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Chapter 1

Introduction

The Web and the Semantic Web, as we see it, can be understood as a “living organism”
combining autonomously evolving data sources, each of them possibly reacting to events it
perceives. The dynamic character of such a Web requires declarative languages and mechanisms
for specifying the evolution of the data. This vision of the Web, as well as a state of the art
overview of related areas and illustrative use cases, are described in our previous work [2, 3, 51].

Rather than a Web of data sources, we envisage a Web of Information Systems, where
each such system, besides being capable of gathering information (querying, both on persistent
data, as well as on volatile data such as occurring events), can possibly update persistent data,
communicate the changes, request changes of persistent data in other systems, and be able to
react to requests from and changes on other systems. As a practical example, consider a set of
data (re)sources in the Web of travel agencies, airline companies, train companies, etc. It should
be possible to query the resources about timetables, availability of tickets, etc. But in such an
evolving Web, it should also be possible for a train company to report on late trains, and travel
agencies (and also individual clients) be able to detect such an event and react upon it, by
rescheduling travel plans, notifying clients that in turn could have to cancel hotel reservations
and book other hotels, or try alternatives to the late trains, etc. Other examples, relevant in
this view can be found in our previous deliverable [3].

The importance of being able to update data in the Web has long been acknowledged, and
several languages exist (e.g. XUpdate [77], XML-RL [45], XPathLog [48]) for just that. More
recently some reactive languages have been proposed, that not only allow for updating Web
data as the above ones, but are also capable of dealing-with/reacting-to some forms of events,
evaluate conditions, and upon that act by updating data. These are e.g. the XML active rules
of [13], of Active XQuery [12], of the Event-Condition-Action (ECA) language for XML defined
in [5], and the ECA reactive language RDFTL [58] for RDF data. The common aspect of all
of these languages is the use of ECA (declarative) rules for specifying reactivity and evolution.
Such kind of rules (also known as triggers, active rules, or reactive rules), that have been widely
used in other fields (e.g. active databases [59, 73]) have the general form:

on event if condition do action

They are intuitively easy to understand, and provide a well-understood formal semantics: when
an event (atomic or composite) occurs, evaluate a condition, and if the condition (depending on
the event, and possibly requiring further data) is satisfied then execute an action (or a sequence
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of actions, a program, a transaction, or even start a process).
In fact, we agree with the arguments exposed for the definition of the above languages

in what regards adopting ECA rules for dealing with evolution and reactivity in the Web
(declarativity, modularity, maintainability, etc). But in our opinion, these languages fall short
in various aspects, when aiming at the general view of an evolving Web as described above.
Their events and actions are restricted to updates on the underlying data level; they do not
provide for more complex events and actions. In general, actions are more than just simple
updates to Web data (be it XML or RDF data). As said above, besides that, actions can
be notifications to other resources, update requests of other resources, can result from the
composition of simpler actions (like: do this, and then do that), or even transactions whose
ACID properties ensure that either all actions in a transaction are performed, or nothing is
done. In our view, a general language should cater for such richer actions.

Moreover, events may in general be more than simple atomic events in Web data, as in
the above languages. First, there are atomic events other than physical changes in Web data:
events may be received messages, or even “happenings” in the global Web, which may require
complex event detection mechanisms (e.g (once) any train to Munich is delayed ...). Moreover,
as in active databases [26, 79], there may be more composite events. For example, we may
want a rule to be triggered when there is a flight cancellation and then the notification of a
new reservation whose price is much higher than the previous (e.g. to complain to the airline
company). In this respect, there is some preliminary work on composite events in the Web [9],
but that only considers composition of events of modification of XML-data in a single document.

We start this report by proposing the language XChange, a language developed in Rewerse
for evolution and reactivity on the Web along the lines just exposed. XChange is a high level
language for programming reactive behaviour and distributed applications on the Web. It
provides advanced features such as propagation of changes for evolution on the Web, event-
based communication between Web-sites, composite events, complex updates over Web data,
and complex actions and transactions. Moreover, the language is completely in line with the
query language Xcerpt, that is being developed in Rewerse within WP I4.

The presentation of XChange in this report comprises the description of the language, in-
cluding details of each of the events, conditions and action parts, its declarative and operational
semantics. Moreover, the language is illustrated in a number of use cases chosen from our pre-
vious deliverable I5-D2 [3].

After the presentation of XChange, we proceed by proposing a general framework and
architecture for dealing with the challenges posed by evolution and reactivity in the Semantic
Web, namely in what concerns the abstraction levels of behaviour and the heterogeneity of
languages and behaviour (besides of data).

A main goal of the Semantic Web is to deal with the heterogeneity of data formats and
languages and provide unified view(s) on the Web, as an extension to today’s portals. In this
scenario, XML (as a format for storing and exchanging data), RDF (as an abstract data model
for states), OWL (as an additional framework for state theories), and XML-based communi-
cation (Web Services, SOAP, WSDL) provide the natural underlying concepts. The Semantic
Web does not possess any central structure, neither topologically nor thematically, but is based
on peer-to-peer communication between autonomous, and autonomously developing and evolv-
ing nodes. This evolution and behavior depends on the cooperation of nodes. In the same way
as the main driving force for the Semantic Web idea was the heterogeneity of the underlying
data, the heterogeneity of concepts for expressing behaviour requires an appropriate handling
on the semantic level. When considering evolution, the concepts and languages for describing
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and implementing behavior will surely be diverse, albeit due to different needs, and it is unlikely
that there will be a unique language for this throughout the Web. Since the contributing nodes
are prospectively based on different concepts such as data models and languages, it is impor-
tant that frameworks for the Semantic Web are modular, and that the concepts and the actual
languages are independent. As such, besides having a single concrete language for dealing with
evolution and reactivity as the presented XChange, the Semantic Web calls for the existence of
a general framework able to deal with this heterogeneity of languages.

Our view is that this general framework should be based on a general ECA language that
allows for the usage of different event languages, condition languages, and action languages,
considering ontological descriptions and mappings for these languages. Each of these different
(sub)languages should adhere to some minimal requirements (e.g. dealing with variables), but
it should be as free as possible.

Moreover, the ECA rules do not only operate on the Semantic Web, but are themselves also
part of it. In general, especially if one wants to reason about evolution, ECA rules (and their
components) must be communicated between different nodes, and may themselves be subject to
being updated. For that, the ECA rules themselves must be represented as data in the Semantic
Web. This need calls for a (XML) Markup Language of ECA Rules. A markup proposal for
active rules can be found already in RuleML [10], but it does not tackle the internal structure
of events, actions, and the generality of rules, as described here. Moreover, to deal with the
requirements of heterogeneity and of reasoning about rules, an ontology of ECA rules and
(sub)ontologies for events, conditions and actions, with rules possibly specified in RDF/OWL,
is required. Additionally, the rule components have to be related to actual languages and
processors.

