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1 Introduction

Simulation unification is a novel kind of (non-standard)ficaition that allows to treat the particularities
of Xcerpt terms properly and is based on the notions of grajusty term simulation and answers (cf.
SectiorB). It has first been proposedin [BS02] and is funteéned here. Simulation Unification is an
algorithm that, given two terntg andt,, determines variable substitutions such that the grouwsteimtes
of t; andt, simulate. Like standard unification (cf. [Ral65]), simidatunification issymmetrian the
sense that it can determine (partial) bindings for varisisidoth terms. Unlike standard unification, it is
howeverasymmetrién the sense that it does not make the two terms equal, betidgnsures a ground
query term simulation, which is directed and asymmetrice dhtcome of Simulation Unification is a
set of substitutions callesimulation unifier

Sectior} discusses simulation unification in the contexhefXcerpt constraint solver. Sectibh 2
briefly recapitulates the language Xcerpt and introducesraéformalisms and denotations used in the
remainder of this article.

2 Preliminaries

2.1 Xcerpt: A versatile Web Query Language

An Xcerpt [SB04| Sch(4] program consists of at least goal and some (possibly zero)les Rules
and goals contain query and construction patterns, cédieds Terms represent tree-like (or graph-
like) structures. The children of a node may eitheobaered i.e. the order of occurrence is relevant
(e.g. in an XML document representing a book)uoorderedi.e. the order of occurrence is irrelevant
and may be chosen by the storage system (as is common in satsysiems). In the term syntax, an
ordered term specificatioils denoted by square brackgty , anunordered term specificatidoy curly
braceq } .

Likewise, terms may uspartial term specificationfor representing incomplete query patterns and
total term specificationfor representing complete query patterns (or data itemgrrt using a partial
term specification for its subterms matches with all suamsgthat (1) contain matching subterms for all
subterms of and that (2) might contain further subterms without coroegling subterms ih. Partial
term specification is denoted bipublesquare brackefs ]]  orcurly brace${ }} . Incontrast, aterm
t using a total term specification does not match with termsdbatain additional subterms without
corresponding subterms fn Total term specification is expressed ussigglesquare brackets] or
curly braceq } . Matching is formally defined later in this article using calledterm simulation

Furthermore, terms may contain treference construct@ (referring occurrence of the identifier
id ) andid @ t (defining occurrence of the identifi@r). Using reference constructs, terms can form
cyclic (but rooted) graph structures.

2.1.1 Data Terms

Data terms represent XML documents and the data items of stsaotured database, and may thus
only contain total term specifications (i.e. single squagekets or curly braces). They are similar to
groundfunctional programming expressions and logical atomdafabases a (multi-)set of data terms
(e.g. the Web). A non-XML syntax has been chosen for Xcerpinjarove readability, but there is a
one-to-one correspondence between an XML document anchaatat. ExamplEl1 on the following
page gives an impression of the Xcerpt term syntax.



Example 1

The following two data terms represent a train timetablen(fhttp://railways.com

reservation offer (fronhttp://hotels.net

) and a hotel

At site http://railways.com At site http:/hotels.net
travel { voyage {
last-changes-on { "2004-04-30" currency { "EUR" },
currency { "EUR" }, hotels {
train { city { "Vienna" },
departure { country {  "Austria" h
station { "Munich" '}, hotel {
date { "2004-05-03" }, name { "Comfort _Blautal" 1},
time { "15:25" '} category { "3 _stars" },
1, price-per-room { "55" 1,
arrival { phone { "+43 1 88 _8219 213" 1},

station { "Vienna" },
date { "2004-05-03" 1},
time { "19:50" '}

13

price { "75" }

13
train {
departure {
station { "Munich" '},
date { "2004-05-03" 1},
time { "13:20" }
13
arrival {
station { "Salzburg" },
date { "2004-05-03" 1},
time { "14:50" }
13
price { "25" }
13
train {
departure {
station { "Salzburg" h
date { "2004-05-03" 1},
time { "15:20" '}
13
arrival {
station { "Vienna" },
date { "2004-05-03" },
time { "18:10" }
}

}

no-pets {}

1)

hotel {
name { "InterCity" 1
category { "3 _stars" },
price-per-room { "57" 1,

phone { "+43 182 8156 135" }

13
hotel {

name { "Opera" 1},
"4 stars" },

category {
price-per-room {

"106" 1},

phone { "+43 177 8123 414" }

I




2.1.2 Query Terms

Query terms are (possibly incomplete) patterns matchethsig@/eb resources represented by data
terms. They are similar to the latter, but may contzantial as well agotal term specifications, are aug-
mented byvariablesfor selecting data items, possibly wittariable restrictionsusing the— construct
(readas), which restricts the admissible bindings to those subseimt are matched by the restriction
pattern, and may contain additional query constructspidgition matchingkeywordposition ), sub-
term negatior{fkeywordwithout ), optional subterm specificatidkeywordoptional ), anddescendant
(keyworddesc ).

Query terms are “matched” with data or construct terms byrastandard unification method called
simulation unificatiorthat is based on a relation callsinulation(cf. SectiorB). In contrast to Robin-
son’s unification (as e.g. used in Prolog), simulation uatfan is capable of determining substitutions
also for incomplete and unordered query terms. Since intetanpess usually allows many different al-
ternative bindings for the variables, the result of simaolatnification is not only a single substitution,
but a (finite)set of substitutionsach of which yielding ground instances of the unified tesoh that
the one ground term matches with the other. Whenever atiesimulates into another terty, this
shall be denoted by <t,.

2.1.3 Construct Terms

Construct terms serve to reassemble variables (the bisdinghich are specified in query terms) so as
to construct new data terms. Again, they are similar to thterdgbut augmented byariables(acting as
place holders for data selected in a query) andgtiloeiping constructll  (which serves to collect all
instances that result from different variable bindingsgc@rences oéll may be accompanied by an
optional sorting specification.

Example 2

Left: A query term retrieving departure and arrival stations fdraén in the train document. Partial
term specifications (partial curly braces) are used sinedrtéin document might contain additional
information irrelevant to the quenRight: A construct term creating a summarised representation of
trains grouped inside @ains  term. Note the use of thal construct to collect all instances of the
train  subterm that can be created from substitutions in the gubsti set resulting from the query on
the left.

travel {{ trains {
train {{ all  train {
departure {{ from { var From },
station { var From } }}, to { var To }
arrival {{ }
station { var To } 1} }
I
I

2.1.4 Construct-Query Rules

Construct-query rules (short: rules) relate a constructh t® a query consisting of AND and/or OR
connected query terms. They have the form

CONSTRUCTConst ruct Ter m FROMQuery END



Rules can be seen as “views” specifying how to obtain docusretraped in the form of the construct
term by evaluating the query against Web resources (e.g.Min document or a database). Queries
or parts of a query may be further restricted by arithmetiecsti@ints in a so-called condition box,
beginning with the keywordhere .

Example 3
The following Xcerpt rule is used to gather information abitne hotels in Vienna where a single room
costs less than 70 Euro per night and where pets are allowedifigd using thaithout construct).

CONSTRUCT
answer [ all var H ordered by [ P ] ascending ]
FROM
in {
resource { "http://hotels.net" 1,
voyage {{
hotels {{
city { "Vienna" },
desc var H hotel {{
price-per-room { var P},

without  no-pets {}

1}
1}
1}

} where var P < 70
END

An Xcerpt query may contain one or several referencesgources Xcerpt rules may furthermore
be chainedlike active or deductive database rules to form complex ypeograms, i.e. rules may
query the results of other rules. Recursive chaining ofsridepossible (but note that the declarative
semantics described here requires certain restrictiongaursion, cf.[[SBEU5]). In contrast to the
inherent structural recursion used e.g. in XSLT, which seesially limited to the tree structure of the
input document, recursion in Xcerpt is always explicit arekfin the sense that any kind of recursion
can be implemented. Applications of recursion on the Webraeifold:

e structural recursion over the inputtree (like in XSLT) isassary to perform transformations that
preserve the overall document structure and change onfgicceghings in arbitrary documents
(e.g. replacing akkmelements in HTML documents ksfrong  elements).

e recursion over the conceptual structure of the input data @ver a sequence of elements) is
used to iteratively compute data (e.g. create a hierarbl@peesentation from flat structures with
references).

e recursion over references to external resources (hyjsjlia desirable in applications like Web
crawlers that recursively visit Web pages.

Example 4
The following scenario illustrates the usage of a “conceptrecursion to find train connections, in-
cluding train changes, from Munich to Vienna.

Thetrain relation (more precisely the XML element representing tieisition) is defined as a
“view” on the train database (more precisely on the XML doeatseen as a database on trains):



CONSTRUCT

train [ from [ var From ], to [ var To ] ]
FROM
in {
resource { “file:travel.xml" 1,
travel {{
train {{
departure {{ station { var From } }},
arrival {{ station { var To } 1}
1}
1}
}
END
A recursive rule implements the transitive clostia@-connection of the relatiortrain . If the

connection is not direct (recursive case), then all inteliate stations are collected in the subtefian
of the result. Otherwiseja is empty (base case).

CONSTRUCT
train-connection |
from [ var From ],

to [ var To |,
via [ var Via, all optional var OtherVia ]
]
FROM
and {
train [ from [ var From ], to [ var Via ] ],

train-connection |
from [ var Via ],

to [ var To ],
via [[ optional var OtherVia ]]
]
}
END
CONSTRUCT

train-connection |
from [ var From ],

to [ var To ],
via [ ]
]
FROM
train [ from [ var From ], to [ var To ] ]
END

Based on the “generic” transitive closure defined abovegit@ving rule retrieves only connections
between Munich and Vienna.

GOAL
connections {
all  var Conn

}



FROM
var Conn train-connection [[ from { "Munich" '}, to { "Vienna" } ]]
END

2.2 Substitutions and Substitution Sets

In principle, the usual notion of substitutions is also uadXcerpt terms. However, variable restric-
tions occurring in query terms have to be taken into accoAma variable might be restricted, not every
substitution is applicable to every query term.

Also, Xcerpt construct terms extend the usual terms by gnougonstructs that group several sub-
stitutions within a single ground instance by using the tmessall andsome. For instance, given a
construct termf {all var X} and three alternative substitutiofiX — a}, {X — b} and{X — c}, the
resulting data term i${a, b, c}.

In order to define such groupings, it is therefore necessapydvide a construct that represents all
possible alternatives and can be applied to a construct fEnis is called aubstitution sebelow. Since
the application of substitution sets to query and constarats involves some complexity, it is described
separately in Sectidl3.2. Substitution sets are then uséuei declarative semantics (df. [SBIF05])
which defines satisfaction for Xcerpt term formulas. In tb#oving, substitutions are denoted by
lowercase greek letters (likee or 1), while substitution sets are denoted by uppercase gréekd€like
>or).

2.2.1 Substitutions

A substitutionis a mapping from the set of (all) variables to the set of (@lhstruct terms. In the
following, lower case greek letters (like or ) are usually used to denote substitutions. As usual in
mathematics, a substitution is a mapping of infinite setscdfrse, finite representations are usually
used, as the number of variables occurring in a term is finBabstitutions are often conveniently
denoted as sets of variable assignments instead of asdoacior example, we writ{a)( —aY— b}
to denote a substitution that maps the variabl® a and the variabl& to b, and any other variable
to arbitrary values. In general, a substitution providesgasnents for all variables, but “irrelevant”
variables are not given in the description of substitutions

If a substitution isappliedto a query ternt9, all occurrences of variables for which the substitution
provides assignments are replaced by the respective assiga (see Sectid 2.3 below). The resulting
term is called arinstanceof t% and the substitution. Not every substitution can be apptiedvery
query term: variable assignments in the substitution hawedpect variable restrictions occurring in
the pattern for a substitution to be applicable (see @IS 2f& substitutiono respects the variable
restrictions in a query teritd, it is said to bea substitution for{. For example, the substitutio[rx —
f{a}} is a substitution fovar X ~» f{{}}, but not forvar X ~» g{{}}. Note that a substitution cannot
be applied to a construct term, because construct terms pragin grouping constructs that group
several instances of subterms together. Instead, sulstigets are used for this purpose (see below).

A substitutiono is called agrounding substitutiorior a termt, if og(t) is a ground query term.
Consequently, a grounding substitution is always a mapfporg the set of variable names to the set
of data terms (i.e. ground construct terms). A substitutiois called anall-grounding substitution
if it maps every variable to a data term. Naturally, everygabunding substitution is a grounding
substitution for every query term to which it is applicabldlote that the reverse does not hold: a
grounding substitution is grounding wrt. some terend does not necessarily assign ground terms to
variables not occurring ih



A substitutiona; is asubsebf a substitutioro, (i.e. 01 C 0y), if 01(X) =2 g2(X) for every variable
nameX with 01(X) # X (i.e. 01 does not maiX to itself), where> denotes simulation equivalence
(i.e. mutual simulation). Correspondingly, two substdos o1 and o, are considered to bequal(i.e.

01 = 0p), if 01 C 0z ando, C 1. For example{X — f{a,b}} and{X — f{b,a}} are equal. This
definition is reasonable because the data terms resulingdpplying two such substitutions are treated
equally in the model theory described below.

