
I4-D5

Simulation Unification

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D5/D/PU/a1
Responsible editors: Sebastian Schaffert
Reviewers: Norbert Eisinger and Claude Kirchner
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: 31 August 2005
Actual submission date: 30.12.2005

Abstract
Simulation unification is a novel kind of (non-standard) unification that allows to treat the particulari-
ties of Xcerpt terms properly and is based on the notions of ground query term simulation and answers
(cf. Section 3). It has first been proposed in [BS02] and is further refined here. Simulation Unification
is an algorithm that, given two termst1 andt2, determines variable substitutions such that the ground
instances oft1 andt2 simulate. Like standard unification (cf. [Rob65]), simulation unification issym-
metric in the sense that it can determine (partial) bindings for variables in both terms. Unlike standard
unification, it is howeverasymmetricin the sense that it does not make the two terms equal, but instead
ensures a ground query term simulation, which is directed and asymmetric. The outcome of Simulation
Unification is a set of substitutions calledsimulation unifier.

Keyword List
query language, Semantic Web, simulation, unification, backward chaining

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth Frame-

work Programme.

c© REWERSE 2005.

ii

Simulation Unification

Sebastian Schaffert, François Bry, Tim Furche

Institute for Informatics, University of Munich, Germany
Email: Sebastian.Schaffert@ifi.lmu.de

30.12.2005

Abstract
Simulation unification is a novel kind of (non-standard) unification that allows to treat the particulari-
ties of Xcerpt terms properly and is based on the notions of ground query term simulation and answers
(cf. Section 3). It has first been proposed in [BS02] and is further refined here. Simulation Unification
is an algorithm that, given two termst1 andt2, determines variable substitutions such that the ground
instances oft1 andt2 simulate. Like standard unification (cf. [Rob65]), simulation unification issym-
metric in the sense that it can determine (partial) bindings for variables in both terms. Unlike standard
unification, it is howeverasymmetricin the sense that it does not make the two terms equal, but instead
ensures a ground query term simulation, which is directed and asymmetric. The outcome of Simulation
Unification is a set of substitutions calledsimulation unifier.

Keyword List
query language, Semantic Web, simulation, unification, backward chaining

iv

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Xcerpt: A versatile Web Query Language 1

2.1.1 Data Terms . 1
2.1.2 Query Terms . 3
2.1.3 Construct Terms .. 3
2.1.4 Construct-Query Rules 3

2.2 Substitutions and Substitution Sets 6
2.2.1 Substitutions .. . 6
2.2.2 Substitution Sets 7
2.2.3 Maximal Substitution Sets 7

2.3 Application to Query Terms 8
2.4 Application to Construct Terms 9
2.5 Application to Query Term Formulas 11

3 Simulation and Simulation Unifiers 11
3.1 Rooted Graph Simulation 12
3.2 Ground Query Term Simulation 13
3.3 Simulation Unifiers 15

4 A Constraint Solver for Language Evaluation 17
4.1 Data Structures and Functions 17

4.1.1 Constraints .. 17
4.1.2 Functions .19

4.2 Solution Set of a Constraint Store 20
4.3 Constraint Simplification 21
4.4 Consistency Verification Rules 21

4.4.1 Rule 1: Consistency .. . 21
4.4.2 Rule 2: Transitivity 22

4.5 Constraint Negation 22
4.5.1 Rule 3: Consistency with Negation 23
4.5.2 Rule 4: Transitivity with Negation 23
4.5.3 Rule 5: Negation as Failure 24

4.6 Program Evaluation 24

5 Simulation Unification 25
5.1 Decomposition Rules 25

5.1.1 Preliminaries .. . 25
5.1.2 Root Elimination .. . 26
5.1.3 ; Elimination . 28
5.1.4 Descendant Elimination 28
5.1.5 Decomposition withwithout . 28
5.1.6 Decomposition withoptional in the query term 29
5.1.7 Incomplete Decomposition 31
5.1.8 Term References: Memoing of Previous Computations 32

v

5.2 Examples .. 33
5.3 Soundness and Completeness 39

vi

1 Introduction

Simulation unification is a novel kind of (non-standard) unification that allows to treat the particularities
of Xcerpt terms properly and is based on the notions of groundquery term simulation and answers (cf.
Section 3). It has first been proposed in [BS02] and is furtherrefined here. Simulation Unification is an
algorithm that, given two termst1 andt2, determines variable substitutions such that the ground instances
of t1 andt2 simulate. Like standard unification (cf. [Rob65]), simulation unification issymmetricin the
sense that it can determine (partial) bindings for variables in both terms. Unlike standard unification, it is
howeverasymmetricin the sense that it does not make the two terms equal, but instead ensures a ground
query term simulation, which is directed and asymmetric. The outcome of Simulation Unification is a
set of substitutions calledsimulation unifier.

Section 4 discusses simulation unification in the context ofthe Xcerpt constraint solver. Section 2
briefly recapitulates the language Xcerpt and introduces several formalisms and denotations used in the
remainder of this article.

2 Preliminaries

2.1 Xcerpt: A versatile Web Query Language

An Xcerpt [SB04, Sch04] program consists of at least onegoal and some (possibly zero)rules. Rules
and goals contain query and construction patterns, calledterms. Terms represent tree-like (or graph-
like) structures. The children of a node may either beordered, i.e. the order of occurrence is relevant
(e.g. in an XML document representing a book), orunordered, i.e. the order of occurrence is irrelevant
and may be chosen by the storage system (as is common in database systems). In the term syntax, an
ordered term specificationis denoted by square brackets[] , anunordered term specificationby curly
braces{ } .

Likewise, terms may usepartial term specificationsfor representing incomplete query patterns and
total term specificationsfor representing complete query patterns (or data items). Atermt using a partial
term specification for its subterms matches with all such terms that (1) contain matching subterms for all
subterms oft and that (2) might contain further subterms without corresponding subterms int. Partial
term specification is denoted bydoublesquare brackets[[]] or curly braces{{ }} . In contrast, a term
t using a total term specification does not match with terms that contain additional subterms without
corresponding subterms int. Total term specification is expressed usingsinglesquare brackets[] or
curly braces{ } . Matching is formally defined later in this article using so-calledterm simulation.

Furthermore, terms may contain thereference constructŝid (referring occurrence of the identifier
id) andid @ t (defining occurrence of the identifierid). Using reference constructs, terms can form
cyclic (but rooted) graph structures.

2.1.1 Data Terms

Data terms represent XML documents and the data items of a semistructured database, and may thus
only contain total term specifications (i.e. single square brackets or curly braces). They are similar to
groundfunctional programming expressions and logical atoms. Adatabaseis a (multi-)set of data terms
(e.g. the Web). A non-XML syntax has been chosen for Xcerpt toimprove readability, but there is a
one-to-one correspondence between an XML document and a data term. Example 1 on the following
page gives an impression of the Xcerpt term syntax.

1

Example 1
The following two data terms represent a train timetable (from http://railways.com) and a hotel
reservation offer (fromhttp://hotels.net).

At site http://railways.com : At site http://hotels.net :

t ravel {
last - changes -on { " 2004 -04 -30 " } ,
currency { "EUR " } ,
train {

departure {
stat ion { " Munich" } ,
date { "2004 -05 -03 " } ,
time { " 15:25" }

} ,
arr ival {

stat ion { " Vienna" } ,
date { "2004 -05 -03 " } ,
time { " 19:50" }

} ,
pr ice { "75" }

} ,
train {

departure {
stat ion { " Munich" } ,
date { "2004 -05 -03 " } ,
time { " 13:20" }

} ,
arr ival {

stat ion { " Salzburg " } ,
date { "2004 -05 -03 " } ,
time { " 14:50" }

} ,
pr ice { "25" }

} ,
train {

departure {
stat ion { " Salzburg " } ,
date { "2004 -05 -03 " } ,
time { " 15:20" }

} ,
arr ival {

stat ion { " Vienna" } ,
date { "2004 -05 -03 " } ,
time { " 18:10" }

}
}
...

}

voyage {
currency { "EUR " } ,
hotels {

city { " Vienna" } ,
country { " Austr ia " } ,
hotel {

name { " Comfort Blautal " } ,
category { "3 stars " } ,
price -per - room { "55" } ,
phone { " +43 1 88 8219 213" } ,
no - pets {}

} ,
hotel {

name { " InterCity " } ,
category { "3 stars " } ,
price -per - room { "57" } ,
phone { " +43 1 82 8156 135" }

} ,
hotel {

name { " Opera" } ,
category { "4 stars " } ,
price -per - room { " 106" } ,
phone { " +43 1 77 8123 414" }

} ,
...
} ,

...
}

2

2.1.2 Query Terms

Query terms are (possibly incomplete) patterns matched against Web resources represented by data
terms. They are similar to the latter, but may containpartial as well astotal term specifications, are aug-
mented byvariablesfor selecting data items, possibly withvariable restrictionsusing the→ construct
(readas), which restricts the admissible bindings to those subterms that are matched by the restriction
pattern, and may contain additional query constructs likeposition matching(keywordposition), sub-
term negation(keywordwithout), optional subterm specification(keywordoptional), anddescendant
(keyworddesc).

Query terms are “matched” with data or construct terms by a non-standard unification method called
simulation unificationthat is based on a relation calledsimulation(cf. Section 3). In contrast to Robin-
son’s unification (as e.g. used in Prolog), simulation unification is capable of determining substitutions
also for incomplete and unordered query terms. Since incompleteness usually allows many different al-
ternative bindings for the variables, the result of simulation unification is not only a single substitution,
but a (finite)set of substitutions, each of which yielding ground instances of the unified termssuch that
the one ground term matches with the other. Whenever a termt1 simulates into another termt2, this
shall be denoted byt1 � t2.

2.1.3 Construct Terms

Construct terms serve to reassemble variables (the bindings of which are specified in query terms) so as
to construct new data terms. Again, they are similar to the latter, but augmented byvariables(acting as
place holders for data selected in a query) and thegrouping constructall (which serves to collect all
instances that result from different variable bindings). Occurrences ofall may be accompanied by an
optional sorting specification.

Example 2
Left: A query term retrieving departure and arrival stations for atrain in the train document. Partial
term specifications (partial curly braces) are used since the train document might contain additional
information irrelevant to the query.Right: A construct term creating a summarised representation of
trains grouped inside atrains term. Note the use of theall construct to collect all instances of the
train subterm that can be created from substitutions in the substitution set resulting from the query on
the left.

t ravel {{
train {{

departure {{
stat ion { var From } }} ,

arr ival {{
stat ion { var To } }}

}}
}}

trains {
all t rain {

from { var From },
to { var To }

}
}

2.1.4 Construct-Query Rules

Construct-query rules (short: rules) relate a construct term to a query consisting of AND and/or OR
connected query terms. They have the form

CONSTRUCTConstruct Term FROMQuery END

3

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the construct
term by evaluating the query against Web resources (e.g. an XML document or a database). Queries
or parts of a query may be further restricted by arithmetic constraints in a so-called condition box,
beginning with the keywordwhere .

Example 3
The following Xcerpt rule is used to gather information about the hotels in Vienna where a single room
costs less than 70 Euro per night and where pets are allowed (specified using thewithout construct).

CONSTRUCT
answer [all var H ordered by [P] ascending]

FROM
in {

resource { " http :// hotels . net " } ,
voyage {{

hotels {{
city { " Vienna" } ,
desc var H hotel {{

price -per - room { var P } ,
without no - pets {}

}}
}}

}}
} where var P < 70

END

An Xcerpt query may contain one or several references toresources. Xcerpt rules may furthermore
be chainedlike active or deductive database rules to form complex query programs, i.e. rules may
query the results of other rules. Recursive chaining of rules is possible (but note that the declarative
semantics described here requires certain restrictions onrecursion, cf. [SBF05]). In contrast to the
inherent structural recursion used e.g. in XSLT, which is essentially limited to the tree structure of the
input document, recursion in Xcerpt is always explicit and free in the sense that any kind of recursion
can be implemented. Applications of recursion on the Web aremanifold:

• structural recursion over the input tree (like in XSLT) is necessary to perform transformations that
preserve the overall document structure and change only certain things in arbitrary documents
(e.g. replacing allemelements in HTML documents bystrong elements).

• recursion over the conceptual structure of the input data (e.g. over a sequence of elements) is
used to iteratively compute data (e.g. create a hierarchical representation from flat structures with
references).

• recursion over references to external resources (hyperlinks) is desirable in applications like Web
crawlers that recursively visit Web pages.

Example 4
The following scenario illustrates the usage of a “conceptual” recursion to find train connections, in-
cluding train changes, from Munich to Vienna.

The train relation (more precisely the XML element representing thisrelation) is defined as a
“view” on the train database (more precisely on the XML document seen as a database on trains):

4

CONSTRUCT
train [from [var From], to [var To]]

FROM
in {

resource { " fi le : travel . xml " } ,
travel {{

train {{
departure {{ stat ion { var From } }} ,
arr ival {{ stat ion { var To } }}

}}
}}

}
END

A recursive rule implements the transitive closuretrain-connection of the relationtrain . If the
connection is not direct (recursive case), then all intermediate stations are collected in the subtermvia
of the result. Otherwise,via is empty (base case).

CONSTRUCT
train - connection [

from [var From],
to [var To] ,
via [var Via , all opt ional var OtherVia]

]
FROM

and {
train [from [var From], to [var Via]] ,
train - connection [

from [var Via] ,
to [var To] ,
via [[opt ional var OtherVia]]

]
}

END

CONSTRUCT
train - connection [

from [var From],
to [var To] ,
via []

]
FROM

train [from [var From], to [var To]]
END

Based on the “generic” transitive closure defined above, thefollowing rule retrieves only connections
between Munich and Vienna.

GOAL
connections {

all var Conn
}

5

FROM
var Conn train - connection [[from { " Munich" } , to { " Vienna" }]]

END

2.2 Substitutions and Substitution Sets

In principle, the usual notion of substitutions is also usedfor Xcerpt terms. However, variable restric-
tions occurring in query terms have to be taken into account.As a variable might be restricted, not every
substitution is applicable to every query term.

Also, Xcerpt construct terms extend the usual terms by grouping constructs that group several sub-
stitutions within a single ground instance by using the constructsall andsome. For instance, given a
construct termf{all var X} and three alternative substitutions{X 7→ a}, {X 7→ b} and{X 7→ c}, the
resulting data term isf{a,b,c}.

In order to define such groupings, it is therefore necessary to provide a construct that represents all
possible alternatives and can be applied to a construct term. This is called asubstitution setbelow. Since
the application of substitution sets to query and constructterms involves some complexity, it is described
separately in Section 2.2. Substitution sets are then used in the declarative semantics (cf. [SBF05])
which defines satisfaction for Xcerpt term formulas. In the following, substitutions are denoted by
lowercase greek letters (likeσ or π), while substitution sets are denoted by uppercase greek letters (like
Σ or Π).

2.2.1 Substitutions

A substitutionis a mapping from the set of (all) variables to the set of (all)construct terms. In the
following, lower case greek letters (likeσ or τ) are usually used to denote substitutions. As usual in
mathematics, a substitution is a mapping of infinite sets. Ofcourse, finite representations are usually
used, as the number of variables occurring in a term is finite.Substitutions are often conveniently
denoted as sets of variable assignments instead of as functions. For example, we write

{
X 7→ a,Y 7→ b

}

to denote a substitution that maps the variableX to a and the variableY to b, and any other variable
to arbitrary values. In general, a substitution provides assignments for all variables, but “irrelevant”
variables are not given in the description of substitutions.

