
I4-D6

Initial Draft of a Language Syntax

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D6/D/PU/a1
Responsible editors: Tim Furche
Reviewers: Liviu Badea and Gerd Wagner
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: 31 August 2005
Actual submission date: 20 January 2006

Abstract
This article defines an initial proposal for the syntax of the I4 query language, Xcerpt. Indeed,
not only a single syntax, but rather three syntactical forms of Xcerpt are introduced: (1) the
term syntax, a non-standard syntax that allows the succinct formulation of queries and is in-
tended mostly for human authors; (2) the XML syntax provides a fine granular language markup
in XML, ideal for processing through XML-based tools and for automated query generation or
reasoning about query programs; (3) the compact XML syntax is a hybrid syntax of (1) and
(2). The concepts are introduced UML. In addition to the formal syntax specification, princi-
ples of the syntax design are disucssed. Furthermore, for a number of advanced constructs
the reasoning supporting the design choice, as well as alternative solutions are illustrated. An
impression of how the introduced language constructs allow to write and understand complex
queries is given by numerous examples interspersed among the construct specifications.

Keyword List
reasoning, query language, Semantic Web, concepts, grammar, syntax, terms, XML

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth

Framework Programme.

c© REWERSE 2006.

ii

Initial Draft of a Language Syntax

François Bry1, Tim Furche1, Sebastian Schaffert2

1 Institute for Informatics, University of Munich, Germany
Email: {Francois.Bry,Tim.Furche}@ifi.lmu.de

2 Salzburg Research, Salzburg, Austria
Email: {Sebastian.Schaffert@salzburgresearch.at}

20 January 2006

Abstract
This article defines an initial proposal for the syntax of the I4 query language, Xcerpt. Indeed,
not only a single syntax, but rather three syntactical forms of Xcerpt are introduced: (1) the
term syntax, a non-standard syntax that allows the succinct formulation of queries and is in-
tended mostly for human authors; (2) the XML syntax provides a fine granular language markup
in XML, ideal for processing through XML-based tools and for automated query generation or
reasoning about query programs; (3) the compact XML syntax is a hybrid syntax of (1) and
(2). The concepts are introduced UML. In addition to the formal syntax specification, princi-
ples of the syntax design are disucssed. Furthermore, for a number of advanced constructs
the reasoning supporting the design choice, as well as alternative solutions are illustrated. An
impression of how the introduced language constructs allow to write and understand complex
queries is given by numerous examples interspersed among the construct specifications.

Keyword List
reasoning, query language, Semantic Web, concepts, grammar, syntax, terms, XML

iv

Contents

1 Introduction 1

2 Meta-Syntax Notations for Abstract and Concrete Syntax 3
2.1 Abstract Syntax: UML Diagrams . 3
2.2 Concrete Syntax: EBNF . 4
2.3 Concrete Syntax: Relax NG . 6

I Definition of the Core Language 9

3 Xcerpt: A Versatile Web Query Language 11
3.1 Data Model . 12

3.1.1 Terms for Representing Data and Queries . 13
3.2 A Textual Non-XML Term Syntax for Xcerpt . 14

3.2.1 Lexical Structures . 14
3.2.2 Reserved Names . 15
3.2.3 Whitespace and Comments . 15

3.3 Hybrid XML-style Term Syntax . 16
3.4 Pure XML Syntax . 16

4 Specifying Semi-structured Data: Xcerpt’s Data Terms 19
4.1 Defining Data Terms . 19

4.1.1 Textual Term Syntax: Basic Data Terms . 20
4.1.2 XML-style Term Syntax: Basic Data Terms . 22
4.1.3 Pure XML Syntax: Basic Data Terms . 22

4.2 Content Data Terms . 24
4.2.1 Textual Term Syntax: Content Data Terms . 24
4.2.2 XML-style Term Syntax: Content Data Terms 25
4.2.3 Pure XML Syntax: Content Data Terms . 25

4.3 Structured Data Terms . 26
4.3.1 Textual Term Syntax: Structured Data Terms 28
4.3.2 XML-style Term Syntax: Structured Data Terms 28
4.3.3 Pure XML Syntax: Structured Data Terms . 29

4.4 Top-level Data Terms . 31
4.4.1 Textual Term Syntax: Top-Level Data Terms 32
4.4.2 XML-style Term Syntax: Top-Level Data Terms 32

v

4.4.3 Pure XML Syntax: Top-Level Data Terms . 32
4.5 Exemplary Data Term . 33
4.6 XML Documents as Data Terms . 33

5 How to specify queries?
Part 1: Construction 41
5.1 An Aside: A Parameterized Model for Terms . 42
5.2 Specifying New Data: Construct Terms . 44

5.2.1 Substitutions and Substitution Sets . 44
5.3 The Shape of Construct Term . 46

5.3.1 Textual Term Syntax . 49
5.3.2 XML-style Term Syntax . 50
5.3.3 Pure XML Syntax . 50

5.4 Grouping in Construct Terms . 51
5.4.1 Textual Term Syntax . 53
5.4.2 XML-style Term Syntax . 54
5.4.3 Pure XML Syntax . 54

5.5 Optional Construct Terms . 56
5.5.1 Textual Term Syntax . 57
5.5.2 XML-style Term Syntax . 58
5.5.3 Pure XML Syntax . 58

5.6 Instantiating a Construct Term . 58

6 How to specify queries?
Part 2: Selection 63
6.1 Specifying Query Patterns: Query Terms . 63

6.1.1 Textual Term Syntax . 65
6.1.2 XML-style Term Syntax . 67
6.1.3 Pure XML Syntax . 67

6.2 Variables in Query Terms . 69
6.2.1 Textual Term Syntax . 73
6.2.2 XML-style Term Syntax . 74
6.2.3 Pure XML Syntax . 74

6.3 Incomplete Patterns . 75
6.3.1 Textual Term Syntax . 79
6.3.2 XML-style Term Syntax . 79
6.3.3 Pure XML Syntax . 80

6.4 Top-level Query Terms . 80
6.4.1 Term Formulas . 80
6.4.2 Document Specifications . 81
6.4.3 Textual Term Syntax . 83
6.4.4 XML-style Term Syntax . 84
6.4.5 Pure XML Syntax . 84

6.5 Summary: Modifiers and Where they Occur . 85

vi

7 Programming in Xcerpt: Programs, Goals, and Rules 87
7.1 Xcerpt Programs . 87

7.1.1 Textual Term Syntax . 89
7.1.2 XML-style Term Syntax . 89
7.1.3 Pure XML Syntax . 90

7.2 Semantic Restrictions on Xcerpt Programs . 92
7.2.1 Range Restrictedness . 92

7.2.1.1 Polarity of Subterms . 92
7.2.2 Negation and Grouping Stratification . 94

II Language Extensions and Open Issues 97

8 Open Issues: Language Constructs 99
8.1 General Issues . 99

8.1.1 Defaults and Default Modes . 100
8.2 Construct Specific Issues . 101

8.2.1 Conditional Construction and optional Construct Terms 101
8.2.2 Query Formulas as Subterms . 101

8.2.2.1 withouts as Direct Siblings . 102
8.2.3 Functions and Libraries: Built-In and User-defined 102
8.2.4 Combining and Comparing Modifiers . 102
8.2.5 Variables . 103
8.2.6 Varia . 103

8.3 Querying the Type of Data, Typed Accessors . 104
8.4 Node Identity and Term Identifiers in Xcerpt . 104

8.4.1 Scope of Term Identifiers and Cross-Document References 105
8.4.2 Collapsing Text Nodes . 106
8.4.3 Goal Order . 106
8.4.4 Document Specifications . 106

9 Open Issues: Specific to Data Representation Format 107
9.1 Serializing to XML and from XML . 107
9.2 Accessing RDF Documents . 108

10 Open Issues: Specific to Concrete Syntax 109
10.1 Non-XML Term Syntax . 109

10.1.1 Style Guide . 109
10.2 XML-style Term Syntax . 110
10.3 Pure XML Syntax . 110

11 Open Issues: Language Extensions 111
11.1 RDF Querying in Xcerpt . 111
11.2 Modular Xcerpt . 111

11.2.1 Modules and Components in Xcerpt . 111
11.2.2 Macros, Abbreviations, Code Reuse . 111
11.2.3 Web Service Access . 112

11.3 Visual and Verbal Syntax for Xcerpt . 112

vii

III Full Language Grammars 113

A Grammar for Non-XML Term Syntax 115
A.1 Literal Structures . 115
A.2 Data Terms . 116
A.3 Construct Terms . 117
A.4 Query Terms . 119
A.5 Programs . 122

B Grammar for XML-style Term Syntax 123
B.1 Literal Structures . 123
B.2 Data Terms . 123
B.3 Construct Terms . 124
B.4 Query Terms . 126
B.5 Programs . 129

C Relax NG Schema for XML Syntax 131
C.1 Parameterized Grammars: Terms, Declarations, Modifiers, etc. 131

C.1.1 Declarations . 131
C.1.2 Conditions . 131
C.1.3 Formulas . 132
C.1.4 Modifiers . 132
C.1.5 Term . 133

C.2 Grammar for Xcerpt Programs . 134
C.3 Exemplary Data Term . 140

viii

Chapter 1

Introduction

Xcerpt is semi-structured query language, but very much unique among the exemplars of that
type of query languages (for an overview see [4]):

1. In its use of a graph data model, it stands more closely to early semi-structured query
languages such as Lorel [1, 33] than to current mainstream XML query languages.

2. In its aim to address all specificities of XML with great care, it resembles more current
mainstream XML query languages such as XSLT [13] or XQuery [6]. Xcerpt is tailored to
XML in numerous ways, e.g., by proper support for attributes and namespaces [7]. This
is achieved without sacrificing the conceptual simplicity and syntactical conciseness of
the language. Some aspects of XML are treated differently than in mainstream XML query
languages, e.g., the transparent resolution of non-hierarchical relations expressed using
ID/IDREF, XLink [18], etc.

3. In using (slightly enriched) patterns (or templates or examples) of the sought-for data
for querying, it resembles more the “query-by-example” paradigm [39] and XML query
languages such as XML-QL [19]. In contrast, current mainstream XML query languages
use navigational access to XML data.

4. In offering a consistent extension of XML to overcome certain restrictions of XML, that
seem arbitrary in the context of Web querying and Xcerpt in particular, it is ready to
incorporate access to data represented in richer data representation formats. Instances of
such features are element content, where the order is irrelevant (and can not be queried)
and labels that contain “reserved” XML characters.

5. In providing (syntactical) extensions for querying, among others, RDF, Xcerpt becomes a
versatile query language (as defined in [10]).

6. In a strict separation of querying and construction and in its use of logical variables and
deductive rules, it resembles more logic programming languages or Datalog. In contrast,
SQL, e.g., mixes construction and querying (nested queries) and uses explicit references
to views rather than rule chaining.

These unique characteristics of Xcerpt motivate many of the language concepts introduced
in the remainder of this chapter, a more complete discussion of the guiding design principles
for (versatile) Web query languages as exemplified in Xcerpt can be found in [10].

1

Xcerpt exhibits not just one concrete syntax, but rather three, each focused on providing a
unique set of strengths.

1. The first, non-XML syntax is based around the idea of representing terms as in logic-
programming and the following principles:

(a) Terms are represented similar to logic-programming: prefix notation with brack-
eted argument lists for the children of the term. Special provisions are made to
adapt this basic principle to handle the specificities of XML and other Web formats.

(b) Different types of brackets encode term properties and distinguish language con-
structs from data.

(c) The syntax strives to be concise, but still easy to read. The latter objective is sup-
ported, e.g., by the preference for explicit full-word keywords (e.g., optional) to rep-
resent language constructs instead of shorthand notations (such as @ for attribute
in XPath).

(d) The non-XML term syntax emphasizes that Xcerpts data model and language fea-
tures are not specific for one representation formalism such as XML and RDF, but
rather allow different ones to be handled with the same concepts by mapping them
to Xcerpt terms, still providing for all the specificities of the supported representa-
tion formalisms.

2. The hybrid XML-style term syntax is a rather recent development. It aims at

(a) providing a syntax that is (almost) immediately accessible to persons accustomed
with XML;

(b) very explicit, i.e., uses in addition to the XML syntax uses only English words to
represent language features;

This makes the syntax both easier to read and harder to write, as it is slightly less com-
pact than the term syntax but therefore often uses English words to represent language
features instead of special symbols.

The mixing of XML-style syntax for terms and keywords as in the non-XML syntax raises
a number of potential clashes. Most notably, character data still has to be quoted in
contrast to XML to avoid having to escape non-XML parts of the syntax.

3. The previous two syntaxes are mainly intended for human use. Like Relax NG, Xcerpt
also exhibits a pure XML syntax that, though harder to author and read for humans, is
easy to process with XML tools. The guiding principle is a form of markup reification, i.e.,
elements and attributes are explicitly represented by XML elements named element and
attribute (similar to XSLT’s xsl:element and xsl:attribute elements for construction of
elements with computed names).

As in the other concrete syntaxes, the Xcerpt namespace http://xcerpt.org/ns/core/
1.0 is reserved to indicate language constructs. Indeed, in the XML syntax all language
constructs are expressed through elements in the Xcerpt namespace.

2

http://xcerpt.org/ns/core/1.0
http://xcerpt.org/ns/core/1.0

Chapter 2

Meta-Syntax Notations for Abstract
and Concrete Syntax

This article presents the syntax of Xcerpt from three different perspectives: an abstract syntax
focusing on the language concepts, a concrete syntax that represents terms in a compact style
familiar from, e.g., logic programming, and a concrete XML syntax that represents a basis for
Xcerpt tools and machine processing of Xcerpt programs.

To define each of these syntaxes appropriate meta-languages are chosen: For the abstract
syntax of Xcerpt—in other words, its information model, what form of information is needed
for which feature of the language—the OMG’s Unified Modelling Language (UML) is used. The
concrete term syntax is defined using EBNF grammars and/or railroad syntax diagrams. Finally,
the concrete XML syntax is specified by means of Relax NG schemata.

The remainder of this chapter serves (1) as a (very brief) introduction in the notions of
these meta-languages used in this article (2) to define, where necessary, the precise variant
of the meta-languages referred to in the following chapters, and (3) to point to authoritative
specifications of the meta-languages.

2.1 Abstract Syntax: UML Diagrams or
What is the Information conveyed in an Xcerpt Program?

UML models are shown here in the notation from [35], the OMG UML 2.0 Superstructure specifi-
cation. However, only a small subset of UML’s diagrams and notions is needed for the purpose
of this article: the abstract syntax is defined using (static) class diagrams. Moreover, neither at-
tributes nor methods are present in the diagrams, thus allowing the diagrams to be considered
as merely concepts and relations.

In particular, generalizations (solid line, with an closed, but unfilled arrow head at the end
connected to the more general concept) are used to express different variants of a concept, e.g.,
the different kinds of data terms, each representing a more specialized variant of the general
concept “data term”. Generalizations can be decorated with constraints (attached to the line
in braces). In the following, only the complete and the disjoint constraint are used. The first
indicates that no instances of the more general concept exist, that are not also instance of

3

(at least) one of the specialized concepts, the latter that the instance sets of the specialized
concepts are disjoint.

Aggregations (solid line with an unfilled rhombus at the end connected to the “whole”
concept) are used for “part-whole” relations, e.g., to express that data term-level declarations
contain data terms. Roles and multiplicities can be used to further annotate aggregations (and
other relations).

One advanced concept from UML is used to highlight the differences and commonalities
among the three kinds of Xcerpt terms: “parameterized collaborations”. UML uses parame-
terized collaborations to describe what is often referred to as (software) patterns (not to be
confused with Xcerpt’s patterns), i.e., collections of concepts and relations among concepts
that occur in different contexts. They are “parameterized”, as a number of the concepts in
the parameterized collaboration are “exported” as parameters and must be related to concrete
concepts when using the pattern. See Section 5.1 for a description of a model for Xcerpt terms
based on parameterized collaborations.

For more information on UML (including tutorials) see the OMG UML homepage http://
www.uml.org/.

2.2 Concrete Syntax: Regular Expression-Style EBNF or
Defining the Textual Term Syntax for Xcerpt

A common choice to define the textual syntax of a programming or query language is a variant
of the “Bachus Naur Form” introduced for the specification of ALGOL [3].

Several extensions, then referred to as Extended BNF or EBNF, to the basic BNF notation have
been suggested, mostly adding some form of repetition and optionality to the original language
(that only provided constructs for terminals, non-terminals, definition of non-terminals, and
alternative).

Indeed, several standardization bodies have recently defined “standard’ ’1 variants of BNF,
most notably the ISO EBNF international standard [28], the IETF [17] internet standard, and the
W3C-style EBNF notation defined in Section 6 of the XML specification [8]. Table 2.1 shows the
constructs of the ISO EBNF standard in contrast to the constructs of the W3C-style EBNF given
in Table 2.2.

For this article, the W3C-style notation is used, since it is reminiscent of regular expres-
sions as also used in Xcerpt and is likely to be most familiar for readers accustomed to W3C
standards.

Like [6], we slightly deviate from the syntax in [8] to address the differences in print
vs.online publications:

1. Instead of marking non-terminal symbols with links (commonly displayed using under-
line and blue color), non-terminal symbols are enclosed in typographic angle brackets
(〈·〉) and set in italics.

2. To further strengthen the difference between meta-language and language constructs,
teletype is reserved for terminal symbols, all non-terminals and meta-language constructs
are formatted as usual text. In particular, typographic single quotes are used for quoting
non-terminals.

1Refined from the dozens of variants, cf. http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html.

4

http://www.uml.org/
http://www.uml.org/
http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html

ISO EBNF Construct Operator Type Meaning

unquoted word non-terminal symbol
"..." terminal symbol
’...’ terminal symbol
(...) grouping override precedence)
[...] optional symbols
{...} zero or more repetition of symbols

{...}- one or more repetition of symbols
= in symbol definition
; post rule terminator
| in alternative
, in symbol concatenation
- in except

* in n occurrences of symbols
(*...*) comment

?...? special sequences (extensible)

Table 2.1: ISO Standard Extended BNF Notation

W3C EBNF Construct Operator Type Meaning

unquoted word non-terminal symbol
"..." terminal symbol
’...’ terminal symbol
[...] character groups as in regular expressions
(...) grouping (to override precedence)
...? post optional symbols
...* post zero or more repetition of symbols
...+ post one or more repetition of symbols
::= in symbol definition

| in alternative
- in except

/*...*/ comment

Table 2.2: W3C Extended BNF Notation

5

3. Whitespace handling is left out of the grammar: By default, additional whitespace may
occur anywhere between non-terminals. The few exceptions (names, IRIs, and strings) are
noted in the natural language description of the grammar rules.

Finally, to reference non-terminals defined in other specifications a notation similar to the
one proposed in [6] is adopted: 〈http://www.w3.org/TR/REC-xml-names/#Digit〉 references the
non-terminal 〈Digit〉 from the XML specification identified through its canonical URI.

EBNF rules are often visualized using railroad syntax diagrams similar to [9]: terminals and
non-terminals are drawn on a line to specify concatenation. Alternatives are represented by
stacked lines fanning out at the decision point and repetition is indicated using loops (option-
ality comes for free as alternative where one of the stacked lines does not contain terminals or
non-terminals).

2.3 Concrete Syntax: Relax NG or
A Schema for Xcerpt Programs in XML

Xcerpt’s XML syntax is specified in form of an Relax NG grammar. Relax NG [15] is a schema
language for XML. It has been chosen for the specification of Xcerpt’s syntax as it (a) has, in
contrast to XML Schema [22], a compact, easy to read syntax, (b) supports, in constrast to DTDs
namespaces, and (c) has support for parameterized grammar rules. The latter point makes it
possible to drastically reduce the size of the language specification by reusing the definition of,
e.g., a term over all three term kinds of Xcerpt, parameterizing where necessary. It also allows
a close alignment with the abstract syntax.

Relax NG has, like Xcerpt, both a compact textual non-XML syntax [14] and a more verbose
pure XML syntax. In the following, the compact non-XML syntax for Relax NG is used.

A Relax NG grammar consists in a single start production and a set of normal productions,
each defining one non-terminal (called named pattern). Element content can be defined using
connectives like in regular expressions or DTDs: sequence (,), choice (|), repetition (* and +),
and optionality (?). Elements and attributes are treated symmetrically, specified using element,
resp. attribute followed by the name of the element or attribute. Literal content is either text

or content typed according to the XML Schema Datatypes [5].
Non-terminals (named patterns) may be defined by multiple productions, if each production

is marked with the how to combine the alternatives: |= instead of the usual = indicates that
the alternative productions form a choice. I.e., if S |= P and S |= Q then S = P | Q. This
allows the introduction of additional choices, e.g., when including an existing grammar and is
used extensively to define construct and query terms as extensions of the productions for data
terms, cf. Chapter 5, and Chapter 6.

Relax NG is a particular convenient choice for defining Xcerpt, as it allows (to some extend)
to express parameterized concepts (as discussed above): In Relax NG grammars (i.e., sets of
productions or (non-terminal) definitions) may be merged or included into each other. When
including one grammar in another one (using the include keyword and a reference to the file in
which the grammar to be included is contained), definitions for non-terminals may be replaced
or combined with new ones. Such replaced non-terminals can be seen like parameters of the
grammar. Grammars can furthermore be nested to “hide” away all productions except the start
symbol of the grammar.

6

Namespaces can be attached to all elements of a grammar or to individual elements. There
only the first means are used, cf. Section 4.1.

More information about Relax NG and its compact syntax can be found at the OASIS Relax
NG site http://www.relaxng.org/.

7

http://www.relaxng.org/

8

Part I

Definition of the Core Language

9

Chapter 3

Xcerpt: A Versatile Web Query
Language

Xcerpt is semi-structured query language, but very much unique among the exemplars of that
type of query languages (for an overview see [4]):

1. In its use of a graph data model, it stands more closely to early semi-structured query
languages such as Lorel [1, 33] than to current mainstream XML query languages.

2. In its aim to address all specificities of XML with great care, it resembles more current
mainstream XML query languages such as XSLT [13] or XQuery [6]. Xcerpt is tailored to
XML in numerous ways, e.g., by proper support for attributes and namespaces [7]. This
is achieved without sacrificing the conceptual simplicity and syntactical conciseness of
the language. Some aspects of XML are treated differently than in mainstream XML query
languages, e.g., the transparent resolution of non-hierarchical relations expressed using
ID/IDREF, XLink [18], etc.

3. In using (slightly enriched) patterns (or templates or examples) of the sought-for data
for querying, it resembles more the “query-by-example” paradigm [39] and XML query
languages such as XML-QL [19]. In contrast, current mainstream XML query languages
use navigational access to XML data.

4. In offering a consistent extension of XML to overcome certain restrictions of XML, that
seem arbitrary in the context of Web querying and Xcerpt in particular, it is ready to
incorporate access to data represented in richer data representation formats. Instances of
such features are element content, where the order is irrelevant (and can not be queried)
and labels that contain “reserved” XML characters.

5. In providing (syntactical) extensions for querying, among others, RDF, Xcerpt becomes a
versatile query language (as defined in [10]).

6. In a strict separation of querying and construction and in its use of logical variables and
deductive rules, it resembles more logic programming languages or Datalog. In contrast,
SQL, e.g., mixes construction and querying (nested queries) and uses explicit references
to views rather than rule chaining.

11

These unique characteristics of Xcerpt motivate many of the language concepts introduced
in the remainder of this chapter, a more complete discussion of the guiding design principles
for (versatile) Web query languages as exemplified in Xcerpt can be found in [10].

3.1 Data Model

As stated above, Xcerpt uses a graph data model. More precisely, Xcert provides access to one
or more data graphs (that are usually stored in data units called “documents” identified by IRIs
[21]). Each data graph is a rooted, directed, node-labeled, ordered, unranked graph with two
types of nodes:

§1 Element Nodes

Element (or structural) nodes represent XML elements or similar structured data items (e.g.,
resources in RDF).

Each element node is decorated further with a dictionary (or associative list) of (XML-style) at-
tributes. Some attributes are predefined and exist at all nodes, viz.the label and namespace
(cf. [7]), others are specified in the data, e.g., as XML attributes. Just like in XML, attributes are
single valued1 and unordered, i.e., for each attribute name (dictionary key) a single value exists
and the order of the key-value pairs is not significant and can not be queried.

Currently, element nodes in Xcept do not have an explicit object or node identity, i.e., two
element nodes with the same attributes and children can not be distinguished from each other.
Though, explicit node identity can be simulated with the current approach, direct support of
explicit node identity is under consideration, cf. Issue 19.

Element nodes closely resemble element information items from [16] with two minor devi-
ations: Xcerpt does, at least at the time of writing, not provide access to in-scope namespaces
(cf. Issue 27) and for the base URI according to the XML Base recommendation [31] (cf. Issue
26). The handling of attributes, however, deviates notably from the XML information set to em-
phasize the distinction of elements and attributes: attributes are simple key-value pair, where
the key is an XML name (and thus may consist in prefix and local name) and the value is an
arbitrary string. No further information can be attached to attributes.

Each element nodes has zero or more edges to other nodes, called its children. These
edges are always ordered. However, in contrast to pure XML, one can specify whether this
order is significant, i.e., whether it has to be preserved during storage or transformation and
can be queried. All element nodes originating from XML documents are by default ordered (cf.
Section 4.6). Element nodes where the order is significant are called ordered, element nodes
where the order is insignificant unordered. There are no further restrictions on the edges, i.e.,
the graph may be cyclic, may have loops, the same two nodes may be connected by several
nodes, e.g., if a node is the 2nd, 4th, and 12th children of another one.

§2 Content Nodes

Content (or atomic) nodes represent data items that are considered unstructured in the
context of Xcerpt.

Content nodes can be further distinguished into

1. Text nodes that represent the textual content of element nodes. The only attribute of

1See Issue 18 for a discussion on list-valued attributes (such as attributes of type IDREFS in XML).

12

a text node is the string it represents. The same restrictions as for text nodes in XSLT
[13], XQuery, and XPath [23] apply, i.e., (1) text nodes never represent an empty string, (2)
two text nodes can never be direct siblings of each other. Two nodes are direct siblings,
if either they are children of the same ordered element node and are consecutive in
the children order or they are children of the same unordered element node. Thus, an
unordered element node may not have more than one text node child (cf. Issue 21). If
two text nodes are constructed as direct siblings they are collapsed.

2. Comment nodes that represent comments, i.e., annotations on the actual data that are
not meant for machine processing. As text nodes, they have only one attribute: the
content of the comment. However, in contrast to text nodes no further restrictions are
placed on comment nodes.

3. Processing instruction nodes that represent processing instructions, i.e., annotations on
the actual data that are meant for processing by specific “target” services. They carry two
attributes, the content of the processing instruction (usually some form of instructions
for the “target” service) and the name of the “target” service.

3.1.1 Terms for Representing Data and Queries

Inspired by logic programming languages, Xcerpt chooses the concept of terms for represent-
ing, constructing, and querying complex (or structured) data: Xcerpt uses three forms of terms:

1. data terms for representing semi-structured data, i.e., all node types from the data model
are represented as terms,

2. construct terms for specifying “forms” or “templates” of data to be constructed with
variables to indicate where data obtained from the (separated) query part is to be “filled”
in, and finally

3. query terms for specifying “patterns” or “examples” of the data to be matched by a query
again with variables to indicate where data is to be extracted from the matches.

(XML) element nodes represented as terms are the only complex data structure in Xcerpt.
In particular, variables can only be of type term (which includes literal content such as strings
as atoms). Other complex data structure such as lists (or sequences), homogeneous or het-
erogeneous records, sets, and dictionaries (or associative lists) can be simulated as terms, but
no specific constructs are offered. Instead Xcerpt avoids to burden the query author with the
selection of the appropriate data structures and leaves this to the query processor. The query
processor can choose appropriate storage and access methods, if a term is restricted, e.g., by
means of a schema (i.e., type information, see Section 8.3). E.g., a term’s children may be stored
and accessed using algorithms for dictionaries if it is known that the labels of all children are
mutually distinct. Or duplicate elimination may be skipped during query evaluation if the
children of a term are indeed restricted to a proper set.

The remainder of this chapter introduces the three concrete syntaxes for Xcerpt discussed
in this article: the textual non-XML term syntax, the pure XML syntax, and the hybrid XML-style
term syntax.

13

3.2 A Textual Non-XML Term Syntax for Xcerpt

Xcerpt exhibits not just one concrete syntax, but rather three, each focused on providing a unique set
of strengths. The first, non-XML syntax is based around the idea of representing terms as in logic-
programming and the following principles:

1. Terms are represented similar to logic-programming: prefix notation with bracketed argument
lists for the children of the term. Special provisions are made to adapt this basic principle to
handle the specificities of XML and other Web formats.

2. Different types of brackets encode term properties and distinguish language constructs from data.

3. The syntax strives to be concise, but still easy to read. The latter objective is supported, e.g., by
the preference for explicit full-word keywords (e.g., optional) to represent language constructs
instead of shorthand notations (such as @ for attribute in XPath).

4. The non-XML term syntax emphasizes that Xcerpts data model and language features are not
specific for one representation formalism such as XML and RDF, but rather allow different ones to
be handled with the same concepts by mapping them to Xcerpt terms, still providing for all the
specificities of the supported representation formalisms.

The actual syntax is introduced in each chapter along the abstract and the other concrete syntaxes.
The following preliminary remarks set the basis for the discussion of the non-XML term syntax in the
rest of this article.

3.2.1 Lexical Structures

The textual non-XML term syntax makes use of the following five lexical structures:

1. Names: For, among others, element labels and variables, Xcerpt uses the namespace-aware iden-
tifiers, that must adhere to the definition for 〈NCName〉 in the W3C XML Namespace recommen-
dation [7]. Notice, that this allows for slightly different identifiers than allowed by the definition
of an XML (1.0) 〈Name〉 in [8]. The difference is that in namespace-aware identifiers as used in
Xcerpt the double colon characters is not allowed.

2. IRIs: For namespaces and as a pool for unique identifiers, Internationalized Resource Identifiers
(short IRIs) may be used in Xcerpt. Internationalized Resource Identifiers are defined in RFC 3987
[21]. Like strings, IRIs are always enclosed in straight double quotes in Xcerpt.

3. Strings: Literal content is represented as strings of characters. However, to avoid the introduction
of character entities into Xcerpts non-XML syntax, Java strings (as of §3.10.5 of [25]) are chosen
and not, e.g., XML character data. Since Xcerpt’s syntax is not line-oriented, there is no need to
escape linefeed or carriage return. Thus, an Xcerpt string is an arbitrary sequence of Unicode
characters with straight double quotes and backslashes backslash-escaped. For convenience, Java
escape sequence (e.g., \t for a tabulator) and Unicode escapes (e.g., \u000d for a carriage return)
are also allowed. Strings in Xcerpt are always enclosed in straight double quotes ("), never in
single straight quotes.

4. Numbers: Some Xcerpt constructs have parameters that are natural numbers. Here, we use again
the definition from [8].

5. Regular Expressions: In query terms (cf. Chapter 6), Xcerpt uses POSIX.1 regular expressions as
defined in [26], Base Definitions Volume (XBD), ch. 9, but extends these regular expressions with
variable bindings.

This results in the following grammar for the lexical structures used in Xcerpt’s non-XML term syntax
(lexical structures are distinguished from other non-terminals by an uppercase first letter):

〈NCName〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#NCName〉

14

〈IRI〉 ::= ‘"’ 〈http://www.ietf.org/rfc/rfc3987.txt#IRI〉 ‘"’

〈String〉 ::= ‘"’ 〈StringCharacter〉* ‘"’

〈StringCharacter〉 ::= 〈http://java.sun.com/docs/books/jls#StringCharacter〉 | 〈Line-feed〉 | 〈Carriage-return〉

〈Line-feed〉 ::= ‘0̆00a’

〈Carriage-Return〉 ::= ‘0̆00d’

〈Int〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#Digit〉*

〈Regexp〉 ::= ‘/’ 〈{http://www.unix.org/version3/ieee_std.html#}extended_reg_exp〉 ‘/’

〈http://www.unix.org/version3/ieee_std.html#ERE_expression〉 ::=
〈http://www.unix.org/version3/ieee_std.html#one_char_or_coll_elem_ERE〉

| ‘^’
| ‘$’
| ‘(’ 〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉 ‘)’
| ‘(’ 〈variable〉 ‘->’
〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉‘)’

| 〈http://www.unix.org/version3/ieee_std.html#ERE_expression〉
〈{http://www.unix.org/version3/ieee_std.html#}ERE_dupl_symbol〉

Notice, how the 〈ERE_expression〉 from the POSIX standard is overwritten by the production specified
here that includes (in line 6 of the production) the added syntax for binding Xcerpt variables in regular
expressions. For 〈variable〉 production is defined in Chapter 6.

3.2.2 Reserved Names

Xcerpt’s non-XML term syntax does not reserve any names as language keywords, as the structured of
the language allows a disambiguation between keywords and names.

However, the Xcerpt namespace identified by the IRI http://xcerpt.org/ns/core/1.0 is reserved
for language constructs and can not be used for other purposes.

Some implementations may additionally want to restrict the occurrence of keywords in identifiers,
i.e., the may want to chose the following restricted definition of 〈NCName〉:
〈NCName〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#NCName〉 - 〈ReservedNames〉

〈ReservedNames〉 ::= ‘all’ | ‘and’ | ‘desc’ | ‘descendant’ | ‘except’ | ‘first’ | ‘not’ | ‘optional’
| ‘or’ | ‘position’ | ‘some’ | ‘without’

3.2.3 Whitespace and Comments

In the grammars for the non-XML term syntax, whitespace is not explicitly included. Rather Xcerpt uses
the following whitespace handling rules (similar to, e.g., XQuery [6]):

1. Arbitrary sequence of whitespace characters (as defined by the character class 〈S〉 in the XML
specification [8]) and Xcerpt comments may occur in between any two terminals and must occur
where otherwise two sequential terminals are recognized as one. It can be safely “normalized” to
a single whitespace character.

2. Strings, names, and other literal structures are considered a single terminal for the purpose of this
rule. In other words, in strings, names, and other literals whitespace is significant and may not be
ignored. E.g., the string " a " differs from the string "a".

15

{
{
http://xcerpt.org/ns/core/1.0

Xcerpts non-XML term syntax allows both end-of-line and block comments to occur in place of
whitespace. The following rules define whitespace and comments for Xcerpt’s non-XML term syntax.

〈Whitespace〉 ::= (〈http://www.w3.org/TR/REC-xml/#S〉 | 〈End-of-line-comment〉 |
〈Block-comment〉)*

〈Comment-char〉 ::= 〈http://www.w3.org/TR/REC-xml/#NT-Char〉

〈End-of-line〉 ::= 〈Line-feed〉 | 〈Carriage-return〉 (〈Line-feed〉)?

〈End-of-line-comment〉 ::= ‘#’ (〈Comment-char〉* –
(〈Comment-char〉* 〈End-of-line〉 〈Comment-char〉*)

〈End-of-line〉

〈Block-comment〉 ::= ‘/#’ (〈Comment-char〉* –
(〈Comment-char〉* (‘/#’ | ‘/#’) 〈Comment-char〉*)

‘/#’

Notice, that block comments can not be nested, cf. Issue

3.3 Hybrid XML-style Term Syntax

The hybrid XML-style term syntax is a rather recent development. It aims at

1. providing a syntax that is (almost) immediately accessible to persons accustomed with XML;

2. very explicit, i.e., uses in addition to the XML syntax uses only English words to represent lan-
guage features;

This makes the syntax both easier to read and harder to write, as it is slightly less compact than the
term syntax but therefore often uses English words to represent language features instead of special
symbols.

The mixing of XML-style syntax for terms and keywords as in the non-XML syntax raises a number of
potential clashes. Most notably, character data still has to be quoted in contrast to XML to avoid having
to escape non-XML parts of the syntax.

As the remainder of this article illustrates, that the hybrid XML-style term syntax can indeed be
defined by very few deviations from the non-XML term syntax that only affect the representation of
(structured) terms as XML-style elements instead of logic-programming style.

The same lexical structures and reserved words as in the non-XML syntax are used. In particular,
character data must be quoted as in the non-XML syntax. Neither normal XML character data nor CDATA
sections are allowed.

Note, that this is possible as the Xcerpt term syntax follows the same convention as XML for plain
names.

The same syntax for end-of-line and block comments as in Xcerpt’s term syntax is used. Note, that
block comments in the XML syntax, i.e., using <!-- and --> as delimiters, may also occur, but represent
comments in the data, not in the query language (cf.Section 4.2).

3.4 Pure XML Syntax

The previous two syntaxes are mainly intended for human use. Like Relax NG, Xcerpt also exhibits a
pure XML syntax that, though harder to author and read for humans, is easy to process with XML tools.
The guiding principle is a form of markup reification, i.e., elements and attributes are explicitly repre-
sented by XML elements named element and attribute (similar to XSLT’s xsl:element and xsl:attribute
elements for construction of elements with computed names).

16

The lexical structures and whitespace handling rules used are, of course, those of XML, see [8]. In
particular, character data must follow the XML restrictions, i.e., < and & must be escaped.

