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1 Introduction

One of the causes of the enormous number of computer security violations on the Internet is
the users’ lack of technical expertise. In particular, users are typically not aware of the security
policies applied by their system, not to speak about how those policies can be changed and
how they might be improved by tailoring them to specific needs. As a consequence, most users
ignore their computer’s vulnerabilities and the corresponding countermeasures, so the system’s
protection facilities cannot be effectively exploited.

For example, it is well known that the default, generic policies that come with system
installations—biased toward functionality rather than protection—are significantly less secure
than a policy specialized to a specific context, but very few users know how to tune or replace
the default policy. Moreover, users frequently do not understand what the policy is really
checking up on, and hence they are unaware of the risks involved in many common operations.

Similar problems affect privacy protection. In trust negotiation, credential release policies
are meant to achieve a satisfactory tradeoff between privacy and functionality (many interesting
services cannot be obtained without releasing some information about the user). However, one
cannot expect such techniques to be effective unless users are able to understand and possibly
personalize the privacy policy enforced by their system.

Additionally, a better understanding of a web service’s policy makes it easier for a first-time
user to interact with the service. If a denied access results simply in a “no”, then the user has
no clue on how he or she can possibly acquire the permission to get the desired service (e.g.,
by completing a registration procedure, by supplying more credentials, by filling in some form,
etc.) We are advocating a form of cooperative policy enforcement, where negative responses are
enriched with suggestions and other explanations whenever such information does not violate
confidentiality (sometimes, part of the policy itself is sensitive).

For these reasons, the working group on policies of the Network of Excellence REWERSE
selected as one of its main objectives greater user awareness and control on policies (including
security and privacy policies as well as more general notions of policy discussed elsewhere, such
as business rules and quality of service). REWERSE is mainly concerned with the technical
side of the problem, which is complex enough to require an articulated approach. In particular
we are making policies easier to understand and formulate to the common user in the following
ways:

• We adopt a rule-based policy specification language, because such languages are very flex-
ible and at the same time structurally similar to the natural way in which policies are
expressed by nontechnical users.

• We are making the policy specification language more friendly by developing a controlled
natural language front-end to translate natural language text into executable rules.

• We are developing advanced explanation mechanisms to help the user understand what
policies prescribe and control.

This deliverable is focussed precisely on the explanation mechanisms. Our first contribution
consists in a requirements analysis for explanations in the context of automated trust negotiation
(ATN). Moreover, we define explanation mechanisms for why, why-not, how-to, and what-if
queries. There are several novel aspects in our approach:
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• We adopt a tabled explanation structure as opposed to more traditional approaches based
on single derivations or proof trees. The tabled approach makes it possible to describe
infinite failures (which is essential for why not queries).

• Our explanations show simultaneously different possible proof attempts and allow users
to see both local and global proof details at the same time. Such combination of local
and global (intra-proof and inter-proof) information is expected to facilitate navigation
across the explanation structures.

• We introduce suitable heuristics for focussing explanations by removing irrelevant parts
of the proof attempts. Anyway, we provide a second level of explanations where all the
missing details can be recovered, if desired.

• Our heuristics are generic, i.e. domain independent. This means that they require no
manual configuration.

• The combination of tabling techniques and heuristics yields a completely novel method
for explaining failure. In the past, the problem has been ignored or formulated
differently (e.g., by suggesting how to complete proofs by introducing new facts
[Chalupsky and Russ, 2002]).

• We study the interactions between policy filtering and explanations, and propose a refined
policy filtering process to enhance the quality of explanations.

We aim at a lightweight and scalable explanation mechanism that does not require any
major effort when the general framework is instantiated in a specific application domain, and
where most of the computational effort can be delegated to the clients.

The deliverable is structured as follows. First, in Section 2, we recall the latest developments
on explanations for expert systems. Then we outline in Section 3 the requirements for explana-
tions in the context of automated trust negotiation, and briefly compare the two frameworks.
Section 4 anticipates the functionalities of the explanation modules by means of a reference
scenario and some use cases. Then the explanation mechanisms are formally defined in two
steps: First, the internal structures are defined (Section 6), then we describe how to render
the explanation in natural language (Section 7). Section 8 concludes the paper with a final
discussion of the results.

The policy specification language adopted here is Protune, the core pol-
icy language of REWERSE. The reader is referred to [Bonatti and Olmedilla, 2005b,
Bonatti and Olmedilla, 2005a] for the language’s definition and examples.

2 State of the Art

The task of answering queries of users who inquire why the system made a certain decision or
who want to know what is needed to reach a given goal, is called explanation. Explanation is
one of the most common methods used by humans to support decisions [Schank, 1986].

The ability to provide explanations for the results of reasoning tasks has been a goal for the
development of intelligent system early on. One early expert system with an integrated expla-
nation facility (IEF) is MYCIN [Shortliffe, 1976], a system designed to support physicians in
diagnosing bacterial infections. MYCIN uses backward chaining, i.e. it selects a hypothesis that
may explain the symptoms entered by the user, and then attempts to confirm the hypothesis
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by going through the rules that constitute the respective illness while checking the consistency
of the rules with the facts provided by the user. In MYCIN, a user can ask a “why” query,
which causes MYCIN to display the rules that led it from the hypothesis to the basic medical
facts established in the case.

This idea of accessing proof trees or rule traces is appealing because it is usually not dif-
ficult to implement and does not imply any additional effort for the domain engineers. The
concrete implementation of the approach depends on the underlying expert system infrastruc-
ture. For instance, in Prolog the explanation facility can be realized using a simple Prolog meta
interpreter, as described in [Schnupp, 1989].

Critical reviews of this approach and its usability led to the definition of more ambitious
requirements for explanations. Notably [Hasling et al., 1984] demand from IEFs (i) that expla-
nations should not presuppose a particular user population, i.e. it should be possible to adapt
them for the various user groups that work with the system, (ii) that explanations should be in-
formative and readable for the user, and (iii) that the level of detail of the explanations should
suit the respective situation, i.e. the explanation should allow both fine grained and coarse
grained levels of detail.

Along the same lines [Clancey, 1983] notes that much of MYCIN’s reasoning and explanation
behavior is implicitly hidden in the rule base, e.g. in the ordering of rules. In particular,
he distinguishes three categories of system knowledge that could be explicitly represented in
intelligent applications: strategic knowledge, which represents the high-level problem solving
approaches behind the inference rules in the system, support knowledge, which contains methods
to justify the applicability of a given rule (e.g. by identifying facts that trigger the rule), and
structural knowledge, which refers to way the various rules are classified, ordered or chained
together.

Some of these ideas have been implemented in the NEOMYCIN project
[Clancey and Letsinger, 1984]; in particular, the problem solving strategy was represented
explicitly in the application and meta-rules have been used for explanation planning.

MYCIN and its derivatives are frequently viewed as the first generation of expert systems
with explanation facilities. During the past 15 years, a variety of different approaches for
the design of explanation facilities have been proposed, often classified as second generation
frameworks by the literature [Wick, 1993, Haynes, 2001].

One such project is EES, the Explainable Expert System [Swartout et al., 1991], where
the knowledge representation is enriched (i) by explicit strategic knowledge (i.e. an explicit
representation of the reasoning methods to be applied by the system) and (ii) by structured
domain knowledge (i.e. definitions of terms).

A similar approach was taken for the Mission Planning Assistant (MPA)
[Tanner and Keuneke, 1991, Tanner et al., 1993], a DARPA sponsered project: The vari-
ous tasks in MPA’s application domain make use of several different reasoning strategies (e.g.
hypothesis generation, deduction), hence MPA requires a more flexible explanation facility
than systems where only a single reasoning method is used. In particular, explaining a solution
of the MPA requires (i) showing how the logical requirements of the given tasks were satisfied
by the solution and (ii) showing how the reasoning strategy adopted achieved the task.

Another second generation approach is Rex, the Reconstructive Explainer [Wick, 1993]. In
Rex, after a reasoning task is finished, the expert system creates a causal chain for explanations
in a separate process.

While these frameworks manage to decouple reasoning and explanation, which is to some
extent necessary for the creation of high quality explanations, some of the more sophisticated
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aspects of those frameworks may become limitations, if applied in application contexts that do
not really require them: For instace, EES and MPA require knowledge engineers to manage
separate knowledge bases, and to explicitly deal with strategic knowledge. However, if the
selection of strategic knowledge plays no role in the application domain, then the effort cannot
be justified, because it provides no real benefits. Similarly, the problem of the Rex approach lies
in the separation of the reasoning and explanation process, which can be seen as a redundancy
and might be avoided using a simpler approach where the explanation structure is created
ad-hoc during the reasoning process [Barzilay et al., 1998].

While we aim at achieving high quality explanations in our framework – characterized by
different levels of granularity, support for different user groups, interactivity and verbalization
– we also desire to keep the explanation system as lightweight and usable as possible. In fact,
we shall argue in the next section that the conceptual model of Protune does not call for a
full-fledged second generation framework as sketched above.

On the other hand, since the application context of Protune is the area of dis-
tributed information systems, in the form of the envisioned “Semantic Web”, it is imper-
ative to review the existing work on explanations in such systems. The most compre-
hensive work on this new frontier is Inference Web (IW) [McGuinness and da Silva, 2004a,
McGuinness and da Silva, 2004b], a toolkit that aims at providing useful explanations for the
behavior of (Semantic-) Web based systems. In particular, [McGuinness and da Silva, 2004a]
propose support for knowledge provenance information using meta-data (e.g. Dublin Core in-
formation) about the distributed information systems involved in a particular reasoning task.
Further, [McGuinness and da Silva, 2004a] deal with the issue of representing heterogeneous
reasoning approaches, domain description languages and proof representations; the latter issue
is addressed by using PML, the OWL-based Proof Markup Language [da Silva et al., 2004].

In the context of security, the KNOW system [Kapadia et al., 2004] focus on the provision
of feedback to users after a request is denied. However, they do not provide an explanation
but a set of changes on policy conditions that must hold in order to have a policy satisfied.
Furthermore, they have a separate system for the generation of feedback which builds ordered
binary decision diagrams (OBDDs) from policies. These OBDDs and shortest-path algorithms
based on cost functions are used to find the relevant set and return as feedback only the k-
least costly subset. In this document we provide an approach for policy explanation in query
answering (not just feedback) integrated within the policy engine, reducing the complexity of
its generation. Still, filtering based on cost functions could be integrated based on the cost
metapolicy defined in our language.