The compositionof two substitutionso; and g2, denoted byo; o 03 is defined ago; 0 02)(t) =
o1(0o2(t)) for every query termh. Note that the assignmentsdn take precedence, becaussis applied
first. Consider for exampleg; = {X — a,Y — b} ando, = {X — c}, andaternt = f{var X,var Y}.
Applying the compositiom; o 0» to t yields (01 0 02)(t) = f{c,b}.

Therestrictionof a substitutioro to a set of variable nam&s denoted byojy, is the mapping that
agrees witho onV and with the identical mapping on the other variables.

2.2.2 Substitution Sets

A substitution seis simply a set containing substitutions. In the followingper case greek letters (like
> and®) are usually used to denote substitution sets.

Substitution sets can kappliedto a queryor construct term (cf. SectiolS2.3 andl2.4). The result
of this application is in general a set of terms calleditts#tance®f the substitution set and the term. A
substitution sek is only applicable to a query tertfi, if all substitutions in> are applicable t¢9. In
this casey is calleda substitution set for®t Since construct terms do not contain variable restristion
every substitution set except for the empty set is a sultistitset for a construct term. There exists no
query or construct termsuch that the empty substitution gétis a substitution set fdr.

A substitution seb for a termt is called agrounding substitution seff all instances of andX are
ground query terms or data terms. A substitution>sit called arall-grounding substitution seif all
o € X are all-grounding substitutions.

Thecompositiorof two substitution set¥; andZ,, denoted a&; o 2, is defined as

21020 = {0'100'2|O'1621,02622}

Consider for example the substitution sEis= {{X — a}} and%, = {{Y — b},{Y ~— c}}. Then
21029 = {{X — aY — b} {X — aY — C}}

Therestrictionof a substitution seX to a set of variableg, denoted by, is the set of substitutions
in X restricted tov.

Similarly, theextensiorof a substitution seX restricted to a set of variabl¥sto a set of variableg’
with vV C V’, extends every substitutianin Z to substitutions’ by adding all possible assignments of
variables iv’\ V to data terms. For example, the extension of the restrictiestiution se{ {X — a} }
to the set of variable§X, Y} is the (infinite) se{ {X — a,Y — a},{X —a,)Y —b},...}

Note that in practice, it would be desirable to define sulstib sets asnulti-setsthat may contain
duplicate elements: if an XML document contains two perswrsaed “Donald Duck”, then it should
be assumed that these are different persons with the same Raoviding a proper formalisation with
multi-sets is, however, not in the scope of this article, @ssequent definitions and proofs would be
much more complicated without adding an interesting agpette formalisation.

2.2.3 Maximal Substitution Sets

So as to properly convey the meaningabf , it is not sufficient to consider arbitrary substitutionsset
The interesting substitution sets are those thahzarimalfor the satisfaction of the query pagof a
rule. As satisfaction is not yet formally defined, this prapehall for now simply be calle®.



Intuitively, the definition of maximal substitution setsssaightforward: a substitution sEtsatis-
fying P is a maximal substitution set, if there exists no substtuset® satisfyingP such thak is a
proper subset of. However, this informal definition does not take into acdotlvat there might be
substitution sets that differ only in that some substitigicontain bindings that are irrelevant because
they do not occur in the considered term formQ@laMaximal substitution sets are therefore formally
defined as follows:

Definition 5 (Maximal Substitution Set)

Let Q be a quantifier free query term formula with set of variabMetet P be a property, and l&t be a
set of substitutions such thBtholds forZ. X is called amaximal substitution set wrt. P and @there
exists no substitution s& such thaP holds for® andZy is a proper subset @b, (i.e.Zy C Py ).

2.3 Application to Query Terms

Since query terms do not contain the grouping constrattteind some applying substitutions and
substitution sets is straightforward. Application of agénsubstitution yields aingleterm where some
variable occurrences are substituted, while applicatfoa substitution set yields setof terms where

some variables are substituted.

Definition 6 (Substitutions: Application to Query Terms)
Lett% be a query term.

1. The application of aubstitutiono to t9, written o(t%) is recursively defined as follows:

o(varX)=t'if X —t') e

o(var X ~ s)=t'if (X»—>t )€ oando(s) <t’
(f{t,....ta}) = a(f){o(ta),....0(ta)}
(flts,... . t]) = a(F)[o(ta),..., o (tn)]
(f{{tl, Stath) = o(H){fo(t ) - 0(tn) }}

(f [

(

(

e O

[ ]
q

[ ]
Q

e O

([ta, s tol]) = o (H)[[o(ta), ..., o (tn)]]

e o(without t) without o (t)
e o(optional t) = optional o(t)

for somen > 0.

2. The application of aubstitution sek tot9 is defined as follows:
t) ={o(t% | e}

Note that not every substitution can be applied to a queryg tér If a variable int? is restricted as
in var X ~» s, then a substitution can only be applied if it provides bimydi forX that are compatible
to this restriction. Likewise, a substitution set is onlyphpable to a query terrtf!, if all its substitutions
are applicable t¢M.

Since query terms never contain grouping constructs, trtéregity of Z(t) always equals the cardi-
nality of Z. In particular, ifZ = 0, thenZ(t) = 0, even ift is a ground query term. Since an interpretation
with an empty substitution set would be a model for any folamaubstitution sets in the following are
considered to be non-empty. In case no variables are boubdtitition sets are usually defined as

5 = {0}.



2.4 Application to Construct Terms

Applying a single substitution to a construct term is notseeeable as the meaning of the grouping
constructsall andsomeis unclear in such cases. In the following, the applicat®this only defined
for substitution sets. On substitution sets, the groupmstructs group such substitutions that have the
same assignment on tfree variablesof a construct term. For each such group, the applicatiohef t
substitutionZ yields a different construct term. A variable is consideredin a construct term if it is
not in the scope of a grouping construct. The set of free blataof a construct ternt is denoted by
FV(t°). Recall also tha® denotes simulation equivalence between two ground terms.

Definition 7 (Grouping of a Substitution Set)
Given a substitution st and a set of variableg = {X;,...,X,} such that allb € X have bindings for
all X,1<i<n.

e The equivalence relatiory C 2 x X is defined asoy ~y 0 iff 01(X) = g,(X) forall X e V.
e The set of equivalence classgg with respect tavy is called thegrouping ofZ on V.

e Each of the equivalence classes/y, is accordingly definedas= { 1€ X | T ~y 0}.

Informally, each equivalence class /., contains such substitutions that have the same assign-
ment for each of the variablesh
Example 8
Given the substitution s& = { 01, 02, 03} with

o1 = {Xl —a,Xo— b},O’z = {Xl —a,Xo — C}, and03 = {Xl — C, X — b}

The grouping of onV = {X;} is

o 1=2={{X1—aX—b},{X;—aX —c}}

o 3— {{Xl — C, Xo — b}}

The application of a substitution set to a construct ternsgfay containing grouping constructs) is
defined in terms of this grouping. Given a substitutionXethe applicatior®(t®) to a construct term

t¢ with free variabled=V (t°) yields exactly /i | results, one for each different binding of the free
variables irt€.

Example 9
Given aternt = f{X1,g{all X2}}, i.e.FV(t) = {X;}. Consider again

= {{X1—aX—b},{Xi—aXe—c}{X—cX— b}}
from ExampldB. The result of applyirigtot is
2(t) = {f{a,o{b,c}}, f{c,o{b}}}
The following definition specifies how a substitution set ppléed to a construct terrtf. The
definition is divided into two parts: In the first part, it issasned that all substitutions in the substitution

setZ contain the same assignments for the free variable$ pfariables occurring within the scope
of grouping constructs are unrestricted). As the quot]epryilc) in this case obviously only contains

9



a single equivalence class, the application of this reetfi& to t¢ yields only a single term, which
simplifies the recursive definition. In the second part of Bigén[IQ, this restriction is lifted.

Since the construction of data terms requires to constmuegtlists of subterms, the following def-
inition(s) use the notion dferm sequencestroduced in[[SBE05]. Recall that a sequence is a binary
relation between a set of integers and a set of terms, andlyudeaoted byS= (x,...,xn) for somen
and terms;.

Defining the semantics @fder by furthermore requires a functisort; ) (-,-), whereV is a se-
quence of variables, that takes as arguments a groupinguséitsition set o and returns a sequence
of substitution sets ordered accordingf{®/ ) and the variables iw'. f(V) is a total ordering on the set
of substitution sets that assign ground terms to the varsaiblV comparing variable bindings for the
variables inv. fl

Definition 10 (Substitutions: Application to Construct Terms)
1. LetZ be a substitution set and [gtbe a construct term such that all free variablet® dfave the
same assignment in all substitutions3ofi.e. /;FVOC) = {}. The restricted application &f to t€,

written (t€), is recursively defined as follows:

varV) = (o(V)

f{ta,....tn}) = ((F){(t) o--- o (t1)}) for somen > 0
flt1,...,tn]) = {(()[(t) o--- o (tn)]) for somen >0

allt) = 1( Jo--o(t) where{y,... .k} = /~py

all t group by V) = 1(t)o---o(t) where{s,... x} = /:vaw
alltorder by f V) =1(t)o---oy(t)

o~ o~ o~ o~ o~ o~

where(s,... i) =sort(f(V), /~cy )
(somek}=1(t)o--ok(t) where{s,... .k} C /~py
(some kt group by Y= 1(t)o---ok(t) where{s, ... .k} € /xpy v
(some k't order by f Y= 1(t)o---oy(t)

where(s,... i) Esort(f(V), /~cy )

. t) if the ground instancé) exists

+ (optionaltwith derauicy — { () heground instance) exit

where 1... kare pairwise different substitution sets.

2. Lett® be a term, and IEV (1) be the free variables itf. The application of @ubstitution sek
tot¢is defined as follows:

= {t] € fiype A (1) = (19}

Although not explicitly defined above, integrating aggismas and functions in this definition is
straightforward.

1As the substitution set is grouped ¥nall substitutions in (respectively ) provide identicahthings for variables iv.
2Note thato is the representative of the equivalence class

10



Example 11
Consider the substitution set

>={{X— f{a},Y—~g{a}}, {X— f{a},Y —g{b}}, {X— f{b}.Y —g{a}}}

and the construct termis= h{all var X,var Y} andt, = h{var X,all var Y}. GroupingZ according to
the free variableEV (t1) = {Y} int; andFV (t2) = {X} int, yields

{{X~ f{a},Y = g{a}}, {X— f{a},Y = g{b}} }, {{X— f{b},Y —g{a}}}
The ground instances tf andt, by > are thus

Z(t) } h{f{a}, f{b},o{a}}, h{f{a} g{b}} }
z(t2) h{f{a},o{a}g{b}}, h{f{a},o{b}} }

A E{{XH f{a}Y —gfa}} X T{b}Y —gfa}}}, {{X — H{a}.Y —g{b}}}

/ trvity)

2.5 Application to Query Term Formulas

In the following, it is often interesting to study groundtasces not only of terms but also of compound
formulas. The following definition defines the applicatidnsabstitution sets to formulas consisting
only of query terms (so-callequery term formulas construct terms are problematic, as they group
several substitutions and thus do not behave “synchroyibwsth query terms in the same formula.
Fortunately, the formalisation of Xcerpt programs doesmesd to consider formulas containing con-
struct terms. The only exception are program rules, whielhtraated separately anyway.

Applying a substitution set to a query term formula is stndéfigrward: as each substitution in a
substitution set represents a different alternative, g@i@ation of the substitution set to a query term
formula simply yields a conjunction of all different instzes.

Definition 12 (Substitutions: Application to Query Term Formulas)
Let F be a quantifier-free term formula where all atoms are quemgdd€aquery term formuli

1. The application of gubstitutiono to F, written o (F), is recursively defined as follows:

e 0(FiANR)=0(F)AO(R)
Vo(k

e 0 Fl\/Fz):O'(Fl) ( )
e 0(-F')=-0(F')
e o(F)=0(F)

2. The application of aubstitution sek to F, written Z(F), is defined as follows:

2(F)=/\ o(F)

oc

3 Simulation and Simulation Unifiers
Matching query terms with data terms is based on the notioated graph simulationfHHK96,

MII/1]. Intuitively, a query term matches with a data terfrthiere exists at least one substitution for the
variables in the query term (callethswer substitutioof the query term) such that the corresponding
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graph induced by the resultiggoundquery term simulates in the graph induced by the data term. Of
course, graph simulation needs to be modified to take intowatcthe different term specifications,
descendant construct, optional subterms, subterm negatid regular expressions.

To simplify the formalisation below, it is assumed thatregs and regular expressions are repre-
sented as compound terms with the string or regular exjressi label, no subterms, and a total term
specification. For example, the stritigello, World" is represented as the tethiello, World"{}

3.1 Rooted Graph Simulation

Pattern matching in Xcerpt (and UnQL, for that matter) isduben a similarity relation between the
graphs induced by two semistructured expressions, whicalisdgraph simulatiofHHK96), Mi[71].
Graph simulation is a relation very similar to graph homophigms, but more general in the sense that
it allows to match two nodes in one graph with a single nodaénather graph and vice versa.

The following definition is inspired by [HHK96, Mil411] and fiees the simulation considered in
[BSOZ]. Recall that a (directed) rooted graph= (V,E,r) consists in a se¥ of vertices, a seE of
edges (i.e. ordered pairs of vertices), and a vartdled the root of5 such thats contains a path from
r to each vertex of5. Note that the initial definition of a rooted graph simulatidoes not take into
account the edge labels of graphs induced by a semistrdatspression, it is defined on generic, node
labelled and rooted graphs. Note furthermore, that in génirere might be more than one simulation
between two graphs, which leads to the notiomdfimalsimulations also defined below.

