
 Page 1 of 21

I2-D5
Verbalising Formal Languages in Attempto Controlled English I

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R/P (report and prototype)
Dissemination level: PU (public)
Document number: IST506779/Zurich/I2D5/D/PU
Responsible editor: Norbert E. Fuchs
Reviewers: Piero Bonatti, Gerd Wagner
Contributing participants: University of Zurich
Contributing workpackages: I2
Contractual date of delivery: August 31, 2005
Actual date of delivery: October 7, 2005

Abstract

The Attempto Parsing Engine (APE) translates a text in Attempto Controlled English (ACE) into a
discourse representation structure (DRS). In this report we describe how this translation can be
reversed, i.e. a DRS is translated back – verbalised – into a subset of ACE called Core ACE. The
verbalisation of DRSs is used for two purposes. First, the DRS that APE generates from an ACE text
is verbalised in Core ACE, providing a paraphrase of the original ACE text as feedback for the user.
Second, we outline how to verbalise first-order logic expressions in Core ACE using the DRS as
interlingua.

Keyword List

Attempto Controlled English, ACE, Core ACE, controlled natural language, discourse representation
structure, DRS, discourse representation theory, DRT, parser, Attempto Parsing Engine, APE, natural
language generation, NLG, paraphrase, verbalisation, DRACE

Project co-founded by the European Commission and the Swiss State Secretariat for Education and
Research within the Sixth Framework Programme

© REWERSE 2005

 Page 2 of 21

 Page 3 of 21

 Page 4 of 21

Verbalising Formal Languages in Attempto Controlled English I

Norbert E. Fuchs, Kaarel Kaljurand, Gerold Schneider

Department of Informatics

&

Institute of Computational Linguistics

University of Zurich

Email: {fuchs, kalju, gschneid}@ifi.unizh.ch

October 7, 2005

Abstract

The Attempto Parsing Engine (APE) translates a text in Attempto Controlled English (ACE) into a
discourse representation structure (DRS). In this report we describe how this translation can be
reversed, i.e. a DRS is translated back – verbalised – into a subset of ACE called Core ACE. The
verbalisation of DRSs is used for two purposes. First, the DRS that APE generates from an ACE text
is verbalised in Core ACE, providing a paraphrase of the original ACE text as feedback for the user.
Second, we outline how to verbalise first-order logic expressions in Core ACE using the DRS as
interlingua.

Keyword List

Attempto Controlled English, ACE, Core ACE, controlled natural language, discourse representation
structure, DRS, discourse representation theory, DRT, parser, Attempto Parsing Engine, APE, natural
language generation, NLG, paraphrase, verbalisation, DRACE

 Page 5 of 21

 Page 6 of 21

Contents

1. INTRODUCTION 7

2. VERBALISING A DRS IN CORE ACE 9
2.1. DRACE 9
2.2. SOURCE LANGUAGE OF DRACE 9
2.3. REQUIREMENTS ON THE TARGET LANGUAGE OF DRACE 9
2.4. SYNTACTIC RESTRICTIONS OF CORE ACE 10
2.5. FORMAL SYNTAX OF CORE ACE 10
2.6. PRINCIPLES UNDERLYING THE WORKINGS OF DRACE 11
2.7. EXAMPLE VERBALISATION 11
2.8. PREFIXES OF ACE FRAGMENTS 12
2.9. MAPPING DRS CONDITIONS INTO ACE FRAGMENTS 12
2.10. HANDLING OF ANAPHORS 13
2.11. CALLING OF REFERENTS 14

3. PARAPHRASING AN ACE TEXT 15
3.1. PARAPHRASES AS VERBALISATION 15
3.2. WHAT IS A PARAPHRASE? 15
3.3. HOW FAR SHOULD A PARAPHRASE DEVIATE FROM THE ORIGINAL? 15
3.4. MOTIVATING SOME DESIGN DECISIONS FOR CORE ACE 15

3.4.1. Negation 15
3.4.2. Relative Clauses 16
3.4.3. Anaphoric References 16

4. VERBALISING FIRST-ORDER LOGIC 17
4.1. THE TASK 17
4.2. TRANSFORMING FIRST-ORDER EXPRESSIONS 17

4.2.1. Prenex Normal Form 17
4.2.2. Completing the Prenex Normal Form 17
4.2.3. From Prenex Normal Form to DRS 18

4.3. TRANSFORMING LOGICAL ATOMS 18
4.3.1. Original Logical Atoms 18
4.3.2. Word Classes and Types of Relations 18
4.3.3. Transforming Logical Atoms into DRS Conditions 19