If a substitution isappliedto a query termtq, all occurrences of variables for which the substitution
provides assignments are replaced by the respective assignments (see Section 2.3 below). The resulting
term is called aninstanceof tq and the substitution. Not every substitution can be appliedto every
query term: variable assignments in the substitution have to respect variable restrictions occurring in
the pattern for a substitution to be applicable (see also 2.3). If a substitutionσ respects the variable
restrictions in a query termtq, it is said to bea substitution for tq. For example, the substitution

{
X 7→

f{a}
}

is a substitution forvar X ; f{{}}, but not forvar X ; g{{}}. Note that a substitution cannot
be applied to a construct term, because construct terms may contain grouping constructs that group
several instances of subterms together. Instead, substitution sets are used for this purpose (see below).

A substitutionσ is called agrounding substitutionfor a termt, if σ(t) is a ground query term.
Consequently, a grounding substitution is always a mappingfrom the set of variable names to the set
of data terms (i.e. ground construct terms). A substitutionσ is called anall-grounding substitution,
if it maps every variable to a data term. Naturally, every all-grounding substitution is a grounding
substitution for every query term to which it is applicable.Note that the reverse does not hold: a
grounding substitution is grounding wrt. some termt and does not necessarily assign ground terms to
variables not occurring int.

6

A substitutionσ1 is asubsetof a substitutionσ2 (i.e.σ1⊆ σ2), if σ1(X)∼= σ2(X) for every variable
nameX with σ1(X) 6= X (i.e. σ1 does not mapX to itself), where∼= denotes simulation equivalence
(i.e. mutual simulation). Correspondingly, two substitutionsσ1 andσ2 are considered to beequal(i.e.
σ1 = σ2), if σ1 ⊆ σ2 andσ2 ⊆ σ1. For example,

{
X 7→ f{a,b}

}
and

{
X 7→ f{b,a}

}
are equal. This

definition is reasonable because the data terms resulting from applying two such substitutions are treated
equally in the model theory described below.

The compositionof two substitutionsσ1 andσ2, denoted byσ1 ◦σ2 is defined as(σ1 ◦σ2)(t) =
σ1(σ2(t)) for every query termt. Note that the assignments inσ2 take precedence, becauseσ2 is applied
first. Consider for exampleσ1 = {X 7→ a,Y 7→ b} andσ2 = {X 7→ c}, and a termt = f{var X,var Y}.
Applying the compositionσ1 ◦σ2 to t yields(σ1 ◦σ2)(t) = f{c,b}.

Therestrictionof a substitutionσ to a set of variable namesV, denoted byσ|V , is the mapping that
agrees withσ onV and with the identical mapping on the other variables.

2.2.2 Substitution Sets

A substitution setis simply a set containing substitutions. In the following,upper case greek letters (like
Σ andΦ) are usually used to denote substitution sets.

Substitution sets can beappliedto a queryor construct term (cf. Sections 2.3 and 2.4). The result
of this application is in general a set of terms called theinstancesof the substitution set and the term. A
substitution setΣ is only applicable to a query termtq, if all substitutions inΣ are applicable totq. In
this case,Σ is calleda substitution set for tq. Since construct terms do not contain variable restrictions,
every substitution set except for the empty set is a substitution set for a construct term. There exists no
query or construct termt such that the empty substitution set{} is a substitution set fort.

A substitution setΣ for a termt is called agrounding substitution set, if all instances oft andΣ are
ground query terms or data terms. A substitution setΣ is called anall-grounding substitution set, if all
σ ∈ Σ are all-grounding substitutions.

Thecompositionof two substitution setsΣ1 andΣ2, denoted asΣ1◦Σ2, is defined as

Σ1 ◦Σ2 =
{

σ1◦σ2 | σ1 ∈ Σ1,σ2 ∈ Σ2
}

Consider for example the substitution setsΣ1 =
{
{X 7→ a}

}
andΣ2 =

{
{Y 7→ b},{Y 7→ c}

}
. Then

Σ1 ◦Σ2 =
{
{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ c}

}
.

Therestrictionof a substitution setΣ to a set of variablesV, denoted byΣ|V , is the set of substitutions
in Σ restricted toV.

Similarly, theextensionof a substitution setΣ restricted to a set of variablesV to a set of variablesV ′

with V ⊆V ′, extends every substitutionσ in Σ to substitutionsσ ′ by adding all possible assignments of
variables inV ′ \V to data terms. For example, the extension of the restricted substitution set

{
{X 7→ a}

}

to the set of variables{X,Y} is the (infinite) set
{
{X 7→ a,Y 7→ a},{X 7→ a,Y 7→ b}, . . .

}

Note that in practice, it would be desirable to define substitution sets asmulti-setsthat may contain
duplicate elements: if an XML document contains two personsnamed “Donald Duck”, then it should
be assumed that these are different persons with the same name. Providing a proper formalisation with
multi-sets is, however, not in the scope of this article, as subsequent definitions and proofs would be
much more complicated without adding an interesting aspectto the formalisation.

2.2.3 Maximal Substitution Sets

So as to properly convey the meaning ofall , it is not sufficient to consider arbitrary substitution sets.
The interesting substitution sets are those that aremaximalfor the satisfaction of the query partQ of a
rule. As satisfaction is not yet formally defined, this property shall for now simply be calledP.

7

Intuitively, the definition of maximal substitution sets isstraightforward: a substitution setΣ satis-
fying P is a maximal substitution set, if there exists no substitution setΦ satisfyingP such thatΣ is a
proper subset ofΦ. However, this informal definition does not take into account that there might be
substitution sets that differ only in that some substitutions contain bindings that are irrelevant because
they do not occur in the considered term formulaQ. Maximal substitution sets are therefore formally
defined as follows:

Definition 5 (Maximal Substitution Set)
Let Q be a quantifier free query term formula with set of variablesV, let P be a property, and letΣ be a
set of substitutions such thatP holds forΣ. Σ is called amaximal substitution set wrt. P and Q, if there
exists no substitution setΦ such thatP holds forΦ andΣ|V is a proper subset ofΦ|V (i.e.Σ|V ⊂Φ|V).

2.3 Application to Query Terms

Since query terms do not contain the grouping constructsall and some, applying substitutions and
substitution sets is straightforward. Application of a single substitution yields asingleterm where some
variable occurrences are substituted, while application of a substitution set yields asetof terms where
some variables are substituted.

Definition 6 (Substitutions: Application to Query Terms)
Let tq be a query term.

1. The application of asubstitutionσ to tq, writtenσ(tq) is recursively defined as follows:

• σ(var X) = t ′ if (X 7→ t ′) ∈ σ
• σ(var X ; s) = t ′ if (X 7→ t ′) ∈ σ andσ(s)� t ′

• σ(f{t1, . . . ,tn}) = σ(f){σ(t1), . . . ,σ(tn)}

• σ(f [t1, . . . ,tn]) = σ(f)[σ(t1), . . . ,σ(tn)]

• σ(f{{t1, . . . ,tn}}) = σ(f){{σ(t1), . . . ,σ(tn)}}

• σ(f [[t1, . . . ,tn]]) = σ(f)[[σ(t1), . . . ,σ(tn)]]

• σ(without t) = without σ(t)

• σ(optional t) = optionalσ(t)

for somen≥ 0.

2. The application of asubstitution setΣ to tq is defined as follows:

Σ(tq) =
{

σ(tq) | σ ∈ Σ
}

Note that not every substitution can be applied to a query term tq. If a variable intq is restricted as
in var X ; s, then a substitution can only be applied if it provides bindings forX that are compatible
to this restriction. Likewise, a substitution set is only applicable to a query termtq, if all its substitutions
are applicable totq.

Since query terms never contain grouping constructs, the cardinality of Σ(t) always equals the cardi-
nality of Σ. In particular, ifΣ = /0, thenΣ(t) = /0, even ift is a ground query term. Since an interpretation
with an empty substitution set would be a model for any formula, substitution sets in the following are
considered to be non-empty. In case no variables are bound, substitution sets are usually defined as
Σ = { /0}.

8

2.4 Application to Construct Terms

Applying a single substitution to a construct term is not reasonable as the meaning of the grouping
constructsall andsomeis unclear in such cases. In the following, the application is thus only defined
for substitution sets. On substitution sets, the grouping constructs group such substitutions that have the
same assignment on thefree variablesof a construct term. For each such group, the application of the
substitutionΣ yields a different construct term. A variable is consideredfree in a construct term if it is
not in the scope of a grouping construct. The set of free variables of a construct termtc is denoted by
FV(tc). Recall also that∼= denotes simulation equivalence between two ground terms.

Definition 7 (Grouping of a Substitution Set)
Given a substitution setΣ and a set of variablesV = {X1, . . . ,Xn} such that allσ ∈ Σ have bindings for
all Xi ,1≤ i ≤ n.

• The equivalence relation'V⊆ Σ×Σ is defined as:σ1'V σ2 iff σ1(X)∼= σ2(X) for all X ∈V.

• The set of equivalence classes/łV with respect to'V is called thegrouping ofΣ on V.

• Each of the equivalence classes∈ /łV is accordingly defined as=
{

τ ∈ Σ | τ 'V σ}.

Informally, each equivalence class∈ Σ/'V contains such substitutions that have the same assign-
ment for each of the variables inV.

Example 8
Given the substitution setΣ =

{
σ1,σ2,σ3

}
with

σ1 = {X1 7→ a,X2 7→ b},σ2 = {X1 7→ a,X2 7→ c}, andσ3 = {X1 7→ c,X2 7→ b}

The grouping ofΣ onV = {X1} is

• 1 = 2 =
{
{X1 7→ a,X2 7→ b},{X1 7→ a,X2 7→ c}

}

• 3 =
{
{X1 7→ c,X2 7→ b}

}

The application of a substitution set to a construct term (possibly containing grouping constructs) is
defined in terms of this grouping. Given a substitution setΣ, the applicationΣ(tc) to a construct term
tc with free variablesFV(tc) yields exactly|/łFV(tc)

| results, one for each different binding of the free
variables intc.

Example 9
Given a termt = f{X1,g{all X2}}, i.e.FV(t) = {X1}. Consider again

Σ =
{
{X1 7→ a,X2 7→ b},{X1 7→ a,X2 7→ c},{X1 7→ c,X2 7→ b}

}

from Example 8. The result of applyingΣ to t is

Σ(t) =
{

f{a,g{b,c}}, f{c,g{b}}
}

The following definition specifies how a substitution set is applied to a construct termtc. The
definition is divided into two parts: In the first part, it is assumed that all substitutions in the substitution
set Σ contain the same assignments for the free variables oftc (variables occurring within the scope
of grouping constructs are unrestricted). As the quotient/łFV(tc)

in this case obviously only contains

9

a single equivalence class, the application of this restricted Σ to tc yields only a single term, which
simplifies the recursive definition. In the second part of Definition 10, this restriction is lifted.

Since the construction of data terms requires to construct new lists of subterms, the following def-
inition(s) use the notion ofterm sequencesintroduced in [SBF05]. Recall that a sequence is a binary
relation between a set of integers and a set of terms, and usually denoted byS= 〈x1, . . . ,xn〉 for somen
and termsxi .

Defining the semantics oforder by furthermore requires a functionsortf (V)(·, ·), whereV is a se-
quence of variables, that takes as arguments a grouping of a substitution set onV and returns a sequence
of substitution sets ordered according tof (V) and the variables inV. f (V) is a total ordering on the set
of substitution sets that assign ground terms to the variables inV comparing variable bindings for the
variables inV. 1

Definition 10 (Substitutions: Application to Construct Terms)
1. LetΣ be a substitution set and lettc be a construct term such that all free variables oftc have the

same assignment in all substitutions ofΣ, i.e./łFV(tc)
= {}. The restricted application ofΣ to tc,

written (tc), is recursively defined as follows:

• (var V) = 〈σ(V)〉2

• (f{t1, . . . ,tn}) = 〈(f){(t1)◦ · · · ◦ (tn)}〉 for somen≥ 0

• (f [t1, . . . ,tn]) = 〈(f)[(t1)◦ · · · ◦ (tn)]〉 for somen≥ 0

• (all t) = 1(t)◦ · · ·◦ k(t) where{1, . . . ,k}= /'FV(t)

• (all t group by V) = 1(t)◦ · · · ◦ k(t) where{1, . . . ,k}= /'FV(t)∪V

• (all t order by f V) = 1(t)◦ · · · ◦ k(t)

where〈1, . . . ,k〉= sort(f (V),/'FV(t)∪V
)

• (some k t) = 1(t)◦ · · · ◦ k(t) where{1, . . . ,k} ⊆ /'FV(t)

• (some k t group by V) = 1(t)◦ · · ·◦ k(t) where{1, . . . ,k} ⊆ /'FV(t)∪V

• (some k t order by f V) = 1(t)◦ · · · ◦ k(t)

where〈1, . . . ,k〉 v sort(f (V),/'FV(t)∪V
)

• (optional t) =

{
(t) if the ground instance(t) exists
〈〉 otherwise

• (optional t with de f ault t′) =

{
(t) if the ground instance(t) exists
(t ′) otherwise

where 1, . . . ,k are pairwise different substitution sets.

2. Let tc be a term, and letFV(tc) be the free variables intc. The application of asubstitution setΣ
to tc is defined as follows:

Σ(t) =
{
tc′ | ∈ /łFV(tc)

∧ 〈tc′〉= (tc)
}

Although not explicitly defined above, integrating aggregations and functions in this definition is
straightforward.

1As the substitution set is grouped onV, all substitutions in (respectively) provide identical bindings for variables inV.
2Note thatσ is the representative of the equivalence class

10

Example 11
Consider the substitution set

Σ =
{
{X 7→ f{a},Y 7→ g{a}}, {X 7→ f{a},Y 7→ g{b}}, {X 7→ f{b},Y 7→ g{a}}

}

and the construct termst1 = h{all var X,var Y} andt2 = h{var X,all var Y}. GroupingΣ according to
the free variablesFV(t1) = {Y} in t1 andFV(t2) = {X} in t2 yields

/łFV(t1)
=

{{
{X 7→ f{a},Y 7→ g{a}},{X 7→ f{b},Y 7→ g{a}}

}
,
{
{X 7→ f{a},Y 7→ g{b}}

}}

/łFV(t2)
=

{{
{X 7→ f{a},Y 7→ g{a}},{X 7→ f{a},Y 7→ g{b}}

}
,
{
{X 7→ f{b},Y 7→ g{a}}

}}

The ground instances oft1 andt2 by Σ are thus

Σ(t1) =
{

h{ f{a}, f{b},g{a}}, h{ f{a},g{b}}
}

Σ(t2) =
{

h{ f{a},g{a},g{b}}, h{ f{a},g{b}}
}

2.5 Application to Query Term Formulas

In the following, it is often interesting to study ground instances not only of terms but also of compound
formulas. The following definition defines the application of substitution sets to formulas consisting
only of query terms (so-calledquery term formulas); construct terms are problematic, as they group
several substitutions and thus do not behave “synchronously” with query terms in the same formula.
Fortunately, the formalisation of Xcerpt programs does notneed to consider formulas containing con-
struct terms. The only exception are program rules, which are treated separately anyway.

Applying a substitution set to a query term formula is straightforward: as each substitution in a
substitution set represents a different alternative, the application of the substitution set to a query term
formula simply yields a conjunction of all different instances.

Definition 12 (Substitutions: Application to Query Term Formulas)
Let F be a quantifier-free term formula where all atoms are query terms (aquery term formula).