Definition 13 (Rooted Graph Simulation)
Let G = (V4,E;,r1) and G, = (M, Ep,r2) be two rooted graphs and let C V; x V, be an order or
equivalence relation. A relatioBC V; x V5 is arooted simulatiorof G; in G, with respect to if:

1.r1Sh.
2. If vy Sw, thenvy ~ vo.
3. Ifvi Sw and(vy,Vv},i) € Eq, then there existg, € V, such thaw; S, and(vo,V,, j) € E»

A rooted simulatiors of G; in G, with respect to~ is minimalif there are no rooted simulatiors of
G, in G, with respect tov such thaS c S(andS+# S).

Definition[I3 does not preclude that two distinct vertiggandv] of G; are simulated by the same
vertexv, of Gy, i.e.vi S v andv; S w. Figure[l gives examples of simulations with respect to the
equality of vertex adornments. The simulation of the rigtgraple is not minimal.

The existanceof a simulation relation between two graphs (without vaeapcan be computed
efficiently: results presented in [Kil®2] give rise to thesasption that such problems can generally be
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solved in polynomial time and space. However, computatiopattern matching usually requires to
compute not only one, but all minimal simulations betweea graphs, in which case the complexity
increases with the size of the “answer”.

3.2 Ground Query Term Simulation

Using the graphs induced by ground query terms, the notionaied simulation almost immediately
extends to all ground query terms: intuitively, there exitsimulation of a ground query temin a
ground query ternt, if the labels and the structure of (the graph inducedtbyan be found in (the
graph induced byl (see Figur€l?). So as to define an ordering on the set of alhgrquery terms,
ground query term simulation is designed to be transitiverafiexive.

Naturally, the simulation on ground query terms has to retsphe different kinds of term specifica-
tion: if t; has aotal specification, it is not allowed that there exist succes§@ssubterms) af, that do
not simulate successorsf if t; has arorderedspecification, then the successorsdfiave to appear
in the same order as their partnerdr(but there might be additional successors between thene if th
specification is also partial).

The definition ofground query term simulatiors characterised using a mapping between the se-
quences of successors (i.e. subterms) of two ground terthsone or more of the following proper-
ties, depending on the kinds of subterm specifications androences of the construcigthout and
optional . Recall that a mapping is called total if it is defined on adireénts of a set and partial if it is
defined on some elements of a set.

Definition 14
Given two term sequenc®$ = (sq,...,Sn) andN = (t1,...,tn).
A partial or total mappingr: M — N is called

index injectiveif for all 5,s; € M with indexs) # indexs;) holds thaindex7i(s)) # indexX7i(s;))

index monotonigdffor all 5,s; € M withindexs ) < indexsj) holds thaindex1i(s)) < indexi(s;j))

index bijectiveif it is index injective and for alty € N exists ars € M such thatr(s) = tk.

position respectingf for all s € M such thas is of the formpositon  j s/ holds thaindexi(s)) =
i
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e position preservingif for all s € M such thas is of the formposition s/ holds thatri(s) is
of the formposition | t, andj =1.

Index monotonienappings preserve the order of terms in the two sequencesranded for matching
terms with ordered term specificationsdex bijectivenappings are used for total term specifications.

A position respectingnapping maps a term with position specification to a term #ithspecified
position and is required (and only applicable) if the ternthvihe sequence of successors (subterms)
N uses total and ordered term specification. E.g. given twagdf{ position2 b}} and f[a,b,b], a
position respecting mapping maps the subteasition2 b only to the firstb, because its position is 2,
but not to the seconld, because its position is 3.

A position preservingnapping maps a term with position specification to a term thithsame posi-
tion specification; it is applicable in case the sequenceicéassors of the second teNris incomplete
with respect to order or breadth, as the exact position ddmdetermined otherwise in these cases. In
particular, this ensures the reflexivity and transitivifittoe ground query term simulation. E.g. given
the termsf {{ position2 b}} andf {a, b, position2 b}, the subternposition2 b of the first term needs to
be mapped to the subterposition2 b of the second term, but cannot be mapped to thelilscause
its position is not “guaranteed”.

To summarise, position respectinghappingespectshe specified position by mapping the subterm
only to a subterm at this position. On the other hangboaition preservingnappingpreserveshe
position by mapping the subterm only to a subterm with theesposition specification.

Besides these properties, ground query term simulatiodshaenotion oflabel matchedo allow
matching of string labels, regular expressions, or both:

Definition 15 (Label Match)
A term labell; matches with a term labé, if

o if I1 andl, both are character sequences or both are regular expresienl; = |, or

e if 17 is a regular expression ang is a character sequence, thiere L(l;) whereL(l;) is the
language induced by the regular express$ion

I, does not match withy, in all other cases.

Example 16
1. the labels of the termi&{a, b} and f {b,a} match

2. the labels of the termf{a, b} andg{b,a} do not match
3. the labels of the termig¢/ and"Hello World"  match
4. the labels of the ternfslello World" and/*/ do not match

Let G = (V,E,t) be the graph induced by a ground query térrim the following,Sucdt’) denotes
the sequence of all successors (i.e. immediate subterm§)rofs, Succ (t') C Sucgt’) denotes the
sequence of all successors of a tétin G that are not of the forrwithout  t”, andSucc (t) denotes the
sequence of all successors of a teéfin G that are of the formwithout  t” (i.e. Succ (t') wSucc (') =
Sucgét’)). FurthermoreSucé(t’) C Sucét’) denotes the sequence of all successors of attedm that
are not of the formoptional ~ t”, andSucé(t’) C Sucdt’) denotes the sequence of all successors of a
termt’ that are of the fornoptional  t” (i.e. Sucé(t’) W Sucé(t’) = Sucdt’)). Note thatSucc C Sucé,
because a combination without andoptional  is not reasonablg.

Soptional  only has effect on the variable bindings, anithout may never yield variable bindings
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Definition 17 (Ground Query Term Simulaton)

Let r; andr, be ground (query) terms, and 18y = (V1,E;,r1) andG, = (V,, E,r2) be the graphs
induced byr; andry. A relation<C Vi x V, on the set¥/; andV, of immediate and indirect subterms
of ry andr is called aground query term simulatignif and only if:

1. r; <ry(i.e. the roots are irx)

2. if vi < v, and neithew; norv;, are of the forndesc tnor have successors of the formighout
t or optional  t, then the label$; andl, of v; andv, match and there existstatal, index
injective mappingt : Sucgvi) — Sucgvz) such that for alk € Sucgv;) holds thats < 71(s).
Depending on the kinds of subterm specificationgandv,, rrin addition satisfies the following
requirements:

Vi Vo it holds that
l1[s1,- .-, Sm] Io[t1,. .. tn] mis index bijectiveandindex monotonic
l1{s1,-..,Sm} I2[te,. .., tn] mmis index bijectiveandposition respecting
Io{t1,...,tn} mis index bijectiveandposition preserving
l1[[s1, - - Sm] Io[te,. .., tn] mris index monotoni@ndposition respecting
I2[[t1,- -, tn]] ris index monotoni@ndposition preserving
l1{{s1,...sm}} | l2{t1,...,tn} TTis position preserving
Io[t1,. .. tn] is position respecting
I>{{t1,...,ta}} | misposition preserving
Io[[tz,. .. tn]] Tis position preserving

3. if v < w andvy is of the formdesc i, then

e Vv, is of the formdesc $ andt; <t, (descendant preservingr
e t; < v, (descendant shalloyor
e there exists &, € SubTv,) such that;, <V, (descendant degp

In all other cases (e.g. combinations of subterm specifinathot listed above)s is no ground
query term simulation. In subsequent parts of this artitle,symbol< always refers to relations that
are ground query term simulations.

Note that although graph simulation allows to relate twoewdf the one graph with a single node
of the other graph, it is desirable to restrict simulatioesA®en two ground query terms itgjective
cases, i.e. such cases where no two subtermsare simulated by the same subterntof While it
makes certain queries more difficult, this restriction &drout to be much easier to comprehend for
authors of Xcerpt programs and reflected the intuitive ustdeding of query patterns.

A comprehensive list of examples is givenlin [Sch04].

3.3 Simulation Unifiers

In Classical Logic, a unifier is a substitution for two tertpsandt, that, applied td; andt,, makes

the two terms identical. Theimulation unifiersntroduced here follow this basic scheme, with two

extensions: instead of equality, simulation unifiers argeldaon the (asymmetric) simulation relation of

SectiorZZP and instead of a single substitution, subistititets are considered. Both extensions are

necessary for handling the special Xcerpt constrakitandsomeand incomplete term specifications.
Informally, asimulation unifierfor a query ternt9 and a construct ternf is a set of substitutions

%, such that each ground instanceof t9 in £ simulates into a ground instant@ of t® in =. This
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restriction is too weak for fully describing the semantidsttee evaluation algorithm. For example,
consider a substitution s&t= {{X — a,Y — b},{X — b,Y — a}, a query ternt? = f{var X} and a
construct tern® = f{var Y}. With the informal description abov&,would be a simulation unifier of
t9in t°, but this is not reasonable. We therefore also require Heastibstitutioro € = that yieldst?
also is “used” b)td. This can be expressed by grouping the substitutions aicaptalthe free variables
in t¢ (cf. Definition on pagEl9).

Definition 18 (Simulation Unifier)
LettY be a query term, lef® be a construct term with the set of free varialffad4(t®), and letZ be an
all-grounding substitution sek is called asimulation unifierof t9 in t¢, if for each € /;FVM holds that

vt e (t9) 19 < (19

Recall from Sectio 212 that all substitutions in an alligrding substitution set assign data terms to
each variable. Intuitively, it is sufficient to only considgounding substitutions faf andt®. However,
all-grounding substitution sets simplify the formalisatiof most general simulation unifiers below.

Example 19 (Simulation Unifiers)
1. Lett9 = f{{var X,b}} and lett® = f{a,var Y,c}. A simulation unifier oft? in t® is the (all-
grounding) substitution set

Zi={{X—aY—b}{X—cY—b}}

2. Lett9 = f{{var X}} and lett® = f{all var Y}. A simulation unifier oft" in t¢ is the (all-
grounding) substitution set

L={{X—aY—b}{X—aY—a}}

Assignments for variables not occurring in the tetth@ndt® are not given in the substitutions
above.

Simulation unifiers are required to heoundingsubstitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding stltistn sets can be applied to construct terms
containing grouping constructs, because a grouping is osgiple otherwise. This restriction is less
significant than it might appear: as rules in Xcerpt are raeggicted, the evaluation algorithm always
determines bindings for the variablegfnso thatit is always possible to extend the solutions detesth
by the simulation unification algorithm to a grounding sitb#ibn set by merging with these bindings.

Usually, there are infinitely many unifiers for a query ternd @nconstruct term. Traditional logic
programming therefore considers the most general unifigujm.e. the unifier that subsumes all other
unifiers. Since simulation unifiers are always groundingttution sets, such a definition is not possi-
ble for simulation unifiers. Instead, we define thest general simulation unifigmgsu) as the small-
est superset of all other simulation unifiers. Note that thiégon most general simulation unifigs —
although different in presentation — indeed similar to tteglitional notion of most general unifiers,
because a most general simulation unifier subsumes all sithetation unifiers.

Definition 20 (Most General Simulation Unifier)

Lett? be a query term and It be a construct term without grouping constructs such theaethxists at
least one simulation unifier o in t°. Themost general simulation unifiémgsu) oft9 in t¢ is defined
as the union of all simulation unifiers tfin t°.
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Note that the most general simulation unifier is indeed asnaygsimulation unifier it® does not
contain grouping constructs. This is easy to see becausaniba of two simulation unifiers simply
adds ground instancestdfandt® where for every ground instant® of t there exists a ground instance
t¢ of t® such that? <t¢. This does in general not hold for construct terms with giogp

4 A Constraint Solver for Language Evaluation

The evaluation of Xcerpt programs is described in terms afrastraint solver that applies so-called
simplification rulego a constraint store consisting of conjunctions and digjons of constraints. The
purpose of the constraint solver is to determine variabiéibgs for variables occurring in query and
construct terms, which ultimately yield substitutionstthan be used to create the answer terms of a
program. A simplification rule in this thesis has the follagiform:

C

Cn
D

whereCy,...,Cy (n> 1) are atomic constraints (the condition) dbds either an atomic constraint, or
a conjunction or disjunction of constraints (the consegegnlif a simplification rule is applied, then
the conjunctiorCy A --- ACy in the constraint store is replaced by the constrBintNote that these
simplification rules are similar to the simplification rulesthe language€onstraint Handling Rules
[ErGi98], albeit with a different notation.

The constraint solver is non-deterministic to a high degmebat the order in which simplification
rules are applied is not significant. This approach mightd&aatageous, as it gives much freedom to
the evaluation engine to e.g. perform optimisations.

This constraint solver differs from common approaches @t the result of a rule may contain dis-
junctions, whereas usually only conjunctions are admitBath constraint solvers have been studied in
constraint programming research, e.g[in [WM96]. The appindaken in this thesis is rather simplistic,
as it after each application of a simplification rule credtes disjunctive normal form (DNF) of the
constraint store. Simplification rules are independentiyliad to the different conjuncts of the DNF.
This approach is rather inefficient in implementations, aadous optimisations can be considered. A
straightforward optimisation would be to not create the Dafiter eachsimplification step, but instead
only if it is “necessary”, because no other simplificatiofesuapply. However, such optimisations are
not further investigated in this thesis, as the focus is ot \gleery languages and not on constraint
programming.

