REWERSE:

reasoning on the web

I13-D5

Prototype component models and composition
technology toolset for integration of
logic-programming-like REWERSE languages

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE

Project number: IST-2004-506779

Project instrument: EU FP6 Network of Excellence (NoE)

Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)

Nature of document: P (prototype)

Dissemination level: PP (restricted to FP6 participants)

Document number: IST506779/Dresden/13-D5/D /PP /al
Responsible editors: Jakob Henriksson

Reviewers: Gerd Wagner

Contributing participants: Dresden, Malta, Nancy

Contributing workpackages: 13

Contractual date of deliverable: 31 August 2005

Actual submission date: 20 September 2005

Abstract

Any software composition system requires, among other things, a component model, which
describes how components look and how they can be interfaced with each other. Previously,
the component models for languages have been hand-written. We demonstrate a prototype tool
for automatic derivation of a component model for any language given the description of the
language as a meta-model in the Web Ontology Language OWL. The Semantic Web endeavor
has given rise to new declarative languages which will require composition and reuse in the
same way as in the traditional software engineering community. Thus we focus on deriving
component models for declarative languages that are of importance for the Semantic Web such
as OWL and the XML query language Xcerpt. We demonstrate how component models are
generated for these languages using our prototype.

Keyword List
invasive software composition, component-based systems, component adaptation, metamodel-
ing, semantic web

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sizth Framework Programme.

© REWERSE 2005.

ii

Prototype component models and composition
technology toolset for integration of
logic-programming-like REWERSE languages

Uwe Assmann', Jakob Henriksson' and Ilie Savga'

! Faculty of Informatics, Technical University of Dresden
Email: {uwe.assmann|jakob.henriksson|ilie.savga}@inf.tu-dresden.de

20 September 2005

Abstract

Any software composition system requires, among other things, a component model, which
describes how components look and how they can be interfaced with each other. Previously,
the component models for languages have been hand-written. We demonstrate a prototype tool
for automatic derivation of a component model for any language given the description of the
language as a meta-model in the Web Ontology Language OWL. The Semantic Web endeavor
has given rise to new declarative languages which will require composition and reuse in the
same way as in the traditional software engineering community. Thus we focus on deriving
component models for declarative languages that are of importance for the Semantic Web such
as OWL and the XML query language Xcerpt. We demonstrate how component models are
generated for these languages using our prototype.

Keyword List
invasive software composition, component-based systems, component adaptation, metamodel-
ing, semantic web

iv

Contents

[L__Introductionl

2

Background]

2.1 Language modeling levels| oo

[2.2 Invasive software composition]o

.3~ Reuse languages and component models| v oo vv i e

I3 Deriving a component modell
4 Prototype: HoMoGen|
4.1 Upper ontologies for language constructs and component models|
4.2 HoMoGenl e
4.2.1 Deriving generic concepts]
5 xamples
[p.1 Component model for Xcerpt]
B2 Component model Tor OWL] oo i i e
6__Conclusions|
[r__IFuture workl

11

12
12
16

19

19

vi

1 Introduction

Developing software from smaller existing parts is called component based development [17]
and has been around for a long time in the software engineering community [I4]. There are
many benefits to be harvested from creating software based on components and this method
is considered a vital part of large mature systems [I5]. Among other things, creating software
from components allow for reuse of code. A component is a piece of software written in a
language, keeping in mind that it will be used as a part of a more complete system. It is
constructed in such a way that it allows other software components to connect to it through
declared interfaces, i.e., to be composable.

In order to allow for the composition of software components, to have a composition system
(Figure , three different things need to be specified. What we need is a component model, a
composition technique and a composition language. A component model defines how the software
components should look in order to be usable in the system. Specifically, the component model
should explicitly describe the interfaces of the components, e.g., how different components can
be connected. The composition technique defines how different components are actually linked
to each other in order to construct a useful program. The composition language is the language
in which the connections between the components are made explicit by certain operators.

Our aim is to apply the techniques used in software engineering and bring them into the
world of the Semantic Web and its declarative languages. As the Semantic Web languages
mature, become widely spread and are used in well-developed complex systems, there will be a
need for reuse and composition frameworks. Examples of such Semantic Web languages include
the Web Ontology Language OWL [I6] and the XML query language Xcerpt [10]. For example,
there will be a need to engineer large OWL ontologies from smaller and better understood
ontologies also written in OWL. Also, to allow for better reuse of code in Xcerpt programs,
which goes beyond the built-in reuse concept of Xcerpt rules.

To be able to compose specifications and programs of these languages we need to describe
component models for them. As mentioned, this is an essential part of any composition system.
One possibility is to write these component models by hand, but this is tedious and error
prone. Deliverable I3-D1 [I3] presented an approach for automatically deriving a component
model for any language given a meta-model (specification of the constructs) of that language.
Here we describe a tool that automatically derives a component model for a language given
its description in OWL. The approach is not limited to any specific language, however, we are
specifically concerned with languages relevant for the Semantic Web.

