and let O = 〈G, ∅〉, Then,
there is a Herbrand model I of O such that I |= p(o, s), whereas we want ∼p(o, s)
to be satisfied by all intended models of O, as p is not a total property12 and
p(o, s) cannot be derived from O (negation-as-failure).

To define the minimal Herbrand interpretations of an ERDF ontology O, we
need to define a partial ordering on the Herbrand interpretations of O.

Definition 18 (Herbrand interpretation ordering). Let O = 〈G, P 〉 be an
ERDF ontology. Let I, J ∈ IH(O). We say that J extends I, denoted by I ≤ J
(or J ≥ I), iff PropI ⊆ PropJ , and for all p ∈ PropI , it holds PTI(p) ⊆ PTJ(p)
and PFI(p) ⊆ PFJ(p). ¤

It is easy to verify that ≤ is indeed a partial ordering on IH(O), as it is
reflexive, transitive, and antisymmetric13.

The intuition behind Definition 18 is that by extending a Herbrand inter-
pretation, we extend both the truth and falsity extension for all properties, and
thus (since rdf :type is a property), for all classes.

Proposition 11. Let O = 〈G,P 〉 be an ERDF ontology and let I, J ∈ IH(O)
such that I ≤ J . Then, ClsI ⊆ ClsJ , and for all c ∈ ClsI , it holds CTI(c) ⊆
CTJ(c) and CFI(c) ⊆ CFJ(c).

Definition 19 (Minimal Herbrand Interpretations). Let O be an ERDF
ontology and let I ⊆ IH(O). We define minimal(I) = {I ∈ I | 6 ∃J ∈ I : J 6= I
and J ≤ I}. ¤

Let I, J ∈ IH(O), we define [I, J ]O = {I ′ ∈ IH(O), I ≤ I ′ ≤ J}.
Additionally, we define the minimal Herbrand models of O, as:

Mmin(O) = minimal(MH(O)).
However minimal Herbrand models do not give the intended semantics to

all ERDF rules. This is because ERDF rules are derivation and not implication
rules. Derivation rules are often identified with implications. But, in general,
these are two different concepts. While an implication is an expression of a logical
formula language, a derivation rule is rather a meta-logical expression. There are
logics, which do not have an implication connective, but which have a derivation
rule concept. In standard logics (such as classical and intuitionistic logic), there
is a close relationship between a derivation rule (also called “sequent”) and
the corresponding implicational formula: they both have the same models. For
nonmonotonic rules (e.g. with negation-as-failure), this is no longer the case: the
intended models of such a rule are, in general, not the same as the intended
models of the corresponding implication. This is easy to see with help of an

12 For total predicates, which are synonymous to classical predicates in this paper, the
LEM applies. Thus, if p is a total property, then p(o, s)∨¬p(o, s) should be satisfied
by all intended models and, hence, ∼p(o, s) is not satisfied.

13 Indeed, let I, J ∈ IH(O) s.t. I ≤ J and J ≤ I. Then, I, J are ERDF interpretations
of VO such that ResI = ResJ , PropI = PropJ , IV = JV , PTI = PTJ , PFI =
PFJ , ILI = ILJ , ClsI = ClsJ , CTI = CTJ , TPropI = TPropJ , and TClsI =
TClsJ . Thus, I = J .
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example. Consider the rule ∼q → p whose model set, according to the stable
model semantics [16, 17, 20, 19], is {{p}}, that is, it entails p. On the other hand,
the model set of the corresponding implication ∼q ⊃ p which is equivalent to
the disjunction p ∨ q, is {{p}, {q}, {p, q}}; consequently, it does not entail p.

Similarly, let O = 〈∅, P 〉, where P = {p(s, o) ← ∼q(s, o)} and p, q, s, o ∈ URI.
Not all minimal Herbrand models of O are intended. In particular, there is I ∈
Mmin(O) such that I |= q(s, o) ∧ ∼p(s, o), whereas we want ∼q(s, o) ∧ p(s, o) to
be satisfied by all intended models of O, as q is not a total property and q(s, o)
cannot be derived by any rule (negation-as-failure).

To define the intended (stable) models of an ERDF ontology, we need first
to define grounding of ERDF rules.

Definition 20 (Grounding of an ERDF program). Let V be a vocabulary
and r be an ERDF rule. We denote by [r]V the set of rules that result from r if
we replace each variable x ∈ FVar(r) by v(x), for all mappings v : FVar(r) → V .
Let P be an ERDF program. We define [P ]V =

⋃
r∈P [r]V . ¤

Below, we define the stable models of an ERDF ontology based on the coher-
ent stable models of partial logic [19] (which, on extended logic programs, are
equivalent [19] to Answer Sets of answer set semantics [17]).

Definition 21 (Stable model). Let O = 〈G,P 〉 be an ERDF ontology and
let M ∈ IH(O). We say that M is a stable model of O iff there is a chain of
Herbrand interpretations of O, I0 ≤ ... ≤ Ik such that Ik−1 = Ik = M and:
1. I0 ∈ minimal({I ∈ IH(O) | I |= sk(G)}).
2. For 0 < α ≤ k:

Iα ∈ minimal{I ∈ IH(O) | I ≥ Iα−1 and I |= Concl(r), for all r ∈
P[Iα−1,M ]}, where
P[Iα−1,M ] = {r ∈ [P ]VO

| I |= Cond(r), ∀I ∈ [Iα−1,M ]O}.
The set of stable models of O is denoted by Mst(O). ¤
Let us see an example. Consider an example namespace ex:, a class ex:Paper
whose instances are papers submitted to a conference, a class ex:Reviewer
whose instances are potential reviewers for the submitted papers, and a property
ex:conflict(R, P ) indicating that there is a conflict of interest between reviewer
R and paper P . Assume that we want to assign papers to reviewers based only
on the following criteria: (i) a paper is assigned to at most one reviewer, (ii) a
reviewer is assigned at most one paper, and (iii) no paper is assigned to a re-
viewer with whom there is conflict of interest. The assignment of a paper P to a
reviewer R is indicated through the property ex:assign(P,R). The ERDF triple
ex:allAssigned(ex:Paper, ex:Reviewer) indicates that each paper has been as-
signed to one reviewer. Ignoring for simplicity the example namespace ex:, the
ERDF program P describing assignment of papers is the following (commas “,”
in the body of the rules indicate conjunction ∧):

id(?x, ?x) ← true.
¬assign(?p, ?r) ← rdf :type(?p, Paper), rdf :type(?p′, Paper), assign(?p′, ?r),

∼id(?p, ?p′).
¬assign(?p, ?r) ← rdf :type(?r, Reviewer), rdf :type(?r′, Reviewer), assign(?p, ?r′),

∼id(?r, ?r′).
¬assign(?p, ?r) ← conflict(?r, ?p).
assign(?p, ?r) ← rdf :type(?r, Reviewer), rdf :type(?p, Paper),∼ ¬assign(?p, ?r).
allAssigned(Paper, Reviewer) ← ∀?p(; rdf :type(?p, Paper) ⊃

∃?r rdf :type(?r, Reviewer) ∧ assign(?p, ?r)).
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Consider now the ERDF graph G, containing the factual information:

G = { rdf :type(P1, Paper), rdf :type(P2, Paper), rdf :type(P3, Paper),
rdf :type(R1, Reviewer), rdf :type(R2, Reviewer), rdf :type(R3, Reviewer),
conflict(P1, R3), conflict(P2, R2), conflict(P3, R2)}.

Then, according to Definition 21, the ERDF ontology O = 〈G,P 〉 has four
stable models, denoted by M1, ..., M4, such that:

M1 |= assign(P1, R1) ∧ assign(P2, R3) ∧ ∼allAssigned(Paper, Reviewer),
M2 |= assign(P1, R1) ∧ assign(P3, R3) ∧ ∼allAssigned(Paper, Reviewer),
M3 |= assign(P1, R2) ∧ assign(P2, R1) ∧ assign(P3, R3) ∧

allAssigned(Paper, Reviewer), and
M4 |= assign(P1, R2) ∧ assign(P2, R3) ∧ assign(P3, R1) ∧

allAssigned(Paper, Reviewer).

The following proposition shows that a stable model of an ERDF ontology
O is a Herbrand model of O.

Proposition 12. Let O = 〈G,P 〉 be an ERDF ontology and let M ∈ Mst(O).
It holds M ∈MH(O).

On the other hand, if all properties are total, a Herbrand model M of an
ERDF ontology O = 〈G,P 〉 is a stable model of O. This is because, in this case
M ∈ minimal({I ∈ IH(O) | I |= sk(G)}) and M ∈ minimal{I ∈ IH(O) | I ≥
M and I |= Concl(r), for all r ∈ P[M,M ]}.
Proposition 13. Let O = 〈G,P 〉 be an ERDF ontology, such that
rdfs:subclass(rdf :Property, erdf :TotalProperty) ∈ G. Then,Mst(O) = MH(O).

¿From Proposition 5, it follows that if rdfs:subclass(rdf :Property,
erdf :TotalProperty) ∈ G then each M ∈MH(O) is a classical ERDF interpre-
tation. Therefore, the above proposition shows that classical (boolean) Herbrand
model reasoning on ERDF ontologies is a special case of stable model reasoning.

Similarly to [16, 17, 20, 19], stable models do not preserve Herbrand model
satisfiability. For example, let O = 〈∅, P 〉, where P = {p(s, o) ← ∼p(s, o)}, and
p, s, o ∈ URI. Then, Mst(O) = ∅, whereas there is a Herbrand model of O that
satisfies p(s, o).

Below we define stable model entailment on ERDF ontologies.

Definition 22. Stable model entailment
Let O = 〈G,P 〉 be an ERDF ontology and let F be an ERDF formula or ERDF
graph. We say that O entails F under the (ERDF) stable model semantics,
denoted by O |=st F iff for all M ∈Mst(O), M |= F . ¤

For example, let O = 〈∅, P 〉, where P = {p(s, o) ← ∼q(s, o)} and p, q, s, o ∈
URI. Then, O |=st ∼q(s, o) ∧ p(s, o). Let O = 〈G,P 〉, where
G = {rdfs:subclass(rdf :Property, erdf :TotalProperty)} and P is as in the previ-
ous example. Then, O |=st q(s, o) ∨ p(s, o), but O 6|=st ∼q(s, o) and O 6|=st p(s, o).
This is the desirable result, since q is a total property, and thus in contrast to the
previous example, an open-world assumption is made for q. As another exam-
ple, let p, s, o ∈ URI, let G = {p(s, o)}, and let P = {¬p(?x, ?y) ← ∼p(?x, ?y)}.
Then, 〈G,P 〉 |=st ∼p(o, s) ∧ ¬p(o, s) (note that P contains a CWA on p). Let
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G = {rdf :type(p, erdf :TotalProperty), p(s, o)} and let P be as in the previous
example. Then, 〈G,P 〉 |=st ∀?x ∀?y (p(?x, ?y) ∨¬p(?x, ?y)) (see Proposition 4),
but 〈G,P 〉 6|=st ∼p(o, s) and 〈G,P 〉 6|=st ¬p(o, s). Indeed, the CWA in P does
not affect the semantics of p, since p is a total property.

Let us now see a more involved example14. Consider the following ERDF
program P , specifying some rules for concluding that a country is not a member
state of the European Union (EU).

(r1) ¬rdf : type(?x,EUMember) ← rdf : type(?x,AmericanCountry).
(r2) ¬rdf : type(?x,EUMember) ← rdf : type(?x,EuropeanCountry),

∼rdf : type(?x,EUMember).

A rather incomplete ERDF ontology O = 〈G,P 〉 is obtained by including
the following information in the ERDF graph G:

¬rdf : type(Russia,EUMember). rdf : type(Canada, AmericanCountry).
rdf : type(Austria,EUMember). rdf : type(Italy, EuropeanCountry).
rdf :type(?x,EuropeanCountry). ¬rdf :type(?x,EUMember).

Using stable model entailment on O, it can be concluded that Austria is a
member of EU, that Russia and Canada are not members of EU, and that it
exists a European Country which is not a member of EU. However, it is also
concluded that Italy is not a member of EU, which is a wrong statement. This
is because G does not contain complete information of the European countries
that are EU members (e.g., it does not contain rdf :type(Italy,EUMember)).
Thus, incorrect information is obtained by the closed-world assumption ex-
pressed in rule r2. In the case that rdf :type(EUMember, erdf :TotalClass) is
added to G (that is, an open-world assumption is made for the class EUMember)
then ∼rdf :type(Italy,EUMember) and thus, ¬rdf :type(Italy,EUMember) are
not longer entailed. This is because, there is a stable model of the extended O
that satisfies rdf :type(Italy,EUMember). Moreover, if complete information for
all European countries that are members of EU is included in G then the stable
model conclusions of O will also be correct (the closed-world assumption will be
correctly applied). Note that, in this case G will include rdf :type(Italy,EUMember).

Proposition 14. Let O = 〈G,P 〉 be an ERDF ontology, and let F, F ′ be ERDF
formulas. If O |=st F and F |=ERDF F ′ then O |=st F ′.

The following proposition, together with Proposition 10, shows that stable
model entailment on ERDF ontologies is upward compatible with ERDF entail-
ment on ERDF graphs.

Proposition 15. Let G,G′ be ERDF graphs and F be an ERDF formula.
It holds:

1. If 〈G, ∅〉 |=st G′ then sk(G) |=ERDF G′.
2. If sk(G) |=ERDF F then 〈G, ∅〉 |=st F .

Let G = {p(s, o)}, where p, s, o ∈ URI. Then 〈G, ∅〉 |=st ∼p(o, s), whereas
sk(G) 6|=ERDF ∼p(o, s). This shows that the first statement of Proposition 15
cannot be generalized from an ERDF graph G′ to any ERDF formula F . Let

14 For simplicity, the example namespace ex: is ignored.
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G,G′ be ERDF graphs. It follows from Propositions 10 and 15 that G |=ERDF G′

iff 〈G, ∅〉 |=st G′.
The following proposition is a direct consequence of Proposition 7 and the

above result, and shows that stable model entailment extends RDFS entailment
from RDF graphs to ERDF ontologies.