Similarly, the WhyNot system [Chalupsky and Russ, 2002] suggests which sets of facts might
be added to the system to make a given goal succeed, based on some heuristic weights calculated
on proofs. The similarity between the name of this system and the name of our why not
queries is misleading, because the latter do not necessarily suggest any theory extensions (which
sometimes make little sense when a user is inspecting the answer of a server) and do not give
different preferences to proof attempts based on their size or the number of failed conditions,
because this kind of heuristics is meaningless in the ATN context.

3 Policy Explanations: Analysis and Requirements

In this section we examine all the design principles for explanation systems adopted by second
generation approaches and evaluate them with respect to the specific needs of ATN frameworks.
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Sometimes we add new requirements arising in this area. As we discuss design principles and
solutions, we compare our approach with related work.

3.1 Instantiation effort

As a general requirement, the Protune ATN framework should be easy to instantiate in any
given application domain. At the very least, as part of the instantiation process, one needs to
provide the set of application-specific state predicates, and interface them with legacy software
and data (if the policy needs to refer to such things). Application specific predicates can
be identified by parsing the natural language policy, so the process can be partially assisted
with automated tools. We are aiming at adding almost no further effort to the framework
instantiation phase.

This objective is incompatible with the methodology of [Barzilay et al., 1998], that pre-
scribes an actor and five distinct phases entirely devoted to the development of an explanation
module which is completely independent from the expert system, being equipped with an ad-
hoc domain ontology and special rules for creating explanation-related data structures. The
five steps would cause an undesired overload during the instantiation phase.

In our framework, the instantiation phase should include only a simple extra step consist-
ing in creating so-called literal verbalization rules, that visualize logical application-dependent
literals in natural language. We are planning to (partially) automate this activity by means of
the natural language front-end. We are not planning to have any steps as complex as designing
a domain ontology or arbitrary sets of rules.

To achieve a satisfactory explanation mechanism under these constraints we are relying on
the fact that Protune lies somewhere in between an abstract (non instantiated) reconstructive
explanation framework and a specific (instantiated) explanation system. The set of predicates is
partly application specific, but there is a core set or pre-defined predicates (such as credential,
declaration, and do) whose special role in negotiations can be exploited to craft clever expla-
nation strategies. In other words, part of the activities prescribed by [Barzilay et al., 1998] are
anticipated to the design of Protune’s general framework.

3.2 Performance

A second general requirement related to scalability is that explanations should not increase
significantly the computational load of the servers.

This objective is incompatible with the methodology of [Barzilay et al., 1998], too. The
special rules for creating explanation-related data structures are meant to be executed during
the reasoning process, so their execution may potentially affect performance.

In Protune servers have to compute filtered policies for ATN to take place. The only extra
effort for explanation should consist in adding the literal verbalization rules and some facts
(state predicate information) to the filtered policy. Explanation-specific structures are meant
to be built on the clients starting from this basic set of rules and facts. In this way, most of the
computational burden related to explanations is moved to the clients.

3.3 Explanation method

Today, it is commonly accepted that the proofs built by reasoning engines (and more generally
their reasoning strategy) are not suited to building satisfactory explanations. The user is
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typically forced to explore the search space like the engine does, going through a number of
uninteresting details.

Like second-generation explanation systems, Protune creates ad-hoc data structures built
expressly for explanations (see Section 6). One of the distinctive features of our structures
is that they give simultanously a local view of how to prove a fact—based on the rules that
immediately apply to the fact—and a global view, comprising the final outcome of alternative
proof attempts for the rule body. Such global information guides the user in navigating the
set of proof attempts, focussing on the parts of the search space that do not meet the user’s
expectations.

This approach relies on the nice computational properties of our policy rules, that are
basically notational variants of Datalog rules. Since the consequences of Datalog programs are
decidable and can be computed efficiently (e.g. by means of tabling, like in XSB Prolog), we
can afford to compute the global information associated to explanation structures. A novel,
tabled form of explanation structures solves the problem of presenting infinitely failed proofs.

The effectiveness of explanation structures is enhanced through suitable presentation heuris-
tics that produce concise explanations, typically focused on the details relevant to the query
(see sections 3.5 and 6.3). If the heuristics delete too much information, then the user may ask
for a more detailed and more technical explanation (cf. Section 6.2).

3.4 Query purpose and explanation-oriented metadata

While the users of a question-answering or a decision-support system are interested in how the
system reaches its conclusions to evaluate their reliability, the users of a secure system can only
accept the system’s access control decisions.

Other differences between ATN and expert systems are specific to why not queries. The
common reasons for query failures are [Chalupsky and Russ, 2002]:

Missing knowledge

Limitations such as incomplete reasoners, resource limitations, timeouts, etc.

Misconceptions of the user such as using terms that are not defined in the knowledge base,
queries that do not match the intended question, or inherently contradictory questions.

Bugs in the knowledge base and/or in the inference engine.

In ATN, engines are complete (for reasons explained below) and the only possible limitation
may arise from timeouts in distributed proofs, when third parties are involved. Moreover,
misconception are not an issue, because (i) in the typical context in which ATN systems are
embedded, permission requests are automatically crafted by the web server, not by the user,
and (ii) in Protune, subsequent queries are guided by the explanation navigation system.

In ATN, users expect explanations to illustrate aspects such as which of the submitted
credentials were actually needed to get a resource, or why a given combination of credentials
was not sufficient to obtain the desired service—hence the importance of why not queries.
Moreover, users and security administrators may be interested in understanding why their own
(access control or credential release) policy does not make the expected decisions.

In both cases, the query has essentially a diagnostic purpose. As a consequence, several
explanation-oriented metadata adopted in previous works with the purpose of measuring infer-
ence reliability and ranking alternative conclusions are not needed in our explanation framework.
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An example of such marginal metadata is knowledge provenance
[McGuinness and da Silva, 2004a], that includes information such as source names, date,
author, authoritativeness of the source, degree of belief (that the author has in some piece of
information), and degree of completeness (of the source w.r.t. a particular scope).

Interestingly, these pieces of information are explicitly handled by some policies, that in
making their decisions may take into account who issued a certain credential (source name,
author, authoritativeness, see also the reference scenario in Section 4), numerical reputation
models [Bonatti et al., 2005] (degree of belief), credential search strategies (that may consider
the degrees of completeness of a server before keeping on searching other hosts). In other
words, information provenance is not explanation-oriented metadata but rather policy domain
knowledge. Similarly, term inter-relationships such as ontological relations (subclass, superclass,
part-of), if present in Protune applications, are domain knowledge, not metadata, and can be
used also during object-level reasoning.

Another example of marginal metadata is the information about the reasoner
[McGuinness and da Silva, 2004a], comprising the reasoner used, its reasoning method (e.g.
tableaux, resolution, etc.), supported inference rules, soundness and completeness properties,
nonmonotonic assumptions (closed world, unique names assumption), reasoner author, version,
etc.

In ATN, semantic aspects such as nonmonotonic assumptions are fixed (all the current
approaches are based on standard logic programming semantics because of its constructive
nature and its simplicity), and the engines are always assumed to be sound and complete,
to ensure that no unintended permission is granted (soundness) and no legal access is denied
(completeness). Of course, it is possible to assume soundness and completeness because policies
belong to an efficiently decidable fragment of logic, as we already pointed out.

Some explanation-oriented metadata are important also in ATN. In Protune we have term
meaning expressed in natural language, encoded in the form of literal verbalization rules (see
Section 3.1).

3.5 Presentation strategies

The support for explanation presentation is characterized by the following features
[McGuinness and da Silva, 2004a]:

Methods for asking for explanations. We have identified the following kinds of queries:
why/why not, how to, what if. Such questions may be asked before, during, and after
a negotiation to understand which pieces of information are actually used (sometimes
information is unnecessarily released in negotiations), what still needs to be done to
obtain the desired service, as well as to inspect and monitor access control and credential
release policies. The answers to such queries may determine the next negotiation steps.

Methods for breaking up proofs into manageable pieces. We give a local view (the
rules that directly apply to a given goal), enriched with global information, as explained
above. Moreover, we group together related literals (such as all the constraints on a single
credential’s attributes) and treat them as a unique condition called cluster.

Methods for pruning proofs and explanations to highlight relevant information.
The negotiation protocol determines what is relevant. Since clients have to fulfil condi-
tions by submitting credentials and other information to servers, the pieces of information
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that have been submitted and those that have not determine the focus of attention in
explaining success and failure. State predicates constitute another kind of crucial infor-
mation in ATN, because their semantics is often blurred [Bonatti and Olmedilla, 2005b],
i.e., it is not communicated to the client (either for privacy reasons or for efficiency).
Therefore, it is important to focus the user attention on the success and failure of
blurred predicates. All the information that seems not helpful in illustrating these
aspects (according to some heuristics described in the following) is not included in the
explanations. We provide a more detailed level of explanations for the cases where the
complete details of the proof attempts are needed.

Methods for proof and explanation navigation,

Presentation solutions compatible with web browsers, and

Methods for obtaining alternative justifications for answers: We see a proof as a (po-
tentially cyclic) hypertext, whose links help the user in exploring single as well as alter-
native proofs and proof attempts.

Different presentation formats. The explanations we support are written in natural lan-
guage. We are also planning to support a graphical representation of single proof trees as
well as the graph of technical explanations.

Methods for obtaining justifications for conflicting answers. This feature is related to
the phenomenon of inconsistencies in single and multiple data sources. Since the logic
programming languages used in ATN are not expressive enough to derive inconsistent
facts, this aspect is marginal in the ATN framework.

The heuristics for pruning proofs and focussing explanations may exploit the following
metaproperties [Barzilay et al., 1998]:

Importance level of relations and attributes (which explanations should focus on);

Key attributes that identify individuals and may be used to denote them (internal identifiers
are surely not user friendly);

Mutual dependencies among relations and attributes, stating that a given symbol should
be presented only if another given symbol is included in the explanation;

Order in which the attributes of a concept should be presented, and

Second-order relations over the attributes of a concept.