In this report, we propose a general model and language for evolution and reactivity in the
Semantics Web, which caters for the just exposed requirements of heterogeneity, and sketch a
markup for active rules, that will be the basis for a (near) future discussion with the WPI1 of
Rewerse (Rule Markup) in order to establish the final markup proposal. Importantly, this
language fully complies with XChange, and this is made clear along with the proposal, in that
XChange events, conditions and actions can be used as sublanguages of the framework. It is
also shown how other languages for events, condition and actions can be incorporated in this
general view. Namely, we illustrate it with a language for events using an event algebra similar
to that of SNOOP [25], with a simple language for actions, and with the ruleCore framework
[62]. Although not developed within Rewerse, the ruleCore system resulted from joint work
between industry and an academic partner (University of Skövde) of Rewerse, and the study of
its possible relation to the work exposed in this report was done within Rewerse. Appendix A
gives a brief description of ruleCore, and the corresponding markup language rCML. This
appendix also includes, for illustration purposes, and for helping contrasting the languages, the
encoding in rCML of the selection of use-cases [3] considered in the chapter on XChange.

The description of the general framework is accompanied in this report by the sketching
of a global architecture and considerations for the implementation of the framework to be
done in the next future phase of the work in this WP. In this future phase, when building
prototypes, it will be especially important to find adequate languages that serve as vehicle for
the implementation. In this respect, the language Prova [43], also developed within Rewerse

mainly by partner Dresden, seems to have the adequate ingredients for that purpose, as it will
be made clear. In another appendix we briefly describe Prova with special emphasis on the
features that make it appropriate for implementing evolution and reactivity in the Semantic
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Web. In this description, for illustration we also include an implementation of a use case from
[3].

The report ends, apart from the mentioned appendices, with a brief comparison with the
existing languages for active rules for XML and RDF, including the XChange language and
ruleCore, and show how they are covered in the general framework, and where they can be
useful in the architecture.
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Chapter 2

The Reactive Web Language
XChange

Today’s World Wide Web (WWW, or Web for short), undoubtedly by far the largest information
system, is largely passive and provides only limited support for reactivity: mostly it only is a
collection of data — stored primarily in HTML or XML documents — that can be retrieved and
viewed upon request. With the emergence of new Web applications in electronic commerce,
business-to-business, logistics, and information systems for biological data, reactivity on the
Web receives increasing attention.

XChange aims at, at least partly, filling the gap between the current, passive Web and
the need for reactivity. XChange is a high-level language for programming reactive behavior
and distributed applications on the Web. It provides advanced, Web-specific features such
as propagation of changes (evolution) on the Web (change) and event-based communication
(reactivity) between Web-sites (exchange), hence also its name, XChange.

In this chapter we present the language, and the declarative and operational semantics
of XChange. The presentation starts by discussing the paradigms XChange is built upon
(Section 2.1). As argued in the introduction, one of these paradigms is the use of Event-
Condition-Action rules (for short, ECA-rules), hence we continue by presenting each of the
three rule components consecutively: Events and Event Queries, which detect situations of
interest that require a reaction (Section 2.2); Conditions, which are Web Queries based on the
query language developed in the Rewerse working group I4 (Section 2.3); Actions, which can
update Web resources or raise new, application-dependent, events (Section 2.4). Each of the
components can be used separately from the other components, e.g., in the general framework
described in the next chapter; however used together as the components of XChange ECA-rules,
they form a homogeneous rule-based reactive language with a clear design based on pattern
queries, which is described in Section 2.5. Finally, we illustrate XChange rules with a set of
selected use cases from [3] (Section 2.6).

More detailed information on XChange can be found at [61], while [4] provides a very brief
and abstract overview of XChange’s aims and paradigms.
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2.1 Paradigms of XChange

Clear paradigms that a programming language follows provide a better language understanding
and ease programming. Moreover, explicitly stated paradigms are essential for Web languages,
since these languages should be easy to understand and use also by novice practitioners. This
section introduces the paradigms upon which the language XChange relies.

2.1.1 Event vs. Event Query

An event is a happening to which each Web site may decide to react in a particular way or
not to react to at all. Typical events are the insertion, deletion, or modification of a data
item in some data source, e.g., an element in an XML document. Events can also be higher-
level application-dependent happenings, e.g., in a tourism application we can find events like
“cancellation of flight UA917 for passenger John Q Public.” In order to notify Web sites about
events and to process event data, events need to have a data representation.

Event queries are queries against event data. Event query specifications differ considerably
from event representations (e.g. event queries may contain variables for selecting parts of the
events’ representation). Most proposals dealing with reactivity do not differentiate between
event and event query. Overloading the notion of event precludes a clear language semantics and
thus makes the implementation of the language and its usage much more difficult. Event queries
in XChange serve a double purpose: detecting events of interest and temporal combinations of
them, and selecting data items from events’ representation. Variables are used in event queries
as place holders for data items that are to be used in the other parts of XChange rules.

2.1.2 Volatile vs. Persistent Data

The development of the XChange language – its design and its implementation – reflects the
view over the Web data that differentiates between volatile data (event data communicated on
the Web between XChange programs) and persistent data (data of Web resources, such as XML
or HTML documents). Web data is in general persistent, modifiable (can be updated), and has
to be retrieved in a pull -manner. In contrast, event data is volatile, unmodifiable (cannot be
updated), and is usually received in a push-manner.

The distinction of persistent (Web) data and volatile (event) data can be illustrated with
a metaphor. Persistent data is like (computer-)written text. Once produced, it is available
permanently for anyone to read (or rather anyone who is allowed to do so). Later, the text can
be modified directly by editing it. Volatile data is like spoken words. Once a sentence is spoken,
its information is available only to the listeners and only as long as they remember. A spoken
sentence cannot be changed: the only way to correct, complete, or invalidate its information
then is through speaking new sentences.

XChange’s language design enforces a clear separation of volatile and persistent data and
entails new characteristics of event processing on the Web (discussed later in Section 2.2.5).
However, in applications where a part of the volatile data received by Web sites needs to be
stored for a long time or forever, the data of interest can be easily made persistent. Moreover,
the language XChange is flexible enough (in terms of language design and program evaluation)
for adapting it to other kinds of application domains as the ones intended to be primarily solved
by this proposal.
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2.1.3 Rule-Based Language

Reactivity can be specified and realised by means of reactive rules [28, 60, 74]. XChange is a
rule-based language that uses (i) reactive rules for specifying the desired reactive behaviour (cf.
Section 2.5) and (ii) deductive rules for constructing views over Web resources’ data.

An XChange program is located at one Web site and contains one or more reactive rules
of the form Event query – Web query – Action. Every incoming event is queried using the
event query (query against volatile data). If an answer is found and the Web query (query to
persistent data) yields also an answer, then the Action is executed. The fact that the event
query and the Web query have answers (i.e. evaluate successfully) determines the rule to be
fired; the answers influence the action to be executed, as information contained in the answers
are generally used in the action part.