As in the other concrete syntaxes, the Xcerpt namespace http://xcerpt.org/ns/core/1.0 is re-
served to indicate language constructs. Indeed, in the XML syntax all language constructs are expressed
through elements in the Xcerpt namespace.

17

http://xcerpt.org/ns/core/1.0

18

Chapter 4

Specifying Semi-structured Data:
Xcerpt’s Data Terms

4.1 Defining Data Terms

Starting with this section, the remainder of this chapter discusses the three different kinds of
terms used in Xcerpt starting with data terms, the most basic term kind.

§1 Data Terms

Data terms are (linear) representations of semi-structured data in Xcerpt.

Unsurprisingly, data terms are closely aligned with Xcerpt’s data model as introduced in
Section 3.1. Each of the node types in Xcerpt’s data model are represented by a corresponding
kind of data term. However, data terms differ in two notable aspects:

First, data terms are hierarchical (i.e., tree shaped). Thus, to obtain a linear representations
of the Xcerpt data graph, referable term identifiers and references are introduced that allow
to express non-hierarchical relations.

§2 Term Identifiers

Referable term identifiers are identifiers for (structured) terms (representing element nodes)
that are unique at least within the current document and allow references to the identified
terms.

Term identifiers are only required to be unique within the current document (cf. Issue 20).
This allows for easier authoring and validation but excludes out- or cross-document links. Such
links must be explicitly traversed using a value join, e.g., in the case of (X)HTML between the
fragment identifier in an href attribute and the id attributes in the target document.

§3 References

References are “links” in the linear term syntax for representing non-hierarchical relations.
They are transparently resolved, i.e., the case of a term containing a reference to another
term can not be distinguished from the case where the term contains the other term as a
direct child. For all references in a document, there must be exactly one term with a term
identifier identical to the value of the reference in the same document.

19

StructuredTerm:DataTermTopLevelTermDeclare:DataTerm

!

TopLevelTerm:DataTerm

"#$%&'()(*+,-./$-0)1

NamespaceDeclaration

2334

Content:DataTerm

"#$%&'()(*+,-./50#)1

StructuredTerm:DataTerm

Term:DataTerm

Reference:DataTerm

Identifier:DataTerm

-,6(7

!

TermLevelDeclare:DataTerm

NamespaceDeclaration

2334

LiteralContent:DataTerm

"#$%&'()(*+,-./50#)1

Comment:DataTerm

Content:DataTerm

ProcessingInstruction:DataTerm

StringIdentifier:DataTerm

"#$%&'()(1

#$0)(0)!

#$0)(0)

!

)869()+08%(!

!334

Figure 4.1: UML Model of Data Terms

At the time of writing, term identifiers and references are exclusively part of the linear term
representations and not preserved in the data model (cf. Issue 19 on introducing explicit node
identity in Xcerpt). As a consequence, term identifiers can not be queried.

Second, namespace declarations (and thus the concept of in-scope namespaces) are not
considered as part of term specifications, but are declared in declaration blocks surrounding
the terms where they may be used. This allows slightly more flexibility in the block structure
for declarations and a consistent treatment of declarations on term and rule level (cf. Section
7). Declaration blocks are also used for other declarations (e.g., variable declarations in query
and construct terms or type declarations), but at the time of writing namespace declarations are
the only kind of declarations allowed in data term declaration blocks. A more detail description
of declarations and declaration blocks is given in Section 7.

Figure 4.1 summarizes the kind of terms found as data terms in form of an UML model (cf.
Section: A data term can be either

1. an atomic or content data term that represents a content node in the data model from
Section 3.1,

2. a structured data term that represents an element node in the data model,

3. a reference to another (structured) data term expressed by a term identifier, or

4. a term-level namespace declaration surrounding any number of other data terms.

4.1.1 Textual Term Syntax: Basic Data Terms

Data terms are defined in the textual term syntax just like in the abstract syntax: either term-level
declarations, structured or content data terms, or a reference to another term.

The following productions define first 〈data-term〉, a basic data-term, and then references (indicated
by a ^ symbolizing an ↑ often used to indicate references) and term-level declarations (indicated by the
declare keyword). Content and structured data terms are discussed in the next sections.

Notice, how the concrete syntax allows both the list of namespace declarations and the data terms
in the scope of the declaration to be empty. The abstract syntax (cf.Figure 4.1) however demands that
both lists are at least size 1. This is no contradiction: the concrete syntax is designed to be open, i.e., to
allow also constructs that are superfluous but not harmful to ease, e.g., query refactoring and iterative
query authoring. In the abstract syntax that presents the information model of an Xcerpt program
these superfluous constructs are, however, not any more present. If in the concrete case of term-level

20

declarations either list is empty, there either have been no namespaces declared or there are no affected
data-terms. In both cases, the declaration is ineffectual and will be dropped.

Xcerpt has a considerable number of parameterized concepts, i.e., concepts that occur in different
contexts with different parameters. E.g., declaration blocks may enclose data terms, top-level data
terms, query terms, construct terms, and rules as body, but in each place where a declaration block
may occur only one such enclosed construct type is allowed. This form of parameterized concepts can
not be directly expressed in notation such as EBNF. Therefore non-terminals that indicate by a suffix the
context in which, e.g., a declaration block occurs are used (e.g., 〈term-level-declare-dt〉 instead of just
〈term-level-declare〉).
〈data-term〉 ::=- 〈term-level-declare-dt〉

〈reference-dt〉
〈structured-dt〉
〈content-dt〉

-

〈reference-dt〉 ::=- ‘^’ 〈identifier-dt〉 -

〈term-level-declare-dt〉 ::=- ‘declare’ 〈ns-declaration-dt〉 · · ·

· · · ‘(’ ?〈data-term〉 ‘,’ ‘)’ -

Note, that the parentheses used to enclose the in-scope data terms of the declaration are colored
in ‘gray’. In the following this is used as a short-hand to indicate that, if a construct that has a list of
terms as parameter is applied to (a list of) exactly one, then the brackets can be omitted. I.e., A ‘(’ B*
‘)’ where A and B are arbitrary right-hand side expressions in the EBNF syntax used in this article, is
equivalent to (A B) | A ‘(’ B+ ‘)’.

Identifiers (in data terms) are introduced here, but also use in several other parts of a data term,
cf.Section 4.3. Identifiers in the non-XML term syntax can be either namespace-aware XML names, IRIs,
or strings. As discussed in Section 3.2.1, both IRIs and strings are always enclosed in straight double
quotes, only namespace-aware XML names remain unquoted.

〈identifier-dt〉 ::=- 〈NCName〉
〈IRI〉
〈String〉

-

Namespace Declarations (in data terms) are the basic form of namespace declarations. In query
and construct terms namespace declarations are slightly extended to also allow variables instead of
prefixes or namespace URIs.

〈ns-declaration-dt〉 ::=- ?〈ns-prefix-dt〉 ‘,’ 〈ns-default-dt〉 ‘,’ · · ·

· · · ?〈ns-prefix-dt〉 ‘,’ -

〈ns-prefix-dt〉 ::=- ‘ns-prefix’ 〈NCName〉 ‘=’ 〈IRI〉 -

〈ns-default-dt〉 ::=- ‘ns-default’ 〈IRI〉 -

21

4.1.2 XML-style Term Syntax: Basic Data Terms

Here, the XML-style term syntax uses the exact same productions as the non-XML term syntax, differ-
ences occur only in later parts of data-terms, viz. when defining structured data terms.

4.1.3 Pure XML Syntax: Basic Data Terms

The pure XML syntax is, as mentioned above, defined using Relax NG schemata. To highlight the
similarities between data, construct, and query terms and to ensure consistency, all three terms are
defined based a common grammar for terms, that is parameterized where needed. In fact, this common
grammar exactly captures data terms and is explained in the following.

The first excerpt defines syntax for the basic concepts introduced above: terms, references, and
term-level declarations. Syntax for content and structured (data) terms is discussed in the following
sections.

1 default namespace = "http://xcerpt.org/ns/core/1.0"

3 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class |=

5 reference | content-term | structured-term | term-level-declare

7 ## A declaration block on term level allows possibly (in data and construct terms) only namespace declarations.
term-level-declare =

9 grammar {
include "declare−block.rnc" {

11 content = parent term.class*
var-declaration = empty

13 }
}

15

The using occurrence of a reference, i.e. "^ id" in term syntax.
17 reference = element reference { identifier.class }

Notice, how term-level declarations are indeed defined by referencing an nested grammar and pa-
rameterizing some of its non-terminals, viz. what the content of a declaration is (here a term) and that
no variable-declarations are used. Figure 4.2 shows a visualization of the definition of term-level-declare
unfolding the nested grammar.

Surprisingly, Relax NG restricts the ability to parameterize grammars to inclusion of grammars in
external files, here the file declare-block.rnc, whose content is the following Relax NG grammar:

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = declare-block
5

A declare block with an empty content and both namespace and variable declarations.
7 declare-block =

element declare { (ns-declaration | var-declaration)*, content }
9 ns-declaration =

ns-prefix-declaration*,
11 element ns-default {

element iri { iri.class }
13 }?,

ns-prefix-declaration*
15 ns-prefix-declaration =

element ns-prefix {
17 element name { ncname.class },

element iri { iri.class }

22

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 1 of 2
Continue on page 2

/ {grammar} Start top-level-term.class

top-level-term.class DocDoc

structured-term

{grammar} declare-block.rng

term.class DocDoc

reference

content-term

structured-term

term-level-declare

term-level-declare DocDoc

{grammar} declare-block.rng

include: start from declare-block.rng

Start declare-block

include: define from declare-block.rng

declare-block DocDoc A declare block with an empty content and both namespace and variable declarations.

declare

http://xcerpt.org/ns/core/1.0

0..! ns-declaration

var-declaration

content

include: define from declare-block.rng

ns-declaration 0..! ns-prefix-declaration

0..1 ns-default

http://xcerpt.org/ns/core/1.0

iri

http://xcerpt.org/ns/core/1.0

iri.class

0..! ns-prefix-declaration

include: define from declare-block.rng

ns-prefix-declaration ns-prefix

http://xcerpt.org/ns/core/1.0

name

http://xcerpt.org/ns/core/1.0

ncname.class

iri

http://xcerpt.org/ns/core/1.0

iri.class

include: define from declare-block.rng

var-declaration variable

http://xcerpt.org/ns/core/1.0

@ name DD NCName

include: define from declare-block.rng

content

include: define from declare-block.rng

iri.class text

include: define from declare-block.rng

ncname.class DD NCName

content 0..! term.class

var-declaration

structured-term DocDoc

element

http://xcerpt.org/ns/core/1.0

term-local-spec

term-children

0..1 term-condition

term-condition DocDoc

term-local-spec DocDoc

0..1 term-identifier

ns-label

Figure 4.2: Relax NG Schema for Term-level Declarations in Data Terms

23

StructuredTerm:DataTermTopLevelTermDeclare:DataTerm

!

TopLevelTerm:DataTerm

"#$%&'()(*+,-./$-0)1

NamespaceDeclaration

2334

Content:DataTerm

"#$%&'()(*+,-./50#)1

StructuredTerm:DataTerm

Term:DataTerm

Reference:DataTerm

Identifier:DataTerm

-,6(7

!

TermLevelDeclare:DataTerm

NamespaceDeclaration

2334

LiteralContent:DataTerm

"#$%&'()(*+,-./50#)1

Comment:DataTerm

Content:DataTerm

ProcessingInstruction:DataTerm

StringIdentifier:DataTerm

"#$%&'()(1

#$0)(0)!

#$0)(0)

!

)869()+08%(!

!

Figure 4.3: UML Model of Atomic Data Terms

19 }
var-declaration =

21 element variable {
attribute name { xsd:NCName }

23 }
content = empty

25 iri.class |= text
ncname.class |= xsd:NCName

Notice, the use of combinable definitions (indicated by |=) for uri.class and ncname.class. This
allows later the easy addition of more choices (viz. variables that can occur instead of the plain IRIs or
names).

4.2 Content Data Terms

§4 Content Data Terms

The atomic form of data terms are terms that represent information that is considered un-
structured in the context of Xcerpt, viz. literal (character) content as well as data annotations
in form of comments for human consumption and in form of processing instructions for
machine consumption.

A formal model of content data terms is shown in Figure 4.3: for each of the content nodes
in the data model introduced in Section 3.1 a corresponding data term exists. Notice, that in
alignment with [8] neither processing instructions, comments, or literal (character) content can
be nested.

XML restricts the literal content of comments (processing instructions, resp.) to disallow
the character sequence ‘-’ (‘?>’, resp.). This is not the case in Xcerpt. However, when creating
XML data these additional restrictions have to be considered, cf.Issue 24).

4.2.1 Textual Term Syntax: Content Data Terms

Literal content is represented in the non-XML term syntax by simple (Java-style Unicode) strings as de-
fined in Section 3.2.1. Comments and processing-instructions use the same syntax as structured data
terms introduced in the next section: label in prefix position followed by the list of attributes and chil-
dren. Here, the first is enclosed in (round) parentheses, the second in (square) brackets. Structured

24

terms may also use curly braces around the children list to indicate that the order is insignificant.
Since comments may have no attributes their attribute list is always empty.

〈content-dt〉 ::=- 〈literal-content-dt〉
〈comment-dt〉

〈processing-instruction-dt〉

-

〈literal-content-dt〉 ::=- 〈String〉 -

〈comment-dt〉 ::=- ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ’) ‘ ‘[’ 〈literal-content-dt〉 ‘]’ -

〈processing-instruction-dt〉 ::=- ‘xcerpt’ ‘:’ ‘processing-instruction’
‘xcerpt’ ‘:’ ‘pi’

· · ·

· · · ‘(’ ‘target-name’ ‘=’ 〈identifier-dt〉 ‘)’ · · ·
· · · ‘[’ 〈literal-content-dt〉 ‘]’ -

4.2.2 XML-style Term Syntax: Content Data Terms

Again the XML-style term syntax uses the same productions as the non-XML term syntax, but differs on
the representation of comments and processing instructions: Both are represented as in XML with the
exception of their literal content. That is, as literal content of elements, quoted by straight double quotes
(just like in the non-XML term syntax). Thus if an element in an XML document contains the character se-
quence a & b < c \ d or က this may be written as "a & b < c \\ d or \u1000"
if it occurs in a Xcerpt data term in XML-style term syntax.

〈comment-dt〉 ::=- ‘<!-’ 〈literal-content-dt〉 ‘->’ -

〈processing-instruction-dt〉 ::=- ‘<?’ 〈identifier-dt〉 〈literal-content-dt〉 ‘?>’ -

Also note, that XML disallows comments containing character sequence ‘-’ (and no quoting mech-
anism is applicable, as entities are not expanded in comments) as well as processing instructions con-
taining the character sequence ‘?>’ (again no quoting mechanism applicable). These restrictions are not
present in Xcerpt or one of its syntaxes.

4.2.3 Pure XML Syntax: Content Data Terms

Again, we show the case for representing general terms in the pure XML syntax:

A content term represents literal or other non−nestable content.
2 content-term = literal-content.class | annotation-content

4 ## Content kinds that can be used to annotate elements.
annotation-content =

6 element comment { literal-content.class }
| element processing-instruction {

8 attribute target { identifier.class },
literal-content.class

10 }

12 ## Character data or other atomic content.
literal-content.class |= text

25

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 2 of 2

Continue on page 1

/ {grammar}

term-local-spec

attr-term-list

term-identifier DocDoc

identifier

http://xcerpt.org/ns/core/1.0

identifier.class

ns-label DocDoc

label

http://xcerpt.org/ns/core/1.0

0..1 ns

http://xcerpt.org/ns/core/1.0

identifier.class

identifier.class

attr-term-list DocDoc

attributes

http://xcerpt.org/ns/core/1.0

@ total total.class

0..! attribute-term

total.class DocDoc

true

attribute-term DocDoc

base-attribute.class

base-attribute.class DocDoc

attribute

http://xcerpt.org/ns/core/1.0

ns-label

value

http://xcerpt.org/ns/core/1.0

literal-content.class

identifier.class DocDoc

text

content-term literal-content.class

ref: literal-content.class

literal-content.class DocDoc

text

annotation-content

ref: annotation-content

annotation-content DocDoc

comment

http://xcerpt.org/ns/core/1.0

literal-content.class

processing-instruction

http://xcerpt.org/ns/core/1.0

@ target identifier.class

literal-content.class

annotation-content DocDoc

comment

http://xcerpt.org/ns/core/1.0

literal-content.class

processing-instruction

http://xcerpt.org/ns/core/1.0

@ target identifier.class

literal-content.class

literal-content.class DocDoc

text

term-children DocDoc

children

http://xcerpt.org/ns/core/1.0

@ ordered true

false

@ total total.class

0..! term.class

reference DocDoc

reference

http://xcerpt.org/ns/core/1.0

identifier.class

Figure 4.4: Relax NG Schema for Content Terms

Notice, how literal-content.class is “open” (indicated by |=), i.e., further choices for literal-content.class
may be added separately. Figure 4.4 shows a visual representation of the Relax NG schema fragment
with definitions inlined.

4.3 Structured Data Terms

§5 Structured Data Terms

Structured data terms correspond with element or structural nodes in the data model and
can be nested.

Structured data terms can be distinguished in ordered and unordered data terms. As for
element nodes, the distinction indicates

§6 Ordered and Unordered Terms

A (structured) term is called ordered, if the order of its children is significant. Otherwise it
is called unordered. In the former case the order must be preserved during processing and
storage and is accessible in queries, whereas in the latter it may change during storage or
processing and can not be queried.

For consistency with query terms, structured data terms are further classified as total.

§7 Total Terms

A term is called total, if its list of children is complete, i.e., there can be no additional children.

In Xcerpt, all data terms are total, i.e., must have all their children specified (cf. Issue 35).
Each structured term consists in two parts: a specification of its attributes (called in the

following “local” specification as attributes are the non-structural properties of that term) and
its children as shown in Figure 4.5:

• The children of a structured data term is a sequence of zero or more (arbitrary) data
terms. If the children list is empty, the term itself is often referred to as an empty
term. This children list corresponds to the child edges in the data model after reference
resolution.

• The local specification of a structured data term is depicted in Figure 4.6. It allows the
specification of

26

StructuredTerm:DataTerm

OrderedStructuredTerm:DataTerm UnorderedStructuredTerm:DataTerm

!

"#$%&'

())*

TotalStructuredTerm:DataTerm

+#,-.&/0/1

LocalSpecification:DataTerm

Term:DataTerm

+#,-.&/0/23'%45,%601

Figure 4.5: UML Model of Structured Data Terms

LocalSpecificaiton:DataTerm

!"#$%&'(()

+,-

) BaseAttributeTerm:DataTerm

NsLabel:DataTerm

.-/#)

TotalAttributeTermList:DataTerm

)

0#"/1%2#.0%$%#"

'(()
3-*4#)

.-/#

)

AttributeTermList:DataTerm

AttributeTerm

LiteralContent:DataTerm

Identifier:DataTerm

NCName IRI

5,+/!*#0#612%78+%.09

5,+/!*#0#9

'((:

Figure 4.6: UML Model of the Local Specification for Structured Data Terms

1. An optional term identifier that can be used to reference the term, as discussed
above. Term identifiers can be either XML Names1 or IRIs.

2. Exactly one name or label of the data term. The label itself consists in an optional
namespace prefix and a mandatory local part. Again both can be either XML Names
or IRIs.

3. An attribute term list, that is (a) in data terms always total and (b) consists of one
or more attribute terms, which in data terms are simple pairs of attribute names
(or key) and values. The name has the same shape as data term labels, the value as
literal content data terms.

1Or, more precisely, NCNames as defined in the W3C XML Namespace recommendation [7]. Notice, that these are
not quite identical to the original XML (1.0) Names defined in [8], that do not treat the double colon as a special
character.

27

4.3.1 Textual Term Syntax: Structured Data Terms

Structured data terms form the core of the non-XML term syntax: the “local”, non-structural properties
are specified in prefix notation followed by the list of children. The list of children is enclosed in brackets,
either square brackets (‘[]’) to indicate that the order in which the children are specified is significant
or curly braces (‘{ }’) to indicate that the order is insignificant:

〈structured-dt〉 ::=- 〈local-spec-dt〉 〈children-list-dt〉 -

〈children-list-dt〉 ::=- ‘[’ ?〈data-term〉 ‘,’ ‘]’

‘{’ ?〈data-term〉 ‘,’ ‘}’

-

Local properties of a structured term are the optional term identifier (that is preceding the remaining
properties and separated from them by ‘@’), the label of the term, and its attributes. The label itself
falls into two parts separated by ‘:’, viz. the optional namespace and the local name. Term identifier,
namespace, and local name are all identifiers as defined above in Section 4.1.

〈local-spec-dt〉 ::=- 〈term-identifier-dt〉 〈ns-label-dt〉 〈attr-term-list-dt〉 -

〈term-identifier-dt〉 ::=- 〈identifier-dt〉 ‘@’ -

〈ns-label-dt〉 ::=- 〈identifier-dt〉 ‘:’ 〈identifier-dt〉 -

Attribute terms are specified in a attribute list term, enclosed in round parentheses. Each attribute is
a pair, separated by ‘=’, of the attribute label (itself, as an element label, a pair of namespace and local
name separated by ‘:’) and the attribute content.

〈attr-term-list-dt〉 ::=- ‘(’ ?〈attr-term-dt〉 ’)’ -

〈attr-term-dt〉 ::=- 〈base-attr-term-dt〉 -

〈base-attr-term-dt〉 ::=- 〈ns-label-dt〉 ‘=’ 〈literal-content-dt〉 -

Notice, that both the list of children nor the attribute may be empty, but neither may be absent. I.e.,
neither a[] nor a() or a are structured terms, but, e.g., a()[] and a(){}, cf. Issue 3.

4.3.2 XML-style Term Syntax: Structured Data Terms

In the representation of structured terms lies the main difference between the non-XML and the XML-
style term syntax: instead of prefix notation for terms as in logic-programming, XML-style element and
attribute notation is used. To achieve this, the following four productions are changed or added:

〈structured-dt〉 ::=- ‘<’ 〈local-spec-dt〉 〈properties-dt〉 · · ·
· · · ‘/>’

‘>’ 〈children-list-dt〉 ‘</>’
‘<’ 〈ns-label-dt〉 ‘>’

-

28

〈properties-dt〉 ::=- ‘{’ ‘ordered’ ‘}’
‘{’ ‘unordered’ ‘}’

-

〈children-list-dt〉 ::=- ?〈data-term〉 -

〈attr-term-list-dt〉 ::=- ?〈attr-term-dt〉 -

There is an additional restriction on the first production: the (namespace, local name) pair used as
label in the end element tag and the (namespace, local name) pair used in the start element tag (i.e.,
produced as part of 〈local-spec-dt〉) must be (modulo whitespace) component wise equivalent character
sequences.

Observe, how the first production encloses the entire local spec (including, e.g., the term identifier)
in the start element tag. Just like in XML this makes all the attributes part of the start element tag.
Instead of using different brackets, the significance of the order is indicated here using special term
properties ‘{ordered}’ and ‘{unordered}’. If neither is given the term is assumed to be ordered as in
standard XML.

4.3.3 Pure XML Syntax: Structured Data Terms

Structured terms (and as such structured data terms) are represented in the pure XML syntax by an XML
element element with sub-elements for its identifier (optional), its label, its list of children, and its list of
attributes.

E.g., the following data term in non-XML term syntax

1 a(b = "c & a \\ b"){ o1 @ d()[e()[]], d()[] }

is represented in pure XML syntax as:

1 <element> <!−− a(b = "c & a \\ b"){ o1 @ d()[e()[]], d()[] } −−>
<label>a</label>

3 <attributes>
<attribute total="true">

5 <label>b</label>
<value>c & a \ b</value>

7 </attribute>
</attributes>

9 <children ordered="false" total="true">

11 <element> <!−− o1 @ d()[e()[]] −−>
<identifier>o1</identifier>

13 <label>d</label>
<attributes total="true" />

15 <children ordered="true" total="true">
<element>

17 <label>e</label>
<attributes total="true" />

19 <children ordered="true" total="true" />
</element>

21 </children>
</element>

23

29

<element> <!−− d()[] −−>
25 <label>e</label>

<attributes total="true" />
27 <children ordered="true" total="true" />

</element>
29 </children>

</element>

Obviously, this is vastly more verbose than either the non-XML or the XML-style term syntax. How-
ever, it has the virtue that (with the exceptions of regular and qualified descendant expressions, cf.
Chapter 6) all constructs of Xcerpt are explicitly represented as either XML elements or attributes. No
non-XML “sub-languages” remain that require special consideration, such as XPath in XSLT. This makes
the syntax very easy to process with XML tools.

The following gives the full grammar for structured terms in Relax NG compact syntax:

A structured term is a term that may have children and
2 ## attributes. It contrasts with literal content.

structured-term =
4 element element { term-local-spec, term-children, term-condition? }

6 ## Some terms may have additional constraints attached to them.
term-condition = empty

8

The children of a term can be ordered or unordered, total or partial.
10 term-children =

element children {
12 attribute ordered { "true" | "false" },

attribute total { total.class },
14 term.class*

}
16

The specification of the ’local’ properties of a term: identifier, label, namespace, and attributes.
18 term-local-spec = term-identifier?, ns-label, attr-term-list

20 ## The defining occurrence of a reference, i.e. "id @" in term syntax.
term-identifier = element identifier { identifier.class }

22

Label and namespace of an Xcerpt term or attribute.
24 ns-label =

element label {
26 element ns { identifier.class }?,

identifier.class
28 }

30 ## A term specifying the attributes of an element.
attr-term-list =

32 element attributes {
attribute total { total.class },

34 attribute-term.class*
}

36

Class of values for attributes specifying totality or
38 ## partiality of a term’s children or attribute list.

total.class |= "true"
40

A attribute term is an attribute possibly modified with respect to location, modality, and selection.
42 attribute-term.class |= base-attribute

44 ## An attribute consists of a label and an attribute content.

30

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 1 of 3
Continue on page 2

/ {grammar} Start top-level-term.class

top-level-term.class DocDoc

structured-term

{grammar} declare-block.rng

term.class DocDoc

using-reference

ref: using-reference

using-reference DocDoc

reference

http://xcerpt.org/ns/core/1.0

identifier.class

ref: identifier.class

identifier.class DocDoc

text

content-term

structured-term

term-level-declare

ref: term-level-declare

term-level-declare DocDoc

{grammar} declare-block.rng

term-level-declare DocDoc

{grammar} declare-block.rng

include: start from declare-block.rng

Start declare-block

include: define from declare-block.rng

declare-block DocDoc A declare block with an empty content and both namespace and variable declarations.

declare

http://xcerpt.org/ns/core/1.0

0..! ns-declaration

var-declaration

content

include: define from declare-block.rng

ns-declaration ns-default

http://xcerpt.org/ns/core/1.0

@ value text

ns-prefix

http://xcerpt.org/ns/core/1.0

@ name DD NCName

@ value text

include: define from declare-block.rng

var-declaration variable

http://xcerpt.org/ns/core/1.0

@ name DD NCName

include: define from declare-block.rng

content

content 0..! term.class

var-declaration

structured-term DocDoc

element

http://xcerpt.org/ns/core/1.0

term-local-spec

term-children

ref: term-children

term-children DocDoc

children

http://xcerpt.org/ns/core/1.0

@ ordered true

false

@ total total.class

0..! term.class

0..1 term-condition

ref: term-condition

term-condition DocDoc

Figure 4.7: Relax NG Schema for Structured Terms

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 1 of 2
Continue on page 2

/ {grammar} Start top-level-term.class

top-level-term.class DocDoc

structured-term

{grammar} declare-block.rng

term.class DocDoc

reference

content-term

structured-term

term-level-declare

term-level-declare DocDoc

{grammar} declare-block.rng

structured-term DocDoc

element

http://xcerpt.org/ns/core/1.0

term-local-spec

term-children

0..1 term-condition

term-condition DocDoc

term-local-spec DocDoc

0..1 term-identifier

ref: term-identifier

term-identifier DocDoc

identifier

http://xcerpt.org/ns/core/1.0

identifier.class

ns-label

ref: ns-label

ns-label DocDoc

label

http://xcerpt.org/ns/core/1.0

0..1 ns

http://xcerpt.org/ns/core/1.0

identifier.class

identifier.class

attr-term-list

ref: attr-term-list

attr-term-list DocDoc

attributes

http://xcerpt.org/ns/core/1.0

@ total total.class

ref: total.class

total.class DocDoc

true

0..! attribute-term.class

term-identifier DocDoc

identifier

http://xcerpt.org/ns/core/1.0

identifier.class

ns-label DocDoc

label

http://xcerpt.org/ns/core/1.0

0..1 ns

http://xcerpt.org/ns/core/1.0

identifier.class

identifier.class

attr-term-list DocDoc

attributes

http://xcerpt.org/ns/core/1.0

@ total total.class

0..! attribute-term.class

total.class DocDoc

true

attribute-term.class DocDoc

base-attribute

Figure 4.8: Relax NG Schema for Local Specifications of Structured Terms

base-attribute =
46 element attribute {

ns-label,
48 element value { literal-content.class }

}

In the grammar (and, more easily recognizable, in Figure 4.7 where the productions are inlined) term
conditions are provided but as an empty production. This is a sort of “hook” where in query terms actual
term conditions can be plugged in. Similarly, the attribute total (cf. also Figure 4.8 showing the local
part of a term specification) might strike as peculiar, since it is fixed to the value ‘true’. However, the
possible values are defined in the non-terminal total.class for which here only a single production is
given, but others might be added, e.g., when defining query terms leading to a choice of attributes.

4.4 Top-level Data Terms

To conclude the discussion of data terms, it should be noted, that data terms on top-level
are slightly restricted in comparison to data terms at any other level as discussed so far: Only
structured data terms and declare blocks are allowed, the later again being restricted to contain

31

StructuredTerm:DataTermTopLevelTermDeclare:DataTerm

!

TopLevelTerm:DataTerm

"#$%&'()(*+,-./$-0)1

NamespaceDeclaration

2334

Content:DataTerm

"#$%&'()(*+,-./50#)1

StructuredTerm:DataTerm

Term:DataTerm

Reference:DataTerm

Identifier:DataTerm

-,6(7

!

TermLevelDeclare:DataTerm

NamespaceDeclaration

2334

LiteralContent:DataTerm

"#$%&'()(*+,-./50#)1

Comment:DataTerm

Content:DataTerm

ProcessingInstruction:DataTerm

StringIdentifier:DataTerm

"#$%&'()(1

#$0)(0)!

#$0)(0)

!

)869()+08%(!

!

Figure 4.9: UML Model of Top Level Data Terms

only a single top-level data term instead of one or more arbitrary data terms. Figure 4.9 shows
the full model of top-level data terms.

4.4.1 Textual Term Syntax: Top-Level Data Terms

Due to the different declaration blocks (i.e., basic data terms may be declaration blocks that contain all
forms of basic terms, top-level data terms may be declaration blocks that contain only top-level terms),
a top-level data term can not be specified as a basic data term with some exceptions. Rather a separate
production is needed:

〈top-level-data-term〉 ::=- 〈top-term-level-declare-dt〉 〈structured-dt〉 -

〈top-term-level-declare-dt〉 ::=- ‘declare’ 〈ns-declaration-dt〉 ‘(’ 〈top-level-data-term〉 ‘)’ -

4.4.2 XML-style Term Syntax: Top-Level Data Terms

Again, the productions for the XML-style term syntax do not differ from the non-XML term syntax.

4.4.3 Pure XML Syntax: Top-Level Data Terms

The treatment of top-level terms concludes the definition of terms (which are, as stated above, exactly
data terms). Terms are defined in a separate grammar and will be included in the full Xcerpt syntax three
times, once for each type of term. For data terms, no parameterization occurs at inclusion:

1 # Data Terms
data-term =

3 grammar {
include "term.rnc"

5 }

term.rnc contains the grammar for terms including all productions discussed so far and the follow-
ing fragment for top-level terms:

1 default namespace = "http://xcerpt.org/ns/core/1.0"

3 start = top-level-term.class

5 ## A term that may occur at top−level. Slightly more
restricted than a basic term.

7 top-level-term.class =
structured-term

9 | grammar {

32

include "declare−block.rnc" {
11 content = parent top-level-term.class*

var-declaration = empty
13 }

}

Notice, how the start symbol of the grammar is set to top-level-term.class. The above inclusion of
the grammar thus makes data-term an alias for top-level-term.class from term.rnc.

4.5 Exemplary Data Term

The following data term will be used as running example for the remainder of this article (e.g.,
as basis for query and construct term examples). It is drawn from the domain of bibliogra-
phy management: Mixing typical bibliographic records (similar to Bibtex or DBLP) with actual
content (represented as XHTML or in a Docbook-style format) it combines

• so-called document-oriented with data-oriented XML, i.e., data with flexible, recursive
structure and data with rather rigid and flat structure. Recursive structure is used, e.g.,
for the content of articles in Docbook-style format.

• normalized with de-normalized representation of data (e.g., author information is dupli-
cated for each authored paper, whereas the information about the journal is represented
once and referenced in other parts),

• hierarchical with delimiter-based structuring of data (e.g., (X)HTML style sections delim-
ited by consecutive hn elements vs. nested sections as, e.g., in DocBook),

• resolved and unresolved links. Where links are used to normalize the data (e.g., in case of
journal information of a an article), these links are resolved to Xcerpt references. Other
links (e.g., the link to another section in the content of an article) are left unresolved as
they must be distinguished from “normal” nesting. E.g., links to other sections in the
content of an article (like “cf.Section 10”) part-of relations).

Figures 4.10 and 4.11 show fictional journal, proceeding, and article information in non-XML
and XML-style term syntax. Notice, the close relation of these syntactical variants: each line of
the non-XML term syntax has exactly one corresponding line in the XML-style term syntax.

Unsurprisingly, in pure XML syntax the sample data is considerably longer than in either of
the term syntaxes (715 lines vs. 130 lines, i.e., a 5.5-fold increase): Essentially, the entire syntax
tree is represented explicitly as XML elements. The full sample data is shown in Appendix C.3,
an excerpt (the full journal entry) in Figure 4.12.

4.6 XML Documents as Data Terms

Before taking a look at how queries—that is selection of existing data and construction of new
data—are expressed in Xcerpt, the discussion of data terms in Xcerpt is concluded by a look at
how XML documents are transformed into data terms when queried with Xcerpt.