Proposition 16. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′ ∩skG(V ar(G)) = ∅. It holds: G |=RDFS G′ iff < G, ∅ >|=st

G′.

Recall that the Skolem vocabulary of G (that is, skG(V ar(G))) contains
artificial URIs giving “arbitrary” names to the anonymous entities whose exis-
tence was asserted by the use of blank nodes in G. Thus, the condition VG′ ∩
skG(V ar(G)) = ∅ in Proposition 16 is actually trivial.

Definition 23 (Query, Stable answers). Let O = 〈G,P 〉 be an ERDF on-
tology. A query F is an ERDF formula. The (ERDF) stable answers of F w.r.t.
O are defined as follows:

Ansst
O (F ) =

8<:“yes” if FVar(F ) = ∅ and ∀M ∈Mst(M) : M |= F
“no” if FVar(F ) = ∅ and ∃M ∈Mst(M) : M 6|= F
{v : FV ar(F ) → VO | ∀M ∈Mst(O) : M |= v(F )} if FVar(F ) 6= ∅,

where v(F ) is the formula F after replacing all the free variables x in F by v(x).
¤

For example, let p, q, c, s, o ∈ URI, let G = {p(s, o), rdf :type(s, c), rdf :type(o, c)},
and let P = {q(?x, ?y) ← rdf :type(?x, c) ∧ rdf :type(?y, c) ∧ ∼p(?x, ?y)}. Then,
the stable answers of F = q(?x, ?y) w.r.t. O = 〈G, P 〉 are Ansst

O (F ) = {(?x =
o, ?y = o), (?x = s, ?y = s), (?x = o, ?y = s)}.

Let O = 〈G,P 〉, where G = {rdf :type(p, erdf :TotalProperty), q(s, o)} and
P = {¬p(?x, ?y) ← ∼p(?x, ?y)}. Then, Ansst

O (p(?x, ?y))= Ansst
O (∼p(?x, ?y))=

Ansst
O (¬p(?x, ?y)) = ∅. This is because, in contrast to the above example, p

is a total property. Thus, there is a stable model M of O such that M |=
v(p(?x, ?y) ∧∼ ¬p(?x, ?y)), and another stable model M ′ of O such that M ′ |=
v(∼p(?x, ?y) ∧ ¬p(?x, ?y)), for all mappings v : {?x, ?y} → VO.

Consider the ERDF ontology O of the example (paper assignment) below De-
finition 21. Then15, Ansst

O (assign(P1, R2)) =“yes” and Ansst
O (assign(P2, R1))

=“no”. Though Ansst
O (assign(P2, R1)) = “no”, that is assign(P2, R1) is not

satisfied by all stable models of O, there is a stable model (M3) that satisfies
assign(P2, R1). Indeed the answers of the query assign(?x, ?y) w.r.t. the sta-
ble models M3 and M4 are of particular interest since both M3 and M4 satisfy
allAssigned(Paper,Reviewer).

The following definition defines the credulous stable answers of a query w.r.t.
an ERDF ontology, that is the answers of the query w.r.t the particular stable
models of O.

Definition 24 (Credulous stable answers). Let O = 〈G,P 〉 be an ERDF
ontology. The credulous (ERDF) stable answers of a query F w.r.t. O are defined
as follows:
15 For brevity, the namespace ex: is ignored.
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c-Ansst
O (F ) =

8<:“yes” if FVar(F ) = ∅ and ∃M ∈Mst(M) : M |= F
“no” if FVar(F ) = ∅ and ∀M ∈Mst(M) : M 6|= F
{Ansst

M (F ) | M ∈Mst(O) and Ansst
M (F ) 6= ∅} if FVar(F ) 6= ∅,

where Ansst
M (F ) = {v : FV ar(F ) → VO | M |= v(F )}. ¤

Continuing with the paper assignment example, consider the query
F = allAssigned(Paper,Reviewer). Then, although Ansst

O (F ) =“no”, it holds
c-Ansst

O (F ) =“yes”, indicating that there is at least one desirable assignment of
the papers P1, P2, P3 to reviewers R1, R2, R3.

Consider now the query F = allAssigned(Paper,Reviewer) ∧ assign(?x, ?y).
Then,

c-Ansst
O (F ) = { {(?x = P1, ?y = R2), (?x = P2, ?y = R1), (?x = P3, ?y = R3)},

{(?x = P1, ?y = R2), (?x = P2, ?y = R3), (?x = P3, ?y = R1)}},

indicating all possible desirable assignments of papers. Obviously, the credulous
stable answers of a query F can provide alternative solutions, which can be useful
in a range of applications, where alternative scenarios naturally appear.

Closing this section, we would like to indicate several differences of the ERDF
stable model semantics w.r.t. first-order logic (FOL). First, in our semantics a
domain closure assumption is made. This is due to the fact that the domain of
every Herbrand interpretation of an ERDF ontology O is ResH

O , that is the union
of the vocabulary of O (VO) and the set of XML values of the well-typed XML
literals in VO minus the well-typed XML literals. This implies that quantified
variables always range in a closed domain. To understand the implications of this
assumption, consider the ERDF graph G, where (V ′ = VRDF ∪VRDFS∪VERDF )

G = {rdf :type(x, ex:c1) | x ∈ {ex:c1, ex:c2} ∪ V ′ − {rdf : i | i ∈ 1, 2, ...}}

Additionally, consider the ERDF program P , where

P = { rdf :type(?x, ex:c1) ← rdf :type(?x, rdfs:ContainerMembershipProperty).
rdf :type(?x, ex:c2) ← true.}.

Let F = ∀?x rdf :type(?x, ex:c2) ⊃ rdf :type(?x, ex:c1). It holds that 〈G, P 〉 |=st

F . However, G ∪ P 6|=FOL F . This is because, there is a FOL model M of
G ∪ P with a domain D and a variable assignment v:{?x} → D such that
M,v |= rdf :type(?x, ex:c2) and M,v 6|= rdf :type(?x, ex:c1).

Another difference is due to the fact that in the definition of the ERDF stable
model semantics, only minimal Herbrand interpretations are considered. Let

G = { ex:teaches(ex:Ann, ex:CS301), ex:teaches(ex:Peter, ex:CS505),
rdf :type(ex:CS505, ex:GradCourse)}.

Let F = ∀?x ex:teaches(ex:Peter, ?x) ⊃ rdf :type(?x, ex:GradCourse). Then,
〈G, ∅〉 |=st F . However, G 6|=FOL F . This is because, there is a FOL model
M of G with a domain D and a variable assignment v:{?x} → D such that
M,v |= ex:teaches(ex:Peter, ?x) and M, v 6|= rdf :type(?x, ex:GradCourse). In
other words, FOL makes an open-world assumption for ex:teaches. Note that
the stable model conclusion F is non-monotonic, meaning that extending G to
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G′, F may no longer be satisfied by the ERDF ontology 〈G′, ∅〉 (i.e. it is possible
that 〈G′, ∅〉 6|=st F ).

Consider now G′ = G ∪ {rdf :type(ex:teaches, erdf :TotalProperty)}. Then,
similarly to FOL, it holds O = 〈G′, ∅〉 6|=st F . This is because now ex:teaches
is a total property. Thus, there is a stable model M of O and a variable as-
signment v: {?x} → ResH

O such that M,v |= ex:teaches(ex:Peter, ?x) and
M,v 6|= rdf :type(?x, ex:GradCourse). In other worlds, now an open-world as-
sumption is made for ex:teaches, as in FOL. Thus, there might exist a course
taught by ex:Peter, even if it is not explicitly indicated so in G′.

Note that the previous ERDF graph G can also be seen as a Description
Logic [12] A-Box A, where

A = {teaches(Ann,CS301), teaches(Peter, CS505), GradCourse(CS505)}

Consider a T-Box T = ∅. Since Description Logics (DLs) are a fragments of
first-order logic, it holds that L = 〈A, T 〉 6|=DL ∀teaches.GradCourse(Peter),
meaning that L does not satisfy that all courses taught by Peter are graduate
courses. An interesting approach for supporting non-monotonic conclusions in
DLs is taken in [11], where DLs of minimal knowledge and negation as failure
(MKNF-DLs) are defined, by extending DLs with two modal operators K, A.
Intuitively, K expresses minimal knowledge and ¬A expresses weak negation.
It holds that L |=MKNF-DL ∀Kteaches.KGradCourse(Peter), expressing that all
courses known to be taught by Peter are known to be undergraduate courses.
Note that this conclusion is non-monotonic, thus it cannot be derived by “clas-
sical” DLs. However, compared to our theory, MKNF-DLs do not support rules
and closed-world assumptions on properties (i.e., ¬p(?x, ?y) ← ∼p(?x, ?y)).

7 ERDF Model Theory as Tarski-style Model Theory

Tarski-style model theory is not limited to classical first-order models, as em-
ployed in the semantics of OWL. It allows various extensions, such as relaxing the
bivalence assumption (e.g., allowing for partial models) or allowing higher-order
models. It is also compatible with the idea of nonmonotonic inference, simply
by not considering all models of a rule as being intended, but only those mod-
els that satisfy a certain criterion. Thus, the stable model semantics for normal
and (generalized) extended logic programs, as defined in [16, 17, 20, 19], can be
viewed as a Tarski-style model-theoretic semantics for nonmonotonic derivation
rules.

A Tarski-style model theory is a triple 〈L, I, |=〉, such that

1. L is a set of formulas, called language,
2. I is a set of interpretations, and
3. |= is a relation between interpretations and formulas, called model relation.

For each Tarski-style model theory 〈L, I, |=〉, we can define

– a notion of a derivation rule G ← F where F ∈ L is called “condition” and
G ∈ L is called “conclusion”;

– DRL = {G ← F : F,G ∈ L}, the set of derivation rules of L;
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– a standard model operator

M(KB) = {I ∈ I| I |= X, ∀X ∈ KB}
where KB ⊆ L ∪ DRL, is a set of formulas and/or derivation rules, called a
knowledge base.

Notice that in this way we can define rules also for logics which do not
contain an implication connective. This shows that the concept of a rule is more
fundamental than, and independent of, the concept of implication.

Typically, in knowledge representation theories not all models of a knowledge
base are intended models. Except from the standard model operator M, there
are also non-standard model operators, which do not provide all models of a
knowledge base, but only a special subset that is supposed to capture its intended
models according to some semantics.

A particularly important type of such an “intended model semantics” is ob-
tained on the basis of some information ordering ≤, which allows to compare
the information content of two interpretations I1, I2 ∈ I: whenever I1 ≤ I2, we
say that I2 is more informative than I1. We define a Tarski-style model theory
extended by an information ordering as a quadruple 〈L, I, |=, ≤〉, and call it
an information model theory.

For any information model theory, we can define a number of natural non-
standard model operators, such as the minimal model operator

Mmin(KB) = minimal≤(M(KB))

and various refinements of it, like the stable generated models [16, 17, 20, 19].
For any given model operator Mx : P(L ∪ DRL) → P(I), knowledge base

KB ⊆ L ∪DRL, and F ∈ L we can define an entailment relation

KB |=x F iff ∀I ∈Mx(KB), I |= F

For non-standard model operators, like minimal and stable models, this en-
tailment relation is typically nonmonotonic, in the sense that for an extension
KB′ ⊇ KB it may be the case that KB entails F , but KB′ does not entail F .

Our (ERDF) stable model theory can be seen as a Tarski-style model theory,
where L = L(URI ∪ LIT ), I is the set of ERDF interpretations over any
vocabulary V ⊆ URI∪LIT , and the model relation |= is as defined in Definition
6. In our theory, the intended model operator (Mst) assigns to each ERDF
ontology a (possible empty) set of stable models (Definition 21).

8 Related Work

In this section, we briefly review extensions of web ontology languages with rules.
TRIPLE [36] is a rule language for the Semantic Web that is especially de-

signed for querying and transforming RDF models (or contexts), supporting
RDF and a subset of OWL Lite. Its syntax is based on F-Logic [23] and sup-
ports an important fragment of first-order logic. A triple is represented by a
statement of the form s[p → o] and sets of statements sharing the same subject
can be aggregated using molecules of the form s[p1 → o1; p2 → o2; ....]. All vari-
ables must be explicitly quantified, either existentially or universally. Arbitrary

25



formulas can be used in the body, while the head of rules (consequent) are re-
stricted to be atoms or conjunctions of molecules. An interesting and relevant
feature of TRIPLE is the use of models to collect sets of related sentences. In
particular, part of the semantics of the RDF(S) vocabulary is represented as
pre-defined rules (and not as semantic conditions on interpretations), which are
grouped together in a module. TRIPLE provides other features like path expres-
sions, skolem model terms, as well as model intersection and difference. Finally,
it should be mentioned that the queries and models are compiled into XSB pro-
log, which guarantees termination of inference. TRIPLE uses the Lloyd-Topor
transformations [27] to take care of the first-order connectives in the sentences
and supports negation-as-failure under the well-founded semantics [15]. Strong
negation is not used.