In ATN the importance level is determined by the negotiation protocol, as we have already
explained. We have developed a solution which is invariant across all application domains,
therefore the framework specialization phase is not affected. For the same reason we do not
use any domain-specific key attribute information to identify credentials and other structured
objects; in Protune complex objects are characterized through the constraints they have to
satisfy, as specified in rule bodies. Similarly, we adopt a uniform strategy for selecting the
“auxiliary” predicates that must be included in explanations because some other predicate
with a high importance level must be included, too.

We are currently finding second order relations over attributes unnecessary for our purposes.
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4 Use Cases and Reference Scenario

In the following, the terms “user” and “server” may refer to any actor and any peer, respectively,
because all peers may act as servers in some steps of the negotiation and as clients in other
steps. So for example, a server’s administrator may use the user version of a query for getting
explanations on the counter-requests of the client.

4.1 Query types and their contexts

Use Case: 1 - Why/Why-not queries for users

Primary Actor: User

Secondary Actor: Personal Assistant (PA)

Preconditions: A negotiation has taken place

Step User Personal Assistant (PA)

1 The user asks why a literal is success-
ful/failed by clicking on either the ex-
planation button activated after ne-
gotiation (first explanation request),
or a link associated to a condition
(during explanation browsing)

2 The PA returns an explanation built
using the following information

• the final filtered policy

• credentials and declarations re-
leased by the user during negoti-
ation

• a portion of the server’s state

• literal verbalization rules

Variation : Some of the items in step 2 are not available

2a The PA asks the server for explana-
tion related information, then pro-
ceeds as in step 2
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Use Case: 2 - How-to queries for users

Primary Actor: User

Secondary Actor: Personal Assistant

Preconditions: –

Step User Personal Assistant

1 The user asks how to satisfy a literal
by selecting either the how-to expla-
nation option associated to a service
request (first explanation request),
or the link associated to a condition
(during explanation browsing)

2 The PA returns an explanation built
using the following information

• a filtered policy

• literal verbalization rules

• expected outcome of state predi-
cates

• the user’s portfolio

Variation : First explanation request (cf. step 1)

2a The PA first sends a how-to request
to the server, that returns the neces-
sary information (first three items in
step 2); then the PA proceeds as in
step 2
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Use Case: 3 - What-if queries for users

Primary Actor: User

Secondary Actor: Personal Assistant

Preconditions: An explanation is being browsed

Step User Personal Assistant

1 The user selects the what-if option
associated to a condition (during ex-
planation browsing) and specifies an
instance of that condition by choos-
ing a value for each variable

2 The PA adds the new fact to the fil-
tered policy and recalculates the cur-
rent explanation.

If the user wishes to see the effects
of the new assumption on the main
goal, he or she may select the link
pointing back to the root of the ex-
planation hypertext

Administrator’s use cases

Administrators may want to monitor and debug the server’s access control policy. For this
purpose it seems necessary to log the reasoning carried out by the server. Since it may be
unfeasible to record all the transactions, the administrator should be able to specify which
service requests have to be monitored (let’s call it a “spy” facility, like in Prolog traces). Other
cases may be supplied by clients in case of problems (as a consequence, the administrator may
set a spy point on the request involved).
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Use Case: 4 - Why/Why-not queries for administrators

Primary Actor: Administrator

Secondary Actors: Personal Assistant (PA), Server

Preconditions: A negotiation has taken place and has been logged; The administra-
tor is authenticated to the server

Step Administrator Personal Assistant (PA) Server

1 The administrator selects
a logged negotiation (first
explanation request) or
the link associated to a
condition (during expla-
nation browsing)

The server may have
to let the administrator
browse the log file

2 The PA returns an ex-
planation built using the
logged information:

• final filtered policy

• credentials and
declarations released
during negotiation

• a portion of the
server’s state

• literal verbalization
rules

Variation : First explanation request: (cf. step 1)

2a The PA asks the server
for explanation related
information.

Note: Verbalization rules
are persistent and may be
cached locally.

3a The server returns it

4a The PA buids the expla-
nation and displays it to
the administrator
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Use Case: 5 - How-to queries for administrators

Primary Actor: Administrator

Secondary Actors: Personal Assistant (PA), Server

Preconditions: –

Step Administrator Personal Assistant (PA) Server

1 The administrator selects
either the how-to expla-
nation option associated
to a service request (first
explanation request), or
the how-to link associ-
ated to a condition (ex-
planation browsing)

2 The PA returns an expla-
nation built using:

• all relevant policy
rules

• literal verbalization
rules

• expected outcome of
state predicates

Variation : Explanation-related information not available

2a The PA first sends the
how-to request and the
administrator’s creden-
tials to the server

3a The server returns the
necessary information
(the items in step 2)

4a PA proceeds as in step
2.

Note that in this case
the explanation-related
information is persis-
tent and typically small
enough to be cached
on the administrator’s
client.
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Use Case: 6 - What-if queries for administrators

Primary Actor: Administrator

Secondary Actor: Personal Assistant (PA)

Preconditions: An explanation for administrators is being browsed

Step Administrator Personal Assistant (PA)

1 The administrator selects the what-if
option associated to a condition (dur-
ing explanation browsing) and speci-
fies an instance of that condition by
choosing a value for each variable

2 The PA adds the new fact to the fil-
tered policy and recalculates the cur-
rent explanation.

If the administrator wishes to see the
effects of the new assumption on the
main goal, he or she may select the
link pointing back to the root of the
explanation hypertext
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allow(download(Resource)
 

authenticated(User)
 

has_subscription(User,Subscription)
 

public(Resource)
 

available_for(Resource,Subscription)
 

authenticated(User)
 

payed(User,Resource)
 

declaration([username=User,password=P])
 

challenge(K)
 

passwd(User,P)
 

id(Credential) ,
Credential.name:User, do(‘http://lol.com/register.php’)

 

isa(T,id)
 

trusted_for(CA,T)
 

accepted_credential(Cred),
Cred.type:T,

Cred.issuer:CA

Figure 1: Overview of the digital library policy example from Appendix A

4.2 Running example

John Smith is a researcher at Open University and is currently working in a hot area. He is
searching the internet for related work and finds a nice paper he would like to read. This paper
is hosted at the website of a digital library under the file name “paper01234.pdf”. However, not
all the content of this digital library is accessible for free. In fact, the library service utilizes the
policy specified in Appendix A (see figure 1 for an overview) to protect its resources. Since John
Smith has never used the library service before, he does not know how to retrieve documents
from there.

4.2.1 Finding out about a party’s policy: How-to queries

While John Smith knows that probably not all of the papers are freely accessible, he does not
yet know how to access the paper he is interested in. However, he has the possibility of asking
the digital library about the policy applied to the action of downloading a paper and therefore,
using his personal assistant agent, he sends the query “how-to : allow(download(Resource))”
to the library.

The digital library receives the request, generates a how-to explanation and sends it back
to John Smith’s personal assistant. This explanation does not use any information about the
requester (in fact the library still does not know anything about John or his personal assistant)
but provides general information about the policy governing the requested service. The personal
assistant is, among other tasks, in charge of the presentation of such explanations in a user-
friendly and human-oriented way. As the library’s policy might be too complex to be visualized
at once, the personal assistant breaks the explanation down to manageable pieces to be displayed
to John. Additionally, it provides hyper-links that allow John to navigate through those parts
of the explanation he is most interested in.

For instance, the personal assistant may display the following information in response to
John’s how-to query:
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TO MAKE SURE THAT it is allowed to download Resource

NOTHING NEEDS TO BE DONE IF

Resource is public [details]

ALTERNATIVELY

PLEASE MAKE SURE THAT FOR SOME User

User is authenticated [details]

WHERE, FOR SOME Subscription,

User has subscription Subscription

AND

Resource is available for Subscription [details]

ALTERNATIVELY

PLEASE MAKE SURE THAT FOR SOME User

User is authenticated [details]

AND

User has paid for Resource [details]

This explanation states that John can be granted access to a resource if:

• The resource is classified as public by the digital library. In such a case, John does not
have to do anything and he is automatically authorized.

• John authenticates at the library services and if he has a subscription that covers the
desired resource.

• John manages to authenticate and to pay for the desired resource.

Note that the structure of the explanation is given by a set of policy rules provided by the
digital library (based on the policies from Appendix A) like:

allow(download(Resource))←
public(Resource) .

allow(download(Resource))←
authenticated(User),
has subscription(User ,Subscription),
available for(Resource,Subscription) .

allow(download(Resource))←
authenticated(User),
paid(User ,Resource) .

The personal assistant is in charge of generating the explanation and its concrete layout,
reducing the burden on the library service.

The previous explanation provides a high level overview of the digital library’s policy. How-
ever, John does not yet know exactly what he requires in order to “authenticate” and therefore
he clicks on the “[details]” link accompanying that condition. The personal assistant then
displays the requested part of the explanation:
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TO MAKE SURE THAT User is authenticated

PLEASE MAKE SURE THAT FOR SOME Credential and K

Credential is an id with name User and public_key K [details]

AND

respond to the challenge procedure for K [info]

ALTERNATIVELY

PLEASE DECLARE THAT username=User and password=P [info]

WHERE

P is the correct password of User

ALTERNATIVELY

PLEASE EXECUTE the registration procedure on

http://lol.com/registration.php [info]

According to this explanation, there are three possibilities for John to authenticate at the
library service: either (i) by providing an id credential (and by demonstrating the ownership
of the id), (ii) by providing a username/password combination or (iii) by performing an online
registration procedure.

One part of the digital policy, defining the authentication based on a username/password
combination, is worth some additional elaboration: As shown below, the responsible rule says
that after the username/password declaration is received, the security engine needs to check
the provided information against the user database of the library service.

authenticated(User)←
declaration([username = User , password = P ]),
passwd(User ,P).

However, the predicate passwd is defined as private by the meta policy, as shown below:

passwd( , ) .type : state predicate.
passwd( , ) .sensitivity : private.

From the meta policy follows that the literal “passwd( , )” is blurred and not given to the
personal assistant. However, explanations about the blurred conditions could still be generated
if the intended meaning of the predicate itself is not private1. This means that we require
a slight modification of the blurring mechanism presented in [Bonatti and Olmedilla, 2005b,
Bonatti and Olmedilla, 2005a]. To generate such explanations, we require to relate some blurred
predicates with the appropriate explanation and therefore blurred conditions should include this
binding.