The derived component models are to be used together with invasive software composition
[18]. They can thus be employed for generic programming, connector-based programming,
view-based programming and aspect-oriented programming.

Thus, the purpose of this deliverable is to demonstrate a prototype, named HoMoGerﬂ
for automatically deriving the essential parts of a component model for any language given its
description in OWL. By the essential parts of the component model, we mean the part of the
component model that must be specific for every language.

1HoMoGen is short for Hook Model Generator

Component model Composition technique

~—

Composition language

Figure 1: A composition system is comprised from three distinct parts: a component model, a
composition technique and a composition language

2 Background

We are dealing with deriving component models for languages, which have a natural place in a
software modeling hierarchy. Therefore, in Section [2.1] we first give some background to software
modeling abstraction levels in order to make clear at what level in that hierarchy we are working.
The generated component models will be used together with invasive software composition. In
Section 2:2) we give an introduction to this composition technique. Finally, in Section 23] we
describe the relation between the component model and the language description, from which
it was derived. We also make clear how we get a description of an extended language, in which
reuse-aware components will be written.

2.1 Language modeling levels

In this section we briefly summarize the different modeling levels which need to be taken into
consideration when modeling systems. The modeling levels are organized in a hierarchy as
shown in Figure[2} A model at level x is used to describe the modeling constructs used at level
x—1. We will look at the levels one by one starting at the bottom and moving upwards through
the hierarchy.

o Software objects At the MO level we have the software objects which simulate the real
world objects that are being modeled.

e Models One step up in the hierarchy, at level M1, we have the software model level, whose
objects are used to describe the software objects in the level below (M0). The objects at
this level can be seen as types for the objects at level MO and are also called meta-objects.
E.g. the software class Person would be used to collect (type) all the objects at level MO
that are persons.

e Meta-models In the same way, the meta-model level M2 introduces types for objects at
level M1 and are called meta-classes (or meta-meta-objects). For example, the meta-meta-
object Class could be used to describe the specific instance Person in level M1, which, in
turn, describes all the software objects at level MO that are persons.

M3
Meta-Metamodels
Meta Concepts

Language_Concept

M1
Models
Software Classes

R Car.age
Person void

f car Car.drive()

Wine ontology

e —————————

MO tom volvo.

Software Objects volvo drive() volvo.age
Real World

Objects

Figure 2: Software modeling hierarchy

What is important to understand at this stage is that a model at a specific level is a language
for expressing other models or entities at lower levels in the hierarchy. Specifically, the meta-
classes at level M2 are constructs of ordinary programming languages. Therefore, a meta-model
can be a description of such a language.

o Meta-meta-models Finally in level M3 we have objects that describe the meta-meta-
objects of level M2. These objects can describe all concepts that are used in any pro-
gramming language.

It should be clear that at the meta-meta-model level we can describe specification and pro-
gramming languages, in particular, ontology languages. A language used for constructing meta-
meta-models is a language for specifying other languages. Examples of meta-meta-modeling
languages include the MetaObject Facility (MOF) language [2], EBNF [I] and OWL. OWL
will be of special importance to our prototype. This is because we assume that the language
descriptions we need are described in OWL.

2.2 Invasive software composition

Invasive software composition is an approach towards component based software engineering.
In invasive software composition a component is a set of program fragments. Therefore, com-
ponents are referred to as fragment boxes to distinguish them from components used with other
composition approaches. The reuse abstraction in invasive software composition is called grey-
box because it makes use of both white-box and black-box abstraction, as used in traditional
software composition. It resembles white-box system, because the actual source code in the
components is being modified by composition operators. However, the components are also
encapsulated and only accessible through a well-defined interface, as in black-box systems.

Components

(Fragement boxes) Hooks

Ny 2o
\/

Invasively Transformed Code

Figure 3: Two components being composed invasively.

The components to be used in invasive software composition have hooks defined. A hook is
a variation point in a component and declares where and how the component can be modified
and reused. A declared hook can be used both for parameterization and for extensibility. A
parameterizable hook functions as a placeholder for other syntactic elements. An extensible
hook functions as a variation point where suitable language constructs can be added repeatedly,
if necessary. An example of a possible extensible variation point would be the end of a parameter
list for a function in e.g. Java.

Hooks can be either implicit or declared. Implicit hooks are language dependent and are
implied by the semantics of the language. For example, every Java method has an entry point
and each well-formed XML document has a root element. Thus, we can expect implicitly defined
variation points there. The author of a component can also declare hooks explicitly. This will
require an extension of the language in question with new keywords to be used for this task.
We will define such an extended language of a given language £ in Section Furthermore,
we will see how these new keywords are automatically derived by our prototype in Section [4]

When finally composing components with hooks invasively, the composition technique adapts
the components and transform the hooks with one of the composition operators bind or extend.
This is illustrated in Figure] However, this step goes beyond the prototype that we are cur-
rently describing. Please refer to [I8] for a complete overview of invasive software composition
and its techniques.