An XML document contains (leaving aside for the moment prolog and epilog) a single doc-
ument element that can be accessed in Xcerpt as a single data term. Section 6.4.2 introduces
document specifications that also allow access to prolog and epilog of an XML document. Here,

33

bib(){
2 journal.adm @ journal(){

title()["Applied Data Management"]
4 editors()[

editor-in-chief()["Titus Pomponius Atticus"]
6 editor(region="Africa")["Marcus Aemilius Aemilianus"]

editor(region="Gaul")["Aulus Hirtius"
8 affiliation()["Governor, Transalpine Gaul"]]

editor(region="Cilicia")["Marcus Tullius Cicero"
10 affiliation()["Governor, Cilicia"]]

]
12 publisher()["Titus Pomponius Atticus"]

volumes()[
14 journal.adm.v10 @ volume()[

journal.adm.v10.n1 @ number(type="special−issue"){
16 title()["Data Processing Challenges in the Age of Wax Tablets"]

editorial()[^ articles.66.cicero.wax]
18 year()["60"]

month()["july"]
20 }

journal.adm.v10.n2 @ number(){
22 year()["60"]

month()["november"]
24 }

]
26]

]

1 <bib {unordered}>
<journal.adm @ journal {unordered}>

3 <title>"Applied Data Management"</title>
<editors>

5 <editor-in-chief>"Titus Pomponius Atticus"</editor-in-chief>
<editor region="Africa">"Marcus Aemilius Aemilianus"</editor>

7 <editor region="Gaul">"Aulus Hirtius"
<affiliation>"Governor, Transalpine Gaul"</affiliation></editor>

9 <editor region="Cilicia">"Marcus Tullius Cicero"
<affiliation>"Governor, Cilicia"</affiliation></editor>

11 </editors>
<publisher>"Titus Pomponius Atticus"</publisher>

13 <volumes>
<journal.adm.v10 @ volume>

15 <journal.adm.v10.n1 @ number type="special−issue" {unordered}>
<title>"Data Processing Challenges in the Age of Wax Tablets"</title>

17 <editorial>^ articles.66.cicero.wax</editorial>
<year>"60"</year>

19 <month>"july"</month>
</number>

21 <journal.adm.v10.n2 @ number {unordered}>
<year>"60"</year>

23 <month>"november"</month>
</number>

25 </volume>
</volumes>

27 </journal>

29 conf.dmmc @ proceedings(){
editors()[

31 editor()["Marcus Aemilius Lepidus"
affiliation ["Consul, SPQR"]]

33 editor()["Gaius Julius Caesar Octavianus"]
editor()["Marcus Antonius"]

35]
title()[

37 "Advancements in Data Management for Military and Civil Application"
]

39 invited-papers()[
^inproc.44.brutus

41 ^article.66.scaurus.qumran
]

43 abbrev()["DMMC"]
year()["44"]

45 month()["july"]
location()["Mutina"]

47 publisher()["SPQR"]
}

<conf.dmmc @ proceedings {unordered}>
30 <editors>

<editor>"Marcus Aemilius Lepidus"
32 <affiliation>"Consul, SPQR"</affiliation></editor>

<editor>"Gaius Julius Caesar Octavianus"</editor>
34 <editor>"Marcus Antonius"</editor>

</editors>
36 <title>

"Advancements in Data Management for Military and Civil Application"
38 </title>

<invited-papers>
40 ^inproc.44.brutus

^article.66.scaurus.qumran
42 </invited-papers>

<abbrev>"DMMC"</abbrev>
44 <year>"44"</year>

<month>"july"</month>
46 <location>"Mutina"</location>

<publisher>"SPQR"</publisher>
48 </proceedings>

article.66.scaurus.qumran @ article(){
51 author()["Marcus Aemilius Scaurus"

affiliation()["Tribun, Gnaeus Pompeius Magnus"]]
53 title()["From Wax Tablets to Papyri: The Qumran Case Study"]

in(scrolls="102−112")[^ journal.adm.v10.n1]
55 citations [

cite(ref="article.66.cicero.wax")[]
57 cite(type="formatted")["M. Aemilius Scaurus (104): A Case for Permanent

Storage of Senate Proceedings. In: M. Aemilius Scaurus, ed. (104): "
59 i()["Princeps Senatus: Honor and Responsibility"]

", Chapter 2, 14−88."]
61]

]

<article.66.scaurus.qumran @ article {unordered}>
51 <author>"Marcus Aemilius Scaurus"

<affiliation>"Tribun, Gnaeus Pompeius Magnus"</affiliation></author>
53 <title>"From Wax Tablets to Papyri: The Qumran Case Study"</title>

<in scrolls="102−112">^ journal.adm.v10.n1</in>
55 <citations>

<cite ref="article.66.cicero.wax" />
57 <cite type="formatted">"M. Aemilius Scaurus (104): A Case for Permanent

Storage of Senate Proceedings. In: M. Aemilius Scaurus, ed. (104): "
59 <i>"Princeps Senatus: Honor and Responsibility"</i>

", Chapter 2, 14−88."</cite>
61 </citations>

</article>

Figure 4.10: Exemplary Data Term, Part I: Non-XML and XML-style Term Syntax

34

article.66.cicero.wax @ article(){
65 authors()[

author()["Marcus Tullius Cicero"
67 affiliation()["Governor, Cicilia"]]

author()["Marcus Aemilius Lepidus"
69 affiliation()["Gens Aemilia"]]

author()["Marcus Tullius Tiro"
71 affiliation()["Secretary, M. T. Cicero"]]

]
73 title()["Space− and Time−Optimal Data Storage on Wax Tablets"]

in(scrolls="1−94")[^ journal.adm]
75 content(type="xhtml")[

declare ns-default "http://www.w3.org/1999/xhtml"
77 body()[

xcerpt:comment["incomplete due to melted letters on some tablets"]
79 h1(id="contributions")["Contributions"]

h1()["A History of Data Storage: From Stone to Parchment"]
81 p()["Despite " cite()[^ article.66.scaurus.qumran] ...]

ol()[
83 li()[em()[strong()["Homeric"] " Age:"] ...]

li()[em()["Age of the " strong()["Kings"] ":"] ...]
85]

h1(id="tiro")["Notae Tironianae"]
87 img(title="Tironian et" src=...)[]

p()["As discussed in " a(href="#contributions")[...]]
89 h1(id="tachygraphy")["Challenges for Tachygraphy on Wax"]

p()["Though conditions for writing on wax tablets are adverse
91 to tachygraphy, systems as described in " a(href="#tiro")[...]]

]
93]

}

<article.66.cicero.wax @ article {unordered}>
65 <authors>

<author>"Marcus Tullius Cicero"
67 <affiliation>"Governor, Cicilia"</affiliation></author>

<author>"Marcus Aemilius Lepidus"
69 <affiliation>"Gens Aemilia"</affiliation></author>

<author>"Marcus Tullius Tiro"
71 <affiliation>"Secretary, M. T. Cicero"</affiliation></author>

</authors>
73 <title>"Space− and Time−Optimal Data Storage on Wax Tablets"</title>

<in scrolls="1−94">^ journal.adm.v10.n1</in>
75 <content type="xhtml">

declare ns-default "http://www.w3.org/1999/xhtml"
77 <body>

<!−− "incomplete due to melted letters on some tablets" −→
79 <h1 id="contributions">"Contributions"</h2>

<h1>"A History of Data Storage: From Stone to Parchment"</h1>
81 <p>"Despite "<cite>^ article.66.scaurus.qumran</cite> ...</p>

83 "Homeric"" Age:"...

"Age of the ""Kings"":"...
85

<h1 id="tiro">"Notae Tironianae"</h1>
87

<p>"As discussed in "...</p>
89 <h1 id="tachygraphy">"Challenges for Tachygraphy on Wax"</h1>

<p>"Though conditions for writing on wax tablets are adverse
91 to tachygraphy, systems as described in "...</p>

</body>
93 </content>

</article>

inproc.44.brutus @ inproceedings(){
97 authors()[

author()["Marcus Antonius"
99 affiliation()["Consul, SPQR"]]

author()["Decimus Junius Brutus"
101 affiliation()["Governor, Cisalpine Gaul"]]

]
103 title()["Efficient Management of Rapidly Changing Personal Records"]

in(scrolls="24−48")[^ conf.dmmc]
105 content(type="docbook") [

declare ns-default "http://example.org/ns/docbook/simplified/1.0"
107 section()[info()[title()["Introduction"]]

section()[info()[title()["Contributions"]]
109 para()["The most notable contributions of this article include:"

list(type="ordered")[
111 item()[

para()["A new " em()["methodology"] " to ..., cf. "
113 pageref(idref="inproc.44.brutus.s1")[...]]

figure()[title()["Chart of Desertions"]
115 img()[...]]

para()["As " cite()[^article.66.cicero.wax] ...]
117]

]
119]

]
121]

inproc.44.brutus.s1 @ section()[
123 info()[title()["Acknowledgements"]]

para()["We would like to thank the editors of "
125 cite()[^journal.adm.v10.n1] ...]

]
127]

}
129 }

96 <inproc.44.brutus @ inproceedings {unordered}>
<authors>

98 <author>"Marcus Antonius"
<affiliation>"Consul, SPQR"</affiliation></author>

100 <author>"Decimus Junius Brutus"
<affiliation>"Governor, Cisalpine Gaul"</affiliation></author>

102 </authors>
<title>"Efficient Management of Rapidly Changing Personal Records"</title>

104 <in scrolls="24−48">^ conf.dmmc</in>
<content type="docbook">

106 declare ns-default "http://example.org/ns/docbook/simplified/1.0"
<section><info><title>"Introduction"</title></info>

108 <section><info><title>"Contributions"</title></info>
<para>"The most notable contributions of this article include:"

110 <list type="ordered">
<item>

112 <para>"A new ""methodology"" to ..., cf. "
<pageref idref="inproc.44.brutus.s1" /> ...</para>

114 <figure><title>"Chart of Desertions"</title>
</figure>

116 <para>"As "<cite>^ article.66.cicero.wax</cite>...</para>
</item>

118 </list>
</para>

120 </section>
</section>

122 <inproc.44.brutus.s1 @ section>
<info><title>"Acknowledgements"</title></info>

124 <para>"We would like to thank the editors of "
<cite>^ journal.adm.v10.n1</cite> ...</para>

126 </section>
</content>

128 </inproceedings>
</bib>

Figure 4.11: Exemplary Data Term, Part II: Non-XML and XML-style Term Syntax

35

6 <element>
<identifier>journal.adm</identifier>

8 <label>journal</label>
<attributes total="true" />

10 <children ordered="false" total="true">
<element>

12 <label>title</label>
<attributes total="true" />

14 <children ordered="true" total="true"
>Applied Data Management</children>

16 </element>
<element>

18 <label>editors</label>
<attributes total="true" />

20 <children ordered="true" total="true">
<element>

22 <label>editor-in-chief</label>
<attributes total="true" />

24 <children ordered="true" total="true"
>Titus Pomponius Atticus</children>

26 </element>
<element>

28 <label>editor</label>
<attributes total="true" >

30 <attribute><label>region</label><value>Africa</value>
</attribute>

32 </attributes>
<children ordered="true" total="true"

34 >Marcus Aemilius Aemilianus</children>
</element>

36 <element>
<label>editor</label>

38 <attributes total="true" >
<attribute><label>region</label><value>Gaul</value>

40 </attribute>
</attributes>

42 <children ordered="true" total="true"
>Aulus Hirtius<!−− −−>

44 <element>
<label>affiliation</label>

46 <attributes total="true" />
<children ordered="true" total="true"

48 >Governor, Transalpine Gaul</children>
</element>

50 </children>
</element>

52 <element>
<label>editor</label>

54 <attributes total="true" >
<attribute><label>region</label><value>Cilicia</value>

56 </attribute>
</attributes>

58 <children ordered="true" total="true"
>Marcus Tullius Cicero<!−− −−>

60 <element>
<label>affiliation</label>

62 <attributes total="true" />
<children ordered="true" total="true">Governor, Cicilia</children>

64 </element>
</children>

66 </element>
</children>

68 </element>
<element>

70 <label>publisher</label>
<attributes total="true" />

72 <children ordered="true" total="true"
>Titus Pomponius Atticus</children>

74 </element>

<element>
76 <label>volumes</label>

<attributes total="true" />
78 <children ordered="true" total="true">

<element>
80 <identifier>journal.adm.v10</identifier>

<label>volume</label>
82 <attributes total="true" />

<children ordered="true" total="true">
84 <element>

<identifier>journal.adm.v10.n1</identifier>
86 <label>number</label>

<attributes total="true">
88 <attribute><label>type</label><value>special-issue</value>

</attribute>
90 </attributes>

<children ordered="false" total="true">
92 <element>

<label>title</label>
94 <attributes total="true" />

<children ordered="true" total="true"
96 >Data Processing Challenges in the Age of Wax Tablets</children>

</element>
98 <element>

<label>editorial</label>
100 <attributes total="true" />

<children ordered="true" total="true"
102 ><reference>articles.66.cicero.wax</reference></children>

</element>
104 <element>

<label>year</label>
106 <attributes total="true" />

<children ordered="true" total="true"
108 >60</children>

</element>
110 <element>

<label>month</label>
112 <attributes total="true" />

<children ordered="true" total="true"
114 >july</children>

</element>
116 </children>

</element>
118 <element>

<identifier>journal.adm.v10.n2</identifier>
120 <label>number</label>

<attributes total="true" />
122 <children ordered="false" total="true">

<element>
124 <label>year</label>

<attributes total="true" />
126 <children ordered="true" total="true"

>60</children>
128 </element>

<element>
130 <label>month</label>

<attributes total="true" />
132 <children ordered="true" total="true"

>november</children>
134 </element>

</children>
136 </element> <!−− number −−>

</children>
138 </element> <!−− volume −−>

</children>
140 </element> <!−− volumes −−>

</children>
142 </element> <!−− journal −−>

Figure 4.12: Exemplary Data Term, Excerpt: pure XML syntax

36

we take a look at how the document element of an XML document is interpreted as an Xcerpt
data term. For the most part that is very straightforward, i.e., elements are mapped to struc-
tured terms, character data, comments, and processing instructions to their respective form of
content terms. However, three issues demand a closer look:

• Transparent Reference Resolution: One of the strengths of Xcerpt is the transparent
resolution of references. However, when reading XML documents one must consider

1. How is the identifier of an element (represented by a structured data term) specified?
Following, [8] and [32], Xcerpt aims at support for the two standard mechanisms for
defining element ID’s: attributes of type ID (declared in a DTD or similar schema)
and xml:id attributes. Currently, the first one is not available, as Xcerpt does not yet
provide access to type information from a schema, cf. Issue 8.3.

All xml:id attributes in XML documents are translated to identifiers for the appropri-
ate structured term, if the document does not contain xml:id errors (cf.[32], Section
2), in which case xml:id attributes are handled as normal attributes.

2. How is a reference to a (defined) identifier specified? Again, Xcerpt aims to support
the standard mechanism, i.e., attributes of type IDREF or IDREFS. However, there
are other (internal) links, e.g., HTML-style href attributes. Furthermore, not all such
links are to be transparently resolved, as discussed above.

In all cases, the query author can specify a view that resolves the references and then
formulate the rest of the query on top of this view. However, such a view requires
a recursive descent through the document structure and is not trivial to program.
Thus, Xcerpt introduces a processing instruction as a convenience that address the
most common cases where transparent references are needed:

The syntax of the processing instruction follows [12]: the target name is xcerpt-
resolve-reference and the content of the processing instruction is a list of “pseudo-
attributes” (again following syntax and notion from [12]). The following pseudo-
attributes are supported:

attribute specifies the name of the referencing attribute, i.e., the attribute that con-
tains the actual reference(s).

on specifies the (local) name of the element whose attributes contain the refer-
ence(s) to be resolved.

ns specifies the namespace of the element. May be omitted in which case only
references on elements in the empty namespace are resolved.

type specifies the type of reference. Currently, the values IDREF, IDREFS, and frag-
ment are supported, indicating that the referencing attribute contains a single
ID reference, multiple ID references, or a single HTML-style fragment indicator
(e.g., #tiro) respectively.

replace specifies whether the element carrying the referencing attribute is merely a
placeholder for the referenced element and thus is to be replaced by the refer-
ence. Possible values are true and false, with false as default value.

E.g., the processing instruction

<?xcerpt-resolve-reference "attribute=’idref’ on=’cite’ type=’IDREF’
2 ns=’http://example.org/ns/docbook/simplified/1.0’"?>

37

specifies that all values in idref attributes on cite elements in the specified names-
pace are to be considered as IDREF links and transparently resolved when loading
the document.

• Unordered Content: Though the children of structured terms are always ordered, Xcerpt
allows the specification whether this order is significant and must be preserved. In XML
documents this distinction can be made by annotating elements with the ordered at-
tribute from the Xcerpt namespace (http://xcerpt.org/ns/core/1.0). The possible
values are true or false, as in the pure XML syntax, indicating significant and insignificant
order.

• In-scope Namespaces: XML documents provide no means to separate the scope of names-
paces from the scope of individual elements. E.g., the content element in our sample
data may contain elements from the XHTML namespace or from the namespace for our
simplified Docbook version. However, the namespace declaration must be attached to
individual elements, thus requiring either a wrapper element (the body element in line
77 in Figure 4.11 and line 89 in Figure 4.13) or separate namespace declarations on all
sub-elements of content, cf. line 119 and 135 in Figure 4.13.

Figure 4.13 shows an XML document with the appropriate processing instructions and IDs
to result in the sample data term, when loaded in Xcerpt.

38

http://xcerpt.org/ns/core/1.0

<?xml version="1.0" standalone="yes"?>
2 <?xcerpt-resolve-reference

"attribute=’idref’ on=’cite’ ns=’http://example.org/ns/docbook/simplified/1.0’
4 type=’IDREF’"?>

<?xcerpt-resolve-reference "attribute=’idref’ on=’in’ type=’IDREF"?>
6 <?xcerpt-resolve-reference "attribute=’idref’ on=’editorial’ type=’IDREF"?>

<?xcerpt-resolve-reference "attribute=’idref’ on=’ref’ replace=’true’
type=’IDREF"?>

8 <bib xmlns:xc="http://xcerpt.org/ns/core/1.0" xc:ordered="false">
<journal xml:id="journal.adm" xc:ordered="false">

10 <title>Applied Data Management</title>
<editors>

12 <editor-in-chief>Titus Pomponius Atticus</editor-in-chief>
<editor region="Africa">Marcus Aemilius Aemilianus</editor>

14 <editor region="Gaul">Aulus Hirtius
<affiliation>Governor, Transalpine Gaul</affiliation>

16 </editor>
<editor region="Cilicia">Marcus Tullius Cicero

18 <affiliation>Governor, Cilicia</affiliation></editor>
</editors>

20 <publisher>Titus Pomponius Atticus</publisher>
<volumes>

22 <volume xml:id="journal.adm.v10">
<number xml:id="journal.adm.v10.n1" type="special−issue"

24 xc:ordered="false">
<title>Data Processing Challenges in the Age of Wax

26 Tablets</title>
<editorial idref="articles.66.cicero.wax"></editorial>

28 <year>60</year>
<month>july</month>

30 </number>
<number xml:id="journal.adm.v10.n2" xc:ordered="false">

32 <year>60</year>
<month>november</month>

34 </number>
</volume>

36 </volumes>
</journal>

38 <proceedings xml:id="conf.dmmc" xc:ordered="false">
<editors>

40 <editor>Marcus Aemilius Lepidus
<affiliation>Consul, SPQR</affiliation></editor>

42 <editor>Gaius Julius Caesar Octavianus</editor>
<editor>Marcus Antonius</editor>

44 </editors>
<title>Advancements in Data Management for Military and Civil

46 Application</title>
<invited-papers>

48 <ref idref="inproc.44.brutus" />
<ref idref="article.66.scaurus.qumran" />

50 </invited-papers>
<abbrev>DMMC</abbrev>

52 <year>44</year>
<month>july</month>

54 <location>Mutina</location>
<publisher>SPQR</publisher>

56 </proceedings>
<article xml:id="article.66.scaurus.qumran" xc:ordered="false">

58 <author>Marcus Aemilius Scaurus
<affiliation>Tribun, Gnaeus Pompeius Magnus</affiliation>

60 </author>
<title>From Wax Tablets to Papyri: The Qumran Case Study</title>

62 <in scrolls="102−112" idref="journal.adm.v10.n1" />
<citations>

64 <cite ref="article.66.cicero.wax" />
<cite type="formatted">M. Aemilius Scaurus (104): A Case for

66 Permanent Storage of Senate Proceedings. In: M. Aemilius
Scaurus, ed. (104): <i>Princeps Senatus: Honor

68 and Responsibility</i>, Chapter 2, 14-88.</cite>
</citations>

70 </article>
<article xml:id="article.66.cicero.wax" xc:ordered="true">

72 <authors>
<author>Marcus Tullius Cicero

74 <affiliation>Governor, Cicilia</affiliation></author>
<author>Marcus Aemilius Lepidus

76 <affiliation>Gens Aemilia</affiliation></author>
<author>Marcus Tullius Tiro

78 <affiliation>Secretary, M. T. Cicero</affiliation>
</authors>

80 <title>Space- and Time-Optimal Data Storage on Wax Tablets</title>
<in scrolls="1−94" idref="journal.adm" />

82 <content type="xhtml">
<body xmlns="http://www.w3.org/1999/xhtml">

84 <!−− incomplete due to melted letters on some tablets −−>
<h1 id="contributions">Contributions</h2>

86 <h1>A History of Data Storage: From Stone to Parchment</h1>
<p>Despite recent evidence ...</p>

88
Homeric Age:...

90 Age of the Kings:...

92 <h1 id="tiro">Notae Tironianae</h1>

94 <p>As discussed in ...</p>
<h1 id="tachygraphy">Challenges for Tachygraphy on Wax</h1>

96 <p>Though conditions for writing on wax tablets are adverse to
tachygraphy, systems as described in ...</p>

98 </body>
</content>

100 </article>
<inproceedings xml:id="inproc.44.brutus" xc:ordered="false">

102 <authors>
<author>Marcus Antonius<affiliation>Consul, SPQR</affiliation>

104 </author>
<author>Decimus Junius Brutus<affiliation

106 >Governor, Cisalpine Gaul</affiliation></author>
</authors>

108 <title>Efficient Management of Rapidly Changing Personal
Records</title>

<in scrolls="24−48" idref="conf.dmmc"/>
110 <content type="docbook">

<section xmlns="http://example.org/ns/docbook/simplified/1.0">
112 <info><title>Introduction</title></info>

<section><info><title>Contributions</title></info>
114 <para>The most notable contributions of this article include:

<list type="ordered">
116 <item>

<para>A new methodology to ..., cf.
118 <pageref idref="inproc.44.brutus.s1" /> ...</para>

<figure><title>Chart of Desertions</title>
120 </figure>

<para>As <cite idref="article.66.cicero.wax" />...</para>
122 </item>

</list>
124 </para>

</section>
126 </section>

<section xml:id ="inproc.44.brutus.s1"
128 xmlns="http://example.org/ns/docbook/simplified/1.0">

<info><title>Acknowledgements</title></info>
130 <para>We would like to thank the editors of

<cite idref="journal.adm.v10.n1" /> ...</para>
132 </section>

</content>
134 </inproceedings>

</bib>

Figure 4.13: Exemplary Data Term: From an XML Document

39

40

Chapter 5

How to specify queries?
Part 1: Construction

As briefly mentioned above, Xcerpt uses very much similar concepts and syntax for data and
queries. Queries in Xcerpt are guided by a small number of principles:

• Queries as Patterns. Instead of using separate concepts and syntax for queries (as in
navigational query languages such as XQuery [6]), Xcerpt uses terms for representing
both data and queries. All data terms are also query terms, but there are some additional
constructs in data terms, that allow (a) the extraction of data by using logical variables,
(b) the specification of queries that are only incomplete patterns of the data, i.e., where
more nodes may occur in the data than specified in the query, and (c) the specification of
formulas in terms, i.e., conjunction, disjunction, negation, optionality etc.

• Logical Variables. In query terms, logical variables are used to indicate which data is to
be selected and to join data (indicated by multiple occurrences of the same variable as in
logic programming languages). The result of a query is conceptually a set of tuples each
representing a combination of bindings (or matches) for all the variables occurring in the
query term. For each tuple, a data term must exist that matches the query where all the
variables are substituted by the bindings of the tuple.

• Separation of Querying and Construction. In contrast to query languages such as SQL
or XQuery, construction and querying are strictly separated in Xcerpt, in particular there
are no nested queries in Xcerpt (rather rules and rule chaining is used, cf. Section 7). The
data constructed by a rule is specified in construct terms, that contain variables from
the corresponding query terms acting as placeholders for selected data. Additionally
construct terms make use of gouping constructs to return all or some of the alternative
bindings of a variable.

• Incomplete Patterns. In most cases, queries specify just enough restrictions on the data
to be returned, as required by the query intent, rather than specifying full or “total”
patterns of the data. Xcerpt supports such queries by providing constructs to express
that a pattern is incomplete in breadth (i.e., there can be more children than specified),
depth (i.e., there can be additional nodes and edges between the matched nodes) etc.

41

TopLevelTerm, Term, StructuredTerm, Identifier, LiteralContent, DeclareBlock

Content StructuredTerm

Term

Reference

Identifier

!"#$%&

TopLevelTermDeclare

&

TopLevelTerm

TermLevelDeclare

ProcessingInstruction

String

'(#)$'*+(,$

&

Comment

LiteralContent

-.+'$+'

&

DeclareBlock

Figure 5.1: UML Model for Terms as Parameterized Collaboration

• Terms as Formulas. Query terms are not only augmented by variables, but also by con-
structs for expressing negation, disjunction, conjunction, and optionality.

In the remainder of this part, first construct terms and then query terms are introduced
in detail and compared to data terms. To facilitate a better understanding and description of
the differences between data terms, construct terms, and query terms, a short aside introduces
a parameterized model for terms, that precisely specifies in what aspects the three kinds of
terms may differ from each other.

5.1 An Aside: A Parameterized Model for Terms

UML uses the notion of “parameterized collaborations” to describe what is otherwise known
as (software) patterns (not to be confused with Xcerpt’s patterns), i.e., collections of concepts
and relations among concepts that occur in different contexts. They are “parameterized”, as a
number of the concepts in the parameterized collaboration are “exported” as parameters and
must be related to concrete concepts when using the pattern.

Figure 5.1 shows an example for the notation adopted in UML for defining such parameter-
ized collaborations: concepts and relations are drawn as usual, but a dashed ellipsis is drawn
around the concepts that are part of the definition. The parameter concepts are depicted in a
box at the top of the ellipsis.

Indeed, Figure 5.1 shows an Xcerpt term as a parameterized collaboration: all the relations

42

StructuredTerm, Term, LocalSpecification

StructuredTerm

OrderedStructuredTerm UnorderedStructuredTerm

!

"#$%&'

())*

TotalStructuredTerm

LocalSpecificaiton

Term

Figure 5.2: UML Model for Structured Terms as Parameterized Collaboration

LocalSpecification, AttributeTermList, AttributeTerm, BaseAttributeTerm, Identifier, LiteralContent

LocalSpecificaiton

!"#$%&'(()

+,-

) BaseAttributeTerm

NsLabel

)

TotalAttributeTermList

)

.#"/0%1#2.%$%#"

'(()
3-*4#)

2-/#

)

AttributeTermList

AttributeTerm

LiteralContent

Identifier

NCName IRI

5,+/!*#.#601%78+%2.9

5,+/!*#.#9

'((:

Figure 5.3: UML Model for Local Term Specifications

43

and concepts depicted are common to all three kinds of Xcerpt terms, they only vary in the six
parameters given in the top corner: (1) what is a top-level term, (2) what is a basic term, (3)
what is a structured term, (4) what is an identifier, (5) what is a literal content, and (5) what is
a declaration block.

Figures 5.2 and 5.3 complete the definition of a term by defining parameterized collabora-
tion for structured terms and for local descriptions of terms (these could be part of a single
pattern as they are never used separately, but for readability they have been split over three
diagrams). The parameterized collaboration for structured terms shares the second and third
parameter of the parameterized collaboration for terms and adds an additional parameter,
the local specification, to link to the parameterized collaboration for local term specifications
shown in Figure 5.3. The parameterized collaboration for a local term specification has addi-
tional parameters for (1) attribute terms, (2) attributes, and (3) basic (or literal) attributes.

Notice, how similar these patterns are to data terms. This is due to the fact, that all data
terms are also valid terms in the other two term kinds.

Given these parameterized collaborations, data terms can be defined as shown in Figure 5.4:
all parameters for the three parameterized collaborations are simply “instantiated” with con-
crete concepts for data terms without adding any additional concepts or relations.

5.2 Specifying New Data: Construct Terms

As mentioned above, conceptually the result of a query is a multi-set of mappings each repre-
senting one combination (or substitution) of bindings for all variables occurring in the query
term. For each tuple, an (extensional or intensional) data term must exist that matches the
query where all the variables are substituted by the bindings of the tuple.

5.2.1 Substitutions and Substitution Sets

A substitution is a mapping from the set of (all) variables to the set of (all) construct terms.
As usual, a substitution is a mapping of infinite sets. Of course, finite representations are
usually used, as the number of variables occurring in a term is finite. Substitutions are often
conveniently denoted as sets of variable assignments instead of as functions. For example, we
write

{
X , a, Y , b

}
to denote a substitution that maps the variable X to a and the variable Y to

b, and any other variable to arbitrary values. In general, a substitution provides assignments
for all variables, but “irrelevant” variables are not given in the description of substitutions.

A substitution multi-set is simply a multi-set containing substitutions. Often the substitu-
tions in a substitution multi-set have very similar sets of “relevant” variables, differing only,
e.g., in optional variables. Thus a substitution multi-set can also be denoted as an n-ary
multi-set relation over the set of all construct terms where n is the size of the maximum
set of variables “relevant” for any substitution in the multi-set. Substitutions become tuples
in this relation with “irrelevant” variables marked as null values. E.g., the following table is a
representation for a substitution multi-set with three substitutions using “relevant” variables
X, Y, and Z. The first tuple represents the substitution

{
X , a, Y , b, Z , c

}
, the second{

X , c, Y , b, Z , b
}
, and the third

{
X , c, Y , a

}
.

44

T
er

m

-T
o
p
L
e
v
e
lT
e
rm

T
o

p
Le

ve
lT

er
m

:D
at

aT
er

m

St
ru

ct
u

re
d

T
er

m
:D

at
aT

er
m

-S
tr
u
c
tu
re
d
T
e
rm

Id
en

ti
fi

er
:D

at
aT

er
m

Li
te

ra
lC

o
n

te
n

t:
D

at
aT

er
m

-I
d
e
n
ti
fi
e
r

-L
it
e
ra
lC
o
n
te
n
t

-T
e
rm

T
er

m
:D

at
aT

er
m

St
ru

ct
u

re
d

T
er

m

-T
e
rm

Lo
ca

lS
p

ec
if

ic
at

io
n

:D
at

aT
er

m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

Lo
ca

lS
p

ec
if

ic
at

io
n

A
tt

ri
b

u
te

T
er

m
:D

at
aT

er
m

A
tt

ri
b

u
te

T
er

m
Li

st
:D

at
aT

er
m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

-L
it
e
ra
lC
o
n
te
n
t

-I
d
e
n
ti
fi
e
r

-A
tt
ri
b
u
te
T
e
rm

-A
tt
ri
b
u
te
T
e
rm
L
is
t

B
as

eA
tt

ri
b

u
te

T
er

m
:D

at
aT

er
m

-B
a
s
e
A
tt
ri
b
u
te
T
e
rm

-D
e
c
la
re
B
lo
c
k

D
ec

la
re

B
lo

ck

-S
tr
u
c
tu
re
d
T
e
rm

Fi
gu

re
5

.4
:

U
M

L
M

o
d

el
fo

r
D

at
a

T
er

m
s

u
si

n
g

Pa
ra

m
et

er
iz

ed
C

o
ll

ab
o

ra
ti

o
n

s,
cf

.
Fi

gu
re

5
.1

–5
.3

45

X Y Z

a b c
c b b
c a null

More details on substitutions can be found in [37, 38]. Notice, that there substitution sets
are used to simplify definitions and proofs (cf. Issue 1).

5.3 The Shape of Construct Term

§1 Construct term

Construct terms specify the shape of data that is constructed (or derived) for each match of
the corresponding query term. In that, they are comparable to clause heads in Datalog.

If a construct term contains no variables, it becomes equivalent to a data term: The full
shape of the derived data is specified. But construct terms may also contain variables, viz. in
place of sub-terms (term variables) and in place of literal content or identifiers such as element
labels and namespaces, attribute labels, etc. (literal variables).

However, there is one major difference between Xcerpt (and similar query languages for
structured data) when comparing to Datalog on flat tuples: E.g., given bindings for authors and
titles one would like to create author elements that contain for each author all corresponding
titles. Explicit support for grouping constructs in the scope of other data is needed to express
that form of construction.

Figure 5.5 shows an UML model for construct terms using the parameterized collabora-
tions for general terms introduced in the aside of Section 5.1. The figure highlights the exact
differences between data and construct terms:

1. Variables can occur instead of (a) (structured or attribute) terms or instead of (b) identi-
fiers and literal content.

2. Modifiers specify (a) the grouping of sub-terms by one or more variables, i.e., the repeti-
tion of parts of a construct term for all or some of the alternative bindings of one or more
variables, and (b) the optionality of sub-terms, i.e., the omission of a part of a construct
term based on the bindings of one or more variables.

Notice, that the functionality of these modifiers is almost a corollary of adding variables:
Once variables that may have more than one binding are allowed in construct terms, it is nec-
essary to handle the case of bindings for one variable included in construct terms for bindings
of another one (grouping). In the same way, once variables may have no bindings at all, it
is necessary to define which part of a construct term is to be left out if there is no bindings
(optionality).

Figures 5.6 and 5.7 detail modifiers for structured and attribute terms: All modifiers “mod-
ify” construct terms to indicate that the modified term is to be handled differently from its
unmodified form. The construct terms modified by a modifier are the scope of the modifier. In
construct terms, all modifiers have a scope of one or more construct terms except the grouping
modifier for attribute terms. The latter one has a scope of a single attribute construct terms
and deviates from the general rule, as attributes are unordered and single-valued (i.e., there
may be no repeated attribute names) and thus grouping over sequences of terms is not useful.

46

T
er

m

-T
o
p
L
e
v
e
lT
e
rm

T
o

p
Le

ve
lT

er
m

:C
o

n
st

ru
ct

T
er

m

St
ru

ct
u

re
d

T
er

m
:C

o
n

st
ru

ct
T

er
m

-S
tr
u
c
tu
re
d
T
e
rm

Id
en

ti
fi

er
:C

o
n

st
ru

ct
T

er
m

Li
te

ra
lC

o
n

te
n

t:
C

o
n

st
ru

ct
T

er
m

-I
d
e
n
ti
fi
e
r

-L
it
e
ra
lC
o
n
te
n
t

-T
e
rm

T
er

m
:C

o
n

st
ru

ct
T

er
m

St
ru

ct
u

re
d

T
er

m

-T
e
rm

Lo
ca

lS
p

ec
if

ic
at

io
n

:C
o

n
st

ru
ct

T
er

m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

Lo
ca

lS
p

ec
if

ic
at

io
n

A
tt

ri
b

u
te

T
er

m
:C

o
n

st
ru

ct
T

er
m

A
tt

ri
b

u
te

T
er

m
Li

st
:C

o
n

st
ru

ct
T

er
m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

-L
it
e
ra
lC
o
n
te
n
t

-I
d
e
n
ti
fi
e
r

-A
tt
ri
b
u
te
T
e
rm

-A
tt
ri
b
u
te
T
e
rm
L
is
t

B
as

eA
tt

ri
b

u
te

T
er

m
:C

o
n

st
ru

ct
T

er
m

-B
a
s
e
A
tt
ri
b
u
te
T
e
rm

-D
e
c
la
re
B
lo
c
k

D
ec

la
re

B
lo

ck

-S
tr
u
c
tu
re
d
T
e
rm

T
er

m
V

ar
ia

b
le

M
o

d
if

ie
d

T
er

m
:C

o
n

st
ru

ct
T

er
m

Li
te

ra
lV

ar
ia

b
le

T
er

m
V

ar
ia

b
le

M
o

d
if

ie
d

A
tt

ri
b

u
te

T
er

m
:C

o
n

st
ru

ct
T

er
m

Fi
gu

re
5

.5
:

U
M

L
M

o
d

el
fo

r
C

o
n

st
ru

ct
T

er
m

s
u

si
n

g
Pa

ra
m

et
er

iz
ed

C
o

ll
ab

o
ra

ti
o

n
s

47

StructuredTerm:ConstructTerm

OrderedStructuredTerm:ConstructTerm UnorderedStructuredTerm:ConstructTerm

!

Term:ConstructTerm

"#$%&'

())*
+,-'.-.'/

TotalStructuredTerm:ConstructTerm

+#,01&.2.34'%56,%72/

LocalSpecification:ConstructTerm

ModifiedTerm:ConstructTerm

"0,'%8%.'

!))*

GroupingModifier:ConstructTerm OptionalModifier:ConstructTerm

+#,01&.2.3'%56,%72/ "'.89:&2 ())*

EquivalenceRelationSpecification

TermVariable

;-,:1<=

!))*

,-'.-<= ())*

!

Identifier:ConstructTerm

+#,01&.2.3'%56,%72/

AllGroupsModifier:ConstructTerm

SomeGroupsModifier:ConstructTerm

FirstGroupsModifier:ConstructTerm
09>!

IntervalNumber

0%7

!

09> !

!

Term:ConstructTerm

,12%,79&!))*

OrderRelationSpecification

!

Figure 5.6: UML Model for Modified Structured Construct Terms

ModifiedAttributeTerm:ConstructTerm

OptionalModifier:AttributeTerm:ConstructTermGroupingModifier:AttributeTerm:ConstructTerm

!"#$%&'(')*+,-.#,/(0 +'123&(4556

!"#$%&'(')+,-.#,/(0

AllGroupsModifier:AttributeTerm:ConstructTerm

SomeGroupsModifier:AttributeTerm:ConstructTerm

FirstGroups:AttributeTerm:ConstructTerm

Interval

7

AttributeTerm:ConstructTerm

$#+,1,'+7

$#+,1,'+

7556

EquivalenceRelationSpecification

TermVariable

89#3%:;

7556

#9+'9:; 4556

7

#%(,#/2&7556

OrderRelationSpecification

7

$2<7

Number

Figure 5.7: UML Model for Modified Attribute Construct Terms

48

5.3.1 Textual Term Syntax

Although the syntactic differences between data and construct terms are from a conceptual perspective
few, the EBNF specification of the non-XML (as well as of the XML-style) term syntax share only the pro-
ductions for lexical structures. This is due to the inability of the EBNF notation to express parameterized
productions or grammars. E.g., declaration blocks are identical except that in data terms they contain
data terms and in construct terms they contain construct terms. In EBNF two separate non-terminals (and
productions) are needed, since it is not possible to parameterize the production of declaration blocks
with respect to the kind of contained terms.

Aside of this minor nuisance, the productions are very similar. In fact, except for the following four
productions and the addition of variables and modifiers discussed below they are identical and will not
be repeated in detail here. With the exception of the following four non-terminals and their productions
all productions are copied from the data term syntax replacing the -dt prefix in all non-terminals by
-ct. The full syntax can be found in Appendix A.3.