Flora-2 [41] is a rule-based object-oriented knowledge base system for rea-
soning with semantic information on the Web. It is based on F-logic [23] and
supports metaprogramming, nonmonotonic multiple inheritance, logical data-
base updates, encapsulation, dynamic modules, and two kinds of weak negation
(specifically, Prolog negation and well-founded negation [15]) through invoca-
tion of the corresponding operators \+ and tnot of the XSB system [32]). The
formal semantics for nonmonotonic multiple inheritance is defined in [42]. In ad-
dition, Flora-2 supports reification and anonymous resources [43]. In particular,
in Flora-2, reified statements ${s(p → o)}$ are themselves objects. In contrast,
in RDF(S), they are referred to by a URI or a blank node x, and are associated
with the following RDF triples: rdf :type(x, rdf :Statement), rdf :subject(x, s),
rdf :predicate(x, p), and rdf :object(x, o). In RDF(S) model theory (and thus, in
our theory), no special semantics are given to reified statements. In Flora-2,
anonymous resources are handled through skolemization (similarly to our the-
ory).

Notation 3 (N3) provides a more human readable syntax for RDF and also
extends RDF by adding numerous pre-defined constructs (“built-ins”) for being
able to express rules conveniently (see [38]). Remarkably, N3 contains a built-
in (log:definitiveDocument) for making restricted completeness asumptions and
another built-in (log:notIncludes) for expressing simple negations-as-failure tests.
The addition of these constructs was motivated by use cases. However, N3 does
not have any direct formal semantics for these constructs, and does not provide
strong negation. Notation 3 is supported by the CWM system16, a forward engine
especially designed for the Semantic Web, and the Euler system17, a backward
engine relying on loop checking techniques to guarantee termination.

In [2], the authors propose the Paraconsistent Well-founded Semantics with
explicit negation (WFSXP )18 [1], as the appropriate semantics for reasoning
with (possibly, contradictory) information in the Semantic Web. Supporting ar-
guments include (i) possible reasoning even in the presence of contradiction,
(ii) program transformation into WFS, and (iii) polynomial time inference pro-
cedures. A particular implementation is the SEW system [8], which is able to
reason with RDFS ontologies and rules (possibly with weak and strong negation),
16 http://www.w3.org/2000/10/swap/doc/cwm.html
17 http://www.agfa.com/w3c/euler/
18 WFSXP is an extension of the well-founded semantics with explicit negation

(WFSX) [31] on extended logic programs and, thus, also of the well-founded se-
mantics (WFS) [15] on normal logic programs.
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based on the WFSXP semantics. No formal model theory have been explicitly
provided for the integrated logic.

DR-Prolog [4] and DR-DEVICE [6] are two systems that integrate RDFS
ontologies with rules (strict or defeasible), that are partially ordered through a
superiority relation, based on the semantics of defeasible logic [5, 28]. Defeasible
logic supports only one kind of negation (strong negation) and allows to reason in
the presence of contradiction and incomplete information. It supports monotonic
and nonmonotonic rules, exceptions, default inheritance, and preferences. No
formal model theory have been explicitly provided for the integrated logic.

OWL-DL [29] is an ontology representation language for the Semantic Web,
that is a syntactic variant of the SHOIN (D) description logic and a decidable
fragment of first-order logic. However, the need for extending the expressive
power of OWL-DL with rules has initiated several studies, including the SWRL
(Semantic Web Rule Language) proposal [22]. In [21], it is shown that this ex-
tension is in general undecidable. AL-log [10] was one of the first efforts to
integrate Description Logics with (safe) datalog rules, while achieving decidabil-
ity. It considers the basic description logic ALC and imposes the constraint that
only concept DL-atoms are allowed to appear in the body of the rules, whereas
the heads of the rules are always non DL-atoms. Additionally, each variable ap-
pearing in a concept DL atom in the body of a rule has also to appear in a
non DL-atom in the body or head of the rule. CARIN [26] provides a frame-
work for studying the effects of combining the description logic ALCNR with
(safe) datalog rules. In CARIN, both concept and role DL-atoms are allowed
in the body of the rules. It is shown that the integration is decidable if rules
are non-recursive, or certain combinations of constructors are not allowed in the
DL component, or rules are role-safe (imposing a constraint on the variables of
role DL atoms in the body of the rules)19. In [30], it was shown that the inte-
gration of a SHIQ(D) knowledge base L with a disjunctive datalog program
P is decidable, if P is DL-safe, that is, all variables in a rule occur in at least
one non DL-atom in the body of the rule. In this work, in contrast to AL-log
and CARIN, no tableaux algorithms are employed for query answering but L is
translated to an disjunctive logic program DD(L) which is combined with P for
answering ground queries.

In this category of works, entailment on the extended with rules DL is based
on first-order logic, that is both the DL component and the logic program are
viewed as a set of first-order logic statements. Thus, negation-as-failure, closed-
world-assumptions, and non-monotonic reasoning cannot be supported. In con-
trast in our work, we support both weak and strong negation, and allow closed-
world and open-world reasoning on a selective basis.

A different kind of integration is achieved in [13], where a SHOIN (D) knowl-
edge base L communicates with an extended logic program P (possibly with
weak and strong negation), only through DL-query atoms in the body of the
rules. In particular, the description logic component L is used for answering the
augmented, with input from the logic program, queries appearing in the (possi-
bly weakly negated) DL-query atoms, thus allowing flow of knowledge from P

19 A rule is role-safe if at least one of the variables x, y of each role DL atom R(x, y) in
the body of the rule, appears in some body atom of a base predicate, where a base
predicate is an ordinary predicate that appears only in facts or in rule bodies.

27



to L and vice-versa. In [13], the answer set semantics of 〈L,P 〉 are defined which
generalize the answer set semantics [17] of ordinary extended logic programs.
Similarly, in [14], a SHOIN (D) knowledge base L communicates with a nor-
mal logic program P (possibly with weak negation), through DL-query atoms in
the body of the rules. The well-founded semantics of 〈L,P 〉 are defined which
generalize the well-founded semantics [15] of ordinary normal logic programs.
Obviously, in [13, 14], derived information concerns only non DL-atoms (that
can be possibly used as input to DL-query atoms). Thus, rule-based reasoning
is supported only for non DL-atoms. In contrast, in our work, properties and
classes appearing in the ERDF graphs can freely appear in the heads and bod-
ies of the rules, allowing even the derivation of metalevel statements such as
subclass and subproperty relationships, property transitivity, property and class
totalness.

In [33], the semantics of a disjunctive AL-log knowledge base is defined based
on the answer set semantics [17], extending AL-log [10]. A disjunctive AL-log
knowledge base is the integration of an ALC knowledge base with a (safe) ex-
tended disjunctive logic program that allows concept and role DL-atoms in the
body of the rules (along with weak negation on non DL-atoms). Similarly to
our case, in defining the disjunctive AL-log semantics, only the grounded ver-
sions of the rules are considered (by instantiating variables with DL individuals).
However in [33], rule-based reasoning is supported only for non DL-atoms and
DL-atoms in the body of the rules express constraints (thus their weak negation
is not allowed).

9 Conclusions

In this paper, we extended RDF graphs to ERDF graphs by allowing negative
triples, and then to ERDF ontologies with the inclusion of derivation rules, al-
lowing freely appearance of (meta)properties and (meta)classes in the body and
head of the rules, all logical factors ∼ (weak negation), ¬ (strong negation), ⊃
(material implication), ∧, ∨, ∀, ∃ in the body of the rules, and strong nega-
tion ¬ in the head of the rules. Moreover, the RDF(S) vocabulary was extended
with the terms erdf :TotalProperty and erdf :TotalClass, for representing the
metaclasses of total properties and total classes, respectively. We have defined
ERDF formulas, ERDF interpretations, and ERDF entailment on ERDF formu-
las, showing that it extends RDFS entailment on RDF graphs.

We have developed the model-theoretic semantics of ERDF ontologies, called
ERDF stable model semantics, showing that stable model entailment extends
ERDF entailment on ERDF graphs, and thus it also extends RDFS entailment
on RDF graphs. The ERDF stable model semantics is based on partial logic [19],
which extends the answer set semantics on extended logic programs. We have
shown that classical (boolean) Herbrand model reasoning is a special case of our
semantics, when all properties are total. In this case, similarly to classical logic,
an open-world assumption is made for all properties and classes and the two
negations (weak and strong negation collapse). Allowing totalness of properties
and classes to be declared on a selective basis and the explicit representation
of closed-world assumptions (as derivation rules) enables the combination of
open-world and closed-world reasoning in the same framework.

Future work concerns the support of datatype maps, including XSD datatypes,
and the extension of the ERDF vocabulary to other useful ontological categories,
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possibly in accordance with [37]. Moreover, future work concerns defining a syn-
tax for ERDF ontologies and implementation issues of our semantics.
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Appendix A: RDF(S) semantics

For self-containment, in this Appendix, we review the definitions of simple, RDF, and
RDFS interpretations, as well as the definitions of satisfaction of an RDF graph and
RDFS entailment. For details, see [24, 18].

Definition 25 (Simple interpretation). A simple interpretation I of a vocabulary
V consists of:

– A non-empty set of resources ResI , called the domain or universe of I.
– A set of properties PropI .
– A vocabulary interpretation mapping IV : V ∩URI → ResI ∪ PropI .
– An extension mapping PTI : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .
– A set of literal values LVI ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : V → ResI ∪ PropI such that:

– I(x) = IV (x), ∀x ∈ V ∩URI.
– I(x) = x, ∀ x ∈ V ∩ PL.
– I(x) = ILI(x), ∀ x ∈ V ∩ T L. ¤

Definition 26 (Satisfaction of an RDF graph w.r.t. a simple interpretation).
Let G be an RDF graph and let I be a simple interpretation of a vocabulary V . Let v
be a mapping v : V ar(G) → ResI . If x ∈ Var(G), we define [I +v](x) = v(x). If x ∈ V ,
we define [I + v](x) = I(x). Then,

– I, v |= G iff ∀p(s, o) ∈ G, p ∈ V, s, o ∈ V ∪Var, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PTI(I(p)).

– I satisfies the ERDF graph G, denoted by I |= G, iff there exists a mapping
v : V ar(G) → ResI such that I, v |= G. ¤

Definition 27 (RDF interpretation). An RDF interpretation I of a vocabulary V
is a simple interpretation of V ∪VRDF , which satisfies the following semantic conditions:

1. x ∈ PropI iff 〈x, I(rdf :Property)〉 ∈ PTI(I(rdf :type)).
2. If “s”̂ r̂df :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI(“s”̂ r̂df :XMLLiteral) is the XML value of s,
ILI(“s”̂ r̂df :XMLLiteral) ∈ LVI , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(rdf :XMLLiteral)).

3. If “s”̂ r̂df :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI(“s”̂ r̂df :XMLLiteral) ∈ ResI − LVI , and
〈ILI(“s”̂ r̂df :XMLLiteral), I(rdf :XMLLiteral)〉 6∈ PTI(I(rdf :type)).

4. I satisfies the RDF axiomatic triples, shown in Table 2. ¤

Definition 28 (RDF Entailment). Let G, G′ be RDF graphs. We say that G RDF-
entails G′ (G |=RDF G′) iff for every RDF interpretation I, if I |= G then I |= G′.
¤

Definition 29 (RDFS interpretation). An RDFS interpretation I of a vocabulary
V is an RDF interpretation of V ∪ VRDF ∪ VRDFS , extended by the new ontological
category ClsI ⊆ ResI for classes, as well as the class extension mapping CTI : ClsI →
P(ResI), such that:

1. x ∈ CTI(y) iff 〈x, y〉 ∈ PTI(I(rdf :type)).
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2. The ontological categories are defined as follows:
ClsI = CTI(I(rdfs:Class)),
ResI = CTI(I(rdfs:Resource)), and
LVI = CTI(I(rdfs:Literal)).

3. if 〈x, y〉 ∈ PTI(I(rdfs:domain)) and 〈z, w〉 ∈ PTI(x) then z ∈ CTI(y).
4. If 〈x, y〉 ∈ PTI(I(rdfs:range)) and 〈z, w〉 ∈ PTI(x) then w ∈ CTI(y).
5. If x ∈ ClsI then 〈x, I(rdfs:Resource)〉 ∈ PTI(I(rdfs:subclassOf)).
6. If 〈x, y〉 ∈ PTI(I(rdfs:subClassOf)) then x, y ∈ ClsI , CTI(x) ⊆ CTI(y).
7. PTI(I(rdfs:subClassOf)) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PTI(I(rdfs:subPropertyOf)) then x, y ∈ PropI , PTI(x) ⊆ PTI(y).
9. PTI(I(rdfs:subPropertyOf)) is a reflexive and transitive relation on PropI .

10. If x ∈ CTI(I(rdfs:Datatype)) then 〈x, I(rdfs:Literal)〉 ∈ PTI(I(rdfs:subClassOf)).
11. If x ∈ CTI(I(rdfs:ContainerMembershipProperty)) then 〈x, I(rdfs:member)〉 ∈

PTI(I(rdfs:subPropertyOf)).
12. I satisfies the RDFS axiomatic triples, shown in Table 3. ¤

Definition 30 (RDFS Entailment). Let G, G′ be RDF graphs. We say that G
RDFS-entails G′ (G |=RDFS G′) iff for every RDFS interpretation I, if I |= G then
I |= G′. ¤

31



Appendix B: Proofs

In this Appendix, we prove the Propositions presented in the main paper. To reduce
the size of the proofs, we have eliminated the namespace from the URIs in VRDF ∪
VRDFS ∪ VERDF .

Proposition 1. Let F be an ERDF formula and let I be a partial interpretation of
a vocabulary V . Let u, u′ be mappings u, u′ : Var(F ) → ResI such that u(x) = u′(x),
∀x ∈ FVar(F ). It holds: I, u |= F iff I, u′ |= F .
Proof: We prove the proposition by induction. Without loss of generality, we assume
that ¬ appears only in front of positive ERDF triples. Otherwise we apply the transfor-
mation rules of Definition 5, to get an equivalent formula that satisfies the assumption.