2.3 Reuse languages and component models

We want to clarify some terminology which will be used when talking about component models.
First of all, we refer to the language for which a component model is to be generated, as the core
language. This is shown in Figure [d] The essential part of a component model for a language

HoMoGen

Hook
model

CoMoGen

Figure 4: The component model generator, CoMoGen, is a toolset for deriving component
models and surrounding tool support for a reuse-language. One part of this toolset is the hook
model generator, HoMoGen. A hook model defines language construct to be used as variation
points in components written for the core language L.

is made up of its hook model. A hook model is a description of the hooks, as defined in Section
each corresponding to a language construct of the core language. The constructs described
in the hook model will be used to declare variation points in components. As seen in Figure [5]
the component model is not only made up of the hook model, but also from some additional
concepts, which will be used in the naming of components. The collection of these concepts is
referred to as Names in Figure [f] We should note that this collection of descriptions will not
change between component models for different languages, but remains invariant. We will not
investigate this further here, instead we focus on what changes between component models for
different languages, the hook model. Also, apart from the hook model and the naming concepts,
there might be additional information described in the component model. However, we do not
discuss this further here.

As seen in Figure [5] the core language, £, is extended, or slightly modified, for a reuse-
context. The component model together with the core language extension, constitutes a lan-
guage, in which re-use aware components of £ will be written. We call this language Reuse-L.

3 Deriving a component model

Component models that have been used so far for composing programs with invasive software
composition have been hand written. This includes component models for languages such as
Java and Prolog that have been used together with the software composition system COMPOST
[3]. Our aim is to provide a means to automatically generate a component model for a language
given its description as a meta-model. This has the advantage that, as soon as a new language
appears, we instantly have access to its component model and do not have to perform the
tedious work of hand writing it.

The basic idea of automatically deriving the component model from the language defini-
tion comes from the object-oriented language Beta [5]. In Beta, every language construct can
be generic, which is achieved by isomorphically mapping each language construct to generic
elements of its component model. This is done for the language Beta itself.

CoMoGen

Extension
Of L

Component model
Reuse-L

Figure 5: Among other things, CoMoGen will generate a language extension of the core lan-
guage to be used as part of a more complete reuse-language, Reuse-L, in which reuse-aware
components of the core language £ can be written.

We are taking this idea and applying it to any language £ (core language). We derive a
component model for £ by first creating a hook model with concepts that are isomorphically
derived from the concepts of core language description. The concepts in the hook model are
hooks, as described in Section [2.2] which can be used to declare variation points in components.
The derivation of a hook model of a language is also illustrated in Figure[f] We note that this
horizontal mapping of the core language keeps us on the same meta-model level of the modeling
hierarchy. As can be seen in Figure [§} a language construct Class, is mapped to the hook
Class_Hook in the hook model. This convention is used for all constructs when deriving the
hook model. The constructs in the hook model allow for both parameterization and extensibility
as described in Section

We will describe how we generate a hook model for a language in Section] There we
will assume that the language description is expressed in the Web Ontology Language OWL.
The hook model that is generated will also be described in OWL. As noted in Section [2.3] a
component model is made up of more information than just a hook model. However, the hook
model for a specific language is what makes its component model unique from other component
models. As also noted, there are some invariant concept descriptions (e.g. naming), which
will be present in every component model. By joining these common descriptions with a hook
model for a language, we will have a component model for that language.

4 Prototype: HoMoGen

In this section we will describe the details of our prototype, HoMoGen. In Section 1] we
first describe common upper ontologies that will be used for every generation of component
models from language specifications. Finally, in Section 4.2] we give some technical details of
the prototype, specifically the details of how a hook model is generated.

Hook model:

L — Class_Hook
ClassMethod Attribute > Method Hook
Attribute Hook

M2
Metamodels
Software Concepts

__

Figure 6: Automatic generation of a hook model is achieved by isomorphically mapping each
language construct to a parameterizable and extensible construct in the hook model. This is
done on the same software modeling level, i.e. the hook model is a horizontal mapping from
the core language meta-model.

4.1 Upper ontologies for language constructs and component models

For the approach of automatically deriving a component model from a language specification
we have chosen to make use of two common ontologies. First, we define an upper ontology for
language constructs. This ontology will define concepts, which are available in any language. For
example, Choices, Aggregates and Collections. More generally, the concept LanguageConstruct,
which is the top concept in this ontology. Secondly, we define an upper component model
ontology. This ontology will capture information, which is common to all component models, for
example, the concept LanguageConstructHook. This ontology references the upper ontology for
language constructs because a LanguageConstructHook, which will be used in a reuse language
(Section , is also a LanguageConstruct.

The relation between the core language, the upper language ontology, the upper component
model ontology and the hook model is shown in Figure [7]

One of the purposes of a component model is to describe how components can be connected.
Therefore we should therein describe any restrictions made in this regard. Specifically, in the
hook model, we describe restrictions on how the hooks can be used for composition. We restrict
the values which the hooks can be bound to. This is modeled by putting an allValuesFrom re-
striction on the property bound With, which is defined in the upper component model ontology.
This particular property is used to restrict the hook model in such a way that the automati-
cally derived hooks can only be bound to their corresponding constructs in the core language
description.