1. The application of asubstitutionσ to F , writtenσ(F), is recursively defined as follows:

• σ(F1∧F2) = σ(F1)∧σ(F2)

• σ(F1∨F2) = σ(F1)∨σ(F2)

• σ(¬F ′) = ¬σ(F ′)

• σ(F ′) = σ(F ′)

2. The application of asubstitution setΣ to F , writtenΣ(F), is defined as follows:

Σ(F) =
∧

σ∈Σ
σ(F)

3 Simulation and Simulation Unifiers

Matching query terms with data terms is based on the notion ofrooted graph simulations[HHK96,
Mil71]. Intuitively, a query term matches with a data term, if there exists at least one substitution for the
variables in the query term (calledanswer substitutionof the query term) such that the corresponding

11

Figure 1 Rooted Graph Simulations (with respect to vertex adornmentequality)

E

B

A

G

F

ED

A

D

B BC

A

G

F

D

B

A

B

D E

B

graph induced by the resultinggroundquery term simulates in the graph induced by the data term. Of
course, graph simulation needs to be modified to take into account the different term specifications,
descendant construct, optional subterms, subterm negation, and regular expressions.

To simplify the formalisation below, it is assumed that strings and regular expressions are repre-
sented as compound terms with the string or regular expression as label, no subterms, and a total term
specification. For example, the string"Hello, World" is represented as the term"Hello, World"{} .

3.1 Rooted Graph Simulation

Pattern matching in Xcerpt (and UnQL, for that matter) is based on a similarity relation between the
graphs induced by two semistructured expressions, which iscalledgraph simulation[HHK96, Mil71].
Graph simulation is a relation very similar to graph homomorphisms, but more general in the sense that
it allows to match two nodes in one graph with a single node in the other graph and vice versa.

The following definition is inspired by [HHK96, Mil71] and refines the simulation considered in
[BS02]. Recall that a (directed) rooted graphG = (V,E, r) consists in a setV of vertices, a setE of
edges (i.e. ordered pairs of vertices), and a vertexr called the root ofG such thatG contains a path from
r to each vertex ofG. Note that the initial definition of a rooted graph simulation does not take into
account the edge labels of graphs induced by a semistructured expression, it is defined on generic, node
labelled and rooted graphs. Note furthermore, that in general, there might be more than one simulation
between two graphs, which leads to the notion ofminimalsimulations also defined below.

Definition 13 (Rooted Graph Simulation)
Let G1 = (V1,E1, r1) andG2 = (V2,E2, r2) be two rooted graphs and let∼ ⊆ V1×V2 be an order or
equivalence relation. A relationS⊆V1×V2 is arooted simulationof G1 in G2 with respect to if:

1. r1 S r2.

2. If v1 S v2, thenv1 ∼ v2.

3. If v1 S v2 and(v1,v′1, i) ∈ E1, then there existsv′2 ∈V2 such thatv′1 S v′2 and(v2,v′2, j) ∈ E2

A rooted simulationSof G1 in G2 with respect to∼ is minimal if there are no rooted simulationsS′ of
G1 in G2 with respect to∼ such thatS′ ⊂ S(andS 6= S′).

Definition 13 does not preclude that two distinct verticesv1 andv′1 of G1 are simulated by the same
vertexv2 of G2, i.e. v1 S v2 andv′1 S v2. Figure 1 gives examples of simulations with respect to the
equality of vertex adornments. The simulation of the right example is not minimal.

The existanceof a simulation relation between two graphs (without variables) can be computed
efficiently: results presented in [Kil92] give rise to the assumption that such problems can generally be

12

Figure 2 Minimal simulation of f [[a{{ }},a{{c,d,a{{ }} }}]] in f [&1 @ a{c,d,↑ &1}]

a{{}}

a{{}} a{}

f[[]] f[]

a{}

c ddc

solved in polynomial time and space. However, computation of pattern matching usually requires to
compute not only one, but all minimal simulations between two graphs, in which case the complexity
increases with the size of the “answer”.

3.2 Ground Query Term Simulation

Using the graphs induced by ground query terms, the notion ofrooted simulation almost immediately
extends to all ground query terms: intuitively, there exists a simulation of a ground query termt1 in a
ground query termt2 if the labels and the structure of (the graph induced by)t1 can be found in (the
graph induced by)t2 (see Figure 2). So as to define an ordering on the set of all ground query terms,
ground query term simulation is designed to be transitive and reflexive.

Naturally, the simulation on ground query terms has to respect the different kinds of term specifica-
tion: if t1 has atotal specification, it is not allowed that there exist successors(i.e. subterms) oft2 that do
not simulate successors oft1; if t1 has anorderedspecification, then the successors oft2 have to appear
in the same order as their partners int1 (but there might be additional successors between them if the
specification is also partial).

The definition ofground query term simulationis characterised using a mapping between the se-
quences of successors (i.e. subterms) of two ground terms with one or more of the following proper-
ties, depending on the kinds of subterm specifications and occurrences of the constructswithout and
optional . Recall that a mapping is called total if it is defined on all elements of a set and partial if it is
defined on some elements of a set.

Definition 14
Given two term sequencesM = 〈s1, . . . ,sm〉 andN = 〈t1, . . . ,tn〉.

A partial or total mappingπ : M→ N is called

• index injective, if for all si ,sj ∈M with index(si) 6= index(sj) holds thatindex(π(si)) 6= index(π(sj))

• index monotonic, if for all si ,sj ∈M with index(si)< index(sj) holds thatindex(π(si))< index(π(sj))

• index bijective, if it is index injective and for alltk ∈ N exists ansi ∈M such thatπ(si) = tk.

• position respecting, if for all si ∈M such thatsi is of the formposition j s′i holds thatindex(π(si))=
j

13

• position preserving, if for all si ∈M such thatsi is of the formposition j s′i holds thatπ(si) is
of the formposition l t ′k and j = l .

Index monotonicmappings preserve the order of terms in the two sequences andare used for matching
terms with ordered term specifications.Index bijectivemappings are used for total term specifications.

A position respectingmapping maps a term with position specification to a term withthe specified
position and is required (and only applicable) if the term with the sequence of successors (subterms)
N uses total and ordered term specification. E.g. given two terms f{{position2 b}} and f [a,b,b], a
position respecting mapping maps the subtermposition2 b only to the firstb, because its position is 2,
but not to the secondb, because its position is 3.

A position preservingmapping maps a term with position specification to a term withthe same posi-
tion specification; it is applicable in case the sequence of successors of the second termN is incomplete
with respect to order or breadth, as the exact position cannot be determined otherwise in these cases. In
particular, this ensures the reflexivity and transitivity of the ground query term simulation. E.g. given
the termsf{{position2 b}} and f{a,b, position2 b}, the subtermposition2 b of the first term needs to
be mapped to the subtermposition2 b of the second term, but cannot be mapped to the firstb because
its position is not “guaranteed”.

To summarise, aposition respectingmappingrespectsthe specified position by mapping the subterm
only to a subterm at this position. On the other hand, aposition preservingmappingpreservesthe
position by mapping the subterm only to a subterm with the same position specification.

Besides these properties, ground query term simulation needs a notion oflabel matchesto allow
matching of string labels, regular expressions, or both:

Definition 15 (Label Match)
A term labell1 matches with a term labell2, if

• if l1 andl2 both are character sequences or both are regular expressions, thenl1 = l2 or

• if l1 is a regular expression andl2 is a character sequence, thenl2 ∈ L(l1) whereL(l1) is the
language induced by the regular expressionl1

l1 does not match withl2 in all other cases.

Example 16
1. the labels of the termsf{a,b} and f{b,a}match

2. the labels of the termsf{a,b} andg{b,a} do not match

3. the labels of the terms/.*/ and"Hello World" match

4. the labels of the terms"Hello World" and/.*/ do not match

Let G = (V,E,t) be the graph induced by a ground query termt. In the following,Succ(t ′) denotes
the sequence of all successors (i.e. immediate subterms) oft ′ in G, Succ+(t ′) ⊆ Succ(t ′) denotes the
sequence of all successors of a termt ′ in G that are not of the formwithout t ′′, andSucc−(t) denotes the
sequence of all successors of a termt ′ in G that are of the formwithout t ′′ (i.e.Succ+(t ′)]Succ−(t ′)≡
Succ(t ′)). Furthermore,Succ!(t ′)⊆Succ(t ′) denotes the sequence of all successors of a termt ′ in G that
are not of the formoptional t ′′, andSucc?(t ′) ⊆ Succ(t ′) denotes the sequence of all successors of a
termt ′ that are of the formoptional t ′′ (i.e.Succ!(t ′)]Succ?(t ′)≡Succ(t ′)). Note thatSucc−⊆Succ!,
because a combination ofwithout andoptional is not reasonable.3

3optional only has effect on the variable bindings, andwithout may never yield variable bindings

14

Definition 17 (Ground Query Term Simulaton)
Let r1 and r2 be ground (query) terms, and letG1 = (V1,E1, r1) andG2 = (V2,E2, r2) be the graphs
induced byr1 andr2. A relation�⊆V1×V2 on the setsV1 andV2 of immediate and indirect subterms
of r1 andr2 is called aground query term simulation, if and only if:

1. r1 � r2 (i.e. the roots are in�)

2. if v1 � v2 and neitherv1 nor v2 are of the formdesc tnor have successors of the formswithout
t or optional t, then the labelsl1 and l2 of v1 and v2 match and there exists atotal, index
injective mappingπ : Succ(v1) → Succ(v2) such that for alls∈ Succ(v1) holds thats� π(s).
Depending on the kinds of subterm specifications ofv1 andv2, π in addition satisfies the following
requirements:

v1 v2 it holds that
l1[s1, . . . ,sm] l2[t1, . . . ,tn] π is index bijectiveandindex monotonic
l1{s1, . . . ,sm} l2[t1, . . . ,tn] π is index bijectiveandposition respecting

l2{t1, . . . ,tn} π is index bijectiveandposition preserving
l1[[s1, . . .sm]] l2[t1, . . . ,tn] π is index monotonicandposition respecting

l2[[t1, . . . ,tn]] π is index monotonicandposition preserving
l1{{s1, . . .sm}} l2{t1, . . . ,tn} π is position preserving

l2[t1, . . . ,tn] π is position respecting
l2{{t1, . . . ,tn}} π is position preserving
l2[[t1, . . . ,tn]] π is position preserving

3. if v1 � v2 andv1 is of the formdesc t1, then

• v2 is of the formdesc t2 andt1 � t2 (descendant preserving, or

• t1� v2 (descendant shallow), or

• there exists av′2 ∈ SubT(v2) such thatv1 � v′2 (descendant deep)

In all other cases (e.g. combinations of subterm specifications not listed above),� is no ground
query term simulation. In subsequent parts of this article,the symbol� always refers to relations that
are ground query term simulations.

Note that although graph simulation allows to relate two nodes of the one graph with a single node
of the other graph, it is desirable to restrict simulations between two ground query terms toinjective
cases, i.e. such cases where no two subterms oft1 are simulated by the same subterm oft2. While it
makes certain queries more difficult, this restriction turned out to be much easier to comprehend for
authors of Xcerpt programs and reflected the intuitive understanding of query patterns.

A comprehensive list of examples is given in [Sch04].

3.3 Simulation Unifiers

In Classical Logic, a unifier is a substitution for two termst1 andt2 that, applied tot1 andt2, makes
the two terms identical. Thesimulation unifiersintroduced here follow this basic scheme, with two
extensions: instead of equality, simulation unifiers are based on the (asymmetric) simulation relation of
Section 3.2 and instead of a single substitution, substitution sets are considered. Both extensions are
necessary for handling the special Xcerpt constructsall andsomeand incomplete term specifications.

Informally, asimulation unifierfor a query termtq and a construct termtc is a set of substitutions
Σ, such that each ground instancetq′ of tq in Σ simulates into a ground instancetc′ of tc in Σ. This

15

restriction is too weak for fully describing the semantics of the evaluation algorithm. For example,
consider a substitution setΣ =

{
{X 7→ a,Y 7→ b},{X 7→ b,Y 7→ a}, a query termtq = f{var X} and a

construct termtc = f{var Y}. With the informal description above,Σ would be a simulation unifier of
tq in tc, but this is not reasonable. We therefore also require that the substitutionσ ∈ Σ that yieldstq′

also is “used” bytc′ . This can be expressed by grouping the substitutions according to the free variables
in tc (cf. Definition 7 on page 9).

Definition 18 (Simulation Unifier)
Let tq be a query term, lettc be a construct term with the set of free variablesFV(tc), and letΣ be an
all-grounding substitution set.Σ is called asimulation unifierof tq in tc, if for each ∈ /łFV(tc)

holds that

∀tq′ ∈ (tq) tq′ � (tc)

Recall from Section 2.2 that all substitutions in an all-grounding substitution set assign data terms to
each variable. Intuitively, it is sufficient to only consider grounding substitutions fortq andtc. However,
all-grounding substitution sets simplify the formalisation of most general simulation unifiers below.

Example 19 (Simulation Unifiers)
1. Let tq = f{{var X,b}} and lettc = f{a,var Y,c}. A simulation unifier oftq in tc is the (all-

grounding) substitution set

Σ1 =
{
{X 7→ a,Y 7→ b},{X 7→ c,Y 7→ b}

}

2. Let tq = f{{var X}} and let tc = f{all var Y}. A simulation unifier oftq in tc is the (all-
grounding) substitution set

Σ2 =
{
{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ a}

}

Assignments for variables not occurring in the termstq and tc are not given in the substitutions
above.

Simulation unifiers are required to begroundingsubstitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding substitution sets can be applied to construct terms
containing grouping constructs, because a grouping is not possible otherwise. This restriction is less
significant than it might appear: as rules in Xcerpt are rangerestricted, the evaluation algorithm always
determines bindings for the variables intc, so that it is always possible to extend the solutions determined
by the simulation unification algorithm to a grounding substitution set by merging with these bindings.

Usually, there are infinitely many unifiers for a query term and a construct term. Traditional logic
programming therefore considers the most general unifier (mgu), i.e. the unifier that subsumes all other
unifiers. Since simulation unifiers are always grounding substitution sets, such a definition is not possi-
ble for simulation unifiers. Instead, we define themost general simulation unifier(mgsu) as the small-
est superset of all other simulation unifiers. Note that the notion most general simulation unifieris –
although different in presentation – indeed similar to the traditional notion of most general unifiers,
because a most general simulation unifier subsumes all othersimulation unifiers.

Definition 20 (Most General Simulation Unifier)
Let tq be a query term and lettc be a construct term without grouping constructs such that there exists at
least one simulation unifier oftq in tc. Themost general simulation unifier(mgsu) oftq in tc is defined
as the union of all simulation unifiers oftq in tc.

16

Note that the most general simulation unifier is indeed always a simulation unifier iftc does not
contain grouping constructs. This is easy to see because theunion of two simulation unifiers simply
adds ground instances oftq andtc where for every ground instancetq′ of tq there exists a ground instance
tc′ of tc such thattq′ � tc′ . This does in general not hold for construct terms with grouping.

4 A Constraint Solver for Language Evaluation

The evaluation of Xcerpt programs is described in terms of a constraint solver that applies so-called
simplification rulesto a constraint store consisting of conjunctions and disjunctions of constraints. The
purpose of the constraint solver is to determine variable bindings for variables occurring in query and
construct terms, which ultimately yield substitutions that can be used to create the answer terms of a
program. A simplification rule in this thesis has the following form:

C1
...

Cn

D

whereC1, . . . ,Cn (n≥ 1) are atomic constraints (the condition) andD is either an atomic constraint, or
a conjunction or disjunction of constraints (the consequence). If a simplification rule is applied, then
the conjunctionC1∧ ·· · ∧Cn in the constraint store is replaced by the constraintD. Note that these
simplification rules are similar to the simplification rulesin the languageConstraint Handling Rules
[Frü95], albeit with a different notation.