5. CONCLUSIONS 20

6. REFERENCES 21

 Page 7 of 21

1. Introduction

Many researchers seem to believe that semantic web languages – RDF, OWL etc. – are developed by
and for specialists to be ultimately processed by computers. Tim Berners-Lee states this point of view
explicitly as follows

The concept of machine-understandable documents does not imply some magical artificial
intelligence which allows machines to comprehend human mumblings. It only indicates a machine's
ability to solve a well-defined problem by performing well-defined operations on existing well-
defined data. Instead of asking machines to understand people's language, it involves asking
people to make the extra effort. [Berners-Lee 1998]

The somewhat condescending attitude expressed by this statement completely disregards the needs
of the uninitiated, for instance the needs of the average user of web-services. For them the formal
notations proposed for the semantic web are hard or not at all understandable, and they would
certainly prefer to be able to use "people's language".

A completely different position is taken by John Sowa who writes

If I had to process web annotations in any artificial language, I would prefer to use controlled
English rather than special notations such as RDF. There is no reason why web annotations have
to be humanly unreadable in order to be easy to process by a computer. [Sowa 2003]

Arguably, there is a demand to make formal notations developed for the semantic web accessible in
notations that are readily understood, for instance graphics or natural language, or even to replace
incomprehensible notations by comprehensible ones. Actually, there are already a few proposals
addressing this demand, e.g. [Metalog, Schwitter 2005a, Schwitter 2005b].

Following Sowa's lead we will here consider the verbalisation of formal notations in Attempto
Controlled English (ACE) [Attempto].

ACE is a controlled natural language, namely a precisely defined subset of English that can be
unambiguously translated into the language of first-order logic. ACE was specifically designed to be
human and machine understandable, and thus serendipitously conforms to the mutually exclusive
views of Berners-Lee and Sowa.

An ACE text is translated by the Attempto Parsing Engine (APE) into a discourse representation
structure (DRS) [Kamp & Reyle 1993]. DRSs are logical expressions using a variant of the language
of first-order logic.

DRSs form the centre of various translations and transformation as exhibited in the following
transformation diagram.

 FOL, ...
 ➃⇑ ➄⇓

 ACE ⇒ ➀ DRS ➂ ⇔ ➁ Core ACE
 ➅⇓

 PQL, PRQ, FLUX, ...

The annotations have the following meaning:

➀ APE: translation of an ACE text into a DRS

➁ DRACE: verbalising a DRS as a text in Core ACE (cf. chapter 2)

➂ APE: a text in Core ACE can be translated back into a DRS

➃ DRS is translated into an expression in the language of first-order logic (FOL), or one of its variants

➄ translation of a FOL expression into a DRS (cf. chapter 4)

➅ DRS is translated into formal languages like PQL, PRQ, FLUX etc. ignoring some information

 Page 8 of 21

The translation of an ACE text into a DRS corresponds to number ➀ in the transformation diagram.

A DRS can be further transformed into expressions in formal languages equivalent to the language of
first-order logic (cf. ➃ in the transformation diagram). For example, translations into the standard and
the clausal form of first-order logic are used within the Attempto Reasoner RACE [Fuchs & Schwertel
2003]. Transformations into languages equivalent to subsets of first-order logic – e.g. the languages
PQL, PRQ, FLUX that were used in practical applications of ACE [Attempto] – usually ignore some
information of the DRS (cf. ➅ in the transformation diagram). Transformation of a DRS into languages
like OWL or UML would also fall into this category.

As a contribution to make formal notations more readily accessible, we show that the translations ➀, ➃
and ➅ can be inversed, concretely that expressions in formal languages equivalent to (subsets of) the
language of first-order logic can be verbalised in ACE using the DRS as interlingua. This corresponds
to the combination of the translations ➄ (respectively ➅) and ➁ in the transformation diagram.

Translations ➄ and ➅ depend heavily on the respective source language, require language-specific
transformations, possibly the addition of extra material, and are in general the responsibility of the
respective users. For these reasons, it is not possible to specify translations ➄ and ➅ beforehand. For
translation ②, however, the source and target languages are known, and the relevant verbalisation
program DRACE – quasi the inverse of APE – has been prototypically implemented by the Attempto
group.