For example, suppose we have a concept in the hook model, Query_Hook, that has been
automatically derived from the concept Query in the core language (L) description. Further

Upper language ontology Upper component ontology

LanguageConstruct

YboundWith *
restriction Vo
Tls-a) e | Is-a
Query_Hook
HoMoGen
—
Core language specification Hook model

Figure 7: The core language specification and the hook model make use of two upper ontologies.
When deriving a hook model for a language, our prototype, HoMoGen, connects the hook model
to the upper ontologies. Also, restrictions are put on the derived concepts, using the property
boundWith. This restricts hooks to be bound with their corresponding constructs of the core
language specification.

suppose we have a component, written in Reuse-£, making use of the construct Query_Hook
to allow a Query to be plugged into that specific hook. Thus, the possible language constructs
of £ that should be allowed to be bound to the hook Query_Hook should be restricted. The
restriction should be made to the constructs that belong to the concept Query of the core lan-
guage description. This is done by automatically generating the restriction YboundWith.Query
for the concept Query_Hook in the hook model, see Figure [} Thus, the hook Query-Hook can
only be bound to the construct Query. This is done for every construct of the core language
model when deriving its hook model. The enforcement of this restriction will be made at a
later stage when the composition system finally composes components, which we do not deal
with yet.

4.2 HoMoGen

A part of the CoMoGen toolset is the hook model generator, HoMoGen, which we will now
describe.

HoMoGen is written in J avaEl and makes use of the Java library Jena [4] for handling OWL
ontologies. Our prototype deals with reading and creating new models in form of OWL ontolo-
gies. Thus, Jena makes handling ontologies much easier, since the library provides primitives
for manipulating OWL constructs such as classes and properties. We refer to the web—pageﬂ of
Jena for more information and complete documentation.

The prototype does not have any GUI interface but is simply run from the command line

2requires Java 1.5 or higher
3http://jena.sourceforge.net/

/ /’

Component

model \

Invariant

component
model

concepts

Language
description
in OWL for

Language Language Hook Reuse-L
description description model for
in EBNF far in OWL for
L
e
4
Ebnf2ZOWL HoMoGen

Figure 8: Process of how to derive a component model of a language from its language specifi-
cation

together with the required arguments. Of course, the prototype can also be run from an IDE
like Eclipseﬂ In Figure@ we can see the prototype being run from Eclipse with no arguments.
Then we are informed of the required arguments.

HoMoGen takes two arguments in order to run properly. The first argument is the name of
the core language and the second argument is the name of the component model to be generated.
The names of these arguments refer to names in a configuration file called config.zml, where
several pieces of information are declared. For example, below we can see the description of the
Xcerpt language specification ontology.

<Ontology>
<Name>X cerpt</Name>
<NamespaceURI>
http://www.owl—ontologies .com/xcerpt.owl
</NamespaceURI>
<NamespacePrefix>xcerpt</NamespacePrefix>
<Location>../resources/xcerpt/xcerpt.owl</Location>
</Ontology>

Furthermore, below is information described regarding the Xcerpt component model ontol-
ogy.

<Ontology>
<Name>XcerptComponentModel</Name>
<NamespaceURI>
http://www.owl—ontologies .com/xcerpt_componentmodel.owl
</NamespaceURI>
<NamespacePrefix>xcerptcm</NamespacePrefix>
<Location>

4http://www.eclipse.org

£ Java - Eclipse Platform =lol x|

File Edit Source Refactor Mavigate Search Project Run Window Help
[i = |3 -0 -Q - @ | - | @ B | &ldava | [Resource
[ESRSE

Er— =

Bk

7% LanguageSpecificationtwithCiwL =
-8 gre

= H de.tudresden.inf, swt. language:
B componentrmodel

! 'ﬂ CMaenerator, java

L E-[J] CMGeneratorTool java
: @, CMGeneratorTool

EE corfig

[£ ebnf - 0 - =

; Conscle &3 L[=2 L Ft . 5 F
[[languagelnstance B console] | L | 8-

EE' tests <kerminated > CMGener aborTool [1ava Application] C:hProgramme’Javaljdkl 5.0_02Zbintjavaw, exe
r.E Lkl First parameter must be the source language nsmme! ;I
JRE System Library [jdki.5.0_02] 7 ||%econd parameter must be the target component model name!
antl-2,7.5.jar

commaons-lagging. jar
Concurrent.jar
icudj.jar

jakarta-oro-2,0.5.jar - -
| 4 LI »

| de.kudresden.inf.swk.languagespecificatio, . .orTool - LanguageSpecification\WithOwL/src |

o [[1] .