Furthermore, the constraint solver needs to be able to megdtion. As both negation constructs
not andwithout describe negation as failure, the negation behaves ditfgre classic negation in
some cases (cf. Exam{iIe]l26). The treatment of negation ¢sided in the formula simplification rules
in SectioZB, and in the consistency verification rules 3l 5 in Sectioir 14 below.

4.1 Data Structures and Functions
4.1.1 Constraints

The main data structure of the evaluation algorithm isdbiestraint storewhich may contain several
types of constraints, including other (sub-)constraiates. For the purpose of this thesis, constraints
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are defined by the following grammar (defined in a variarExtended Backus-Naur Fo)m

<constraint>

<conjunction> =
<disjunction> =

<sim-constraint>
<dep-constraint> =
<query-constraint> ;=

<dbterm-list> =

;= <conjunction>

<constraint> ('
<constraint> ('
<negation> ="
;= <query-term>
'(" <constraint>

<data-term> (',

| <disjunction>
True’ | 'False’

'(" <constraint> ')’

<sim-constraint>

<dep-constraint>

<query-constraint> .

A’ <constraint>)+ .
V' <constraint>)+ .
<constraint> .
' <4’ <construct-term> .

| <constraint> ') .

) { <data-term-list>? ’ ¥
<data-term>)* .

(' <query-term> ’

It is easy to observe that a constraint store usually canefstrbitrary conjunctions, disjunctions,
and negations of constraints. As usual, conjunctions awalge precedence over disjunctions unless
explicitly specified by parentheses. A brief descriptionhef other kinds of constraints is given below:

Truth Values. The truth values “True” and “False” have their expected nrgaim a constraint
store. Simplification of the constraint store can elimirtiem in all cases except when they are the
only remaining constraint.

Simulation Constraint. A simulation constraint — writtety <, t, for some construct, data, or
query termt; and some construct or data tetyn- is a binary constraint which requires that variables
are only bound to data terms such that there is a ground qasry gimulation between the ground
instances of; andt,. The termt; is called the left hand side of the simulation constraint gnid
called the right hand side of the simulation constraint inseguent sections. So as to distinguish the
simulation constraint from the ground query term simulatinut nonetheless emphasise the relationship
between the two, the symbel, is used (withu for “to be unified”). Note that the right hand side of a
simulation constraint is always necessarily a construdata term, because the simplification rules in
the simulation unification and backward chaining algorishmever put a query term to the right hand
side.

Most simulation constraints can be further reduced by apglthe simulation unification algorithm
on them until at least one of the sides consists merely of mia: If a simulation constraint is of
the formX =<, t whereX is a variablet is also called amipper boundf X. Likewise, if a simulation
constraint is of the form < X, t is called ardower boundof X.

Query Constraint. A query constraint is a constraint consisting of a valid Xd¢euery (i.e. ei-
ther a query term, an and/or-connection of queries, a négatery, or an input resource specification
containing a query). Query constraints are used to reprgsemies that are not yet evaluated and are
unfolded during the evaluation (if necessary). For someyjQethe query constraint is denoted ().

A query constraint may optionally have a set of associat¢al @ams which results from resolving
and parsing an external resource (elimination oftheonstruct). If a query constrai(®) is associated
with the data termsty, ..., ta}, this is denoted byQ), . 1,
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Dependency Constraint. A meta-constraint stating a dependency between two comistraf C
andD are constraints, the dependency constré&ht| D) requires thaC may only be evaluated if
the evaluation oD did not fail (otherwise, the complete constraint fails).usib usually needs to be
completely evaluated befof&can be processed. The substitutions resulting from thesatiah ofD
are applied t& if they exist (i.e. under the condition that D is neitli@lsenor True).

The justification for the dependency constraint are theireqents of the grouping constructs
andsome, which require to consider all alternative solutions far tiuery part of a rule. ldll or some
appears in the head of a rule which is evaluated, the unificaif a query with the head cannot be
completed before the rule is fully evaluated.

4.1.2 Functions

substitutions(CS): The ultimate step of the algorithm, after no more rules agdiegble or nec-
essary, is always to generate a set of substitutions froradhstraint store. In this ste@Sis put in
DNF, all constraints of the fornX <, t (whereX is a variable and is a construct terﬂ) are replaced
by X =t and for each conjunct @Sa separate substitution is generated from these repla¢eniNote
that

e substitutiongTrue) is the set of all all-grounding substitutions
e substitutionéFalse) = {}, i.e. there exists no substitution.

Thus, neither a result dfruenor a result oFalseare desirable for a query containing variables. Fortu-
nately, the evaluation algorithm never yiellisuein case a variable occurs in a query, and only yields
Falseif the evaluation fails.

apply(z,t): Applying a set of substitutionk to a term is implemented recursively over the term
structure. The implementation of this function can be dmtifrom Definitiongs anfZ10 in a straight-
forward manner.

retrieve(R): Given a resource descriptid®) the functionretrievg R) returns a set of those terms
that are represented by this resource provided that thecdatén some way be parsed into Xcerpt's
term representation. A resource description may for exammphtain a URI for identifying the resource
and a format specification to indicate which parser to usee dthrent prototype provides support for
XML, HTML and Xcerpt syntax, but different formats are moreless straightforward to implement
(e.g. Lisp S-expressions, RDF statements or relationabdaes).

restrict(V,C): restricts the constraint stof@ to only such (non-negated) simulation constraints
where the lower bound is a variable occurring/inThis function is used for evaluating query negation
below.

deref(id): Dereferences the term reference identifieddognd returns the subterm associated with
the identifierid.

vars(Q): Returns the set of all variables occurring non-negated ineaydQ.

4due to the way rules are evaluated, the right hand side of @aiion constraint is always a construct term
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4.2 Solution Set of a Constraint Store

As the evaluation algorithm aims at determining an (allugrding) substitution set for certain variables,
each constraint store conceptually represents a (allrgliog) substitution set in which each substitu-
tion provides assignments for all conceivable variable @anT his set is called theplution setf the
constraint store, and represents the possible answerththataluation of the constraint store yields.
Depending on the constraint store, this solution set isicéstl to substitutions fulfilling certain condi-
tions. For example, the constradit=<, f{a} requires that all substitutions in the solution set provide
an assignment for the variab¥ethat is compatible (i.esimulate3 with f{a}. Likewise, the constraint
f{{}} 2u X requires that the solution set only contains substitutthasprovide an assignmentor X
such thatf {{}} <t.

In the following, we will consider only the solution set of allfy solved constraint store. Such a
constraint store contains only simulation constraintsretmne side of the inequation is a variable, of
conjunctions or disjunctions of constraints, and of thelbao constraint3rueandFalse This notion
of solution sets will be used in the formalisation of simidatunifiers later in this chapter. Recall that
all-grounding substitutions are substitutions that maggpossible variable to a data term.

Definition 21 (Solution Set of a Constraint Store)

LetCSbe a completely solved constraint store, i.e. consistirg ofsimulation constraints where one
side is a variable, conjunctions, disjunctions, and thddaroconstraint3 rueandFalse The solution
setQ(CS) is a grounding substitution set recursively defined as Wto

e Q(True) is the set of all all-grounding substitutions (cf. Secfiol)2

Q(False) = {}, i.e. the empty set
e Q(X =yt) is the set of all all-grounding substitutiomssuch thaio (X) = o (t)

e Q(t =<y X) is the set of all all-grounding substitutioossuch thaio(t) < g(X)

Q(Cl/\Cz) = Q(Cl) n Q(Cz)
° Q(Cl\/Cz) = Q(Cl) UQ(CZ)
e Q(C)=Q(True)\ Q(C)

The rationale behind using sets of all-grounding sub#bitist is that a constraint store in general
merely restricts the possible answers. Further consgraiight add new variables that would have to be
considered. Using infinite substitutions also simplifiegkirmg with the solution set, because it suffices
to use simple set operations instead of introducing a newst#ution theory”. For example, merging
of two all-grounding substitution sets merely requiresittiersection of both.

Note that the solution set of a constraint st@®is in general always infinite, because each sub-
stitution contains assignments for an infinite number ofaldes. However, restricting this set to only
finitely many variabled/ (i.e. those variables occurring @S, yields a finite set in case every such
variable occurs in each conjunct of the disjunctive norroaif of CSon the right side of a simulation
constraint.

The following result is important because it relates thdralss notion of solution set to the actually
computed substitutions. It follows trivially from the defion of solution sets and the definition of the
functionsubstitutions). Recall thaty is the substitution sei restricted to the variables W.
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Corollary 22

Let CS=C;V---VC, be a constraint store in disjunctive normal form, andhe set of variables
occurring inCS If in every conjunciC;, each variableX € V occurs in a simulation constraint of the
form X <, t wheret is a data term, thesubstitutionfCS) = Q(CY).

Note that as Xcerpt programs are range restricted, thidlaoydolds for every full evaluation of an
Xcerpt program.

4.3 Constraint Simplification

The usual simplification rules for formulas apply, for exdenp
e FalsenC reduces td-alsefor any constrain€C, Falsev C reduces t& for any constrain€

e TruenC reduces teC for any constrain€, TrueV C reduces td ruefor any constrain€

(CAD) simplifies toCV D, (CV D) simplifies toCAD

C simplifies toC
e False= TrueandTrue= False

Note, however, that constraints of the fohfwhereC is not of the fornC’) may not be simplified to
C, because the range restrictedness disallows variablalgmadlso for variables that are negated twice
or more times.

4.4 Consistency Verification Rules

Before a variable can be bound to a term, it is necessaryttbatanstraints for this variable atensis-
tent There are two kinds of consistency verification rutEmsistencandtransitivity, divided into four
rules to distinguish the cases with and without negatiore fffth rule described here reduces certain
kinds of negated simulation constraints.

All consistency verification rules are considered to be pathe constraint solver and are needed
both for the simulation unification and the backward chajragorithm. It is assumed that they are
always applied if possible and that the constraint storeab@ays be treated as consistent.

4.4.1 Rule 1: Consistency

The consistencyule guarantees that upper bounds for a variable are censisthis verification rule
implements the solution set definition@fC A D) = Q(C)NQ(D) and ensures that a conjunct does not
induce two assignments for a variable that are not simulateuivalent.

X=uty
X =it
X 2t Aty gt At Syt

Note that both; andt, are necessarily construct or data terms. Thus, the comistais applicable,
which requires a construct or data term on the right hand side
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Example 23 (Consistency Rule)
1. consider the two simulation constraits<, f{var Y} andX =<, f{a}; applying the consistency
rule yieldsX < f{var Y} Aa=,YAY =, a(after mutual unification), which limits the bindings
forY toa.

2. consider the two simulation constraids<, f{a} andX =<, f{b}; applying the consistency rule
determines that they are inconsistent, becdyse and f {b} do not simulate.

4.4.2 Rule 2: Transitivity

The transitivity rule replaces variable occurrences of a variabla the upper bounds of a variable
by the upper bound oX. This rule is justified by the simulation pre-order definedSBF0%] and is
needed to ultimately create ground terms as bindings foraalhbles. In the following, the notation
t[t’/X] denotes “replace all occurrences0fn t by t".

t1 <y t] such that] contains the variablX
X =yt
X <y th Aty =y ti[tz/X]

Note that the first constraint is consumed by this rule. Thightnappear somewhat unusual, as
further applications of the transitivity rule might yieléw constraints. However, if some constraint of
the formX =< t; is added, it needs to be compatible with the constrdint, t, (which is still in the
conjunction) and would thus not yield differing informatio

Example 24 (Transitivity Rule)
1. consider the simulation constraiiXs<, Y andY = a; applying the transitivity rule yields the
additional constraink <, aand removeX <,Y.

2. consider the simulation constraits<, f{var Y} andY =< &; applying the transitivity rule yields
the additional constrainX =<, f{a} and remove¥X =, f{var Y}.

It would be possible to define a similar transitivity rule the lower bounds in a simulation con-
straints. This is, however, not necessary, as the lowerdsdn not yield variable bindings and thus
need not be ground.

4.5 Constraint Negation

Negated constraints represent exclusion of certain artdbdings, and may result from the evaluation
of the constructwithout  (subterm negationdptional  (optional subterms), amt (query negation).
For example, the constraitX < f{a,b}) disallows bindings foX that are simulation equivalent with
f{a,b}. Note that, although these constructs implement negatidailre, constraint negation is the
ordinary negation of classical logic. The usual transfdromarules apply, namelyC AD) = CV D,
(CvD)=CAD, True= False andFalse= True. Note, however, thak +# C, becaus€ is not allowed

to define variable bindings (afange restrictednes§SBFEO5]).