The deviation lies in the productions for the non-terminals 〈construct-term〉 and 〈attr-term-ct〉,
where term variables and modified terms (for grouping and optionality) are added, as well as for
〈identifier-ct〉 and 〈literal-content-ct〉, where literal variables are added:

〈construct-term〉 ::=- 〈term-level-declare-ct〉
〈reference-ct〉
〈structured-ct〉
〈content-ct〉

〈term-variable-ct〉
〈modified-ct〉

-

〈attr-term-ct〉 ::=- 〈base-attr-term-ct〉
〈term-variable-ct〉

〈modified-attr-term-ct〉

-

〈identifier-ct〉 ::=- 〈NCName〉
〈IRI〉
〈String〉

〈literal-variable-ct〉

-

〈literal-content-ct〉 ::= 〈String〉 | 〈literal-variable-ct〉- 〈String〉
〈literal-variable-ct〉

-

Though conceptually, literal and term variables are different and not always interchangeable they are
not separated syntactically, as this is left to as-of-now unfinished type system. Syntactically variables
are represented in the term syntax by names preceded with the keyword variable (or its shorthand
var). A variable may occur without the leading keyword, if it is in the scope of a variable declaration that
reserves the name of the variable, cf. Section 6 and 7.

〈variable-ct〉 ::=- 〈term-variable-ct〉
〈literal-variable-ct〉

-

〈term-variable-ct〉 ::=- 〈var-specification-ct〉 -

〈literal-variable-ct〉 ::=- 〈var-specification-ct〉 -

〈var-specification-ct〉 ::=- ‘variable’
‘var’

〈NCName〉 -

49

Finally, modifiers occurring in construct terms can be distinguished in grouping and optional modi-
fiers, the detailed syntax of which is discussed in the following sections.

〈modified-ct〉 ::=- 〈grouping-ct〉 〈optional-ct〉 -

〈modified-attr-term-ct〉 ::=- 〈grouping-attr-term-ct〉 〈optional-attr-term-ct〉 -

Notice, that the grammar does not specify any order among the modifiers, i.e., both a grouping
modifier in the scope of an optional modifier and vice versa are allowed.

5.3.2 XML-style Term Syntax

The XML-style term syntax once again uses the same productions as the non-XML term syntax, deviating
from data terms (in XML-style term syntax) in exactly the same ways. The full grammar is shown in
Appendix B.3.

5.3.3 Pure XML Syntax

In contrast to EBNF notation, Relax NG provides some means for parameterized grammars, as used above
for defining declaration blocks. Indeed, construct terms can be defined using the same grammar as for
data terms, but parameterizing term.class and attribute.term.class, as well as identifier.class and literal-
content.class. In all cases the parameterization happens by adding additional choices to the existing
ones: variables and modified terms or attributes.

Then definitions for variables as well as modified terms and attributes needs to be added to the
grammar. Modified terms and attributes are defined using another parameterized grammar, this time the
parameters are the content of the modifiers (once structured construct terms, once attribute construct
terms) and what represents a variable. The details of that grammar are discussed in the following
section.

1 construct-term =
grammar {

3 variable-ct = parent variable-ct
Add grouping and optional for attributes

5 modified-attribute =
grammar {

7 include "modifiers.rnc" {
start = grouping

9 content = parent attribute-term.class
variable = parent variable-ct

11 }
}

13 | grammar {
include "modifiers.rnc" {

15 start = optional
content = parent attribute-term.class*

17 variable = parent variable-ct
}

19 }
Add grouping and optional for elements

21 modified-term =
grammar {

23 include "modifiers.rnc" {
start = grouping

25 content = parent term.class*
variable = parent variable-ct

27 }

50

}
29 | grammar {

include "modifiers.rnc" {
31 start = optional

content = parent term.class*
33 variable = parent variable-ct

}
35 }

37 ## Construct terms may also be variables or modified by
grouping and optional modifiers.

39 term.class |= variable-ct | modified-term

41 ## Construct attribute terms may also be variables or modified by
grouping and optional modifiers.

43 attribute-term.class |= variable-ct | modified-attribute
Add variables to identifiers and literal content

45 identifier.class |= variable-ct
literal-content.class |= variable-ct

47 include "term.rnc"
}

5.4 Grouping in Construct Terms

§2 Grouping modifier

A grouping modifier expresses a grouping over the bindings of all its grouping variables. For
alternative substitutions of the grouping variables, the construct in the scope of the grouping
modifier are repeated once with the occurrences of the variables substituted accordingly.

A grouping modifier specifies four aspects of a grouping:

1. Scope: What is to be repeated? The scope of grouping modifiers for structured terms is a
list of construct terms that is to be repeated. This allows, e.g., the bracketing of grouped
terms or the creation of structures such as sections in HTML that are expressed through
element delimiters instead of nesting. Grouping modifiers for attributes, however, only
apply to a single attribute term, e.g., a variable or an attribute specification containing
a variable for the name of the attribute. Lists of terms are not useful in this case, as
attributes are always unordered and no two attributes of the same element node may
have the same name.

2. Groups: How to form groups? An essential part of grouping is the determination of the
actual groups: i.e., to specify when two substitutions of the associated grouping variables
are considered equivalent and thus part of the same “group” (i.e., equivalence class).

Commonly, query languages use a single, pre-defined equivalence relation for grouping,
e.g., SQL uses equivalence based on the typed value of the grouping attributes, i.e., all tu-
ples with the same typed value for the grouping attributes are considered as one group.
In object-oriented or semi-structured query languages, one as finds equivalence based on
object or node identity, i.e., substitutions for the grouping variables are considered equiv-
alent only if they have for each grouping variable the very same nodes as substitution.

51

In Xcerpt, the default equivalence relation is structural equivalence, i.e., two bindings are
considered equivalent if their label, children, and/or content is equal (formally, structural
equivalence in Xcerpt uses the notion of simulation as defined in [37, 11], cf. Section 6.1).
Beyond this default equivalence, Xcerpt’s grouping modifiers may also explicit specify an
equivalence relation that relates equivalent substitutions for the grouping variables. It
must adhere to the usual definition of an equivalence relation, i.e., it must be a reflexive,
symmetric, and transitive relation over the domain

3. How to order the repeated terms? An order among the groups established in point (2)
is needed not only in the case of first-selecting grouping terms, but also if the grouping
term is contained in a (structured) term where the order of the children is significant.
In both cases, the order among the groups is defined by (a) a list of ordering variables
and (b) a total order relation (i.e., a reflexive, antisymmetric, transitive, and comparable
relation) on the substitutions for ordering variables. Note, that the ordering variables
must be a subset of the grouping variables. Also note, that the order relation must be
consistent with the equivalence relation, i.e., whenever b1 ≤ b2 and b2 ≤ b1 for the order
relation ≤ use in a grouping term G and bindings b1, b2, then b1 ∼ b2 for the equivalence
relation ∼ used in G.

4. Group Selection: Which of the groups to consider? In many cases, the grouping should
only iterate over certain of the groups. Xcerpt addresses the selection of relevant groups
by providing three grouping modifiers:

• The All-Groups modifier uses all of the groups established as explained in point (2).

• The Some-Groups modifier uses some of the groups: At most m groups are selected
arbitrarily and possibly non-deterministically. At most m, as there may be less than
m groups, in which case, all groups are selected.

• The First-Groups modifier uses some of the groups, but the selection is determined
by the order of the groups: An interval n −m specifies that the nth to mth group
are to be used. Again, there may be less than m (in which case all groups after and
including the nth group are used) and even less than n groups (in which case no
group is used). The order of the groups is defined by the order relation described in
the previous point.

Grouping modifiers may be nested leading to the expected behavior: say a grouping over
authors of books contains another grouping over titles of books. In the constructed data,
the terms constructed by the grouping over titles are contained in the terms constructed by
grouping over authors based on the author-title combinations found in the substitutions. Intu-
itively, nested grouping constructs are similar to nested for-loops in imperative programming
languages.

To summarize Xcerpt’s grouping modifiers allow the repetition of subterms based on sub-
stitutions for grouping variables. They allow extensive customization of what defines a group
and how to order the repetitions without sacrificing simplicity in common cases.

Like in all query languages, where the result of a query can have a complex (structured)
shape, grouping is not only essential in combination with aggregation (as in relational query
languages), but also to define how the nesting of the result is constructed based on the relations
of data items selected by a query in variable bindings. The nature of data with complex shape
also requires the support of nested grouping, i.e., repetition within repetition.

52

5.4.1 Textual Term Syntax

The non-XML term syntax for grouping modifiers in construct terms closely reflects the four aspects of
the abstract syntax:

1. Group selection is indicated using the three different keywords all, some, first. some is followed
by a number (or a variable) that indicates the number of groups to select. first is followed by
an interval specification, i.e., two numbers (or variables) separated by a −. Two shorthands for
intervals are provided: n− to select all groups starting with the nth and + as abbreviation for 1−.
Thus first 1− is equivalent to all.

2. The scope of the modifiers are the construct terms included in parentheses after the modifier. As
in declaration blocks the parentheses may be omitted, if the scope is exactly one construct term.

3. Groups are formed using the optional equivalence relation on the bindings of the grouping vari-
ables. Grouping variables are either implicit or explicit. Implicit grouping variables are all free
variables in the scope of the grouping modifier, i.e., all variables that occur in the scope of the
grouping modifier but not in the scope of another nested grouping modifier. Explicit grouping
variables are specified in a list enclosed by parentheses after the order-by keyword. Again the
parentheses may be omitted if the list is a singleton.

4. The order of the groups is determined by the order variables (a subset of the grouping variables)
and the order relation. The order variables are specified in a list (enclosed by parentheses) after
the keyword order-by. Again the parentheses may be omitted if the list is a singleton. Notice,
that if both are present order-by follows group-by.

For attributes the specification is similar, but only a single attribute construct term may in the scope
of a grouping modifier. This prevents the repetition of same-name attributes (recall, that attributes are
essentially (key, value) pairs in a dictionary associated with their structured term and duplicate keys are
forbidden in accordance to XML).

〈grouping-ct〉 ::=- 〈grouping-modifier〉 ‘(’ ?〈construct-term〉 ‘,’ ‘)’ · · ·

· · · 〈groupby〉 〈orderby〉 -

〈grouping-attr-term-ct〉 ::=- 〈grouping-modifier〉 ‘(’ 〈attr-term-ct〉 ‘)’ · · ·

· · · 〈groupby〉 〈orderby〉 -

〈grouping-modifier〉 ::=- ‘all’
‘some’ 〈number-ct〉
‘first’ 〈interval-ct〉

-

〈orderby〉 ::=- ‘order-by’ ‘(’ ? 〈optional-variable〉
〈variable-ct〉

‘,’ ‘)’ · · ·

· · · 〈order-relation〉 -

53

〈order-relation〉 ::=- ‘ascending’
‘descending’
〈NCName〉

-

〈groupby〉 ::=- ‘group-by’ ‘(’ ? 〈optional-variable〉
〈variable-ct〉

‘,’ ‘)’ · · ·

· · · 〈equivalence-relation〉 -

〈equivalence-relation〉 ::=- 〈NCName〉 -

〈optional-variable〉 ::=- 〈optional-modifier〉 〈variable-ct〉 -

〈interval-ct〉 ::=- 〈number-ct〉 ‘-’ 〈number-ct〉 〈number-ct〉 ‘-’ ‘+’ -

〈number-ct〉 ::=- 〈Int〉
〈literal-variable-ct〉

-

5.4.2 XML-style Term Syntax

The same productions as for the non-XML term syntax can be used for the XML-style term syntax. The
full grammar is given in Appendix B.3.

5.4.3 Pure XML Syntax

As seen above, the pure XML syntax can utilize parameterized grammars not just for construct terms in
general, but also for modifiers itself. Figure 5.8 shows the Relax NG schema for that grammar. As in the
grammar for declaration blocks, the content pattern is to be overwritten when importing this grammar.
Additionally also the variable pattern can be replaced to specify the shape of variable occurrences.

The following listing gives the textual grammar in Relax NG’s compact syntax:

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = grouping
content = empty

6 grouping =
element all { content, order-by?, group-by? }

8 | element some { number, content, order-by?, group-by? }
| element first { interval, content, order-by?, group-by? }

10 order-by =
element order-by {

12 attribute order-relation { text }?,
optional-variable+

14 }
group-by =

16 element group-by {
attribute equivalence-relation { text }?,

18 optional-variable+
}

20 optional-variable =

54

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/modifiers.rng 1 of 1

/ {grammar} Start grouping

content

grouping all

http://xcerpt.org/ns/core/1.0

content

0..1 order-by

0..1 group-by

some

http://xcerpt.org/ns/core/1.0

number

content

0..1 order-by

0..1 group-by

first

http://xcerpt.org/ns/core/1.0

interval

content

0..1 order-by

0..1 group-by

order-by order-by

http://xcerpt.org/ns/core/1.0

0..1 @ order-relation text

1..! optional-variable

group-by group-by

http://xcerpt.org/ns/core/1.0

0..1 @ equivalence-relation text

1..! optional-variable

optional-variable optional

http://xcerpt.org/ns/core/1.0

variable

variable

variable

interval interval

http://xcerpt.org/ns/core/1.0

min

http://xcerpt.org/ns/core/1.0

number-literal.class

max

http://xcerpt.org/ns/core/1.0

number-literal.class

number number

http://xcerpt.org/ns/core/1.0

number-literal.class

number-literal.class DD int

variable

optional optional

http://xcerpt.org/ns/core/1.0

content

0..1 with-default

http://xcerpt.org/ns/core/1.0

content

Figure 5.8: Relax NG Grammar for Modifiers in Construct Terms

55

element optional { variable }
22 | variable

variable = empty
24 interval =

element interval {
26 element min { number-literal.class },

element max { number-literal.class }
28 }

number = element number { number-literal.class }
30 number-literal.class = xsd:int | variable

optional =
32 element optional {

content,
34 element with-default { content }?

}

As in the term syntax, grouping variables can be specified explicitly or implicitly, i.e., in the group-by
subelement or by occurring as free variables inside the scope of the grouping modifier.

5.5 Optional Construct Terms

Aside of grouping to collect alternative bindings for a variable, Xcerpt’s construct terms add
one more modifier to handle the case where a variable may have no bindings in a given substi-
tution: the optional construct term.

§3 Optional Modifier

An optional modifier in construct terms specifies a form of conditional construction: some of
the variables reported as result of a query may not have any bindings in some substitutions,
as they occur only in optional parts of a query (cf. Section 6.1). In this case, an optional
modifier must be used in the construct term to mark the part of the construct term that
depends on the existence of bindings for the optional variables associated with the optional
modifier.

Recall, Figures 5.6 and 5.7 for the precise model of optional construct terms. An optional
modifier in construct terms needs three parameters, the first two are similar to those for group-
ing modifiers:

1. Scope: Which part of the construct term is optional? The scope of an optional modifier
are the modified construct terms. Again, a list of construct terms is allowed to facilitate
optional parts that cover several siblings, e.g., for bracketing. In contrast to grouping
modifiers for attribute terms, optional modifiers have also in the case of attribute terms
a list of (attribute) construct terms as scope, since the problem with repeated attribute
names does not occur in this case (since there is no repetition).

The construct terms in the scope of an optional modifier are the only place, where optional
variables may occur in construct terms. More precisely, only those optional variables that
an optional modifier O (or an optional modifier that O is part of) depends on, may occur
in O.

2. Condition: On bindings for which variables depends the conditional construction?
Optional modifiers specify a set of optional variables that are used to determine whether
the construct terms in the scope of the optional modifier are part of the result or not:

56

They are included in the result for a substitution σ only if bindings for all the specified
optional variables exist in σ . Note, that all variables that an optional modifier depends
on must be optional in the query as well (cf. Section 6.1).

3. Default value: Finally, an optional modifier also specifies a default value in the form of
another list of construct terms. The default value is used in the result for a substitution
σ if for one of the optional variables no binding exist in σ . Note, that the default value
must not contain any of the optional variables, as they may have no binding.

Notice how an optional construct term resembles a conditional expression of the form
if 〈condition〉 then 〈modified construct terms〉 else 〈default construct terms〉.
The condition is, however, always fixed to the existence for bindings for all optional variables
in a substitution (cf. Issue 4 for a discussion on general conditional expressions in Xcerpt
construct terms).

5.5.1 Textual Term Syntax

Optional modifiers follow very much the syntax of grouping modifiers: the in-scope construct terms
follow the optional keyword (or its shorthand opt) enclosed in parentheses. The parentheses may be
omitted if the scope is a single construct term, as usual. The list of in-scope terms is followed by an
optional specification of the default terms, i.e., those terms that are used in the construction, if for one
of the optional variables no binding exists. The specification of the default terms is preluded by the
with-default keyword and, as usual, enclosed in parentheses that may be omitted if there is a single
default term.

The optional variables can only be specified implicitly (cf. Issue 4), i.e., all free variables inside the
optional modifier form the list of optional variables for which bindings must exist so that the in-scope
terms are constructed.

〈optional-ct〉 ::=- 〈optional-modifier〉 ‘(’ ?〈construct-subterm〉 ‘,’ ‘)’ · · ·

· · · ‘with-default’ ‘(’ ?〈construct-subterm〉 ‘,’ ‘)’ -

〈optional-attr-term-ct〉 ::=- 〈optional-modifier〉 ‘(’ ?〈attr-term-ct〉 ‘,’ ‘)’ · · ·

· · · ‘with-default’ ‘(’ ?〈attr-term-ct〉 ‘,’ ‘)’ -

〈optional-modifier〉 ::=- ‘optional’
‘opt’

-

57

5.5.2 XML-style Term Syntax

Again there are no deviations in the productions and non-terminals for the XML-style term syntax. A full
grammar is given in Appendix B.3.

5.5.3 Pure XML Syntax

Optional modifiers follow the general syntax for modifiers as introduced in Section 5.4. As in the term
syntax, optional variables con only be specified implicitly.

5.6 Instantiating a Construct Term

Summarizing, a construct term C can be “instantiated” by a substitution multi-set B. If each
substitution in the substitution multi-set maps all non-optional variables occurring in the con-
struct term to data terms, the result of the instantiation is a data term. The details of the
instantiation are described in [38]. The instantiate function shown in Algorithm 5.1 provides
an instantiation of a construct term, if called with parameters C , B, the free variables in the
construct term, i.e., all variables that occur (also) outside of any grouping or optional term,
and the empty relation∅ as last parameter (i.e., an equivalence relation such that each binding
tuple is equivalent to itself only).

In other words, the resulting data terms are obtained by

1. replacing all free variables in the construct term, i.e., all variables that occur (also) outside
of any grouping or optional modifier, by bindings from each tuple. If there are no free
variable a single resulting data term is constructed.

2. replacing each grouping modifier by repeating the in-scope construct terms for each
group of grouping variables, each time replacing all occurrences of the grouping variables
by the particular group’s bindings. This is done recursively for all grouping modifiers.

3. replacing each optional modifier by the in-scope construct terms, if there exists a combi-
nation of bindings for all optional variables.

Example 5.1 (Construct Terms). The following substitutions for the variables Author, Title,
and Publication are given as result of a query:

Author Title Publication

“Cicero” “Data Processing ...” null

“Cicero” “Space and ...” journal2

“Antonius” “Advancements ...” null

“Antonius” “Efficient Manage...” proceedings29

“Tiro” “Space and ...” journal2

Notice, that Publication is an optional variable.
Then the following construct term in XML-style term syntax

1 <result>
all <author> var Author </author>

3 </result>

58

fun instantiate(C: construct term list, B: substitution multi-set,
V : variables, ∼: equivalence relation)

R ← initially empty list of resulting construct terms
for all t in π∼V (B) do

for all C ∈ C do
B− ← B\πV (B)
replace V in C by bindings for V in t
for all G such that G is a grouping modifier directly in C do

TG ← the list of modified construct terms of G
VG ← grouping variables in G
∼G← equivalence relation used in G
replace G by instantiate(TG, B−, VG,∼G)

end for
for all O such that O is an optional modifier directly in C do

VO ← optional variables in O
if ∀v ∈ VO : ∃b ∈ B : b is a binding for v then

T+ ← the list of modified construct terms of O
replace O by sequence of instantiate(T+, B, V ,∼)

else
T− ← the list of default construct terms of O
replace O by sequence of instantiate(T−, B, V ,∼)

end if
end for
R ← append C to R

end for
end for
return R

end fun

Algorithm 5.1: Instantiating a Construct Term (with π∼ understood as the projection for tuples
using ∼ to remove duplicates and “directly in a term T ” understood as “occurs in the scope of
T but not within the scope of a nested grouping or optional construct term)

59

results in the single data term

1 <result>
<author>"Cicero"</author>

3 <author>"Antonius"</author>
<author>"Tiro"</author>

5 </result>

Notice, how Xcerpt defaults to grouping by structural equivalence and thus treats the two
substitutions with author “Cicero” as one group, constructing only a single result data term for
them.

If we add Title as free variable in the scope of the grouping modifier, the grouping variables
and thus the groups change:

1 result()[
all author()[

3 var Author
title()[var Title]

5]
]

Leading to the result:

result()[
2 author()["Cicero"

title()["Data Processing ..."]]
4 author()["Cicero"

title()["Space and ..."]]
6 author()["Antonius"

title()["Advancements ..."]]
8 author()["Antonius"

title()["Efficient Manage..."]]
10 author()["Tiro"

title()["Space and ..."]]
12]

Now the substitutions for author and title are both considered for forming a group, leading to
more groups!

Nesting grouping modifiers also affects the free variables, e.g., in the following construct
term Title is no longer free for the out all only for the inner.

result()[
2 all author()[

var Author
4 all title()[var Title]

]
6]

Thus the result on the sample substitutions is:

result()[
2 author()["Cicero"

title()["Data Processing ..."]
4 title()["Space and ..."]

]
6 author()["Antonius"

title()["Advancements ..."]
8 title()["Efficient Manage..."]

]
10 author()["Tiro"

60

title()["Space and ..."]]
12]

Combining grouping an optional modifiers can lead to surprisingly expressive constructs:

result()[
2 all author()[

var Author
4 all (title()[var Title]

optional var Publication
6 with-default standalone()[])

]
8]

Results in the following data term:

result()[
2 author()["Cicero"

title()["Data Processing ..."]
4 standalone()[]

]
6 author()["Cicero"

title()["Space and ..."]
8 journal.adm @ journal() [...]

]
10 author()["Antonius"

title()["Advancements ..."]
12 standalone()[]

]
14 author()["Antonius"

title()["Efficient Manage..."]
16 conf.dmmc @ proceedings()[...]

]
18 author()["Tiro"

title()["Space and ..."]
20 journal.adm @ journal() [...]

]
22]

61

62

Chapter 6

How to specify queries?
Part 2: Selection

6.1 Specifying Query Patterns: Query Terms

As introduced above, query terms are the second part of expressing the derivation of new
data in Xcerpt: where construct term dictate the shape of the new data, query terms specify
(possibly incomplete) patterns for data that is to be found, e.g., in Web resources such as XML
pages or RDF resource descriptions. As construct terms, query terms enrich basic data terms
by variables, but here variables serve to identify data that is to be extracted by the query in
form of variable bindings.

Query terms are “matched” with data or construct terms by a non-standard unification
method called simulation unification that is based on a relation called simulation (for details
see [11]). In contrast to Robinson’s unification (as e.g.used in Prolog), simulation unification
is capable of determining substitutions also for incomplete and unordered query terms. Since
incompleteness usually allows many different alternative bindings for the variables, the result
of simulation unification is not only a single substitution, but a (finite) multi-set of substitutions,
each of which yielding ground instances of the unified terms such that the one ground term
matches with the other.

§1 Query term

Query terms specify structure and values of data that is to be matched and which parts of the
matched data are to be extracted. In that, they are comparable to clause bodies in Datalog or
FROM and WHERE clauses in SQL.

Query terms differ more notably from data terms than construct terms do, as they add
additional features beyond variables that are essential to express patterns for data, when the
data may vary or only limited knowledge about the (shape of the) data is available: In detail,
query terms deviate from basic data terms in essentially three aspects (cf. Figure 6.1): the
addition of variables, the support for incomplete patterns, and the use of term formulas to
express conjunctions, disjunctions, and negations.

To better understand these extensions, an intuition of the answer notion in Xcerpt is
needed. The questions, which data and construct terms match with a query term, and what the

63

T
erm

-T
o
p
L
e
v
e
lT
e
rm

T
o

p
LevelT

erm
:Q

u
eryT

erm

Stru
ctu

red
T

erm
:Q

u
eryT

erm

-S
tru
c
tu
re
d
T
e
rm

Id
en

tifier:Q
u

eryT
erm

LiteralC
o

n
ten

t:Q
u

eryT
erm

-Id
e
n
tifie

r

-L
ite
ra
lC
o
n
te
n
t

LiteralV
ariab

le

-T
e
rm

T
erm

:Q
u

eryT
erm

T
erm

V
ariab

le

Stru
ctu

red
T

erm

-T
e
rm

-S
tru
c
tu
re
d
T
e
rm

Lo
calSp

ecificatio
n

:Q
u

eryT
erm

-L
o
c
a
lS
p
e
c
ific
a
tio
n

M
o

d
ified

T
erm

:Q
u

eryT
erm

Lo
calSp

ecificatio
n

A
ttrib

u
teT

erm
List:Q

u
eryT

erm

-L
o
c
a
lS
p
e
c
ific
a
tio
n

-L
ite
ra
lC
o
n
te
n
t

-Id
e
n
tifie

r

-A
ttrib

u
te
T
e
rm

-A
ttrib

u
te
T
e
rm
L
is
t

PartialSu
b

term
:Q

u
eryT

erm

B
aseA

ttrib
u

teT
erm

:Q
u

eryT
erm

T
erm

V
ariab

le

A
ttrib

u
teT

erm
:Q

u
eryT

erm

!"
#
$
%
&'
('
)*+
,-
.#
,/
(0

M
o

d
ified

A
ttrib

u
teT

erm
:Q

u
eryT

erm

R
estrictio

n

1

1

B
aseO

rV
arA

ttrib
u

teT
erm

:Q
u

eryT
erm

-B
a
s
e
A
ttrib

u
te
T
e
rm

R
eg

u
larExp

ressio
n

PartialA
ttrib

u
teT

erm
List:Q

u
eryT

erm

2
331

C
o

n
d

itio
n

R
estrictio

n

1

1

-D
e
c
la
re
B
lo
c
k

D
eclareB

lo
ck

:Q
u

eryT
erm

V
ariab

leD
eclaratio

n

2
334

Figu
re

6
.1

:
U

M
L

M
o

d
el

fo
r

Q
u

ery
T

erm
s

u
sin

g
Param

eteriz
ed

C
o

llab
o

ratio
n

s

64

answer (i.e., the substitution multi-set) for a query term is, are formally addressed in [37, 38].
At the root of Xcerpt’s answer notion stands an extended form of rooted graph simulation
(cf. [34, 27] and [24, 20] for more recent work on efficient algorithms for computing simula-
tion and bisimulation). This extension of the classical notion is necessary to accommodate
incomplete patterns as discussed below in Section 6.3.

Intuitively, a query term without any of the extensions discussed in the following matches
only with a data term that has exactly the same shape modulo reordering of direct sub-terms
in unordered structured terms and of attributes in any terms. In the following it is noted, how
each of the extensions affect the matching of query terms, but the full details are left to [38].

6.1.1 Textual Term Syntax

The following grammar defines the basic non-terminals for query terms. Notice, the added non-terminal
〈modified-qt〉. It represents query terms that are possibly modified by varibles or operators discussed in
the remainder of this chapter.

Declaration blocks in query terms may also contain variable declarations the details of which are
discussed in the next section.

〈query-term〉 ::=- 〈modified-qt〉
〈term-level-declare-qt〉

-

〈term-level-declare-qt〉 ::=- ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉 · · ·

· · · ‘(’ ?〈query-term〉 ‘,’ ‘)’ -

〈modified-qt〉 ::=- 〈variable-term-qt〉
〈location-modified-qt〉
〈occurrence-modified-qt〉
〈selection-modified-qt〉

-

〈base-term-qt〉 ::=- 〈reference-qt〉
〈content-qt〉
〈structured-qt〉

-

〈reference-qt〉 ::=- ‘^’ 〈identifier-qt〉 -

〈ns-decl-qt〉 ::=- ?〈ns-prefix-decl-qt〉 ‘,’ 〈ns-default-decl-qt〉 ‘,’ · · ·

· · · ?〈ns-prefix-decl-qt〉 ‘,’ -

〈ns-prefix-decl-qt〉 ::=- ‘ns-prefix’ 〈identifier-qt〉 ‘=’ 〈IRI〉
〈literal-variable-qt〉

-

65

〈ns-default-decl-dt〉 ::=- ‘ns-default’ 〈IRI〉
〈literal-variable-qt〉

-

〈identifier-qt〉 ::=- 〈NCName〉 〈IRI〉 〈String〉 〈literal-variable-qt〉 〈Regexp〉 -

Content Query Terms Though the productions for content query terms remain unchanged, the intro-
duction of variables into literal content and identifiers in the next sections indirectly also affect content
query terms.

〈content-qt〉 ::=- 〈literal-content-qt〉
〈comment-qt〉

〈processing-instruction-qt〉

-

〈literal-content-qt〉 ::=- 〈String〉
〈literal-variable-qt〉

〈Regexp〉

-

〈comment-qt〉 ::=- ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-qt〉 ‘]’ -

〈processing-instruction-qt〉 ::=- ‘xcerpt’ ‘:’ ‘processing-instruction’
‘xcerpt’ ‘:’ ‘pi’

· · ·

· · · ‘(’ ‘target-name’ ‘=’ 〈identifier-qt〉 ‘)’ · · ·
· · · ‘[’ 〈literal-content-qt〉 ‘]’ -

Structured Query Terms Aside of the introduction of variables and their new found ability to occur
inside modifiers, structured query terms are nearly identical to structured data terms. Additionally,
query terms may be incomplete indicated by double braces or brackets enclosing the list of children.
Also query terms can be annotated with condition clauses as described in the next section.

〈structured-qt〉 ::=- 〈local-spec-qt〉 〈children-list-qt〉 〈condition-clause-qt〉 -

〈children-list-qt〉 ::=- ‘[’ (〈query-term〉 ‘,’ ?)* ‘]’
‘{’ (〈query-term〉 ‘,’ ?)* ‘}’

‘[[’ (〈query-term〉 ‘,’ ?)* ‘]]’
‘{{’ (〈query-term〉 ‘,’ ?)* ‘}}’

-

〈local-spec-qt〉 ::=- 〈term-identifier-qt〉 〈ns-label-qt〉 〈attr-term-list-qt〉 -

〈term-identifier-qt〉 ::=- 〈identifier-qt〉 ‘@’ -

〈ns-label-qt〉 ::=- 〈identifier-qt〉 ‘:’ 〈identifier-qt〉 -

〈attr-term-list-qt〉 ::=- ‘(’ ?〈attr-term-qt〉 ‘,’ ? ‘)’

‘((’ ?〈attr-term-qt〉 ‘,’ ? ‘))’

-

66

〈attr-term-qt〉 ::=- 〈modified-attr-term-qt〉 -

〈modified-attr-term-qt〉 ::=- 〈base-attr-term-qt〉
〈variable-attr-term-qt〉

〈occurrence-modified-attr-term-qt〉
〈selection-modified-attr-term-qt〉

-

〈base-attr-term-qt〉 ::=- 〈ns-label-qt〉 ‘=’ 〈literal-content-qt〉 -

6.1.2 XML-style Term Syntax

Once more, the XML-style term syntax is closely aligned with the non-XML term syntax, but differs in the
representation of comments, processing-instructions, and properties of structured terms. Here, incom-
plete term specifications are indicated with ‘{partial}’ (and complete or total terms specifications with
‘{total}’). The same applies for incomplete attribute term lists. As in data and construct terms, query
terms are syntactically similar to XML elements, but may contain Xcerpt constructs additionally.

〈comment-qt〉 ::=- ‘<!-’ 〈literal-content-qt〉 ‘->’ -

〈processing-instruction-qt〉 ::=- ‘<?’ 〈identifier-qt〉 〈literal-content-qt〉 ‘?>’ -

〈structured-qt〉 ::= · · · ‘<’ 〈local-spec-qt〉 〈properties-qt〉 -

· · · ‘>’ 〈children-list-qt〉 ‘</>’
‘<’ 〈ns-label-qt〉 ‘>’

‘/>’

· · ·

- 〈condition-clause-qt〉 · · ·

〈properties-qt〉 ::= · · · ‘{’ ‘ordered’ ‘}’
‘{’ ‘unordered’ ‘}’

‘{’ ‘total’ ‘}’
‘{’ ‘partial’ ‘}’

-

- ‘{’ ‘total attributes’ ‘}’
‘{’ ‘partial attributes’ ‘}’

· · ·

〈children-list-qt〉 ::=- ?〈query-term〉 -

〈attr-term-list-qt〉 ::=- ?〈attr-term-qt〉 -

6.1.3 Pure XML Syntax

Once more, the pure XML syntax for query terms relies heavily on the parameterizable Relax NG grammar
for terms introduced in Section 4.1. Evidently, query terms can become the most complex of the three
term kinds in Xcerpt, cf.Figure 6.2. As construct terms they add variables to data terms. But they
also provide means for expressing incompleteness: partial terms, descendant and position location
modifiers, etc.

Query terms deviate from the basic term case in (a) extended top-level terms, (b) the introduction of
modified-terms, (c) the use of condition formulas attached to each term, and (d) the use of variables and
regular-expressions in identifiers and literal content.

67

A POSIX.1 regular expression annotated with variables may occur in
2 ## query terms at the position of identifiers or literal content.

regular-expression =
4 element regexp {

attribute value { text }
6 }

8 query-term =
grammar {

10

include "term.rnc" {
12 # Redefine the top−level term for query terms: add variables to

declare blocks and allow optional, descendant, variable restriction.
14 # Add document specifications

Add query term formula
16

A term that may occur at top−level. Slightly more
18 ## restricted than a basic term.

top-level-term.class =
20 optional-top-level-term

| term-formula
22 | document-specification

| grammar {
24 include "declare−block.rnc" {

content = parent top-level-term.class*
26 }

}
28 # Redefine terms: only modified terms, which can in fact be

unmodified :−) Term−level declare blocks may also contain variable
30 # declarations

32 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class = modified-term | term-level-declare

34

A declaration block on term level allows possibly (in data and construct terms) only namespace
declarations.

36 term-level-declare =
grammar {

38 include "declare−block.rnc" {
content = parent term.class*

40 }
}

42

An attribute term is an attribute possibly modified with respect to location, modality, and selection.
44 attribute-term.class = modified-attr-term

Allow conditions on arbitrary query terms
46 term-condition = condition-clause

48 }

50 # Add variables and regular expressions to identifiers and literal
content

52 identifier.class |= variable | parent regular-expression
literal-content.class |= variable | parent regular-expression

54

Variables for query terms.
56 variable =

element variable {
58 attribute anonymous { "true" }

68

| attribute name { xsd:NCName }
60 }

62 # #1# TOP−LEVEL QUERY TERM
see below

64

#2# CONDITION CLAUSES
66 # see below

68 # #3# MODIFIED TERMS AND ATTRIBUTE TERMS
see below

70

}

6.2 Variables in Query Terms

Variables in query terms are used for three purposes: (a) to specify which parts of a matched
(construct or data) term are “selected” by the query and can be used in the corresponding
construct term, (b) to specify joins, i.e., multiple occurrences of the same data term or literal
value (usually unknown at time of query authoring), and (c) to specify arithmetic or other
conditions involving (literal) values of variables.

Like in construct terms variables may be used in query terms in place of (a) (structured
or attribute) terms or in place of (b) identifiers and literal content. In either case, a variable
matches (unless further restricted as discussed below) any sub-term or literal that may occur
at that position, i.e., regardless of the shape of the sub-term or literal.

Variables are named so that they can be referred to in other parts of the query term (form-
ing a join) or in the corresponding construct term. Xcerpt allows in addition to named variables
also contain anonymous variables (like in Prolog). As unrestricted named variables, an anony-
mous variables matches arbitrary terms or literals that may occur at the position of the variable.
However, bindings for anonymous variables are not recorded and different occurrences of the
same anonymous variables are treated like different named variables. Thus, anonymous vari-
ables can neither be used for joins, nor be restricted through variable restrictions or conditions,
nor occur in construct terms. Their sole purpose is to act as a wildcard construct.

Additionally, query terms may contain so-called variable restrictions, where a variable does
not just replace some sub-term (and thus is bound to all sub-terms in a matching data term
that can occur at that point), but the sub-terms that may be bound to the variable are further
restricted by specifying a arbitrary query term.

§2 Variable Restrictions

A variable restriction places a constraint on the structure of (data or construct) terms that
can be bound to the restricted variable by specifying the possible shapes of such (data or
construct) terms as a query term.

Variable restrictions may only occur in place of structured and attribute query terms, not in
place of identifiers or literal content (cf. Issue 12). Figure 6.3 shows variable restrictions in the
context of basic query terms: Each variable restriction restricts one (term) variable to a (basic)
query term (the scope of that variable restriction). Variable restrictions for attribute terms are
analogous.