The constraint solver is non-deterministic to a high degreein that the order in which simplification
rules are applied is not significant. This approach might be advantageous, as it gives much freedom to
the evaluation engine to e.g. perform optimisations.

This constraint solver differs from common approaches in that the result of a rule may contain dis-
junctions, whereas usually only conjunctions are admitted. Such constraint solvers have been studied in
constraint programming research, e.g. in [WM96]. The approach taken in this thesis is rather simplistic,
as it after each application of a simplification rule createsthe disjunctive normal form (DNF) of the
constraint store. Simplification rules are independently applied to the different conjuncts of the DNF.
This approach is rather inefficient in implementations, andvarious optimisations can be considered. A
straightforward optimisation would be to not create the DNFaftereachsimplification step, but instead
only if it is “necessary”, because no other simplification rules apply. However, such optimisations are
not further investigated in this thesis, as the focus is on Web query languages and not on constraint
programming.

Furthermore, the constraint solver needs to be able to treatnegation. As both negation constructs
not andwithout describe negation as failure, the negation behaves differently to classic negation in
some cases (cf. Example 26). The treatment of negation is described in the formula simplification rules
in Section 4.3, and in the consistency verification rules 3, 4, and 5 in Section 4.4 below.

4.1 Data Structures and Functions

4.1.1 Constraints

The main data structure of the evaluation algorithm is theconstraint storewhich may contain several
types of constraints, including other (sub-)constraint stores. For the purpose of this thesis, constraints

17

are defined by the following grammar (defined in a variant ofExtended Backus-Naur Form):

<constraint> := <conjunction> | <disjunction>
| ’True’ | ’False’
| ’(’ <constraint> ’)’
| <sim-constraint>
| <dep-constraint>
| <query-constraint> .

<conjunction> := <constraint> (’ ∧’ <constraint>)+ .
<disjunction> := <constraint> (’ ∨’ <constraint>)+ .
<negation> := ’’ <constraint> .
<sim-constraint> := <query-term> ’ �u’ <construct-term> .
<dep-constraint> := ’(’ <constraint> ’ |’ <constraint> ’)’ .
<query-constraint> := ’ 〈’ <query-term> ’ 〉’ ’ {’ <data-term-list>? ’ }’ .
<dbterm-list> := <data-term> (’,’ <data-term>)* .

It is easy to observe that a constraint store usually consists of arbitrary conjunctions, disjunctions,
and negations of constraints. As usual, conjunctions always take precedence over disjunctions unless
explicitly specified by parentheses. A brief description ofthe other kinds of constraints is given below:

Truth Values. The truth values “True” and “False” have their expected meaning in a constraint
store. Simplification of the constraint store can eliminatethem in all cases except when they are the
only remaining constraint.

Simulation Constraint. A simulation constraint – writtent1 �u t2 for some construct, data, or
query termt1 and some construct or data termt2 – is a binary constraint which requires that variables
are only bound to data terms such that there is a ground query term simulation between the ground
instances oft1 and t2. The termt1 is called the left hand side of the simulation constraint andt2 is
called the right hand side of the simulation constraint in subsequent sections. So as to distinguish the
simulation constraint from the ground query term simulation, but nonetheless emphasise the relationship
between the two, the symbol�u is used (withu for “to be unified”). Note that the right hand side of a
simulation constraint is always necessarily a construct ordata term, because the simplification rules in
the simulation unification and backward chaining algorithms never put a query term to the right hand
side.

Most simulation constraints can be further reduced by applying the simulation unification algorithm
on them until at least one of the sides consists merely of a variable. If a simulation constraint is of
the formX �u t whereX is a variable,t is also called anupper boundof X. Likewise, if a simulation
constraint is of the formt �u X, t is called anlower boundof X.

Query Constraint. A query constraint is a constraint consisting of a valid Xcerpt query (i.e. ei-
ther a query term, an and/or-connection of queries, a negated query, or an input resource specification
containing a query). Query constraints are used to represent queries that are not yet evaluated and are
unfolded during the evaluation (if necessary). For some query Q, the query constraint is denoted by〈Q〉.

A query constraint may optionally have a set of associated data terms which results from resolving
and parsing an external resource (elimination of thein construct). If a query constraint〈Q〉 is associated
with the data terms{t1, . . . ,tn}, this is denoted by〈Q〉{t1,...,tn}.

18

Dependency Constraint. A meta-constraint stating a dependency between two constraints. If C
andD are constraints, the dependency constraint(C | D) requires thatC may only be evaluated if
the evaluation ofD did not fail (otherwise, the complete constraint fails). ThusD usually needs to be
completely evaluated beforeC can be processed. The substitutions resulting from the evaluation ofD
are applied toC if they exist (i.e. under the condition that D is neitherFalsenorTrue).

The justification for the dependency constraint are the requirements of the grouping constructsall
andsome, which require to consider all alternative solutions for the query part of a rule. Ifall or some
appears in the head of a rule which is evaluated, the unification of a query with the head cannot be
completed before the rule is fully evaluated.

4.1.2 Functions

substitutions(CS): The ultimate step of the algorithm, after no more rules are applicable or nec-
essary, is always to generate a set of substitutions from theconstraint store. In this step,CS is put in
DNF, all constraints of the formX �u t (whereX is a variable andt is a construct term4) are replaced
by X = t and for each conjunct ofCSa separate substitution is generated from these replacements. Note
that

• substitutions(True) is the set of all all-grounding substitutions

• substitutions(False) = {}, i.e. there exists no substitution.

Thus, neither a result ofTruenor a result ofFalseare desirable for a query containing variables. Fortu-
nately, the evaluation algorithm never yieldsTrue in case a variable occurs in a query, and only yields
Falseif the evaluation fails.

apply(Σ,t): Applying a set of substitutionsΣ to a term is implemented recursively over the term
structure. The implementation of this function can be derived from Definitions 6 and 10 in a straight-
forward manner.

retrieve(R): Given a resource descriptionR, the functionretrieve(R) returns a set of those terms
that are represented by this resource provided that the datacan in some way be parsed into Xcerpt’s
term representation. A resource description may for example contain a URI for identifying the resource
and a format specification to indicate which parser to use. The current prototype provides support for
XML, HTML and Xcerpt syntax, but different formats are more or less straightforward to implement
(e.g. Lisp S-expressions, RDF statements or relational databases).

restrict(V,C): restricts the constraint storeC to only such (non-negated) simulation constraints
where the lower bound is a variable occurring inV. This function is used for evaluating query negation
below.

deref(id): Dereferences the term reference identified byid and returns the subterm associated with
the identifierid.

vars(Q): Returns the set of all variables occurring non-negated in a queryQ.

4due to the way rules are evaluated, the right hand side of a simulation constraint is always a construct term

19

4.2 Solution Set of a Constraint Store

As the evaluation algorithm aims at determining an (all-grounding) substitution set for certain variables,
each constraint store conceptually represents a (all-grounding) substitution set in which each substitu-
tion provides assignments for all conceivable variable names. This set is called thesolution setof the
constraint store, and represents the possible answers thatthe evaluation of the constraint store yields.
Depending on the constraint store, this solution set is restricted to substitutions fulfilling certain condi-
tions. For example, the constraintX �u f{a} requires that all substitutions in the solution set provide
an assignment for the variableX that is compatible (i.e.simulates) with f{a}. Likewise, the constraint
f{{}} �u X requires that the solution set only contains substitutionsthat provide an assignmentt for X
such thatf{{}} � t.

In the following, we will consider only the solution set of a fully solved constraint store. Such a
constraint store contains only simulation constraints where one side of the inequation is a variable, of
conjunctions or disjunctions of constraints, and of the boolean constraintsTrueandFalse. This notion
of solution sets will be used in the formalisation of simulation unifiers later in this chapter. Recall that
all-grounding substitutions are substitutions that map every possible variable to a data term.

Definition 21 (Solution Set of a Constraint Store)
Let CSbe a completely solved constraint store, i.e. consisting only of simulation constraints where one
side is a variable, conjunctions, disjunctions, and the boolean constraintsTrueandFalse. The solution
setΩ(CS) is a grounding substitution set recursively defined as follows:

• Ω(True) is the set of all all-grounding substitutions (cf. Section 2.2)

• Ω(False) =
{}

, i.e. the empty set

• Ω(X �u t) is the set of all all-grounding substitutionsσ such thatσ(X)∼= σ(t)

• Ω(t �u X) is the set of all all-grounding substitutionsσ such thatσ(t)� σ(X)

• Ω(C1∧C2) = Ω(C1)∩Ω(C2)

• Ω(C1∨C2) = Ω(C1)∪Ω(C2)

• Ω(C) = Ω(True)\Ω(C)

The rationale behind using sets of all-grounding substitutions is that a constraint store in general
merely restricts the possible answers. Further constraints might add new variables that would have to be
considered. Using infinite substitutions also simplifies working with the solution set, because it suffices
to use simple set operations instead of introducing a new “substitution theory”. For example, merging
of two all-grounding substitution sets merely requires theintersection of both.

Note that the solution set of a constraint storeCS is in general always infinite, because each sub-
stitution contains assignments for an infinite number of variables. However, restricting this set to only
finitely many variablesV (i.e. those variables occurring inCS), yields a finite set in case every such
variable occurs in each conjunct of the disjunctive normal form ofCSon the right side of a simulation
constraint.

The following result is important because it relates the abstract notion of solution set to the actually
computed substitutions. It follows trivially from the definition of solution sets and the definition of the
functionsubstitutions(·). Recall thatΣ|V is the substitution setΣ restricted to the variables inV.

20

Corollary 22
Let CS= C1 ∨ ·· · ∨Cn be a constraint store in disjunctive normal form, andV the set of variables
occurring inCS. If in every conjunctCi , each variableX ∈ V occurs in a simulation constraint of the
form X �u t wheret is a data term, thensubstitutions(CS) = Ω(CS)|V .

Note that as Xcerpt programs are range restricted, this corollary holds for every full evaluation of an
Xcerpt program.

4.3 Constraint Simplification

The usual simplification rules for formulas apply, for example:

• False∧C reduces toFalsefor any constraintC, False∨C reduces toC for any constraintC

• True∧C reduces toC for any constraintC, True∨C reduces toTrue for any constraintC

• (C∧D) simplifies toC∨D, (C∨D) simplifies toC∧D

• C simplifies toC

• False= TrueandTrue= False

Note, however, that constraints of the formC (whereC is not of the formC′) may not be simplified to
C, because the range restrictedness disallows variable bindings also for variables that are negated twice
or more times.

4.4 Consistency Verification Rules

Before a variable can be bound to a term, it is necessary that the constraints for this variable areconsis-
tent. There are two kinds of consistency verification rules,consistencyandtransitivity, divided into four
rules to distinguish the cases with and without negation. The fifth rule described here reduces certain
kinds of negated simulation constraints.

All consistency verification rules are considered to be partof the constraint solver and are needed
both for the simulation unification and the backward chaining algorithm. It is assumed that they are
always applied if possible and that the constraint store canalways be treated as consistent.

4.4.1 Rule 1: Consistency

Theconsistencyrule guarantees that upper bounds for a variable are consistent. This verification rule
implements the solution set definition ofΩ(C∧D) = Ω(C)∩Ω(D) and ensures that a conjunct does not
induce two assignments for a variable that are not simulation equivalent.

X �u t1
X �u t2
X �u t1∧ t1 �u t2∧ t2�u t1

Note that botht1 andt2 are necessarily construct or data terms. Thus, the constraint�u is applicable,
which requires a construct or data term on the right hand side.

21

Example 23 (Consistency Rule)
1. consider the two simulation constraintsX �u f{var Y} andX �u f{a}; applying the consistency

rule yieldsX �u f{var Y}∧a�u Y∧Y�u a (after mutual unification), which limits the bindings
for Y to a.

2. consider the two simulation constraintsX �u f{a} andX �u f{b}; applying the consistency rule
determines that they are inconsistent, becausef{a} and f{b} do not simulate.

4.4.2 Rule 2: Transitivity

The transitivity rule replaces variable occurrences of a variableX in the upper bounds of a variable
by the upper bound ofX. This rule is justified by the simulation pre-order defined in[SBF05] and is
needed to ultimately create ground terms as bindings for allvariables. In the following, the notation
t[t ′/X] denotes “replace all occurrences ofX in t by t ′”.

t1 �u t ′1 such thatt ′1 contains the variableX
X �u t2
X �u t2 ∧ t1 �u t ′1[t2/X]

Note that the first constraint is consumed by this rule. This might appear somewhat unusual, as
further applications of the transitivity rule might yield new constraints. However, if some constraint of
the formX �u t ′2 is added, it needs to be compatible with the constraintX �u t2 (which is still in the
conjunction) and would thus not yield differing information.

Example 24 (Transitivity Rule)
1. consider the simulation constraintsX �u Y andY �u a; applying the transitivity rule yields the

additional constraintX �u a and removesX �u Y.

2. consider the simulation constraintsX�u f{var Y} andY�u a; applying the transitivity rule yields
the additional constraintX �u f{a} and removesX �u f{var Y}.

It would be possible to define a similar transitivity rule forthe lower bounds in a simulation con-
straints. This is, however, not necessary, as the lower bounds do not yield variable bindings and thus
need not be ground.

4.5 Constraint Negation

Negated constraints represent exclusion of certain variable bindings, and may result from the evaluation
of the constructswithout (subterm negation),optional (optional subterms), andnot (query negation).
For example, the constraint(X � f{a,b}) disallows bindings forX that are simulation equivalent with
f{a,b}. Note that, although these constructs implement negation as failure, constraint negation is the
ordinary negation of classical logic. The usual transformation rules apply, namely(C∧D) = C∨D,
(C∨D) =C∧D, True= False, andFalse= True. Note, however, thatC 6=C, becauseC is not allowed
to define variable bindings (cf.range restrictedness, [SBF05]).

The following three additional consistency verification rules are used in the constraint solver to treat
constraint negation. All three rules assume that the negation appears immediately in front of an atomic
constraint. This assumption is safe when the constraint store is in disjunctive normal form. The rules
continue the numbering scheme of the previous consistency verification rules. Therefore, the first rule
has number 3.

22

4.5.1 Rule 3: Consistency with Negation

To detect inconsistencies between a non-negated and a negated simulation constraints, the consistency
rule needs to be modified to yield inconsistency in case a non-negated constraint for a variable is con-
sistent with a negated constraint for the same variable. Thefollowing rule means that if a simulation
constraint provides an upper bound for a variable (which represents a candidate binding for the variable),
then there must not be a negated simulation constraint that excludes this upper bound:

X �u t1
(X �u t2)
X �u t1∧ (t1 �u t2∧ t2�u t1)

Example 25 (Consistency Rule with Negation)
Consider the constraint store

X �u f{a,b}∧ (X �u f{b,a})∧ (X �u g{a})

Applying the consistency rule with negation yields

X �u f{a,b}∧ (f{a,b} �u f{b,a}∧ f{b,a}�u f{a,b})∧ (X �u g{a})

the DNF of which is

X �u f{a,b}∧ (f{a,b} �u f{b,a})∧ (X �u g{a})∨
X �u f{a,b}∧ (f{b,a} �u f{a,b})∧ (X �u g{a})

and after further decomposition steps

X �u f{a,b}∧ (True)∧ (X �u g{a})∨
X �u f{a,b}∧ (True)∧ (X �u g{a})

which ultimately yieldsFalse, i.e. no valid bindings.