The verbalisation program DRACE translates DRSs deterministically into Core ACE – a subset of ACE
that is semantically equivalent to full ACE, but offers only one of the possible syntactic variants to
express the same semantics.

The prototype of DRACE has some additional temporary restrictions. For instance, DRSs containing
plural constructs and DRSs of query sentences are not yet processed.

In this report, we present two examples of ACE verbalisation.

As a first example, we present the paraphrasing of ACE texts, i.e. we consider the special case that
the formal language expression to be verbalised in ACE is itself an ACE text. This corresponds to the
combination of translations ① and ② in the transformation diagram. While translation ① is performed
by APE, translation ② uses the verbalisation program DRACE described in this report. Paraphrasing
ACE texts forms a part of the functionality of the ACE 4 parser available on the demo page of the
Attempto website [Attempto].

As a second example we consider the important case of verbalising first-order expressions,
specifically expressions in the standard form of the language of first-order logic. This verbalisation
corresponds to the combination of the translations ➄ and ➁ in the transformation diagram. We will
discuss the particular problems arising in translation ➄, offer some solutions for these problems, but
will not yet present a complete solution.

 Page 9 of 21

2. Verbalising a DRS in Core ACE
2.1. DRACE

The verbalisation program DRACE translates a DRS (source language) into a text in a syntactically
reduced but semantically complete subset of ACE called Core ACE (target language). A prototype of
DRACE has been developed by the Attempto group, and is used to paraphrase ACE texts (cf. chapter
3). Paraphrasing ACE texts forms a part of the functionality of the ACE 4 parser available on the demo
page of the Attempto website [Attempto].

2.2. Source Language of DRACE

The source language of the verbalisation program DRACE is the full language of DRSs as described
in [DRS Report 2005].

2.3. Requirements on the Target Language of DRACE

The target language of the verbalisation program DRACE is subject to three sets of requirements.

Requirement 1: Deterministic Verbalisation

First, it is important to understand that the target language of DRACE cannot be full ACE as defined in
[ACE Language Manual 2005], but must necessarily be a subset of ACE. This can be seen in the
following way.

Semantically equivalent, but syntactically different ACE texts are translated by APE into the same
DRS. For instance the two texts

(1) A man who owns a card enters it.

and

(2) A man owns a card. The man enters it.

result in the same DRS

[A,B,C,D,E,F]
object(A,man,person)
quantity(A,cardinality,count_unit,B,eq,1)
structure(A,atomic)
object(C,card,object)
quantity(C,cardinality,count_unit,D,eq,1)
structure(C,atomic)
predicate(E,unspecified,own,A,C)
predicate(F,unspecified,enter,A,C)

To be a useful and reliable tool, the verbalisation of a DRS should always produce the same result. In
other words, we require the verbalisation to be deterministic.

Thus one of the texts (1) or (2) must be chosen as verbalisation of our example DRS. DRACE
generates

A man A owns a card C. The man A enters the card C.

that is similar to (2).

Requirement 2: Completeness of Verbalisation

Second, DRACE’s target language must be a subset ACE that is sufficiently rich so that any DRS can
be verbalised.

Requirement 3: Support of Paraphrasing

Third, since verbalisation will be used to paraphrase ACE texts. the target language of DRACE must
contain additional elements that unravel complex ACE constructs, clarify their syntax and indicate how
the original ACE text was interpreted by APE. For details and motivating arguments regarding these
additional language elements see chapter 3.

 Page 10 of 21

As a consequence of these three requirements, the target language of DRACE is defined as a subset
of ACE that is semantically equivalent to full ACE [ACE Language Manual 2005], but does not contain
syntactic variants. Note, that this requirement does not mean that the target language is any sense
“minimal”. Particularly requirement 3 – support of paraphrasing – enlarges it.

The thus defined subset of ACE is called Core ACE.