Continuing our example, John finally just wants to know a bit more about the id creden-
tials he is expected to provide; clicking on the “[details]” link provides him with the following
explanation:

1Note that the idea behind blurring is either to hide private information or to point out in a machine
understandable way that there exist additional conditions that need to be checked by the server. Although the
answer substitutions of such literals may be secret (and therefore not disclosable), the names and meaning of
the predicates themselves may be communicated.
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TO MAKE SURE THAT Credential is an id

PLEASE MAKE SURE THAT

you have submitted Credential with type T and issuer CA [info]

WHERE

T is an id [details]

AND

CA is trusted for T [details]

Thus he knows that the credential must be an id and its certification authority (CA) must
be trusted for such type of credentials.

Remark 1 It is not necessary to issue any how-to query before contacting a server for the first
time. The filtered policy can be used directly by the PA to carry out an automated negotiation
with the server. The filtered policy is in fact nothing but a machine-understandable how-to
explanation.

4.2.2 Investigating why a request failed: Why-not queries

John is now informed about the main requirements he must satisfy for accessing the paper he
needs for his research. He decides to request access to the paper (via his personal assistant),
providing an id credential. However, he receives the answer “permission denied” from the library
service. He does not understand why, as he provided together with the request his id credential
which is signed by the “Open University” CA. Fortunately, he knows that he can demand some
extra information about his failed request. Therefore, he sends a why-not query to the service,
using his personal assistant, which may either use a cached version of a why-not explanation
or may send a fresh request (Appendix B.1 shows the state used at the digital library). In any
case, the personal assistant gathers the policies provided for why-not explanations and filters
them highlighting the parts most relevant to the user, i.e. those requirements the user did not
fulfill in order to satisfy the policy, and hiding some other aspects of the policy (e.g., those
requirements that the user did fulfill or those that do not depend on the user). To satisfy
the individual information needs of its user, the personal assistant allows John to gather more
detailed information by expanding the different parts of the explanation.

At first, the personal assistant may display the following why-not explanation:

I CAN’T PROVE THAT it is allowed to download paper01234.pdf BECAUSE:

Rule [r3] is not applicable:

THERE IS NO User SUCH THAT User is authenticated [details]

AND

Rule [r4] is not applicable:

THERE IS NO User SUCH THAT User is authenticated [details]

MOREOVER

THERE IS NO User SUCH THAT User has paid for paper01234.pdf [details]

Concise explanations (like the one presented above) do not show all the details and focus
primarily on those conditions that depend on the user, giving him the opportunity to fulfill the
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conditions quickly. For example rule r3 talks about subscriptions, but these details are omitted
in the explanation above because if the user is not authenticated it makes no sense to inspect
her subscription. However, John can also request the full explanation; in that case he would
receive

TO PROVE THAT it is allowed to download paper01234.pdf ONE CAN TRY:

Rule [r2]:

Everybody can download public objects [see internal format]

the rule is not applicable [details]

Rule [r3]: (no summary available)

it is allowed to download paper01234.pdf IF

THERE EXIST User AND Subscription SUCH THAT

User is authenticated

AND

User has subscription Subscription

AND

paper01234.pdf is available for Subscription

the rule is not applicable [details]

Rule [r4]:

Users can download any object if they pay for it [see internal format]

the rule is not applicable [details]

John did disclose his id credential and wonders why the authentication did still fail. Hence
he clicks on the “[details]” link of rule r3 in order to find out why the rule did not succeed. The
personal assistant expands that explanation with

I CAN’T FIND ANY User SUCH THAT User is authenticated BECAUSE:

Rule [r6] is not applicable:

THERE IS NO Credential SUCH THAT Credential is an id [details]

AND

Rule [r7] is not applicable:

THERE ARE NO User AND P SUCH THAT it has been declared that

username=User and password=P

AND

Rule [r8] is not applicable:

the registration procedure on http://lol.com/registration.php

has not been (successfully) completed

(again, the explanations for r6 and r7 omit part of the rule body to improve explanations).
It is true that John did not provide a username/password combination, as he does not possess

one, neither did he register at the URL provided. However, he did disclose his id credential and
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wonders why his request was not accepted. Therefore, John expands the relevant part of the
explanation, receiving

I CAN’T FIND ANY Cred SUCH THAT Cred is an id BECAUSE:

c012 is a credential with type id and issuer Open University [details]

id is an id_type [details]

BUT

IT IS NOT THE CASE THAT Open University is trusted for id [details]

Now John finally knows why his request has not been accepted. The reason is that the
certificate authority (CA) ’Open University’ of his id credential is not among the trusted CAs
for id credentials at the library service.

Note that the credential is not denoted only by means of its internal identifier c012 (which
is not particularly meaningful to the user); the attributes of the credential and their properties
explain which credential is being referred to, which may be helpful when multiple credentials
have already been released.

4.2.3 Exploring hypothetical possibilities: what-if queries

In previous steps John tried to access a service but he was informed, by means of the explanation
facility, about why his request was denied. The reason was that his credential was not accepted
because “Open University” is not a trusted CA at the digital library. Fortunately, John has
the possibility to use an id from the “UK Government” but before he gathers it (and discloses
it), he would like to know whether this credential would be accepted2. Therefore, he submits
a what-if query together with a mockup credential from “UK Government”. In this case, the
evaluation of the query at the digital library receives a hypothetical credential and produces a
hypothetical answer. That means that even if the answer returns that access would be granted,
it is still not 100% guaranteed to succeed in a real negotiation, because the simulation is based
on several assumptions (e.g., the digital library assumes that the challenge for the credential
will succeed during a real negotiation).

Assume that the state contains the fact has subscription(‘J.Smith’,computer(full)).
Then the personal assistant displays the following explanation to John:

IT MIGHT BE TRUE THAT it is allowed to download paper01234.pdf BECAUSE

Rule [r3] might be applicable:

BY ASSUMPTION

J. Smith is authenticated [details]

AND THERE MAY EXIST Subscription SUCH THAT

J. Smith has subscription Subscription [details]

AND

paper01234.pdf is available for Subscription [details]

2Note that in the previous why-not query John might continue expanding rules in order to find which are
the trusted CA for the digital library. This is possible due to the fact that the predicate “trusted for” is public.
Otherwise, this information would not be available in a why-not query.
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In this case, the state predicates has subscription and available for cannot be better ex-
plained or even checked for a common solution because the extension of has subscription is
private.

This concise what-if explanation focuses, as in why/why-not explanations, on successful
conditions (if the final answer is positive) or on unsuccessful conditions (if negative). In our
case, the explanation shows that John would probably be granted access if he provided such
a credential. The alternative possibility involving payment is not shown because John did not
provide a real or hypothetical (i.e. mockup) credential of his credit card and therefore it is not
assumed that it exists.

If John wants to check the requirements for authentication in presence of hypothetical
credentials, he can expand that information into

IT WOULD PROBABLY HOLD THAT J. Smith is authenticated BECAUSE

Rule [r6] would probably be applicable:

BY ASSUMPTION

c012 is an id WITH name J. Smith and public_key a7s687dfghg

AND IT WOULD PROBABLY HOLD THAT

the challenge procedure for a7s687dfghg is successfully completed

which uses the hypothetical id credential provided and assumes, based on the meta policy rule

challenge( ) .expected outcome : success.

that the ownership challenge will be successfully completed. The explanation does not include
the other two possibilities of authentication due to the fact that no declaration of username and
password has been provided and that the expected outcome of a “do” operation is “failure”.

4.2.4 Checking why a request succeeded: why queries

In the previous step, John learned that an id from “UK Government” would be accepted by
the digital library. Therefore, he includes his real credential in a new request that is sent to the
library. In this case, he is granted access to the paper and is able to download it. Still he might
be interested in receiving information about the process that led to the desired result. This is
particularly useful if different paths are followed in parallel during policy evaluation (e.g., if a
user tries to reach authentication based on a credential and based on a declaration at the same
time, in order to speed up the negotiation in case one of the options fails), in order to get a
proof of the request or just for information purposes (e.g., to double-check that the process was
executed as expected or to gather more insight on the policy in case no how-to, why-not or
what-if queries have been sent previously).

Therefore, John’s personal assistant provides the following “why”-information:

it is allowed to download paper01234.pdf BECAUSE:

Rule [r3] can be applied:

RELEASED INFORMATION GUARANTEES THAT

J. Smith is authenticated [details]

FURTHERMORE

J. Smith has subscription computer(full) [details]
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AND

paper01234.pdf is available for computer(full) [details]

whereby he may expand the explanation to gather more focused or more advanced information.

5 Explanations and filtering

The policy filtering process carried out by Protune [Bonatti and Olmedilla, 2005b,
Bonatti and Olmedilla, 2005a] changes the structure of the policy so much that it would be
difficult to formulate satisfactory explanations given a filtered policy as an input. In particular:

• partial evaluation removes from the rule body all the state conditions that can be imme-
diately evaluated;

• blurring hides all the deferred state conditions in such a way that the blurred condition
cannot possibly be matched to any policy literal.

Therefore, it is practically impossible to explain why a credential or a declaration meets or
violates a state condition.

Fortunately, there is space for improvement. It turns out that in most cases literals are
blurred because their extension is too large, or because it is confidential; however the user may
be safely told what the blurred condition consists of. This does not mean that we can avoid
blurring; we need to mark the condition as “blurred” to let the personal assistant understand
that some condition without a machine-understandable semantics will be checked by the other
peer (this kind of information may be useful during the credential selection phase).

Furthermore, it is frequently possible to evaluate a specific ground instance of a sensitive
literal; only the set of answers in its entirety should be kept confidential. As an example,
consider the login-passord check: authentication systems say whether a specific pair of strings
is correct, but they would never disclose the password file. This means that in some cases,
the filtered policy may safely include some specific facts about protected literals. A similar
example is given by has subscription in our policy. It is legal to check whether a specific
authenticated user has a given subscription, but privacy reasons forbid to release the extension
of this predicate.

Therefore, a refined filtering process should be adopted, with the following distinctive fea-
tures:

• immediately evaluable state literals are not partially evaluated; their solutions are included
in the policy as sets of facts;3

• a blurred literal L is normally replaced with blurred(L) to make the original literal
available to the explanation mechanism; if L is not to be explained (for confidentiality
reasons), then L is replaced with blurred(n) where n is a random number.

• the final response may include some facts with the shape blurred(L) and blurred(n) to
tell the client which blurred conditions were successful.