Let F = p(s, o). It holds: I, u |= F iff p ∈ V ′, s, o ∈ V ′ ∪ Var, I(p) ∈ PropI , and
〈[I + u](s), [I + u](o)〉 ∈ PTI(I(p)) iff p ∈ V ′, s, o ∈ V ′ ∪ Var, I(p) ∈ PropI , and
〈[I + u′](s), [I + u′](o)〉 ∈ PTI(I(p)) iff I, u′ |= p(s, o).

Let F = ¬p(s, o). It holds: I, u |= F iff p ∈ V ′, s, o ∈ V ′ ∪ Var, I(p) ∈ PropI ,
and 〈[I + u](s), [I + u](o)〉 ∈ PFI(I(p)) iff p ∈ V ′, s, o ∈ V ′ ∪ Var, I(p) ∈ PropI , and
〈[I + u′](s), [I + u′](o)〉 ∈ PFI(I(p)) iff I, u′ |= ¬p(s, o).
Assumption: Assume that the lemma holds for the subformulas of F .

We will show that the lemma holds also for F .
Let F = ∼G. It holds: I, u |= F iff I, u |= ∼G iff VG ⊆ V and I, u 6|= G iff VG ⊆ V

and I, u′ 6|= G iff I, u′ |= ∼G iff I, u′ |= F .
Let F = F1∧F2. It holds: I, u |= F iff I, u |= F1∧F2 iff I, u |= F1 and I, u |= F2 iff

I, u′ |= F1 and I, u′ |= F2 iff I, u′ |= F1∧F2 iff I, u′ |= F .
Let F = ∃x G. We will show that (i) if I, u |= F then I, u′ |= F and (ii) if I, u′ |= F

then I, u |= F .
(i) Let I, u |= F . Then, I, u |= ∃xG. Thus, there exists u1 : Var(G) → ResI s.t. u1(y) =
u(y), ∀y ∈ Var(G)−{x}, and I, u1 |= G. Let u2 be a mapping u2 : Var(G) → ResI s.t.
u2(y) = u′(y) and u2(x) = u1(x). Since u(z) = u′(z), ∀z ∈ FVar(F ) and x ∈ FVar(G),
it follows that u1(z) = u2(z), ∀z ∈ FVar(G). Thus, I, u2 |= G. Therefore, there exists
a mapping u2 : Var(G) → ResI s.t. u2(y) = u′(y), ∀y ∈ Var(G)−{x}, and I, u2 |= G.
Thus, I, u′ |= ∃x G, which implies that I, u′ |= F .
(ii) We prove this statement similarly to (i) by exchanging u and u′.

Let F = F1∨F2 or F = F1 ⊃ F2 or F = ∀xG. We can prove, similarly to the above
cases, that I, u |= F iff I, u′ |= F . ¤

Proposition 2. Let G = {t1, ..., tn} be an ERDF graph and let Var(G) = {x1, ..., xk}.
Let F be the ERDF formula ∃x1, ...xk t1∧...∧tn. It holds: I |= G iff I |= F .
Proof:
⇒) Assume that I |= G, we will show that I |= F . Since I |= G, it follows that
∃v : Var(G) → ResI such that I, v |= ti, ∀i = 1, ...n. Thus, ∃v : Var(G) → ResI such
that I, v |= t1∧...∧tn. This implies that, ∃u : Var(G) → ResI such that I, u |= F . Since
FV ar(F ) = ∅, it follows from Proposition 1 that ∀u′ : Var(G) → ResI , it holds that
I, u′ |= F . Thus, I |= F .

⇐) Assume that I |= F , we will show that I |= G. Since I |= F , it follows that
∀v : Var(G) → ResI it holds that I, v |= F . Thus, ∃v : Var(G) → ResI such that
I, v |= F . This implies that ∃u : V ar(G) → ResI such that I, u |= t1∧...∧tn. Thus,
∃u : Var(G) → ResI such that I, u |= ti, ∀i = 1, ...n. Therefore, I |= G. ¤

Proposition 3. Let I be a coherent ERDF interpretation of a vocabulary V . It holds:
∀x ∈ ClsI , CTI(x) ∩ CFI(x) = ∅.
Proof: Since I(type) ∈ PropI , it holds: PTI(I(type)) ∩ PFI(I(type)) = ∅. Assume
that there is x ∈ ClsI s.t. CTI(x) ∩ CFI(x) 6= ∅. Let z ∈ CTI(x) ∩ CFI(x), for such
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a x. Then, it holds 〈z, x〉 ∈ PTI(I(type)) ∩ PFI(I(type)), which is impossible. Thus,
∀x ∈ ClsI , CTI(x) ∩ CFI(x) = ∅. ¤

Proposition 4. Let I be an ERDF interpretation of a vocabulary V and let V ′ =
V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,

1. For all p, s, o ∈ V ′, such that I(p) ∈ TPropI , it holds:
I |= ∼p(s, o) iff I |= ¬p(s, o) (equivalently, I |= p(s, o) ∨ ¬p(s, o)).

2. For all x, c ∈ V ′ such that I(c) ∈ TClsI , it holds:
I |= ∼rdf :type(x, c) iff I |= ¬rdf :type(x, c)
(equivalently, I |= rdf :type(x, c) ∨ ¬rdf :type(x, c)).

Proof:
1) It holds: I |= ∼p(s, o) iff I 6|= p(s, o) iff 〈I(s), I(o)〉 6∈ PTI(p) iff (since p ∈ TPropI)
〈I(s), I(o)〉 ∈ PFI(p) iff I |= ¬p(s, o). Therefore, I |= ∼p(s, o) iff I |= ¬p(s, o).

We will also show that I |= p(s, o) ∨ ¬p(s, o). It holds I |= p(s, o) or I |= ∼p(s, o).
This implies that I |= p(s, o) or I |= ¬p(s, o), and thus, I |= p(s, o) ∨ ¬p(s, o).
2) The proof is similar to the proof of 1) after replacing p(s, o) by type(x, c) and TPropI

by TClsI . ¤

Proposition 5. Let I be an ERDF interpretation of a vocabulary V and let V ′ =
V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,

1. If TPropI = PropI then I is a classical ERDF interpretation.
2. If I is a classical ERDF interpretation and F is an ERDF formula over V ′ such

that I(p) ∈ PropI , for every property p in F , then it holds:
I |= ∼F iff I |= ¬F (equivalently, I |= F ∨ ¬F ).

Proof:
1. If TPropI = PropI then for all p ∈ PropI , it holds that PTI(p) ∪ PFI(p) =
ResI ×ResI . Thus, I is a classical ERDF interpretation.
2. We will prove that I |= ∼F iff I |= ¬F , by induction. Without loss of generality,
we assume that ¬ appears only in front of positive ERDF triples. Otherwise we apply
the transformation rules of Definition 5, to get an equivalent formula that satisfies the
assumption.

Let F = p(s, o). It holds: I |= ∼F iff ∀v : V ar(F ) → ResI , it holds I, v 6|= p(s, o)
iff ∀v : Var(F ) → ResI , it holds 〈[I + v](s), [I + v](o)〉 6∈ PTI(I(p)) iff ∀v : Var(F ) →
ResI , it holds 〈[I + v](s), [I + v](o)〉 ∈ PFI(I(p)) iff ∀v : Var(F ) → ResI , it holds
I, v |= ¬p(s, o) iff I |= ¬F .

Let F = ¬p(s, o). It holds: I |= ∼F iff ∀v : V ar(F ) → ResI , it holds I, v 6|= ¬p(s, o)
iff ∀v : Var(F ) → ResI , it holds 〈[I + v](s), [I + v](o)〉 6∈ PFI(I(p)) iff ∀v : Var(F ) →
ResI , it holds 〈[I + v](s), [I + v](o)〉 ∈ PTI(I(p)) iff ∀v : Var(F ) → ResI , it holds
I, v |= ¬(¬p(s, o)) iff I |= ¬F .
Assumption: Assume that the lemma holds for the subformulas of F .
We will show that the lemma holds also for F .

Let F = ∼G. It holds: I |= ∼F iff ∀v : Var(F ) → ResI , it holds I, v 6|= ∼G iff
∀v : Var(F ) → ResI , it holds I, v |= G iff ∀v : Var(F ) → ResI , it holds I, v |= ¬(∼G)
iff I |= ¬F .

Let F = F1∧F2. It holds: I |= ∼F iff ∀v : Var(F ) → ResI , it holds I, v 6|= F1∧F2 iff
iff ∀v : Var(F ) → ResI , it holds I, v 6|= F1 or I 6|= F2 iff (i) ∀v : Var(F ) → ResI , it holds
I, v |= ∼F1 or (ii) ∀v : Var(F ) → ResI , it holds I, v |= ∼F2 iff (i) ∀v : Var(F ) → ResI ,
it holds I, v |= ¬F1 or (ii) ∀v : Var(F ) → ResI , it holds I, v |= ¬F2 iff ∀v : Var(F ) →
ResI , it holds I, v |= ¬(F1∧F2) iff I |= ¬F .

Let F = ∃x G. It holds: I |= ∼F iff ∀v : Var(F ) → ResI , it holds I, v |= ∼∃xG
iff ∀v : Var(F ) → ResI , there is no u : Var(G) → ResI s.t. u(y) = v(y), ∀y ∈
Var(G) − {x} and I, u |= G iff ∀v : Var(F ) → ResI and ∀u : Var(G) → ResI s.t.
u(y) = v(y), ∀y ∈ Var(G) − {x}, it holds I, u |= ∼G iff ∀v : Var(F ) → ResI and
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∀u : Var(G) → ResI s.t. u(y) = v(y), ∀y ∈ Var(G) − {x}, it holds I, u |= ¬G iff
∀v : Var(F ) → ResI , I, v |= ∀x ¬G iff ∀v : Var(F ) → ResI , I, v |= ¬∃x G iff I |= ¬F .

Let F = F1∨F2 or F = F1 ⊃ F2 or F = ∀xG. We can prove, similarly to the above
cases, that I |= ∼F iff I |= ¬F . ¤

Proposition 6 Let G be an RDF graph such that VG ∩VERDF = ∅. Then, there is an
RDFS interpretation that satisfies G iff there is an ERDF interpretation that satisfies
G.
Proof:
⇒) Let I be an RDFS interpretation of a vocabulary V s.t. I |= G. In the proof of
Proposition 7 (⇐), we show that we can construct an ERDF interpretation J of V
such that J |= G.
⇐) Let I be an ERDF interpretation of a vocabulary V s.t. I |= G. In the proof of
Proposition 7 (⇒), we show that we can construct an RDFS interpretation J of V such
that J |= G. ¤

Proposition 7. Let G, G′ be RDF graphs such that VG ∩ VERDF = ∅ and VG′ ∩
VERDF = ∅. Then, G |=RDFS G′ iff G |=ERDF G′.
Proof: First, we define the set of ERDF property classes, PCERDF = {TotalProperty,
SymmetricProperty, TransitiveProperty}.
⇐) Let G |=ERDF G′. We will show that G |=RDFS G′. In particular, let I be an RDFS
interpretation of a vocabulary V s.t. I |= G, we will show that I |= G′.

Since I |= G, it holds that ∃v : Var(G) → ResI s.t. I, v |= G. Our goal is to
construct an ERDF interpretation J of V s.t. J |= G. We consider an 1-1 mapping
res : VERDF → R, where R is a set disjoint from ResI . Additionaly, let V ′ = V ∪
VRDF ∪ VRDFS ∪ VERDFS . Based on I and the mapping res, we construct a partial
interpretation J of V as follows:

– ResJ = ResI ∪ res(VERDF ).
– JV (x) = IV (x), ∀x ∈ (V ′ − VERDF ) ∩URI and JV (x) = res(x), ∀x ∈ VERDF .
– We define the mapping: ILJ : V ′ ∩ T L → ResJ such that: ILJ(x) = ILI(x).
– We define the mapping: J : V ′ → ResJ such that:

• J(x) = JV (x), ∀x ∈ V ′ ∩URI.
• J(x) = x, ∀ x ∈ V ′ ∩ PL.
• J(x) = ILJ(x), ∀ x ∈ V ′ ∩ T L.

– We define the mapping PT ′J : ResJ → P(ResJ ×ResJ) as follows:

(PT1) if x, y, z ∈ ResI and 〈x, y〉 ∈ PTI(z) then 〈x, y〉 ∈ PT ′J(z).
(PT2) 〈res(TotalClass), J(Class)〉 ∈ PT ′J(J(subClassOf)).
(PT3) if x ∈ PCERDF then 〈res(x), J(Property)〉 ∈ PT ′J(J(subClassOf)).

Starting from the derivations of (PT1), (PT2), and (PT3), the following rules are
applied recursively, until a fixpoint is reached:

(PT4) if 〈x, y〉 ∈ PT ′J(J(domain)) and 〈z, w〉 ∈ PT ′J(x) then 〈z, y〉 ∈ PT ′J(J(type)).
(PT5) if 〈x, y〉 ∈ PT ′J(J(range)) and 〈z, w〉 ∈ PT ′J(x) then 〈w, y〉 ∈ PT ′J(J(type)).
(PT6) if 〈x, J(Class)〉 ∈ PT ′J(J(type)) then 〈x, J(Resource)〉 ∈ PT ′J(J(subClassOf)).
(PT7) if 〈x, y〉 ∈ PT ′J(J(subClassOf)) then 〈x, J(Class)〉 ∈ PT ′J(J(type)).
(PT8) if 〈x, y〉 ∈ PT ′J(J(subClassOf)) then 〈y, J(Class)〉 ∈ PT ′J(J(type)).
(PT9) if 〈x, y〉 ∈ PT ′J(J(subClassOf)) and 〈z, x〉 ∈ PT ′J(J(type)) then

〈z, y〉 ∈ PT ′J(J(type)).
(PT10) if 〈x, J(Class)〉 ∈ PT ′J(J(type)) then 〈x, x〉 ∈ PT ′J(J(subClassOf)).
(PT11) if 〈x, y〉 ∈ PT ′J(J(subClassOf)) and 〈y, z〉 ∈ PT ′J(J(subClassOf)) then

〈x, z〉 ∈ PT ′J(J(subClassOf)).
(PT12) if 〈x, y〉 ∈ PT ′J(J(subPropertyOf)) then 〈x, J(Property)〉 ∈ PT ′J(J(type)).
(PT13) if 〈x, y〉 ∈ PT ′J(J(subPropertyOf)) then 〈y, J(Property)〉 ∈ PT ′J(J(type)).