XChange embeds the Web query language Xcerpt, which is being developed in parallel by
the Rewerse working group I4 [66], for expressing the Web query part of reactive rules and for
specifying deductive rules in XChange programs. Note that Xcerpt is deployed also in querying
single occurrences of incoming events. Xcerpt (deductive) rules allow for constructing views
over (possibly heterogeneous) Web resources that can be further queried in the Web query part
of XChange reactive rules. Not only integration and restructuring of persistent data is possible
with Xcerpt, but also reasoning with persistent data (given e.g. in XML or RDF format).

Complex reactive applications can be elegantly implemented in XChange, as rules are means
for structuring complex programs. To illustrate just this, in Section 2.6 we show how to imple-
ment a selection of use cases from [3].

2.1.4 Pattern-Based Approach

XChange is a pattern-based language: event queries, Web queries, event raising specifications,
and updates describe patterns for events requiring a reaction, Web data, raising event messages,
and updating Web data, respectively. Patterns are templates that closely resemble the structure
of the data to be queried, constructed, or modified.

Not mixing patterns for data to be constructed, e.g. for insertion in a given document,
with paths for selecting data items or for specifying e.g. where new data is to be inserted, the
programmer needs to understand and use one single concept — that of data pattern. This
uniform specification allows for an easier programming, also because the overall structure of
XChange programs is easy to grasp.

2.1.5 Transactional Reactivity

Complex Updates. XChange supports the specification and execution of simple updates,
i.e. insertions, deletions, and replacements of persistent data items, such as XML or RDF data.
Complex updates expressing ordered or unordered conjunctions, or disjunctions of (simple or
complex) updates are also offered by XChange. Such updates are required by real applications.
E.g. when booking a trip on the Web one might wish to book an early flight and of course
the corresponding hotel reservation, or else a late flight and a shorter hotel reservation. The
application scenarios given in the Use Case deliverable of this working group [3] have motivated
the need for executing such complex updates in an all-or-nothing manner. For this, XChange
supports a concept of transactions [71].
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Transactions and ACID Properties. XChange transactions obey the ACID properties,
i.e. Atomicity, Consistency, Isolation, and Durability. Atomicity and isolation are considered in
XChange, the issues of consistency and durability for transactions are currently not investigated
in the project. XChange will build on standard solutions from database systems that need to
be adapted to the Web.

Transactional Events. Transactional events (i.e. commit, abort, request) are offered by
XChange. They are needed for supporting transactions.

2.1.6 Communication Paradigms

Peer-to-Peer. In XChange, the peer-to-peer communication model is used for communicating
event data between Web sites. This means that all parties have the same capabilities and every
party can initiate a communication session. Event data is directly communicated between Web
sites without a centralised processing of events. XChange assumes no instance controlling (e.g.
synchronising) communication on the Web.

Push Strategy. For communicating (propagating) events on the Web, two strategies are
possible: the push strategy, where a Web site informs possibly interested Web sites about
events, and the pull strategy, where interested Web sites query periodically (poll) persistent
data found at other Web sites in order to determine changes. For propagating events (i.e.
communicating data about events), a push strategy has several advantages over a strategy of
periodically polling: It allows faster reaction to events, as a notification is communicated as
soon as possible as opposed to a detection at the next periodical pull. It saves resources, both
locally and on the network. Locally, a client interested in some change of Web data does not
have to store the old Web page to detect differences (changes) from the new version. On the
network, a push strategy can reduce network traffic, since communication only takes place when
a change has happened, and only the changes in information have to be communicated.

The pull strategy is already supported by languages for Web queries like XQuery or Xcerpt
that query persistent data. Therefore, so as to complement the framework, XChange offers
the push strategy. The push strategy requires event queries to be incrementally evaluated by
so-called event managers. In the case of XChange, this is done at every XChange-aware Web
site.

Communication Protocol. The language XChange is not dedicated to a particular com-
munication protocol, instead its high-level nature allows for implementing distributed, reactive
applications following different rules for communicating data. However, its goal is to realise
reactivity on the Web or Semantic Web and thus, event data is communicated over the HTTP
protocol.

2.1.7 Composite Events Defined through Event Queries

Composite event queries allow to recognise temporal patterns over incoming events – to recog-
nise composite events. In general, composite events are obtainable with an event algebra,
comprising various event operators, as will be further detailed in Chapter 3. XChange’s (occur-
rences of) composite events are defined through composite event queries (see Section 2.2.3.3) –
they are answers to composite event queries, which include event operators similar to those of

8



event algebras. E.g. an XChange event query can ask for occurrences of an increase of share
values by more than 5 percent for the company Siemens, followed by an increase of share val-
ues for the company SAP on the stock market. An answer to such an event query contains
instances of the two specified component event queries (i.e. increase of share values). Another
XChange event query can ask for all stock market reports that have been registered between
the occurrences of an increase of share values for the two mentioned companies. An answer to
such an event query contains, besides the instances of the events signaling an increase for the
shares of the companies, all reports registered between these two instances.

2.1.8 Processing of Events

Local Processing. No central processing of event queries is assumed as such an approach is
not suitable on the Web. Instead, event queries are processed locally at each Web site1. Each
such Web site has its own local event manager for processing incoming events and evaluating
event queries against the incoming event stream (volatile data), and for releasing event query
instances after a finite time.

Incremental Evaluation. Event queries need to be evaluated in an incremental manner,
as data (events) that are queried are received in a stream-like manner and are not persistent.
For every incoming event that might be relevant to a reactive Web site and could contribute
as a component to an event query instance specified in the rules of the Web site’s reactive
program(s), a partial instantiation of the involved event queries is realised. An instance of a
specified composite event query is detected when instances for all specified component event
queries have been detected.

Bounded Event Lifespan. An essential aspect for event processing is that each reactive
Web site controls its own event memory usage. In particular, which events and for how long
they are kept in memory depends only on the event queries posed at a Web site. Neither Web
queries nor event queries posed at other Web sites can influence the event lifespan (i.e. the time
period an event is kept in memory). Event lifespans are automatically determined from the
event queries already registered at a Web site.

Event queries need to be in such a way that no data on any event can be kept forever
in memory, i.e. the event lifespan should be bounded. Keeping all events in memory is not a
suitable approach for reactivity on the Web; the amount of events a Web site receives might be
huge, causing a continual growth in storage requirements. By language design, XChange event
queries are such that volatile data remains volatile. This is consistent with the clear distinction
between events as volatile data and Web resources’ data as persistent data. However, making
part of the incoming event stream persistent is application-dependent (for example applications
where statistics over data of incoming streams play a role).

2.1.9 Relationship Between Reactive and Query Languages

A working hypothesis of XChange is that a reactive language for the Web should build upon,
or more precisely embed, a Web query language. There are two reasons for this. First, spec-
ifications of reactive behaviour often refer to Web contents, which requires querying. Second,

1Below, in Section 3.7, in the context of the general framework, we consider the possibility of delegating the
processing of event detection to another site providing such a service. Anyway the processing is still local.
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reactive behaviour necessarily refers to (more or less recent) events, here expressed as event
queries. For these two tasks, XChange follows a uniform approach where the languages used
for querying Web contents and for querying events are as close as possible to each other. Note,
however, that querying events calls for additional (mainly, temporal) constructs that are not
needed for querying Web contents. For example, the interest in a conjunction of events that
occur in a given time interval can not be specified by means of a Web query language; on the
other hand, for querying data of Web resources temporal relations between parts of the data
are not needed.