Note that although subterm and query negation can never yield variable bindings themselves, there
might be variables that only appear in negated simulation constraints but nowhere else in a non-negated
simulation constraint, e.g. as the result of decompositionwith without or optional . These are treated
by Rule 5 below.

4.5.2 Rule 4: Transitivity with Negation

Like the consistency rule, the transitivity rule needs to beadapted to cover negation properly. The
following rule specifies that if there is a negated simulation constraint where the upper boundt ′1 contains
a variable, and this variable is bounded in a non-negated simulation constraint, then substituting the
upper bound for the variable in the first constraint must not yield a simulation.

(t1 �u t ′1) such thatt ′1 contains the variableX
X �u t2
(t1 �u t ′1) ∧ X �u t2 ∧ (t1 �u t ′1[t2/X])

Likewise, if there is a non-negated simulation constraint where the upper bound contains a variable
occurring in a negated simulation constraint, then substituting the upper bound for the variable in the
first constraint must not yield a simulation.

23

t1 �u t ′1 such thatt ′1 contains the variableX
(X �u t2)
t1 �u t ′1 ∧ (X �u t2) ∧ (t1 �u t ′1[t2/X])

Note that unlike rule 2, transitivity with negation may not remove any of the original constraints,
because information would be lost.

4.5.3 Rule 5: Negation as Failure

The last rule is necessary for cases where a variable only appears in a negated simulation constraint,
but nowhere else in a non-negated simulation constraint of the constraint store. Due to the range re-
strictedness of Xcerpt rules, such constraints can never beproduced directly in the treatment ofnot
or without (range restrictedness enforces that each variable occurring in a negated part also appears
elsewhere in a non-negated part). They may, however, be the consequence of applications of rules 3
and 4, and might be produced when decomposing a query term containing the constructoptional (see
Section 5.1 below).

Such constraints are reduced toFalse. The rationale behind this is that, in case the variable doesnot
occur elsewhere outside a negation, the simulation constraint inside the negation represents a solution
for a negated query or subterm, and therefore the negated constraint must fail. In case the variable does
also appear elsewhere outside a negation rules 3 and 4 are applicable (which again might yield negated
simulation constraints).

(X �u t) such thatX does not appear in a non-negated simulation constraint
False

Constraints of the formTrueandFalseare treated by the formula simplification described above.
Example 33 shows a case where this consistency rule is needed. An interesting application of this rule
involves double negation:

Example 26 (Negation as Failure Rule)
Consider the simulation constraint(X �u t) such thatX does not occur elsewhere in a non-negated
simulation constraint. Applying Rule 5 to this constraint yieldsFalse= True (and notX �u t as one
might expect). The rationale for this is that the negation used is negation as failure and not classical
negation, and variables within a simulation constraint that are negated twice do not define variable
bindings (see also the definition ofrange restrictednessin [SBF05].

4.6 Program Evaluation

Program evaluation starts at the program goals, and tries todetermine answer terms by evaluating the
query parts for each goal in a backward chaining fashion. Given a programP, the general scheme of
program evaluation is as follows:

Algorithm 27

proceduremain():
foreachgoalt←Q ∈ P do:

let Subst:= solve(〈Q〉 /0)
print apply(t,Subst)

24

Of course, printing the result in the scheme above has to respect a possible output resource as-
sociated with the head of a goal. The backward chaining algorithm itself is called with the function
solve(C) (whereC is a constraint) which returns a list of substitutions that result from solving the con-
straint given as parameter. The general scheme of the function solve is as follows (cf. the function
substitutions(·) above):

Algorithm 28

function solve(Constraint C):
while a rule can be applied to Cdo:

select some constraint D in C and some rule R applicable to D
let D’ := apply rule R to D
replace D by D’ in C
put C in disjunctive normal form and verify consistency

return substitutions(C)

Note that “rule” in the algorithm above denotes a simplification rule of the constraint solver and not
an Xcerpt rule. Rules from all three parts may be interleavedand the decision on the selection of rule ap-
plications is deliberately left open (i.e. the algorithm described here is non-deterministic), as long as the
selection is “fair” (i.e. each possible rule is applied within finitely many steps). This non-determinism
allows for interesting considerations about selection strategies that have not been investigated much in
logic programming.

5 Simulation Unification

Simulation Unification consists mainly of decomposition rules that operate recursively and in parallel
on the two unified terms (Section 5.1). When all terms are completely decomposed, the result is a
constraint store containing conjunctions and disjunctions of simulation constraints where the left or the
right side is a variable. These yield variable bindings by replacing simulation constraints of the form
X�u t by X = t. The consistency verification rules described above ensurethat all simulation constraints
are consistent and can be interleaved at any point.

5.1 Decomposition Rules

Decomposition rules take a single simulation constraint and try to recursively decompose the two terms
in parallel until no further rules are applicable. Each decomposition step yields one or more subsequent
constraints, often even a large disjunction containing alternatives. This reflects the many different alter-
native ground query term simulations that need to be considered in case of partial term specifications.

All decomposition rules are first given without examples, because the examples tend to be very
extensive, and mutually depend on other decomposition rules. Section 5.2 illustrates important aspects
of simulation unification on several more extensive examples.

5.1.1 Preliminaries

In the following, let l (with or without indices) denote a label, and lett1 denote query terms andt2

construct terms (both with or without indices). Furthermore, let⊥ be a special term (not occurring as
subterm in any actual term) with the property that for allt 6=⊥ holds thatt �u ⊥ = False, i.e. no term
unifies with⊥. In the following sections, it is furthermore assumed thatt2 contains neither grouping

25

constructs, functions, aggregations, nor optional subterms. In practice, this restriction is insignificant,
because construct terms containing one of these constructsare always made ground before computing
the simulation unification (seeDependency Constraintbelow).

Definition 29
Given two termst1 = l{t1

1, . . . ,t1
n} andt2 = l{t2

1, . . . ,t2
m}, the following sets of functionsΠX : 〈t1

1, . . . ,t1
n〉→

〈t2
1, . . . ,t2

m〉 are defined (cf. Definition 14):

• SubT+ ⊆ 〈t1
1, . . . ,t1

n〉 is the sequence of all non-negated subterms oft1 andSubT− ⊆ 〈t1
1, . . . ,t1

n〉
is the sequence of all negated subterms oft1

• SubT! ⊆ 〈t1
1, . . . ,t1

n〉 is the sequence of all non-optional subterms oft1 andSubT?⊆ 〈t1
1, . . . ,t1

n〉 is
the sequence of all optional subterms oft1

• Π is the set of partial, index injective functionsπ from 〈t1
1, . . . ,t1

n〉 to 〈t2
1, . . . ,t2

m〉 that are total on
SubT+ and onSubT! , each completed byt 7→ ⊥ for all t on whichπ is not defined

• Πmon is the setΠ restricted to all index monotonic functions

• Πbi j is the setΠ restricted to all index bijective functions

• Πpp is the set of all positionpreservingfunctions

• Πpr is the set of all positionrespectingfunctions

• Πm−pr = Πmon∩Πpr, Πb−pr = Πbi j ∩Πpr, Πb−pp = Πbi j ∩Πpp, andΠm−b = Πbi j ∩Πmon

To simplify the rules below, allpartial mappings inΠ are assumed to be completed by mapping all
values on which the mappings are undefined to the special term⊥. In this manner, every mapping inΠ
can be considered to be total in case the distinction is not necessary, whereas in the cases where partial
mappings are considered (optional andwithout), the distinction is made explicitly.

Example 30
Consider the termst1 = f [[a,withoutb]] andt2 = f [a,b,c]. The set of index monotonic mappings of the
set of subterms oft1 into the set of subterms oft2 (Πmon) is as follows (without b abbreviated asb):

{a 7→ a,b 7→ ⊥} {a 7→ b,b 7→ ⊥} {a 7→ c,b 7→ ⊥}
{a 7→ a,b 7→ b} {a 7→ b,b 7→ c}
{a 7→ a,b 7→ c}

Note that all these mappings can be generated in a rather straightforward manner by creating a table
with the termst1

1 · · · t
1
n arranged top-down and the termst2

1 · · · t
2
m arranged left-right and then determin-

ing paths from the first line to thenth line that fulfil certain properties. This technique is called the
memoisation matrix.

5.1.2 Root Elimination

Root elimination rules compare the roots of the two terms anddistribute the unification to the subterms.

26

Brace Incompatibility The first set of rules treat incompatibility between braces and thus all of these
rules reduce the simulation constraint toFalse. For instance, an ordered simulation into an unordered
term is not reasonable, as the order cannot be guaranteed.
Decomposition Ruledecomp.1:

l [t1
1, . . . ,t1

n] �u l{t2
1, . . . ,t2

m} l [[t1
1, . . . ,t1

n]] �u l{t2
1, . . . ,t2

m}
False False

Left Term without Subterms This set of rules consider all such cases where the left term does not
contain subterms. These cases have to be treated separatelyfrom the general decomposition rules below,
since using the latter would yield the wrong result in such cases. For instance, an emptyor is equvialent
to Falsebut the result should always beTrue in case the left term is only a partial specification. In the
following, let m≥ 0 andk≥ 1:
Decomposition Ruledecomp.2:

l{{ }} �u l{t2
1, . . . ,t2

m} l{{ }} �u l [t2
1, . . . ,t2

m] l [[]] �u l [t2
1, . . . ,t2

m]
True True True

l{ } �u l{t2
1, . . . ,t2

k} l{ } �u l [t2
1, . . . ,t2

k] l [] �u l [t2
1, . . . ,t2

k]
False False False

l{ } �u l{ } l{ } �u l [] l [] �u l []
True True True

As specified by these rules, a term without subterms but a partial specification (double braces)
matches with any term which has the same label. If the term specification is total, it matches only
with such terms that also do not have subterms.

Decomposition withoutall, some, without, and optional The general decomposition rules
eliminate the two root nodes in parallel and distributes theunification to the various combinations of
subterms that result from ordered/unordered specificationand from total/partial term specifications. If
there exists no such combination, then the result is an emptyor, which is equivalent toFalse. These
term specifications are represented by the different sets ofmappingsΠ, Πbi j , Πmon, Πpr, andΠpp. In
the following, letn,m≥ 1.
Decomposition Ruledecomp.3:

l{{t1
1, . . . ,t1

n}} �u l{t2
1, . . . ,t2

m} l{{t1
1, . . . ,t1

n}} �u l [t2
1, . . . ,t2

m]
∨

π∈Πpp

∧

1≤i≤n t1
i �u π(t1

i)
∨

π∈Πpr

∧

1≤i≤nt1
i �u π(t1

i)

l{t1
1, . . . ,t1

n} �u l{t2
1, . . . ,t2

m} l{t1
1, . . . ,t1

n} �u l [t2
1, . . . ,t2

m]
∨

π∈Πbi j∩Πpp

∧

1≤i≤n t1
i �u π(t1

i)
∨

π∈Πbi j∩Πpr

∧

1≤i≤nt1
i �u π(t1

i)

l [[t1
1, . . . ,t1

n]] �u l [t2
1, . . . ,t2

m] l [t1
1, . . . ,t1

n] �u l [t2
1, . . . ,t2

m]
∨

π∈Πmon∩Πpr

∧

1≤i≤n t1
i �u π(t1

i)
∨

π∈Πmon∩Πbi j

∧

1≤i≤nt1
i �u π(t1

i)

For instance, if the left term has a partial, unordered specification for the subterms, the simulation
unification has to consider as alternatives all combinations of subterms of the left term with subterms of
the right term, provided that each child on the left gets a matching partner on the right.

27

Label Mismatch In case of a label mismatch, the unification fails. In the following, letl1 6= l2.
Decomposition Ruledecomp.4:

l1{{t1
1, . . . ,t1

n}} �u l2{t2
1, . . . ,t2

m} l1{t1
1, . . . ,t1

n} �u l2{t2
1, . . . ,t2

m}
False False

l1{{t1
1, . . . ,t1

n}} �u l2[t2
1, . . . ,t2

m] l1{t1
1, . . . ,t1

n} �u l2[t2
1, . . . ,t2

m]
False False

l1[[t1
1, . . . ,t1

n]] �u l2[t2
1, . . . ,t2

m] l1[t1
1, . . . ,t1

n] �u l2[t2
1, . . . ,t2

m]
False False

5.1.3 ; Elimination

Pattern restrictions of the formX ; t1 �u t2 are decomposed by addingt2 as upper bound for the
variableX (as usual), adding the pattern restriction as lower bound for X (to ensure that there exists no
upper bound that is incompatible with the pattern restriction), and immediately trying to unifyt1 andt2.
The latter step is not strictly necessary, as it would also beperformed by consistency rule 2 (transitivity).
However, immediate evaluation is advantageous as it excludes incompatible upper bounds immediately.
Decomposition Rulevar:

X ; t1 �u t2

t1 �u t2 ∧ t1 �u X ∧ X �u t2

5.1.4 Descendant Elimination

The descendant construct in terms of the formdesc tis decomposed by first trying to unifyt with the
other term, and then trying to unifydesc twith each of the subterms of the other term in turn. In this
manner, unifying subterms at all depths can be determined. Let m≥ 0.
Decomposition Ruledesc:

desct1 �u l{t2
1, . . . ,t2

m} desct1 �u l [t2
1, . . . ,t2

m]
t1 �u l{t2

1, . . . ,t2
m} ∨

∨

1≤i≤mdesc t1 �u t2
i t1 �u l [t2

1, . . . ,t2
m] ∨

∨

1≤i≤mdesc t1 �u t2
i

5.1.5 Decomposition with without

The declarative specification ofwithout in the ground query term simulation of Section 3.2 requires
that a partial function (of the set of non-negated subterms into the set of subterms of the second term)
is not completable to a (partial or total) function such thatone of the negated subterm is mapped to a
subterm in which it simulates. Since the term on the right hand side of a simulation constraint is always a
data or construct term, it is sufficient to consider the case where the right term does not contain negated
subterms. For a simulation constraintt1 �u t2, the decomposition rules for the case without negated
subterms is intuitively described as follows:

• A mappingπ is first restricted to the non-negated subterms oft1, i.e. the subterms of the left term
that are not of the formwithout t, on which the decomposition is performed in the same way as
for decomposition withoutwithout . Note that there might be several different mappings that are
identical withπ for all the non-negated subterms and only differ on the negated subterms.

28

• It is then necessary to verify whether there exists a mappingπ ′ that maps the non-negated subterms
of t1 to the same subterms oft2 asπ (in particular,π ′ might beπ itself), and permits to map at
least one negated subtermwithout s1 of t1 to a subterms2 of t2 such thats1 � s2. In this case,
the mapping restricted to the positive subterms oft1 is considered to be invalid, because it is
completable to a mapping that allows to map a negated subtermof t1 to a matching non-negated
subterm oft2. Thus,all mappings that map the positive subterms oft1 to the same subterms oft2

have to be ruled out.

It is important to note that the set of mappingsΠ is defined (in the Preliminaries above) as the set of all
partial functions that aretotal on the set of positive subformulas. Recall furthermore, that the mappings
in Π are completed by mapping all undefined values to⊥.