Pl B e W e e B e W

Figure 9: Running the prototype from Eclipse with no arguments

../ resources/xcerpt/xcerpt_componentmodel.owl
</Location>
</Ontology>

Both these pieces of information would be described in a config.xml file. Information typi-
cally stored in the configuration file is a name for the ontology, a namespace URI, a namespace
prefix and the file location where the ontology physically exists. To properly run the prototype
and generate a hook model for Xcerpt we pass it the arguments Xcerpt and XcerptComponent-
Model. Doing so, we are referring to the information in the config.zml file. This can be seen in
Figure The first argument specifies the core language description and the second argument
specifies the component model to be generated.

Our prototype assumes that there is an OWL description of a core language. However, we
want to note that we can also use a tool, Ebnf20WL, to convert an EBNF-like description of a
language to OWL. Both EBNF and OWL are meta-meta-modeling languages, i.e. languages,
where it is possible to describe other languages. It can often be easier to describe a language in
EBNF notation instead of the more cumbersome XML/RDF notation of OWL. Furthermore,
many language are already described in EBNF. Thus, Ebnf20WL allows us to have a language
description in OWL, if it exists in EBNF. This is schematically shown in Figure [§| However,
for the prototype we assume the existence of a language specification in OWL. Describing
Ebnf20WL is out of the scope of this report and we will not discuss it further.

10

x

Create, manage, and run configurations —

Run a Java application \ I ;)

Configurations: Name: | CMGeneratorTaol
4@ Edlipse Application
] lava spplet

=131 Java Application & Main 9= Arguments | = JRE I “ip Classpath | £ source | B% Environment | = Common |
- [7] CMEeneratorTool —Program arguments:
Fa) .EanTDOwlTool wcerpt
Ju JUnit ®rerpComponentMadel|

717 Jnit Plug-in Test

- [77] SwT Application :
‘ariables. .,

%M arguments:

ILI' _P_IL

Yariables. ..

—Warking directory:

I ${workspace_loc:LanguageSpecificationdithowL

¥ Use defaul warking directary Waorkspace, ., || File System..., I Yariatles, ., |
Mew Delete | Apply | Rewert: |
Run Close |

Figure 10: Preparing the prototype to generate a component model for Xcerpt

4.2.1 Deriving generic concepts

We assume we have a meta-model (language description) of a core language L, for which we
want to generate a component model. The concepts of L£’s meta-model are descriptions of
the language constructs of £. Our prototype derive concepts from L’s meta-model in order to
generate its hook model. The hook model, together with other invariant descriptions (e.g. for
naming, see Section, constitutes the component model for L.

We will now describe, step by step, how each concept of a hook model is derived from
the meta-model of a core language £. We note that when dealing with OWL ontologies we
usually use the term class to denote a concept. Thus, for each named class C in the meta-model
ontology of L, we take the following steps in creating its hook model.

1. Create hook concept Create a class named C_H ook, which is used to denote the hook
corresponding to the concept C in the core language meta-model.

2. Connect hook concept to upper component model ontology Make class C_H ook
subclass of the upper component model ontology concept LanguageConstructHook.

3. A hook can appear anywhere its corresponding core construct can In the meta-
model of the core language, the abstract syntax of the language is described, i.e. how
certain constructs are allowed to be used. For example, it might be stated that a Java
class may be made up of variable declarations and method declarations and definitions.

11

We want the corresponding hooks of these constructs to be allowed to appear in the same
places as the core constructs. For example, a variable declaration hook should be allowed
to appear in a class of a Java component, written in Reuse-Java. It is therefore natural to
make the hook constructs sub-concepts of the corresponding concepts in the core language
extension (see Figure . We do this by stating that C_H ook subClassOf C.

4. Restrict values to be bound with the hook Use the property bound With, defined in
the upper component model ontology, to restrict the values, which can be bound to the
hook. Add an allValuesFrom restriction to the class C_Hook on the bound With property.
The restriction should be made to the class C of the extended core language description.
L.e. C_Hook is restricted with VboundWith.C.

5 Examples

In Section we describe small pieces of the generation of a hook model for Xcerpt. We also
show a small example of components making use of the generated hook model. In Section [5.2
we do the same for OWL.

5.1 Component model for Xcerpt

It is not possible to show the whole hook model for Xcerpt because of space limitations. How-
ever, we still want to show in principle what happens with every language construct description
found in the core language description when deriving its hook model.

In this example we will look at the Xcerpt construct Query. In Figure we see how the
description of the Query construct is used to derive the corresponding concept, Query_Hook, in
the hook model.

The following shows a shortened version of the XML /RDF serialization of the concept Query,
described in OWL, and its corresponding concept in the hook model. The following namespace
prefixes are used: ucmo refers to the upper component model ontology, uofic refers to the upper
ontology for language constructs and xcerpt refers to the core language description of Xcerpt.