The query language embedded in XChange is the Web query language Xcerpt [65, 64, 66]. In
the framework of XChange, Xcerpt’s capabilities are deployed for querying and reasoning about
Web resources’ data, and for querying (single) occurrences of events. A prominent reason for
choosing Xcerpt over other existing query languages for embedding it into XChange includes
the pattern-based approach followed in querying and constructing Web data, and the fact
that simulation unification can be deployed not only for querying persistent data but also for
querying single occurrences of events. Moreover, Xcerpt uses the notion of logical variables, and
these provide a very clear means of communication between the different parts of an XChange
ECA rule. However, as we shall see in the general framework, for a combination with other
query languages the usage of logical variables for linking the various parts is also important (cf.
Section 3.4).

2.1.10 Language Syntax

The development of XChange followed the conviction that a language for the Web should have
three syntaxes: a compact human-readable syntax, a machine-processable (XML) syntax, and
a visual syntax. The compact human-readable syntax should be as compendious as possible
and easy to use by programmers. The XML syntax is desirable for interchanging programs and
manipulate them with XML-based tools and languages (e.g. to query and modify them). A
visual language “can greatly increase the accessibility of the language, in particular for non-
experts”[17]. However, programmers have the freedom to choose whichever syntax they prefer.

At present, the language XChange has a compact human-readable syntax (which is a term-
based syntax where a term represents a Web document, a query pattern, an event pattern, or an
update pattern) and an XML syntax. The development of a visual counterpart of XChange’s
textual language is sought for. Along this line, the visual rendering of Xcerpt programs –
visXcerpt [6] – is to be extended.

Notes. Along this chapter, the introduction of language constructs will be accompanied by
the corresponding syntax rules. They explicitly state the valid combinations of XChange lan-
guage constructs. Thus, the grammar for the language XChange is constructed in a stepwise
manner. One of the most commonly used meta-syntactic notations for specifying the syntax
of programming languages is the Backus-Naur Form (BNF) [54]. The BNF notation is a for-
mal metasyntax used to express context-free grammars. There are many extensions to the BNF
notation, one of them is the Extended Backus-Naur Form (EBNF) [75] notation. A short expla-
nation of the EBNF notation follows (for a more detailed introduction into the EBNF notation,
see [75]): Terminals are symbols or words in the language, nonterminals are units representing
a grammatically correct sequence of terminals. Productions are defined that specify the valid
ways how nonterminals can be replaced by terminals and other nonterminals. Extensions to
BNF include: | denotes disjunction, * denotes that the preceding symbol or parenthesised ex-
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pression may occur zero or more times, + denotes that the preceding symbol or parenthesised
expression may occur one or more times, [ ] denotes optionality (note that instead of square
brackets, the symbol ? is used so as not to confuse the optionality with the Xcerpt syntax for
total specifications). (These extensions can be expressed in BNF by using extra productions.)
Note that keywords are shown as quoted strings of characters (like “and”).

2.2 XChange Events and Event Queries

2.2.1 Events

The notion of event is defined as “something that happens at a given place and time”2; this
explanation adapted from the WordNet 2.03 lexical database for the English language has
(slight) variations that are used in different domains. In physics, an event is a change in the
state of the world; in relativity theory, the fundamental observational entity is the event, i.e. a
phenomenon located at a single point in space-time. In event-driven programming, “an event
is a software message that indicates something has happened”4. For example, graphical user
interface programming follows this paradigm, where small programs called event handlers are
to be called in response to external events. Considering the public relations domain, an event
is a means for establishing and promoting a favourable relationship with the public; it can be
organised as workshops, exhibitions, or panels that, in general, have a particular topic.

Section 2.1.1 already introduced the notion of event in an informal manner; it also stressed
the fact that one can conceive any kind of events in XChange. The above discussion on events
does not offer a precise definition either, as might have been expected. It just states that
a large number of events are conceivable and they correspond to many application domains.
Thus, the (very general and abstract) definition of event fits perfectly into a reactive language
for the Web. However, for realising reactivity on the Web, events require some representation
for communicating their data between reactive programs on the Web and for processing their
data by (local) event managers. In XChange, events are represented as XML documents. The
language XChange has the ability to send, receive, and query events that are represented as
XChange event messages (discussed in Section 2.2.2), i.e. messages containing any kind of event
data represented as XML.

A situation is a combination of circumstances, that is a combination of events and other
situations. Situations reflect particular states of the world, from low-level (such as ordered
conjunctions of update operations on XML documents) to high-level ones (such as flight can-
cellations for which the airline does not grant an accommodation). The preceding Use Case
Deliverable [3] has motivated the need for detecting situations that occur on the Web and
recognised the ability to detect them as a requirement for Web reactive languages.

Not all events that have occurred on the Web, not all possible combinations of them (forming
situations) are of interest for a Web site. Of interest are events and situations whose detection
requires an action to be automatically executed. At a moment in time, each Web site is
interested in some classes of events and situations; these classes are determined by the rules
of the Web site’s reactive program (cf. Section 2.1.3). Modifying, deleting, or specifying new
rules in a reactive program might entail other classes of events or situations to be of interest.

2Word Reference, http://www.wordreference.com/definition/event
3WordNet 2.0, http://wordnet.princeton.edu/
4Labor Law Encyclopedia, http://encyclopedia.laborlawtalk.com/Event
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Table 2.1: XChange Atomic Events

atomic events

explicit events
(event messages)

implicit

updates
queries
transactional events
system events

This section continues with presenting the two kinds of events supported by XChange,
namely XChange atomic events, which reflect events as discussed just previously (Section
2.2.1.1) and XChange composite events, which reflect situations (Section 2.2.1.2). Subsequently,
Section 2.2.1.3 discusses the occurrence time for atomic events and composite events, respec-
tively.

2.2.1.1 Atomic Events

An XChange atomic event is an event as it has been introduced in the previous section.
XChange distinguishes between two kinds of atomic events: explicit events and implicit events.
Explicit events are explicitly raised by a user or by a (predefined) XChange program at a Web
site and sent to other Web sites through event messages (see Section 2.2.2). Implicit events
are events that occur locally at a Web site (e.g. local updates of data or system clock events).
Implicit events have also a representation as event messages, but a more simplified one than for
explicit events. Implicit (or explicit) events raised and sent from a Web site to another become
explicit.

The kinds of atomic events considered in XChange are presented in Table 1. An update
executed or a query posed locally at a Web site are for XChange local events, i.e. raised at
this Web site and processed at this Web site. Transactional events (e.g., commit, abort) are
local events needed as XChange supports the concept of transactions (cf. Section 2.1.5). System
events (e.g. system clock events) are events that are coming from the encompassing “system”
and might be useful to handle together with explicit and/or implicit events. A system event
might be explicit or implicit, depending whether or not it is transmitted from one Web site to
another.