In the following, letSubT+⊆ 〈t1
1, . . . ,t1

n〉 be the sequence of all subterms not of the formwithout t,
and letSubT− ⊆ 〈t1

1, . . . ,t1
n〉 be the sequence of all subterms of the formwithout t. Also, two functions

π andπ ′ are considered to be equal on the positive part, denotedπ(SubT+) = π ′(SubT+), if for all
t ∈ SubT+ holds thatπ(t) = π ′(t). Furthermore, letp(·) be a function that removes thewithout
construct in front of a negated subterm, i.e.p(without t) = t.
Decomposition Rulewithout:

l{{t1
1, . . . ,t1

n}} �u l{t2
1, . . . ,t2

m}
∨

π∈Πpp

(
∧

t+∈SubT+ t+ �u π(t+)∧
(
∨

π ′∈Πpp with π(SubT+)=π ′(SubT+)

∨

t−∈SubT− p(t−)�u π ′(t−)
))

l [[t1
1, . . . ,t1

n]] �u l [t2
1, . . . ,t2

m]
∨

π∈Πm-pr

(
∧

t+∈SubT+ t+ �u π(t+)∧
(
∨

π ′∈Πm-pr with π(SubT+)=π ′(SubT+)

∨

t−∈SubT− p(t−)�u π ′(t−)
))

l{{t1
1, . . . ,t1

n}} �u l [t2
1, . . . ,t2

m]
∨

π∈Πpr

(
∧

t+∈SubT+ t+ �u π(t+)∧
(
∨

π ′∈Πpr with π(SubT+)=π ′(SubT+)

∨

t−∈SubT− p(t−)�u π ′(t−)
))

Note that decomposition withwithout is currently not covered in the completeness and correctness
proofs of Section 5.3.

5.1.6 Decomposition with optional in the query term

Intuitively, decomposition withoptional in the query term should “enable” the maximal number of
optional subterms such that they can participate in the simulation. In the following, this is expressed as
follows:

• for all required subterms (i.e. not of the formoptional t), the treatment is as before (since all
negated subterms are required, they must be treated here as well, but this is omitted in the rules
below to enhance readability)

• for all optional subterms, a certain number is “enabled” by adding appropriate simulation con-
straints, and all others are “disabled” by adding appropriate negated simulation constraints

In the following, these requirements are expressed as follows: given a partial mappingπ ∈ Π (by def-
inition π must be total on the set of non-optional subterms, but may be partial on the set of optional
subterms), it is first verified whetherπ yields a simulation by unifying all terms on whichπ is defined
with their mapping (in the same manner as before). In the second part of the formula, it is then necessary
to ensure thatπ is also themaximalmapping with this property, i.e.π is not completable to a mapping

29

π ′ such that this would also yield a simulation. This is ensuredby adding a negated disjunction testing
for all mappings that are identical withπ on the subterms for whichπ is defined, but differ on the other
subterms, whether there exists an additional subterm that would unify with the subterm it is mapped to
in π ′. If yes,π is not maximal and completable toπ ′. If no, π is maximal.

For a given mappingπ , let SubTπ ⊆ SubTbe the sequence on whichπ is defined and not mapped
to ⊥, i.e. for all t ∈ SubTπ holds thatπ(t) 6= ⊥, and letSubTπ = SubT\SubTπ . Also, two functions
π andπ ′ are considered to be equal on a set of subtermsX ⊆ SubT, denotedπ(X) = π ′(X), if for all
t ∈ X holds thatπ(t) = π ′(t). Furthermore, letp(·) be a function that removes theoptional construct
in front of an optional subterm, i.e.p(optionalt) = t.
Decomposition Ruleoptional:

l{t1
1, . . . ,t1

n} �u l{t2
1, . . . ,t2

m}
∨

π∈Πb−pp

(
∧

t∈SubTπ t �u π(t)∧
(

∨

π ′∈Πb−pp with π(SubTπ)=π ′(SubTπ)

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l{{t1
1, . . . ,t1

n}} �u l{t2
1, . . . ,t2

m}
∨

π∈Πpp

(
∧

t∈SubTπ t �u π(t)∧
(

∨

π ′∈Πpp with π(SubTπ)=π ′(SubTπ)

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l [t1
1, . . . ,t1

n] �u l [t2
1, . . . ,t2

m]
∨

π∈Πm−b

(
∧

t∈SubTπ t �u π(t)∧
(

∨

π ′∈Πm−b with π(SubTπ)=π ′(SubTπ)

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l [[t1
1, . . . ,t1

n]] �u l [t2
1, . . . ,t2

m]
∨

π∈Πm−pr

(
∧

t∈SubTπ t �u π(t)∧
(

∨

π ′∈Πm−pr with π(SubTπ)=π ′(SubTπ)

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l{t1
1, . . . ,t1

n} �u l [t2
1, . . . ,t2

m]
∨

π∈Πb−pr

(
∧

t∈SubTπ t �u π(t)∧
(

∨

π ′∈Πb−pr with π(SubTπ)=π ′(SubTπ)

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l{{t1
1, . . . ,t1

n}} �u l [t2
1, . . . ,t2

m]
∨

π∈Πpr

(
∧

t∈SubTπ t �u π(t)∧
(

∨

π ′∈Πpr with π(SubTπ)=π ′(SubTπ)

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

Note the close similarity to the decomposition rules for terms containingwithout . Intuitively, this
similarity means that decomposition withoptional corresponds to creating all different alternatives
where zero or moreoptional subterms are “turned on” by omitting theoptional and the others are
“turned off” by replacingoptional by without , and evaluating all resulting terms as alternatives.
Consider for example the term

f{{var X→ a,optionalvar Y→ b,optionalvar Z→ c}}

The substitution resulting from the evaluation of this query term is equivalent to the union of the results
of the four terms

f{{var X→ a,var Y→ b,var Z→ c}}
f{{var X→ a,var Y→ b,withoutvar Z→ c}}
f{{var X→ a,withoutvar Y→ b,var Z→ c}}
f{{var X→ a,withoutvar Y→ b,withoutvar Z→ c}}

30

Note that this representation might be surprising on a first glance, because the intuitive understanding
of optional would be to simply leave out the optional subterms instead ofreplacing them by negated
subterms, as in:

f{{var X→ a,var Y→ b,var Z→ c}}
f{{var X→ a,var Y→ b}}
f{{var X→ a,var Z→ c}}
f{{var X→ a}}

However, this term representation does not reflect that an optional subterm isrequiredto match, if it is
possibleto match. Consider for example a unification with the termf{a,c}. The correct solution would
be the substitution set

Σ =
{
{X 7→ a,Z 7→ c}

}

whereas the evaluation of the second set of terms would yield

Σ =
{
{X 7→ a,Z 7→ c},{X 7→ a}

}

Note that decomposition withoptional is currently not covered in the completeness and correctness
proofs of Section 5.3.

Example 33 on page 36 illustrates the decomposition of a termcontaining two optional subterms.
Note that more efficient evaluation techniques for the decomposition rules above are conceivable. For
example, if one of the unification steps in the part for whichπ is defined already fails, it is not necessary
to consider all different alternative mappings that are equal on the subterms on whichπ is defined.

5.1.7 Incomplete Decomposition with grouping constructs, functions, aggregations, and op-
tional subterms in construct terms

A unification with a term containing grouping constructs, functions, or aggregations is in general in-
complete because a complete decomposition requires to handle meta-constraints over the constraint
store itself, which is very inconvenient. Consider for instance a unificationf{a,b,c} �u f [all X]. To
provide the full information stated in this constraint, it would be necessary to add a meta-constraint
stating that there must be exactly three alternative bindings forX, and of those, one must bea, another
b and the thirdc. Evaluation of a query containingX would thus become very complex.

Although a complete decomposition is preferable, it is (fortunately) not necessary for evaluating
Xcerpt programs, as grouping constructs always depend on the bindings of the variables in the query
part of a rule. Rules containing grouping constructs are treated by thedependency constraint, which
performs an auxiliary computation for solving the query part of a rule and then substitutes the results in
the rule head. Thus, in this case it is sufficient to treat the unification of a query term with a data term,
which does not contain grouping constructs (and obviously also no variables).

However, it is still desirable to unify a term containing grouping constructs as far as possible in order
to exclude irrelevant evaluations of query parts in the dependency constraint as early as possible. For
example, the termsf{a,b} andg{all var X}will never yield terms that unify, regardless of the bindings
for X. Likewise, the termsf{g{a},g{b}}and f{all h{var X}}will never yield terms that unify, because
neitherg{a} norg{b} can be successfully unified with any of the ground instances of h{var X}.

Therefore, the algorithm described here takes a different approach, in which a unification withall
only yields anecessaryset of constraints, not asufficientset. The algorithm is thusincomplete(or
“partial”) in this respect.

The following decomposition rule is used, where the return value is either simplyTrueor False, with
the informal meaning “there might be a result” or “a result isprecluded”.

31

Decomposition Rulegrouping:
t1 �u all t2

(t1 �u t2) 6= False

In the case where the constraint is reduced toTrue, it is possible that there is a result, but it is also
possible that there is none, depending on the further evaluation of the variables int2.

5.1.8 Term References: Memoing of Previous Computations

Resolving References. References occurring in either term of a simulation constraint are dereferenced
in a straightforward manner using thedere f(·) function described above:
Decomposition Rulederef :

↑ id �u t2

t1 �u t2 t1 = dere f(id)
t1 �u ↑ id
t1 �u t2 t2 = dere f(id)

Memoing. Dereferencing alone is not sufficient for treating references, because the simulation uni-
fication would not terminate in case both terms contain cyclic references. The technique used by the
algorithm to avoid this problem ismemoing(also known astabling). In general, memoing is used to
avoid redundant computations by storing the result of all previous computations in memory (e.g. in a ta-
ble). If a computation has already been performed previously, it is not necessary to repeat it as the result
can simply be retrieved from memory. This technique is amongothers used in certain implementations
of Prolog [War92, CW96].

Consider for example the following (nave) implementation of the Fibonacci numbers in Haskell:

f ib :: Int Int
fib 0 = 1
fib 1 = 1
fib n = fib (n -1) + fib (n -2)

Without memoing, this implementation performs many redundant computations.5 For example, for the
computation off ib(n) it is necessary to computef ib(n−1) and f ib(n−2), and for the computation of
f ib(n−1) it is necessary to computef ib(n−2) and f ib(n−3). Thus, f ib(n−2) needs to be computed
twice. With memoing, the second computation could instead refer to the previous computation.

In Xcerpt, memoing for unification with references can be implemented by keeping for each conjunct
in the disjunctive normal form a history of all previous applications of simplification rules (without their
results) that were used for the creation of the conjunct. In every decomposition step it is then first
verified whether the considered constraints have already been evaluated in a previous application of this
simplification rule. If yes, the constraint reduces toTrue; if no, the computation is continued as usual.

In the following rule, letH be a set of constraints that have been considered in previousapplications
of simplification rules in the current conjunct of the disjunctive normal form (history). Furthermore,t1

is considered to be not of the formdesc t.
Decomposition Rulememoing:

desc t1 �u t2 such thatdesc t1 �u t2 ∈H t1 �u t2 such thatt1 �u t2 ∈H

False True

It might be somewhat surprising that the constraint is reduced toTrue/Falseinstead of inserting the
result of a previous computation. The rationale behind thisis that the result of the previous computation

5Note that Haskell’s lazy evaluation performs a technique similar to memoing

32

Figure 3 Derivation tree off{{var X}} �u f{a,b,c} (Example 31, part 1). Different paths denote
different alternatives, nodes represent conjuncts, and edges represent applications of simplification rules.

f{{var X}} �u f{a,b,c}

var X�u a

decomp.3

var X�u b

decomp.3

var X�u c

decomp.3

is already part of the current conjunct in the disjunctive normal form. True andFalseare the neutral
elements of conjunction and disjunction, and thus terminate the unification while keeping results of
previous computations. Examples 34 and 35 illustrate the simulation unification with references.

5.2 Examples

Since most examples for the decomposition rules are rather extensive, they are all grouped in this Section
to improve readability. As in the examples in Section 3.2, the constructoptional is sometimes abbre-
viated byopt , the constructposition is sometimes abbreviated bypos , and the constructwithout
is sometimes abbreviated by . The latter abbreviation is unproblematic, as can otherwise never occur
within a term. Some of the more complicated examples also provide a “decomposition tree” which
shows the application of decomposition steps in the different conjuncts of the DNF. In these trees, nodes
represent conjuncts and edges represent decompositions. If applying a simplification rule to a conjunct
yields a disjunction, its corresponding node has more than one alternative successors. Read from the root
to the leaves, these trees allow to follow the sequences of decomposition steps that lead to substitutions.
The consistent end states of the constraint store are often emphasised by a rectangular frame.

Example 31 (Decomposition)
This example consists of three decompositions of simple simulation constraints. Figures 3, 4, and 5
provide a graphical illustration of the decompositions.

1. Consider the simulation constraint (cf. Figure 3)

C = f{{var X}} �u f{a,b,c}

Applying the decomposition ruledecomp.3with three different mappingsπ ∈Π to this simulation
constraint yields

var X�u a ∨ var X�u b ∨ var X�u c

No further simplification rules are applicable.

2. Consider the simulation constraint (cf. Figure 4)

C = f [[var X,var Y]]�u f [a,b,c]

Note the partial, ordered term specification of the left term. Decomposition with ruledecomp.3
and the three different index monotonic mappingsπ ∈Πmon yields

var X�u a∧var Y�u b
∨ var X�u a∧var Y�u c
∨ var X�u b∧var Y�u c

33

Figure 4 Derivation tree off [[var X,var Y]] �u f [a,b,c] (Example 31, part 2). Different paths denote
different alternatives, nodes represent conjuncts, and edges represent applications of simplification rules.

f{{var X,var Y}} �u f{a,b,c}

var X�u a∧var Y�u b

decomp.3

var X�u a∧var Y�u c

decomp.3

var X�u b∧var Y�u c

decomp.3

3. Consider the simulation constraint (cf. Figure 5)

C = f{{var X→ b}} �u f{a,b,c}

As both terms are unordered, decomposition ruledecomp.3with the three differentπ ∈Π yields

var X→ b�u a ∨ var X→ b�u b ∨ var X→ b�u c

Decomposition of the→ construct reduces the constraint store to

b�u a ∧ var X�u a ∧ b�u var X
∨ b�u b ∧ var X�u b ∧ b�u var X
∨ b�u c ∧ var X�u c ∧ b�u var X

Simulation unification in all three conjuncts yields

False∧ var X�u a ∧ b�u var X
∨ True ∧ var X�u b ∧ b�u var X
∨ False∧ var X�u c ∧ b�u var X

and formula simplification simplifies this constraint storeto

var X�u b ∧ b�u var X

Example 32 (Simulation Unification with without)
1. Consider

C = f{{a,without b}} �u f{a,c}

The setΠ of partial mappings that are total onSubT+ is as follows (partial mappings completed
by mapping undefined values to⊥)6:

{a 7→ a,b 7→ ⊥} {a 7→ c,b 7→ ⊥}
{a 7→ a,b 7→ c} {a 7→ c,b 7→ a}

From this set, the constraintC is decomposed into the following constraint formula (usingthe
decomposition rule for terms containingwithout):

a�u a∧ (b�u⊥∨b�u c)
∨ a�u c∧ (b�u⊥∨b�u a)

6note thatwithout bis abbreviated byb

34

Figure 5 Derivation tree off{{var X→ b}} �u f{a,b,c} (Example 31, part 3). Different paths denote
different alternatives, nodes represent conjuncts, and edges represent applications of simplification rules.

f{{var X→ b}} �u f{a,b,c}

var X→ b�u a

decomp.3

b�u a ∧ var X�u a
∧ b�u var X

var

False∧ var X�u a
∧ b�u var X

unify

False

simplify

var X→ b�u b

decomp.3

b�u b ∧ var X�u b
∧ b�u var X

var

True ∧ var X�u b
∧ b�u var X

unify

var X�u b ∧ b�u var X

simplify

var X→ b�u c

decomp.3

b�u c ∧ var X�u c
∧ b�u var X

var

False∧ var X�u c
∧ b�u var X

unify

False

simplify

Note thatt �u ⊥ always evaluates toFalse. Evaluating the constraints contained in the negated
subformulas yields:

a�u a∧ (False∨False)
∨ a�u c∧ (False∨False)

and formula simplification results in

a�u a∨a�u c

which of course can be further decomposed toTrue.