69

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/xcerpt.rng 1 of 2
Continue on page 2

/ {grammar} Start

program

rule-level-block

rule

goal

data

data-term {grammar} term.rng

variable-ct

construct-term

regular-expression DocDoc

regexp

http://xcerpt.org/ns/core/1.0

@ value text

query-term DocDoc

{grammar} variable DocDoc

variable

http://xcerpt.org/ns/core/1.0

@ anonymous true

@ name DD NCName

optional-top-level-term optional

http://xcerpt.org/ns/core/1.0

descendant-top-level-term

descendant-top-level-term

descendant-top-level-term descendant

http://xcerpt.org/ns/core/1.0

var-restriction-top-level-term

var-restriction-top-level-term

var-restriction-top-level-term restriction

http://xcerpt.org/ns/core/1.0

variable

structured-term

structured-term

term-formula {grammar} formula.rng

document-specification xml-document

http://xcerpt.org/ns/core/1.0

@ location text

0..1 xml-declaration

http://xcerpt.org/ns/core/1.0

0..1 @ standalone true

false

variable

0..1 @ xml-version 1.0

1.1

variable

0..1 doctype

http://xcerpt.org/ns/core/1.0

0..1 @ system-id identifier.class

0..1 @ public-id identifier.class

0..1 @ root-name identifier.class

children

http://xcerpt.org/ns/core/1.0

0..! annotation-content

top-level-term.class

0..! annotation-content

condition-clause condition

http://xcerpt.org/ns/core/1.0

{grammar} formula.rng

comparison comparison

http://xcerpt.org/ns/core/1.0

@ operator eq

neq

lt

bt

elt

ebt

arithmetics

arithmetics

optional

http://xcerpt.org/ns/core/1.0

comparison

arithmetics

arithmetics arithmetics

http://xcerpt.org/ns/core/1.0

@ operator plus

minus

times

div

power

arithmetics

arithmetic-parameter

arithmetics

arithmetic-parameter

optional

http://xcerpt.org/ns/core/1.0

arithmetics

arithmetic-parameter

arithmetic-parameter variable

value

http://xcerpt.org/ns/core/1.0

text

modified-term variable-term

location-term

occurrence-term

selection-term

base-term reference

content-term

structured-term

variable-term base-term

variable

restriction

http://xcerpt.org/ns/core/1.0

variable

base-term

location-term descendant

http://xcerpt.org/ns/core/1.0

variable-term

position

http://xcerpt.org/ns/core/1.0

number

http://xcerpt.org/ns/core/1.0

variable

DD int

variable-term

selection-term except

http://xcerpt.org/ns/core/1.0

modified-term

occurrence-term without

http://xcerpt.org/ns/core/1.0

modified-term

optional

http://xcerpt.org/ns/core/1.0

modified-term

modified-attr-term base-attribute

variable-attr-term

occurrence-modified-attr-term

selection-modified-attr-term

variable-attr-term variable

restriction

http://xcerpt.org/ns/core/1.0

variable

base-attribute

occurrence-modified-attr-term without

http://xcerpt.org/ns/core/1.0

modified-attr-term

Figure 6.2: Relax NG Grammar for Query Terms (Excerpt)

70

Content:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTerm:QueryTerm

Term:QueryTerm

Restriction

1

1

1

TopLevelTerm:QueryTerm

Resource:QueryTerm

TopLevelTermDeclare:QueryTerm

1

OptionalTopLevelTerm:QueryTerm

DescendantTopLevelTerm:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTopLevelTerm:QueryTerm

1

1

DescendantOrBaseTerm:QueryTerm TermVariable

Reference:QueryTerm

Identifier:QueryTerm

StructuredTerm:QueryTerm Restriction

1

TermVariable

1

NamespaceDeclaration

2334

VariableDeclaration

2334

(#

,+5'6

(#

TermFormula:QueryTerm

TermLevelDeclare:QueryTerm

1334

NamespaceDeclaration

2334

VariableDeclaration

2334

ModifiedTerm:QueryTerm

Figure 6.3: UML Model for (basic) Query Terms

Another means to restrict the bindings of a variable are conditions. Where variable restric-
tions restrict the terms a variable can be bound to, conditions restrict the values:

§3 Conditions

Conditions restrict the possible (literal) values a variable can be bound to and thus are mostly
used to restrict literal variables, i.e., variables that occur in place of identifiers or literal
content.

Conditions consist in arbitrary expressions (though currently, only arithmetic and com-
parison expressions on (floating point) numbers are defined, cf. Section 8.2.3) formed with
identifiers or literal content as atoms. Also conditions may use boolean connectives to form
condition formulas. A more detailed description of conditions (and functions in general) is
under development, cf. Issue 8.

Rather than restricting the terms or literal values that a variable can be bound to, term
variables may also be bound to only parts of a matched sub-term:

§4 Except Binding Modifier

A binding modifiers changes the binding a variable without affecting the match of a query.
The only kind of binding modifier in Xcerpt is the except binding modifier. Using except a
part of a sub-term can be omitted from the bindings.

The scope of an except modifier is a single (possibly modified basic or attribute, resp.) query
term as seen in Figures 6.4 and 6.5 (cf. Issue 9).

Since except changes variable bindings it is only useful in the scope of a variable restriction.
Occurrences outside of any variable restriction are ignored (cf. Issue 9).

Notice, that except does not change the original matched term, but only the variable bind-
ings. It also does not affect the matching of a query term: The query term obtained by replacing
all except’s in a query term by their in-scope query terms matches the same data or construct
terms as the original one. The only differences is that some variable bindings might have
certain parts removed.

Variables may be declared in term-level declare blocks just like namespaces.

71

ModifiedTerm:QueryTerm

PositionSpecification

!

Number LiteralVariable

OccurrenceModifier LocationModifier

"#$%&'()(*+,-./$-0)1

OptionalModifier WithoutModifier

"#$%&'()(*+,-./$-0)1

DescendantModifier PositionModifier

SelectionModifier

ExceptModifier

"#$%&'()(*+,-./$-0)1 "#$%&'()(1

"#$%&'()(*+,-./$-0)1

Term:QueryTerm

LocationOrBaseTerm

Term:QueryTerm

%$,-2-(,

!334 %$,-2-(,!

%$,-2-(,

!

Figure 6.4: UML Model for Modified Structured Query Terms

LocalSpecification:QueryTerm

!"#$%&'(()

+,-

)

BaseAttribute:QueryTerm

NsLabel:QueryTerm

)

TotalAttributeTerm:QueryTerm

'((.
/,+0!*#1#23%45+%617

)((.

Reference:QueryTerm

'(()

8-*9#)

6-0#

)

AttributeTerm:QueryTerm

TermVariable

Attribute:QueryTerm

/,+0!*#1#2:3%45+%617

Content

Identifier:QueryTerm

NCName IRI

/,+0!*#1#2:3%45+%617

LiteralVariable

)

ModifiedAttribute:QueryTerm

PartialAttributeTerm:QueryTerm

Restriction

)

RegularExpression

)

AttributeFormula:QueryTerm

ModifiedAttribute:QueryTerm

OccurrenceModifiedAttribute

/,+0!*#1#2:3%45+%617

OptionalAttribute AbsentAttribute

/,+0!*#1#2:3%45+%617

SelectionModifiedAttribute

ExceptAttribute

/,+0!*#1#7

)

)((.

BaseOrVarAttribute:QueryTerm

BaseOrVarAttribute:QueryTerm

/,+0!*#1#2:3%45+%617

Attribute:QueryTerm

'(()

ConditionBox

Formula-BaseClass

AttributeFormula:QueryTerm

AttributeNegation AttributeConjunction Attributedisjointion

/,+0!*#1#23%45+%617

Attribute:QueryTerm

)

;((.
;((.

'(()

Condition

Figure 6.5: UML Model for Modified Attribute Query Terms

72

§5 Variable Declarations

A variable declaration is, at the time of writing, only reserving a certain identifier for use as
a variable in the scope of the declaration block.

However, it is envisioned that in the same way variables might be typed, e.g., to restrict a
certain variable to literal values or to structured values only (cf. Issue 15).

6.2.1 Textual Term Syntax

〈condition-clause-qt〉 ::= ‘where’ ‘(’ 〈condition-qt〉 ‘)’

〈condition-qt〉 ::=- 〈c-parameter〉 〈comparison-op〉 〈c-parameter〉
〈comparison-op〉 ‘(’ 〈c-parameter〉 ‘,’ 〈c-parameter〉 ‘)’

‘and’ ‘(’ 〈condition-qt〉 ‘,’ ?〈condition-qt〉 ‘,’ ‘)’

‘or’ ‘(’ 〈condition-qt〉 ‘,’ ?〈condition-qt〉 ‘,’ ‘)’

‘not’ ‘(’ 〈condition-qt〉 ‘)’
〈c-parameter〉

-

〈condition-op〉 ::=- ‘==’
‘!=’
‘<’
‘>’

‘<=’
‘>=’

-

〈arithmetic-op〉 ::=- ‘+’
‘-’
‘*’
‘/’
‘^’

-

〈c-parameter〉 ::=- 〈optional-variable-qt〉
〈variable-qt〉
〈String〉
〈Int〉

〈c-parameter〉 〈arithmetic-op〉 〈c-parameter〉
〈arithmetic-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’

-

〈optional-variable-qt〉 ::=- 〈optional-modifier〉 〈variable-qt〉 -

〈variable-decl-qt〉 ::=- ? ‘variable’
‘var’

〈NCName〉 ‘,’ -

〈variable-term-qt〉 ::=- 〈base-term-qt〉
〈term-variable-qt〉 ‘->’ 〈base-term-qt〉

-

73

〈variable-qt〉 ::=- 〈term-variable-qt〉
〈literal-variable-qt〉

-

〈variable-attr-term-qt〉 ::=- 〈term-variable〉 ‘->’ 〈base-attr-term-qt〉 -

〈term-variable-qt〉 ::=- 〈var-specification-qt〉 -

〈literal-variable-qt〉 ::=- 〈var-specification-qt〉 -

〈var-specification-qt〉 ::=- ‘variable’
‘var’

) 〈NCName〉

〈anonymous-variable〉

-

〈anonymous-variable〉 ::=- ‘_’ -

6.2.2 XML-style Term Syntax

Once more, the XML-style term syntax uses productions identical to the ones for the non-XML term
syntax. The full grammar is given in Appendix B.4.

6.2.3 Pure XML Syntax

The following parameterized grammar for formulas is used not only for defining condition clauses at
term-level, but also for term formulas only occuring at top-level in query terms.

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = formula
5 formula =

element and { formula, formula+, condition? }
7 | element or { formula, formula+, condition? }

| element not { formula }
9 | content

condition = empty
11 content = empty

Condition clauses consist in such formulas, where the content can be comparisons and arithmetic
expressions over variables.

1 # #2# CONDITION CLAUSES ##
condition-clause =

3 element condition {
grammar {

5 include "formula.rnc" {
content = parent comparison*

7 }
}

9 }
comparison =

11 element comparison {
attribute operator {

13 "eq" | "neq" | "lt" | "bt" | "elt" | "ebt"
},

74

15 arithmetics,
arithmetics

17 }
| element optional { comparison }

19 | arithmetics
arithmetics =

21 element arithmetics {
attribute operator {

23 "plus" | "minus" | "times" | "div" | "power"
},

25 (arithmetics | arithmetic-parameter),
(arithmetics | arithmetic-parameter)

27 }
| element optional { arithmetics }

29 | arithmetic-parameter
arithmetic-parameter =

31 variable
| element value { text }

6.3 Incomplete Patterns

As discussed above, query terms are meant to be examples or patterns of the sought-for data.
So far, however, query terms always have to specify all parts of matched data, even if only a
small part is sufficient to distinguish relevant from irrelevant data. Obviously, this is unac-
ceptable for many queries. Therefore, Xcerpt introduces a number of concepts to allow query
terms to be incomplete patterns of the sought-for data, that may specify only what is needed
to distinguish relevant from irrelevant data. In contrast to many other query languages (such
as XQuery and SQL) that assume that a query specifies only parts of the sought-for data and
make it difficult to specify queries where no additional data may occur, Xcerpt patterns make
it obvious where a query term is incomplete and where not. This is a property that is partic-
ularly welcome in the context of semi-structured data as here the schema of the data is often
unknown or variable, allowing, e.g., optional or repeated children.

Query terms (i.e., patterns) can be incomplete with respect to

1. breadth, i.e., only a subset of the actual children of a term is specified.

§6 Partial Terms

A term is called partial, if only some of the children of the term are specified. When match-
ing partial terms, additional children may occur without affecting the match. However, all
specified children must occur and, in case of ordered terms, must occur in the same order.

If a term is not partial, it is called total as discussed above. Notice, that neither data nor
construct terms may contain partial terms, as data is always presumed to be “complete”
(cf. Issue 35).

Partial terms are obviously essential for dealing with semi-structured data, where the
schema of the data may allow for repetition or omissions of data (both in breadth and
depth). Thus, queries can not specify total (or complete) patterns for the data.

However, partial terms also introduce a number of new challenges in a pattern language
such as Xcerpt—that do not occur, e.g., in logic programming languages such as Prolog,
where term arity and children order of two matching terms are always the same.

75

First, assume an ordered query term q that specifies only a partial list of children. Then
the position (among its siblings) of a match m′ for a child of m may (and will in most
cases) differ from the position of m among its siblings (i.e., among q’s children). However,
in many cases access to the (sibling) position is needed, e.g., to obtain the first child or
immediate following sibling of a matched term. Therefore, Xcerpt provides access to the
sibling position through the position modifier:

§7 Position Modifier

The position modifier allows the specification of the position of a child among its siblings,
i.e., in the list of children of its parent. The position may be specified as an arithmetic expres-
sion composed of the usual arithmetic operators for natural numbers and natural numbers
as well as (literal) variables as atomic expressions. The scope of a position modifier is a
single term.

Obviously, a position modifier can only occur inside other (structured) terms and not at
the top-level of a query term.

Using variables one can (a) query the position, (b) express positional joins, e.g., to find
immediate siblings, and (c) correlate data and position. Variables occurring in position
specifications may only be bond to natural numbers, otherwise a (run-time) exception
occurs (cf.Issue 15). The following example shows the use of positional variables to find
the immediate two following siblings of a term:

Example 6.1. immediate following two siblings

Second, though one may not be able to specify how all of the children of a sought-for
term ought to be shaped like, one might be able to specify how they ought not to be
shaped. Again, this makes sense only in a partial term, as in a total term the shape of
all children must be explicitly stated. Xcerpt uses the without modifier to express this
subterm negation:

§8 Without Modifier

The without modifier expresses that not all sub-terms in its scope may match with a sub-term
of a match for its parent term. The scope of a without modifier is a list of one or more
sub-terms.

Sub-terms in the scope of a without modifier are often referred to as negative, those
outside as positive.

Notice, that the definition does not specify that none of the sub-terms may occur in a
match for the parent: If the scope of a without modifier is a list of sub-terms, than the
parent term t matches another term t′, if there is a mapping of the positive sub-terms
of t to t′, that can not be extended to also cover all negative sub-terms. Thus, subterm
negation is existential.

Example 6.2. examples with a list and a single without

Like position modifiers, without modifiers may only occur in sub-terms. Note, also that
Xcerpt places some limitations on variables used in without modifiers, cf.Section 7.2.

Currently, without modifiers may not be either arbitrary siblings of each other in an
unordered parent term or immediate siblings of each other in an ordered parent term (cf.
Issue 6).

76

Figure 6.6: UML Model for Qualified Descendant

2. depth: Semi-structured data may not only vary in the number, order, and repetition of
children, but also in how elements are nested. E.g., in (X)HTML most inline elements such
as em may occur in most block-level elements such as p or div, but may also be nested
inside each other. Thus selecting all em elements in an (X)HTML document in a pattern
requires a means to specify patterns that are incomplete in depth, i.e., that contain sub-
terms that are not direct sub-terms of their parent but stand in another structural relation
to it, e.g., occurring at any depth under their parent or occurring at depth 5 under their
parent.

To express such incompleteness in depth Xcerpt provides the descendant modifier, simi-
lar in its basic form to the descendant axis in XPath. In contrast to XPath (and thus XSLT
and XQuery), Xcerpt also provides a more expressive variant of the descendant modifier
that allows direct expression of constraints such as “occurs at depth 5 under its parent”
or “occurs at any depth under its parent but with only div elements in between its parent
and itself”. The latter variant of the descendant modifier is referred to as qualified, the
basic case as unqualified.

§9 (Unqualified) Descendant Modifier

The unqualified variant of the descendant modifier specifies that the single sub-term in its
scope may occur at any depth under the parent term (rather than as an immediate child).

Notice, that the position and descendant modifier can not be mixed, as the former to the
position among the immediate children of the parent term, and the latter specifies that
the sub-term may also be nested more deeply inside the parent term.

In contrast to the position modifier the descendant modifier may occur at top-level, thus
specifying that the contained term may occur at any level in the document.

§10 Qualified Descendant Modifier

The qualified variant of the descendant modifier specifies a more involved relation between
the parent term and the single in-scope sub-term: The in-scope sub-term occurs inside the
parent term, but the path in between is restricted by a qualifying expression that consists in
a selection and a repetition part.

A detail model of the qualified descendant is given in Figure 6.6: The selection part is a
sequence of (one or more) element label and optional attribute term specifications, both
possibly containing variables. The repetition part is an interval [i, j] with i <= j and
i, j ∈ N0 ∪ {∞}. The interval boundaries may also be literal variables.

Thus, the qualified descendant restricts the in-scope sub-term to matchings that are
reached from a match of the parent term via a path that matches the selection part
repeated between i and j times.

Notice, that variable occurrences in the selection and repetition part of a qualified de-
scendant are non-binding, i.e., all such variables must be bound in another part of the
query term (cf. Section 7.2).

Example 6.3.

77

3. optional parts: One of the most distinguishing features of semi-structured data in con-
trast to, e.g., relational data aside is the allowance for optional information, i.e., informa-
tion that occurs in some elements of a certain type but is missing in others of the same
type. Though testing for the existence or absence of such optional information has been
a focus in many semi-structured and XML query languages (most notably structural pred-
icates in XPath), selecting of or construction based on optional information has been far
less closely investigated. Xcerpt provides query authors with a unified concept for han-
dling optional information in the context of testing, selection, and construction, quite in
contrast to mainstream XML query languages such as XQuery and XSLT.

Just like in construct terms, the optional modifier is used in query terms to indicate which
parts of a query may be missing without affecting the matching of the remainder of the
query.

§11 Optional Modifier

The optional modifier in query terms indicates that its in-scope terms may be missing in
a matching term, but have to be considered, if they are existent. The scope of an optional
modifier is a list of terms.

This way optional modifiers serve to bind variables to part of the data that may be
absent, but that must be included in the substitutions resulting from a query, if present.
Obviously, only bindings for variables that do not occur (positively, cf. Section 7.2) also
outside of the scope of any optional are effect by the presence or absence of the optional
part, as in the other case their bindings are already established by the outside occurrence.
Therefore, an optional modifier with no such variable in scope does not affect either
matching or the resulting substitutions and can thus be safely removed from the query.

4. order: As discussed above, data and construct terms may already be distinguished in
ordered and unordered terms. Often, however, one might not care about the order in
which matches for the sub-terms in a query occur in the data, even if the data itself is
ordered. Xcerpt acknowledges this fact by allowing query terms that are unordered to
match with ordered terms, but not the other way around. I.e., if the query specifies the
order is significant then only data where the order is significant as well can match with
that query; if the query however indicates that the order may be ignored, then also data
is considered that is ordered, however the sub-terms of the query are matched in any
order with the sub-terms of the data.

5. literal specification: Finally, like in the relational case, queries often may not be able to
specify literal content or identifiers completely, but rather query for data where the literal
content or the identifiers falls into some class, specified in Xcerpt by means of POSIX.1
regular expressions enhanced with variable bindings: additionally to using POSIX’s nu-
meric backreferences, Xcerpt allows subexpressions to be bound to Xcerpt literal vari-
ables. This allows the extraction and insertion of data from the rest of the Xcerpt query
into the regular expression.

As stated, regular expressions may occur anywhere in a query term where literal content
or identifiers may occur, except where only natural numbers are allowed, as in repetition
and position specifications.

Notice, that for the “wildcard” regular expression .* anonymous variables may be used
and are often more convenient.

78

6.3.1 Textual Term Syntax

〈selection-modified-qt〉 ::=- 〈selection-modifier〉 ‘(’ ?〈modified-qt〉 ‘,’ ‘)’ -

〈selection-modified-attr-term-qt〉 ::=- 〈selection-modifier〉 ‘(’ ?〈modified-attr-term-qt〉 ‘,’ ‘)’ -

〈selection-modifier〉 ::=- ‘except’ -

〈occurrence-modified-qt〉 ::=- 〈occurrence-modifier〉 ‘(’ ?〈modified-qt〉 ‘,’ ‘)’ -

〈occurrence-modified-attr-term-qt〉 ::=- 〈occurrence-modifier〉 ‘(’ -

- ?〈modified-attr-term-qt〉 ‘,’ ‘)’ · · ·

〈occurrence-modifier〉 ::=- 〈optional-modifier〉
‘without’

-

〈location-modified-qt〉 ::=- 〈location-modifier〉 ‘(’ ?〈term-variable-qt〉 ‘,’ ‘)’ -

〈location-modifier〉 ::=- 〈descendant-modifier〉
〈position-modifier〉

-

〈descendant-modifier〉 ::=- ‘descendant’
‘desc’

-

〈position-modifier〉 ::=- ‘position’
‘pos’

〈number-qt〉 -

〈number-qt〉 ::=- 〈Int〉
〈literal-variable-ct〉

-

6.3.2 XML-style Term Syntax

Once more, the XML-style term syntax uses productions identical to the ones for the non-XML term
syntax. The full grammar is given in Appendix B.4.

79

6.3.3 Pure XML Syntax

Like in the term syntax, the XML syntax enforces a hierarchy of modified terms with occurrence and
selection modified terms at the top followed by occurrence modified terms, variable restrictions and
finally base terms.

#3# MODIFIED TERMS
2 modified-term =

variable-term | location-term | occurrence-term | selection-term
4 base-term = reference | content-term | structured-term

variable-term =
6 base-term

| variable
8 | element restriction { variable, base-term }

location-term =
10 element descendant { variable-term }

| element position {
12 element number { variable | xsd:int },

variable-term
14 }

selection-term = element except { modified-term }
16 occurrence-term =

element without { modified-term }
18 | element optional { modified-term }

#4# MODIFIED ATTRIBUTE TERMS
20 modified-attr-term =

base-attribute,
22 variable-attr-term,

occurrence-modified-attr-term,
24 selection-modified-attr-term

variable-attr-term =
26 variable

| element restriction { variable, base-attribute }
28 occurrence-modified-attr-term =

element without { modified-attr-term }
30 | element optional { modified-attr-term }

selection-modified-attr-term = element except { modified-attr-term }

6.4 Top-level Query Terms

As mentioned in the discussion of some of the query term modifiers above, certain modifiers
are only allowed at sub-term level, but not at the top-level. On the other hand, there are some
constructs that may only occur in top-level query terms, viz. term formulas and document
specifications. Figure 6.7 shows a detailed model of top-level query terms. Notice that from all
modifiers in query terms only optional and descendant modifiers are allowed at top-level.

6.4.1 Term Formulas

(Top-level) query terms can be connected by the usual boolean connectives to form so-called
query term formulas.

80

Content:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTerm:QueryTerm

Term:QueryTerm

Restriction

1

1

1

TopLevelTerm:QueryTerm

Resource:QueryTerm

TopLevelTermDeclare:QueryTerm

1

OptionalTopLevelTerm:QueryTerm

DescendantTopLevelTerm:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTopLevelTerm:QueryTerm

1

1

DescendantOrBaseTerm:QueryTerm TermVariable

Reference:QueryTerm

Identifier:QueryTerm

StructuredTerm:QueryTerm Restriction

1

TermVariable

1

NamespaceDeclaration

2334

VariableDeclaration

2334

(#

,+5'6

(#

TermFormula:QueryTerm

TermLevelDeclare:QueryTerm

1334

NamespaceDeclaration

2334

VariableDeclaration

2334

ModifiedTerm:QueryTerm

Figure 6.7: UML Model for Top-level Query Terms

Formula

Negation Conjunction disjointion

!"#$%&'(')*+,-#+.(/

BaseClass

0

1223

1223

4220

Condition

BaseClass
SubtermFormula:QueryTerm

SubtermNegation SubtermConjunction Subtermdisjointion

!"#$%&'(')*+,-#+.(/

Subterms:QueryTerm

0

1223
1223

4220

Condition

AttributeFormula:QueryTerm

AttributeNegation AttributeConjunction Attributedisjointion

!"#$%&'(')*+,-#+.(/

Attribute:QueryTerm

0

1223
1223

4220

Condition

TermFormula:QueryTerm

TermNegation TermConjunction Termdisjointion

!"#$%&'(')*+,-#+.(/

TopLevelTerm:QueryTerm

0

1223
1223

4220

Condition

Figure 6.8: UML Model for Query Formula

§12 Term Formulas

A term formula is an expression formed from boolean connectives (and, or, and not) over
top-level query terms. Intuitively, or merely merges the resulting multi-sets of substitutions
resulting from the contained queries (similar to union in SQL database systems), whereas and

creates the joins the individual substitutions (if none of the queries contains a negation).

Besides the sub-term negation introduced in Section 6.3 above (without modifier), Xcerpt
also supports query negation, denoted using not. The query negation used in Xcerpt is negation
as (finite or infinite) failure like in logic programming, i.e., a negated query not(Q) succeeds
if the query Q fails. Like in negated sub-terms, variables occurring in a negated query do not
yield bindings, i.e., they have to appear elsewhere in the query outside the scope of a negation
construct (cf.Section 7.2).

Notice, that query negation is universal quantified, i.e., there may be no term that matches
the query, whereas sub-term negation filters out those parent terms that contain the negated
sub-term, and thus is effectively existential quantified if the parent term is not bound to a
variable.

6.4.2 Document Specifications

So far, query terms have not specified what document the data they are matched against comes
from. In this case, data and construct terms that are part of the program (or set-up by some
other environment specific method) are considered. If data stored in external sources is to

81

TermFormula:QueryTerm

TermNegation TermConjunction TermDisjunction

!"#$%&'(')*+,-#+.(/

TopLevelTerm:QueryTerm

0

1223
1223

4220

Condition

DocumentSpecification:QueryTerm

LiteralContent:QueryTerm

!"#$%&'(')5*+,-#+.(/

Comment:QueryTerm

Content:QueryTerm

ProcessingInstruction:QueryTerm

StringIdentifier:QueryTerm

!"#$%&'(')*+,-#+.(/

"#.('.(0

"#.('.(

0

(678'(5.6$'0

LiteralVariableRegularExpression

9:9

0

NumberStandaloneDocumentSpecification

AnnotationContent:QueryTerm

!"#$%&'(')5*+,-#+.(/

AnnotationContent:QueryTerm

AnnotationContent:QueryTerm

TopLevelTerm:QueryTerm

;<=5>'7,+#.4220

DocTypeDeclaration:QueryTermIdentifier:QueryTerm

#"(?%' 4220'."#+.8 4220

0

%7#

4223

'%+

4223

Identifier:QueryTerm

,?,('$5+*

0 %@A&+"5+*

4220

7##(5.6$' 0

Figure 6.9: UML Model for Document Specifications

be accessed, a document specification is needed to specify the needed information about that
external data source.

§13 Document Specification

A document specification describes an external data source such as an XML document. Typ-
ically document specifications contain at least access parameters, e.g., the IRI (International-
ized Resource Identifier [21]) of an XML document.

At the time of writing, the only form of document specification are XML document specifi-
cations.

§14 XML Document Specification

An XML document specification is a document specification to specify access to XML doc-
uments. Aside of an IRI identifying the document to be accessed, an XML document speci-
fication may contain most of the information present in the document and document type
declaration information items from [16]: XML version, standalone status flag, root name (i.e.,
the tag name of the document element), system, and public identifier of the document type
declaration if any, as well as the document element (a top-level term) and two lists of an-
notation content (i.e., processing instruction or comment terms) for document prolog and
epilog.

Note, that there is currently no mechanism in Xcerpt to enable or disable validation in pres-
ence of a document type declaration. In absence of such a mechanism, Xcerpt implementations
are expected to validate all documents with document type declaration. If such a document is
not valid, an error is generated. Thus, if a root name is present, it will always be the same as
the label of the document element.

For querying, document specifications are treated just like any other form of data, i.e., one
can, e.g., query all documents conforming to a DTD identified by a specific public or system ID.

Document specifications are also used for specifying properties of output documents, cf.
Section 7.

82

6.4.3 Textual Term Syntax

As noted, top-level query terms may, in addition to structured query terms and top-level declare blocks
as in data and construct terms, may also be modified through optional, descendant, or a variable
restriction and may be formulas of query terms as well as document specifications, i.e., expression for
accessing specific resources on the Web.

〈top-level-query-term〉 ::=- 〈top-term-level-declare-qt〉
〈optional-top-level-qt〉
〈term-formula-qt〉

〈document-specification-qt〉

-

〈top-term-level-declare-qt〉 ::= · · · ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉 -
- ‘(’ 〈top-level-construct-term〉 ‘)’ · · ·

〈optional-top-level-qt〉 ::=- 〈optional-modifier〉 ‘(’ 〈descendant-top-level-qt〉 ‘)’
〈descendant-top-level-qt〉

-

〈descendant-top-level-qt〉 ::=- 〈descendant-modifier〉 ‘(’ 〈var-restriction-top-level-qt〉 ‘)’
〈var-restriction-top-level-qt〉

-

〈var-restriction-top-level-qt〉 ::=- 〈term-variable〉 ‘->’ 〈structured-term-qt〉
〈structured-term-qt〉

-

〈term-formula-qt〉 ::=- ‘not’ ‘(’ 〈top-level-qt〉 ‘)’

‘and’
‘or’

‘(’ 〈top-level-qt〉 ‘,’ ?〈top-level-qt〉 ‘,’ ‘)’

· · ·

· · · 〈condition-clause-qt〉 -

〈document-specification-qt〉 ::=- ‘in’ 〈xml-document-specification-qt〉 -

〈xml-document-specification-qt〉 ::= · · · ‘xml-document’ ‘((’ 〈location-qt〉 〈xml-decl-qt〉 -

- 〈doctype-decl-qt〉 ‘))’ 〈xml-document-children-qt〉 · · ·

〈location-qt〉 ::=- ‘location’ ‘=’ 〈IRI〉 | 〈literal-variable-qt〉 -

〈xml-decl-qt〉 ::=- ‘standalone’ ‘=’ ‘true’
‘false’

〈literal-variable-qt〉

· · ·

· · · ‘xml-version’ ‘=’ ‘1.0’
‘1.1’

〈literal-variable-qt〉

-

83

〈doctype-decl-qt〉 ::=- ‘system-id’ ‘=’ 〈identifier-qt〉 · · ·

· · · ‘public-id’ ‘=’ 〈identifier-qt〉 · · ·

- ‘root-name’ ‘=’ 〈identifier-qt〉 · · ·

〈xml-document-children-qt〉 ::=- ‘[[’ 〈xml-document-content-qt〉 ‘]]’
‘{{’ 〈xml-document-content-qt〉 ‘}}’

‘{’ 〈xml-document-content-qt〉 ‘}’
‘[’ 〈xml-document-content-qt〉 ‘]’

-

〈xml-document-content-qt〉 ::=- ?〈annotation-content-qt〉 ‘,’ 〈top-level-query-term〉 -

· · · ?〈annotation-content-qt〉 ‘,’ -

〈annotation-content-qt〉 ::=- 〈comment-qt〉
〈processing-instruction-qt〉

-

6.4.4 XML-style Term Syntax

Once more, the XML-style term syntax uses productions identical to the ones for the non-XML term
syntax. The full grammar is given in Appendix B.4.

6.4.5 Pure XML Syntax

Top-level query terms differ from general top-level terms in the possible use of a optional or descendant
modifier, the possible use of a variable restriction and, most notably, in the addition of term formulas
and document specifications, both occuring exclusively at the top-level of query terms. Notice the refer-
ence to the generic grammar for formulas using 〈optional-top-level-term〉 as basic content type.

#1# TOP−LEVEL QUERY TERM
2 optional-top-level-term =

element optional { descendant-top-level-term }
4 | descendant-top-level-term

descendant-top-level-term =
6 element descendant { var-restriction-top-level-term }

| var-restriction-top-level-term
8 var-restriction-top-level-term =

element restriction { variable, structured-term }
10 | structured-term

term-formula =
12 grammar {

include "formula.rnc" {
14 content = parent optional-top-level-term

condition = parent condition-clause
16 }

84

}
18 document-specification =

element xml-document {
20 attribute location { text },

element xml-declaration {
22 attribute standalone { "true" | "false" | variable }?,

attribute xml-version { "1.0" | "1.1" | variable }?
24 }?,

element doctype {
26 attribute system-id { identifier.class }?,

attribute public-id { identifier.class }?,
28 attribute root-name { identifier.class }?

}?,
30 element children {

annotation-content*, top-level-term.class, annotation-content*
32 }

}

6.5 Summary: Modifiers and Where they Occur

To address the needs of querying and construction, Xcerpt provides quite a number of modi-
fiers that affect the way their in-scope terms are handled.

Most of these modifiers may occur either in construct or in query terms. The single excep-
tion from this rule is the optional modifier: it marks both parts of construct terms that may
or may not occur depending on the result of the query term and parts of query terms that may
or may not yield bindings depending on the data the query term is matched against.

Table 6.1 summarizes the eight modifiers (and three boolean connectives for term formulas)
and gives at a glance which modifier may occur where and with what scope.

As discussed above, the following additional constraints hold:

1. In construct terms grouping and occurrence (optional) modifiers may be arbitrarily mixed.
Grouping modifiers on attributes are limited to a single term as scope to avoid the repe-
tition of attributes with the same name.

2. In query terms location modifiers “stick closely to the term modified by them”, i.e., occur-
rence and selection modifiers may contain location modifiers, but not vice versa. There-
fore, location modifiers also always affect only a single term.

3. Finally, for top-level query terms only optional and descendant are allowed (the latter
may occur inside the former), each with a single in-scope term.

85

Data Terms Construct Terms Query Terms
Subterms Attributes Subterms Attributes Top-level

Grouping Modifiers .
all (all bindings) — ∗ • — — —
some (some m bindings) — ∗ • — — —
first (nth −mth bindings) — ∗ • — — —

Selection Modifiers .
except (omit from binding) — — — ∗ ∗ —

Occurrence Modifiers .
optional (may occur) — ∗ ∗ ∗ ∗ •
without (must not occur) — — — ∗ ∗ —

Location Modifiers .
descendant (at any depth) — — — • — •
position (as nth child) — — — • — —

Term formulas .
and, or — — — — — 2..∗
not — — — — — •

Table 6.1: Occurrence of Modifiers (∗ indicates that the modifier has a scope of one to many
terms, • exactly one term; — indicates that the modifier may not occur in that context)

86

Chapter 7

Programming in Xcerpt: Programs,
Goals, and Rules

7.1 Xcerpt Programs

§1 Program

An Xcerpt program consists of at least one goal and some (possibly zero) construct-query
rules.

Figure 7.1 shows an UML model for Xcerpt programs. For convenience, some of the input
data of a program may be specified as part of the program using data blocks (similar to facts
from logic programming, i.e., rules with an always successful query part.

§2 Goal

An Xcerpt goal specifies output of an Xcerpt program including an optional specification of
where the output is to be stored.

Implementations must define default behavior for goals without output specification. More
refined specifications for (XML and other) document properties as part of output specifications
are under investigation, cf. Issue 24.

A program may contain multiple goals, allowing result to be stored in different files or at
different Web locations. Notice, that the order of goals is currently undefined, cf. Issue 22,
thus multiple goals with the same output target should be avoided for the time being.

§3 Rule

An Xcerpt construct-query rule (short: rule) relates a construct term to a top-level query term.

Rules can be seen as “views” specifying how to obtain documents shaped in the form of
the construct term by evaluating the query against Web resources (e.g. an XML document or a
database).

Recursive chaining of rules is possible (but note certain restrictions on recursion, cf. Sec-
tion 7.2). In contrast to the inherent structural recursion used e.g. in XSLT, which is essentially
limited to the tree structure of the input document, recursion in Xcerpt is always explicit and
free in the sense that any kind of recursion can be implemented. Applications of recursion on

87

XcerptProgram

ConstructQueryRule Goal

Term:ConstructTerm

Term:QueryTerm

!"#$%&&'

()
#*

%

+"*,

%

()#*

%

+"
*,

%

Resource

"-./&&%

RuleLevelDeclareBlock

NamespaceDeclaration

GoalBlock

%&&%

/&&'

/&&'

Term:DataTerm

/&&'

/&&'

/&&'

VariableDeclaration

/&&'

NamespacePrefixDeclaration

IRI

NCName

%

%

DefaultNamespaceDeclaration

%

Variable

Figure 7.1: UML Model for Xcerpt Programs

88

the Web are manifold:

• structural recursion over the input tree (like in XSLT) is necessary to perform transfor-
mations that preserve the overall document structure and change only certain things in
arbitrary documents (e.g. replacing all em elements in HTML documents by strong ele-
ments).

• recursion over the conceptual structure of the input data (e.g. over a sequence of ele-
ments) is used to iteratively compute data (e.g. create a hierarchical representation from
flat structures with references).

• recursion over references to external resources (hyperlinks) is desirable in applications
like Web crawlers that recursively visit Web pages.

In addition to the syntactic constraints discussed so far, semantic constraints are imposed
on the variables in rules, cf. Section 7.2.