3A minor technicality: a negative literal notA may have to be treated like a new atom not A to be asserted
like a fact or be made to fail in case there are some solutions that should not be included in the policy.
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One word is needed on including facts like blurred(n) in the filtered policy. In this way,
the client does not know which condition is tested, but it can automatically detect which
proof branches succeed. This makes it possible to identify interesting information, such as the
minimal sets of credentials that were really needed to make the negotiation succeed. However,
the metapolicy may forbid the disclosure of such facts, if necessary.

The refined filtering process has a few additional advantages. First, the number of rules is
not increased as a consequence of the partial evaluation of state literals. In some cases, the
filtered policy may be more compact with the new method. Second, the computational load on
the server may be reduced because less inferences are needed for partial evaluation.

We expect service users to be interested in explanations about the server’s policy, while
service administrators are not likely to ask for explanations about the counter-requests of the
clients (with possible exceptions during an initial debugging phase). This means that clients
might still adopt the original filtering process for their counter-request, to reduce the number
of inference steps on the server.

6 Explanation Structures

We assume the reader to be familiar with the basics of logic programming, including the notions
of most general unifier (mgu), free variable, and (computed) answer substitution. The reader
is referred to [Lloyd, 1984, Apt, 1990] for these matters. As usual, we denote by var(E) the
variables occurring in an expression E (be it a term, a literal, a goal or a rule). By outvar(σ),
where σ is a substitution, we denote the set of variables that occur in the range of σ—also
called output variables in the following. Finally, recall that if two expressions or sets thereof
are identical up to variable renaming, then they are said to be variants. We say that two
substitutions are variants if they are more general than each other (that is, they are identical
up to output variable renaming).

There are some delicate technical aspects in handling substitutions. Each of them is a variant
of infinitely many other substitutions. Moreover, during deduction, unification should always
produce fresh variables to avoid overconstraining (unnecessary identification of individuals). So
we assume that there exists a partial function mguE(E1, E2) that for all expressions E, E1, and
E2 returns one mgu σ of E1 and E2, such that

outvar(σ) ∩ (var(E) ∪ var(E1) ∪ var(E2)) = ∅ .

Similarly, we assume a function ansEP (G) that for all programs P , all goals G, and all
expressions E returns a set containing exactly one variant σ for each answer substitution of G
from P , such that

outvar(σ) ∩ (var(E) ∪ var(P ) ∪ var(G)) = ∅ .

6.1 Partially specified programs and quasi-answers

Explanations must be built using an incomplete view of state predicates, that are not fully
defined due to confidentiality and efficiency constraints (see the discussion of blurring in
[Bonatti and Olmedilla, 2005b]). We extend inference to handle conclusions that might be
drawn, depending on the truth value of the unspecified predicates.

Definition 1 A partially specified program is a pair Π = (P,U) where P is a logic program
and U is a set of so-called unspecified literals.
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In practice, U would be the set of blurred literals. Next we have to characterize the solutions
that might be derived if unspecified literals were available.

Definition 2 A quasi-answer of a goal G w.r.t. a partially specified program Π = (P,U) is
a substitution σ such that there exists an SLD-derivation G,G1, . . . , Gn from P with mgu’s
θ1, . . . , θn, where all the atoms occurring in Gn belong to U and such that σ = θ1 · · · θn.

By analogy with answer substitutions, we assume a function qansEΠ(G) that returns a set
containing one variant σ for each quasi-answer of A w.r.t. Π, such that

outvar(σ) ∩ (var(E) ∪ var(Π) ∪ var(G)) = ∅ .

In the following we shall sometimes abuse notation and write ansEΠ instead of ansEP .
Note that the set of quasi answers includes the set of answers, because Gn may be the

empty goal. Accordingly, we assume w.l.o.g. that qansEΠ(G) ⊇ ansEΠ(G). We say a quasi-answer
is proper if Gn is nonempty.

6.2 Level 2 (technical) explanations

Level 2 explanations are meant to provide the full details of proofs and proof attempts. They
can be seen as graphs (abstracting a hypertext) where each node illustrates:

• the local context for a goal, that is, the rules whose head unifies with that goal;

• a global view of all the proof attempts, consisting in the answers and quasi-answers of
each rule body and subgoal thereof.

Such answers and quasi-answers provide a sort of lookahead that may help the user in navigating
the proof. We proceed by defining the explanation graph.

Definition 3 An explanation node for a partially specified program Π = (P,U) is a finite set
of pairs (r, θ) where r ∈ P and θ is a substitution.

Some of these explanation nodes constitute the starting point for explaining how a given
atom A succeeds or fails. Basically, such entry points collect all the applicable rules:

Definition 4 The explanation entry point for A w.r.t. Π, denoted by entryΠ(A), is the (unique)
explanation node X for Π such that

X = {(r′,mgur
′
(Aθ, head(r′))) | r′ ∈ P and Aθ is unifiable with head(r′) } .

There are two kinds of navigation links: detail links and refinement links. Informally, the
former expand the proof details by showing the rules that can be used to prove a subgoal; the
latter apply answer substitutions locally to the rule to see the effects on the other subgoals and
focus on some of the possible proofs.

Definition 5 (Level 2 navigation links) For all explanation nodes X1 and X2 for Π define:

detail links: X1
L−→D X2 iff for some (r, θ) ∈ X1 and some L ∈ body(r), X2 = entryΠ(Lθ);

refinement links: X1
σ−→R X2 iff for some (r, θ) ∈ X1 and some L ∈ body(r),
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σ ∈ ansrΠ(Lθ) ∪ qansrΠ(Lθ) and X2 = {(r, θσ)}.

Example 1 In the following we revisit our example presented in Sect. 4.2. Consider John’s
initial query “how-to : allow(download(Resource))”. Given the policy used by the online library
service (cf. Appendix A), the explanation entry point for the requested literal is:

entryΠ(download(Resource)) = {(r2, ε), (r3, ε), (r4, ε)}

whereby ε denotes the empty substitution.
The content of this explanation entry point is presented to the user, who may choose to

navigate through the explanation structure to gather more information about the policy. In
particular, the user may follow a detail link to find out the possible ways of satisfying the literal
Lauth = authenticated(User) required by r3 and r4:

entryΠ(download(Resource))
Lauth−→ D {(r6, ε), (r7, ε), (r8, ε)}

Next, John may inspect the consequences of applying substitution

σU = {User/’J. Smith’}

which binds the variable User occurring in the rules r3 to a particular value, in order to traverse
the refinement link

entryΠ(download(Resource))
σU−→R {(r3, σU )}

In this way, John has reached the rule:

allow( download(Resource) ) :-

authenticated(’J. Smith’),

has_subscription(’J. Smith’,Subscription),

available_for(Resource,Subscription).

2

The navigation structure is modeled by the following graph:

Definition 6 A level 2 explanation graph for an atom A w.r.t. a partially specified program Π
is a minimal structure (V,ED , ER) closed under the following properties:

1. V contains entryΠ(A);

2. if for some X1 ∈ V , X1
L−→D X2 then V contains exactly one variant X̃2 of X2, and ED

contains an edge (X1, L, X̃2);

3. if for some X1 ∈ V , X1
σ−→R X2 then V contains exactly one variant X̃2 of X2, and ER

contains an edge (X1, σ, X̃2).

Note that explanation graphs must be unique up to variable renaming. Moreover, if the program
is Datalog, then the explanation graph is finite. In practice, the explanation graph needs not
necessarily be computed in advance; it may be generated on demand, as the user navigates it.

Now the complete explanation structure is obtained by adding the labels to the graph:
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Definition 7 A level 2 explanation structure for A w.r.t. Π is a tuple (XG, s, qs) where:

• XG is a level 2 explanation graph for A w.r.t. Π; let V be the set of vertices of XG;

• (success label) s = ansVΠ ;

• (quasi-success label) qs = qansVΠ .

Now given a node element (r, θ), the answers and quasi-answers labelling the rule are given by
s(body(r)) and qs(body(r)), and the labels of each subgoal L ∈ body(r) are given by s(L) and
qs(L).

Remark 2 In the presence of infinite failures, the data structure is cyclic but still finite (be-
cause the policy is a Datalog program). To help the user in identifying those cycles, the
hypertext rendering of the graph may label the backward links that close a cycle in a particular
way (deja vu links).

Remark 3 Note the similarity between the explanation graph and the tables of Prolog engines
like XSB. In both cases, subgoal calls become entries in a potentially cyclic data structure. In
both cases, there is a unique entry for all goal variants so that infinite computations are finitely
represented by graph cycles. In both cases the entries are labelled with answer substitutions.
A similar approach, where the set U of unspecified literals is empty and the function qs() can
be dropped, may be interesting for tracing tabled programs. It would be interesting to study
an efficient implementation based on XSB’s primitives for handling tables.

6.3 Level 1 (concise) explanations

Well-crafted explanations focus on the details that are relevant to the user. Since ATN is
mostly about asking for credentials, declarations, and actions, a concise explanation should be
centered around these predicates and the abbreviations that depend on these predicates, in
order to highlight which requests have been fulfilled by the client and which have not.

For this purpose we adopt a standard (predicate) dependency graph, which is a graph G =
(V,E) where V (the set of vertices) is the set of predicates of the given program P , and E the
set of edges (p, q) such that for some rule r ∈ P , p occurs in head(r) and q occurs in body(r).
As usual, we say that a node p depends on another node q if there is a directed path from p to
q in the dependency graph.

Definition 8 A predicate is user-dependent if it depends on some of credential,
declaration, or do. If this is the case then we call the predicate a ud-predicate. If a lit-
eral L contains an occurrence of a ud-predicate, then we say that L is a user-dependent literal
(ud-literal, for short).

One problem to be solved is: how can explanations refer to structured objects, such as
credentials? Typically these objects are denoted by means of internal identifiers (sometimes
called handles) that have no meaning to the common user. However, we noted that the attribute
atoms t.a:v in a rule body are typically the relevant, characterizing attributes of the complex
object whose handle is t. These attributes almost always identify a unique object, when their
values are fixed. So our idea is using these attributes as a key to specify which object we are
referring to. For this purpose, we look for subsets of the body called clusters that correpond to
concepts with attributes (a sort of terminological expression) and treat them as a description
of the complex object.
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Definition 9 (Clusters) Let L = p(t) where p is a unary predicate and t is a term. If L ∈
body(r), then a cluster of L (in r) is a set containing L and some attribute subgoals (u.a : v) ∈
body(r) with u = t. A cluster is complete if it contains all such subgoals. If t is a variable,
then it is called the main variable of the cluster; L and p are called the main literal and the
main predicate of the cluster, respectively. A user-dependent cluster (ud-cluster, for short), is
a cluster whose main predicate is user-dependent.