2. ConsiderC = f{{a,without b}} �u f{a,b}

The setΠ of partial mappings that are total onSubT+ is as follows (completed by mapping all
terms on which the mappings are undefined to⊥):

{a 7→ a,b 7→ ⊥} {a 7→ b,b 7→ ⊥}
{a 7→ a,b 7→ b} {a 7→ b,b 7→ b}

From this set, the constraintC is decomposed into the following constraint formula (usingthe
decomposition rule for terms containingwithout):

a�u a∧ (b�u⊥∨b�u b)
∨ a�u b∧ (b�u⊥∨b�u a)

Evaluating the constraints contained in the negated subformulas yields:

a�u a∧ (False∨True)
∨ a�u c∧ (False∨False)

and formula simplification results in
a�u c

which of course can be further decomposed toFalse.

35

Example 33 (Simulation Unification with optional)
Consider the constraintC = f [[a,optg{var X},opth{var Y}]]�u f [a,g{b}]

The setΠmon of partial, index monotonic mappings that are total onSubT! (the non-optional sub-
terms of the left term) is as follows (partial mappings are completed by mapping undefined values to
⊥):

Πmon=
{
{a 7→ a, optg{var X} 7→ ⊥, opth{var Y} 7→ ⊥}
{a 7→ a, optg{var X} 7→ g{b}, opth{var Y} 7→ ⊥}
{a 7→ a, optg{var X} 7→ ⊥, opth{var Y} 7→ g{b}}
{a 7→ g{b}, optg{var X} 7→ ⊥, opth{var Y} 7→ ⊥}

}

From this set, the constraintC is decomposed into the following constraint formula (usingthe decom-
position rule for terms containingoptional). The constructoptional is already eliminated using the
helper rule described above:

a�u a ∧ (g{var X} �u⊥ ∨ h{var Y} �u⊥ ∨
g{var X} �u g{b} ∨ h{var Y} �u⊥ ∨
g{var X} �u⊥ ∨ h{var Y} �u g{b})

∨ a�u a ∧ g{var X} �u g{b} ∧ (h{var Y} �u⊥)
∨ a�u a ∧ h{var Y} �u g{b} ∧ (g{var X} �u⊥)
∨ a�u g{b} ∧ (g{var X} �u⊥ ∨ h{var Y} �u⊥)

Note thatt �u⊥ always evaluates toFalse. Evaluating the constraints contained in the negated subfor-
mulas yields:

a�u a ∧ (False ∨ False∨
var X�u b ∨ False∨
False ∨ False)

∨ a�u a ∧ g{var X} �u g{b} ∧ (False)
∨ a�u a ∧ h{var Y} �u g{b} ∧ (False)
∨ a�u g{b} ∧ (False ∨ False)

Formula simplification and application of consistency rule5 (negation) yields

a�u a ∧ False
∨ a�u a ∧ g{var X} �u g{b} ∧ True
∨ a�u a ∧ h{var Y} �u g{b} ∧ True
∨ a�u g{b} ∧ True

Note that reducing the first line toFalse informally states “the mapping is completable”, whereas the
Truevalues in lines 2–4 state that “the mapping is not completable” (because the right term only contains
two subterms and the mapping needs to be injective). After further decomposition and simplification
steps, this formula is simplified tovar X�u b (as desired).

Example 34 (Simulation Unification with References)
Consider the simulation constraint

C = f{{o1@g{{var X→↑ o1}} }} �u f{g{a},o2@g{b,↑ o2}}

In the following, the sequence of decomposition steps that result in a complete simulation unification
of the simulation constraint is described. For each conjunct, the setHi denotes the current memoing

36

history of the conjunct. So as to better distinguish the paththat lead to this history, the index is composed
of the numbers of the branches followed in previous steps. For example,H121 is the history of the node
that can be located by following the first branch on the top level, the second branch on the second
level, and the first branch on the third level. Note that Figure 6 gives a graphical representation of the
decomposition tree that might be easier to read. In this tree, the history of a node is easily determined
by following the path from the root node to the current node, and thus not given explicitly. The first
decomposition step yields

o1@g{{var X→↑ o1}} �u g{a} H1 = {C}
∨ o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} H2 = {C}

Note that theHi denote the history for every conjunct, and is in this step thesame for both conjuncts,
as they “share the same history”. Further decomposition results in

var X→↑ o1�u a H11 = H1∪{o1@g{{var X→↑ o1}} �u g{a} }
∨ var X→↑ o1�u b H21 = H2∪{o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2}}
∨ var X→↑ o1�u↑ o2 H22 = H2∪{o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2}}

Application of the; decomposition in all three conjuncts yields

↑ o1�u a ∧ ↑ o1�u var X ∧ var X�u a H111 = H11∪{var X→↑ o1�u a}
∨ ↑ o1�u b ∧ ↑ o1�u var X ∧ var X�u var X�u b H211 = H21∪{var X→↑ o1�u b}
∨ ↑ o1�u↑ o2 ∧ ↑ o1�u var X ∧ var X�u↑ o2 H221 = H22∪{var X→↑ o1�u↑ o2}

In the next step,o1 is dereferenced too1@g{{var X→↑ o1}} in all conjuncts. This gives the result:

o1@g{{var X→↑ o1}} �u a ∧ ↑ o1�u var X ∧ var X�u a H1111= H111∪{↑ o1�u a}
∨ o1@g{{var X→↑ o1}} �u b ∧ ↑ o1�u var X ∧ var X�u b H2111= H211∪{↑ o1�u b}
∨ o1@g{{var X→↑ o1}} �u↑ o2 ∧ ↑ o1�u var X ∧ var X�u↑ o2 H2211= H221∪{↑ o1�u↑ o2}

Decomposition in the first two conjuncts and dereferencing of o2 in the third conjunct then yields:

False∧ ↑ o1�u var X ∧ var X�u a
H11111= H1111∪{o1@g{{var X→↑ o1}} �u a}

∨ False∧ ↑ o1�u var X ∧ var X�u b
H21111= H2111∪{o1@g{{var X→↑ o1}} �u b}

∨ o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} ∧ ↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}
H22111= H2211∪{o1@g{{var X→↑ o1}} �u↑ o2,var X�u↑ o2}

The next step eliminates the first two conjuncts because theycontainFalse. In the third conjunct, the
memoingrule is applicable to the first simulation constraint:o1@g{{var X→↑ o1}} �u o2@g{b,↑
o2} ∈H22⊆H22111. It thus reduces toTrueand terminates the otherwise infinite computation:

True ∧ ↑ o1�u var X ∧ var X�u var X�u o2@g{b,↑ o2} H221111= H22111

Now the second occurrence ofo1 can be dereferenced. The following constraint store is theresult of
the simulation unification:

o1@g{{var X→↑ o1}} �u var X ∧ var X�u var X�u o2@g{b,↑ o2}
H2211111= H221111∪{↑ o1�u var X}

37

F
igure

6
D

erivatio
n

tree
o

ff{{o1
@

g
{{va

r
X
→
↑

o1
}}
}}
�

u
f{g
{a
}
,o2

@
g
{b

,↑
o2
}}

(E
xam

p
le

3
4).

T
h

e
m

em
o

in
g

h
isto

ryH
o

fa
n

o
d

e
is

rep
resen

ted
b

y
th

e
p

ath
fro

m
th

e
ro

o
tto

th
atn

o
d

e.

f{{o1@g{{var X→↑ o1}} }} �u f{g{a},o2@g{b,↑ o2}}

o1@g{{var X→↑ o1}} �u g{a}

decomp.3

var X→↑ o1�u a

decomp.3

↑ o1�u a ∧ ↑ o1�u var X ∧var X�u a

var

o1@g{{var X→↑ o1}} �u a∧
↑ o1�u var X ∧ var X�u a

deref

False

decomp.4

o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2}

decomp.3

var X→↑ o1�u a

decomp.3

↑ o1�u b ∧ ↑ o1�u var X ∧var X�u b

var

o1@g{{var X→↑ o1}} �u b∧
↑ o1�u var X ∧ var X�u b

deref

False

decomp.4

var X→↑ o1�u↑ o2

decomp.3

↑ o1�u↑ o2 ∧ ↑ o1�u var X ∧ var X�u↑ o2

var

o1@g{{var X→↑ o1}} �u↑ o2∧
↑ o1�u var X ∧ var X�u↑ o2

deref o1

o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} ∧
↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}

deref o2

True∧
↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}

memoing

↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}

simplify

σ =
{

X 7→ o2@g{b,↑ o2}
}

3
8

Figure 7 Derivation tree off{{ desc a{{}} }} �u f{ o1@a{↑ o1} } (Example 35). In this graph, the
memoing historyH of a node is represented by the path from the root to that node.

f{{ desc a{{}} }} �u f{ o1@a{↑ o1} }

desc a{{}}�u o1@a{↑ o1}

decomp.3

a{{}} �u o1@a{↑ o1}

desc

True

decomp.2

desc a{{}} �u↑ o1

desc

desc a{{}} �u o1@a{↑ o1}

deref

False

memoing

Example 35 (Simulation Unification with References and Descendant)
Consider the simulation constraint

C = f{{ desc a{{}} }} �u f{ o1@a{↑ o1} }

The sequence of decomposition steps is as follows (cf. Figure 7 for a graphical illustration). The first
decomposition step (decomp.3) yields

desc a{{}}�u o1@a{↑ o1} H1 = {C}

Application of the descendant decomposition splits the constraint store into two conjuncts as follows:

a{{}}�u o1@a{↑ o1} H11 = H1∪{desc a{{}} �u o1@a{↑ o1}}
∨ desc a{{}} �u↑ o1 H12 = H1∪{desc a{{}} �u o1@a{↑ o1}}

Decomposition in the first conjunct yieldsTrue, and in the second conjunct,o1 can be dereferenced:

True H111 = H11∪{a{{}}�u o1@a{↑ o1}}
∨ desc a{{}}�u o1@a{↑ o1} H121 = H12∪{desc a{{}}�u↑ o1}

As desc a{{}} �u o1@a{↑ o1} ∈H1 ⊆H121, the memoing rule is applicable and reduces the second
conjunct toFalse, and the process terminates as no more rule is applicable.

True H1111= H111

∨ False H1211= H121

5.3 Soundness and Completeness

The following theorem shows soundness and completeness forthe simulation unification algorithm
applied to a simulation constraint of the formtq �u tc. tq is assumed to not contain subterm negation

39

or optional subterms. Also, as rules with grouping constructs are always evaluated in an auxiliary
computation using the dependency constraint, it is assumedthattc does not contain grouping constructs.
Furthermore,tc is assumed not to contain functions, aggregations or optional subterms.

Theorem 36 (Soundness and Completeness of Simulation Unification)
Let tq be a query term without subterm negation and optional subterms and lettc be a construct term
without grouping constructs, functions/aggregations, and optional subterms. A substitution setΣ is a
most general simulation unifier oftq andtc if and only if the simulation unification oftq�u tc terminates
with a constraint storeCSsuch thatΣ = Ω(CS).

We first show that simulation unification terminates for any query termtq and construct termtc, and
then show soundness and completeness by induction over the number of rule applications.

Lemma 37 (Termination of Simulation Unification)
Let tq be a query term without subterm negation and optional subterms and lettc be a construct term
without grouping constructs, functions/aggregations, and optional subterms. Simulation unification of
tq�u tc terminates.

Proof. We prove termination by assigning a rank to atomic constraints and showing that the rank decreases with
every rule application. Consider a tree where each node is anatomic constraint (i.e. either a boolean or a simulation
constraint). Application of a simulation unification rule yields the constraints that are successors of this node.
Conjunctions and disjunctions split into several successors. For example, application ofdecomp.3to a simulation
constraint of the formf {a,b} �u f {c,d} yields the successor nodesa�u c, a�u d, b�u c, andb�u d. By Knig’s
Lemma, it suffices to show that every successor of a node has a strictly lower rank than its predecessor. Ranks of
constraints are defined as follows:

rank(True) = 0
rank(False) = 0
rank(t1 �u t2) = depth(t1)+depth(tn)

depth(var X) = 1
depth(var X�u t) = 1+depth(t)

depth(l{t1, . . . ,tn}) = 1+maxni=1(depth(ti))
depth(l{{t1, . . . ,tn}}) = 1+maxni=1(depth(ti))
depth(l [t1, . . . ,tn]) = 1+maxni=1(depth(ti))
depth(l [[t1, . . . ,tn]]) = 1+maxni=1(depth(ti))
depth(desc t) = 1+depth(t)
depth(id@t) = 1+depth(t)

Furthermore,depth(↑ id) is defines as(n+ 1) ·depth(t), wheren is the number of remaining applications of
the deref rule to↑ id in the course of the evaluation, andt is the referenced term. Obviously,n is finite because
the memoing rule eventually terminates a path when a pair of terms is unified that has already been considered.
Since there are only finitely many subterms in each term, thishappens inevitably in every computation that would
otherwise not terminate.

1. application ofdecomp.1, decomp.2, or decomp.4.

The rank trivially decreases, because all three kinds of rules reduce the constraint store to eitherTrue or
False.

2. application ofdecomp.3

A constraint of the formtq �u tc wheretq = l{{t1
1, . . . ,t1

m}} andtc = l{t2
1, . . . ,t2

n} (independent of the kinds
of braces) is reduced to finitely many successors of the formt1

i �u t2
j for some childrent1

i of tq andt2
j of

tc. Let t1
i andt2

j be any such children. Obviously,depth(t1
i) < depth(tq) anddepth(t2

j) < depth(tc). Then,

rank(t1
i �u t2

j) < rank(tq �u tc).

3. application ofvar

A constraint of the formvar X ; t �u tc is reduced to three successors:

• rank(t �u tc) = depth(t)+depth(tc) < (1+depth(t))+depth(tc) = rank(tq �u tc)

• rank(var X�u tc) = 1+depth(tc) < (1+depth(t))+depth(tc) = rank(tq �u tc), asdepth(t)≥ 1

40

• rank(t �u var X) = depth(t)+1 < (1+depth(t))+depth(tc) = rank(tq �u tc), asdepth(tc)≥ 1

4. application ofdesc

A constraint of the formdesc t�u tc wheretc = l{t2
1, . . . ,t2

n} is reduced to two kinds of successors:

• rank(t �u tc) = rank(t)+ rank(tc) < (1+ rank(t))+ rank(tc) = rank(desc t�u tc)

• rank(desc t�u t2
i) = 1+ rank(t)+ rank(t2

i) < 1+ rank(t)+ rank(tc) = rank(desc t�u tc) for some
1≤ i ≤ n

5. application ofderef

A constraint of the form↑ id�u t is reduced todere f(id)�u t. Letn be the number of remaining applications
of the dereferencing rule

rank(↑ id�u t)= (n+1)·depth(dere f(id))+depth(t) > depth(dere f(id))+depth(t) = rank(dere f(id)�u t)

because if↑ id occurs indere f(id), then thederef rule is only applicablen−1 times and thus the rank is
strictly lower.

6. application ofmemoing

A constraint of the formtq �u tc is reduced toTrueor Falsein case it has already been considered. Since
rank(True) = rank(False) = 0, the rank is trivially reduced to a lower value.