7.1.1 Textual Term Syntax

The textual syntax for rules deviates from the term syntax by using uppercase keywords for block
structures. This provides an easier visual distinction of rule- and term-level constructs.

〈program〉 ::=- ‘PROGRAM’ ‘(’ 〈goal-block〉 ‘)’ ‘END’ -

〈goal-block〉 ::=- ?〈rule-level-declare-block〉 〈goal〉 ?〈rule-level-declare-block〉

〈rule-level-declare〉 ‘(’ 〈goal-block〉 ‘)’ ‘END’

-

〈rule-level-declare-block〉 ::=- 〈goal〉
〈construct-query-rule〉

〈data〉

〈rule-level-declare〉 ‘(’ ?〈rule-level-declare-block〉 ‘)’ ‘END’

-

〈goal〉 ::=- ‘GOAL’ ‘(’ 〈out-resource〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’ -

〈rule〉 ::=- ‘CONSTRUCT’ ‘(’ 〈construct-term〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’ -

〈out-resource〉 ::=- construct-term
‘out’ (〈iri〉 | 〈literal-var〉)‘(’construct-term‘)’

-

〈data〉 ::=- ‘DATA’ ‘(’ 〈data-term〉 ‘)’ ‘END’ -

〈rule-level-declare〉 ::=- ‘DECLARE’ ‘(’ ?〈var-decl-qt〉 ?〈ns-decl-qt〉 ‘)’ -

7.1.2 XML-style Term Syntax

The XML-style term syntax follows the same grammar as the non-XML term syntax. The full grammar is
given in Section B.5.

89

7.1.3 Pure XML Syntax

In the pure XML syntax programs, goals, rules, and data blocks are very much straight forward and
make extensive use of Relax NG’s parameterizable grammars for declaration blocks. Figure 7.2 gives a
graphical representation of the following Relax NG grammar.

1 ## An Xcerpt program is a set of (one or more) goals, as well as (any number of) rules and inline data terms (like
facts in Prolog). Rules and data terms may be surrounded by declaration blocks.

program = element program { goal-block }
3 goal-block =

rule-level-block*
5 | goal

| rule-level-block*
7 | grammar {

include "declare−block.rnc" {
9 content = parent goal-block

}
11 }

13 ## Rule−level blocks form the basic block structure of an Xcerpt programs: goals, rules, and inline data terms
form the basic block structures. They can be included into declaration blocks that define the scope of
variable and namespace declarations.

rule-level-block =
15 goal

| rule
17 | data

|
19 ## A declaration block on rule level allows both variable and namespace declarations.

grammar {
21 include "declare−block.rnc" {

content = parent rule-level-block*
23 }

}
25

A rule specifies how from data matched by the query term new data is constructed according to a construct
term.

27 rule =
element rule {

29 element construct { construct-term },
element from { query-term }

31 }

33 ## A goal is a rule, where the resulting data is written to a specified resource. Hence, goals are not chained.
goal =

35 element goal {
element out {

37 (variable-ct
| attribute value {

39 text
>> a:documentation [

41 "This should in−fact be a IRI as by RFC 3987. Since XML Schema datatypes only provides the anyURI
datatype for URIs conforming the older RFC 2396, arbitrary text is allowed."

]
43 }),

element construct { construct-term }
45 },

element from { query-term }
47 }

90

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/xcerpt.rng 1 of 6
Continue on page 3

C
o

n
ti
n

u
e

 o
n

 p
a

g
e

 2

/ {grammar} Start program

program DocDoc

program

http://xcerpt.org/ns/core/1.0

goal-block

goal-block 0..! rule-level-block

goal

0..! rule-level-block

{grammar} declare-block.rng

rule-level-block DocDoc

goal

rule

data

{grammar} DocDoc

declare-block.rng

rule DocDoc

rule

http://xcerpt.org/ns/core/1.0

construct

http://xcerpt.org/ns/core/1.0

construct-term

from

http://xcerpt.org/ns/core/1.0

query-term

goal DocDoc

goal

http://xcerpt.org/ns/core/1.0

out

http://xcerpt.org/ns/core/1.0

variable-ct

@ value text

DocDoc

construct

http://xcerpt.org/ns/core/1.0

construct-term

from

http://xcerpt.org/ns/core/1.0

query-term

data DocDoc

data

http://xcerpt.org/ns/core/1.0

data-term

data-term {grammar} term.rng

variable-ct DocDoc

variable

http://xcerpt.org/ns/core/1.0

@ name DD NCName

construct-term DocDoc

{grammar} variable-ct variable-ct

modified-attribute {grammar} modifiers.rng

{grammar} modifiers.rng

modified-term {grammar} modifiers.rng

{grammar} modifiers.rng

include: start from modifiers.rng

Start grouping

include: define from modifiers.rng

content

include: define from modifiers.rng

grouping all

http://xcerpt.org/ns/core/1.0

content

0..1 order-by

0..1 group-by

some

http://xcerpt.org/ns/core/1.0

number

content

0..1 order-by

0..1 group-by

first

http://xcerpt.org/ns/core/1.0

interval

content

0..1 order-by

0..1 group-by

include: define from modifiers.rng

order-by order-by

http://xcerpt.org/ns/core/1.0

0..1 @ order-relation text

1..! optional-variable

include: define from modifiers.rng

group-by group-by

http://xcerpt.org/ns/core/1.0

0..1 @ equivalence-relation text

1..! optional-variable

include: define from modifiers.rng

optional-variable optional

http://xcerpt.org/ns/core/1.0

variable

variable

include: define from modifiers.rng

variable

include: define from modifiers.rng

interval interval

http://xcerpt.org/ns/core/1.0

min

http://xcerpt.org/ns/core/1.0

number-literal.class

Figure 7.2: Relax NG Grammar for Xcerpt Programs

91

49 ## An inline data term allows the specification of data terms inside Xcerpt programs similar to facts in Prolog.
data = element data { data-term }

7.2 Semantic Restrictions on Xcerpt Programs

Xcerpt imposes two major semantic restrictions on valid programs: range restrictedness and
negation/grouping stratification. Where range restrictedness is a “local” property of a rule,
negation and grouping stratification is a (global) property of an entire program.

Intuitively, range restrictedness ensures that all variables used in the construction part of
a rule are properly bound in the query part. Negation and grouping stratification, on the other
hand, disallow programs with a recursion over negated queries or grouping constructs, thus
allowing an easier declarative semantics for Xcerpt programs.

optional or except variable only inside optional in head ERR optional should contain at least
one variable WAR

or where the arity of the variable sets of the parts is not the same

7.2.1 Range Restrictedness

Intuitively, range restrictedness means that a variable occurring in a rule head also must occur
at least once in the rule body. This requirement simplifies the definition of the formal seman-
tics of Xcerpt, as it allows to assume that all query terms are unified with data terms instead
of construct terms (i.e., variable free and collection free terms). Without this restriction, it is
necessary to consider undefined or infinite sets of variable bindings, which would be a diffi-
cult obstacle for a forward chaining evaluation. Besides this formal reason, range restricted
programs are also usually more intuitive, as they disallow variables in the head that are not
justified somewhere in the body.

The following sections give a formal, syntactic criterion for range restrictedness, which
considers negated queries and optional subterms as well as disjunctions in rule bodies.

7.2.1.1 Polarity of Subterms

So as to determine whether a rule is range restricted, variable occurrences in query and con-
struct terms are associated with the polarities positive (+) or negative (−), and the attributes
optional (?) or not optional (!) for such variables that are contained within an optional subtree
and thus are not bound in all valid matchings. Intuitively, a negative variable occurrence is a
defining occurrence, whereas a positive variable occurrence is a consuming occurrence. Since
most terms are considered to be not optional, the attribute ! is omitted in most examples.

The polarity of variable occurrences in a term can be determined by recursively attributing
all subterms of a term.

Polarity of Subterms

1. Let t be a query term with polarity p and optionality o.

• if t is of the form without t′, then t′ is of polarity + (regardless of p) and optionality
o

92

• if t is of the form optional t′, then t′ is of polarity p and optionality ?.

• if t is of the form 〈modifier〉 t′, where 〈modifier〉 is not an occurrence modifier
(i.e., neither optional nor without), then then t′ is of polarity p and optionality o
(unchanged).

• if t is of the form var X � t′ then t′ is of polarity p and optionality o (unchanged).

• if t is of one of the forms l{{t′1, . . . , t′n}}, l{t′1, . . . , t′n}, l[[t′1, . . . , t′n]] or l[t′1, . . . , t′n]
(n ≥ 0), then t′1, . . . , t′n are of polarity p and optionality o (unchanged).

• if t is of the form t′ where c with c a condition formula, then t′ is of polarity p and
optionality o, c is of polarity + and optionality o (conditions are always consuming).

• if c is a condition formula of the form optionl c′ with c′ a condition formula, then
c′ is of polarity p and optionality ?.

The rules for attribute terms are analogously, i.e., optional forces the optionality to ?,
without the polarity to +, all other modifiers leave them unchanged.

2. Let t be a construct or data term with polarity p and optionality o.

• if t is of the form optional t′, then t′ is of polarity p and optionality ?.

• if t is of the form optional t′ with-default t′′, then t′ is of polarity p and optionality
? and t′′ is of polarity p and optionality o.

• if t is of one of the forms f{t′1, . . . , t′n} or f [t′1, . . . , t′n] (n ≥ 0), then t′1, . . . , t′n are of
polarity p and optionality o.

• if t is of the forms all t′ or some t′, then t′ is of polarity p and optionality o.

• if t is of the form op(t′1, . . . , t′n), with op a function or aggregation identifier, then
t′1, . . . , t′n are of polarity p and optionality o.

The root of a query term is usually of negative polarity (and thus define variable bindings),
as query terms usually occur in rule bodies. The root of a construct or data term is usually of
positive polarity.

In a rule, the construct term in the head always has positive polarity and the query part
has negative polarity and both are, by default, not optional. If negation constructs occur, the
polarity changes accordingly. Furthermore, if parts of a query are negated by not, the polarity
of these parts is again positive:

Polarity in Rules

1. If R = tc ← Q is a rule or goal with tc a construct term and Q a query part, then the
polarity of tc is + and the polarity of Q is −.

2. Let Q be a query part with polarity p.

• if Q is of the form not Q′, then Q′ is of polarity + (regardless of p)

• if Q is of the forms and(Q1, . . . , Qn) or or(Q1, . . . , Qn), then Q1, . . . , Qn are of
polarity p

• if Q is a document specification with content C , then all variables occuring in the
document specification are of polarity + and C is of polarity p.

93

• if Q is of the form t (a query term), then t is of polarity p.

Note that the polarity of negated subterms and queries is always positive, regardless of the
level of nesting. The rationale behind this is that, since negation in Xcerpt is negation as failure
and not the negation of classic logic, additional negations do not completely revert previous
negations. Variable occurrences that are in the scope of at least one negation construct are
always consuming occurrences, since negation as failure requires to perform auxiliary compu-
tations.

Returning to the definition of range restrictedness, it requires that in a rule, for each con-
suming occurrence of a variable, there exists at least one defining occurrence. Furthermore, a
variable for which all defining occurrences are optional also needs to be optional on all con-
suming occurrences. This restriction is straightforward to understand, as it just requires that
“each variable in the head or in a negated query needs to be bound elsewhere”.

This intuitive definition of range restrictedness is complicated by the possibility of disjunc-
tions in the rule body, in which case a variable occurring positively in the rule head needs to
occur negatively in each disjunct. Since disjunctions can also be nested, it is useful to define a
disjunctive rule normal form, cf. [38].

Given a rule in such a disjunctive rule normal form, range restrictedness requires that
each variable that occurs positively in one of the disjuncts occurs also negatively in the same
disjuncts. Range restrictedness is formalised by the following definition:

Range Restrictedness Let R be a rule or goal and let R′ = tc ← Q1 ∨ . . . ∨Qn (n ≥ 0) be the
disjunctive rule normal form of R. R is said to be range restricted, iff

1. for each disjunct Qi (1 ≤ i ≤ n) holds that each variable occurring with positive polarity
in either tc or Qi also occurs at least once with negative polarity in Qi.

2. each variable that occurs in at least one of the Qi (1 ≤ i ≤ n) attributed as as optional
without another non-optional, negative occurrence in Qi

1 or that occurs in Qi, but not
in Qj for some 1 ≤ i, j ≤ n is attributed as optional in all positive occurrences in Qi
(including condition formulas and document specifications) and tc .

A program P is called range restricted, if all rules R ∈ P are range restricted.

7.2.2 Negation and Grouping Stratification

Stratification is a technique first proposed by Apt, Blair, and Walker [2] to define a class of logic
programs where non-monotonic features like Xcerpt’s grouping constructs or negation can be
defined in a declarative manner. The principal idea of stratification is to disallow programs with
a recursion over negated queries or grouping constructs and thereby precluding undesirable
programs. While this requirement is very strict, its advantages are that it is straightforward
to understand and can be verified by purely syntactical means without considering terms that
are not part of the program. Several refinements over stratification have been proposed, e.g.
local stratification [36] that allow certain kinds of recursion, but these usually require more
“knowledge” of the program or the queried resources.

1Notice, that the optional occurrence must be of negative polarity in this case, as the query term would otherwise
contradict rule (1).

94

Xcerpt programs in this thesis are considered to be stratifiable2. Furthermore, the notion
of stratification is not only used for proper treatment of negation, it also extends to rules with
grouping constructs, because a recursion over grouping constructs usually defines undesirable
behaviour. A detailed discussion of stratification in Xcerpt can be found in [38, 37].

Here, we only give the final definition of a fully stratified Xcerpt program:

Full Stratification of an Xcerpt Program Let P = P1] . . .] Pn denote a partitioning of a
set P into disjoint sets Pi. Given a program P consisting of rules/goals {R1, . . . , Rm} (m ≥ 1).

1. Let R = tc ← Q and R′ = tc′ ← Q′ be rules.

• R depends on R′ if there exists a (negated or non-negated) query term tq in Q such
that tq simulation unifies in tc′

• R depends positively on R′ if there exists a non-negated query term tq in Q such that
tq simulation unifies in tc′

• R depends negatively on R′ if there exists a negated query term not tq in Q such
that tq simulation unifies in tc′

2. P is called fully stratifiable (or simply stratifiable), if there exists a partitioning (n ≥ 1)

P = P1] . . .] Pn

of P such that for every stratum Pi (1 ≤ i ≤ n) and for every rule R ∈ Pi holds:

• if R depends negatively on a rule R′, or the head of R contains grouping constructs
and R depends positively or negatively on R′, then R′ ∈

⋃
j<i Pj , i.e. R′ is in a strictly

lower stratum than R

• if the head of R contains no grouping constructs and R depends positively on a rule
R′ then R′ ∈

⋃
j≤i Pj , i.e. R′ is in the same or in a lower stratum than R

The partition P = P1] . . .] Pn is called a full stratification of P , and the Pi are called strata of
P .

2Rather than calling a program stratified as in the original definition, we call it stratifiable as it is not necessary
to compute the stratification during (backward chaining) evaluation.

95

96

Part II

Language Extensions and Open Issues

97

Chapter 8

Open Issues: Language Constructs

The previous sections define the syntax for the language Xcerpt separated in (a) literal struc-
tures, (b) data, construct, and query terms, and (c) programs, goals, rules, and data blocks.
Where appropriate, open issues are referenced in these sections. The remaining sections list
those open issues and give a brief discussion. It is expected that these open issues are gradually
resolved and their resolution integrated into the language Xcerpt.

This chapter is structured into issues related to general language constructs (Section 8.1),
into issues on specific data representation formats such as XML or RDF (Section 9, into is-
sues specific to one of the syntaxes for Xcerpt introduced above (Section 10), and finally into
language extensions (Section 11).

8.1 General Issues

Issue 1. Substitution Sets vs. Substitution Multi-Sets
Currently, the Xcerpt semantics uses substitution sets, but the description of construct terms
presented in Section 5 uses multi-sets. In the case of sets, duplicate substitutions are removed.
Though this is useful in some queries, there are many cases where this is not necessary or even
detrimental:

1. First, duplicate removal is a costly operation. Though (node identity-based) duplicates
can be avoided at small additional cost for queries against trees (as shown for XPath
evaluation), this is not true for general queries against graphs. Duplicate removal is
cubic in the number of substitutions for the case of Xcerpt, as it is based on structural
equivalence.

2. Second, for many types of queries duplicate removal is not wanted, e.g., in transformation
and aggregation queries: It is currently not possible to express such simple and straight-
forward queries as “Count the number of title elements in a document” or “Replace all a
labeled elements in the input tree with b labeled elements otherwise retaining the same
structure” without resorting to complicated rules using position.

Solution Proposal(s): A more proper solution for handling duplicates seems to be in group-
ing expressions which can be “parameterized” by different requirements, e.g., duplicate elimi-

99

nation based on structural equality, duplicate elimination based on node identity, no duplicate
elimination.

A more detailed proposal is needed.

Resolution: Though the use of substitution multi-sets and “parameterized” grouping ex-
pressions is desirable from a programmers point of view, the consequences for Xcerpt’s se-
mantics need further consideration.

Issue 2. Optional for Non-Term Variables
Occurrence modifiers (without and optional) are currently only allowed on entire term expres-
sions. However, namespaces and term identifier are also non mandatory parts of a term, that
might be optionally queried. It is currently not possible to query, e.g., for all nodes without
term identifiers.

Solution Proposal(s): For namespaces this issue could be resolved by referring to the empty
namespace (represented by the empty string). However, this introduces another “optionality”
concept into the language.

Alternatively, optional and without could also be allowed on non-term expressions. Then
a careful consideration where is needed (e.g,. document specifications).

This issue is related to Issue 3.

Resolution: Not yet reached.

8.1.1 Defaults and Default Modes

Issue 3. Absent attribute and children lists and other parts of a term specification
A number of parts in term specification are optional, i.e., may or may not occur or may or may
not be empty. These include:

• the lists of attributes and children,

• the namespace and identifier of a term,

• various parts of a XML document specification, and

• comments and processing instructions.

Currently, attribute and children lists may not be omitted, even if they are empty. Names-
paces and term identifiers may be omitted, but where no namespace in a query is equivalent to
an empty namespace, missing term identifiers do not affect matching. No special consideration
is given to comments and processing instructions, i.e., e.g., a total query term matches no data
terms that are matches up to comments.

Solution Proposal(s): A more “unified” policy for defaults should be enacted. In particu-
lar, it might be worth considering “default modes” that the programmer can control. Similar
to (rule-level) declaration blocks, a programmer could specify that in the scope of the mode
declaration, e.g., omitted attribute lists are to be considered as () or as (()).

A more detailed proposal is needed.

Resolution: Not yet reached.

100

8.2 Construct Specific Issues

8.2.1 Conditional Construction and optional Construct Terms

Issue 4. Conditional Construction
Optional construct terms allow one form of conditional construction, viz.where the condition
is that bindings for all optional variables of the optional construct term exist. The default value
plays are role similar to the else clause in if . . . then . . . else expressions.

However, this is a very limited form of conditional construction that also exhibits some
anomalies:

1. optional is the only modifier allowed in query and construct terms, though with a slightly
different meaning. E.g., an optional ground term in a query term may or may not occur
in the data, but an optional ground term in a construct term always occurs in the result.

2. It allows only implicit specification of optional variables (in contrast to grouping), i.e., it
is not possible to make the optional part dependent on a variable not occurring in the
result. This makes it difficult to express the following query:

for $x in doc("books.xml")/bookstore/book
2 return if ($x/@category="CHILDREN")

then <child>{data($x/title)}</child>
4 else <adult>{data($x/title)}</adult>

3. When the choice depends on the value of a optional variable this can be expressed in a
condition box, but only in the case of exactly two choices, not if there are more alterna-
tives.

CONSTRUCT
2 result [

optional (child(opt from-year=var Year)[var Title]) with-default (adult [var
Title])

4]
FROM

6 bookstore [[
book (from-year=opt var Year)[[var Title →title [[]]]

8]] where opt (var Year > 25)
END

Solution Proposal(s): A proposed solution is the introduction of a if . . . then . . . else
or case expression into construct terms, that allows for conditions as in where clauses. The
requirement that matching is never affected by the construct part of a rule should be upheld.

A more detailed proposal is needed.
Resolution: Not yet reached.

8.2.2 Query Formulas as Subterms

Issue 5. Query Formulas as Subterms
Currently, query formulas (expressions using and, or, and not) are only allowed at the top-level
of query terms. However, programs become both more compact and easier to read, as well as
easier to efficiently evaluate, if formulas are allowed at sub-term level.

However, this introduces a number of questions:

101

• What becomes then the different between not and without? If not is allowed at sub-term
level, without seems to be superfluous.

• What is then the difference between t[[a, b]] and t[[and(a, b)]]? Only that the injectiv-
ity constraint between a and b is lifted?

Solution Proposal(s): A detailed proposal is needed.
Resolution: Not yet reached.

8.2.2.1 withouts as Direct Siblings

Issue 6. Without Siblings
If several direct siblings in an ordered term or arbitrary siblings in an unordered term are
modified by without, the semantics of the expression becomes unclear: E.g., matches f[[a,

without b, without c, d]] with f[a,c,b,d] or not? In other words how are order and injectivity
constraints enforced between without-modified terms.

Solution Proposal(s): A possible solution for this case is the use of or to clarify the seman-
tics of the expression. However this hinges on a positive solution of Issue 5.

Resolution: Not yet reached.

8.2.3 Functions and Libraries: Built-In and User-defined

Issue 7. Relational vs. functional Operators
Xcerpt does not have an extensive function library as of now. Introducing such a library re-
quires great care, in particular when considering not only functional operators (such as com-
pare, concat, or arithmetic operators), but also relational (sequence-valued) operators (such as
tokenizers).

Solution Proposal(s): The latter are more similar to predicates (rules) where certain pa-
rameters are consuming, others are defining. The addition of rules where parameters are
specifically marked as consuming only would solve these cases. Functional operators could
also be handled this way, but differ in where they may be used. Functional operators are also
useful in construct terms and in condition expressions.

Considering the sort of functions and operators to support, the XQuery and XPath function
and operator library [30] is certainly a good starting point.

A more detailed proposal is needed.
Resolution: Not yet reached.

Issue 8. Expressions in Conditions
Optional modifiers are currently only allowed on variables in conditions, but should actually
range over entire expressions.

Resolution: Not yet reached.

8.2.4 Combining and Comparing Modifiers

Issue 9. Removing Useless Modifier Combinations
Some combinations of modifiers in query terms are useless:

102

1. Any combination of except and without on the same term, e.g.: var X →a [except without

b []] var X →a [without except b []]. Both examples are equivalent to var X →a [

without b []] as except does not affect the occurrence of the in-scope sub-term.

2. optional (anywhere) in the scope of without.

3. except outside variable restrictions

4. except within except without another variable restriction in-between.

Solution Proposal(s): Some of these could become warnings, since they are not strictly
wrong but merely useless.

Resolution: Not yet reached.

Issue 10. Rewriting Optional
A canonical rewriting of optional should be introduced into the definition. The naive rewriting
var X →a[[opt var Y →b]] to or(var X→a[[without b]], var X →a [[var Y →b]]) can lead to
adjacent without, cf. Issue 8.2.2.1.

Resolution: Not yet reached.

Issue 11. Rewriting Without
A canonical rewriting of without should be introduced into the definition to clarify its seman-
tics. Again this depends on the resolution of Issue 8.2.2.1.

Resolution: Not yet reached.

8.2.5 Variables

Issue 12. Variable Restrictions for Identifiers and Literal Content
Following [37], the text currently allows variable restrictions only on structured terms and
attribute terms. This disallows in particular variable restrictions on label variables. The latter
ones are useful just as variable restrictions on literal content, if regular expressions are used to
restrict the set of labels or content nodes (or namespaces or any other place where an identifier
may occur).

Solution Proposal(s): Note, that they are not strictly necessary due to variables in regular
expressions, i.e., instead of writing var X →/〈reg-exp〉/ one may use /(var X →〈reg-exp〉)/.

Resolution: Not yet reached.

Issue 13. Separation of literal and term variables
The current version of the Xcerpt grammar does not strictly enforce a separation between
literal and term variables. This is left to an eventual type system. However, it is possible
to enforce this in the grammar (with the exception of literal content) and would be useful in
absence of a full type system.

Resolution: Not yet reached.

8.2.6 Varia

Issue 14. Explicit Variable Specifications for Except
Except is defined to affect the bindings of all variables in restrictions for which it occurs. In
the following query term bindings for both X and Y are affected (i.e., the c sub-term is excluded
from bindings for both):

103

root [[var X →a [[var Y →b [[except c [[]]]]]]]]

Against the data term root[a[b[c]]] this results in one binding for X, viz. a [b []] and
one binding for Y, viz. b [].

This is problematic as it makes impossible nested variable restrictions where one excludes
some sub-term and another does not. In the example, it is not possible to affect the bindings
to Y without affecting the bindings for X.

Solution Proposal(s): Introducing explicit “variable specifications” for except, i.e., an ex-
plicit list of variables in whose bindings the sub-terms in the scope of the except modifier are
removed. Bindings of all other variables remain unaffected and must contain all sub-terms in
the scope of the except (i.e., for them the except is simply ignored).

Resolution: Not yet reached.

8.3 Querying the Type of Data, Typed Accessors

There are a number of issues related to an upcoming Xcerpt type system.

Issue 15. Typed Accessors and Coercion
For terms, it should be possible to access (a) the actual structure, (b) the typed value of the
term, if it has any, and (c) the string value of the term (defined, e.g., as in XPath).

Resolution: Not yet reached.

Issue 16. Typing Data Terms
It should be possible to explicitly type data terms, e.g., to distinguish plain strings from strings
representing date.

Resolution: Not yet reached.

Issue 17. Querying Typed Data
It should be possible to query data based on its type. This is particularly helpful, if the type is
complex, as it avoids the need for complex (and difficult to evaluate) patterns in these cases.

Resolution: Not yet reached.

Issue 18. List-valued Attributes and Content
As discussed in Issue 8.3, some conventions for representing lists or sets of atomic values as,
e.g., whitespace-separated strings have surfaced, e.g., attributes of type IDREFS in XML [8] or
XML Schema [22] list types (cf. Section of [5]).

Both typing of variables and terms bound or containing such data and extraction of atomic
values from such data should be supported eventually.

Resolution: Not yet reached.

8.4 Node Identity and Term Identifiers in Xcerpt

Issue 19. Node identity
Currently, the concept of node identity is not consistently supported in Xcerpt.

When doing structural recursion over an input document, it is often necessary to differenti-
ate between two subterms that share the exact same structure but appear at different positions

104

in the input document. For instance, without considering the identity of subterms, the all con-
struct would coalesce structurally and value equivalent bindings and join operations using and

could lead to unexpected results.
Solution Proposal(s): A new construct identity is proposed, allowing access to identifiers

uniquely identifying each subterm. A query term of the form identity var X a{{ }} matches
the same data terms as the query a{{ }}, but also binds an identifier unique to each data term
to the variable X.

Identity specification is admissible in any kinds of query term specifications, e.g in ordered
and unordered as well as total and partial query terms as well as in combination with constructs
like descendant. Note, however, that it is not possible to specify a constant instead of a variable,
as the structure and form of the identifiers is implementation-dependent and the identifiers
are only suited for comparison between multiple bindings.

The identity of a data term is a property of the term that does not change for the entire
lifetime of the data term, similar to other properties like sorted/unsorted or total/incomplete.
The uniqueness of the identifiers defined as follows:

• an identifier for a data term originating in an external resource is always the same, even
if the same resource is retrieved in multiple rules,

• the identifier does not change when a data term is matched by and passed through a rule,

• when multiple structurally and value equivalent data terms are merged by grouping, the
resulting data term and its subterms have the identity of any one of the merged data
terms and its subterms,

• the identifier for a single data term only needs to be unique for a single query of a single
instance of an Xcerpt implementation.

This proposal shows possible problems: should the identity of constructed terms really
be the same as the one of original ones? What about duplication in the construction? Then
identity is not even “locally” unique any more? What about grouping?

A better alternative might be that constructed terms have always new identity. This however
causes potentially problems for optimizations that remove rules.

Also the use of identity is painful in queries where the only objective is avoiding duplicate
elimination in grouping.

A more detailed proposal is needed.
Resolution: Not yet reached.

8.4.1 Scope of Term Identifiers and Cross-Document References

Issue 20. Cross-Document References
Term identifiers are defined to be unique in the context of the data unit or document they
are contained in. In many contexts, globally unique identifiers can be very useful, e.g., when
considering RDF data. Also if multiple documents are accessed together, a natural extension
of Xcerpt’s current reference handling could be some mechanism for transparent reference
resolution for out-document links. Or maybe two concepts are needed: globally unique term
identifiers such as URIs in RDF and in-document IDs as in XML, where the latter are very con-
venient when writing terms (you do not have to care about the rest of the world) and can be
automatically “lifted” to globally unique identifiers.

Resolution: Not yet reached.

105

8.4.2 Collapsing Text Nodes

Issue 21. Consecutive Text Nodes Collapse
Currently, consecutive text nodes are (silently) collapsed at construction. This is in accordance
to the XML data model. Is this the desired behavior? Should we allow consecutive text nodes
and provide an explicit concatenation?

Resolution: Not yet reached.

8.4.3 Goal Order

Issue 22.
Are goals evaluated in a particular order? What if one goal modifies data used in another?
What if two goals write to the same output?

Resolution: Not yet reached.

8.4.4 Document Specifications

Issue 23. Document Specifications
Currently, document specifications are specifically treated in the grammar, which makes the
grammar rather bloated. It could be better to consider them as a canonical “transformation”
to terms. However, this would make the enforcement of constraints such as all variables in
document specifications are consuming only more difficult.

Resolution: Not yet reached.

106

Chapter 9

Open Issues: Specific to Data
Representation Format

9.1 Serializing to XML and from XML

Issue 24. Serializing to XML
Similar to the XML document specification in query terms, there should be a document serial-
ization specification in goals describing how to serialize the resulting term. It might be worth
considering the adoption of the XQuery/XSLT Serialization Recommendation [29]. Addition-
ally, a canonical representation of graph structures, non XML labels, contents of comments or
processing-instructions that are not XML conform, unordered elements, adjacent text nodes (if
allowed, cf. Issue 21) must be defined.

Resolution: Not yet reached.

Issue 25. Accessible Encoding of XML Documents
Currently, the XML document specification does not allow access to the encoding of the file in
accordance to the XML Information Set recommendation.

Resolution: Not yet reached.

Issue 26. XML Base
Xcerpt does not support the XML Base specification [31], i.e., no base URL at elements as in the
XML Information Set.

Consider the extraction of some element at a non-root level. Now relative references are
not any longer resolvable as the connection to the root-level xml:base attribute is lost.

Resolution: Not yet reached.

Issue 27. In-scope Namespaces
There are a number of issues related to namespaces in XML in general and Xcerpt in particular:

1. exactly what strings are permitted as namespace URIs? Different W3C specifications
differ on this point.

2. Are namespace declarations information-bearing? For example, are the two documents
below equivalent: (1) <a xmlns:x="x"> (2) <a xmlns:x="x"><b xmlns:x="x"/>

107

3. Are in-scope namespaces that are not referenced information-bearing? For example, are
either of the above documents equivalent to:
(3) <a>?
The main problem here, of course, is "QNames in content": the use of namespace-sensitive
element and attribute values. But there are also applications that use the mere presence
of a namespace declaration as a flag or marker.

4. Are prefixes information-bearing? That is, is document (1) equivalent to: (4) <a xmlns:y="x">

Again, the main problem is "QNames in content".

5. In the light of the above, how should namespaces be handled by applications that allow
a document to be modified? For example, if an element is deep-copied from one place to
another, should it take all its in-scope namespace declarations with it?

Indeed the Canonical XML recommendation dropped even namespace rewriting for precisely
these reasons: “The C14N-20000119 Canonical XML draft described a method for rewriting
namespace prefixes such that two documents having logically equivalent namespace declara-
tions would also have identical namespace prefixes. The goal was to eliminate dependence on
the particular namespace prefixes in a document when testing for logical equivalence. How-
ever, there now exist a number of contexts in which namespace prefixes can impart informa-
tion value in an XML document. For example, an XPath expression in an attribute value or
element content can reference a namespace prefix. Thus, rewriting the namespace prefixes
would damage such a document by changing its meaning (and it cannot be logically equivalent
if its meaning has changed).”

Resolution: Not yet reached.

9.2 Accessing RDF Documents

Issue 28. RDF Document Specification and Serialization
Similar to the case for XML, access to RDF needs a document specification and serialization
facility in Xcerpt. This needs to consider among other things (a) the serialization format of
RDF and (b) the RDF version.

Resolution: Not yet reached.

108

Chapter 10

Open Issues: Specific to Concrete
Syntax

10.1 Non-XML Term Syntax

Issue 29. Nested Comments in Non-XML and XML-style Term Syntax
Currently, neither syntax allows nested comments. Though nested comments are commonly
shunned in programming languages, there are some recent languages (REXX, Haskell, XQuery)
that use nested comments. For a comparison of comments in programming languages cf.
http://www.gavilan.edu/csis/languages/comments.html.

Resolution: Not yet reached.

Issue 30. IRIs in Recommended IETF Angle Bracket Notation
Currently, IRIs are not syntactically separated from strings. The IETF recommends URIs to be
denoted in angle brackets, a notation used in many RDF formats. This clashes however with
angle brackets in XML.

Resolution: Not yet reached.

10.1.1 Style Guide

Issue 31. Style Guide for Indenting, Naming, etc.
A style guide covering comments, nesting, indenting, use of brackets and commata, rules,
document specifications, etc. should be specified. A similar undertaking is underway for
XQuery.

Resolution: Not yet reached.

Issue 32. Comparison Function in Grouping Terms
Replacing the separate specifications for equivalence and order relation with a single three-
valued comparison function (in the style of Java’s compareTo function) makes the specification
of the grouping term more compact, but requires that the used comparison function always
deals with both equivalence and order.

Resolution: Not yet reached.

109

http://www.gavilan.edu/csis/languages/comments.html

10.2 XML-style Term Syntax

Issue 33. Quoting in XML-style Term Syntax
Currently, strings are quoted in the XML-style term syntax. However, there is a strong mo-
tivation to make XML documents cut-and-pastable, thus requiring the adoption of the XML
character encoding rules into the XML-style Term syntax. In this case, the issue of entities
must be considered. Also, keywords must be quoted in this case, possibly using character
sequences illegal in XML.

Resolution: Not yet reached.

10.3 Pure XML Syntax

No issues with the pure XML syntax have been identified so far.

110

Chapter 11

Open Issues: Language Extensions

11.1 RDF Querying in Xcerpt

A better support for RDF querying in Xcerpt is desirable. This entails in particular three issues:

Issue 34. b-Nodes: Variables in Data Terms
RDF allows existentially quantified variables in data terms (in the form of b-nodes). This is
currently not considered by Xcerpt though matching against construct terms is indeed part of
the Xcerpt evaluation (at least for backward chaining) and should provide the needed methods.

Resolution: Not yet reached.

Issue 35. Partial Data Terms
Also, RDF data terms are always partial, i.e., there may be more information at other locations
on the Web. This would be particularly useful if one considers identifiers that are unique not
just within a document but in an entire collection.

Resolution: Not yet reached.

Issue 36. Proper Triple Syntax
So far, RDF is mapped into Xcerpt terms both internally and on the level of the syntax. It might
be easier for programmers to provide a proper triple syntax as syntactic sugar.

Resolution: Not yet reached.

11.2 Modular Xcerpt

11.2.1 Modules and Components in Xcerpt

A more modular version of Xcerpt is currently under development, where rules can form mod-
ules and libraries that can be linked together (both statically and dynamically).

11.2.2 Macros, Abbreviations, Code Reuse

Xcerpt also lacks a proper macro or abbreviation mechanism as well as facilities for code reuse.

111

11.2.3 Web Service Access

Finally, access to Web Services (including other Xcerpt instances) provides a system of dynamic
distribution of query loads as well as access to rich service APIs such as Amazon’s or Google’s.

11.3 Visual and Verbal Syntax for Xcerpt

The visual syntax for Xcerpt (visXcerpt) should be adapted to the current state of the syntax
documented in this document.

A verbalization of Xcerpt and XML is under consideration and could make queries far more
accessible.

Acknowledgements.

This research has been funded by the European Commission and by the Swiss Federal Office for
Education and Science within the 6th Framework Programme project REWERSE number 506779
(cf.http://rewerse.net).