Remote events, i.e. events informing a Web site of queries, updates, transactional or system
events or of any other (application specific) matter, are always explicit and are expressed
through event messages.

For further discussion on atomic events, in particular the need for application and semantic
level events for dealing with the Semantic Web, see Section 3.1.2.

2.2.1.2 Composite Events

XChange composite events reflect situations (introduced in Section 2.2.1). Composite events
express temporal relationships between atomic events that have occurred on the Web. Also, they
can express the non-occurrence of some events while other events have occurred. XChange’s
(occurrences of) composite events are defined as answers to composite event queries (see Section
2.2.3.3). For understanding XChange’s composite events and their representation, an elaborate
discussion on XChange’s event queries is needed. Section 2.2.3 elaborates on event queries in
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XChange. Thus, a more detailed discussion on XChange’s composite events is postponed to
Section 2.2.3.5.

2.2.1.3 Events’ Occurrence Time

The occurrence time of (atomic or composite) events plays an essential role when determining
whether to react or not to incoming events. For example, one might want to react to a certain
class of atomic events but only if they are received before a given time point. For composite
events, the occurrence time of atomic events is used for determining if a certain temporal order
between them is met or not. Moreover, based on the occurrence time of events, atomic and
partially detected composite events can be released after a bounded time (see Section 2.2.3.3).

Atomic Events. An XChange atomic event occurs at a point in time. The occurrence time
of an atomic event is the time point at which its representation has been received by a Web
site. The occurrence time of an explicit event can not be considered as the time point at which
its representation has been sent, since the Web lacks a global time and the processing of events
is done locally at each Web site. Note that the same atomic event sent to different Web sites
may have different occurrence time at its recipients.

Composite Events. In general, more than one atomic event are used to answer an XChange
composite event query. Thus, XChange composite events have (in general) more than one
constituent (atomic) events (each of them having its own occurrence time).

The work done in the active database field considers that each composite event has an
occurrence time point, like atomic events do. The occurrence time of a composite event is the
occurrence time point of the last received constituent atomic event. Queries against incoming
events specifying e.g. that a particular event should occur two times during the occurrence of
a composite event do not express the programmer’s intuition. Thus, XChange follows another
approach: XChange composite events do not have an occurrence time point, instead they stretch
over time (they have a duration). Each XChange composite event has a beginning time and an
ending time. In general, a composite event inherits from its components a beginning time (i.e.
the reception time of the first received constituent event that is part of the composite event)
and an ending time (i.e. the reception time of the last received constituent event that is part
of the composite event). This is not the case for all composite events. Recall that composite
events are defined as answers to composite event queries. Consider now a composite event query
asking for non-occurrences of instances of event query EQ during a given time interval. Answers
to such a composite event query do not have any constituent atomic events (as it is asked for
non-occurrence); they have just a beginning and an ending time, time points determined by
the given time interval. For each kind of XChange composite event queries, the beginning and
ending time of their instances are explicitly specified in Section 2.2.3.3.

2.2.2 Event Messages

Web sites are interested not only in events that have occurred locally but also in events that
have occurred at other Web sites (remote events). Information about events that have occurred
on the Web needs to be communicated to possibly interested Web sites.

Event messages communicate event data between (same or different) Web sites. More
concretely, XChange programs found at different Web sites raise events and send their repre-
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sentations (i.e. event messages) to one or more XChange programs. For gaining the flexibility
needed for implementing different kinds of applications and for coping with event data having
a complex and irregular structure, the XML format has been chosen for representing event
messages.

Communication of event messages follows a push strategy (cf. Section 2.1.6), i.e. Web sites
inform other Web sites about (implicit or explicit) events that have occurred on the Web.
XChange excludes broadcasting of event messages on the Web (i.e. sending event messages to
all sites of a portion of the Web), since indiscriminate sending of event messages to all Web
sites introduces problems for a non-centrally managed structure such as the Web. Thus, in
XChange each event message has a determined recipient Web site.

A question arises: How does a Web site know which Web sites are interested in which
kind of events? In this chapter we assume that a (kind of) subscription mechanism exists,
a procedure through which Web sites are made aware of correspondences between Web sites
and classes of events to be notified of. Note that Web sites do not always need to explicitly
subscribe to (classes of) events of interest. Instead, subscription knowledge might be implicit.
For example, reservations made for a particular flight contain implicitly the interest in notifying
the passengers (perhaps by sending notifications to their personalised organisers) about delays
or cancellations of the respective flight. Subscribing to (classes of) events is not a complex
mechanism; different applications might use different subscription mechanisms. Thus, the rest
of this report abstracts away from a particular subscription mechanism by assuming that Web
sites do have the necessary subscription information.

An XChange event message contains information about its sender Web site. This piece of
information might be important for the recipient Web sites. Assume that Mrs. Smith is on
vacation. Though, she would like her personalised organiser to be notified by her secretary if
important problems occur in one of Mrs. Smith’s projects. In such cases, not only the content
of the event message but also the sender plays an important role in detecting the desired
situation. However, applications not always need to make use of the sender address. Thus, the
event language component of a reactive language should offer the ability to express partiality in
queries to event data (i.e. to leave out parts of the event messages that are not of interest when
specifying patterns to them). Section 2.2.3 shows that this language requirement is fulfilled by
XChange.

XChange event messages have two time stamps: one denoting the time point at which the
sender has raised the event whose representation the message is, and one denoting the time
point at which the recipient has received the event message. Time stamps play an essential
role in determining temporal combinations of events and in filtering out event messages that
have not been received in a time interval of interest. Thus, (reception) time stamps allow for
detecting complex situations of interest.

Discussion. The time stamp an event message gets from the sender might be the raising
time or the sending time of the event message. XChange event messages use the raising time, i.e.
the time at which the construction of the event message has been finalised, the event message
being now ready for sending. The sending time of an event message might be also useful to
applications, case in which a slight modification of the XChange prototype should be used.

The sender and recipient Web sites’ addresses, the two time stamps of event messages
are parameters included in the representation of XChange event messages. The next section
discusses the parameters of event messages in more detail.
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2.2.2.1 Parameters of Event Messages

An XChange event message is an XML document with a root element labelled event and at
least five child elements labelled raising-time, reception-time, sender, recipient, and id.
The design decision of representing the parameters of event messages as child elements and
not as attributes of the event message’s root is that they may contain complex content. For
example, the time point of raising an event message at a Web site might be represented as a
time point accompanied by a specification of the calendar used in the respective country. Thus,
an event message wraps the event data like in the following:

<?xml version="1.0"?>

<xchange:event xmlns:xchange="http://xcerpt.org/xchange">

<xchange:sender> sender </xchange:sender>

<xchange:recipient> recipient </xchange:recipient>

<xchange:raising-time> raising-time </xchange:raising-time>

<xchange:reception-time> reception-time </xchange:reception-time>

<xchange:id> id </xchange:id>

event data

</xchange:event>

where

• sender is the URI of the Web site where the event has been raised, that is its representa-
tion as event message has been constructed and sent to one or more Web sites. The URI
of the sender is determined and inserted into the event message by the Web site’s event
manager before sending it.