The following three additional consistency verificatioteuare used in the constraint solver to treat
constraint negation. All three rules assume that the negatppears immediately in front of an atomic
constraint. This assumption is safe when the constraing $an disjunctive normal form. The rules
continue the numbering scheme of the previous consistegrification rules. Therefore, the first rule
has number 3.
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4.5.1 Rule 3: Consistency with Negation

To detect inconsistencies between a non-negated and aedegjatulation constraints, the consistency
rule needs to be modified to yield inconsistency in case anegated constraint for a variable is con-
sistent with a negated constraint for the same variable. falleving rule means that if a simulation
constraint provides an upper bound for a variable (whicheggnts a candidate binding for the variable),
then there must not be a negated simulation constraint Xichtdes this upper bound:

X jutl
(X =ut2)
X =uti At Suta Ata <uty)

Example 25 (Consistency Rule with Negation)
Consider the constraint store

X Zu f{a,b} A (X =u f{b,a}) A (X 2y g{a})
Applying the consistency rule with negation yields
X =y f{a b} A (f{a,b} =y f{b,a} A f{ba} =u f{a,b}) A (X =y gfa})
the DNF of which is

X <u f{a,b} A (f{a,b} <, f{b,a}) A (X <ug{a})Vv
X =u f{a,b} A (f{b,a} <y f{a,b}) A (X =ug{a})

and after further decomposition steps

X =u f{a,b} A (True) A (X <y g{a})Vv
X =u f{a,b} A (True) A (X =<y g{a})

which ultimately yieldsFalseg i.e. no valid bindings.

Note that although subterm and query negation can nevet yiglable bindings themselves, there
might be variables that only appear in negated simulatioisitaints but nowhere else in a non-negated
simulation constraint, e.g. as the result of decomposiiitin without ~ or optional . These are treated
by Rule 5 below.

4.5.2 Rule 4: Transitivity with Negation

Like the consistency rule, the transitivity rule needs toald@pted to cover negation properly. The
following rule specifies that if there is a negated simulationstraint where the upper bou@ontains

a variable, and this variable is bounded in a non-negatedlation constraint, then substituting the
upper bound for the variable in the first constraint must neldya simulation.

t1 <u t7) such that! contains the variablX
1 1

X =utp

(tl =u ti) AX =gtz A (tl =u ti[tz/X])

Likewise, if there is a non-negated simulation constrainére the upper bound contains a variable
occurring in a negated simulation constraint, then sulisty the upper bound for the variable in the
first constraint must not yield a simulation.
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t1 <y t] such that] contains the variablX
(X =u t2)
1 <y ti A (X <u tz) A (tl =<u ti[tz/X])

Note that unlike rule 2, transitivity with negation may netmove any of the original constraints,
because information would be lost.

4.5.3 Rule 5: Negation as Failure

The last rule is necessary for cases where a variable onlgaspin a negated simulation constraint,
but nowhere else in a non-negated simulation constrairtte@tonstraint store. Due to the range re-
strictedness of Xcerpt rules, such constraints can neverdduced directly in the treatment oft

or without  (range restrictedness enforces that each variable ongurria negated part also appears
elsewhere in a non-negated part). They may, however, beotgequence of applications of rules 3
and 4, and might be produced when decomposing a query tertaigioy the construaiptional  (see
Sectio &1L below).

Such constraints are reducedialse The rationale behind this is that, in case the variable doées
occur elsewhere outside a negation, the simulation canstrside the negation represents a solution
for a negated query or subterm, and therefore the negatestiaon must fail. In case the variable does
also appear elsewhere outside a negation rules 3 and 4 dieasps (which again might yield negated
simulation constraints).

(X =y t) such thaiX does not appear in a non-negated simulation constraint
False

Constraints of the fornTrue andFalseare treated by the formula simplification described above.
Exampld33B shows a case where this consistency rule is neddddteresting application of this rule
involves double negation:

Example 26 (Negation as Failure Rule)

Consider the simulation constraifX =, t) such thatX does not occur elsewhere in a non-negated
simulation constraint. Applying Rule 5 to this constrairglgs False= True (and notX =<, t as one
might expect). The rationale for this is that the negatiosduis negation as failure and not classical
negation, and variables within a simulation constraint tir@ negated twice do not define variable
bindings (see also the definition @nge restrictedness [SBEOY].

4.6 Program Evaluation

Program evaluation starts at the program goals, and tridsteErmine answer terms by evaluating the
query parts for each goal in a backward chaining fashione®G& progran®, the general scheme of
program evaluation is as follows:

Algorithm 27

procedure main():
foreachgoalt — Q € £ do:
let Subst= solve(Q)g)
print apply(t,Subst)
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Of course, printing the result in the scheme above has tcecésp possible output resource as-
sociated with the head of a goal. The backward chaining glgoritself is called with the function
solveC) (whereC is a constraint) which returns a list of substitutions ttestuit from solving the con-
straint given as parameter. The general scheme of the &mstilveis as follows (cf. the function
substitutions( -) above):

Algorithm 28

function solve(Constraint C):
while a rule can be applied to do:
select some constraint D in C and some rule R applicable to D
let D’ ;= apply rule Rto D
replace Dby D'inC
put C in disjunctive normal form and verify consistency
return substitutions(C)

Note that “rule” in the algorithm above denotes a simplifimatule of the constraint solver and not
an Xcerpt rule. Rules from all three parts may be interlearatithe decision on the selection of rule ap-
plications is deliberately left open (i.e. the algorithnsdeébed here is non-deterministic), as long as the
selection is “fair” (i.e. each possible rule is applied witfinitely many steps). This non-determinism
allows for interesting considerations about selectioatsgries that have not been investigated much in
logic programming.

5 Simulation Unification

Simulation Unification consists mainly of decompositioterithat operate recursively and in parallel
on the two unified terms (Sectidnb.1). When all terms are detaly decomposed, the result is a
constraint store containing conjunctions and disjunaiohsimulation constraints where the left or the
right side is a variable. These yield variable bindings lylaeing simulation constraints of the form
X <yt by X =t. The consistency verification rules described above erlatall simulation constraints
are consistent and can be interleaved at any point.

5.1 Decomposition Rules

Decomposition rules take a single simulation constraidttanto recursively decompose the two terms
in parallel until no further rules are applicable. Each deposition step yields one or more subsequent
constraints, often even a large disjunction containingraditives. This reflects the many different alter-
native ground query term simulations that need to be coreitda case of partial term specifications.

All decomposition rules are first given without examplescdiese the examples tend to be very
extensive, and mutually depend on other decompositios r@ectiol 212 illustrates important aspects
of simulation unification on several more extensive exasple

5.1.1 Preliminaries

In the following, letl (with or without indices) denote a label, and tétdenote query terms artd
construct terms (both with or without indices). Furthermdet | be a special term (not occurring as
subterm in any actual term) with the property that fortagfl | holds that <, L = False i.e. no term
unifies with L. In the following sections, it is furthermore assumed tatontains neither grouping

25



constructs, functions, aggregations, nor optional safgernn practice, this restriction is insignificant,
because construct terms containing one of these constretways made ground before computing
the simulation unification (sd@ependency Constraitelow).

Definition 29
Giventwoterms® =1{t],... t}} andt>=1{t2,...,t2}, the following sets of function8x : (t{,...,t}) —
(t2,...,t2) are defined (cf. Definitio14):

e SubT" C (tl,... t1) is the sequence of all non-negated subterms ehdSubT- C (t},... t})
is the sequence of all negated subterms of

e SubT C (t},...,t}) is the sequence of all non-optional subterms'andSub™ C (t,... t1) is
the sequence of all optional subtermgbf

e MMis the set of partial, index injective functiomsfrom (t,...,t}) to (t2,....t2) that are total on
SubT" and onSubT, each completed biy— L for all t on whichrtis not defined

e [Monis the sefl restricted to all index monotonic functions

e [Myij is the sefl restricted to all index bijective functions

e Mppis the set of all positiopreservingunctions

e [y is the set of all positiomespectingunctions

o Mm_pr = MmonN Mpr, Mp—pr = Mpij "M pr, Mp—pp = Mpij N M pp, @ndMm_p = Mpij N Mmon

To simplify the rules below, alpartial mappings inll are assumed to be completed by mapping all
values on which the mappings are undefined to the special terim this manner, every mapping i

can be considered to be total in case the distinction is nc#ssary, whereas in the cases where partial
mappings are consideregbfional andwithout ), the distinction is made explicitly.

Example 30
Consider the termg = f[[a, withoutb]] andt? = f[a, b, c]. The set of index monotonic mappings of the
set of subterms df! into the set of subterms &f (Mmon) is as follows (ithout b abbreviated ab):

{a—ab— 1} {a—bb— 1} {a—cb— 1}
{a—ab— b} {a—bb—c}
{a—ab—c}

Note that all these mappings can be generated in a rathigfrgfoaward manner by creating a table
with the termg- -t} arranged top-down and the tertgs- -t2 arranged left-right and then determin-
ing paths from the first line to thet" line that fulfil certain properties. This technique is cdliéae
memoisation matrix

5.1.2 Root Elimination

Root elimination rules compare the roots of the two termsdisttlibute the unification to the subterms.
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Brace Incompatibility The first set of rules treat incompatibility between brages$thaus all of these
rules reduce the simulation constraintfalse For instance, an ordered simulation into an unordered
term is not reasonable, as the order cannot be guaranteed.

Decomposition Ruldecomp.1:

Ith, .t =g {2, 12 Itd, .. th) <o {2, 12
False False

Left Term without Subterms  This set of rules consider all such cases where the left ter@s dot
contain subterms. These cases have to be treated sepfa@tetire general decomposition rules below,
since using the latter would yield the wrong result in suctesa For instance, an emptyis equvialent

to Falsebut the result should always Beuein case the left term is only a partial specification. In the
following, letm > 0 andk > 1:

Decomposition Ruldecomp.2:

) =u H{tE, . 18 {3} = .. 6] ) = 1t 83
True True True
{7} =u {12} {} = ltd, ..t 1] =u 2.6
False False False
H} = {} {} = l] 1] =u I]
True True True

As specified by these rules, a term without subterms but dapagecification (double braces)
matches with any term which has the same label. If the termifsgetion is total, it matches only
with such terms that also do not have subterms.

Decomposition withoutal | , sone, wi t hout , and opti onal The general decomposition rules
eliminate the two root nodes in parallel and distributesuh#ication to the various combinations of
subterms that result from ordered/unordered specificatimhfrom total/partial term specifications. If
there exists no such combination, then the result is an eowptyhich is equivalent td-alse These
term specifications are represented by the different setsapbingd1, Myij, Mmon Mpr, andMpp. In
the following, leth,m > 1.

Decomposition Ruldecomp.3:

{{t,... 3 = {13} {2 = [t 13
Vienpp A1<i<nti =u (1) Vienp A1<icnti =u ()
H{th,. . 3 <y |{t%2,...,t§]]i H{th,. . 3 <y I[tlf,...,tr%]l
Ve nynnpp Ar<i<nti Su TI(t) Vreny;nnp Ar<i<nti Su 7I(t)
Itd, ... 3] = I[ti,...,trzn]l Ith,.. .t =y I[tfl,...,trzn] i
\/nel'lmo,nl'lpr Algignti =u 7T(ti ) Vnel‘lmornl'lbij Algignti =u n(ti )

For instance, if the left term has a partial, unordered djpation for the subterms, the simulation
unification has to consider as alternatives all combinat@frsubterms of the left term with subterms of
the right term, provided that each child on the left gets achiag partner on the right.
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Label Mismatch In case of a label mismatch, the unification fails. In thedaihg, letl, # .
Decomposition Ruldecomp.4:

L {{th,. .t =0 {2, t2) I {th .t =<y {3, 12}
False False

{{th B = bl 1) n{th ) <u bl 1)
False False

I [[td, .. 3] <u 2ft2,.. . t2) Itd, ..t < 1t2,.. . 12
False False

5.1.3 ~» Elimination

Pattern restrictions of the forid ~» t1 =<, t? are decomposed by addihgas upper bound for the
variableX (as usual), adding the pattern restriction as lower boun¥ f(io ensure that there exists no
upper bound that is incompatible with the pattern restigti and immediately trying to unifyy andt,.
The latter step is not strictly necessary, as it would alspdséormed by consistency rule 2 (transitivity).
However, immediate evaluation is advantageous as it egslumtompatible upper bounds immediately.
Decomposition Rulear:
Xt <y t?
th <y t2 At < XA X =, t?

5.1.4 Descendant Elimination

The descendant construct in terms of the fatesc tis decomposed by first trying to unifywith the
other term, and then trying to unifyesc twith each of the subterms of the other term in turn. In this
manner, unifying subterms at all depths can be determinetml> 0.

Decomposition Ruldesc:

desat! =<y I{t2,...t2} desal <, I[t2,...,t2]
th <y H{tf,... 15} V Viciemdesct <y t7 th <y ItF,.. .15 V Viciemdesct <y t7

5.1.5 Decomposition with Wi t hout

The declarative specification afthout in the ground query term simulation of Sectlgnl3.2 requires
that a partial function (of the set of hon-negated subtenttsthe set of subterms of the second term)
is not completable to a (partial or total) function such thia¢ of the negated subterm is mapped to a
subterm in which it simulates. Since the term on the righttsde of a simulation constraintis always a
data or construct term, it is sufficient to consider the casererthe right term does not contain negated
subterms. For a simulation constraift=,, t?, the decomposition rules for the case without negated
subterms is intuitively described as follows:

e A mappingrtis first restricted to the non-negated subtermig pife. the subterms of the left term
that are not of the forrwithout  t, on which the decomposition is performed in the same way as
for decomposition withouwithout . Note that there might be several different mappings that ar
identical with T for all the non-negated subterms and only differ on the reshstibterms.
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o ltisthen necessary to verify whether there exists a mappitizgat maps the non-negated subterms
of t! to the same subterms tf as (in particular,77 might ber itself), and permits to map at
least one negated subtemithout  s* of t* to a subterns? of t? such thas® < s°. In this case,
the mapping restricted to the positive subterms’ois considered to be invalid, because it is
completable to a mapping that allows to map a negated sulaterhto a matching non-negated
subterm ot2. Thus,all mappings that map the positive subtermsldab the same subterms t#f
have to be ruled out.