Example 2 The policy rule instance

authenticated(’J. Smith’) :-

id(Credential),

Credential.name:’J. Smith’,

Credential.public_key:K,

challenge(K).

contains one complete cluster (the first three literals in the body) whose main literal is
id(Credential). The cluster denotes “the id with name ‘J. Smith’ and public key K”. 2

Remark 4 Clusters are more flexible than key attributes and reduce the framework instan-
tiation effort, because they constitute a generic technique that needs no preliminary manual
intervention (on the contrary, key attributes must be specified by the knowledge engineer).
Clusters are more flexible because they can be applied also to those classes of objects that have
no key attributes. Even if several objects match the attribute values, still these objects are at
least partially characterized, while keys work in an all-or-nothing fashion. Partial characteri-
zation is very useful in why not queries, where incomplete clusters allow to explain situations
such as: “there is an id with name J. Smith, but the public key is not k012”.

While a single atom like credential(X) may have multiple solutions, often its cluster has
just one answer (in this sense the attributes ofX characterize X). By applying this substitution,
we specify the values of the cluster variables, and hence the credential we are talking about.
Similarly, any literal with a single answer substitution may be exploited to fix the values of
variables and determine more precisely the context in which the conditions are evaluated. The
process of applying unique answers is formalized as follows.

Definition 10 A unique-answer propagation of a node element (r, θ) for a given Π is a pair
(r, θ′) such that, for some n ≤ |body(r)|, the following conditions hold: for each i = 1, . . . , n,
there exist a substitution θi, a literal or a cluster Yi, and a substitution σi such that:

1. θ = θ1 and θ′ = θn;

2. ansrθiΠ (Yi) = {σi} (i < n);

3. θi+1 = θiσi (i < n);

4. for all clusters and literals Z of body(r) not occurring in Y1, . . . , Yn, |ansrθnΠ (Zθn)| 6= 1.

We call Y1, . . . , Yn the rewrite sequence of (r, θ′).

In other words, condition 2 ensures that only unique answers are applied during the rewriting,
and condition 4 ensures that all unique answers are applied, i.e., the rewrite process is exhaus-
tive. As a consequence, it is not hard to see that if (r, θ′) is a unique-answer propagation,
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then for all clusters and literals Z such that |sn(Z)| = 1, the unique element of sn(Z) must be
equivalent to the empty substitution ε.

Note that if some instance of body(rθ) is a consequence of P , then unique-answer propa-
gations must be unique up to variable renaming. On the contrary, if body(rθ) fails, then an
annotated rule may have multiple unique-answer propagations incompatible with each other,
obtained from the answers of different maximal derivable subsets of the body.

In this case, we choose each step of the rewrite sequence according to the following priority
order among the (not yet processed) literals and clusters with a single answer substitution (from
the highest priority to the least):

• First we choose complete ud-clusters. This strategy tends to describe in detail the struc-
tured objects released by the user, such as credentials and declarations.

• Next we choose incomplete ud-clusters. This strategy tends to describe the structured
objects released by the user that “almost satisfy” policy requirements.

• Then we choose the other ud-literals. Again, we are giving precedence to the facts that
are under the responsibility of the user.

• Next we choose the other clusters, in order to describe the structured objects contained
in the server’s state.

• Finally we choose the remaining (non-ud) literals.

Moreover, if two clusters or literals have the same priority, we are currently adopting a greedy
left-to-right strategy to make a choice. We write

(r, θ) −→U (r, θ′)

when (r, θ′) is the unique-answer propagation of (r, θ) according to the adopted deterministic
choice. The left-hand side of −→U uniquely determines the right-hand side, up to variable
renaming.

Remark 5 At the abstract level we are adopting in this section, any deterministic choice of
the rewrite sequences can be adopted as the semantics of −→U . In other words, the framework
can be adapted to heuristics different from the above one just by changing the specification of
−→U .

Now we proceed with the definition of the navigation structure, by analogy with level 2
explanations.

Concise explanations are aimed at avoiding irrelevant and redundant information. As a
consequence we are filtering the set of answer substitutions to extract only those that are
maximally general. Assume a function mg(S) that for all sets of substitutions S returns the
maximally general elements of S. Moreover, level 1 links lead directly to nodes where unique
answers have been propagated. In the following we extend −→U to explanation nodes as follows:

X1 −→U X2 iff X2 = {(r, θ′) | for some (r, θ) ∈ X1, (r, θ) −→U (r, θ′)} .

Definition 11 (Level 1 navigation link) For all explanation nodes X1 and X2 for Π define:

detail links: X1
L
;D X2 iff for some (r, θ) ∈ X1 and some L ∈ body(r), entryΠ(Lθ) −→U X2;
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refinement links: X1
σ
;R X2 iff for some (r, θ) ∈ X1 and some L ∈ body(r),

σ ∈ mg(ansrΠ(Lθ)) ∪mg(qansrΠ(Lθ)) and {(r, θσ)} −→U X2.

Example 3 In the following we continue our running example using the state illustrated in Ap-
pendix B.2, that makes authenticated(’J. Smith’) true. Suppose that from the entry point
for allow(download(paper01234.pdf)) John selects the solution σ of authenticated(User)
in rule r3 that binds User to ’J. Smith’. Next, John asks for the details of the proof of
L = authenticated(′J. Smith′).

Roughly speaking, John has just followed the path:

entryΠ(allow(download(paper01234.pdf)))
σ
;R {(r3, θσ)}
−→ {(r6, {User/’J. Smith’})}

where θ = {Resource/paper01234.pdf}. The last node corresponds to the following rule
instance:

authenticated(’J. Smith’) :-

id(Credential),

Credential.name:’J. Smith’,

Credential.public_key:K,

challenge(K).

Now, id(Credential) has a unique solution σ′ = {Credential/c012}. After applying it to
the above rule, we can find other literals with a unique solution (all the remaining literals).
So the node {(r6, {User/’J. Smith’})} is not the final target of the detail link coming from
{(r3, θσ)}; first we have to apply the above unique susbstitutions, and then we obtain the actual
formalization of John’s navigation:

entryΠ(allow(download(paper01234.pdf)))
σ
;R {(r3, θσ)}
L
;D {(r6, σ

′′})}

where σ′′ = { User/’J.\ Smith’, Credential/c012, K/’HJK789?%^&’ }. The last node
corresponds to the rule:

authenticated(’J. Smith’) :-

id(c012),

c012.name:’J. Smith’,

c012.public_key:’HJK789?%^&’,

challenge(’HJK789?%^&’).

If the state contained more than one valid credential, then id(Credential) might have
different solutions, e.g., credentials with different names. Still, the (nonmaximal) cluster
{id(Credential), Credential.name :′ J.Smith′} might have a unique solution and lead to the
same result. 2

Definition 12 A level 1 explanation graph for an atom A w.r.t. a partially specified program
Π is a minimal structure (V,ED , ER) closed under the following properties:
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1. V contains entryΠ(A);

2. if for some X1 ∈ V , X1
L
;D X2 then V contains exactly one variant X̃2 of X2, and ED

contains an edge (X1, L, X̃2);

3. if for some X1 ∈ V , X1
σ
;R X2 then V contains exactly one variant X̃2 of X2, and ER

contains an edge (X1, σ, X̃2).

The complete explanation structure is obtained by adding concise labels to the graph:

Definition 13 A level 1 explanation structure for A w.r.t. Π is a tuple (XG, s, qs) where:

• XG is a level 1 explanation graph for A w.r.t. Π; let V be the set of vertices of XG;

• (success label) s = mg ◦ ansVΠ ,

• (quasi-success label) qs = mg ◦ qansVΠ ,

(where ◦ denotes function composition.)

Recall that verbalization patterns have slots that are filled in with subgoals according to
the number of their answers and quasi-answers. The appropriate selection conditions for each
of these slots are formally defined as follows.

Definition 14 (Slots) Let X = (XG, s, qs) be a level 1 explanation structure. For all pairs
ρ = (r, θ) occurring in a node of XG let:

• singleX (ρ) = {L | L ∈ body(r) and |s(Lθ)| = 1};

• maxsingleX (ρ) = max⊆{C | C ⊆ body(r) is a cluster and |s(Cθ)| = 1};

• multiX (ρ) = {L | L ∈ body(r) and |s(Lθ)| > 1};

• failedX (ρ) = {L | L ∈ body(r) and |s(Lθ)| = 0};

• minfailedX (ρ) = min⊆{C | C ⊆ body(r) is a cluster and |s(Cθ)| = 0};

• quasiX (ρ) = {L | L ∈ body(r), |s(Lθ)| = 0, and |qs(Lθ)| > 0};

• strongly failedX (ρ) = {L | L ∈ body(r) and |s(Lθ)| = |qs(Lθ)| = 0}.

Moreover, if S is a set of literals or clusters, we denote by ud(S) the set of all user-dependent
elements of S.

The subscript X will be omitted when it is clear from the context. Note that level 1 nodes
are closed under unique-answer propagation; consequently, the unique answer of the literals in
single(ρ) is always (a variant of) the empty substitution ε.
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7 Verbalization

Explanation structures are translated into natural language sentences by instantiating pre-
defined text patterns.

Some of these patterns are application independent, and cast into the explanation con-
struction algorithm as shown in the rest of this section. They are based on the meaning of
logical connectives and on the intended semantics of basic predicates such as credential,
declaration, and do. These patterns are associated statically to the “slots” of explanation
structures, and to the aforementioned special predicates.

The verbalization patterns for application dependent literals must be supplied during the
framework instantiation phase. They are typically formulated with simple metafacts like:

is authenticated(X).explanation : [X, is, authenticated]

has subscription(X, Y).explanation : [X, has, subscription, Y] .