Proof of Theorem 36.
We prove theorem 36 by induction over the numberk of applications of decomposition rules to the constraint

storeC initialised byC = tq �u tc. In every case, it is to show thatΩ(C) is the most general simulation unifier oftq

in tc.
Sincetc does not contain grouping constructs, we know that every∈ /łFV(tc)

consists of a single substitution.
This simplifies matters significantly, as it requires that a substitution setΣ is a simulation unifier only if for allσ ∈ Σ
holds thatσ(tq)� σ(tc) (*).
Induction Base.Let k = 0, i.e. no rules are applicable. We have to consider two cases:

1. C is of the formvar X�u tc for a variableX and a construct termt.

By definition,Ω(C) contains exactly the substitutionsσ whereσ(X) = t ′ s.t.t ′ ∼= σ(tc). Obviously,Ω(C) is
a simulation unifier oftq in tc.

Ω(C) is also the most general simulation unifier oftq in tc. Assume it was not. Then there existsΣ 6⊆Ω(C)
s.t.Σ is a simulation unifier oftq in tc, i.e. (with *) for everyσ ∈ Σ holds thattq′ = σ(tq) = σ(X) simulates
into tc′ = σ(tc). Let nowσ ∈ Σ and lettq′ = σ(X) be one of the ground instances oftq s.t.σ 6∈ Ω(C), but
tq′ simulates into the ground instance oftc in σ . BecauseΣ is a simulation unifier and thus an all-grounding
substitution set,tq′ is a data term. By definition of∼=, it thus holds thattq′ ∼= tc. Contradiction withtq′ 6∈Ω(C)

2. C is of the formtq�u var X for a variableX and a query termt.

By definition,Ω(C) contains exactly the substitutionsσ whereσ(X) = t ′ s.t.σ(tq)� t ′. Obviously,Ω(C) is
a simulation unifier oftq in tc.

Ω(C) is also the most general simulation unifier oftq in tc. Assume it was not. Then there existsΣ 6⊆Ω(C)
s.t. Σ is a simulation unifier oftq in tc, i.e. (with *) for everyσ ∈ Σ holds thattq′ = σ(tq) simulates into
tc′ = σ(tc) = σ(X). Let nowσ ∈ Σ and lettq′ = σ(tq) be one of the ground instances oftq s.t.σ 6∈ Ω(C),
but tq′ simulates into the ground instancetc′ of tc in σ . Then it holds thatσ(tq) � σ(X), and thusσ is in
Ω(C).

Induction Step. Assume now that the number of decomposition steps isk. By induction hypothesis, Theorem 36
holds for alli < k. We have to consider the following cases:

1. application ofdecomp.1(brace incompatibility)

41

let tq = l [t1
1, . . . ,t1

m] andtc = l{t2
1, . . . ,t2

n}

or let tq = l [[t1
1, . . . ,t1

m]] andtc = l{t2
1, . . . ,t2

n}

As the braces oftq andtc are incompatible, ground instances oftq will not simulate in ground instances of
tc regardless of the substitutions. Thus, the mgsu oftq in tc, defined as the union of all simulation unifiers, is
empty. decomp.1reduces both cases to the constraint storeFalse. By definition,Ω(False) = { }, and thus
the theorem is correct.

2. application ofdecomp.2(left term without subterms)

• let tq = l{{ }} andtc = l{t2
1, . . . ,t2

n} or
let tq = l{{ }} andtc = l [t2

1, . . . ,t2
n] or

let tq = l [[]] andtc = l [t2
1, . . . ,t2

n] andn≥ 1

Thentq simulates intc for every grounding substitution set oftc. Thus, the mgsu oftq in tc is the set
of all all-grounding substitutions.decomp.2reduces all three cases toTrue, and with the definition of
Ω(True) as the set of all all-grounding substitutions, the theorem is correct.

• let tq = l{ } andtc = l{t2
1, . . . ,t2

n} or
let tq = l{ } andtc = l [t2

1, . . . ,t2
n] or

let tq = l [] andtc = l [t2
1, . . . ,t2

n] andn≥ 1

Thentq never simulates in ground instances oftc, because there exists no index bijective function from
〈 〉 to 〈t2

1, . . . ,t2
n〉 for n≥ 1. Thus, the mgsu oftq in tc, defined as the union of all simulation unifiers, is

empty.decomp.2reduces all three cases to the constraint storeFalse. By definition,Ω(False) = { },
and thus the theorem is correct.

• let tq = l{ } andtc = l{ } or
let tq = l{ } andtc = l [] or
let tq = l [] andtc = l []

Then tq simulates intc for every substitution set. Thus, the mgsu oftq in tc is the set of all all-
grounding substitutions.decomp.2reduces all three cases toTrue, and with the definition ofΩ(True)
as the set of all all-grounding substitutions, the theorem is correct.

3. application ofdecomp.3(general decomposition)

Let tq = l{{t1
1, . . . ,t1

m}} and lettc = l{t2
1, . . . ,t2

n}.

The mgsu oftq in tc is the setΣ of all all-grounding substitutionsσ such thatσ(tq) � σ(tc). According
to Definition 17, it thus holds that there exists a total, index injective, and position preserving mappingπ
from SubT(σ(tq)) = 〈t1

1 , . . . ,t1
m〉 to SubT(σ(tc)) = 〈t2

1, . . . ,t2
m〉 such that for eacht1

i ∈ SubT(σ(tq)) holds
thatt1

i � σ(t1
i), andΣ consists of all suchσ .

Application ofdecomp.3to tq �u tc yieldsC =
∨

π∈Πpp

∧

1≤i≤mt1
i �u π(t1

i). Thus, as by definition,Ω(C) =

Ω(
∨

C′) =
⋃

Ω(C′) , Ω(C) substitutions for all possible total, index injective, andposition preserving func-
tions π. Consider now someC′ =

∧

1≤i≤mt1
i �u π(t1

i) for some mappingπ. By definition, we know that
Ω(C′) =

⋂

1≤i≤n Ω(t1
i �u π(t1

i)), and by induction hypothesis, eachΩ(t1
i �u π(t1

i)) is the most general sim-
ulation unifier oft1

i in π(t1
i). Ω(C′) is thus the maximal all-grounding substitution set that is asimulation

unifier for each of thet1
i in π(t1

i). Thus,Ω(C) =
⋃

Ω(C′) is the maximal all-grounding set that is a simulation
unifier for any of the mappingsπ, and as the labels oftq andtc match,Ω(C) is the most general simulation
unifier of tq in tc.

The argumentation is identical in the other cases with the exception of the chosen set of functionsΠ, which
is obviously correct.

4. application ofdecomp.4(label mismatch)

Let tq and tc be terms such that the labels mismatch. Hence, ground instances oftq will not simulate in
ground instances oftc regardless of the substitutions. Thus, the mgsu oftq in tc, defined as the union of
all simulation unifiers, is empty.decomp.1reducestq �u tc to the constraint storeFalse. By definition,
Ω(False) = { }, and thus the theorem is correct.

42

5. application ofvar (; elimination)

Let tq = var X ; t1 and lettc = t2.

An all-grounding substitution setΣ has to satisfy the following conditions to be a simulation unifier of tq in
tc:

(a) Σ must be applicable tovar X ; t1, i.e. it may only contain substitutionsσ for which holds that
σ(t1)� σ(X)

(b) it must be a simulation unifier ofvar X in t2, i.e. for every substitution setσ in Σ holds thatσ(X)�
σ(t2)

We now show that the evaluation of the rulevar satisfies both conditions and is maximal, i.e. a most general
simulation unifier oftq in tc. var reducestq �u tc to a constraint storeCS= t1 �u t2∧ t1 �u X∧X �u t2.
By definition,

Ω(CS) = Ω(t1 �u t2)
︸ ︷︷ ︸

A

∩ Ω(t1 �u X)
︸ ︷︷ ︸

B

∩ Ω(X �u t2)
︸ ︷︷ ︸

C

• B is the mgsu oft1 in var X; thus, for everyσ ∈ B holds thatσ(t1)� σ(X)

• C is the mgsu ofvar X andσ(t1)

B∩C describes exactly the mgsu oftq in tc, because it fulfils the requirements (1) and (2) given above and
is maximal, becauseB andC are maximal.

As, by induction hypothesis,t1�u t2 computes the mgsu oft1 in t2, A∩B∩C = B∩C (i.e. t1�u t2 does not
remove further substitutions fromB∩C). Note that this corresponds to the fact thatt1 �u t2 is merely used
to improve the evaluation performance.

Thus, the theorem is correct for this case.

6. application ofdesc(descendant elimination)

Let tq = desc t, and lettc = l{t2
1, . . . ,t2

n} or tc = l [t2
1, . . . ,t2

n] (n≥ 0).

A substitution setΣ is then a simulation unifier if for everyσ ∈ Σ holds that there exists a subtermtc′ of
σ(tc) such thatσ(t) � tc′ , and it is the mgsu, if it is the union of all all-grounding simulation unifiers that
adhere to this restriction.

Application of the ruledescreduces the constrainttq �u tc to C = t �u tc∨
∨

1≤i≤n desc t�u t2
i . Thus,

Ω(C) = Ω(t �u tc)
︸ ︷︷ ︸

A

∪
⋃

1≤i≤n

Ω(desc t�u t2
i)

︸ ︷︷ ︸

B

By induction hypothesis,A is the mgsu oft �u tc, andB is the union of the mgsus oftq �u t2
i for some

subtermt2
i of tc. By Definition 17,Ω(C) is thus the maximal set of all-grounding substitutions thatis a

simulation unifier oftq in tc and thus the mgsu.

7. application ofmemoing(termination in case of constraints that have already been treated)

It suffices to consider the rulememoing; the rulederef is trivially correct, it simply implements the definition
of dereferencing in ground query term graphs.

In the following, lettc be some construct term of the formsid@l{t2
1, . . . ,t2

n} or id@l [t2
1, . . . ,t2

n] such that at
least one of thet2

i contains a reference toid, i.e.tc contains at least one cycle. It is not necessary to consider
othertc without identifiers or without cycles, because the theorem holds for these as shown in the rest of this
proof.

We already know that simulation unification is sound and complete for all rule applications besidesmemoing.
We have to show that thememoingrules have no influence on the resulting set of all-groundingsubstitutions,
i.e. with memoing, we get the same result as without memoing (and infinite application of decomposition
rules).

43

• let tq = desc t; a substitution setΣ is the mgsu oftq in tc, if it contains exactly the substitutionsσ for
which holds thatσ(tq)� σ(tc).

Evaluation ofC = tq �u tc for the first time yieldsC = t �u tc∨
∨

1≤i≤n desc t�u t2
i by applying the

ruledesc. Assume that further evaluation ofC eventually yields a constraint store (in DNF) of the form
C1∨·· ·∨Ci∨·· ·∨Cm for somem≥ 1, and thatCi again is of the formtq�u tc, because thedesc t�u t2

j
leading toCi contains a cyclic reference toid. Evaluatingtq�u tc again then obviously does not yield
substitutions that are not already induced byC1∨ ·· · ∨Ci−1∨Ci+1∨ ·· · ∨Cm, and thus replacingCi
by the neutral element for disjunction has no influence onΩ(tq �u tc). Simulation algorithm is thus
sound and complete in this case.

• let tq be an arbitrary query term of the formid′@t

Decomposition with any of the rules exceptdescreducestq�u tc to either an atomic constraint or to a
disjunction of conjunctions (in DNF), i.e.

C = C1,1∧·· ·∧C1,n1 ∨·· ·∨Ci,1∧·· ·∧Ci,ni ∨·· ·∨Cm,1∧·· ·∧Ci,nm

Assume now that any of theCi, j is again of the formtq �u tc because some subterms oftq and tc

contain cyclic references toid′ andid, i.e. evaluation ofCi, j would again yieldC. As in the previous
case, no new information would be added, and thus replacingCi, j by the neutral element for disjunction
(True) has no influence onΩ(tq �u tc). Simulation algorithm is thus sound and complete in this case.

Acknowledgements.
This research has been funded by the European Commission andby the Swiss Federal Office for

Education and Science within the 6th Framework Programme project REWERSE number 506779 (cf.
http://rewerse.net).

References

[BS02] François Bry and Sebastian Schaffert. Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. In Proceedings of
the International Conference on Logic Programming (ICLP’02), LNCS 2401, Copenhagen,
Denmark, July 2002. Springer-Verlag.

[CW96] Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General Logic
Programs.Journal of the ACM, 43(1):20–74, 1996.

[Frü95] Thom Frühwirth. Constraint handling rules. In A.Podelski, editor,Constraint Programming:
Basics and Trends, volume 910 ofLNCS. Springer-Verlag, Berlin, March 1995.

[HHK96] Monika R. Henzinger, Thomas A. Henzinger, and PeterW. Kopke. Computing Simulations
on Finite and Infinite Graphs. Technical report, Computer Science Department, Cornell Uni-
versity, July 1996.

[Kil92] Pekka Kilpeläinen.Tree Matching Problems with Applications to Structured Text Databases.
PhD thesis, Dept. of Computer Sciences, University of Helsinki, November 1992.

[Mil71] Robin Milner. An Algebraic Definition of Simulationbetween Programs. Technical Re-
port CS-205, Computer Science Department, Stanford University, 1971. Stanford Aritifical
Intelligence Project, Memo AIM-142.

44

http://rewerse.net

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.ACM Journal,
12(1):23–41, January 1965.

[SB04] Sebastian Schaffert and François Bry. Querying theWeb Reconsidered: A Practical Intro-
duction to Xcerpt. InExtreme Markup Languages 2004, Montral, Canada, August 2004.
IDEAlliance. http://www.extrememarkup.com/extreme/2004/ .

[SBF05] Sebastian Schaffert, François Bry, and Tim Furche. Initial Draft of a Possible Declarative
Semantics for the Language. Deliverable I4-D4, REWERSE, 2005.

[Sch04] Sebastian Schaffert.Xcerpt: A Rule-Based Query and Transformation Language forthe Web.
PhD thesis, Institute for Informatics, University of Munich, October 2004.

[War92] David S. Warren. Memoing for Logic Programs.Communications of the ACM, March 1992.

[WM96] Jörg Würtz and Tobias Müller. Constructive disjunction revisited. InKI - Künstliche Intelli-
genz, pages 377–386, 1996.

45

http://www.extrememarkup.com/extreme/2004/

	Introduction
	Preliminaries
	Xcerpt: A versatile Web Query Language
	Data Terms
	Query Terms
	Construct Terms
	Construct-Query Rules
	Substitutions and Substitution Sets
	Substitutions
	Substitution Sets
	Maximal Substitution Sets
	Application to Query Terms
	Application to Construct Terms
	Application to Query Term Formulas
	Simulation and Simulation Unifiers
	Rooted Graph Simulation
	Ground Query Term Simulation
	Simulation Unifiers
	A Constraint Solver for Language Evaluation
	Data Structures and Functions
	Constraints
	Functions
	Solution Set of a Constraint Store
	Constraint Simplification
	Consistency Verification Rules
	Rule 1: Consistency
	Rule 2: Transitivity
	Constraint Negation
	Rule 3: Consistency with Negation
	Rule 4: Transitivity with Negation
	Rule 5: Negation as Failure
	Program Evaluation
	Simulation Unification
	Decomposition Rules
	Preliminaries
	Root Elimination
	 Elimination
	Descendant Elimination
	Decomposition with without
	Decomposition with optional in the query term
	Incomplete Decomposition
	Term References: Memoing of Previous Computations
	Examples
	Soundness and Completeness