<owl:Class rdf:about="#Query”>
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection”>
<owl:Class rdf:about="#CompoundQuery” />
<owl:Class rdf:about="#QueryAtom” />
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="uoflc:Aggregate” />
<rdfs:subClassOf rdf:resource="uoflc:ChoiceOfNonTerminals” />

</owl:Class>
<owl:Class rdf:about="#Query_Hook”>

<rdfs:subClassOf rdf:resource="ucmo:LanguageConstructHook” />
<owl:equivalentClass>

12

LanguageConstruct

Upper language and
component model
ontologies

LanguageConstructHook

@ Query_Hook

YboundWith.Query

Aggregate

Xcerpt ontology Xcerpt hook model ontology

____/

HoMoGen

Figure 11: Example of the creation of a hook construct in a hook model from a description of
a construct in the core language Xcerpt

<owl:Class>
<owl:unionOf rdf:parseType="Collection”>
<owl:Class rdf:about="#CompoundQuery _Hook” />
<owl:Class rdf:about="#QueryAtom_Hook” />
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="ucmo:boundWith” />
<owl:allValuesFrom>
<owl:Class rdf:about="xcerpt:Query” />
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

We will look at an example which makes use of the component model for Xcerpt. When
declaring rules for querying XML data in Xcerpt, one separates between query terms and
construct terms. l.e. there is a separation between the part of the rule that matches XML
data and the part of the rule that constructs the result from the query. An example is shown
in [9], where this separation of concerns results in two syntactically very similar rules, for

13

two semantically similar rules. These queries are shown below. The only difference is in the
construct terms (cons), where the first rule states TITLE, all AUTHOR and the second rules
uses all TITLE, AUTHOR. The query terms are the same for the two rules.

Listing 1: An Xcerpt rule with a construct term and a query term

rule {
cons {
result {
all result {
TITLE,
all AUTHOR
}

}
I
query {
in { "http://bn.com” },
bib {{
book {{
TITLE —> title ,
authors {{
AUTHOR —> author

H
1
H
}
}

Listing 2: The same Xcerpt rule as in Listing [I] except for a slightly different construct term.
The query term is the same as in Listing [I} which we want to reuse.

rule {
cons {
result {
all result {
all TITLE,
AUTHOR

}
}
’
query {
in { "http://bn.com” },
bib {{
book {{
TITLE —> title ,
authors {{
AUTHOR —> author

1
1

14

H

We intend to allow for the reuse of the query term by writing a component, cl, in Reuse-
Xcerpt which contains the query term. Furthermore, we write a component, ¢2, which contains
one of the construct terms as described above. If the other construct term is to be used, the
query term in component ¢l can be reused for this purpose. The two components, written in
pseudo-code, can be found in Listing [}l and Listing [4} The markup ”<” and ”>>” is used here
to indicate a declared hook in a component.

Listing 3: Component cl, containing the query term, written in Reuse-Xcerpt
COMPONENT c1 = {

query {
in { "http://bn.com” },
bib {{
book {{
TITLE —> title ,
authors {{

AUTHOR —> author

1
1
H
}
}

Listing 4: Component c¢2, containing one specific construct part, written in Reuse-Xcerpt

COMPONENT ¢2 = {
rule { cons {
result {
all result {

all TITLE,
AUTHOR
}
}
s

<<query_hook_name : Query_Hook>>

}

The components cl and ¢2 could be composed using the following Java pseudo-code:

// create the two components

Component queryComp = new Component(”cl”);

Component ruleComp = new Component(”c2”);

// locate the declared hook in the ’¢2’ component

Hook h = ruleComp. findQueryHook (” query_hook_name”);

// perform the bind operation to connect the components
h.bind (queryComp);

15

The result from this composition would result in the same Xcerpt rule as found in Listing

5.2 Component model for OWL

One of the most powerful composition operators for classes is parameterized inheritance. This
operator, also called GenVoca operator, has been discovered by Batory and applied in many
variants of object-oriented software, e.g. the modelling of product variants in product lines [T1].
In essence, this operator parameterizes the superclass of a class, i.e. takes a generic class as
input, in which the generic hook denotes a superclass. Such a template is a partial class whose
superclass can be determined from outside, e.g. during composition of more complex class
hierarchies. Therefore, the operator can be used to combine complex, layered hierarchies of
class-based systems. Batory’s composition style applies the GenVoca operator between ab-
straction layers of a system. A variant of the system is composed out of one variant of every
layer, glued together by the GenVoca operator. Batory has argued that this architectural style
is very useful in building complex systems, such as databases [8], libraries [7], frameworks [6],
and other object-oriented software.