If necessary, proper rules (with nonempty body) can be used.
It is also possible to define text patterns for negative literals, for example:

(not is authenticated(X)).explanation : [X, is, not, authenticated]

In the absence of such patterns, negative literals are verbalized by prefixing the pattern for the
atom with IT IS NOT THE CASE THAT. . . (for ground literals) or THERE IS/ARE NO <variable
list> SUCH THAT. . . (for nonground literals). By default, variable names are taken from the
original rule—which is the first element of the current node (r, θ).

Remark 6 This kind of metafacts can be automatically or semi-automatically generated from
the parse trees generated by the natural language front-end. In most cases, verb phrases
immediately generate the value of the explanation attribute. The corresponding predicate
names can be obtained by concatenating the same words. Using grammar rules, the dual,
negative version of the explanation attribute can be obtained automatically, too. The knowledge
engineer can override the automated proposal of the system when required.

7.1 Application independent verbalization

Application independent patterns share a common structure:

• an incipit summarizing what is being proved or disproved;

• a sequence of rule verbalizations that depend on the query modality (why, why not, etc.);

• a separator between each pair of contiguous rule verbalizations; the separator depends on
the query modality.

A uniform treatment of quantification is adopted. Let the local variables of a rule r be the
variables that occur only in the body of r. Local variables are existentially quantified. At the
beginning of each slot verbalization, the local variables that appear for the first time in that
slot are quantified with expressions such as THERE EXIST . . . and FOR SOME . . . depending on
the context. Variable names are copied from the original rule as explained above.

A cluster C = {L, t.a1 : v1, . . . , t.an : vn} of (r, θ) with main literal L is verbalized as a
single condition:

31



verb(L1θ) WITH a1 v1, a2 v2,..., AND an vn.

Note that different clusters may share the same main term. Therefore, to avoid redundancy,
the attribute atoms that have already been verbalized in a previous cluster are omitted, unless
the cluster being verbalized belongs to the Failure Slot of why not queries.

The rest of this section is implicitly formulated w.r.t. the following context:

• an arbitrary but fixed explanation structure X = (XG, s, qs) of the appropriate level;

• a node X = {ρ1, . . . , ρz} of XG (the current node), where ρi = (ri, θi) (1 ≤ i ≤ z);

• an atom A (the one being currently explained), which is more general of all head(riθi)
(1 ≤ i ≤ z).

For all clusters or literals Y and for all substitutions θ, the verbalization of Y θ will be denoted
by verb(Y, θ). For the sake of simplicity, the navigation links of level 1 queries will not be shown.

Detailed (level 2) queries

incipit TO PROVE THAT verb(A, ε) ONE CAN TRY

verbalized rules all (ri, θi) ∈ X
separator <blank line>

Each verbalized rule (ri, θi) is formatted according to the following pattern:

Rule <rule identifier>:
<rule summary>
verb(head(ri), θi) IF

<Body Slot>
<rule status>

where rule summaries can be either provided manually during the instantiation phase, or filled
in with the natural language source of the rule.

The Body Slot is verbalized as follows:

<quantification>
verb(Y1, θi) <Y1 status>
AND

...

AND verb(Ym, θi) <Ym status>
AND verb(L1, θi) <L1 status>

...

AND verb(Ln, θi) <Ln status>

where Y1 . . . Ym are all the complete clusters in body(ri), and L1 . . . Ln are all the literals in
body(ri) that do not occur in Y1 . . . Ym.

The rule status verbalization is

• the rule is applicable if s(body(ri) 6= ∅);
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• the rule is not applicable if qs(body(ri) = ∅);

• the rule might be applicable if s(body(ri) = ∅) and qs(body(ri) 6= ∅)

The status of a cluster or literal Z is visualized as

• (it has [solutions] [details]) if s(body(ri) 6= ∅);

• (it fails [details]) if qs(body(ri) = ∅);

• (it might [succeed] [details]) if s(body(ri) = ∅) and qs(body(ri) 6= ∅)

where the square brackets identify hypertext links.

“Why” queries (level 1)

incipit verb(A, ε) BECAUSE:

verbalized rules all the (ri, θi) ∈ X such that s(body(riθi)) 6= ∅ (applicable rules)

separator AND, ALTERNATIVELY,

Each verbalized rule (ri, θi) is formatted according to the following pattern:

Rule <rule identifier> can be applied:

<UD Slot>
FURTHERMORE

<UI Slot>

where FURTHERMORE is omitted if any of the two slots is missing. The UD (User Dependent)
Slot in its most complete version is verbalized as:

RELEASED INFORMATION GUARANTEES THAT <quantification>
verb(Y1, θi) AND ...AND verb(Ym, θi) AND verb(L1, θi) AND ...AND verb(Ln, θi)
AND FOR SOME <var list> verb(L′1, θi) AND ...AND verb(L′l, θi)

where Y1 . . . Ym are the ud-clusters in maxsingle(ρi), L1 . . . Ln are the ud-literals in single(ρi)
that do not occur in Y1 . . . Ym, and L′′1 . . . L

′′
h are the ud-literals in multi(ρi) that do not occur in

Y1 . . . Ym. Clearly, if any of these classes of clusters and literals is empty, then the corresponding
pattern is removed (the same holds in the rest of the section, for all queries).

Similarly, the UI (User Independent) Slot is verbalized as

verb(Ŷ1, θi) AND ...AND verb(Ŷj , θi) AND verb(L̂1, θi) AND ...AND verb(L̂k, θi)

AND FOR SOME <var list> verb(L̂′1, θi) AND ...AND verb(L̂′h, θi)

where Ŷ1 . . . Ŷj are the clusters in maxsingle(ρi) \ {Y1, . . . , Ym}, L̂1 . . . L̂k are the literals in

single(ρi) \ {L1 . . . Ln} that do not occur in Y1 . . . Yj , and L̂′1 . . . L̂
′
h are the literals in multi(ρi) \

{L′1, . . . , L′l} that do not occur in Y1 . . . Yj .
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“Why not” queries (level 1)

incipit I CAN’T PROVE THAT verb(A, ε) BECAUSE: (if A is ground)
I CAN’T FIND ANY <var list> SUCH THAT verb(A, ε) BECAUSE:

(if A is not ground)

verbalized rules all (ri, θi) ∈ X
separator AND

Each verbalized rule (ri, θi) is formatted according to the following pattern:

Rule <rule identifier> is not applicable:

<Success Slot>
BUT

<Failure Slot>

where BUT is omitted if any of the two slots is missing. The Success Slot in its most complete
version is verbalized as:

<quantification>
verb(Y1, θi) AND ...AND verb(Ym, θi) AND verb(L1, θi) AND ...AND verb(Ln, θi)

where Y1 . . . Ym are all the clusters in maxsingle(ρi), and L1 . . . Ln are all the literals in single(ρi)
that do not occur in Y1 . . . Ym.

If minfailed(ρi) ∪ failed(ρi) 6= ∅, then the Failure Slot is verbalized as4

verb(notZ1, θi) MOREOVER ...MOREOVER verb(notZj , θi) MOREOVER

verb(notL′1, θi) MOREOVER ...MOREOVER verb(notL′k, θi)

where Z1 . . . Zj are the members of minfailed(ρi), and L′1 . . . L
′
k are the members of failed(ρi)

that neither occur in minfailed(ρi) nor belong to the set of attribute atoms t.a : v such that t is
the main variable of a singleton cluster in minfailed(ρi).

Remark 7 The latter condition makes it possible to ignore the attributes of objects that do
not exist.

Example 4 If no id has been provided, then (thanks to this special treatment of attributes)
the why not verbalization of the rule

authenticated(’J. Smith’) :-

id(Credential),

Credential.name:’J. Smith’,

Credential.public_key:K,

challenge(K).

is simply: “THERE IS NO Credential SUCH THAT Credential is an id” as expected. A
naive approach would have produced something like “THERE IS NO Credential SUCH THAT

Credential is an id WITH name J. Smith and public key K”, which may be misleading.
Alternatively, it might have added redundant information such as “THERE IS NO Credential

SUCH THAT the name of Credential is J. Smith”. 2

4In the following expression we identify not notA and A.
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If minfailed(ρi) = failed(ρi) = ∅ then the Failure Slot is verbalized as

EACH OF THE FOLLOWING FACTS HAS SOME SOLUTION

<quantification> verb(L′′1)
...

<quantification> verb(L′′k)
BUT THERE IS NO COMMON SOLUTION

where L′′1 . . . L
′′
k are the literals in multi(ρi).

Remark 8 In such cases, there seems to be no concise and meaningful way of giving a more
detailed account of failure. Or solution consists in including a link to the detailed explanation
of the rule, where the individual answer substitutions of each literal can be tried out.

“How to” queries (level 1)

incipit TO MAKE SURE THAT verb(A, ε)

verbalized rules all (ri, θi) ∈ X such that qs(body(ri)) 6= ∅ (possibly applicable)

separator ALTERNATIVELY

Each verbalized rule (ri, θi) is formatted according to the following pattern.

<UD Slot>
<UI Slot>

If body(ri) contains no ud-literals, then the UD Slot is verbalized simply as

NOTHING NEEDS TO BE DONE IF <quantification>

(if the UI Slot is empty then IF clause is omitted). Otherwise, the UD Slot in its most complete
version is verbalized as:

PLEASE MAKE SURE THAT <quantification>
verb(Y1, θi) AND ...AND verb(Ym, θi) AND verb(L1, θi) AND ...AND verb(Ln, θi)
WHERE <quantification>

where Y1 . . . Ym are the maximal ud-clusters of body(ri), and L1 . . . Ln are the ud-literals in
body(ri). (If the UI Slot is empty then the WHERE line is omitted).

The UI (User Independent) Slot is verbalized simply as

verb(Ŷ1, θi) AND ...AND verb(Ŷj , θi) AND verb(L̂1, θi) AND ...AND verb(L̂k, θi)

where Ŷ1 . . . Ŷj are the maximal non-ud-clusters of body(ri), and L̂1 . . . L̂k are the non-ud-literals
in body(ri).

35



“What if” queries (level 1)

What if queries are evaluated against an extended policy, including the user’s assumptions. The
assumptions are treated as true facts (not as unspecified literals), therefore the assumptions
may create new query answers. Here we are assuming that X has been constructed using
the extended program, so that s and qs return also the answers and the quasi-answers of the
assumptions, respectively. Still we assume an auxiliary label s′ that returns the answers that
critically depend on the assumptions (i.e., those answers would not be derivable without the
assumptions).