2.4. Syntactic Restrictions of Core ACE

Core ACE has the following syntactic restrictions with respect to full ACE:

• simple sentences have only the following components

Determiner (Adjectives) Noun (Apposition) (of-construct) Verb (Adverbs)
(Prepositional Phrases).

in the given order; parentheses indicate optional components
• there are no relative clauses

• anaphoric references are expressed by definite noun phrases plus variables with the sole
exception of indefinite pronouns (somebody, something) which are referred to by personal
pronouns (he/she, it)

• quantifiers (every, for every, all, no etc.) are expressed by if-then sentences

• noun phrase negation (no) and verb phrase negation (does not, is not) are expressed by
sentence negation (it is not the case that)

• Saxon genitive (John's) and possessive pronouns (his, her own) are expressed by of-
constructs

• complex sentences have only the forms

o If Sentence1 then Sentence2

o Sentence1 and Sentence2

o Sentence1,and Sentence2

o Sentence1 or Sentence2

o It is not the case that Sentence

• conjunction within a sentence is expressed by and; conjunctions of complete sentences are
expressed by the individual sentences separated by periods

The prototype of DRACE adds the following temporary restrictions:

• there are no plurals

• there are no questions

Experience will show whether the syntactic restrictions need to be modified, and whether language
elements need to be added to enhance the expressivity of Core ACE without violating the determinacy
of the verbalisation.

2.5. Formal Syntax of Core ACE

Core ACE is defined by the following formal syntax where Adverb, Adjective, Variable,
QuotedString, Noun, Verb, Preposition, ProperName are the same word classes as in full
ACE.

Sentence = "If" Sentence "then" Sentence
Sentence = Sentence "and" Sentence
Sentence = Sentence ",and" Sentence
Sentence = Sentence "or" Sentence
Sentence = "It is not the case that" Sentence
Sentence = NP VP (Adverbs) (PPs)
Sentence = "There is" NP

 Page 11 of 21

VP = Verb
VP = Verb NP
VP = Verb NP NP

NP = "a" bareNP
NP = "the" bareNP
NP = ProperName
bareNP = (AdjCoord) Noun (Apposition) (ofConstr)

PPs = PP ... PP
PP = Preposition NP
ofConstr = "of" NP

Adverbs = Adverb "and" ... "and" Adverb
AdjCoord = Adjective "and" ... "and" Adjective
Apposition = Variable
Apposition = QuotedString

2.6. Principles Underlying the Workings of DRACE

A DRS is a tree of nested boxes containing discourse referents and conditions for these discourse
referents. Each box has a unique ID and a label. The labels of the boxes are

• (empty)

• if

• then

• or

• not

Each box defines one or more discourse referents, and each referent is defined in exactly one box.
Each referent has a unique ID and a set of conditions affiliated with it.

The depth-first traversal of a DRS tree defines an ordering of its boxes, and consequently an ordering
of its referents. The order of the referents that occur as first arguments in DRS conditions determines
the order in which DRACE verbalises the DRS. Thus we loosely say that DRACE verbalises discourse
referents.

DRACE verbalises each discourse referent taking into consideration

• the location of the referent in the nested box structure

• whether the referent has already been verbalised before

• whether some other referent of the same box has already been verbalised

It is important to realise that DRACE verbalises a DRS directly without modifying or simplifying it first.
In certain cases this can lead to inflated verbalisations. For instance, if the DRS contains a double
negation, then the verbalisation will have double sentence negation.

The workings of DRACE are best understood with the help of the example verbalisation shown in the
next section. The following sections will then elaborate on certain technical aspects.

2.7. Example Verbalisation

As example we use the DRS

 []
 [A, B]
 object(A, man, person)
 quantity(A, cardinality, count_unit, B, eq, 1)
 structure(A, atomic)

 Page 12 of 21

 =>
 [C]
 predicate(C, unspecified, run, A)

that stands for the ACE text

Every man runs.

The DRS defines the three discourse referents A, B, C, of which A and C occur as first arguments in
the following conditions

A: object(A, man, person), quantity(A, cardinality, count_unit, B, eq, 1),
structure(A, atomic)
C: predicate(C, unspecified, run, A)

The verbalisation begins with the discourse referent A. Since A occurs in an if-box, and no other
referent of this box has been verbalised yet, we start the ACE fragment with the box label as prefix (cf.
section 2.8).

if ...

Next, since referent A is not "called" from the box in which it occurs (cf. section 2.10), we add a there
is marker.

if there is ...

To verbalise the discourse referent A itself we first map its three conditions via a predefined schema
(cf. section 2.9) into the ACE fragment man

if there is ... man ...

then – since A has not been verbalised before – we prefix the ACE fragment man with the indefinite
determiner a.

if there is a man ...