• recipient is the URI of the Web site that received the event message. As already
explained, XChange excludes broadcasting of event data, implying that the recipient
Web site(s) of an event message must be known before sending it. For an event message,
at least one recipient needs to be given in the event message specification used to raise
the event.

• raising-time is the time of the event manager of the Web site raising the event (local
time of that machine).

• reception-time is the time at which the event manager of the recipient Web site receives
the event message (again, the local time of that machine). Note that the reception time
of an event message might be “before” its raising time as no global time exists on the
Web (proposals exist, such as [67], for models of an approximated global time base for
distributed systems; however this is not realistic in the largest distributed system – the
Web).

Event messages’ time stamps (raising time and reception time) are given in XChange by
using the ISO 8601 standard format for the representation of dates and times5.

• id is an event message identifier given at the recipient Web site. Each event message
gets at its reception such an identifier for uniquely identifying it in querying. The format
and the method (e.g. counting received event messages each day and identifying them

5ISO 8601, http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
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with the temporal specification of the current day followed by the counter) used for event
messages’ identifiers are application-specific. The current implementation of the XChange
event manager uses positive integers for identifying event messages.

• event data is an XML element (having possibly complex structure) containing informa-
tion about an event that has occurred. How the data about the event is represented is
application-specific. Reactive applications communicating through XChange event mes-
sages are not restricted to XML-based applications. For example, XML-serialised RDF
data can be also communicated between and processed by XChange programs.

XChange assumes that each event message has a distinctive reception time, i.e., at each point
in time only a single event message is received. However, for extensions or future versions of
the language where this assumption is lifted, the event id parameter uniquely identifying event
messages has been introduced. Whether this assumption is lifted or not depends on the time
granularity used for event reception.

A DTD for the XML representation of event messages is given next. The namespace prefix
chosen for the DTD is the one used throughout this chapter (prefix xchange for namespace
http://xcerpt.org/xchange). A parameter entity is used in place of the content of an event
messages; the content (event data) is application specific and thus has to be defined depending
on the application.

<!DOCTYPE xchange:event [

<!ELEMENT xchange:event (

xchange:sender, xchange:recipient,

xchange:raising-time, xchange:reception-time,

xchange:id,

%event-data)>

<!ATTLIST xchange:event xmlns:xchange CDATA #FIXED

"http://xcerpt.org/xchange">

<!ELEMENT xchange:sender (#PCDATA)>

<!ELEMENT xchange:recipient (#PCDATA)>

<!ELEMENT xchange:raising-time (#PCDATA)>

<!ELEMENT xchange:reception-time (#PCDATA)>

<!ELEMENT xchange:id (#PCDATA)>

]>

Being XML documents, XChange event messages can also be represented as Xcerpt data terms
[64] and thus, methods developed for querying persistent data can be also applied for querying
incoming event messages. The importance of this note will be made clear in Section 2.2.3.
The examples given in this section use the term syntax to represent event messages, but the
reader should keep in mind that XChange programs communicate through XML documents
that represent event messages.

Example 2.1 (XChange Event Message Notifying an Exhibition) The XChange event
message below is sent by http://artactif.com informing the travel organiser of Mrs. Smith
about an exhibition of the painter G. Barthouil. Note the use of the xchange namespace for
the keyword event and for the parameters of an XChange event message. Note also that the
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examples abstract away from a particular communication protocol. Here, organiser denotes
the communication protocol used by a personalised organiser.

xchange:event {

xchange:sender {"http://artactif.com"},

xchange:recipient{"organiser://travelorganiser/Smith"},

xchange:raising-time {"2005-05-05T10:15:00"},

xchange:reception-time {"2005-05-05T10:17:00"},

xchange:id {"5517"},

exhibition {

painter {"G. Barthouil"}, location {"Marseille"},

time-interval{"[2005-05-08..2005-05-18]"},

visit-hours { from {"10:00"}, until {"18:00"}}

}

}

An event message is an envelope for an arbitrary XML content. Thus, multiple event messages
can (but not necessarily) be nested making it possible to create trace histories.

Example 2.2 (Nesting XChange Event Messages) Mrs. Smith notifies a friend of her
about G. Barthouil’s exhibition. The following XChange event message is sent by Mrs. Smith’s
travel organiser and contains the received event message from the previous example:

xchange:event {

xchange:sender {"organiser://travelorganiser/Smith"},

xchange:recipient{"organiser://travelorganiser/myFriend"},

xchange:raising-time {"2005-05-06T11:10:20"},

xchange:reception-time {"2005-05-06T11:11:20"},

xchange:id {"5611"},

content {

xchange:event {

xchange:sender {"http://artactif.com"},

xchange:recipient{"organiser://travelorganiser/Smith"},

xchange:raising-time {"2005-05-05T10:15:00"},

xchange:reception-time {"2005-05-05T10:21:20"},

xchange:id {"1234"},

exhibition {

painter {"G. Barthouil"}, location {"Marseille"},

time-interval{"[2005-05-08..2005-05-18]"},

visit-hours { from {"10:00"}, until {"18:00"} }

}

}

}

}

Note that XChange messages are compatible with the messages and the “message exchange
patterns” of SOAP [76]. XChange event messages can be seen as a very simplified form of
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SOAP messages, as only the minimum information is required (time stamps, sender, recipient,
and id). However, XChange does not preclude the usage of more complex parameters of event
messages. XChange applications can be implemented in such a way to construct such event
messages and to understand their meaning properly.

2.2.2.2 Representation of Implicit Events

As explained in Section 2.2.1.1, implicit events are events that occur locally at an (XChange-
aware) Web site. They become explicit if their representation is sent as an event message
to other Web sites. However, at the level of event representation no differentiated treatment
should be applied for the two kinds of events. A uniform way of representing events is a premise
for using the same event language for querying them. Thus, XChange uses event messages for
representing not only explicit events but also implicit events.

An event message representing an implicit event needs to reflect the type of change in
the state of the world (e.g. timer events, updates, transaction-related events). Clearly, the
content of the event message is tailored to the event type it represents. Different approaches
are conceivable for event messages to carry this information, for example:

(a) the event type is represented as label of the root (e.g. xchange:timer-event for timer
events) and the content represents other relevant information (e.g., for reacting on 2005-
06-12T11:15, time{"2005-06-12T11:15"}),

(b) the event type is represented (e.g. xchange:type{"timer-event"}) as an event message
parameter and the content representation is like for the case above.