The verbalization of what if queries depends on the labels of A:

• if s(A) 6= ∅ then the explanation is like a why explanation with a different incipit:

IT WOULD BE TRUE THAT verb(A, ε) BECAUSE

• if qs(A) = ∅ then the assumptions would definitely not suffice to prove A, so the expla-
nation is like a why not explanation with a different incipit:

IT WOULD NOT FOLLOW THAT verb(A, ε) BECAUSE

• finally, if s(A) = ∅ and qs(A) 6= ∅ (i.e., A’s derivability depends on some unspecified
predicate), then the hypothetical reasoning is verbalized as explained below.

incipit IT MIGHT BE TRUE THAT verb(A, ε) BECAUSE

verbalized rules all (ri, θi) ∈ X such that qs(body(ri)) 6= ∅ (possibly applicable)

separator AND, ALTERNATIVELY,

Each verbalized rule (ri, θi) is formatted according to the following pattern:

Rule <rule id> might be applicable:

<UD Slot>
AND

<UI Slot>
AND <Unspecified Slot>

The UD Slot is similar to the corresponding slot for why queries, with the only difference that
the literals that critically depend on the assumptions (as specified by the auxiliary label s′) are
listed in a separate sub-slot prefixed by

BY ASSUMPTION <quantification>

Analogously, the UI Slot is similar to the corresponding slot for why queries, with the
only difference that the literals that critically depend on the assumptions (as specified by the
auxiliary label s′) are listed in a separate sub-slot prefixed by BY ASSUMPTION.

Finally, the Unspecified Slot collects all the unspecified literals L ∈ quasi(ρi), and verbalizes
them after the prefix:

IT MAY HOLD THAT / THERE MAY EXIST <quantification>

(depending on the number of variables in the unspecified literals).
If the expected outcome information is available, then verbalization can be refined as follows:
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• introduce a new label qs′′ that returns the quasi-answers that depend only on unspecified
literals with expected outcome success ;

• if for some verbalized rule (ri, θi), qs
′′(body(ri)) 6= ∅, then use as an incipit the phrase:

IT WOULD PROBABLY HOLD THAT verb(A, ε) BECAUSE

• for such rules, the first line of the verbalization is

Rule <rule id> would probably be applicable

• the verbalization of the unspecified literals with expected outcome success is prefixed with

IT WOULD PROBABLY HOLD THAT

7.2 Optional information and What-for queries

Application-dependent explanation information can be enriched—if so desired—with further
text patterns that describe the purpose of a particular condition, that is, the reason why the
condition is checked by the policy. For example, a user might be interested in knowing why a
credit card is not enough and an id is needed, too. Moreover, the user might want to know why
the credit card is requested: Is it for paying, for a reimbursement, or just for guarantee?

For example, if ri is the name of the rule defining credit card payment (see the appendix),
then the purpose of the credential requested through the first literal in the body might be
further specified as follows:

ri[1].purpose : ’This credit card is charged to pay for the resource’ .

(ri[1] denotes the first literal in the body of ri).
Currently what-for queries are not full-fledged queries, they simply show such predefined

purpose information. It can be displayed by selecting the corresponding link associated to
literals in the context of other queries. The machine-understandable version of what-for queries
(useful for improving credential release policies) may exploit suitable standard ontologies such
as P3P.

Clearly, the creation of purpose information has a cost during the framework’s instantiation.

8 Conclusions and Future Work

In ATN it is possible to construct good explanations in response to why, why not, how to, and
what if queries, using simple generic explanation strategies based on the intended meaning of a
few core predicates. The only extra workload needed during the framework instantiation phase
to support explanations consists in writing literal verbalization patterns, and we expect this
phase to be assisted by the NLP front-end.

Moreover, the extra computational burden on the server can be limited to adding a few more
rules to the filtered policies. When negotiations have to be logged (e.g. during the system’s
validation phase), then servers should also log the time-dependent portion of the negotiation
state used to make the final decision. This logging feature, however, can be either deactivated
or selectively activated only on some critical service requests.
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Despite its simplicity, our explanation mechanism supports most of the advanced features
of second generation explanation systems. We have argued that unsupported features are
irrelevant to the ATN framework with one exception: the ad-hoc knowledge base modeling
domain knowledge in an explanation-oriented way. We have deliberately decided not to support
it to limit the cost of the instantiation phase and the interactions between end users and
knowledge engineers. The policies we have experimented with so far have not raised the need
for such a knowledge base.

Another contribution of our work is a novel explanation structure combining local and
global information about single and multiple proof attempts. The new explanation structures
are analogous to the table entries of tabled logic programming engines, so our work might be
applied to execution tracing in tabled Prolog implementations like XSB.

Our method provides an effective way of explaining failed proofs (including infinite failures).
Global proof information and heuristics help in focussing the explanation strictly on the relevant
details. The resulting explanations have no counterpart in previous literature.

In future work we are planning to extend the explanation mechanism to the credential
selection process based on user preferences, and to the numerical reputation models integrated in
Protune [Bonatti and Olmedilla, 2005b, Bonatti et al., 2005]. The latter goal is particularly
challenging because to the best of our knowledge there is currently no approach at analyzing
the motivations and the provenance of such reputation measures. On the contrary, rule-based
reputation estimates can be handled uniformly with the same methods introduced in this paper.

Moreover, it may be possible to enhance why and why not queries to give some information
about quasi-answers (i.e., conditions that might be true).

The quality of natural language generation may be improved by replacing fixed text patterns
with more sophisticated language generation facilities based on ACE (the controlled natural
language front-end of REWERSE).
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A The LOL Policy

Main policy:

[r1] allow( browse(index) ) :- true.

[r2] allow( download(Resource) ) :-

public(Resource).

[r3] allow( download(Resource) ) :-

authenticated(User),

has_subscription(User,Subscription),

available_for(Resource,Subscription).

[r4] allow( download(Resource) ) :-

authenticated(User),

paid(User,Resource).

[r5] allow( comment(X) ) :-

logged( comment(X) ).

Abbreviations:

[r6] authenticated(User) :-

id(Credential),

Credential.name:User,

Credential.public_key:K,

challenge(K).

[r7] authenticated(User) :-

declaration([ username=User, password=P ]),

passwd(User,P).

[r8] authenticated(User) :-

do(’http://lol.com/register.php’).

[r9] id(Cred) :-

valid_credential(Cred),

Cred.type:T,

Cred.issuer:CA,

isa(T,id),

trusted_for(CA,T).

[r10] isa(T,T).

[r11] isa(ssn,id).

[r12] isa(passport,id).

[r13] isa(driving_license,id).

[r14] paid(Usr,Resource) :-

price(Resource,Price),

fastpay(Resource,Price).

[r15] paid(Usr,Resource) :-
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price(Resource,Price),

credit_card_payment(Resource,Price).

[r16] fastpay(Resource,Price) :-

valid_credential(FPC),

FPC.type:fastpay,

declaration([ pin=XXXX ]),

charged(Resource,Price,FPC,XXXX).

[r17] credit_card_payment(Resource,Price) :-

valid_credential(CC),

CC.type:credit_card,

CC.owner:Usr,

authenticated(Usr),

charged(Resource,Price,CC,na).

[r18] valid_credential(C) :-

credential(C),

C.issuer:CA,

public_key(CA,K),

verify_signature(C,K).

Metapolicy:

public(_) .type : state_predicate.

public(X) .evaluation : immediate :- ground(X).

has_subscription(_,_) .type : state_predicate.

has_subscription(X,_) .evaluation : immediate :- ground(X).

available_for(_,_) .type : state_predicate.

available_for(X,_) .evaluation : immediate :- ground(X).

price(_,_) .type : state_predicate.

price(X,_) .evaluation : immediate :- ground(X).

passwd(_,_) .type : state_predicate.

passwd(_,_) .sensitivity : private.

logged(_) . type : provisional.

logged(_) . evaluation : immediate.

logged(_) . actor : self.

logged(M) . action : (write(M,logfile); make_true( logged(M) )).

trusted_for(_,_) . type : state_predicate.

trusted_for(_,_) . evaluation : immediate.

known(_,_) . type : state_predicate.

40



known(_,_) . evaluation : immediate.

public_key(_,_) . type : state_predicate.

public_key(_,_) . evaluation : deferred.

charged(_,_,_,_) . type : provisional.

charged(_,_,_,_) . evaluation : deferred.

charged(_,_,_,_) . actor : self.

charged(X,Y,Z,T) . action : ( ground((X,Y,Z,T)) ->

<connect to CC server and make payment>

;

warning(’charged(...) nonground - cannot satisfy it’)

).
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B Local states used for the examples

B.1 Case 1

has_subscription(’J. Smith’, law(basic)).

has_subscription(’J. Smith’, computer(basic)).

has_subscription(’other user’, computer(basic)).

/* etc */

available_for(’paper01234.pdf’,computer(full)).

available_for(’paper01234.pdf’,gold).

/* etc */

price(’paper01234.pdf’,20).

/* etc */

passwd(jsmith,htimsj).

/* etc */

known(’UK Government’,’3%$E%R^%^’).

known(’EU CA’,’NKhj34?*&H’).

/* etc */

trusted_for(’UK Government’,id).

trusted_for(’EU CA’,id).

trusted_for(’UK Government’,ssn).

/* etc */

credential(c012[type:id, issuer:’Open University’, name:’J. Smith’]).

verify_signature(c012,’Ghj37tdh*’).

known(’Open University’,’Ghj37tdh*’).

B.2 Case 2

has_subscription(’J. Smith’, law(basic)).

has_subscription(’J. Smith’, computer(basic)).

has_subscription(’other user’, computer(basic)).

/* etc */

available_for(’paper01234.pdf’,computer(full)).

available_for(’paper01234.pdf’,gold).

/* etc */

price(’paper01234.pdf’,20).

/* etc */

passwd(jsmith,htimsj).

/* etc */
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known(’UK Government’,’3%$E%R^%^’).

known(’EU CA’,’NKhj34?*&H’).

/* etc */

trusted_for(’UK Government’,id).

trusted_for(’EU CA’,id).

trusted_for(’UK Government’,ssn).

/* etc */

credential(c012[type:id, issuer:’UK Government’, name:’J. Smith’,

public_key:’HJK789?%^&’]).

verify_signature(c012,’3%$E%R^%^’).

challenge(’HJK789?%^&’).
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