Parameterized inheritance combines parameterization (bind a generic hook) and inheritance.
Since OWL lacks genericity, it is not possible to realize the GenVoca operator in OWL. How-
ever, with a derived component model, it can be realized in Reuse-OWL. What is needed is
the concept of a parametrizable superclass reference, derived from a superclass reference in a
standard OWL class:

<owl:Class rdf:about="#SubClassOf”>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="superDescription” />
</owl:onProperty>
<owl:cardinality rdf:datatype="xsd:int”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="subDescription” />
</owl:onProperty>
<owl:cardinality rdf:datatype="xsd:int”>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
This concept definition will be transformed by HoMoGen to the concept definition of a

generic superclass reference:

<owl:Class rdf:about="#SubClassOf_Hook”>
<rdfs:subClassOf rdf:resource="ucmo:LanguageConstructHook” />
<rdfs:subClassOf>
<owl:Restriction>

16

Upper language and

LanguageConstruct
component model
ontologies

ChoiceOfTerminals Aggregate LanguageConstructHook

.............. ke N, W

YbhoundWith.SubClassOf

OWL ontology OWL hook model ontology

__/

HoMoGen

Figure 12: Example of the creation of a hook construct in a hook model from a description of
a construct in the core language OWL

<owl:allValuesFrom>
<owl:Class rdf:about="owl:SubClassOf” />
</owl:allValuesFrom>
<owl:onProperty rdf:resource="ucmo:boundWith” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

And this hook can be bound by a parameterization operation, which in this context corre-
sponds to the GenVoca operator.

Consider the following example. A product line of ontologies for living beings should be
offered that contains the concepts of parents (father and mother), both for animals and humans.
Instead of using multiple inheritance (which would be also be possible, but does not allow for
easy extension with new concepts, such as brother or sister), the GenVoca operator is applied.

<owl:Class rdf:about="#Man">
<<super_hook : SubClassOf_Hook>>
</owl:Class>

<owl:DatatypeProperty rdf:ID="hasAge”>
<rdfs:domain rdf:resource="#Man” />
<rdfs:range rdf:resource="xsd:positivelnteger”/>
</owl:DatatypeProperty>

17

<owl:Class rdf:about="#Woman”>
<<super_hook : SubClassOf_Hook>>
</owl:Class>

<owl:DatatypeProperty rdf:ID="hasHeight”>
<rdfs:domain rdf:resource="#Woman” />
<rdfs:range rdf:resource="xsd:positivelnteger” />
</owl:DatatypeProperty>

The second layer of classes is made up of classes that determine the nature of the living
being:

<owl:DatatypeProperty rdf:ID="hasName”>
<rdfs:domain rdf:resource="#Human” />
<rdfs:range rdf:resource="xsd:String” />

</owl:DatatypeProperty>

<owl:Class rdf:about="#Human” />
<owl:Class rdf:about="#Animal” />

A class can be composed by applying a class template A of level 0 to a class B of level 1,
binding its generic parameter with B. Assuming a bind operator which parameterizes a hook
with a value, the appropriate composition expressions are:

HumanMan = bind (Man. super_hook , Human).
AnimalWoman = bind (Woman. super_hook , Animal).

Or, written in the standard notation for parameterization, in which the bind operator is ex-
pressed by function parameter binding:

HumanMan = Man (Human).
AnimalWoman = Woman(Animal).

The result, the two composed classes, have some newly created data-type properties.

<owl:DatatypeProperty rdf:ID="hasAge”>
<rdfs:domain rdf:resource="#HumanMan” />
<rdfs:range rdf:resource="xsd:positivelnteger”/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasName”>
<rdfs:domain rdf:resource="#HumanMan” />
<rdfs:range rdf:resource="xsd:String” />

</owl:DatatypeProperty>

<owl:Class rdf:about="#HumanMan”>
<<super_hook : SubClassOf_Hook>>
</owl:Class>

<owl:DatatypeProperty rdf:ID="hasHeight”>

<rdfs:domain rdf:resource="#AnimalWoman” />
<rdfs:range rdf:resource="xsd:positivelnteger” />

18

</owl:DatatypeProperty>

<owl:Class rdf:about="#AnimalWoman”>
<<super_hook : SubClassOf_Hook>>
</owl:Class>

Compared with inheritance, the GenVoca operator has the advantage that inheritance ex-
pressions (subclassOf expressions) are not encoded into the classes, but added by the com-
positions. This makes specifications much more extensible, since it is very easy to add new
alternatives to a layer and achieve new combinations. For instance, if we add a class Brother
to level 0 and a class Fish to level 1, classes such as FishMother or HumanBrother can easily
be defined, without editing the existing definitions.

Ontology languages that do not provide genericity cannot be used in GenVoca architectural
style for ontological frameworks. CoMoGen generates a component model with generic hooks
for any XML-based language, delivering the GenVoca operation and its composition style for
free.

6 Conclusions

CoMoGen is a generator for component models of arbitrary languages. One part of CoMoGen is
the tool HoMoGen, which generates a hook model for the component model. Fed by a language
description, a meta-model, it generates a hook model of generic and extensible constructs. The
extended language, a combination of the component model and an extension of the core language
description (to be generated by CoMoGen) is a reuse language and can be used for invasive
composition. In this report, we have demonstrated, with examples of OWL and Xcerpt, how the
CoMoGen tool can be applied to ontology languages. Not only that specifications can be broken
into manageable pieces by generic fragments, but also that powerful composition operators on
classes, such as the GenVoca operator, can be realized for any language. Hence, CoMoGen is
a decisive tool to realize the principles of invasive software and specification composition for
arbitrary languages, in particular ontology languages. This paves the way for a novel ontology,
query, and service composition technology, i.e. a fragment-based reuse technology for the
Semantic Web.