This concludes the verbalisation of A.

Since B has no conditions we skip it.

Next we verbalise C. We simply concatenate its verbalisation to the ACE fragment that we have
generated so far. C occurs in a then-box which leads to a then prefix

if there is a man then ...

C calls A. Since A has already been verbalised we now have to use the definite determiner the.

if there is a man then the man ...

Next we verbalise the predicate condition itself.

if there is a man then the man runs ...

Finally, we add a period as a sentence border marker.

if there is a man then the man runs.

This essentially completes the verbalisation of the example DRS. The only operation that remains is
the capitalisation at the sentence beginning.

2.8. Prefixes of ACE Fragments

If a discourse referent is the first one from the given DRS box to be verbalised, then we prefix the ACE
fragment with the respective box label (cf. section 2.6). If a referent from a box has already been
verbalised, then we prefix the following ACE fragment with the conjunction marker and. In the top
DRS box, we use two sentences separated by a period instead of the conjunction marker and.

2.9. Mapping DRS Conditions into ACE Fragments

There is a small set of DRS conditions that can be affiliated with each discourse referent. We
essentially map those DRS conditions into natural language fragments with the help of predefined
schemata. The following specifies the mapping for the cases of noun phrases and intransitive verbs.

The remaining cases are processed in a similar way.

 Page 13 of 21

Referent which corresponds to a noun phrase has the following conditions in the DRS:

property(Referent, Property1)
property(Referent, Property2)
...
property(Referent, PropertyN)
object(Referent, Noun, _)
quantity(Referent, _, _, _, _, _)
structure(Referent, _)
relation(Referent, Noun, _, Owner)

These conditions are mapped into:

Property1 and ... and PropertyN Noun of p(Owner)

where p is the processing function that is called recursively. Note that we ignore most of the
information in the quantity-condition, since we do not currently support plural noun phrases.

The result of this mapping could be the ACE fragment

a big and ugly and hungry dog X of a man Y

where p(Owner) has been resolved as a man Y.

Referent which corresponds to an intransitive verb has the following conditions in the DRS:

predicate(Referent, _, Verb, Argument)
modifier(Referent, _, none, AdverbialModifier1)
modifier(Referent, _, none, AdverbialModifier2)
...
modifier(Referent, _, none, AdverbialModifierN)
modifier(Referent, _, Preposition1, PPModifier1)
modifier(Referent, _, Preposition2, PPModifier2)
...
modifier(Referent, _, PrepositionN, PPModifierN)

These conditions are mapped into:

p(Argument) singular(Verb) AdverbialModifier1 and ... and
AdverbialModifierN Preposition1 p(PPModifier1) Preposition2 p(PPModifier2)
... PrepositionN p(PPModifierN)

where p is the processing function which is called recursively and singular is a function which
generates present tense singular forms of verbs based on their lemma.

The result of this mapping could be the ACE fragment

a dog X runs quickly and silently in the park Y in the morning Z

where p(Argument) has been resolved as a dog X.

2.10. Handling of Anaphors

Whenever we process a discourse referent corresponding to a noun phrase for the first time, for
instance

object(A, man, person), quantity(A, cardinality, count_unit, B, eq, 1),
structure(A, atomic)

we use the indefinite determiner a for the respective ACE fragment and add the discourse referent A
as variable apposition to the ACE fragment

a man A

When we encounter the same referent again, we introduce the definite determiner the as anaphor
marker and add the same variable A as apposition

the man A

 Page 14 of 21

Since indefinite pronouns (somebody, something) do not accept appositions, anaphoric references
to them are expressed by personal pronouns (he/she, it).

2.11. Calling of Referents

Some referents "call" other referents. For instance, referent G calls the referents A and F in the
condition

predicate(G, state, be, A, F)

While in the above example the chain of calls is finite, some calling chains can be unlimited as in the
sequence of relation conditions

relation(Dog, Man)
relation(Man, Town)
relation(Town, Country)
...

or even infinite as in the loop of relation conditions

relation(Dog, Man)
relation(Man, Dog)

Currently, DRACE does not detect these loops.

Some referents cannot be called by any other referent. These are, for instance, the referents of
predicate conditions – such as G above – but also object referents that were originally introduced by
the ACE phrase there is a.