On the other hand, some of the parameters of event messages can be suppressed – the sender
and the recipient are the same Web site, i.e. the Web site where the event occurred and where it
is first processed. Thus, there is no single possible representation of implicit events as event mes-
sages. One needs to decide which representation is better suited for the intended applications
and to modify the XChange runtime system accordingly.

Example 2.3 (XChange Implicit Event Representation) The following XChange event
message gives a representation of an implicit event representing a modification of a Web re-
source; the event has occurred at Web site http://xcerpt.org/xchange/. The sender and
recipient of the event message are not contained in the representation; the parameter xchange:-
type denotes the type of the implicit event, here an (insertion) update.

xchange:event {

xchange:reception-time {"2005-05-05T10:15:00"},

xchange:type { "update" },

insertion {

resource { "http://xcerpt.org/xchange/news.xml" },

term {

article{

title { "Reactivity on the Web" },

subtitle { "Paradigms and Applications of the Language XChange" },

proceedings-of { "SAC’2005" }

}

},
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parent { news {} }

}

}

2.2.3 Event Queries

For detecting situations that have occurred on the Web and require a reaction to be auto-
matically executed, incoming event messages (i.e. representations of events that have occurred
on the Web) need to be queried. Section 2.1.2 has pointed out differences between (volatile)
information about incoming events and (persistent) information of Web resources, recognising
that Web query languages are not suitable for querying event data. For this reason, XChange
offers event queries – queries against event data.

Detection of real life situations often needs not only just one event to occur, but in general
takes several events into account. The temporal order of these (component) events has to be
taken into account, and there might be further restrictions regarding occurrence time points.
Mirroring these practical requirements, XChange offers not only atomic event queries but also
composite event queries. Thus, an XChange event query (symbol EvQ) is either an atomic event
query (symbol At EvQ) or a composite event query (symbol Comp EvQ):

EvQ ::= At_EvQ | Comp_EvQ

where atomic and composite event queries are defined in the following sections.

This section on event queries is structured as follows: we start by stating explicitly essential
traits of XChange event queries; their introduction intends to ease the understanding of most
of the design decisions of the XChange event language. We then elaborate on atomic event
queries and composite event queries, respectively. Language constructs are introduced for both
kinds of event queries. The notion of an answer to an event query is then introduced.

2.2.3.1 Essential Traits

For gaining a clear picture of querying event data before going into details regarding XChange
event queries as means for querying incoming events, let’s take a look at essential traits that
event queries have. These traits set XChange event queries apart from Web queries and other
existing work on querying events (or event detection). Thus, their brief explanation here is
intended to avoid confusions and misunderstanding of event language constructs.

Event Query vs. Web Query Event queries and Web queries serve for different purposes –
querying an incoming stream of events vs. querying Web resources; thus, they differ considerably
in the communication strategy used, the querying capabilities, and the query processing. Event
queries are fed with event data (to be queried) in a push manner, while querying Web resources
is done using a pull strategy. Event queries query not only for single events but also for temporal
combinations of incoming events, while Web queries lack constructs for dealing with temporal
patterns over events. Event queries need to be evaluated in an incremental manner as events
arrive in a stream-like manner and are not persistent. As information of Web resources is
persistent, such requirements are not posed on the evaluation of Web queries. (Section 2.1.2
has already offered a more elaborated discussion on differences between event queries and Web
queries.)
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Double Purpose. XChange event queries are dual-purpose: they are aimed for event de-
tection and event data extraction. Event queries detect atomic and composite events (Section
2.2.1) that have occurred on the Web. XChange offers a number of high-level constructs for
expressing different kind of event combinations (see Section 2.2.3.3). For extracting pieces of
information from incoming events, variables are specified in event queries. Data items bound
to the variables can be subsequently used for raising events or executing updates.

Logical Variables. Variables are placeholders for the data, in the same way as logic pro-
gramming variables (or Prova variables – see Appendix B). Variables occurring more than once
in an event query act as join variables. Note that variables can be also bound to reprsentations
of (composite) events, not just to parts of atomic events. This feature is useful when e.g. a
detected composite event needs to be sent to other interested Web sites (see Section 2.2.3.3).

Bounded Event Lifespan. For processing XChange event queries (i.e. for detecting atomic
or composite events as answers to them), events do not need to be kept for ever in memory.
Instead, event data is stored as long as it is needed for answering the event queries posed at
a Web site. Moreover, the time for which data on any received event is kept in memory is
bounded, i.e. the event lifespan is bounded. The notion of event history used in the literature
[60, 74, 26] would be misleading in the context of XChange, as event data is not kept forever
in memory and event queries do not query events received in the past.

Forward-Looking. XChange event queries are forward-looking, i.e. they do not have the
ability to look (to query events received) in the past. XChange event queries are capable of
querying only events whose representation has been received after the event query has been
posed (or registered) at a Web site. This is consistent with the clear cut between volatile data
(events) and persistent data (Web resources).

Language Constructs. The language XChange offers several constructs for expressing dif-
ferent combinations of events to react upon.

2.2.3.2 Atomic Event Queries

An atomic event query is a query against the representation of a single event. It describes a
pattern for a single, incoming event message. An atomic event query specification is an Xcerpt
query term with an (optional) absolute temporal restriction specification.

Query Terms. The “simplest” XChange event query and, at the same time, the building
block for more “complex” event queries (for detecting temporal combinations of events) is
an Xcerpt query term. Its purpose, when posed against incoming events, is to detect single
occurrences of events. Recall that Xcerpt query terms can be used for querying event data, as
event data (i.e. event messages) represent data terms. A short overview of term specifications
and query terms follows; a more detailed, full explanation can be found in [64].

An ordered term specification (denoted by square brackets [ ]) expresses that the order of
subterms is relevant, an unordered term specification (denoted by curly braces {}) expresses
that the order of subterms is irrelevant. Ordered subterms are needed for text-oriented XML.
Unordered subterms are convenient with database-oriented XML. Total or partial (event and
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Web) query patterns can be specified. A query term q using a partial specification (denoted
by double brackets [[ ]] or braces {{}}) for its subterms matches with all such terms that (1)
contain matching subterms for all subterms of q and that (2) might contain further subterms
without corresponding subterms in q. In contrast, a query term q using a total specification
(denoted by single brackets [ ] or braces {}) does not match with terms that contain additional
subterms without corresponding subterms in q.

Example 2.4 (Simple XChange Atomic Event Query) The following XChange atomic
event query is a pattern that matches with all incoming events that a Web site receives (re-
call from Section 2.2.2 that XChange event messages have a root labelled event belonging to
the xchange namespace).

xchange:event {{

}}

Query terms are (possibly incomplete) patterns for the data to be queried. Query patterns
can contain variables for extracting pieces of information from data terms (representing event
data or data from Web resources). Variables (preceded by the keyword var) are placeholders
for data. Variable restrictions can also be specified, by writing var X − > p (read as), which
restrict the bindings of the variables to those terms that are matched by the restriction pattern
p. Query terms may contain querying constructs – comfortable means for query specification –
such as:

• descendant, for expressing incompleteness in breadth,

• without, for expressing subterm negation,

• except, for excluding certain subterms from a variable binding,

• optional, for specifying optional patterns inside query terms.