7 Future work

Several works remain to be done. The prototype CoMoGen must be matured. At the moment,
the tool can generate most parts of component models, specifically, the hook model. However,
CoMoGen must be extended to also generate type checkers for compositions. Since the tool can
be applied to arbitrary language specifications, more case studies should be performed. One of
the most important one will be to apply it to the visual ontology language of the REWERSE
working group I1 [I2]. Other applications of invasive composition, such as view-based devel-
opment or aspect-oriented development, need to be investigated. Specifically, how they can
be used for ontology engineering. Finally, since CoMoGen realizes a simple mapping between
meta-models, it raises the question whether other meta-model mappings can be exploited for
further reuse concepts.

19

7.1 Problems

At the moment, the CoMoGen tool can generate the essential parts of component models, but
must be extended to generate type checkers for compositions.

If a core language is in an XML-based format, i.e., in an abstract syntax format, fragments of
the core and hook language can easily be mixed, i.e. the reuse language is again homogeneously
in XML format. It is an open question how to systematically derive parsers for languages in
concrete syntax, such that the construction of a hook language becomes simple.

Acknowledgement

This research has been co-funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE num-
ber 506779 (cf. http://rewerse.net).

References

[1] Extended BNF. ISO Standard, 13 August 2001. Available at http://www.iso.org/iso/
en/CatalogueDetailPage.CatalogueDetail ?CSNUMBER=26153|

[2] MetaObject Facility (MOF) Specification Version 1.4. OMG Specification, April 2002.
Available at http://www.ong.org/docs/formal/02-04-03.pdf.

[3] COMPOST - the software COMPOsition SysTem. WWW, September 2005. Available at
http://www.the-compost-system.org.

[4] Jena Semantic Web Framework. WWW Page, 18 August 2005. Available at http://jena.
sourceforge.net/.

[6] The Beta Language. WWW, August 2005. Available at http://www.daimi.au.dk/
~beta/l

[6] D. Batory, R. Cardone, and Y. Smaragdakis. Object-oriented frameworks and product
lines. In P. Donohoe, editor, Proceedings of the First Software Product Line Conference,
pages 227247, Aug. 2000.

[7] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable Software Libraries. In Proceed-
ings of the ACM SIGSOFT 93 Symposium on the Foundations of Software Engineering,
pages 191-199. ACM Press, New York, Dec. 1993.

[8] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The GenVoca
model of software-system generation. IEEE Software, 11(5):89-94, Sept. 1994.

[9] F. Bry and S. Schaffert. A gentle introduction into xcerpt, a rule-based query and trans-
formation language for xml. In Proceedings of International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, Sardinia, Italy (14th June 2002),
2002.

20

http://rewerse.net
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26153
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26153
http://www.omg.org/docs/formal/02-04-03.pdf
http://www.the-compost-system.org
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://www.daimi.au.dk/~beta/
http://www.daimi.au.dk/~beta/

[10]

[15]

[16]

[17]

[18]

F. Bry and S. Schaffert. The xml query language xcerpt: Design principles, examples, and
semantics. In Revised Papers from the NODe 2002 Web and Database-Related Workshops
on Web, Web-Services, and Database Systems, pages 295-310, London, UK, 2003. Springer-
Verlag.

Don Batory and Sean O’Malley. The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM Transactions on Software Engineering and
Methodology (TOSEM), 1(4):355-398, Oct. 1992.

Grigoris Antoniou et. al. A First-Version Visual Rule Language. Technical report, Eind-
hoven University of Technology, 2004.

Ilie Savga, Charlie Abela, Uwe Assmann. Report on the design of component model and
composition technology for the Datalog and Prolog variants of the REWERSE languages.
Technical report, Technical University of Dresden, 2004.

M. D. Mcllroy. Mass-produced software components. In J. M. Buxton, P. Naur, and
B. Randell, editors, Software Engineering Concepts and Techniques (1968 NATO Con-
ference of Software Engineering), pages 88-98. NATO Science Committee, Brussels, Oct.
1969.

O. Nierstrasz and T. D. Meijler. Research directions in software composition. ACM
Computing Surveys, 27(2):262-264, June 1995.

P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language semantics
and abstract syntax. W3C Recommendation, 10 February 2004. Available at http://www.
w3.org/TR/owl-semantics/|

C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, New York, 1998.

Uwe Assmann. Invasive Software Composition. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003.

21

http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/

	Introduction
	Background
	Language modeling levels
	Invasive software composition
	Reuse languages and component models

	Deriving a component model
	Prototype: HoMoGen
	Upper ontologies for language constructs and component models
	HoMoGen
	Deriving generic concepts

	Examples
	Component model for Xcerpt
	Component model for OWL

	Conclusions
	Future work
	Problems