 Page 15 of 21

3. Paraphrasing an ACE Text
3.1. Paraphrases as Verbalisation

As a first application of the verbalisation program DRACE, we paraphrase an ACE text as a text in
Core ACE using a DRS as interlingua. Paraphrasing corresponds to the combination of translations ①
and ② in the transformation diagram.

As mentioned in section 2.3, paraphrasing imposes additional requirements on Core ACE.

3.2. What is a paraphrase?

The point of paraphrasing an ACE Text as an ACE Paraphrase is that the following equalities hold:

APE(Text) = DRS
DRACE(DRS) = Paraphrase
APE(Paraphrase) = DRS

These equalities express that Text and Paraphrase are semantically equivalent – since they have
the same DRS – even though they could be syntactically different. Furthermore, the equalities express
that APE and DRACE are inverses of each other as far as semantics is concerned

APE(DRACE(DRS)) = DRS
DRACE(APE(Text)) = Paraphrase

However, these equalities only constrain, but do not determine the paraphrase. Further design
decisions must be taken, some of which we will discuss in the next sections.

3.3. How Far Should a Paraphrase Deviate From the Original?

Arguably, the paraphrase of an ACE text should be syntactically different from the original ACE text,
because paraphrases should help unravelling a perhaps complex ACE text to understand it better.
The paraphrase should also reflect how the original ACE text was processed and accepted by APE. In
brief, paraphrases are for easy reading and not for convenient writing. Nevertheless, a paraphrase
should be correct ACE.

3.4. Motivating Some Design Decisions For Core ACE

The syntactic restrictions of Core ACE were already listed in sections 2.4 and 2.5. In the following
sections we will discuss selected language constructs of Core ACE with regard to their suitability for
paraphrasing.

3.4.1. Negation

To reduce the complexity of sentences and to indicate the correct scope of negations, Core ACE
knows only sentence negation, no noun phrase negation or verb phrase negation.

Noun phrase negation as in

No man runs.
is paraphrased by sentence negation as

It is not the case that a man A runs.

while verb phrase negation as in

A man does not run.
is paraphrased by sentence negation as

There is a man A. It is not the case that the man A runs .

As mentioned above, currently double negation in a DRS leads to double sentence negation

It is not the case that it is not the case ...

in the verbalisation of the DRS.

 Page 16 of 21

3.4.2. Relative Clauses

Core ACE does not contain relative clauses. Some might argue that relative clauses like those
occurring in

Every man who loves a woman who loves him is happy.

are important since they make the sentence concise and compact. Maybe, but this is not the point
here. A paraphrase should serve to unravel complex and compact sentences and to reflect their
interpretation by the parser. Thus unravelling the above sentence as

If a woman X loves a man Y and the man Y loves the woman X then the man Y
is happy.

certainly helps understanding it.

Note that unravelling the sentence introduces variables to indicate anaphoric references.

3.4.3. Anaphoric References

Core ACE makes heavy use of variables to unravel anaphoric references – expressed in ACE by
personal pronouns and definite noun phrases. Though in Core ACE anaphoric references are already
indicated by pairs of indefinite-definite determiners, variables serve to emphasise them. For instance,
the paraphrase of the ACE text

A customer enters a card and he types a code. If it is not valid then
SimpleMat rejects the card.

is

A customer C enters a card E. The customer C types a code H. If it is not
the case that the code H is valid then SimpleMat rejects the card E.

This does not work, though, for anaphoric references to indefinite pronouns, like somebody or
something. In this case, pronouns are used to express anaphoric references. Thus the text

John meets somebody. He is a friend of John.

gets the paraphrase

John meets somebody. He/she is a friend E of John.

Note that somebody does not carry any gender information and is thus referred to by he/she.

 Page 17 of 21

4. Verbalising First-Order Logic
4.1. The Task

Since first-order logic combines high expressivity with acceptable tractability, it plays an important role
in knowledge representation. This role makes the language of first-order logic a prime candidate for
verbalisation in ACE using DRSs as interlingua. Verbalisation of first-order expressions corresponds to
the combination of the translations ➄ and ➁ in the transformation diagram.

Once the verbalisation of first-order logic will be available, users who want to verbalise a formal
notation could decide to use first-order logic instead of DRSs as interlingua.