It is important to note that the set of mappirigss defined (in the Preliminaries above) as the set of all
partial functions that ar¢otal on the set of positive subformulas. Recall furthermord, tttemappings
in M are completed by mapping all undefined valueg to

In the following, letSubT* C (t1,... t}) be the sequence of all subterms not of the faatiout ~ t,
and letSubT C (t},...,t}) be the sequence of all subterms of the fovithout ~ t. Also, two functions
mand’ are considered to be equal on the positive part, denat8dibT") = 7'(SubT"), if for all
t € SubT" holds thatri(t) = m'(t). Furthermore, lefp(-) be a function that removes théthout
construct in front of a negated subterm, péwithoutt) =t.
Decomposition Rulaithout:

H{td, .. 1)) <o {2,... 12}
Vrenpp (/\t+es,ubT+'f+ =TIt A (VTI’EI'IppWith n(SubT)=rr(sub™) Vi-esubt P(t™) =u Tl’(tf)))

Itd,. . ) <u 112, 12
\/nel'lm.pr (/\t*eSubT+ t* =u H(t*) A (Vn’el‘lm.pr with 1i(SubTH)=m’(SubTt) \/t*eSubT* p(t’) =u nl(ti)))

H{t,. . 2 = . t3)
Vieny, (/\t+e5ubT+'f+ = TI(t) A (Vn'enpr with m(SubT)=r7(SubT+) Vi-esub P(7) =u ﬁ(tf)))

Note that decomposition withithout  is currently not covered in the completeness and correstnes
proofs of SectiofL2]3.

5.1.6 Decomposition with opti onal inthe query term

Intuitively, decomposition wittoptional  in the query term should “enable” the maximal number of
optional subterms such that they can participate in thelsition. In the following, this is expressed as
follows:

o for all required subterms (i.e. not of the forptional  t), the treatment is as before (since all
negated subterms are required, they must be treated herelabut this is omitted in the rules
below to enhance readability)

o for all optional subterms, a certain number is “enabled” byiag appropriate simulation con-
straints, and all others are “disabled” by adding apprapm&gated simulation constraints

In the following, these requirements are expressed asisilgiven a partial mapping € N (by def-
inition 1T must be total on the set of non-optional subterms, but mayaléapon the set of optional
subterms), it is first verified whetheryields a simulation by unifying all terms on whiahis defined
with their mapping (in the same manner as before). In therakpart of the formula, it is then necessary
to ensure thatr is also themaximalmapping with this property, i.eTis not completable to a mapping
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17 such that this would also yield a simulation. This is ensumgddding a negated disjunction testing
for all mappings that are identical witlhon the subterms for whicftis defined, but differ on the other
subterms, whether there exists an additional subterm thaldwnify with the subterm it is mapped to
in 7. If yes, mis not maximal and completable f@. If no, Tis maximal.

For a given mappingr, let SubT; C SubTbe the sequence on whighis defined and not mapped
to L, i.e. for allt € SubT; holds thatri(t) # L, and letSubT; = SubT\ SubT;. Also, two functions
mandr’ are considered to be equal on a set of subtefmsSubT, denotedrt(X) = 17 (X), if for all
t € X holds thatri(t) = m'(t). Furthermore, lep(-) be a function that removes tioptional  construct
in front of an optional subterm, i.@(optionalt) =t.

Decomposition Ruleptional:

Hth,. ) < {2, 2}
Vienty. o, (AteSubEt =y TI(t) A (Vn'enb,pp with m(sub)=rr(sub%) Vv esups, P(L) =u n’(t/)))

H{{td, .t} =u .. tE)
Viren,, (/\teSuth 2uT(t) A (Vn'enpp with 7i(Sub)=r7(Sub) Vs, P') =u n’(t’)))

1t 3 = 1R 8]
\/7T€|_|m—b (/\tGSub'ﬁ.t =u T[(t) A (Vn’el‘lm,b with 7(SubTy) =17 (SubTy) vt’em p(tl) <u Tl'/(tl)))

Itd, .. ) < 1, 82
\/nel'lm,pr (/\teSub'F[t =u 7T(t) A (Vn’el‘lm,pr with 1(SubTy)=17(SubTy) vt’em p(t/) =u n,(t/)))

Htd o th) <0 12, 2]
Vreny o (/\teSub'F[t =u TI(t) A (Vn'enb,p, with ri(Sub) =7 (subky) Veesar, Pt) =u "’(t/)))

H{{t],. . ) = 1t t3)
Vieny (/\teSub'ﬁt S TI(t) A (Vﬁenpr with 7i(Sub)=r7(Sub) Vs, P') =u Tl’(t’)))

Note the close similarity to the decomposition rules fontgicontainingvithout . Intuitively, this
similarity means that decomposition witiptional ~ corresponds to creating all different alternatives
where zero or moreptional  subterms are “turned on” by omitting thetional  and the others are
“turned off” by replacingoptional by without , and evaluating all resulting terms as alternatives.
Consider for example the term

f{{var X — a,optionalvar Y — b,optionalvar Z— c}}

The substitution resulting from the evaluation of this quterm is equivalent to the union of the results
of the four terms

f{{var X — avarY — b,varZ— c}}

f{{var X — a,varY — b,withoutvar Z— c}}

f{{var X — a,withoutvarY — b,var Z— c}}

f{{var X — a,withoutvar Y — b, withoutvar Z— c}}
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Note that this representation might be surprising on a fietag, because the intuitive understanding
of optional  would be to simply leave out the optional subterms instea@pifacing them by negated
subterms, as in:

f{{var X— avarY — b,varZ— c}}

f{{var X — a,varY — b}}

f{{var X — a,var Z— c}}

f{{var X — a}}

However, this term representation does not reflect that &inred subterm isequiredto match, if it is
possibleto match. Consider for example a unification with the tdrfa, c}. The correct solution would
be the substitution set

2= {{X —aZ— C}}

whereas the evaluation of the second set of terms would yield
I={{X—azZ—c}{X—a}}

Note that decomposition wittptional  is currently not covered in the completeness and correstnes
proofs of SectiofiBl3.

Exampld3B on padeBé illustrates the decomposition of a tenmtaining two optional subterms.
Note that more efficient evaluation techniques for the dgmusition rules above are conceivable. For
example, if one of the unification steps in the part for whink defined already fails, it is not necessary
to consider all different alternative mappings that areatqu the subterms on whiahis defined.

5.1.7 Incomplete Decomposition with grouping constructs, functions, aggregations, and op-
tional subterms in construct terms

A unification with a term containing grouping constructsndtions, or aggregations is in general in-
complete because a complete decomposition requires tdeharata-constraints over the constraint
store itself, which is very inconvenient. Consider for arste a unificatiorf {a,b,c} <, f[all X]. To
provide the full information stated in this constraint, ibmld be necessary to add a meta-constraint
stating that there must be exactly three alternative bgslfor X, and of those, one must lag another

b and the thircc. Evaluation of a query containing would thus become very complex.

Although a complete decomposition is preferable, it ist(foately) not necessary for evaluating
Xcerpt programs, as grouping constructs always dependehittidings of the variables in the query
part of a rule. Rules containing grouping constructs aratée by thedependency constrainvhich
performs an auxiliary computation for solving the querytdia rule and then substitutes the results in
the rule head. Thus, in this case it is sufficient to treat thiéaation of a query term with a data term,
which does not contain grouping constructs (and obviously ao variables).

However, it is still desirable to unify a term containing gping constructs as far as possible in order
to exclude irrelevant evaluations of query parts in the depeacy constraint as early as possible. For
example, the term&{a, b} andg{all var X} will never yield terms that unify, regardless of the binding
for X. Likewise, the term${g{a},g{b}} andf{all h{var X}} will never yield terms that unify, because
neitherg{a} norg{b} can be successfully unified with any of the ground instanégar X}.

Therefore, the algorithm described here takes a differpptaach, in which a unification withll
only yields anecessarnset of constraints, not sufficientset. The algorithm is thusmcomplete(or
“partial”) in this respect.

The following decomposition rule is used, where the ret@ine is either simplyfrueor Falsg with
the informal meaning “there might be a result” or “a resulpiscluded”.
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Decomposition Rulgrouping:
t! <y allt?
(t1 <y t?) # False

In the case where the constraint is reducedirteg it is possible that there is a result, but it is also
possible that there is none, depending on the further etiaiuaf the variables in?.

5.1.8 Term References: Memoing of Previous Computations

Resolving References. References occurring in either term of a simulation coirsteae dereferenced
in a straightforward manner using tHere f(-) function described above:
Decomposition Rulderef

. 2 1 i
ﬁldiz_tl = deref(id) t—lju—Téd—tz = deref(id)
tt =<yt U2t

Memoing. Dereferencing alone is not sufficient for treating refeedecause the simulation uni-
fication would not terminate in case both terms contain cywferences. The technique used by the
algorithm to avoid this problem imemoing(also known agabling). In general, memoing is used to
avoid redundant computations by storing the result of @&Vjmus computations in memory (e.g. in a ta-
ble). If a computation has already been performed prewpit$s not necessary to repeat it as the result
can simply be retrieved from memory. This technique is anuthgrs used in certain implementations
of Prolog [War92| CW96].
Consider for example the following (nave) implementatibthe Fibonacci numbers in Haskell:

fib :: Int Int

fib 0 = 1

fib 1 =1

fib n = fib (n-1) + fib (n-2)

Without memoing, this implementation performs many redlmatomputatiorﬂ.For example, for the
computation offib(n) it is necessary to computeb(n— 1) andfib(n— 2), and for the computation of
fib(n—1) it is necessary to compuféb(n— 2) and fib(n— 3). Thus,fib(n— 2) needs to be computed
twice. With memoing, the second computation could instederto the previous computation.

In Xcerpt, memoing for unification with references can belengented by keeping for each conjunct
in the disjunctive normal form a history of all previous apptions of simplification rules (without their
results) that were used for the creation of the conjunct. veryedecomposition step it is then first
verified whether the considered constraints have alreagly eealuated in a previous application of this
simplification rule. If yes, the constraint reducestae if no, the computation is continued as usual.

In the following rule, let’# be a set of constraints that have been considered in prexppliations
of simplification rules in the current conjunct of the disjtime normal form (history). Furthermor#,
is considered to be not of the fordesc t
Decomposition Rulexemoing:

desct =<, t?suchthatdesct =<, t2e # t! <, t?suchthat! <, t2e #
False True

It might be somewhat surprising that the constraint is reduoT rue/Falseinstead of inserting the
result of a previous computation. The rationale behindightisat the result of the previous computation

5Note that Haskell's lazy evaluation performs a techniqueilai to memoing
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Figure 3 Derivation tree off {{var X}} =<, f{a,b,c} (Example[3L, part 1). Different paths denote
different alternatives, nodes represent conjuncts, agdskpresent applications of simplification rules.

f{{var X}} <, f{a,b,c}

decomp.3 ecomp.3 decomp.3

var X <y a var X <y b var X <y ¢

is already part of the current conjunct in the disjunctivemal form. True andFalseare the neutral
elements of conjunction and disjunction, and thus termeittaé unification while keeping results of
previous computations. Exampl[ed 34 35 illustrate tnelsition unification with references.

5.2 Examples

Since most examples for the decomposition rules are rattemnsive, they are all grouped in this Section
to improve readability. As in the examples in Secfiad 3.2,¢bnstrucbptional  is sometimes abbre-
viated byopt , the construcposition  is sometimes abbreviated Ipgs, and the construatithout

is sometimes abbreviated by . The latter abbreviation isabipmatic, as can otherwise never occur
within a term. Some of the more complicated examples alswigeca “decomposition tree” which
shows the application of decomposition steps in the diffecenjuncts of the DNF. In these trees, nodes
represent conjuncts and edges represent decompositi@pglying a simplification rule to a conjunct
yields a disjunction, its corresponding node has more tharatternative successors. Read from the root
to the leaves, these trees allow to follow the sequencesooidpeosition steps that lead to substitutions.
The consistent end states of the constraint store are aftpha&sised by a rectangular frame.

Example 31 (Decomposition)
This example consists of three decompositions of simplailsition constraints. Figurdd B 4, add 5
provide a graphical illustration of the decompositions.