34



(PT14) if 〈x, y〉 ∈ PT ′J(J(subPropertyOf)) and 〈z, w〉 ∈ PT ′J(x) then 〈z, w〉 ∈ PT ′J(y).
(PT15) if 〈x, J(Property)〉 ∈ PT ′J(J(type)) then 〈x, x〉 ∈ PT ′J(J(subPropertyOf)).
(PT16) if 〈x, y〉 ∈ PT ′J(J(subPropertyOf)) and 〈y, z〉 ∈ PT ′J(J(subPropertyOf)) then

〈x, z〉 ∈ PT ′J(J(subPropertyOf)).
(PT17) if 〈x, J(Datatype)〉 ∈ PT ′J(J(type)) then 〈x, J(Literal)〉 ∈ PT ′J(J(subClassOf)).
(PT18) if 〈x, J(ContainerMembershipProperty)〉 ∈ PT ′J(J(type)) then

〈x, J(member)〉 ∈ PT ′J(J(subPropertyOf)).

After reaching fixpoint, nothing else is contained in PT ′J(x), ∀x ∈ ResJ .
– PropJ = {x ∈ ResJ | 〈x, J(Property)} ∈ PT ′J(J(type))}.
– The mapping PTJ : PropJ → P(ResJ ×ResJ) is defined as follows:

PTJ(x) = PT ′J(x), ∀x ∈ PropJ .
– LVJ = {x ∈ ResJ | 〈x, J(Literal)〉 ∈ PTJ(J(type))}.
– The mapping PFJ : PropJ → P(ResJ ×ResJ) is defined as follows:

(PF1) if “s”̂ r̂df :XMLLiteral ∈ V is not a well-typed XML-Literal then
〈ILJ(“s”̂ r̂df :XMLLiteral), J(Literal)〉 ∈ PFJ(J(type)).

(PF2) if 〈J(TotalClass), J(TotalClass)〉 ∈ PTJ(J(type)) then
∀x ∈ ResJ − {J(TotalClass)}, 〈x, J(TotalClass)〉 ∈ PFJ(J(type)).

(PF3) if 〈J(TotalProperty), J(TotalProperty)〉 ∈ PTJ(J(type)) then
∀x, y ∈ ResJ , 〈x, y〉 ∈ PFJ(J(TotalProperty)).

Starting from the derivations of (PF1), (PF2), and (PF3), the following rules are
applied recursively, until a fixpoint is reached:

(PF4) if 〈x, y〉 ∈ PTJ(J(subClassOf)) and 〈z, y〉 ∈ PFJ(J(type)) then
〈z, x〉 ∈ PFJ(type).

(PF5) if 〈x, y〉 ∈ PTJ(J(subPropertyOf)) and 〈z, w〉 ∈ PFJ(y) then
〈z, w〉 ∈ PFJ(x).

(PF6) if 〈J(SymmetricProperty), J(SymmetricProperty)〉 ∈ PTJ(J(type)) and
〈x, y〉 ∈ PFJ(J(SymmetricPropery)) then
〈y, x〉 ∈ PFJ(J(SymmetricPropery))

After reaching fixpoint, nothing else is contained in PFJ(x), ∀x ∈ PropJ .

Before we continue, we prove the following lemma:

Lemma: For all x, y, x ∈ ResJ , 〈x, y〉 ∈ PT ′J(z) iff 〈x, y〉 ∈ PTJ(z).
Proof :
⇐) if 〈x, y〉 ∈ PTJ(z), then from the definition of PTJ , it follows immediately that
〈x, y〉 ∈ PT ′J(z).
⇒) Let 〈x, y〉 ∈ PT ′J(z). Then, from the definition of PT ′J , it follows that it holds (i)
z ∈ PropI or (ii) ∃w ∈ ResJ , s.t. 〈w, z〉 ∈ PT ′J(J(subPropertyOf)).

(i) Assume that z ∈ PropI . Then, 〈z, I(Property)〉 ∈ PTI(I(type)). This implies
that 〈z, J(Property)〉 ∈ PTI(J(type)). ¿From (PT1), it now follows that
〈z, J(Property)〉 ∈ PT ′J(J(type)). Therefore, z ∈ PropJ . From the definition of PTJ ,
it now follows that 〈x, y〉 ∈ PTJ(z).

(ii) Assume that ∃w ∈ ResJ , s.t. 〈w, z〉 ∈ PT ′J(J(subPropertyOf)). Then, from
(PT13), it follows that 〈z, J(Property)〉 ∈ PT ′I(J(type)). Therefore, z ∈ PropJ . From
the definition of PTJ , it now follows that 〈x, y〉 ∈ PTJ(z).
End of Lemma

Though not mentioned explicitly, the above Lemma is used throughout the rest of
the proof.

To show that J is a partial interpretation of V ′, it is enough to show that V ′∩PL ⊆
LVJ . Let x ∈ V ′ ∩ PL. Then, x ∈ LVI . Thus, 〈x, I(Literal)〉 ∈ PTI(I(type)). Due to
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(PT1), this implies that 〈x, J(Literal)〉 ∈ PTJ(J(type)). Thus, x ∈ LVJ .

Now, we extend J with the ontological categories:
ClsJ = {x ∈ ResJ | 〈x, J(Class)〉 ∈ PTJ(J(type))},
TClsJ = {x ∈ ResJ | 〈x, J(TotalClass)〉 ∈ PTJ(J(type))}, and
TPropJ = {x ∈ ResJ | 〈x, J(TotalProperty)〉 ∈ PTJ(J(type))}.
We define CTJ , CFJ : ClsJ → P(ResJ) as follows:
x ∈ CTJ(y) iff 〈x, y〉 ∈ PTJ(J(type)), and
x ∈ CFJ(y) iff 〈x, y〉 ∈ PFJ(J(type)).

We will now show that J is an ERDF interpretation of V . Specifically, we will
show that J satisfies the semantic conditions of Definition 8 (ERDF Interpretation)
and Definition 9 (Coherent ERDF interpretation).

First, we will show that J satisfies semantic condition 2 of Definition 8. We will
start by proving that ResJ = CTJ(J(Resource)). Obviously,
CTJ(J(Resource)) ⊆ ResJ . Thus, it is enough to prove that ResJ ⊆ CTJ(J(Resource)).
Let x ∈ ResJ . Then, we distinguish the following cases:

Case 1) x ∈ ResI . Since I is an RDFS interpretation, 〈x, I(Resource)〉 ∈ PTI(I(type)).
Thus, 〈x, J(Resource)〉 ∈ PTJ(J(type)), which implies that x ∈ CTJ(J(Resource)).

Case 2) x ∈ res(VERDF ). From the definition of PT ′J , it follows that
〈x, J(Resource)〉 ∈ PT ′J(J(type)). Thus, 〈x, J(Resource)〉 ∈ PTJ(J(type)), which im-
plies that x ∈ CTJ(J(Resource)).

Thus, ResJ = CTJ(J(Resource)).

Additionally, it is easy to see that it holds PropJ = CTJ(J(Property)), ClsJ =
CTJ(J(Class)), LVJ = CTJ(J(Literal)), TClsJ = CTJ(J(TotalClass)), and
TPropJ = CTJ(J(TotalProperty)).

We will now show that J satisfies semantic condition 3 of Definition 8. Let 〈x, y〉 ∈
PTJ(J(domain)) and 〈z, w〉 ∈ PTJ(x). Then, from (PT4) and the definition of CTJ ,
it follows that z ∈ CTJ(y).

We will now show that J satisfies semantic condition 4 of Definition 8. Let 〈x, y〉 ∈
PTJ(J(range)) and 〈z, w〉 ∈ PTJ(x). Then, from (PT5) and the definition of CTJ , it
follows that w ∈ CTJ(y).

We will now show that J satisfies semantic condition 5 of Definition 8. Let x ∈
ClsJ . Thus, it holds: 〈x, J(Class)〉 ∈ PTJ(J(type)). From (PT6), it now follows that
〈x, J(Resource)〉 ∈ PTJ(J(subClassOf)).

We will now show that J satisfies semantic condition 6 of Definition 8. Let 〈x, y〉 ∈
PTJ(J(subClassOf)). Then, from (PT7), (PT8), and the definition of CTJ , it follows
that x, y ∈ ClsJ .

Let 〈x, y〉 ∈ PTJ(J(subClassOf)). We will show that CTJ(x) ⊆ CTJ(y). In par-
ticular, let z ∈ CTJ(x). Then, from (PT9) and the definition of CTJ , it follows that
z ∈ CTJ(y).

Let 〈x, y〉 ∈ PTJ(J(subClassOf)). We will show that CFJ(y) ⊆ CFJ(x). In par-
ticular, let z ∈ CFJ(y). Then, from (PF4) and the definition of CFJ , it follows that
z ∈ CFJ(x).

In a similar manner, we can prove that J also satisfies the semantic conditions 7,
8, 9, 10, and 11 of Definition 8.
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To continue the rest of the proof, we need to make a few observations.
Consider the mapping h : ResJ → ResI , which is defined as follows:

h(x) =

8<:x if x ∈ ResI

I(Class) if x = res(TotalClass)
I(Property) if x ∈ res(PCERDF )

Observation 1: If 〈x, y〉 ∈ PTJ(z) and y ∈ res(VERDF ) then x = y.
Observation 2: If x ∈ res(VERDF ) and x ∈ PropJ then PTJ(x) = ∅.
Observation 3: If 〈x, y〉 ∈ PTJ(z) then 〈h(x), h(y)〉 ∈ PTI(h(z)).
Observation 4: If x, y, z ∈ ResI and 〈x, y〉 ∈ PTJ(z) then 〈x, y〉 ∈ PTI(z)20.
The proof of these observations is made by induction. It is easy to see that all obser-
vations hold for the derivations of (PT1), (PT2), and (PT3). Assume now that the
observations hold for the derivations obtained at a step k of the application of the fix-
point operator for PTJ . Then, the observations also hold for the derivations obtained
at step k + 1.

We will now show that J satisfies semantic condition 12 of Definition 8. Let
x ∈ TClsJ . Thus, 〈x, J(TotalClass)〉 ∈ PTJ(J(type)). From Observation 1, it fol-
lows that x = J(TotalClass). From (PF2), it now follows that CTJ(J(TotalClass)) ∪
CFJ(J(TotalClass)) = ResJ . Thus, CTJ(x) ∪ CFJ(x) = ResJ .

We will now show that J satisfies semantic condition 13 of Definition 8. Let x ∈
TPropJ . Thus, 〈x, J(TotalProperty)〉 ∈ PTJ(J(type)). ¿From Observation 1, it follows
that x = J(TotalProperty). From (PF3), it now follows that PTJ(J(TotalProperty))∪
PFJ(J(TotalProperty)) = ResJ ×ResJ . Thus, PTJ(x) ∪ PFJ(x) = ResJ ×ResJ .

We will now show that J satisfies semantic condition 14 of Definition 8. Let x ∈
CTJ(J(SymmetricProperty)). Then, 〈x, J(SymmetricProperty)〉 ∈ PTJ(J(type)).
¿From Observation 1, it follows that x = J(SymmetricProperty). From Observation
2, it follows that PTJ(x) = ∅. Thus, PTJ(x) is a symmetric relation. Additionally, from
(PF6), it follows that PFJ(x) is a symmetric relation.

We will now show that J satisfies semantic condition 15 of Definition 8. Let x ∈
CTJ(J(TransitiveProperty)). Then, 〈x, J(TransitiveProperty)〉 ∈ PTJ(J(type)). ¿From
Observation 1, it follows that x = J(TransitiveProperty). From Observation 2, it fol-
lows that PTJ(x) = ∅. Thus, PTJ(x) is a transitive relation.

We will now show that J satisfies semantic condition 16 of Definition 8. Let
“s”̂ r̂df :XMLLiteral be a well-typed XML-Literal in V then ILJ(“s”̂ r̂df :XMLLiteral)
= ILI(“s”̂ r̂df :XMLLiteral) is the XML value of s. Additionally, since I is an
RDFS interpretation of V , it holds: 〈ILI(“s”̂ r̂df :XMLLiteral), I(XMLLiteral)〉 ∈
PTI(I(type)). Therefore, from (PT1), it follows that
〈ILJ(“s”̂ r̂df :XMLLiteral), J(XMLLiteral)〉 ∈ PTJ(J(type)).

We will now show that J satisfies semantic condition 17 of Definition 8. Let
“s”̂ r̂df :XMLLiteral ∈ V s.t s is not a well-typed XML literal string. Assume that
ILJ(“s”̂ r̂df :XMLLiteral) ∈ LVJ . Then, 〈ILJ(“s”̂ r̂df :XMLLiteral), J(Literal)〉 ∈
PTJ(J(type)). ¿From Observation 4, it follows that 〈ILJ(“s”̂ r̂df :XMLLiteral),
J(Literal)〉 ∈ PTI(J(type)). Therefore, it follows that 〈ILI(“s”̂ r̂df :XMLLiteral),
I(Literal)〉 ∈ PTI(I(type)). Thus, ILI(“s”̂ r̂df :XMLLiteral) ∈ LVI , which is impos-
sible since I is an RDFS interpretation of V . Therefore, ILJ(“s”̂ r̂df :XMLLiteral) ∈
ResJ − LVJ .