112

http://rewerse.net

Part III

Full Language Grammars

113

Appendix A

Grammar for Non-XML Term Syntax

A.1 Literal Structures

〈NCName〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#NCName〉

〈IRI〉 ::= ‘"’ 〈http://www.ietf.org/rfc/rfc3987.txt#IRI〉 ‘"’

〈String〉 ::= ‘"’ 〈StringCharacter〉* ‘"’

〈StringCharacter〉 ::= 〈http://java.sun.com/docs/books/jls#StringCharacter〉 | 〈Line-feed〉
| 〈Carriage-return〉

〈Line-feed〉 ::= ‘0̆00a’

〈Carriage-Return〉 ::= ‘0̆00d’

〈Number〉 ::= 〈int〉

〈Int〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#Digit〉*

〈Regexp〉 ::= ‘/’ 〈{http://www.unix.org/version3/ieee_std.html#}extended_reg_exp〉
‘/’

〈ERE_expression〉 ::= 〈http://www.unix.org/version3/ieee_std.html#one_char_or_coll_elem_ERE〉
| ‘^’
| ‘$’
| ‘(’ 〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉

‘)’
| ‘(’ 〈variable〉 ‘->’ 〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉‘)’
| 〈http://www.unix.org/version3/ieee_std.html#ERE_expression〉
〈{http://www.unix.org/version3/ieee_std.html#}ERE_dupl_symbol〉

〈Whitespace〉 ::= (〈http://www.w3.org/TR/REC-xml/#S〉 | 〈End-of-line-comment〉 | 〈Block-comment〉)*

115

{
{

〈Comment-char〉 ::= 〈http://www.w3.org/TR/REC-xml/#NT-Char〉

〈End-of-line〉 ::= 〈Line-feed〉 | 〈Carriage-return〉 (〈Line-feed〉)?

〈End-of-line-comment〉 ::= ‘#’ (〈Comment-char〉* - (〈Comment-char〉* 〈End-of-line〉 〈Comment-char〉*)
〈End-of-line〉

〈Block-comment〉 ::= ‘/#’ (〈Comment-char〉* - (〈Comment-char〉* (‘/#’ | ‘/#’) 〈Comment-char〉*)
‘/#’

A.2 Data Terms

〈data-term〉 ::= 〈term-level-declare-dt〉 | 〈reference-dt〉 | 〈structured-dt〉 | 〈content-dt〉

〈reference-dt〉 ::= ‘^’ 〈identifier-dt〉

〈term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ (〈data-term〉 ‘,’?)* ‘)’

〈identifier-dt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉

〈ns-declaration-dt〉 ::= (〈ns-prefix-declaration-dt〉 ‘,’?)* (〈ns-default-declaration-dt〉 ‘,’?)?
(〈ns-prefix-declaration-dt〉 ‘,’?)*

〈ns-prefix-declaration-dt〉 ::= ‘ns-prefix’ 〈identifier-dt〉 ‘=’ 〈IRI〉

〈ns-default-declaration-dt〉 ::= ‘ns-default’ 〈IRI〉

〈content-dt〉 ::= 〈literal-content-dt〉 | 〈comment-dt〉 | 〈processing-instruction-dt〉

〈literal-content-dt〉 ::= 〈String〉

〈comment-dt〉 ::= ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-dt〉 ‘]’

〈processing-instruction-dt〉 ::= (‘xcerpt’ ‘:’ ‘processing-instruction’ | ‘xcerpt’ ‘:’ ‘pi’)
‘(’ ‘target-name’ ‘=’ 〈identifier-dt〉 ‘)’ ‘[’ 〈literal-content-dt〉 ‘]’

〈structured-dt〉 ::= 〈local-spec-dt〉 〈children-list-dt〉

〈children-list-dt〉 ::= ‘[’ (〈data-term〉 ‘,’?) * ‘]’
| ‘{’ (〈data-term〉 ‘,’?)* ‘}’

〈local-spec-dt〉 ::= 〈term-identifier-dt〉? 〈ns-label-dt〉 〈attr-term-list-dt〉

〈term-identifier-dt〉 ::= 〈identifier-dt〉 ‘@’

〈ns-label-dt〉 ::= (〈identifier-dt〉 ‘:’)? 〈identifier-dt〉

〈attr-term-list-dt〉 ::= ‘(’ (〈attr-term-dt〉 ‘,’?)* ‘)’

116

〈attr-term-dt〉 ::= 〈base-attr-term-dt〉

〈base-attr-term-dt〉 ::= 〈ns-label-dt〉 ‘=’ 〈literal-content-dt〉

〈top-level-data-term〉 ::= 〈top-term-level-declare-dt〉 | 〈structured-dt〉

〈top-term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ 〈top-level-data-term〉 ‘)’

A.3 Construct Terms

〈construct-term〉 ::= 〈term-level-declare-ct〉 | 〈reference-ct〉 | 〈structured-ct〉 | 〈content-ct〉
| 〈term-variable-ct〉
| 〈modified-ct〉

〈reference-ct〉 ::= ‘^’ 〈identifier-ct〉

〈term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’

〈identifier-ct〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉 | 〈literal-variable-ct〉

〈ns-declaration-ct〉 ::= (〈ns-prefix-declaration-ct〉 ‘,’?)* (〈ns-default-declaration-ct〉 ‘,’?)?
(〈ns-prefix-declaration-ct〉 ‘,’?)*

〈ns-prefix-declaration-ct〉 ::= ‘ns-prefix’ 〈identifier-ct〉 ‘=’ (〈IRI〉 | 〈literal-variable-ct〉)

〈ns-default-declaration-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-ct〉)

〈content-ct〉 ::= 〈literal-content-ct〉 | 〈comment-ct〉 | 〈processing-instruction-ct〉

〈literal-content-ct〉 ::= 〈String〉 | 〈literal-variable-ct〉

〈comment-ct〉 ::= ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-ct〉 ‘]’

〈processing-instruction-ct〉 ::= (‘xcerpt’ ‘:’ ‘processing-instruction’ | ‘xcerpt’ ‘:’ ‘pi’)
‘(’ ‘target-name’ ‘=’ 〈identifier-ct〉 ‘)’ ‘[’ 〈literal-content-ct〉 ‘]’

〈structured-ct〉 ::= 〈local-spec-ct〉 〈children-list-ct〉

〈children-list-ct〉 ::= ‘[’ (〈construct-term〉 ‘,’?) * ‘]’
| ‘{’ (〈construct-term〉 ‘,’?)* ‘}’

〈local-spec-ct〉 ::= 〈term-identifier-ct〉? 〈ns-label-ct〉 〈attr-term-list-ct〉

〈term-identifier-ct〉 ::= 〈identifier-ct〉 ‘@’

〈ns-label-ct〉 ::= (〈identifier-ct〉 ‘:’)? 〈identifier-ct〉

〈attr-term-list-ct〉 ::= ‘(’ (〈attr-term-ct〉 ‘,’?)* ‘)’

117

〈attr-term-ct〉 ::= 〈base-attr-term-ct〉
| 〈term-variable-ct〉
| 〈modified-attr-term-ct〉

〈base-attr-term-ct〉 ::= 〈ns-label-ct〉 ‘=’ 〈literal-content-ct〉

〈top-level-construct-term〉 ::= 〈top-term-level-declare-ct〉 | 〈structured-ct〉

〈top-term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ 〈top-level-construct-term〉 ‘)’

〈variable-ct〉 ::= 〈term-variable-ct〉 | 〈literal-variable-ct〉

〈term-variable-ct〉 ::= 〈var-specification-ct〉

〈literal-variable-ct〉 ::= 〈var-specification-ct〉

〈var-specification-ct〉 ::= (‘variable’ | ‘var’)? 〈NCName〉

〈modified-ct〉 ::= 〈grouping-ct〉 | 〈optional-ct〉

〈modified-attr-term-ct〉 ::= 〈grouping-attr-term-ct〉 | 〈optional-attr-term-ct〉

〈grouping-ct〉 ::= 〈grouping-modifier〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-attr-term-ct〉 ::= 〈grouping-modifier〉 ‘(’ 〈attr-term-ct〉? ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-modifier〉 ::= ‘all’
| ‘some’ 〈number-ct〉
| ‘first’ 〈interval-ct〉

〈orderby〉 ::= ‘order-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈order-relation〉?

〈order-relation〉 ::= ‘ascending’ | ‘descending’ | 〈NCName〉

〈groupby〉 ::= ‘group-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈equivalence-relation〉?

〈equivalence-relation〉 ::= 〈NCName〉

〈optional-variable〉 ::= 〈optional-modifier〉 〈variable-ct〉

〈interval-ct〉 ::= 〈number-ct〉 ‘-’ 〈number-ct〉
| 〈number-ct〉 ‘-’
| ‘+’

〈number-ct〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈optional-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’)?

〈optional-attr-term-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈attr-term-ct〉‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈attr-term-ct〉 ‘,’?)* ‘)’)?

〈optional-modifier〉 ::= ‘optional’ | ‘opt’

118

A.4 Query Terms

〈query-term〉 ::= 〈modified-qt〉
| 〈term-level-declare-qt〉

〈term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’(〈query-term〉 ‘,’?)* ‘)’

〈modified-qt〉 ::= 〈variable-term-qt〉
| 〈location-modified-qt〉
| 〈occurrence-modified-qt〉
| 〈selection-modified-qt〉

〈base-term-qt〉 ::= 〈reference-qt〉 | 〈content-qt〉 | 〈structured-qt〉

〈reference-qt〉 ::= ‘^’ 〈identifier-qt〉

〈identifier-qt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉
| 〈literal-variable-qt〉
| 〈Regexp〉

〈ns-decl-qt〉 ::= (〈ns-prefix-decl-qt〉 ‘,’?)* (〈ns-default-decl-qt〉 ‘,’?)?
(〈ns-prefix-decl-qt〉 ‘,’?)*

〈ns-prefix-decl-qt〉 ::= ‘ns-prefix’ 〈identifier-qt〉 ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈ns-default-decl-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-qt〉)

〈variable-decl-qt〉 ::= ((‘variable’ | ‘var’) 〈NCName〉 ‘,’?)*

〈content-qt〉 ::= 〈literal-content-qt〉 | 〈comment-qt〉 | 〈processing-instruction-qt〉

〈literal-content-qt〉 ::= 〈String〉 | 〈literal-variable-qt〉
| 〈Regexp〉

〈comment-qt〉 ::= ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-qt〉 ‘]’

〈processing-instruction-qt〉 ::= (‘xcerpt’ ‘:’ ‘processing-instruction’ | ‘xcerpt’ ‘:’ ‘pi’)
‘(’ ‘target-name’ ‘=’ 〈identifier-qt〉 ‘)’ ‘[’ 〈literal-content-qt〉 ‘]’

〈structured-qt〉 ::= 〈local-spec-qt〉 〈children-list-qt〉 〈condition-clause-qt〉?

〈children-list-qt〉 ::= ‘[’ (〈query-term〉 ‘,’?) * ‘]’
| ‘{’ (〈query-term〉 ‘,’?)* ‘}’
| ‘[[’ (〈query-term〉 ‘,’?) * ‘]]’
| ‘{{’ (〈query-term〉 ‘,’?)* ‘}}’

〈condition-clause-qt〉 ::= ‘where’ ‘(’ 〈condition-qt〉 ‘)’

119

〈condition-qt〉 ::= 〈c-parameter〉 〈comparison-op〉 〈c-parameter〉
| 〈comparison-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’
| ‘and’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘or’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘not’ ‘(’ 〈condition-qt〉 ‘)’
| 〈c-parameter〉

〈condition-op〉 ::= ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈arithmetic-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’

〈c-parameter〉 ::= 〈optional-variable-qt〉 | 〈variable-qt〉
| 〈String〉 | 〈Int〉
| 〈c-parameter〉 〈arithmetic-op〉 〈c-parameter〉
| 〈arithmetic-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’

〈optional-variable-qt〉 ::= 〈optional-modifier〉 〈variable-qt〉

〈local-spec-qt〉 ::= 〈term-identifier-qt〉? 〈ns-label-qt〉 〈attr-term-list-qt〉

〈term-identifier-qt〉 ::= 〈identifier-qt〉 ‘@’

〈ns-label-qt〉 ::= (〈identifier-qt〉 ‘:’)? 〈identifier-qt〉

〈attr-term-list-qt〉 ::= ‘(’ (〈attr-term-qt〉 ‘,’?)* ‘)’
| ‘((’ (〈attr-term-qt〉 ‘,’?)* ‘))’

〈attr-term-qt〉 ::= 〈modified-attr-term-qt〉

〈modified-attr-term-qt〉 ::= 〈base-attr-term-qt〉
| 〈variable-attr-term-qt〉
| 〈occurrence-modified-attr-term-qt〉
| 〈selection-modified-attr-term-qt〉

〈base-attr-term-qt〉 ::= 〈ns-label-qt〉 ‘=’ 〈literal-content-qt〉

〈variable-term-qt〉 ::= 〈base-term-qt〉
| 〈term-variable-qt〉 (‘->’ 〈base-term-qt〉)?

〈variable-attr-term-qt〉 ::= 〈term-variable〉 (‘->’ 〈base-attr-term-qt〉)?

〈variable-qt〉 ::= 〈term-variable-qt〉 | 〈literal-variable-qt〉

〈term-variable-qt〉 ::= 〈var-specification-qt〉

〈literal-variable-qt〉 ::= 〈var-specification-qt〉

〈var-specification-qt〉 ::= (‘variable’ | ‘var’)? 〈NCName〉
| 〈anonymous-variable〉

120

〈anonymous-variable〉 ::= ‘_’

〈selection-modified-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈selection-modified-attr-term-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)* ‘)’

〈selection-modifier〉 ::= ‘except’

〈occurrence-modified-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈occurrence-modified-attr-term-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)*
‘)’

〈occurrence-modifier〉 ::= 〈optional-modifier〉 | ‘without’

〈location-modified-qt〉 ::= 〈location-modifier〉 ‘(’ 〈term-variable-qt〉 ‘,’?)* ‘)’

〈location-modifier〉 ::= 〈descendant-modifier〉 | 〈position-modifier〉

〈descendant-modifier〉 ::= ‘descendant’ | ‘desc’

〈position-modifier〉 ::= (‘position’ | ‘pos’) 〈number-qt〉

〈number-qt〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈top-level-query-term〉 ::= 〈top-term-level-declare-qt〉
| 〈optional-top-level-qt〉
| 〈term-formula-qt〉
| 〈document-specification-qt〉

〈top-term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’ 〈top-level-construct-term〉 ‘)’

〈optional-top-level-qt〉 ::= 〈optional-modifier〉 ‘(’ 〈descendant-top-level-qt〉 ‘)’
| 〈descendant-top-level-qt〉

〈descendant-top-level-qt〉 ::= 〈descendant-modifier〉 ‘(’ 〈var-restriction-top-level-qt〉 ‘)’
| 〈var-restriction-top-level-qt〉

〈var-restriction-top-level-qt〉 ::= 〈term-variable〉 ‘->’ 〈structured-term-qt〉
| 〈structured-term-qt〉

〈term-formula-qt〉 ::= ‘not’ ‘(’ 〈top-level-query-term〉 ‘)’ 〈condition-clause-qt〉?
| ‘and’ | ‘or’ ‘(’ 〈top-level-query-term〉 ‘,’? (〈top-level-query-term〉 ‘,’?)+

‘)’ 〈condition-clause-qt〉?

〈document-specification-qt〉 ::= ‘in’ 〈xml-document-specification-qt〉

〈xml-document-specification-qt〉 ::= ‘xml-document’ ‘((’ 〈location-qt〉
〈xml-decl-qt〉? 〈doctype-decl-qt〉? ‘))’ 〈xml-document-children-qt〉

121

〈location-qt〉 ::= ‘location’ ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈xml-decl-qt〉 ::= (‘standalone’ ‘=’ (‘true’ | ‘false’ | 〈literal-variable-qt〉))? (‘xml-version’
‘=’ (‘1.0’ | ‘1.1’ | 〈literal-variable-qt〉))?

〈doctype-decl-qt〉 ::= (‘system-id’ ‘=’ 〈identifier-qt〉)? (‘public-id’ ‘=’ 〈identifier-qt〉)?
(‘root-name’ ‘=’ 〈identifier-qt〉)?

〈xml-document-children-qt〉 ::= ‘[[’ 〈xml-document-content-qt〉 ‘]]’
| ‘{{’ 〈xml-document-content-qt〉 ‘}}’
| ‘{’ 〈xml-document-content-qt〉 ‘}’
| ‘[’ 〈xml-document-content-qt〉 ‘]’

〈xml-document-content-qt〉 ::= (〈annotation-content-qt〉 ‘,’)* 〈top-level-query-term〉
(〈annotation-content-qt〉 ‘,’)*

〈annotation-content-qt〉 ::= 〈comment-qt〉 | 〈processing-instruction-qt〉

A.5 Programs

〈program〉 ::= ‘PROGRAM’ ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈goal-block〉 ::= 〈rule-level-declare-block〉* 〈goal〉 〈rule-level-declare-block〉*
| 〈rule-level-declare〉 ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈rule-level-declare-block〉 ::= 〈goal〉 | 〈construct-query-rule〉 | 〈data〉
| 〈rule-level-declare〉 ‘(’ 〈rule-level-declare-block〉* ‘)’ ‘END’

〈goal〉 ::= ‘GOAL’ ‘(’ 〈out-resource〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈rule〉 ::= ‘CONSTRUCT’ ‘(’ 〈construct-term〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈out-resource〉 ::= construct-term
| ‘out’ (〈iri〉 | 〈literal-var〉) ‘(’ construct-term ‘)’

〈data〉 ::= ‘DATA’ ‘(’ 〈data-term〉 ‘)’ ‘END’

〈rule-level-declare〉 ::= ‘DECLARE’ ‘(’ 〈var-decl-qt〉* 〈ns-decl-qt〉* ‘)’

122

Appendix B

Grammar for XML-style Term Syntax

B.1 Literal Structures

The literal structures for the XML-style term syntax are identical to the literal structures for
non-XML term syntax, i.e., as given in Section A.1.

B.2 Data Terms

〈data-term〉 ::= 〈term-level-declare-dt〉 | 〈reference-dt〉 | 〈structured-dt〉 | 〈content-dt〉

〈reference-dt〉 ::= ‘^’ 〈identifier-dt〉

〈term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ (〈data-term〉 ‘,’?)* ‘)’

〈identifier-dt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉

〈ns-declaration-dt〉 ::= (〈ns-prefix-declaration-dt〉 ‘,’?)* (〈ns-default-declaration-dt〉 ‘,’?)?
(〈ns-prefix-declaration-dt〉 ‘,’?)*

〈ns-prefix-declaration-dt〉 ::= ‘ns-prefix’ 〈identifier-dt〉 ‘=’ 〈IRI〉

〈ns-default-declaration-dt〉 ::= ‘ns-default’ 〈IRI〉

〈content-dt〉 ::= 〈literal-content-dt〉 | 〈comment-dt〉 | 〈processing-instruction-dt〉

〈literal-content-dt〉 ::= 〈String〉

〈comment-dt〉 ::= ‘<!-’ 〈literal-content-dt〉 ‘->’

〈processing-instruction-dt〉 ::= ‘<?’ 〈identifier-dt〉 〈literal-content-dt〉 ‘?>’

〈structured-dt〉 ::= ‘<’ 〈local-spec-dt〉 〈properties-dt〉 (‘>’ 〈children-list-dt〉 (‘</>’ | ‘<’
〈ns-label-dt〉 ‘>’) | ‘/>’)

123

〈properties-dt〉 ::= (‘{’ ‘ordered’ ‘}’)? | (‘{’ ‘unordered’ ‘}’)

〈children-list-dt〉 ::= 〈data-term〉*

〈local-spec-dt〉 ::= 〈term-identifier-dt〉? 〈ns-label-dt〉 〈attr-term-list-dt〉

〈term-identifier-dt〉 ::= 〈identifier-dt〉 ‘@’

〈ns-label-dt〉 ::= (〈identifier-dt〉 ‘:’)? 〈identifier-dt〉

〈attr-term-list-dt〉 ::= 〈attr-term-dt〉*

〈attr-term-dt〉 ::= 〈base-attr-term-dt〉

〈base-attr-term-dt〉 ::= 〈ns-label-dt〉 ‘=’ 〈literal-content-dt〉

〈top-level-data-term〉 ::= 〈top-term-level-declare-dt〉 | 〈structured-dt〉

〈top-term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ 〈top-level-data-term〉 ‘)’

• There is an additional restriction on the production for 〈structured-dt〉: the (namespace,
local name) pair used as label in the end element tag and the (namespace, local name) pair
used in the start element tag (i.e., produced as part of 〈local-spec-dt〉) must be (modulo
whitespace) component wise equivalent character sequences.

B.3 Construct Terms

〈construct-term〉 ::= 〈term-level-declare-ct〉 | 〈reference-ct〉 | 〈structured-ct〉 | 〈content-ct〉
| 〈term-variable-ct〉
| 〈modified-ct〉

〈reference-ct〉 ::= ‘^’ 〈identifier-ct〉

〈term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’

〈identifier-ct〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉 | 〈literal-variable-ct〉

〈ns-declaration-ct〉 ::= (〈ns-prefix-declaration-ct〉 ‘,’?)* (〈ns-default-declaration-ct〉 ‘,’?)?
(〈ns-prefix-declaration-ct〉 ‘,’?)*

〈ns-prefix-declaration-ct〉 ::= ‘ns-prefix’ 〈identifier-ct〉 ‘=’ (〈IRI〉 | 〈literal-variable-ct〉)

〈ns-default-declaration-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-ct〉)

〈content-ct〉 ::= 〈literal-content-ct〉 | 〈comment-ct〉 | 〈processing-instruction-ct〉

〈literal-content-ct〉 ::= 〈String〉 | 〈literal-variable-ct〉

〈comment-dt〉 ::= ‘<!-’ 〈literal-content-ct〉 ‘->’

124

〈processing-instruction-dt〉 ::= ‘<?’ 〈identifier-ct〉 〈literal-content-ct〉 ‘?>’

〈structured-ct〉 ::= ‘<’ 〈local-spec-ct〉 〈properties-ct〉 (‘>’ 〈children-list-ct〉 (‘</>’ | ‘<’ 〈ns-label-ct〉
‘>’) | ‘/>’)

〈properties-ct〉 ::= (‘{’ ‘ordered’ ‘}’)? | (‘{’ ‘unordered’ ‘}’)

〈children-list-ct〉 ::= 〈construct-term〉*

〈local-spec-ct〉 ::= 〈term-identifier-ct〉? 〈ns-label-ct〉 〈attr-term-list-ct〉

〈term-identifier-ct〉 ::= 〈identifier-ct〉 ‘@’

〈ns-label-ct〉 ::= (〈identifier-ct〉 ‘:’)? 〈identifier-ct〉

〈attr-term-list-ct〉 ::= 〈attr-term-ct〉*

〈attr-term-ct〉 ::= 〈base-attr-term-ct〉
| 〈term-variable-ct〉
| 〈modified-attr-term-ct〉

〈base-attr-term-ct〉 ::= 〈ns-label-ct〉 ‘=’ 〈literal-content-ct〉

〈top-level-construct-term〉 ::= 〈top-term-level-declare-ct〉 | 〈structured-ct〉

〈top-term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ 〈top-level-construct-term〉 ‘)’

〈variable-ct〉 ::= 〈term-variable-ct〉 | 〈literal-variable-ct〉

〈term-variable-ct〉 ::= 〈var-specification-ct〉

〈literal-variable-ct〉 ::= 〈var-specification-ct〉

〈var-specification-ct〉 ::= (‘variable’ | ‘var’)? 〈NCName〉

〈modified-ct〉 ::= 〈grouping-ct〉 | 〈optional-ct〉

〈modified-attr-term-ct〉 ::= 〈grouping-attr-term-ct〉 | 〈optional-attr-term-ct〉

〈grouping-ct〉 ::= 〈grouping-modifier〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-attr-term-ct〉 ::= 〈grouping-modifier〉 ‘(’ 〈attr-term-ct〉? ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-modifier〉 ::= ‘all’
| ‘some’ 〈number-ct〉
| ‘first’ 〈interval-ct〉

〈orderby〉 ::= ‘order-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈order-relation〉?

〈order-relation〉 ::= ‘ascending’ | ‘descending’ | 〈NCName〉

125

〈groupby〉 ::= ‘group-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈equivalence-relation〉?

〈equivalence-relation〉 ::= 〈NCName〉

〈optional-variable〉 ::= 〈optional-modifier〉 〈variable-ct〉

〈interval-ct〉 ::= 〈number-ct〉 ‘-’ 〈number-ct〉
| 〈number-ct〉 ‘-’
| ‘+’

〈number-ct〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈optional-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’)?

〈optional-attr-term-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈attr-term-ct〉‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈attr-term-ct〉 ‘,’?)* ‘)’)?

〈optional-modifier〉 ::= ‘optional’ | ‘opt’

B.4 Query Terms

〈query-term〉 ::= 〈modified-qt〉
| 〈term-level-declare-qt〉

〈term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’(〈query-term〉 ‘,’?)* ‘)’

〈modified-qt〉 ::= 〈variable-term-qt〉
| 〈location-modified-qt〉
| 〈occurrence-modified-qt〉
| 〈selection-modified-qt〉

〈base-term-qt〉 ::= 〈reference-qt〉 | 〈content-qt〉 | 〈structured-qt〉

〈reference-qt〉 ::= ‘^’ 〈identifier-qt〉

〈identifier-qt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉
| 〈literal-variable-qt〉
| 〈Regexp〉

〈ns-decl-qt〉 ::= (〈ns-prefix-decl-qt〉 ‘,’?)* (〈ns-default-decl-qt〉 ‘,’?)?
(〈ns-prefix-decl-qt〉 ‘,’?)*

〈ns-prefix-decl-qt〉 ::= ‘ns-prefix’ 〈identifier-qt〉 ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈ns-default-decl-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-qt〉)

〈variable-decl-qt〉 ::= ((‘variable’ | ‘var’) 〈NCName〉 ‘,’?)*

126

〈content-qt〉 ::= 〈literal-content-qt〉 | 〈comment-qt〉 | 〈processing-instruction-qt〉

〈literal-content-qt〉 ::= 〈String〉 | 〈literal-variable-qt〉
| 〈Regexp〉

〈comment-qt〉 ::= ‘<!-’ 〈literal-content-qt〉 ‘->’

〈processing-instruction-qt〉 ::= ‘<?’ 〈identifier-qt〉 〈literal-content-qt〉 ‘?>’

〈structured-qt〉 ::= ‘<’ 〈local-spec-qt〉 〈properties-qt〉 (‘>’ 〈children-list-qt〉 (‘</>’ | ‘<’
〈ns-label-qt〉 ‘>’) | ‘/>’) 〈condition-clause-qt〉?

〈properties-qt〉 ::= (‘{’ ‘ordered’ ‘}’)? | (‘{’ ‘unordered’ ‘}’) ((‘{’ ‘total’ ‘}’)? | ‘{’
‘partial’ ‘}’) ((‘{’ ‘total attributes’ ‘}’)? | ‘{’ ‘partial attributes’
‘}’)

〈children-list-qt〉 ::= 〈query-term〉*

〈condition-clause-qt〉 ::= ‘where’ ‘(’ 〈condition-qt〉 ‘)’

〈condition-qt〉 ::= 〈c-parameter〉 〈comparison-op〉 〈c-parameter〉
| 〈comparison-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’
| ‘and’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘or’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘not’ ‘(’ 〈condition-qt〉 ‘)’
| 〈c-parameter〉

〈condition-op〉 ::= ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈arithmetic-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’

〈c-parameter〉 ::= 〈optional-variable-qt〉 | 〈variable-qt〉
| 〈String〉 | 〈Int〉
| 〈c-parameter〉 〈arithmetic-op〉 〈c-parameter〉
| 〈arithmetic-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’

〈optional-variable-qt〉 ::= 〈optional-modifier〉 〈variable-qt〉

〈local-spec-qt〉 ::= 〈term-identifier-qt〉? 〈ns-label-qt〉 〈attr-term-list-qt〉

〈term-identifier-qt〉 ::= 〈identifier-qt〉 ‘@’

〈ns-label-qt〉 ::= (〈identifier-qt〉 ‘:’)? 〈identifier-qt〉

〈attr-term-list-qt〉 ::= 〈attr-term-qt〉*

〈attr-term-qt〉 ::= 〈modified-attr-term-qt〉

127

〈modified-attr-term-qt〉 ::= 〈base-attr-term-qt〉
| 〈variable-attr-term-qt〉
| 〈occurrence-modified-attr-term-qt〉
| 〈selection-modified-attr-term-qt〉

〈base-attr-term-qt〉 ::= 〈ns-label-qt〉 ‘=’ 〈literal-content-qt〉

〈variable-term-qt〉 ::= 〈base-term-qt〉
| 〈term-variable-qt〉 (‘->’ 〈base-term-qt〉)?

〈variable-attr-term-qt〉 ::= 〈term-variable〉 (‘->’ 〈base-attr-term-qt〉)?

〈variable-qt〉 ::= 〈term-variable-qt〉 | 〈literal-variable-qt〉

〈term-variable-qt〉 ::= 〈var-specification-qt〉

〈literal-variable-qt〉 ::= 〈var-specification-qt〉

〈var-specification-qt〉 ::= (‘variable’ | ‘var’)? 〈NCName〉
| 〈anonymous-variable〉

〈anonymous-variable〉 ::= ‘_’

〈selection-modified-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈selection-modified-attr-term-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)* ‘)’

〈selection-modifier〉 ::= ‘except’

〈occurrence-modified-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈occurrence-modified-attr-term-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)*
‘)’

〈occurrence-modifier〉 ::= 〈optional-modifier〉 | ‘without’

〈location-modified-qt〉 ::= 〈location-modifier〉 ‘(’ 〈term-variable-qt〉 ‘,’?)* ‘)’

〈location-modifier〉 ::= 〈descendant-modifier〉 | 〈position-modifier〉

〈descendant-modifier〉 ::= ‘descendant’ | ‘desc’

〈position-modifier〉 ::= (‘position’ | ‘pos’) 〈number-qt〉

〈number-qt〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈top-level-query-term〉 ::= 〈top-term-level-declare-qt〉
| 〈optional-top-level-qt〉
| 〈term-formula-qt〉
| 〈document-specification-qt〉

128

〈top-term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’ 〈top-level-construct-term〉 ‘)’

〈optional-top-level-qt〉 ::= 〈optional-modifier〉 ‘(’ 〈descendant-top-level-qt〉 ‘)’
| 〈descendant-top-level-qt〉

〈descendant-top-level-qt〉 ::= 〈descendant-modifier〉 ‘(’ 〈var-restriction-top-level-qt〉 ‘)’
| 〈var-restriction-top-level-qt〉

〈var-restriction-top-level-qt〉 ::= 〈term-variable〉 ‘->’ 〈structured-term-qt〉
| 〈structured-term-qt〉

〈term-formula-qt〉 ::= ‘not’ ‘(’ 〈top-level-query-term〉 ‘)’ 〈condition-clause-qt〉?
| ‘and’ | ‘or’ ‘(’ 〈top-level-query-term〉 ‘,’? (〈top-level-query-term〉 ‘,’?)+

‘)’ 〈condition-clause-qt〉?

〈document-specification-qt〉 ::= ‘in’ 〈xml-document-specification-qt〉

〈xml-document-specification-qt〉 ::= ‘xml-document’ ‘((’ 〈location-qt〉
〈xml-decl-qt〉? 〈doctype-decl-qt〉? ‘))’ 〈xml-document-children-qt〉

〈location-qt〉 ::= ‘location’ ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈xml-decl-qt〉 ::= (‘standalone’ ‘=’ (‘true’ | ‘false’ | 〈literal-variable-qt〉))? (‘xml-version’
‘=’ (‘1.0’ | ‘1.1’ | 〈literal-variable-qt〉))?

〈doctype-decl-qt〉 ::= (‘system-id’ ‘=’ (〈String〉 | 〈literal-variable-qt〉))? (‘public-id’ ‘=’
(〈String〉 | 〈literal-variable-qt〉))? (‘root-name’ ‘=’ (〈String〉 | 〈literal-variable-qt〉))?

〈xml-document-children-qt〉 ::= ‘[[’ 〈xml-document-content-qt〉 ‘]]’
| ‘{{’ 〈xml-document-content-qt〉 ‘}}’
| ‘{’ 〈xml-document-content-qt〉 ‘}’
| ‘[’ 〈xml-document-content-qt〉 ‘]’

〈xml-document-content-qt〉 ::= (〈annotation-content-qt〉 ‘,’)* 〈top-level-query-term〉
(〈annotation-content-qt〉 ‘,’)*

〈annotation-content-qt〉 ::= 〈comment-qt〉 | 〈processing-instruction-qt〉

B.5 Programs

〈program〉 ::= ‘PROGRAM’ ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈goal-block〉 ::= 〈rule-level-declare-block〉* 〈goal〉 〈rule-level-declare-block〉*
| 〈rule-level-declare〉 ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈rule-level-declare-block〉 ::= 〈goal〉 | 〈construct-query-rule〉 | 〈data〉
| 〈rule-level-declare〉 ‘(’ 〈rule-level-declare-block〉* ‘)’ ‘END’

129

〈goal〉 ::= ‘GOAL’ ‘(’ 〈out-resource〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈rule〉 ::= ‘CONSTRUCT’ ‘(’ 〈construct-term〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈out-resource〉 ::= construct-term
| ‘out’ (〈iri〉 | 〈literal-var〉) ‘(’ construct-term ‘)’

〈data〉 ::= ‘DATA’ ‘(’ 〈data-term〉 ‘)’ ‘END’

〈rule-level-declare〉 ::= ‘DECLARE’ ‘(’ 〈var-decl-qt〉* 〈ns-decl-qt〉* ‘)’

130

Appendix C

Relax NG Schema for XML Syntax

C.1 Parameterized Grammars: Terms, Declarations, Modifiers,
etc.

C.1.1 Declarations

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = declare-block

6 ## A declare block with an empty content and both namespace and variable declarations.
declare-block =

8 element declare { (ns-declaration | var-declaration)*, content }
ns-declaration =

10 ns-prefix-declaration*,
(element ns-default {

12 element iri { iri.class }
}

14 | ns-prefix-declaration),
ns-prefix-declaration*

16 ns-prefix-declaration =
element ns-prefix {

18 element name { ncname.class },
element iri { iri.class }

20 }
var-declaration =

22 element variable {
attribute name { xsd:NCName }

24 }
content = empty

26 iri.class |= text
ncname.class |= xsd:NCName

C.1.2 Conditions

1 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3 start = condition

131

5 ## A condition is an opaque expression involving simple arithmetic and comparisons. This is preliminary syntax.
condition = element condition { expression }

7 expression =
element arithmetic-expression {

9 attribute operator { "+" | "−" | "∗" | "/" | "^" },
expression,

11 expression
}

13 | element comparison-expression {
attribute operator { "eq" | "neq" | "lt" | "gt" | "leq" | "geq" },

15 expression,
expression

17 }
| grammar {

19 include "formula.rnc" {
content = parent expression

21 }
}

23 | content
content = empty

C.1.3 Formulas

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = formula
formula =

6 element and { formula, formula+, condition? }
| element or { formula, formula+, condition? }

8 | element not { formula }
| content

10 condition = empty
content = empty

C.1.4 Modifiers

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = grouping
5 content = empty

grouping =
7 element all { content, order-by?, group-by? }

| element some { number, content, order-by?, group-by? }
9 | element first { interval, content, order-by?, group-by? }

order-by =
11 element order-by {

attribute order-relation { text }?,
13 optional-variable+

}
15 group-by =

element group-by {
17 attribute equivalence-relation { text }?,

optional-variable+
19 }

optional-variable =

132

21 element optional { variable }
| variable

23 variable = empty
interval =

25 element interval {
element min { number-literal.class },

27 element max { number-literal.class }
}

29 number = element number { number-literal.class }
number-literal.class = xsd:int | variable

31 optional =
element optional {

33 content,
element with-default { content }?

35 }

C.1.5 Term

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = top-level-term.class
5

A term that may occur at top−level. Slightly more
7 ## restricted than a basic term.

top-level-term.class =
9 structured-term

| grammar {
11 include "declare−block.rnc" {

content = parent top-level-term.class*
13 var-declaration = empty

}
15 }

17 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class |=

19 reference | content-term | structured-term | term-level-declare

21 ## A declaration block on term level allows possibly (in data and construct terms) only namespace declarations.
term-level-declare =

23 grammar {
include "declare−block.rnc" {

25 content = parent term.class*
var-declaration = empty

27 }
}

29

A structured term is a term that may have children and
31 ## attributes. It contrasts with literal content.

structured-term =
33 element element { term-local-spec, term-children, term-condition? }

35 ## Some terms may have additional constraints attached to them.
term-condition = empty

37

The specification of the ’local’ properties of a term: identifier, label, namespace, and attributes.
39 term-local-spec = term-identifier?, ns-label, attr-term-list

41 ## The defining occurrence of a reference, i.e. "id @" in term syntax.

133

term-identifier = element identifier { identifier.class }
43

Label and namespace of an Xcerpt term or attribute.
45 ns-label =

element label {
47 element ns { identifier.class }?,

identifier.class
49 }

51 ## A term specifying the attributes of an element.
attr-term-list =

53 element attributes {
attribute total { total.class },

55 attribute-term.class*
}

57

Class of values for attributes specifying totality or
59 ## partiality of a term’s children or attribute list.

total.class |= "true"
61

A attribute term is an attribute possibly modified with respect to location, modality, and selection.
63 attribute-term.class |= base-attribute

65 ## An attribute consists of a label and an attribute content.
base-attribute =

67 element attribute {
ns-label,

69 element value { literal-content.class }
}

71

An identifier such as a namespace or label.
73 identifier.class |= text

content-term = literal-content.class | annotation-content
75

Content kinds that can be used to annotate elements.
77 annotation-content =

element comment { literal-content.class }
79 | element processing-instruction {

attribute target { identifier.class },
81 literal-content.class

}
83

Character data or other atomic content.
85 literal-content.class |= text

87 ## The children of a term can be ordered or unordered, total or partial.
term-children =

89 element children {
attribute ordered { "true" | "false" },

91 attribute total { total.class },
term.class*

93 }

95 ## The using occurrence of a reference, i.e. "^ id" in term syntax.
reference = element reference { identifier.class }

C.2 Grammar for Xcerpt Programs

134

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = program
−

− − − − − − − − − − − − − − − − − − − −
6

Programs: Rules, Data, and Goals
8

−
− − − − − − − − − − − − − − − − − − − −

10

An Xcerpt program is a set of (one or more) goals, as well as (any number of) rules and inline data terms (like
facts in Prolog). Rules and data terms may be surrounded by declaration blocks.