1. Consider the simulation constraint (cf. Figlle 3)
C = f{{var X}} <, f{a,b,c}

Applying the decomposition ruldecomp.3vith three different mappings € N to this simulation
constraint yields
var X <ya Vv var X <yb v var X<,c

No further simplification rules are applicable.
2. Consider the simulation constraint (cf. Figlre 4)
C = f[[var X,var Y]] <, f[a,b,c]

Note the partial, ordered term specification of the left tefbecomposition with rulelecomp.3
and the three different index monotonic mappimgs Mmen yields

var X <gaAnvarY =<yb
VvV var X <XyaAvaryY =<,c
VvV varX=<ybAvarY <,c
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Figure 4 Derivation tree off [[var X,var Y]] <, f[a,b,c] (Example3lL, part 2). Different paths denote
different alternatives, nodes represent conjuncts, agdsckpresent applications of simplification rules.

f{{var X,var Y}} <, f{a,b,c}

decomp.3 decomp.3 decomp.3

var X <gaAvarY =<yb var X <yaAvarY <, ¢ var X <ybAvarY =<, c

3. Consider the simulation constraint (cf. Figlle 5)
C= f{{var X—b}} <, f{ab,c}
As both terms are unordered, decomposition ddeomp.3vith the three differentr € N yields
var X —b=<yaVvvarX—b=<ybvvarX—b=,c
Decomposition of the~ construct reduces the constraint store to

b=<ya A varX=<ya A b= var X
vV b=ybAvarX=ybAb=<yvarX
vV b=ycAvarX=<,cAb=,varX

Simulation unification in all three conjuncts yields

False A var X <ya A b= var X
VvV True A var X<yb A b=y var X
Vv FalseA var X <,c A b= varX

and formula simplification simplifies this constraint sttwe

var X <yb A b=<yvar X

Example 32 (Simulation Unification withwi t hout )

1. Consider
C = f{{a,without b}} <, f{a,c}

The sef1 of partial mappings that are total GubT" is as follows (partial mappings completed
by mapping undefined valuesjtoﬂ:

{a—ab~— 1} {a—cb— 1}
{a—ab~—c} {ar—c,b—a}

From this set, the constraiftis decomposed into the following constraint formula (usihg
decomposition rule for terms containimihout ):

a=<yan(b=yLvb=,0)
vV a=ycA(b=yLlvb=,a)

Snote thatwithout bis abbreviated by
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Figure 5 Derivation tree off {{var X — b}} =<, f{a,b,c} (Exampld33LL, part 3). Different paths denote
different alternatives, nodes represent conjuncts, agdsckpresent applications of simplification rules.

f{{var X — b}} %, f{a,b,c}
decomp.3 decomp.3 decomp.3
var X —b=<,a var X —b=<yb var X —b=<,c
var var var
b=<yaAvarX=<,a b=<ub A varX=<yb b=<ucAvarX=,c
Ab=<yvar X Ab=<yvar X A b=yvar X
unify unify unify
False A var X <, a True A var X<y b False A var X <, ¢C
A b=<yvar X A b=yvar X A b=<yvar X
simplify simplify simplify
False var X <yb A b= var X False

Note thatt <, | always evaluates tBalse Evaluating the constraints contained in the negated

subformulas yields:
a=yaA (Falsev False
VvV a=ycA (Falsev False

and formula simplification results in
a=<yava=yc
which of course can be further decomposed tae
2. Considec = f{{a,without b}} =<, f{a,b}

The setll of partial mappings that are total @ubT" is as follows (completed by mapping all
terms on which the mappings are undefined jo

{a—ab— 1} {a—bb— 1}
{a—ab— b} {a—b,b— b}

From this set, the constraiftis decomposed into the following constraint formula (usiheg
decomposition rule for terms containimithout ):

a=<yan(b=xyLvb=yb)
vV a=ybAa(b=xyLlVvb=,a)

Evaluating the constraints contained in the negated sohflas yields:

a=yaA (Falsev True)
vV a=ycA (Falsev False

and formula simplification results in
a=yc

which of course can be further decompose&adse
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Example 33 (Simulation Unification with opt i onal )
Consider the constrai@ = f[[a, optg{var X},opth{var Y} ]] < f[a,g{b}]

The setMNmon of partial, index monotonic mappings that are totalQubT (the non-optional sub-
terms of the left term) is as follows (partial mappings arenpteted by mapping undefined values to
1):

Mmon={ {a—a optg{var X} — L, opth{var Y} 1}
{a—a, optg{var X} — g{b}, opth{varY}— L}
{a—a, optg{var X} — L, opth{var Y} — g{b}}
{ar g{b}, optg{var X} L, opth{var Y} 1} }
From this set, the constraifitis decomposed into the following constraint formula (udimg decom-

position rule for terms containingptional ). The construcbptional is already eliminated using the
helper rule described above:

a=<ygaA ( g{varX} <y L VvV h{varY}=,LlvV
g{var X} <yg{b} Vv h{varY}=<,LV
g{var X} <y L v h{varY} =<yg{b} )
v o a=zyaAg{var X} <yg{b} A ( h{varY}=,Ll )
v o a=yaAhfvarY} =yg{b} A ( g{varX}=,L )
vV oa=yg{b} A ( gfvarX}=yL vV hivarY} <, L )

Note thatt < L always evaluates tBalse Evaluating the constraints contained in the negated subfo
mulas yields:

a=<ygaA ( False Vv Falsev
var X<yb Vv Falsev
False vV False )
v a=yaAg{varX} <yg{b} A ( False )
v a=zyaA h{varY} =<,g{b} A ( False )
vV oa=yg{b} A ( False VvV False )

Formula simplification and application of consistency flgegation) yields

a=<yaA False
Vv a=xyaA g{var X} =yg{b} A True
v a=xyaA h{varY} =<,g{b} A True
vV a=yg{b} A True

Note that reducing the first line t6alseinformally states “the mapping is completable”, whereas th
Truevalues in lines 2—4 state that “the mapping is not completgbkcause the right term only contains
two subterms and the mapping needs to be injective). Aftehdéu decomposition and simplification
steps, this formula is simplified tear X <, b (as desired).

Example 34 (Simulation Unification with References)
Consider the simulation constraint

C= f{{ol@g{{var X —T101}} }} <u f{g{a},02@g{b, 1 02}}

In the following, the sequence of decomposition steps #mltlt in a complete simulation unification
of the simulation constraint is described. For each conjuhe set’ denotes the current memoing
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history of the conjunct. So as to better distinguish the gahlead to this history, the index is composed
of the numbers of the branches followed in previous stepsekample, /721 is the history of the node
that can be located by following the first branch on the togllethe second branch on the second
level, and the first branch on the third level. Note that Feffligives a graphical representation of the
decomposition tree that might be easier to read. In this theehistory of a node is easily determined
by following the path from the root node to the current nodwej thus not given explicitly. The first
decomposition step yields

ol@g{{var X —1 o1}} <ugfa} 74 = {C}
VvV ol@g{{var X —1 ol}} <, 02@g{b, T 02} 5 ={C}

Note that thes# denote the history for every conjunct, and is in this stepstme for both conjuncts,
as they “share the same history”. Further decompositiantem

var X —Tol=ua A1 = 71 U{ol@g{{var X =1 ol}} =ug{a} }
VvV o varX—10l=yb 31 = U {ol@g{{var X —1 01}} <, 02@g{b,T 02}}
VvV  var X —101 =102 Moy = U {ol@g{{var X —1 01}} <, 02@g{b,T 02}}

Application of the~» decomposition in all three conjuncts yields

Tol=<ya A Tol=<yvarX A varX=ya Hi11= 41U {var X -1 0l <, a}
V o Tol=yb A Tol=yvarX A var X <yvar X <,yb H11= 51U {var X =1 0ol <, b}
vV Tol=yt02A Tol=yvarX A var X <7 02 Hop1 = AU {var X —1 0l <1 02}

In the next stepol is dereferenced tol@g{{var X —1 ol}} in all conjuncts. This gives the result:

ol@g{{varX —10l}} =ya A Tol=,varX A varX=,a M= HA11U{1 ol <, a}
VvV ol@g{{var X —70l}} <yb A Tol=xyvarX A varX=,b H2111= H%11U{] 01 <, b}
VvV ol@g{{var X —70l}} Xy 02 A Tol=yvar X A var X =,1 02 Ho11= Ho1U {1 01 <, 02}

Decomposition in the first two conjuncts and dereferencingan the third conjunct then yields:

False A Tol<yvarX A var X <y a
A= 11U {ol@g{{var X =T ol}} <, a}
Vv FalseA Tol=yvarX A varX=yb
Hr1111= 111U {ol@g{{var X —1 01}} <y b}
Vv ol@g{{var X —1 ol}} xy02@g{b,T 02} A 10l =,varX A var X <,02@g{b, T 02}
Ho111= 211U {0l@g{{var X —1 ol}} <7 02,var X <1 02}

The next step eliminates the first two conjuncts becausedbetainFalse In the third conjunct, the
memoingrule is applicable to the first simulation constraint@g{{var X —1 ol}} <, 02@g{b, T
02} € sty C %2111 It thus reduces td rueand terminates the otherwise infinite computation:

True A Tol=yvar X A var X =<y var X <,02@g{b, 1 02} Fo1111= Ho2111

Now the second occurrence of can be dereferenced. The following constraint store igehalt of
the simulation unification:

ol@g{{var X —1 01}} <y var X A var X <y var X <, 02@g{b, T 02}
Hr211111= 321111 {T 01 =y var X}
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decomp.3

var
Tol<yaA Tol=

deref

Tol=<yvar X

decomp.4

8¢

f{{ol@g{{var X -7 01}} }} <, f{g{a},02@gy{b, T 02}}

decomp.3

ol@g{{var X —1ol1}} <, g{a}

var X —Tol=<,a

avar X Avar X <y a

ol@g{{var X —1 ol}} <yaA

A var X <ya

False

var X —

var

decomp.3

ol@g{{var X —1 0l}} <, 02@g{b, 1 02}

decomp.3

Tol=,a

Tol=<yb A Tol=yvar X Avar X <yb

deref

ol@g{{var X —1 ol}} <yb A
Tol=<yvarX A varX=yb

decomp.4

False

Tol=<yT02A Tol=,

decomp.3

var X —1 0l <,T 02

var

deref d

var X A var X <1 02

ol@g{{var X —1 0l1}} <,T 02 A
Tol=<yvar X A var X <,T 02

deref @

ol@g{{var X —1 01}} =<, 02@g{b,1 02} A

Tol=<yvar X A var

memoing

X <y 02@g{b, T 02}

Truen

Tol=<yvar X A var

simplify

X <y 02@g{b, T 02}

7ol =yvar X A var X <, 02@g{b, | 02} |

0= {X— 02@g{b, T 02} }
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Figure 7 Derivation tree off {{ desc d{}} }} <u f{ 01@a{7 o1} } (Example[3b). In this graph, the
memoing historys#’ of a node is represented by the path from the root to that node.

f{ desc d{}} }} <u f{ 01@a{7 o1} }

decomp.3

desc d{}} <u01@a{7 o1}

desc desc

a{{}} xuol@a{71 01} desc d{}} <4701

decomp.2 deref

True desc d{}} <yol@a{1 o1}

memoing

False

Example 35 (Simulation Unification with References and Desndant)
Consider the simulation constraint

C=f{{descd{}} }} <y f{ ol@a{ 01} }

The sequence of decomposition steps is as follows (cf. E[@uior a graphical illustration). The first
decomposition stegleécomp.Byields

desc d{}} =yol@a{t ol} 1 = {C}
Application of the descendant decomposition splits thestamt store into two conjuncts as follows:

a{{}} =uol@a{T o1} M1 = s U{desc d{}} <yol@a{T ol}}
v descd{}} <4t 0ol M= U{desc d{}} =yo0l@a{t ol}}

Decomposition in the first conjunct yieldsue, and in the second conjunatl can be dereferenced:

True A1 = 11U{a{{}} 2uol@a{T ol}}
v descd{}} 2yo0l@a{7 o1} M1 = HrU{desc d{}} <,T 01}

As desc d{}} <, 01@a{1 01} € 54 C 21, the memoing rule is applicable and reduces the second
conjunct toFalse and the process terminates as no more rule is applicable.

True JA111= HA11
Vv False HA211= HA

5.3 Soundness and Completeness

The following theorem shows soundness and completeneghdasimulation unification algorithm
applied to a simulation constraint of the fotfh=, t® t% is assumed to not contain subterm negation
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or optional subterms. Also, as rules with grouping constrace always evaluated in an auxiliary
computation using the dependency constraint, it is assuaétf does not contain grouping constructs.
Furthermoret® is assumed not to contain functions, aggregations or ogitgubterms.

Theorem 36 (Soundness and Completeness of Simulation Unéigon)

Lett9 be a query term without subterm negation and optional sotst@nd let® be a construct term
without grouping constructs, functions/aggregations, aptional subterms. A substitution sefs a
most general simulation unifier tf andt® if and only if the simulation unification d@f! <, t¢ terminates
with a constraint stor€Ssuch that = Q(CS).

We first show that simulation unification terminates for aogry termt® and construct terrtf, and
then show soundness and completeness by induction oveuthiear of rule applications.

Lemma 37 (Termination of Simulation Unification)

Lett9 be a query term without subterm negation and optional sotstend let® be a construct term
without grouping constructs, functions/aggregationsl, @ptional subterms. Simulation unification of
tq <, t° terminates.