In preceding chapters we showed how a DRS can be translated into ACE (translation ➁). Now we will
discuss the particular problems arising in the translation of a first-order expression into a DRS
(translation ➄), and offer some solutions for these problems. As a result translation ➄ will turn out to
consist of several individual steps that we will present here in a logical order that is not necessarily the
order in which they will be implemented.

Note that we will not yet offer a complete solution, or even an implementation of translation ➄.

4.2. Transforming First-Order Expressions

Though the language of first-order logic does have a simple syntax, the composition of logical
structures, and the availability of logical identities leads to a plethora of first-order expressions that
must be translated into a DRS. The standard answer to this problem are normal forms of logical
expressions.

4.2.1. Prenex Normal Form

In a first step we convert the first-order expression by equivalence transformations into its prenex
normal form, i.e. an expression of the form

Quantifiers(Matrix)

where Quantifiers are all universal and existential quantifiers of the original first-order expression
and Matrix is a first-order expression that does not contain any quantifiers. Thus we have

first-order expression

⇒ normalisation

prenex normal form of first-order expression

as the first step of translation ➄.

4.2.2. Completing the Prenex Normal Form

The logically next step would be to map the prenex normal form to a DRS. However, it can happen
that the prenex normal form is an expression that cannot be mapped directly to any of the DRS boxes
(cf. section 2.4), and that it needs to be appropriately completed beforehand.

Here is an example. Given the first-order expression

forall(X, p(X))

that expresses that all elements of a domain have the attribute p, we derive the identical prenex
normal form. This, however, cannot be directly mapped to a DRS box. To be able to do so, we
introduce the predicate domain expressing the membership in the domain and convert the expression
into the implication

forall(X, domain(X) ⇒ p(X))

that can be mapped to the combination of an if-box and a then-box.

Note that the added predicate domain, and the modified expression do not introduce any new
information.

Other cases of incomplete expressions will be treated similarly.

Now translation ➄ looks as follows

 Page 18 of 21

first-order expression

⇒ normalisation

prenex normal form of first-order expression

⇒ completion

completed prenex normal form of first-order expression

4.2.3. From Prenex Normal Form to DRS

In the following step the completed prenex normal form of the first-order expression is transformed into
a preliminary DRS

first-order expression

⇒ normalisation

prenex normal form of first-order expression

⇒ completion

completed prenex normal form of first-order expression

⇒ translation into preliminary DRS

preliminary DRS

The preliminary DRS has the correct structure of the final DRS, but does not yet contain the correct
DRS conditions.

4.3. Transforming Logical Atoms

The above translation steps do not depend at all on the exact form of the logical atoms of the original
first-order expression. Their transformation into correct DRS conditions is a separate problem that is
described next.

4.3.1. Original Logical Atoms

There is a great freedom to state relations as logical atoms. Here we will consider the simple form that
is often found in text books. For instance, to express that the objects a and b have the relation r, we
write

r(a,b)

Using this notation the situation that all customers wait would be expressed as

forall(X, customer(X) ⇒ wait(X))

Many variants of the notation are possible. Note, however, that verbalisation in natural language
restricts the arity of relations essentially to 3.

4.3.2. Word Classes and Types of Relations

Given the logical atom

surface(a)

how should we eventually verbalise the unary relation surface? As a noun (a surface), as a verb (to
surface), or as an adjective (surface material)?

To be able to map logical atoms to DRS conditions – and ultimately to words in ACE – we need to
know the "word classes" of the relations, and also their type [DRS Report 2005]. This lexical
information must be provided in addition to the first-order expression to be verbalised.

Here are some examples of associating word classes and types with relations.

Relation Word Class Type
customer/1 noun person
wait/1 (intransitive) verb event/state
see/2 (transitive) verb event/state
give_to/3 (ditransitive) verb event/state

 Page 19 of 21

red/1 adjective -
of/2 genitive relation -

Possibly the lexicons of APE could be used to provide this lexical information.

4.3.3. Transforming Logical Atoms into DRS Conditions

In section 2.9 we saw how DRS conditions can be schematically mapped into ACE fragments. Given
the small number of word classes and types, and the fact that they are uniquely related to sets of DRS
conditions, we suggest the same schematic approach to map logical atoms into DRS conditions.

For instance, given the logical atom

customer(A)

in which the relation customer/1 has the word class noun with type person, we schematically
replace the logical atom by the three DRS conditions

object(A,customer,person), quantity(A,cardinality,count_unit,B,eq,1),
structure(A,atomic)

Notice, that we need to introduce the additional variable B that is currently not used any further.