20 Note that Observation 3 implies Observation 4.
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Additionally, from (PF1), it follows that 〈ILJ(“s”̂ r̂df :XMLLiteral), J(Literal)〉 ∈
PFJ(J(type)).

J also satisfies semantic condition 18 of Definition 8, due to (PT1). Finally, J
satisfies semantic condition 19, due to (PT2) and (PT3).

Thus, J is an ERDF interpretation of V .

Now, we will show that J is a coherent ERDF interpretation (Definition 9). Assume
that this is not the case. Thus, there is z ∈ PropJ s.t. PTJ(z) ∩ PFJ(z) 6= ∅. Assume
that 〈x, y〉 ∈ PTJ(z) ∩ PFJ(z), for such a z. We distinguish the following cases:

Case 1) z ∈ res(VERDF ). Then, from Observation 2, it follows that PTJ(z) = ∅,
which is a contradiction.

Case 2) y ∈ res(VERDF ) and z ∈ ResI . Then, it holds:
(i) 〈z, res(TotalProperty)〉 ∈ PTJ(J(subPropertyOf)), or
(ii) 〈z, J(type)〉 ∈ PTJ(J(subPropertyOf)) and 〈x, y〉 ∈ PFJ(J(type)).

¿From Observation 1 and since z ∈ ResI , case (i) is impossible. Thus, 〈z, J(type)〉 ∈
PTJ(J(subPropertyOf)) and 〈x, y〉 ∈ PFJ(J(type)). This implies that
y = res(TotalClass). From Observation 1, it follows that x = res(TotalClass), which
is impossible since, due to (PF2), 〈res(TotalClass), res(TotalClass)〉 6∈ PFJ(J(type)).

Case 3) x ∈ res(VERDF ) and y, z ∈ ResI . Then, it holds:
(i) 〈z, res(TotalProperty)〉 ∈ PTJ(J(subPropertyOf)), or
(ii) 〈z, J(type)〉 ∈ PTJ(J(subPropertyOf)) and 〈x, y〉 ∈ PFJ(J(type)).

¿From Observation 1 and since z ∈ ResI , case (i) is impossible. Thus, 〈z, J(type)〉 ∈
PTJ(J(subPropertyOf)) and 〈x, y〉 ∈ PFJ(J(type)). This implies that
y = res(TotalClass), which is impossible, since y ∈ ResI .

Case 4) x, y, z ∈ ResI . Then, x = ILJ(s), where s is an ill-typed XML-Literal in V ,
〈z, J(type)〉 ∈ PTJ(J(subPropertyOf)) and 〈y, J(Literal)〉 ∈ PTJ(J(subClassOf)).
Since 〈x, y〉 ∈ PTJ(z), it follows that 〈x, y〉 ∈ PTJ(J(type)). Since 〈y, J(Literal)〉 ∈
PTJ(J(subClassOf)), it follows that 〈x, J(Literal)〉 ∈ PTJ(J(type)). ¿From Observa-
tion 4, it follows that 〈ILJ(s), J(Literal)〉 ∈ PTI(J(type)). Therefore,
〈ILI(s), I(Literal)〉 ∈ PTI(I(type)). But this implies that ILI(s) ∈ LVI , which is
impossible since I is an RDFS interpretation of V .

Since all cases lead to contradiction, it follows that:
∀z ∈ PropJ , PTJ(z) ∩ PFJ(z) = ∅.

We will now show that J, v |= G. Let p(s, o) ∈ G. Since I, v |= G, it holds that
p ∈ V ′, s, o ∈ V ′ ∪ Var. Note that, due to (PT1), it holds PropI ⊆ PropJ . Since
p 6∈ VERDF , it holds J(p) = I(p) ∈ PropI ⊆ PropJ . Since s, o 6∈ VERDF , it holds
that [I + v](s) = [J + v](s) and [I + v](o) = [J + v](o). Since I, v |= G, it holds
〈[I + v](s), [I + v](o)〉 ∈ PTI(I(p)). Thus, 〈[J + v](s), [J + v](o)〉 ∈ PTI(J(p)). From
(PT1), it follows that 〈[J + v](s), [J + v](o)〉 ∈ PTJ(J(p)). Thus, J, v |= G, which
implies that J |= G. Since J is an ERDF interpretation and G |=ERDF G′, it follows
that J |= G′. Thus, there is u : V ar(G′) → ResJ = ResI ∪ res(VERDF ) s.t. J, u |= G′.
We define a mapping u′ : V ar(G′) → ResI as follows:

u′(x) =

8<:u(x) if u(x) ∈ ResI

I(Class) if u(x) = res(TotalClass)
I(Property) if u(x) ∈ res(PCERDF )

We will show that I, u′ |= G′. Let p(s, o) ∈ G′. Since J |= G′ and VG′ ∩ VERDF =
∅, it follows that p ∈ V ∪ VRDF ∪ VRDFS , s, o ∈ V ∪ VRDF ∪ VRDFS ∪ Var, and
J(p) ∈ PropJ . Thus, 〈J(p), J(type)〉 ∈ PTJ(J(Property), which implies (since p 6∈
VERDF ) that 〈I(p), I(type)〉 ∈ PTJ(I(Property). Due to Observation 4, it follows
that 〈I(p), I(type)〉 ∈ PTI(I(Property). Thus, I(p) ∈ PropI . Additionally, it holds:
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〈[J + u](s), [J + u](o)〉 ∈ PTJ(J(p)). We want to show that 〈[I + u′](s), [I + u′](o)〉 ∈
PTI(I(p)).

Case 1) It holds: (i) if s ∈ Var(G′) then u(s) 6∈ res(VERDF ) and (ii) if o ∈ Var(G′)
then u(o) 6∈ res(VERDF ).
Then, [J + u](s) = [J + u′](s) = [I + u′](s) ∈ ResI , [J + u](o) = [J + u′](o) =
[I + u′](o) ∈ ResI , and J(p) = I(p) ∈ ResI . Thus, 〈[J + u](s), [J + u](o)〉 ∈ PTJ(J(p))
implies that 〈[I+u′](s), [I+u′](o)〉 ∈ PTJ(I(p)). From Observation 4, the latter implies
that 〈[I + u′](s), [I + u′](o)〉 ∈ PTI(I(p)).

Case 2) It holds: (i) s ∈ Var(G′) and u(s) ∈ res(VERDF ) and (ii) if o ∈ Var(G′)
then u(o) 6∈ res(VERDF ).
Assume that u(s) = res(TotalClass), [J + u](o) = y, and J(p) = z. Then y, z ∈ ResI .
Additionally, I(p) = J(p) = z and [I + u′](o) = [J + u](o) = y. Thus, 〈[I + u′](s), [I +
u′](o)〉 = 〈I(Class), y〉. It holds 〈res(TotalClass), y〉 ∈ PTJ(z). Due to Observation
3, it holds 〈I(Class), y〉 ∈ PTI(z). Thus, 〈[I + u′](s), [I + u′](o)〉 = 〈I(Class), y〉 ∈
PTI(z) = PTI(I(p)).

Similarly, if u(s) ∈ res(PCERDF ), we prove that 〈[I+u′](s), [I+u′](o)〉 ∈ PTI(I(p)).

Case 3) It holds: o ∈ Var(G′) and u(o) ∈ res(VERDF ). Then, Observation 1, it
follows that s ∈ Var(G′) and u(s) = u(o). Assume that u(o) = res(TotalClass), and
J(p) = z. Then, z ∈ ResI and I(p) = J(p) = z. Additionally, 〈[I +u′](s), [I +u′](o)〉 =
〈I(Class), I(Class)〉. It holds 〈res(TotalClass), res(TotalClass)〉 ∈ PTJ(z). Due to
Observation 3, it follows that 〈I(Class), I(Class)〉 ∈ PTI(z). Thus, 〈[I + u′](s), [I +
u′](o)〉 = 〈I(Class), I(Class)〉 ∈ PTI(z) = PTI(I(p)).

Similarly, if u(o) ∈ res(PCERDF ), we prove that 〈[I+u′](s), [I+u′](o)〉 ∈ PTI(I(p)).

As in all cases, it holds 〈[I + u′](s), [I + u′](o)〉 = PTI(I(p)), it follows that I, u′ |= G′,
which implies that I |= G′.

⇒) Let G |=RDFS G′. We will show that G |=ERDF G′. Let I be an ERDF interpre-
tation of a vocabulary V , such that I |= G. Thus, there is u : Var(G) → ResI s.t.
I, u |= G. We will show that I |= G′.

We define V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Based on I, we construct an RDFS
interpretation J of V ′ such that: ResJ = ResI , P ropJ = PropI , LVJ = LVI , ClsJ =
ClsI , JV (x) = IV (x), ∀x ∈ V ′ ∩ URI, PTJ(x) = PTI(x),∀x ∈ PropJ , ILJ(x) =
ILI(x),∀x ∈ V ′ ∩ T L, CTJ(x) = CTI(x), ∀x ∈ ClsJ .

We will now show that J is indeed an RDFS interpretation of V ′.
First, we will show that J satisfies semantic condition 1 of Definition 27 (Appendix,

RDF interpretation). It holds: x ∈ PropJ iff x ∈ PropI iff x ∈ CTI(I(Property)) iff
〈x, I(Property)〉 ∈ PTI(I(type)) iff 〈x, J(Property)〉 ∈ PTJ(J(type)).

We will show that J satisfies semantic condition 2 of Definition 27. Let
“s”̂ r̂df :XMLLiteral ∈ V such that s is a well-typed XML literal string. Then, it fol-
lows from the definition of J and the fact that I is an ERDF interpretation of V that
ILJ(“s”̂ r̂df :XMLLiteral) is the XML value of s, and ILJ(“s”̂ r̂df :XMLLiteral) ∈
CTJ(J(XMLLiteral)). We will show that ILJ(“s”̂ r̂df :XMLLiteral) ∈ LVJ . Since I
is an ERDF interpretation, ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(XMLLiteral)). Ad-
ditionally, 〈I(XMLLiteral), I(Literal)〉 ∈ PTI(I(subClassOf)). Therefore,
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(Literal)), and thus, ILI(“s”̂ r̂df :XMLLiteral) ∈
LVI . The last statement implies that ILJ(“s”̂ r̂df :XMLLiteral) ∈ LVJ .

We will show that J satisfies semantic condition 3 of Definition 27. Let
“s”̂ r̂df :XMLLiteral ∈ V such that s is an ill-typed XML literal string. Then, it
follows from the definition of J and the fact that I is an ERDF interpretation of V
that ILJ(“s”̂ r̂df :XMLLiteral) ∈ ResJ − LVJ . We will show that
〈ILJ(“s”̂ r̂df :XMLLiteral), J(XMLLiteral)〉 6∈ PTJ(J(type)). Assume that
〈ILJ(“s”̂ r̂df :XMLLiteral), J(XMLLiteral)〉 ∈ PTJ(J(type)). Then,
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〈ILI(“s”̂ r̂df :XMLLiteral), I(XMLLiteral)〉 ∈ PTI(I(type)). Thus,
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(XMLLiteral)). Since it holds
〈I(XMLLiteral), I(Literal)〉 ∈ PTI(I(subClassOf)), it follows that
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(Literal)). Thus, ILI(“s”̂ r̂df :XMLLiteral) ∈
LVI , which is impossible since I is an ERDF interpretation of V . Therefore,
〈ILJ(“s”̂ r̂df :XMLLiteral), J(XMLLiteral)〉 6∈ PTJ(J(type)).

It is easy to see that J satisfies semantic condition 4 of Definition 27 and all the
semantic conditions of Definition 29 (Appendix A, RDFS Interpretation). Therefore,
J is an RDFS interpretation of V ′.

We will now show that J, u |= G. Let p(s, o) ∈ G. Since I |= G, it holds that p ∈ V ′,
s, o ∈ V ′ ∪ Var, and J(p) = I(p) ∈ PropI = PropJ . It holds: 〈[J + u](s), [J + u](o)〉 ∈
PTJ(J(p)) iff 〈[I + u](s)), [I + u](o)〉 ∈ PropI(I(p)), which is true, since I, u |= G.
Thus, J, u |= G, which implies that J |= G. Since G |=RDFS G′, it follows that J |= G′.
Thus, there is v : V ar(G′) → ResJ s.t. J, v |= G′.

We will now show that I |= G′. Let p(s, o) ∈ G′. Since J, v |= G′, it holds that
p ∈ V ′, s, o ∈ V ′ ∪ Var, and I(p) = J(p) ∈ PropJ = PropI . It holds: 〈[I + v](s), [I +
v](o)〉 ∈ PTI(I(p)) iff 〈[J +v](s), [J +v](o)〉 ∈ PTJ(J(p)), which is true, since J, v |= G′.
Thus, I, v |= G′, which implies that I |= G′. ¤

Proposition 8. Let G be an ERDF graph. There is an ERDF interpretation that
satisfies G iff there is an ERDF interpretation that satisfies sk(G).

Proof:
⇒) Let I be an ERDF interpretation of a vocabulary V such that I |= G. We will
show that there is an ERDF interpretation J s.t. J |= sk(G). Since I |= G, there
is a total function u : Var(G) → ResI s.t. I, u |= G. We define V ′ = V ∪ VRDF ∪
VRDFS∪VRDFS . We construct an ERDF interpretation J of V ∪skG(Var(G)) as follows:
ResJ = ResI , P ropJ = PropI , LVJ = LVI , ClsJ = ClsI . We define JV : (V ′ ∪
skG(Var(G))) ∩URI → ResJ , as follows: JV (x) = IV (x), ∀x ∈ V ′ ∩ URI and JV (x) =
u(sk−1

G (x)),∀x ∈ skG(Var(G)). Moreover, PTJ(x) = PTI(x),∀x ∈ PropJ , ILJ(x) =
ILI(x),∀x ∈ V ′ ∩ T L, CTJ(x) = CTI(x), ∀x ∈ ClsJ .