Proof. We prove termination by assigning a rank to atomic conssaind showing that the rank decreases with
every rule application. Consider a tree where each nodeasomnic constraint (i.e. either a boolean or a simulation
constraint). Application of a simulation unification ruléelds the constraints that are successors of this node.
Conjunctions and disjunctions split into several sucossseor example, application diecomp.3o a simulation
constraint of the fornf{a, b} < f{c,d} yields the successor nodex c,a <, d, b <, c, andb <, d. By Knig’s
Lemma, it suffices to show that every successor of a node hatlydower rank than its predecessor. Ranks of
constraints are defined as follows:

rank(True) = 0 depth(I{ts,...,th}) = 1+maf ,(deptht))
rank(False) = 0 depti{l{{t1,...,ta}}) = 1+maf ,(deptht))
rank(t; <y t2) = deptHt;) +deptHtn) deptHl|ty,...,tn]) = 1+maf ,(deptht))
depth([[ty,...,tn]]) = 1+maf ,(deptht))
depthvar X) =1 depth{desc} = 1+deptht)
deptivar X Xyt) = 1+deptht) deptHid@t) = 1l+deptht)

Furthermoredepth] id) is defines agn+ 1) - deptht), wheren is the number of remaining applications of
the deref rule to 7 id in the course of the evaluation, ahds the referenced term. Obviously,is finite because
the memoing rule eventually terminates a path when a paierofig is unified that has already been considered.
Since there are only finitely many subterms in each term hifygpens inevitably in every computation that would
otherwise not terminate.

1. application odecomp.ldecomp.2or decomp.4

The rank trivially decreases, because all three kinds @sruéduce the constraint store to eitfieue or
False
2. application ofdecomp.3

A constraint of the form9 <, t® wheretd = | {{t],...,t}}} andt® = 1{t?,...,t2} (independent of the kinds
of braces) is reduced to finitely many successors of the fprm, t? for some childrert! of t4 andt? of

t¢. Lett! andt? be any such children. Obviouslgepttt!) < deptht?) anddeptht?) < deptht®). Then,
rank(t! <y tjz) < rank(t9 <, t°).
3. application ofvar
A constraint of the fornvar X ~»t <t is reduced to three successors:
e rank(t <, t% = deptht) + deptHt®) < (1+deptht)) + deptht®) = rank(t? < t°)
e rank(var X <t = 1+deptht®) < (1+deptht)) + deptht®) = rank(t% <, t), asdeptht) > 1
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e rank(t <y var X) =deptht)+ 1 < (1+deptht)) + deptht®) = rank(t9 <, t%), asdeptht®) > 1

4. application ofdesc
A constraint of the forndesc t=<, t® wheret® = I{tf, ...,t?} is reduced to two kinds of successors:

e rank(t <y t%) = rank(t) 4+ rank(t®) < (14 rank(t)) 4 rank(t®) = rank(desc t=< t¢)

o rank(desc t=yt?) = 1+rank(t) +rank(t?) < 1+ rank(t) + rank(t®) = rank(desc t=y t¢) for some
1<i<n

5. application ofderef

A constraint of the fornj id <t is reduced taleref(id) <, t. Letn be the number of remaining applications
of the dereferencing rule

rank(7id <yt) = (n+1)-deptideref(id))+deptht) > deptideref(id))+deptht) = rank(dere f(id) <yt)

because iff id occurs inderef(id), then thederef rule is only applicabler— 1 times and thus the rank is
strictly lower.

6. application oimemoing

A constraint of the formt9 <, t¢ is reduced tdT rue or Falsein case it has already been considered. Since
rank(True) = rank(False) = 0, the rank is trivially reduced to a lower value.

Proof of Theorerfi:36.

We prove theorefi36 by induction over the numkef applications of decomposition rules to the constraint
storeC initialised byC = t% <, t°. In every case, it is to show th&(C) is the most general simulation unifiertSf
in tC.

Sincet® does not contain grouping constructs, we know that e\er),({w) consists of a single substitution.
This simplifies matters significantly, as it requires thatibstitution sek is a simulation unifier only if for alb € ~
holds thato (t%) < o (t°) (*).

Induction Base.Letk =0, i.e. no rules are applicable. We have to consider two cases
1. Cis of the formvar X <, t¢ for a variableX and a construct term
By definition,Q(C) contains exactly the substitutiomswherea (X) =t’ s.t.t’ = g(t%). Obviously,Q(C) is
a simulation unifier of9 in t¢.
Q(C) is also the most general simulation unifiert®in t°. Assume it was not. Then there exi&tg Q(C)
s.t.% is a simulation unifier of% in t¢, i.e. (with *) for everyo € ¥ holds that? = o (t%) = o(X) simulates
intot® = o (t°). Let nowo € £ and lettY = g(X) be one of the ground instancest8fs.t.a ¢ Q(C), but
t9 simulates into the ground instancetbin o. Because is a simulation unifier and thus an all-grounding
substitution set¥ is a data term. By definition &, it thus holds that? = t¢. Contradiction witht9 ¢ Q(C)
4

2. Cis of the formt9 <, var X for a variableX and a query terrh
By definition,Q(C) contains exactly the substitutiooswhereog (X) =t’ s.t.o(t9) < t’. Obviously,Q(C) is
a simulation unifier of% in t°.
Q(C) is also the most general simulation unifiert®in t°. Assume it was not. Then there exi&tg Q(C)
s.t.= is a simulation unifier of® in t¢, i.e. (with *) for everyo € < holds thattY = o (t%) simulates into
t¢ = g(t°) = o(X). Letnowo € ¥ and lettY = g (t9) be one of the ground instancestffs.t.a ¢ Q(C),
butt? simulates into the ground instant® of t¢ in @. Then it holds thatr(t9) < o(X), and thuso is in
Q(C).
Induction Step. Assume now that the number of decomposition stefrs By induction hypothesis, Theordml36
holds for alli < k. We have to consider the following cases:

1. application odecomp.ibrace incompatibility)
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let t9=I[t],... tY] andt® =I{t?,... t2}
orlettd = I[[t},...,t4] andt® = I{t?,...,t2}

As the braces df andt® are incompatible, ground instancest®fvill not simulate in ground instances of
t€ regardless of the substitutions. Thus, the mgsid of t, defined as the union of all simulation unifiers, is
empty. decomp.Teduces both cases to the constraint skatse By definition,Q(False) = { }, and thus
the theorem is correct.

2. application odecomp.Zleft term without subterms)

o lett9=1{{}} andt® = I{tzf,...,tﬁ} or
lettd =1{{ }} andt® =1[tZ,....t2] or
lettd =[]} andt® = [t?,...,t2] andn > 1
Thentd simulates irt® for every grounding substitution set ¥t Thus, the mgsu d? in t€ is the set
of all all-grounding substitutionglecomp.2educes all three casesToue and with the definition of
Q(True) as the set of all all-grounding substitutions, the theorgroirect.

o lettd=1{}andt®=I{t?,...,t2} or
lett9=1{ } andt® =1 [tfl,...,t,ﬂ or
lettd =1[] andt® =1[t2,...,t3] andn > 1
Thentd never simulates in ground instancesfbecause there exists no index bijective function from
()to(t2,...,t3) for n > 1. Thus, the mgsu dfl in t¢, defined as the union of all simulation unifiers, is
empty. decomp.Zeduces all three cases to the constraint stalse By definition,Q(False) = { },
and thus the theorem is correct.

o lettd=I{}andt®=1{}or
lettd=1{ } andt® =[] or
lettd =I[] andt® =[]
Thentd simulates int® for every substitution set. Thus, the mgsut®fin t¢ is the set of all all-
grounding substitutionglecomp.2educes all three casesToue, and with the definition of2(True)
as the set of all all-grounding substitutions, the theoregoirect.

3. application odecomp.3general decomposition)
Lettd =1{{t},...,t4h}} and lett® = I {t?,...,t2}.
The mgsu oft9 in t¢ is the set® of all all-grounding substitutions' such thato(t9) < o(t®). According
to Definition[IT, it thus holds that there exists a total, indgective, and position preserving mapping
from SubT(o(t9)) = (t},....t}) to SubTa(t%)) = (t2,...,t3) such that for eaclf! € SubT(o(t%)) holds
thatt! < o(t!), andZ consists of all suclo.
Application ofdecomp.0t% < t¢ yieldsC = V/ e, A1<i<mtl <u 7I(t"). Thus, as by definitiorQ(C) =
Q(VC) =UQ(C), Q(C) substitutions for all possible total, index injective, grakition preserving func-
tions 7. Consider now som€’ = /\1§igmtil <u Ti(t!) for some mappingt. By definition, we know that
Q(C) = Ny<i<n Q(t =y m(t1)), and by induction hypothesis, eadift! <, m(t!)) is the most general sim-
ulation unifier oft! in m(t!). Q(C’) is thus the maximal all-grounding substitution set that &naulation
unifier for each of thet in 7i(t!). Thus,Q(C) = JQ(C') is the maximal all-grounding set that is a simulation
unifier for any of the mappings, and as the labels ¢f andt® match,Q(C) is the most general simulation
unifier oft%in t°.
The argumentation is identical in the other cases with tlvegtion of the chosen set of functioRis which
is obviously correct.

4. application ofdecomp.4label mismatch)
Let t9 andt® be terms such that the labels mismatch. Hence, ground gesanftd will not simulate in
ground instances df regardless of the substitutions. Thus, the mgstfdh t¢, defined as the union of
all simulation unifiers, is emptydecomp.Ireduces? <, t¢ to the constraint storEalse By definition,
Q(False) = { }, and thus the theorem is correct.
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5. application ofvar (~» elimination)
Lettd = var X~ t! and lett® = t2.
An all-grounding substitution sét has to satisfy the following conditions to be a simulatioiifienof t9 in
t<
(@) = must be applicable twar X ~- t1, i.e. it may only contain substitutions for which holds that
o(th) < a(X)
(b) it must be a simulation unifier ofar X in t2, i.e. for every substitution set in Z holds thato(X) <
o(t?)
We now show that the evaluation of the rular satisfies both conditions and is maximal, i.e. a most general
simulation unifier oft9 in t®. var reducegd <, t® to a constraint stor€S=t1 <, t2 Atl <, X A X <, t2.
By definition,
QCY =t <ut?) N Qtt <y X) N QX =y t?)

—— —— ——
A B C

e Bis the mgsu ot in var X; thus, for everyo € B holds thato(t*) < o(X)
e Cisthe mgsu ofar X ando(t?)

BN C describes exactly the mgsutfin t¢, because it fulfils the requirements (1) and (2) given aboxk a
is maximal, becausB andC are maximal.

As, by induction hypothesis! <, t2 computes the mgsu of in t2, ANBNC = BNC (i.e.t! <, t? does not
remove further substitutions froBiNC). Note that this corresponds to the fact ttlai, t2 is merely used
to improve the evaluation performance.

Thus, the theorem is correct for this case.

6. application ofdesc(descendant elimination)
Lettd =desctand let® = I{t?,...,t3} ort® =I[t7,...,t2] (n > 0).
A substitution set is then a simulation unifier if for everg € X holds that there exists a subtetfn of

o(t) such thato(t) < t°, and it is the mgsu, if it is the union of all all-grounding sitation unifiers that
adhere to this restriction.

Application of the ruledescreduces the constraitft < t°toC =t =<, t°V V/;<j<pdesct=y tiz. Thus,

QC)=Q(t =ut)U |J Q(desct=yt?)

1<i<n
A

B

By induction hypothesisA is the mgsu ot =< t¢, andB is the union of the mgsus @f =<, ti2 for some
subtermti2 of t¢. By Definition[IT,Q(C) is thus the maximal set of all-grounding substitutions ikad
simulation unifier ot9 in t¢ and thus the mgsu.

7. application oinemoingtermination in case of constraints that have already bexatetd)

It suffices to consider the rulmemoingthe rulederefis trivially correct, it simply implements the definition

of dereferencing in ground query term graphs.

In the following, lett® be some construct term of the forias@! {t?, ...,t3} orid@I[t7,...,t3] such that at
least one of th&q2 contains a reference td, i.e.t® contains at least one cycle. Itis not necessary to consider
othert® without identifiers or without cycles, because the theoreid$for these as shown in the rest of this
proof.

We already know that simulation unification is sound and deteor all rule applications besidesemoing

We have to show that thmemoingules have no influence on the resulting set of all-groundingstitutions,

i.e. with memoing, we get the same result as without memaing (nfinite application of decomposition
rules).
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e lettd =desct a substitution seX is the mgsu of% in t€, if it contains exactly the substitutions for
which holds thatr(t%) < o(t°).
Evaluation ofC = t9 <, t¢ for the first time yield<C =t <y t¢V \/1-;<, desc t=, t? by applying the
rule desc Assume that further evaluation 8feventually yields a constraint store (in DNF) of the form
Ci1V---VGV---VCpfor somem> 1, and thaC; again is of the fornt® <, t¢, because thdesc tjutj2
leading toCj contains a cyclic reference th. Evaluatingt9 <, t¢ again then obviously does not yield
substitutions that are not already induced®yv ---VCi_1VCi11V---VCny, and thus replacing;
by the neutral element for disjunction has no influencegt? <, t°). Simulation algorithm is thus
sound and complete in this case.

e lett% be an arbitrary query term of the forial @t

Decomposition with any of the rules excejgiscreducegd <, t€ to either an atomic constraint or to a
disjunction of conjunctions (in DNF), i.e.

C=C11A---ACip V---VCigA--ACin V---VCnmiA---ACin,

Assume now that any of thg; ; is again of the fornt® <, t® because some subtermstéfandt®
contain cyclic references id’ andid, i.e. evaluation o€; ; would again yieldC. As in the previous
case, no new information would be added, and thus repl&ginpgy the neutral element for disjunction
(True) has no influence of(t% <, t¢). Simulation algorithm is thus sound and complete in thigcas
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