12 program = element program { goal-block }
goal-block =

14 rule-level-block*
| goal

16 | rule-level-block*
| grammar {

18 include "declare−block.rnc" {
content = parent goal-block

20 }
}

22

Rule−level blocks form the basic block structure of an Xcerpt programs: goals, rules, and inline data terms
form the basic block structures. They can be included into declaration blocks that define the scope of
variable and namespace declarations.

24 rule-level-block =
goal

26 | rule
| data

28 |
A declaration block on rule level allows both variable and namespace declarations.

30 grammar {
include "declare−block.rnc" {

32 content = parent rule-level-block*
}

34 }

36 ## A rule specifies how from data matched by the query term new data is constructed according to a construct
term.

rule =
38 element rule {

element construct { construct-term },
40 element from { query-term }

}
42

A goal is a rule, where the resulting data is written to a specified resource. Hence, goals are not chained.
44 goal =

element goal {
46 element out {

(variable-ct
48 | attribute value {

text
50 >> a:documentation [

"This should in−fact be a IRI as by RFC 3987. Since XML Schema datatypes only provides the anyURI
datatype for URIs conforming the older RFC 2396, arbitrary text is allowed."

52]

135

}),
54 element construct { construct-term }

},
56 element from { query-term }

}
58

An inline data term allows the specification of data terms inside Xcerpt programs similar to facts in Prolog.
60 data = element data { data-term }

−
− − − − − − − − − − − − − − − − − − − −

62

Data Terms
64

−
− − − − − − − − − − − − − − − − − − − −

66 data-term =
grammar {

68 include "term.rnc"
}

70 # −
− − − − − − − − − − − − − − − − − − − −

72 # Construct Terms

74 # −
− − − − − − − − − − − − − − − − − − − −

76 ## Variables for construct terms.
variable-ct =

78 element variable {
attribute name { xsd:NCName }

80 }

82 ## A construct term differs from a data term in the addition of variables. As a corollary a few so−called modifiers
are needed to indicate, e.g., how to group the variables or whether a variable may have no bindings.

construct-term =
84 grammar {

variable-ct = parent variable-ct
86 # Add grouping and optional for attributes

modified-attribute =
88 grammar {

include "modifiers.rnc" {
90 start = grouping

content = parent attribute-term.class
92 variable = parent variable-ct

}
94 }

| grammar {
96 include "modifiers.rnc" {

start = optional
98 content = parent attribute-term.class*

variable = parent variable-ct
100 }

}
102 # Add grouping and optional for elements

modified-term =
104 grammar {

include "modifiers.rnc" {
106 start = grouping

136

content = parent term.class*
108 variable = parent variable-ct

}
110 }

| grammar {
112 include "modifiers.rnc" {

start = optional
114 content = parent term.class*

variable = parent variable-ct
116 }

}
118

Construct terms may also be variables or modified by
120 ## grouping and optional modifiers.

term.class |= variable-ct | modified-term
122

Construct attribute terms may also be variables or modified by
124 ## grouping and optional modifiers.

attribute-term.class |= variable-ct | modified-attribute
126 # Add variables to identifiers and literal content

identifier.class |= variable-ct
128 literal-content.class |= variable-ct

include "term.rnc"
130 }

−
− − − − − − − − − − − − − − − − − − − −

132

Query Terms
134

−
− − − − − − − − − − − − − − − − − − − −

136

A POSIX.1 regular expression annotated with variables may occur in query terms at the position of identifiers or
literal content.

138 regular-expression =
element regexp {

140 attribute value { text }
}

142

Query terms can evidently become the most complex of the three term kinds in Xcerpt. As construct terms they
add variables to data terms. But they also provide means for expressing incompleteness: partial terms, desc

and position location modifiers, etc. A construct term differs from a data term in the addition of variables.
144 query-term =

grammar {
146

Variables for query terms.
148 variable =

element variable {
150 attribute anonymous { "true" }

| attribute name { xsd:NCName }
152 }

#1# TOP−LEVEL QUERY TERM
154 optional-top-level-term =

element optional { descendant-top-level-term }
156 | descendant-top-level-term

descendant-top-level-term =
158 element descendant { var-restriction-top-level-term }

| var-restriction-top-level-term
160 var-restriction-top-level-term =

137

element restriction { variable, structured-term }
162 | structured-term

term-formula =
164 grammar {

include "formula.rnc" {
166 content = parent optional-top-level-term

condition = parent condition-clause
168 }

}
170 document-specification =

element xml-document {
172 attribute location { text },

element xml-declaration {
174 attribute standalone { "true" | "false" | variable }?,

attribute xml-version { "1.0" | "1.1" | variable }?
176 }?,

element doctype {
178 attribute system-id { identifier.class }?,

attribute public-id { identifier.class }?,
180 attribute root-name { identifier.class }?

}?,
182 element children {

annotation-content*, top-level-term.class, annotation-content*
184 }

}
186 # #2# CONDITION CLAUSES ##

condition-clause =
188 element condition {

grammar {
190 include "formula.rnc" {

content = parent comparison*
192 }

}
194 }

comparison =
196 element comparison {

attribute operator {
198 "eq" | "neq" | "lt" | "bt" | "elt" | "ebt"

},
200 arithmetics,

arithmetics
202 }

| element optional { comparison }
204 | arithmetics

arithmetics =
206 element arithmetics {

attribute operator {
208 "plus" | "minus" | "times" | "div" | "power"

},
210 (arithmetics | arithmetic-parameter),

(arithmetics | arithmetic-parameter)
212 }

| element optional { arithmetics }
214 | arithmetic-parameter

arithmetic-parameter =
216 variable

| element value { text }
218 # #3# Modified terms ##

modified-term =

138

220 variable-term | location-term | occurrence-term | selection-term
base-term = reference | content-term | structured-term

222 variable-term =
base-term

224 | variable
| element restriction { variable, base-term }

226 location-term =
element descendant { variable-term }

228 | element position {
element number { variable | xsd:int },

230 variable-term
}

232 selection-term = element except { modified-term }
occurrence-term =

234 element without { modified-term }
| element optional { modified-term }

236 # #4# Modified Attribute terms ##
modified-attr-term =

238 base-attribute,
variable-attr-term,

240 occurrence-modified-attr-term,
selection-modified-attr-term

242 variable-attr-term =
variable

244 | element restriction { variable, base-attribute }
occurrence-modified-attr-term =

246 element without { modified-attr-term }
| element optional { modified-attr-term }

248 selection-modified-attr-term = element except { modified-attr-term }
#A1# BASICS

250

Add variables and regular expressions to identifiers and literal
252 # content

identifier.class |= variable | parent regular-expression
254 literal-content.class |= variable | parent regular-expression

include "term.rnc" {
256 # Redefine the top−level term for query terms: add variables to

declare blocks and allow optional, descendant, variable restriction.
258 # Add document specifications

Add query term formula
260

A term that may occur at top−level. Slightly more
262 ## restricted than a basic term.

top-level-term.class =
264 optional-top-level-term

| term-formula
266 | document-specification

| grammar {
268 include "declare−block.rnc" {

content = parent top-level-term.class*
270 }

}
272 # Redefine terms: only modified terms, which can in fact be

unmodified :−) Term−level declare blocks may also contain variable
274 # declarations

276 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class = modified-term | term-level-declare

278

139

A declaration block on term level allows possibly (in data and construct terms) only namespace
declarations.

280 term-level-declare =
grammar {

282 include "declare−block.rnc" {
content = parent term.class*

284 }
}

286 # Redefine attributes as well, again to make modification possible

288 ## An attribute term is an attribute possibly modified with respect to location, modality, and selection.
attribute-term.class = modified-attr-term

290 # Allow conditions on arbitrary query terms
term-condition = condition-clause

292 }
}

C.3 Exemplary Data Term

1 <?xml version="1.0" encoding="UTF−8"?>
<element xmlns="http://xcerpt.org/ns/core/1.0">

3 <label>bib</label>
<attributes total="true" />

5 <children ordered="false" total="true">
<element>

7 <identifier>journal.adm</identifier>
<label>journal</label>

9 <attributes total="true" />
<children ordered="false" total="true">

11 <element>
<label>title</label>

13 <attributes total="true" />
<children ordered="true" total="true"

15 >Applied Data Management</children>
</element>

17 <element>
<label>editors</label>

19 <attributes total="true" />
<children ordered="true" total="true">

21 <element>
<label>editor-in-chief</label>

23 <attributes total="true" />
<children ordered="true" total="true"

25 >Titus Pomponius Atticus</children>
</element>

27 <element>
<label>editor</label>

29 <attributes total="true" >
<attribute><label>region</label><value>Africa</value>

31 </attribute>
</attributes>

33 <children ordered="true" total="true"
>Marcus Aemilius Aemilianus</children>

35 </element>
<element>

37 <label>editor</label>
<attributes total="true" >

39 <attribute><label>region</label><value>Gaul</value>
</attribute>

41 </attributes>
<children ordered="true" total="true"

43 >Aulus Hirtius<!−− −−>
<element>

45 <label>affiliation</label>
<attributes total="true" />

140

47 <children ordered="true" total="true"
>Governor, Transalpine Gaul</children>

49 </element>
</children>

51 </element>
<element>

53 <label>editor</label>
<attributes total="true" >

55 <attribute><label>region</label><value>Cilicia</value>
</attribute>

57 </attributes>
<children ordered="true" total="true"

59 >Marcus Tullius Cicero<!−− −−>
<element>

61 <label>affiliation</label>
<attributes total="true" />

63 <children ordered="true" total="true">Governor, Cicilia</children>
</element>

65 </children>
</element>

67 </children>
</element>

69 <element>
<label>publisher</label>

71 <attributes total="true" />
<children ordered="true" total="true"

73 >Titus Pomponius Atticus</children>
</element>

75 <element>
<label>volumes</label>

77 <attributes total="true" />
<children ordered="true" total="true">

79 <element>
<identifier>journal.adm.v10</identifier>

81 <label>volume</label>
<attributes total="true" />

83 <children ordered="true" total="true">
<element>

85 <identifier>journal.adm.v10.n1</identifier>
<label>number</label>

87 <attributes total="true">
<attribute><label>type</label><value>special-issue</value>

89 </attribute>
</attributes>

91 <children ordered="false" total="true">
<element>

93 <label>title</label>
<attributes total="true" />

95 <children ordered="true" total="true"
>Data Processing Challenges in the Age of Wax Tablets</children>

97 </element>
<element>

99 <label>editorial</label>
<attributes total="true" />

101 <children ordered="true" total="true"
><reference>articles.66.cicero.wax</reference></children>

103 </element>
<element>

105 <label>year</label>
<attributes total="true" />

107 <children ordered="true" total="true"
>60</children>

109 </element>
<element>

111 <label>month</label>
<attributes total="true" />

113 <children ordered="true" total="true"
>july</children>

115 </element>
</children>

141

117 </element>
<element>

119 <identifier>journal.adm.v10.n2</identifier>
<label>number</label>

121 <attributes total="true" />
<children ordered="false" total="true">

123 <element>
<label>year</label>

125 <attributes total="true" />
<children ordered="true" total="true"

127 >60</children>
</element>

129 <element>
<label>month</label>

131 <attributes total="true" />
<children ordered="true" total="true"

133 >november</children>
</element>

135 </children>
</element> <!−− number −−>

137 </children>
</element> <!−− volume −−>

139 </children>
</element> <!−− volumes −−>

141 </children>
</element> <!−− journal −−>

143

<element>
145 <identifier>conf.dmmc</identifier>

<label>proceedings</label>
147 <attributes total="true" />

<children ordered="false" total="true">
149 <element>

<label>title</label>
151 <attributes total="true" />

<children ordered="true" total="true"
153 >Advancements in Data Management for Military and Civil Application</children>

</element>
155 <element>

<label>editors</label>
157 <attributes total="true" />

<children ordered="true" total="true">
159 <element>

<label>editor</label>
161 <attributes total="true" />

<children ordered="true" total="true"
163 >Marcus Aemilius Lepidus<!−− −−>

<element>
165 <label>affiliation</label>

<attributes total="true" />
167 <children ordered="true" total="true"

>Consul, SPQR</children>
169 </element></children>

</element>
171 <element>

<label>editor</label>
173 <attributes total="true" />

<children ordered="true" total="true"
175 >Gaius Julius Caesar Octavianus</children>

</element>
177 <element>

<label>editor</label>
179 <attributes total="true" />

<children ordered="true" total="true"
181 >Marcus Antonius</children>

</element>
183 </children>

</element>
185 <element>

<label>publisher</label>

142

187 <attributes total="true" />
<children ordered="true" total="true"

189 >SPQR</children>
</element>

191 <element>
<label>abbrev</label>

193 <attributes total="true" />
<children ordered="true" total="true"

195 >DMMC</children>
</element>

197 <element>
<label>year</label>

199 <attributes total="true" />
<children ordered="true" total="true"

201 >44</children>
</element>

203 <element>
<label>month</label>

205 <attributes total="true" />
<children ordered="true" total="true"

207 >july</children>
</element>

209 <element>
<label>location</label>

211 <attributes total="true" />
<children ordered="true" total="true"

213 >Mutina</children>
</element>

215 <element>
<label>invited-papers</label>

217 <attributes total="true" />
<children ordered="true" total="true">

219 <reference>inproc.44.brutus</reference>
<reference>article.66.scaurus.qumran</reference>

221 </children>
</element> <!−− invited papers −−>

223 </children>
</element> <!−− proceedings −−>

225

<!−− /// −−>
227 <element>

<identifier>article.66.scaurus.qumran</identifier>
229 <label>article</label>

<attributes total="true" />
231 <children ordered="false" total="true">

<element>
233 <label>title</label>

<attributes total="true" />
235 <children ordered="true" total="true"

>From Wax Tablets to Papyri: The Qumran Case Study</children>
237 </element>

<element>
239 <label>author</label>

<attributes total="true" />
241 <children ordered="true" total="true"

>Marcus Aemilius Scaurus<!−− −−>
243 <element>

<label>affiliation</label>
245 <attributes total="true" />

<children ordered="true" total="true"
247 >Tribun, Gnaeus Pompeius Magnus</children>

</element>
249 </children>

</element>
251 <element>

<label>in</label>
253 <attributes total="true">

<attribute><label>scrolls</label><value>102-112</value>
255 </attribute>

</attributes>

143

257 <children ordered="true" total="true">
<reference>journal.adm.v10.n1</reference>

259 </children>
</element>

261 <element>
<label>citations</label>

263 <attributes total="true" />
<children ordered="true" total="true">

265 <element>
<label>cite</label>

267 <attributes total="true">
<attribute><label>ref</label><value>article.66.cicero.wax</value>

269 </attribute>
</attributes>

271 <children ordered="true" total="true" />
</element>

273 <element>
<label>cite</label>

275 <attributes total="true">
<attribute><label>type</label><value>formatted</value>

277 </attribute>
</attributes>

279 <children ordered="true" total="true"
>M. Aemilius Scaurus (104): A Case for Permanent Storage of

281 Senate Proceedings. In: M. Aemilius Scaurus, ed. (104):
<element>

283 <label>i</label>
<attributes total="true" />

285 <children ordered="true" total="true"
>Princeps Senatus: Honor and Responsibility</children>

287 </element>, Chapter 2, 14-88.</children>
</element> <!−− cite −−>

289 </children>
</element> <!−− citations −−>

291 </children>
</element> <!−− article−−>

293

<element>
295 <identifier>article.66.cicero.wax</identifier>

<label>article</label>
297 <attributes total="true" />

<children ordered="false" total="true">
299 <element>

<label>title</label>
301 <attributes total="true" />

<children ordered="true" total="true"
303 >Space- and Time-Optimal Data Storage on Wax Tablets</children>

</element>
305 <element>

<label>authors</label>
307 <attributes total="true" />

<children ordered="true" total="true">
309 <element>

<label>author</label>
311 <attributes total="true" />

<children ordered="true" total="true"
313 >Marcus Tullius Cicero<!−− −−>

<element>
315 <label>affiliation</label>

<attributes total="true" />
317 <children ordered="true" total="true"

>Governor, Cicilia</children>
319 </element>

</children>
321 </element>

<element>
323 <label>author</label>

<attributes total="true" />
325 <children ordered="true" total="true"

>Marcus Aemilius Lepidus<!−− −−>

144

327 <element>
<label>affiliation</label>

329 <attributes total="true" />
<children ordered="true" total="true"

331 >Gens Aemilia</children>
</element>

333 </children>
</element>

335 <element>
<label>author</label>

337 <attributes total="true" />
<children ordered="true" total="true"

339 >Marcus Tullius Tiro<!−− −−>
<element>

341 <label>affiliation</label>
<attributes total="true" />

343 <children ordered="true" total="true"
>Secretary, M. T. Cicero</children>

345 </element>
</children>

347 </element>
</children>

349 </element> <!−− authors −−>
<element>

351 <label>in</label>
<attributes total="true">

353 <attribute><label>scrolls</label><value>1-94</value>
</attribute>

355 </attributes>
<children ordered="true" total="true">

357 <reference>journal.adm.v10.n1</reference>
</children>

359 </element>
<element>

361 <label>content</label>
<attributes total="true">

363 <attribute><label>type</label><value>xhtml</value>
</attribute>

365 </attributes>
<children ordered="true" total="true">

367 <declare>
<ns-default><iri>http://www.w3.org/1999/xhtml</iri></ns-default>

369 <element>
<label>body</label>

371 <attributes total="true" />
<children ordered="true" total="true">

373 <comment>incomplete due to melted letters on some tablets</comment>
<element>

375 <label>h1</label>
<attributes total="true">

377 <attribute><label>id</label><value>contributions</value></attribute>
</attributes>

379 <children ordered="true" total="true">Contributions</children>
</element>

381 <element>
<label>h1</label>

383 <attributes total="true" />
<children ordered="true" total="true"

385 >A History of Data Storage: From Stone to Parchment</children>
</element>

387 <element>
<label>p</label>

389 <attributes total="true" />
<children ordered="true" total="true"

391 >Despite recent evidence <element>
<label>cite</label>

393 <attributes total="true" />
<children ordered="true" total="true"

395 ><reference>article.66.scaurus.qumran</reference></children>
</element> ... </children>

145

397 </element> <!−− p −−>
<element>

399 <label>ol</label>
<attributes total="true" />

401 <children ordered="true" total="true">
<element>

403 <label>li</label>
<attributes total="true" />

405 <children ordered="true" total="true">
<element>

407 <label>em</label>
<attributes total="true" />

409 <children ordered="true" total="true">
<element>

411 <label>strong</label>
<attributes total="true" />

413 <children ordered="true" total="true">Homeric</children>
</element> Age:</children>

415 </element><!−− em −−>
...

417 </children>
</element> <!−− li −−>

419 <element>
<label>li</label>

421 <attributes total="true" />
<children ordered="true" total="true">

423 <element>
<label>em</label>

425 <attributes total="true" />
<children ordered="true" total="true"

427 >Age pf the <element>
<label>strong</label>

429 <attributes total="true" />
<children ordered="true" total="true">Kings</children>

431 </element>:</children>
</element><!−− em −−>

433 ...
</children>

435 </element> <!−− li −−>
</children>

437 </element> <!−− ol −−>
<element>

439 <label>h1</label>
<attributes total="true">

441 <attribute><label>id</label><value>tiro</value></attribute>
</attributes>

443 <children ordered="true" total="true">Notae Tironianae</children>
</element> <!−− hi −−>

445 <element>
<label>img</label>

447 <attributes total="true">
<attribute><label>title</label><value>Tironian et</value></attribute>

449 <attribute><label>src</label><value>...</value></attribute>
</attributes>

451 <children ordered="true" total="true" />
</element> <!−− img −−>

453 <element>
<label>p</label>

455 <attributes total="true" />
<children ordered="true" total="true"

457 >As discussed in <element>
<label>a</label>

459 <attributes total="true">
<attribute><label>href</label><value>#contributions</value></attribute>

461 </attributes>
<children ordered="true" total="true"> ... </children>

463 </element></children>
</element> <!−− p −−>

465 <element>
<label>h1</label>

146

467 <attributes total="true">
<attribute><label>id</label><value>tachygraphy</value></attribute>

469 </attributes>
<children ordered="true" total="true">Challenges for Tachygraphy on Wax</children>

471 </element> <!−− hi −−>
<element>

473 <label>p</label>
<attributes total="true" />

475 <children ordered="true" total="true"
>Though conditions for writing on wax tablets are adverse

477 to tachygraphy, systems as described in <element>
<label>a</label>

479 <attributes total="true">
<attribute><label>href</label><value>#tiro</value></attribute>

481 </attributes>
<children ordered="true" total="true"> ... </children>

483 </element></children>
</element> <!−− p −−>

485 </children>
</element> <!−− html −−>

487 </declare>
</children>

489 </element> <!−− content −−>
</children>

491 </element> <!−− article−−>

493 <element>
<identifier>inproc.44.brutus</identifier>

495 <label>inproceedings</label>
<attributes total="true" />

497 <children ordered="false" total="true">
<element>

499 <label>title</label>
<attributes total="true" />

501 <children ordered="true" total="true"
>Efficient Management of Rapidly Changing Personal Records</children>

503 </element>
<element>

505 <label>authors</label>
<attributes total="true" />

507 <children ordered="true" total="true">
<element>

509 <label>author</label>
<attributes total="true" />

511 <children ordered="true" total="true"
>Marcus Antonius<!−− −−>

513 <element>
<label>affiliation</label>

515 <attributes total="true" />
<children ordered="true" total="true"

517 >Consul, SPQR</children>
</element>

519 </children>
</element>

521 <element>
<label>author</label>

523 <attributes total="true" />
<children ordered="true" total="true"

525 >Decimus Junius Brutus<!−− −−>
<element>

527 <label>affiliation</label>
<attributes total="true" />

529 <children ordered="true" total="true"
>Governor, Cisalpine Gaul</children>

531 </element>
</children>

533 </element>
</children>

535 </element> <!−− authors −−>
<element>

147

537 <label>in</label>
<attributes total="true">

539 <attribute><label>scrolls</label><value>24-48</value>
</attribute>

541 </attributes>
<children ordered="true" total="true">

543 <reference>conf.dmmc</reference>
</children>

545 </element>
<element>

547 <label>content</label>
<attributes total="true">

549 <attribute><label>type</label><value>docbook</value>
</attribute>

551 </attributes>
<children ordered="true" total="true">

553 <declare>
<ns-default><iri>http://example.org/ns/docbook/simplified/1.0</iri></ns-default>

555 <element>
<label>section</label>

557 <attributes total="true" />
<children ordered="true" total="true">

559 <element>
<label>info</label>

561 <attributes total="true" />
<children ordered="true" total="true">

563 <element>
<label>title</label>

565 <attributes total="true" />
<children ordered="true" total="true">Introduction</children>

567 </element>
</children>

569 </element>
<element>

571 <label>section</label>
<attributes total="true" />

573 <children ordered="true" total="true">
<element>

575 <label>info</label>
<attributes total="true" />

577 <children ordered="true" total="true">
<element>

579 <label>title</label>
<attributes total="true" />

581 <children ordered="true" total="true">Contributions</children>
</element>

583 </children>
</element>

585 <element>
<label>para</label>

587 <attributes total="true" />
<children ordered="true" total="true"

589 >The most notable contributions of this article
include:<element>

591 <label>list</label>
<attributes total="true">

593 <attribute><label>type</label><value>ordered</value></attribute>
</attributes>

595 <children ordered="true" total="true">
<element>

597 <label>item</label>
<attributes total="true" />

599 <children ordered="true" total="true">
<element>

601 <label>para</label>
<attributes total="true" />

603 <children ordered="true" total="true">
<element>

605 <label>em</label>
<attributes total="true" />

148

607 <children ordered="true" total="true">Clear Evidence</children>
</element> of the need ...</children>

609 </element> <!−− para −−>
</children>

611 </element> <!−− item −−>
<element>

613 <label>item</label>
<attributes total="true" />

615 <children ordered="true" total="true">
<element>

617 <label>para</label>
<attributes total="true" />

619 <children ordered="true" total="true">A new
<element>

621 <label>em</label>
<attributes total="true" />

623 <children ordered="true" total="true">methodology</children>
</element> to ..., cf. <element>

625 <label>pageref</label>
<attributes total="true">

627 <attribute><label>idref</label><value>inproc.44.brutus.s1</value></attribute>
</attributes>

629 <children ordered="true" total="true" />
</element></children>

631 </element> <!−− para −−>
<element>

633 <label>figure</label>
<attributes total="true" />

635 <children ordered="true" total="true">
<element>

637 <label>title</label>
<attributes total="true" />

639 <children ordered="true" total="true">Chart of Desertions</children>
</element>

641 <element>
<label>img</label>

643 <attributes total="true" />
<children ordered="true" total="true"> ... </children>

645 </element>
</children>

647 </element> <!−− figure −−>
<element>

649 <label>para</label>
<attributes total="true" />

651 <children ordered="true" total="true"
>As <element>

653 <label>cite</label>
<attributes total="true" />

655 <children ordered="true" total="true">
<reference>article.66.cicero.wax</reference>

657 </children>
</element> of the need ...</children>

659 </element> <!−− para −−>
</children>

661 </element> <!−− item −−>
</children>

663 </element> <!−− list −−>
</children>

665 </element> <!−− para −−>
</children>

667 </element> <!−− section −−>
</children>

669 </element> <!−− section −−>
<element>

671 <identifier>inproc.44.brutus.s1</identifier>
<label>section</label>

673 <attributes total="true" />
<children ordered="true" total="true">

675 <element>
<label>info</label>

149

677 <attributes total="true" />
<children ordered="true" total="true">

679 <element>
<label>title</label>

681 <attributes total="true" />
<children ordered="true"

683 total="true">Acknowledgements</children>
</element>

685 </children>
</element> <!−− info −−>

687 <element>
<label>para</label>

689 <attributes total="true" />
<children ordered="true" total="true"

691 >We would like to thank the editors of <element>
<label>cite</label>

693 <attributes total="true" />
<children ordered="true" total="true">

695 <reference>journal.adm.v10.n1</reference>
</children>

697 </element> ...
</children>

699 </element> <!−− para −−>
</children>

701 </element> <!−− section −−>
</declare>

703 </children>
</element> <!−− content −−>

705 </children>
</element> <!−− inproceedings−−>

707 </children>
</element>

150

Index

Conditions, 71
Construct term, 46
Content Data Terms, 24
Content Nodes, 12

Data Terms, 19
Document Specification, 82

Element Nodes, 12

Goal, 87
Grouping modifier, 51

Issue
RDF

Document Specification and Serializa-
tion, 108

Xcerpt
Document Specifications, 106

XML
Serialization to XML, 107

Issues
Collapsing Text Nodes, 106
Conditional Construction, 101
Cross-Document References, 105
Defaults

Absent Attribute and Children List, 100
Except

Explicit Variable Specifications, 103
Grouping

Comparison Function, 109
Libraries

Expressions in Conditions, 102
Relational vs. Functional, 102

Modifier Combinations, 102
Node Identity, 104
Optional for Non-Term Variables, 100
Query Terms

Formulas as Subterms, 101

Literal vs. Term Variables, 103
Rewriting Optional, 103
Rewriting Without, 103
Variable Restrictions, 103
Without Siblings, 102

RDF
Partial Data Terms, 111
Triple Syntax, 111
Variables in Data Terms, 111

Style Guide, 109
Substitution Multi-Set, 99
Term Syntax

IRIs in Angle Brackets, 109
Nested Comments, 109

Typing
Atomic Lists, 104
Data Terms, 104
Querying Types, 104
Typed Accessors and Coercion, 104

XML
In-scope Namespaces, 107
XML Base, 107

XML-style Term Syntax
Quoting, 110

Optional Modifier, 56, 78
Ordered and Unordered Terms, 26

Partial Terms, 75
Program, 87

Query term, 63

References, 19
Rule, 87

Structured Data Terms, 26

Term, 13

151

Term Formulas, 81
Term Identifiers, 19
Total Terms, 26

Variable Declarations, 73
Variable Restrictions, 69

Xcerpt
Characteristics, 11
Term, 13

XML Document Specification, 82

152

Bibliography

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wienerm. The Lorel Query Language
for Semistructured Data. Int. Journal on Digital Libraries, 1(1):68–88, 1997.

[2] K. Apt, H. Blair, and A. Walker. Towards a Theory of Deductive Knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, chapter 2, pages 89–
148. Morgan Kaufmann, 1988.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samel-
son, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised Report on
the Algorithm Language ALGOL 60. Communications of the ACM, 6(1):1–17, 1963.

[4] J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query Languages: A
Survey. In J. Maluszinsky and N. Eisinger, editors, Reasoning Web Summer School 2005.
Springer-Verlag, 2005.

[5] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition. Recommenda-
tion, W3C, 2004.

[6] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0:
An XML Query Language. Working draft, W3C, 2005.

[7] T. Bray, D. Hollander, and A. Layman. Namespaces in XML. Recommendation, W3C, 1999.

[8] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup
Language (XML) 1.0 (Third Edition). Recommendation, W3C, 2004.

[9] L. Braz. Visual Syntax Diagrams for Programming Language Statements. In Proc. Int. Conf.
on Systems Documentation, pages 23–27. ACM Press, 1990.

[10] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Querying the Web Recon-
sidered: Design Principles for Versatile Web Query Languages. Journal of Semantic Web
and Information Systems, 1(2), 2005.

[11] F. Bry, T. Furche, S. Schaffert, and A. Schröder. Simulation Unification. Deliverable I4-D5,
REWERSE, 2005.

[12] J. Clark. Associating Style Sheets with XML Documents, Version 1.0. Recommendation,
W3C, 1999.

[13] J. Clark. XSL Transformations, Version 1.0. Recommendation, W3C, 1999.

153

[14] J. Clark. RELAX NG Compact Syntax. Committee specification, OASIS, 2002.

[15] J. Clark and M. Murata. RELAX NG Specification. Committee specification, OASIS, 2001.

[16] J. Cowan and R. Tobin. XML Information Set (2nd Ed.). Recommendation, W3C, 2004.

[17] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF. Request for
Comment (RFC) 2234, IETF, 1997.

[18] S. DeRose, E. Maier, and D. Orchard. XML Linking Language (XLink) Version 1.0. Recom-
mendation, W3C, 2001.

[19] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML.
In Proc. Int. World Wide Web Conf., 1999.

[20] A. Dovier, C. Piazza, and A. Policriti. An efficient Algorithm for Computing Bisimulation
Equivalence. Theoretical Computer Science, 311(1-3):221–256, 2004.

[21] M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs). RFC (Request for
Comments) 3987, IEEE, 2005.

[22] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. Recommenda-
tion, W3C, 2004.

[23] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and XPath 2.0
Data Model. Working draft, W3C, 2005.

[24] R. Gentilini, C. Piazza, and A. Policriti. From Bisimulation to Simulation: Coarsest Partition
Problems. Journal of Automated Reasoning, 31(1):73–103, 2003.

[25] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification, Third Edition.
Addison-Wesley Professional, 3rd edition, 2005.

[26] T. A. Group. Ieee standard 1003.1, 2004 edition (aka posix.1). IEEE Standard 1003.1, IEEE,
The Open Group, 2001-2004.

[27] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing Simulations on Finite and
Infinite Graphs. In Proc. Symp. on Foundations of Computer Science (FOCS), page 453,
Washington, DC, USA, 1995. IEEE Computer Society.

[28] ISO/IEC. ISO/IEC 14977:1996, Syntactic Metalanguage – Extended BNF, 1996.

[29] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and XQuery 1.0 Serialization.
Working draft, W3C, 2005.

[30] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators.
Working draft, W3C, 2005.

[31] J. Marsh. XML Base. Recommendation, W3C, 2001.

[32] J. Marsh, D. Veillard, and N. Walsh. xml:id Version 1.0. Recommendation, W3C, 2005.

[33] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: a database manage-
ment system for semistructured data. SIGMOD Record, 26(3):54–66, 1997.

154

[34] R. Milner. An Algebraic Definition of Simulation Between Programs. In Proc. Int. Joint Conf.
on Artificial Intelligence, pages 481–489, 1971.

[35] Object Management Group. UML 2.0 Superstructure Specification. Specification, Object
Management Group, 2005.

[36] T. Przymusinsik. On the Declarative Semantics of Deductive Databases and Logic Pro-
grams. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
chapter 5, pages 193–216. Morgan Kaufmann, 1988.

[37] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. Dis-
sertation/Ph.D. thesis, University of Munich, 2004.

[38] S. Schaffert, F. Bry, and T. Furche. Initial Draft of a Possible Declarative Semantics for the
Language. Deliverable I4-D4, REWERSE, 2005.

[39] M. M. Zloof. Query By Example. In AFIPS National Computer Conference, 1975.

155

	Introduction
	Meta-Syntax Notations for Abstract and Concrete Syntax
	Abstract Syntax: UML Diagrams
	Concrete Syntax: EBNF
	Concrete Syntax: Relax NG

	I Definition of the Core Language
	Xcerpt: A Versatile Web Query Language
	Data Model
	Terms for Representing Data and Queries

	A Textual Non-XML Term Syntax for Xcerpt
	Lexical Structures
	Reserved Names
	Whitespace and Comments

	Hybrid XML-style Term Syntax
	Pure XML Syntax

	Specifying Semi-structured Data: Xcerpt's Data Terms
	Defining Data Terms
	Textual Term Syntax: Basic Data Terms
	XML-style Term Syntax: Basic Data Terms
	Pure XML Syntax: Basic Data Terms

	Content Data Terms
	Textual Term Syntax: Content Data Terms
	XML-style Term Syntax: Content Data Terms
	Pure XML Syntax: Content Data Terms

	Structured Data Terms
	Textual Term Syntax: Structured Data Terms
	XML-style Term Syntax: Structured Data Terms
	Pure XML Syntax: Structured Data Terms

	Top-level Data Terms
	Textual Term Syntax: Top-Level Data Terms
	XML-style Term Syntax: Top-Level Data Terms
	Pure XML Syntax: Top-Level Data Terms

	Exemplary Data Term
	XML Documents as Data Terms

	How to specify queries? Part 1: Construction
	An Aside: A Parameterized Model for Terms
	Specifying New Data: Construct Terms
	Substitutions and Substitution Sets

	The Shape of Construct Term
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Grouping in Construct Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Optional Construct Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Instantiating a Construct Term

	How to specify queries? Part 2: Selection
	Specifying Query Patterns: Query Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Variables in Query Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Incomplete Patterns
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Top-level Query Terms
	Term Formulas
	Document Specifications
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Summary: Modifiers and Where they Occur

	Programming in Xcerpt: Programs, Goals, and Rules
	Xcerpt Programs
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Semantic Restrictions on Xcerpt Programs
	Range Restrictedness
	Polarity of Subterms

	Negation and Grouping Stratification

	II Language Extensions and Open Issues
	Open Issues: Language Constructs
	General Issues
	Defaults and Default Modes

	Construct Specific Issues
	Conditional Construction and optional Construct Terms
	Query Formulas as Subterms
	withouts as Direct Siblings

	Functions and Libraries: Built-In and User-defined
	Combining and Comparing Modifiers
	Variables
	Varia

	Querying the Type of Data, Typed Accessors
	Node Identity and Term Identifiers in Xcerpt
	Scope of Term Identifiers and Cross-Document References
	Collapsing Text Nodes
	Goal Order
	Document Specifications

	Open Issues: Specific to Data Representation Format
	Serializing to XML and from XML
	Accessing RDF Documents

	Open Issues: Specific to Concrete Syntax
	Non-XML Term Syntax
	Style Guide

	XML-style Term Syntax
	Pure XML Syntax

	Open Issues: Language Extensions
	RDF Querying in Xcerpt
	Modular Xcerpt
	Modules and Components in Xcerpt
	Macros, Abbreviations, Code Reuse
	Web Service Access

	Visual and Verbal Syntax for Xcerpt

	III Full Language Grammars
	Grammar for Non-XML Term Syntax
	Literal Structures
	Data Terms
	Construct Terms
	Query Terms
	Programs

	Grammar for XML-style Term Syntax
	Literal Structures
	Data Terms
	Construct Terms
	Query Terms
	Programs

	Relax NG Schema for XML Syntax
	Parameterized Grammars: Terms, Declarations, Modifiers, etc.
	Declarations
	Conditions
	Formulas
	Modifiers
	Term

	Grammar for Xcerpt Programs
	Exemplary Data Term