Since I is an ERDF interpretation of V , it is easy to see that J is indeed an ERDF
interpretation of V ∪ skG(Var(G)). We will show that J |= sk(G). First, we define a
total function g : V ′ ∪ skG(Var(G)) → V ′ ∪ Var(G) as follows: g(x) = sk−1

G (x), ∀x ∈
skG(Var(G)) and g(x) = x, otherwise. Let p(s, o) ∈ sk(G). Since I |= G, it follows that
p ∈ V ′, s, o ∈ V ′∪Var, and J(p) = I(p) ∈ PropI = PropJ . It holds J(s) = [I+u](g(s)),
J(s) = [I + u](g(s)), and J(p) = I(p). Therefore, it holds: 〈J(s), J(o)〉 ∈ PTJ(J(p))
iff 〈[I + u](g(s)), [I + u](g(o))〉 ∈ PTI(I(p)), which holds since p(g(s), g(o)) ∈ G and
I, u |= G. Therefore, J |= sk(G).

⇐) It follows directly from Proposition 9. ¤

Proposition 9. Let G be an ERDF graph and let I be an ERDF interpretation. Then,
I |= sk(G) implies I |= G.

Proof: Let I be an ERDF interpretation of a vocabulary V , such that I |= sk(G). We
will show that I satisfies G. We define V ′ = V ∪VRDF ∪VRDFS ∪VERDF . Additionally,
we define a total function u : Var(G) → ResI s.t. u(x) = IV (skG(x)),∀x ∈ Var(G).
Moreover, we define a total function u′ : V ′ ∪ Var(G) → V ′ s.t. u′(x) = skG(x), if x ∈
Var(G) and u′(x) = x, otherwise. It is enough to show that I, u |= G. Let p(s, o) ∈ G.
Then, p ∈ V ′, s, o ∈ V ′ ∪ Var, and I(p) ∈ PropI . It holds: 〈[I + u](s), [I + u](o)〉 ∈
PTI(I(p)) iff 〈I(u′(s)), I(u′(o))〉 ∈ PropI(I(p)), which is true, since p(u′(s), u′(o)) ∈
sk(G) and I |= sk(G). Thus, I, u |= G, which implies that I |= G. ¤
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Proposition 10. Let G be an ERDF graph and F be an ERDF formula such that
VF ∩ skG(Var(G)) = ∅. It holds: G |=ERDF F iff sk(G) |=ERDF F .

Proof:

⇒) Let G |=ERDF F . We will show that sk(G) |=ERDF F . Let I be an ERDF inter-
pretation over a vocabulary V s.t. I |= sk(G). Then by Proposition 9, it follows that
I |= G. Since G |=ERDF F , it follows that I |= F .

⇐) Let sk(G) |=ERDF F . We will show that G |=ERDF F . Let I be an ERDF inter-
pretation of a vocabulary V such that I |= G. We will show that I |= F . In the proof of
Proposition 8, based on I, we constructed an ERDF interpretation J s.t. J |= sk(G).
Since sk(G) |=ERDF F , it follows that J |= F . We will show that I |= F . We define
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF .

Lemma: For every mapping u : Var(F ) → ResJ , it holds J, u |= F iff I, u |= F .
Proof: We will prove the Lemma by induction. Without loss of generality, we assume
that ¬ appears only in front of positive ERDF triples. Otherwise we apply the transfor-
mation rules of Definition 5, to get an equivalent formula that satisfies the assumption.

Let F = p(s, o). Assume that J, u |= F . Since VF ∩skG(Var(G)) = ∅, it follows that
p ∈ V ′, s, o ∈ V ′∪Var, and J(p) = I(p) ∈ PropI = PropJ . Since 〈[J+u](s), [J+u](o)〉 ∈
PTJ(J(p)), it follows that 〈[I + u](s), [I + u](o)〉 ∈ PTI(I(p)). Therefore, I, u |= F .

Assume that I, u |= F . It follows that p ∈ V ′, s, o ∈ V ′ ∪ Var, and J(p) = I(p) ∈
PropI = PropJ . Since 〈[I+u](s), [I+u](o)〉 ∈ PTI(I(p)), it follows that 〈[J+u](s), [J+
u](o)〉 ∈ PTJ(J(p)). Therefore, J, u |= F .

Let F = ¬p(s, o). Similarly, we prove that J, u |= F iff I, u |= F .

Assumption: Assume that the lemma holds for the subformulas of F .

We will show that the lemma holds also for F .

Let F = ∼G. It holds: I, u |= F iff VG ⊆ V ′ and I, u 6|= G iff VG ⊆ V ′ and J, u 6|= G
iff J, u |= F .

Let F = F1∧F2. It holds: I, u |= F iff I, u |= F1 and I, u |= F2 iff J, u |= F1 and
J, u |= F2 iff J, u |= F .

Let F = ∃x G. It holds: I, u |= F iff I, u |= ∃x G iff there is v : Var(G) → ResI

s.t. v(y) = u(y), ∀y ∈ Var(G) − {x} and I, v |= G iff there is v : Var(G) → ResJ s.t.
v(y) = u(y), ∀y ∈ Var(G)− {x} and J, v |= G iff J, u |= ∃x G iff J, u |= F .

Let F = F1∨F2 or F = F1 ⊃ F2 or F = ∀xG. We can prove, similarly to the above
cases, that I, u |= F iff J, u |= F .
End of lemma

Since J |= F , it follows that for every mapping u : Var(F ) → ResJ , J, u |= F .
Therefore, it follows from Lemma that for every mapping u : Var(F ) → ResJ , I, u |=
F . Since ResJ = ResI , it follows that I |= F . ¤

Proposition 11. Let O = 〈G, P 〉 be an ERDF ontology and let I, J ∈ IH(O) such
that I ≤ J . Then, ClsI ⊆ ClsJ , and for all c ∈ ClsI , it holds CTI(c) ⊆ CTJ(c) and
CFI(c) ⊆ CFJ(c).

Proof: Let c ∈ ClsI . Then, 〈c, I(Class)〉 ∈ PTI(I(type)). Note that J(Class) =
I(Class) and J(type) = I(type). Thus, 〈c, J(Class)〉 ∈
PTJ(J(type)), which implies that c ∈ ClsJ .

Let x ∈ ClsI and x ∈ CTI(c). Then, 〈x, c〉 ∈ PTI(I(type)). Thus, 〈x, c〉 ∈
PTJ(J(type)), which implies that x ∈ CTJ(c).

Let x ∈ ClsI and x ∈ CFI(c). Then, 〈x, c〉 ∈ PFI(I(type)). Thus, 〈x, c〉 ∈
PFJ(J(type)), which implies that x ∈ CFJ(c). ¤

Proposition 12. Let O = 〈G, P 〉 be an ERDF ontology and let M ∈Mst(O). It holds
M ∈MH(O).
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Proof: Let M ∈ Mst(O). Obviously, M ∈ IH(O) and M |= sk(G). We will show
that M |= r, ∀r ∈ P . Let r ∈ P . Let v be a mapping v : Var(r) → ResH

O s.t.
M, v |= Cond(r). It is enough to show that M, v |= Concl(r).

We now define a total function v′ : FVar(r) → VO as follows:

v′(x) =

�
v(x) if v(x) is not the xml value of a well-typed XML literal in VO

t if v(x) is the xml value of a well-typed XML literal t in VO

Let x ∈ VO, we define xv′ = x. Let x ∈ FVar(r), we define xv′ = v′(x). Let F be a

formula over VO, we define F v′ to be the formula that results from F after replacing
each free variable of F by v′(x). It is easy to see that it holds:

Concl(r)v′ ← Concl(r)v′ ∈ [r]VO ⊆ [P ]VO .

Lemma: Let F be a formula over VO such that FVar(F ) ⊆ FVar(r). Let u be a total
function u : Var(F ) → ResH

O s.t. u(x) = v(x), ∀x ∈ FVar(F ). It holds: M, u |= F iff

M, u |= F v′ .
Proof: We prove the lemma by induction. Without loss of generality, we assume that ¬
appears only in front of positive ERDF triples. Otherwise we apply the transformation
rules of Definition 5, to get an equivalent formula that satisfies the assumption.

Let F = p(s, o). It holds: M, u |= F iff M, u |= p(s, o) iff 〈[M + u](s), [M + u](o)〉 ∈
PTM (M(p)) iff 〈[M + u](sv′), [M + u](ov′)〉 ∈ PTM (M(p)) iff M, u |= p(s, o)v′ .

Let F = ¬p(s, o). M, u |= F iff M, u |= p(s, o) iff 〈[M + u](s), [M + u](o)〉 ∈
PFM (M(p)) iff 〈[M + u](sv′), [M + u](ov′)〉 ∈ PFM (M(p)) iff M, u |= (¬p(s, o))v′ .
Assumption: Assume that the lemma holds for the subformulas of F .

We will show that the lemma holds also for F .
Let F = ∼G. It holds: M, u |= F iff M, u |= ∼G iff M, u 6|= G iff M, u 6|= Gv′ iff

M, u |= ∼Gv′ iff M, u |= F v′ .
Let F = F1∧F2. It holds: M, u |= F iff M, u |= F1∧F2 iff M, u |= F1 and M, u |= F2

iff M, u |= F v′
1 and M, u |= F v′

2 iff M, u |= (F1∧F2)
v′ iff M, u |= F v′ .

Let F = ∃xG. It holds: M, u |= F iff M, u |= ∃xG iff there exists u′ : Var(G) →
ResH

O s.t. u′(y) = u(y), ∀y ∈ Var(G)−{x} s.t. M, u′ |= G iff there exists u′ : Var(G) →
ResH

O s.t. u′(y) = u(y), ∀y ∈ Var(G) − {x} s.t. M, u′ |= Gv′ iff M, u |= ∃xGv′ iff

M, u |= F v′ .
Let F = F1∨F2 or F = F1 ⊃ F2 or F = ∀xG. We can prove, similarly to the above

cases, that M, u |= F iff M, u |= F v′ .
End of Lemma

Since the formula Cond(r) and the mapping v satisfy the conditions of the Lemma
(v(x) = v(x), ∀x ∈ FVar(Cond(r))) and M, v |= Cond(r), it follows that M, v |=
Cond(r)v′ . Now since FV ar(Cond(r)v′) = ∅, it follows from Proposition 1 that M |=
Cond(r)v′ . Since M ∈Mst(O), it follows that M |= Concl(r)v′ . Now since

FV ar(Concl(r)v′) = ∅, it follows from Proposition 1 that M, v |= Concl(r)v′ . Further,
since the formula Concl(r) and the mapping v satisfy the conditions of the Lemma, it
follows that M, v |= Concl(r).

Therefore, M |= r, ∀r ∈ P . ¤

Proposition 13. Let O = 〈G, P 〉 be an ERDF ontology, such that
rdfs:subclass(rdf :Property, erdf :TotalProperty) ∈ G. Then, Mst(O) = MH(O).
Proof: ¿From Proposition 12, it follows that Mst(O) ⊆ MH(O). We will show that
MH(O) ⊆Mst(O). Let M ∈ MH(O). It follows that M |= sk(G). We will show that
M ∈ minimal({I ∈ IH(O) |I |= sk(G)}).

Let J ∈ IH(O) s.t. J |= sk(G) and J ≤ M . We will show that J = M . Since
J ≤ M , it follows that PropJ ⊆ PropM and for all p ∈ PropJ , it holds PTJ(p) ⊆
PTM (p) and PFJ(p) ⊆ PFM (p). Let p ∈ PropJ . Since J |= sk(G), it follows that
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PropJ ⊆ TPropJ . Thus, p ∈ TPropJ . Assume that PTJ(p) 6= PTM (p). Then, there is
〈x, y〉 ∈ PTM (p) s.t. 〈x, y〉 6∈ PTJ(p). Then, 〈x, y〉 ∈ PFJ(p). Thus, 〈x, y〉 ∈ PFM (p),
which is impossible, since 〈x, y〉 ∈ PTM (p). Thus, PTJ(p) = PTM (p). Similarly, we
can prove that PFJ(p) = PFM (p). Therefore, for all p ∈ PropJ , it holds PTJ(p) =
PTM (p) and PFJ(p) = PFM (p). We will now show that PropJ = PropM . It holds
PropJ ={x ∈ ResH

O | 〈x, Property〉 ∈ PTJ(type)} = {x ∈ ResH
O | 〈x, Property〉 ∈

PTI(type)} =PropM . Based on these results and the fact that J, M ∈ IH(O), it
follows that J = M . Therefore, M ∈ minimal({I ∈ IH(O) |I |= sk(G)}).

We will now show that M ∈ minimal{I ∈ IH(O) : I ≥ M and I |= Concl(r), for
all r ∈ P[M,M ]}. Since M ∈ MH(O) it follows that M ∈ {I ∈ IH(O) : I ≥ M and
I |= Concl(r), for all r ∈ P[M,M ]}. Let J ∈ {I ∈ IH(O) : I ≥ M and I |= Concl(r),
for all r ∈ P[M,M ]} and J ≤ M . Since J ≥ M , it follows that PropM ⊆ PropJ , and for
all p ∈ PropM , it holds PTM (p) ⊆ PTJ(p) and PFM (p) ⊆ PFJ(p). Since J ≤ M , it
follows that PropJ ⊆ PropM , and for all p ∈ PropJ , it holds PTJ(p) ⊆ PTM (p) and
PFJ(p) ⊆ PFM (p). Therefore, it follows that PropM = PropJ , and for all p ∈ PropM ,
it holds PTM (p) = PTJ(p) and PFM (p) = PFJ(p). Based on this result and the fact
that J, M ∈ IH(O), it follows that J = M .