Similarly, we replace the logical atom

see(X,Y)

in which the relation see/2 has the word class transitive verb with type event by the DRS
condition

predicate(P,event,see,X,Y)

for which we introduce the additional variable P.

The transformation of logical atoms into DRS conditions constitutes the last step of translation ➄ that
now looks like

first-order expression

⇒ normalisation

prenex normal form of first-order expression

⇒ completion

completed prenex normal form of first-order expression

⇒ translation into preliminary DRS

preliminary DRS

⇒ transformation of logical atoms

final DRS

We would like to emphasise again that the above describes the logical sequence of transformation
steps, not necessarily the order in which they will be ultimately implemented.

 Page 20 of 21

5. Conclusions
For many people the formal notations introduced for the semantic web are hard or not at all
comprehensible. We claim that there is a definite need to make these notations accessible in readily
understandable notations, or perhaps even to replace them altogether by understandable, but still
computer-processable, notations.

Attempto Controlled English (ACE) – being both human and machine understandable – can fulfil this
need.

In this report we show how formal notations can be verbalised in ACE. To this end we have defined
Core ACE – a subset of ACE that is semantically equivalent to full ACE, but does not offer all its
syntactical variants. Furthermore, we have developed a prototype of the program DRACE that
verbalises the first-order logic language of discourse representation structures (DRS) [DRS Report
2005] in Core ACE.

As a first concrete application, DRACE is used to paraphrase ACE texts that were previously
translated by the Attempto Parsing Engine (APE) into DRSs. This paraphrase serves as feedback to
the user, for instance in the demo version of APE available on the Attempto website [Attempto].

Additionally, we have outlined the verbalisation of expressions in the standard form of the language of
first-order logic as a two step translation using DRSs as interlingua: first-order expressions are
translated into DRSs which are than translated by DRACE into Core ACE.

This is the first of two deliverables on verbalisation of formal languages in Attempto Controlled
English. Further work on

• extending Core ACE by plurals and queries

• enhancing and completing DRACE

• implementing the translation of first-order expressions into DRSs

• verbalising a concrete language of the semantic web

will be presented in a second deliverable.

 Page 21 of 21

6. References
[Attempto] www.ifi.unizh.ch/attempto: Attempto website containing a description of the Attempto
project, a list of the people involved, demos, publications and various other information

[ACE Language Manual 2005] N. E. Fuchs, S. Höfler, K. Kaljurand, F. Rinaldi, G. Schneider, U.
Schwertel, Attempto Controlled English (ACE), Language Manual, Version 4.0, Technical Report 2005,
forthcoming, [www.ifi.unizh.ch/attempto]

[Berners-Lee 1998] Tim Berners-Lee, www.w3.org/DesignIssues/RDFnot.html, September 17, 1998.

[DRS Report 2005] N. E. Fuchs, S. Höfler, G. Schneider, U. Schwertel, Extended Discourse
Representation Structures in Attempto Controlled English, Technical Report 2005, forthcoming,
[www.ifi.unizh.ch/attempto]

[Fuchs & Schwertel 2003] N. E. Fuchs, U. Schwertel, Reasoning in Attempto Controlled English, in: F.
Bry, N. Henze and J. Maluszynski (eds.): Principles and Practice of Semantic Web Reasoning,
International Workshop PPSWR 2003, Mumbai, India, December 2003. Lecture Notes in Computer
Science 2901, Springer Verlag, 2003

[Kamp & Reyle 1993] H. Kamp & U. Reyle, From Discourse to Logic, Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory, Kluwer, 1993

[Metalog] Metalog Project, www.w3.org/RDF/Metalog/docs/pnl.html

[Schwitter 2005a] R. Schwitter, Controlled Natural Language as Interface Language to the Semantic
Web, to be presented at the 2nd Indian International Conference on Artificial Intelligence (IICAI-05),
Pune, India, December 20-22, 2005

[Schwitter 2005b] R. Schwitter, A Controlled Natural Language Layer for the Semantic Web, to be
presented at the 18th Australian Joint Conference on Artificial Intelligence, Sydney, Australia,
December 5-9, 2005

[Sowa 2003] John F. Sowa, CG Mailing List, October 19, 2003