Thus, M ∈ minimal{I ∈ IH(O) : I ≥ M and I |= Concl(r), for all r ∈ P[M,M ]}.
Since M satisfies the conditions of Definition 21 (Stable Model), it follows that

M ∈Mst(O).
Thus, it holds MH(O) ⊆Mst(O). ¤

Proposition 14. Let O = 〈G, P 〉 be an ERDF ontology, and let F, F ′ be ERDF
formulas. If O |=st F and F |=ERDF F ′ then O |=st F ′.
Proof:

Let I ∈ Mst(O). Then I is an ERDF interpretation. Since O |=st F , it follows that
I |= F . Since F |=ERDF F ′, it follows that I |= F ′. Therefore, O |=st F ′. ¤

Proposition 15. Let G, G′ be ERDF graphs and F be an ERDF formula.

It holds:

1. If 〈G, ∅〉 |=st G′ then sk(G) |=ERDF G′.
2. If sk(G) |=ERDF F then 〈G, ∅〉 |=st F .

Proof:
1) Let < G, ∅ >|=st G′. We will show that sk(G) |=ERDF G′.

Let I be an ERDF interpretation over a vocabulary V s.t. I |= sk(G), we will show
that I |= G′. We define V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF .

Let O = 〈G, ∅〉. Based on I, we construct a partial interpretation J of VO as follows:

– ResJ = ResH
O .

– JV (x) = x, for all x ∈ VO ∩URI.
– We define the mapping: ILJ : VO ∩ T L → ResJ such that:

ILJ(x) = x, if x is a typed literal in VO other than a well-typed XML literal, and
ILI(x) is the XML value of x, if x is a well-typed XML literal in VO.

– We define the mapping: J : VO → ResJ such that:

• J(x) = JV (x), ∀x ∈ VO ∩URI.
• J(x) = x, ∀ x ∈ VO ∩ PL.
• J(x) = ILJ(x), ∀ x ∈ VO ∩ T L.

– PropJ = {x ∈ ResJ | ∃x′ ∈ VO, J(x′) = x and I(x′) ∈ PropI}}.
– The mapping PTJ : PropJ → P(ResJ ×ResJ) is defined as follows:
∀x, y, z ∈ VO, it holds:
〈J(x), J(y)〉 ∈ PTJ(J(z)) iff 〈I(x), I(y)〉 ∈ PTI(I(z)).
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– We define the mapping PFJ : PropJ → P(ResJ ×ResJ) as follows:
∀x, y, z ∈ VO, it holds:
〈J(x), J(y)〉 ∈ PFJ(J(z)) iff 〈I(x), I(y)〉 ∈ PFI(I(z)).

– LVJ = {x ∈ ResJ | 〈x, J(Literal)〉 ∈ PTJ(J(type))}.
To show that J is a partial interpretation, it is enough to show that VO∩PL ⊆ LVJ .

Let x ∈ VO ∩ PL. Then, x ∈ LVI . Thus, 〈x, I(Literal)〉 ∈ PTI(I(type)). This implies
that 〈x, J(Literal)〉 ∈ PTJ(J(type)). Thus, x ∈ LVJ .

Now, we extend J with the ontological categories:
ClsJ = {x ∈ ResJ | 〈x, J(Class)〉 ∈ PTJ(J(type))},
TClsJ = {x ∈ ResJ | 〈x, J(TotalClass)〉 ∈ PTJ(J(type))}, and
TPropJ = {x ∈ ResJ | 〈x, J(TotalProperty)〉 ∈ PTJ(J(type))}.
We define the mappings CTJ , CFJ : ClsJ → P(ResJ) as follows:
x ∈ CTJ(y) iff 〈x, y〉 ∈ PTJ(J(type)), and
x ∈ CFJ(y) iff 〈x, y〉 ∈ PFJ(J(type)).

We will now show that J is an ERDF interpretation of VO. First, we will show that
J satisfies semantic condition 2 of Definition 8 (ERDF Interpretation), in a number of
steps:
Step 1: Here, we prove that ResJ = CTJ(J(Resource)). Obviously, CTJ(J(Resource)) ⊆
ResJ . We will show that ResJ ⊆ CTJ(J(Resource)). Let x ∈ ResJ . Then, there is x′ ∈
VO such that J(x′) = x. We want to show that 〈J(x′), J(Resource)〉 ∈ PTJ(J(type)).
It holds: 〈J(x′), J(Resource)〉 ∈ PTJ(J(type)) iff 〈I(x′), I(Resource)〉 ∈ PTI(I(type)),
which is true, since I is an ERDF interpretation that satisfies sk(G) and I(x′) ∈ ResI .
Thus, x = J(x′) ∈ CTJ(J(Resource)).
Therefore, ResJ = CTJ(J(Resource)).

Step 2: Here, we prove that PropJ = CTJ(J(Property)). We will show that PropJ ⊆
CTJ(J(Property)). Let x ∈ PropJ . Then, there is x′ ∈ VO such that J(x′) = x and
I(x′) ∈ PropI . We want to show that 〈J(x′), J(Property)〉 ∈ PTJ(J(type)). It holds:
〈J(x′), J(Property)〉 ∈ PTJ(J(type)) iff 〈I(x′), I(Property)〉 ∈ PTI(I(type)),
which is true, since I(x′) ∈ PropI . Thus, x = J(x′) ∈ CTJ(J(Property)).
Therefore, PropJ ⊆ CTJ(J(Property)).

We will now show that CTJ(J(Property)) ⊆ PropJ . Let x ∈ CTJ(J(Property)).
Then, there is x′ ∈ VO such that J(x′) = x. It holds 〈J(x′), J(Property)〉 ∈ PTJ(J(type)),
which implies that 〈I(x′), I(Property)〉 ∈ PTI(I(type)). Thus, I(x′) ∈ PropI and
x ∈ PropJ .
Therefore, CTJ(J(Property)) ⊆ PropJ .

Step 3: By definition, it holds ClsJ = CTJ(J(Class)), LVJ = CTJ(J(Literal)),
TClsJ = CTJ(J(TotalClass)) and TPropJ = CTJ(J(TotalProperty)).

We will now show that J satisfies semantic condition 3 of Definition 8 (ERDF
Interpretation). Let 〈x, y〉 ∈ PTJ(J(domain)) and 〈z, w〉 ∈ PTJ(x). We will
show that z ∈ CTJ(y). There are x′, y′ ∈ VO such that J(x′) = x, J(y′) = y.
Thus, 〈J(x′), J(y′)〉 ∈ PTJ(J(domain)). Additionally, there are z′, w′ ∈ VO such that
J(z′) = z, J(w′) = w. Thus, 〈J(z′), J(w′)〉 ∈ PTJ(J(x′)). Then, 〈I(x′), I(y′)〉 ∈
PTI(I(domain)) and 〈I(z′), I(w′)〉 ∈ PTI(I(x′)). Since I is an ERDF interpretation
interpretation, 〈I(z′), I(y′))〉 ∈ PTI(I(type)). Thus, 〈J(z′), J(y′)〉 ∈ PTJ(J(type)) and
z ∈ CTJ(y).

In a similar manner, we can prove that J also satisfies the rest of the semantic
conditions of Definition 8. Thus, J is an ERDF interpretation of VO.

Moreover, we will show that J is a coherent ERDF interpretation (Definition 9).
Assume that this is not the case. Thus, there is z ∈ PropJ s.t. PTJ(z) ∩ PFJ(z) 6= ∅.
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Thus, there are x, y ∈ ResJ s.t. 〈x, y〉 ∈ PTJ(z) ∩ PFJ(z), for such a z. Then, there
are x′, y′, z′ ∈ VO s.t. J(x′) = x, J(y′) = y, and J(z′) = z. It holds: 〈J(x′), J(y′)〉 ∈
PTJ(J(z′)) and 〈J(x′), J(y′)〉 ∈ PFJ(J(z′)). Thus, 〈I(x′), I(y′)〉 ∈ PTI(I(z′)) and
〈I(x′), I(y′)〉 ∈ PFI(I(z′)). But this is impossible, since I is a (coherent) ERDF inter-
pretation. Therefore, J is also a coherent ERDF interpretation.

Thus, J ∈ IH(O).

We will now show that J |= sk(G). Let p(s, o) ∈ sk(G). It holds p, s, o ∈ VO.
Since I |= sk(G), it holds I(p) ∈ PropI . Thus, 〈I(p), I(Property)〉 ∈ PTI(I(type)),
which implies that 〈J(p), J(Property)〉 ∈ PTJ(J(type)). ¿From this, it follows that
J(p) ∈ PropJ . It holds: 〈J(s), J(o)〉 ∈ PTJ(J(p)) iff 〈I(s), I(o)〉 ∈ PTI(I(p)). The last
statement is true I |= sk(G). Thus, J |= sk(G).

¿From Definition 21 (Stable Model) and the fact that J |= sk(G), it follows that
∃K ∈ Mst(O) s.t. K ≤ J . Now from this and the fact that O |=st G′, it follows that
K |= G′. Thus, there is u : V ar(G′) → ResH

O s.t. K, u |= G′.
We will show that J, u |= G′.

Let p(s, o) ∈ G′. Since K is an ERDF interpretation of VO, K, u |= G′, and PropK ⊆
PropJ , it follows that p ∈ VO, s, o ∈ VO ∪ Var, and J(p) = K(p) ∈ PropK ⊆ PropJ .
Additionally, 〈[K + u](s), [K + u](o)〉 ∈ PTK(p). Since, 〈[J + u](s), [J + u](o)〉 = 〈[K +
u](s), [K+u](o)〉 and PTK(p) ⊆ PTJ(p), it follows that 〈[J+u](s), [J+u](o)〉 ∈ PTJ(p).
Thus, J, u |= p(s, o).
Let ¬p(s, o) ∈ G′. Since K is an ERDF interpretation of VO, K, u |= G′, and PropK ⊆
PropJ , it follows that p ∈ VO, s, o ∈ VO ∪ Var, and J(p) = K(p) ∈ PropK ⊆ PropJ .
Additionally, 〈[K + u](s), [K + u](o)〉 ∈ PFK(p). Since, 〈[J + u](s), [J + u](o)〉 = 〈[K +
u](s), [K+u](o)〉 and PFK(p) ⊆ PFJ(p), it follows that 〈[J+u](s), [J+u](o)〉 ∈ PFJ(p).
Thus, J, u |= ¬p(s, o).

We now define a total function u′ : VG′ ∪Var(G′) → VO as follows:

u′(x) =

8>>>><>>>>:
u(x) if x ∈ Var(G′), and

u(x) is not the xml value of a well-typed XML literal in VO

t if x ∈ Var(G′) and
u(x) is the xml value of a well-typed XML literal t in VO

x otherwise

Moreover, we define a total function u′′ : Var(G′) → ResI s.t. u′′(x) = I(u′(x)).
We will show that I, u′′ |= G′.
Let p(s, o) ∈ G′. Then, p ∈ VG′ and s, o ∈ VG′ ∪ Var. Since J |= G′, it follows that

VG′ ⊆ VO. Therefore, VG′ ⊆ VG ∪ VRDF ∪ VRDFS ∪ VERDF ⊆ V ′. Thus, p ∈ V ′ and
s, o ∈ V ′ ∪Var.

We will now show that I(p) ∈ PropI . It holds:
〈I(p), I(Property)〉 ∈ PTI(I(type)) iff
〈J(p), J(Property)〉 ∈ PTJ(J(type)〉, which holds since J, u |= G′.

We want to show that 〈[I + v′′](s), [I + v′′](o)〉 ∈ PTI(I(p)). Note that ∀x ∈ VG′ , it
holds: [I + u′′](x) = I(u′(x)) and J(u′(x)) = [J + u](x) (recall the definition of J(.)).
Moreover, ∀x ∈ Var(G′), it holds: [I + u′′](x) = I(u′(x)) and J(u′(x)) = [J + u](x).
Therefore, it holds:
〈[I + u′′](s), [I + u′′](o)〉 ∈ PTI(I(p)) iff
〈I(u′(s)), I(u′(o))〉 ∈ PTI(I(p) iff
〈J(u′(s)), J(u′(o))〉 ∈ PTJ(J(p) iff
〈[J +u](s), [J +u](o)〉 ∈ PTJ(J(p)), which is true since J, u |= G′. Thus, I, u′′ |= p(s, o).

Let ¬p(s, o) ∈ G′. We can show that I, u′′ |= ¬p(s, o), in a similar manner.

Thus, I, u′′ |= G′, which implies that I |= G′.
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2) Let sk(G) |=ERDF F . We will show that 〈G, ∅〉 |=st F . In particular, let O = 〈G, ∅〉
and let I ∈Mst(O). Note that I is an ERDF interpretation of VO, such that I |= sk(G).
Since sk(G) |=ERDF F , it follows that I |= F . ¤

Proposition 16. Let G, G′ be RDF graphs such that VG∩VERDF = ∅, VG′∩VERDF =
∅, and VG′ ∩ skG(V ar(G)) = ∅. It holds: G |=RDFS G′ iff 〈G, ∅〉 |=st G′.
Proof: It follows from Proposition 7 that: G |=RDFS G′ iff G |=ERDF G′. It follows
from Propositions 2 and 10 that: G |=ERDF G′ iff sk(G) |=ERDF G′. It follows from
Propositions 2 and 15 that: sk(G) |=ERDF G′ iff 〈G, ∅〉 |=ERDF G′.

Therefore, G |=RDFS G′ iff 〈G, ∅〉 |=st G′. ¤
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