These and other constructs are explained in more detail in [64].

Example 2.5 (Variables Inside XChange Atomic Event Queries) The XChange atomic
event query below detects event messages notifying a phone conference. The subject to be dis-
cussed and the time at which the phone conference should be held are of interest and thus are
to be bound to the variables S and T, respectively.

xchange:event {{

xchange:sender {"http://organiser.de/secretary/"},

phone-conference {{

subject { var S },

time { var T }

}}

}}

For determining answers to atomic event queries and thus bindings for the variables, the event
manager of an XChange-aware Web site attempts to match each incoming event received with
the currently posed atomic event queries (which themselves may be part of composite event
queries). Query terms are matched against event data (or, in case of stantadr queries, data

21



of Web resources) by means of a novel unification method called Simulation Unification [65,
64], which can handle querying constructs such as partial specifications, optional subterms, or
negation of subterms. Informally, a query term q simulation unifies (or simply matches) a data
term d if q’s structure can be found in d. The outcome of simulation unifying q and d is a set
of substitutions for the variables in q. XChange event queries (event part) and Web queries
(condition part) are based on query terms and find substitutions for the variables that are then
subsequently used in the action part (event raising or transaction specification) of a rule.

Example 2.6 (XChange Event Message Notifying a Phone Conference) Assume that
the organiser of Mrs. Smith uses a rule containing the atomic event query of the previous ex-
ample. An excerpt of an event message is given in the following using the term syntax:

xchange:event {

xchange:sender { "http://organiser.de/secretary/" },

xchange:recipient { "http://organiser.de/Smith/" },

xchange:raising-time { "2005-04-11T10:05:32" },

xchange:reception-time { "2005-04-11T10:07:02" },

xchange:id { "1235" },

phone-conference {

subject { "Deliverable D5" },

time { "2005-04-25T14:00" },

participants {... },

...

}

}

The atomic event query of Example 2.5 detects the above phone conference notification; the eval-
uation of the atomic event query against the event message results in the following assignments
for the variables: S 7→ "Deliverable D5" and T 7→ "2005-04-25T14:00". Upon reception of
other phone conference announcements having the specified pattern, the variables S and T will
be bound to other data items.

Variables can be used not only inside event queries (e.g. variables S, T in Example 2.5), but
also outside event queries. In the latter case, variables are to be bound to the whole event
message that matches the atomic event query.

Example 2.7 (Variables Outside XChange Atomic Event Queries) The following XChange
atomic event query is a slight modification of the event query of Example 2.5. Both event queries
detect phone conference announcements; the following one binds the variable Msg to the data
term matching the given event pattern.

var Msg -> xchange:event {{

xchange:sender {"http://organiser.de/secretary/"},

phone-conference {{ }}

}}

Upon reception of the event message of Example 2.6, the above atomic event query evaluates
successfully and binds the variable Msg to the received event message (i.e. the substitution for
variable Msg is exactly the data term of Example 2.6).
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Posing Conditions on Atomic Event Queries. Xcerpt query terms may be further re-
stricted by constraints (e.g. arithmetic expressions on variables occurring in the query term)
in a so-called condition box, which has been introduced to source out all restrictions that are
not pattern-based. Being Xcerpt query terms, atomic event queries inherit the condition box
specification. The keyword where (as in Xcerpt) introduces such conditions on atomic event
queries.

Example 2.8 (Conditions on XChange Atomic Event Queries) The following XChange
atomic event query detects event messages notifying a flight delay of more than forty-five
minutes.

xchange:event {{

xchange:sender {"http://airline.com"},

delay-notification {{

flight-number { var N },

minutes-delay { var D }

}}

}} where { var D > 45}

Only events are detected that satisfy the given time constraint. More than one constraint on the
variables occurring in the event query can be specified in the where clause. For a more detailed
discussion on condition box specification, see Section 4.5.4 of [64].

Absolute Temporal Restrictions. Absolute temporal restrictions are used to restrict the
events that are considered relevant for an event query to those that have occurred in the specified
time interval. An event occurs in a time interval if the time point at which its representation
has been received lies inside the time interval.

XChange absolute time restrictions can be specified by means of a fixed starting and ending
point (i.e. a finite time interval) following the keyword in. The starting point of such a restrict-
ing interval can be implicit (i.e. the time point at which the event query has been registered), in
which case it follows the keyword before. Thus, an XChange atomic event query specification
is defined as:

At_EvQ ::= Query_Term

| At_EvQ "in" Finite_Time_Interval

| At_EvQ "before" Time_Point

Note that the production rules defining the nonterminal Query Term are not given here;
they can be found in [64].

Finite_Time_Interval ::= "[" Time_Point ".." Time_Point "]"

Time_Point ::= ISO_8601_format

Time points in XChange are given using the ISO 8601 standard format for representing dates
and times.6 Calendar date, week date, time of the day, and date and time can be repre-
sented using the standard. Representations begin with the largest element (e.g. year) followed
by smaller elements (e.g. month followed by day). Note that years represent the Gregorian

6ISO 8601, http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
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calendar’s years. When a calendar date is followed by the time of the day in the ISO 8601
representation, the capital letter T is used to separate the date and time components. For
example, 2005-07-07T14:05:00 represents five minutes after two o’clock in the afternoon of July
7, 2005.

By using the ISO 8601 format for specifying dates and times, it is assumed that all parties
use the same calendar – the Gregorian one. In order to facilitate communication between
personalised reactive systems whose owners use different calendars, means for defining calendars
and reasoning with calendar data are needed. Richer temporal specifications are conceivable
in XChange. This can be achieved e.g. by integrating into XChange a calendar and temporal
type system such as CaTTS (Calendar and Time Type System) [19].

Example 2.9 (XChange Atomic Event Query Specifying Temporal Restriction) The
following XChange atomic event query detects only such events whose representations have been
received before 2005-07-07T14:00:00 and, of course, match the given pattern.

xchange:event {{

content {{ }}

}} before 2005-07-07T14:00:00

Note that no event is detected if the time interval or the time point specified as temporal
restriction for an event query is in the past. The situation is encountered either because of a
human error in programming (e.g. writing as year 1005 instead of 2005), or because the time
interval for which an event query supposed to detect events has passed.

Example 2.10 (XChange Atomic Event Query Detecting Discounts) An XChange atomic
event query that detects insertion of discounts for flights from Munich to Paris that are received
as notifications before July 7, 2005 is given next.

xchange:event {{

flight {{

from {"Munich"}, to {"Paris"},

new-discount { var D }

}}

}} before 2005-07-07T10:00:00

Note that insertions can be notified by using another structure for event messages. However,
the update specification that has been used to perform the insertion can not be sent as content
of event messages since update specifications are not data terms. A detailed introduction into
XChange update specifications is given in Section 2.4.1.

2.2.3.3 Composite Event Queries

The capability to detect and react to composite events, e.g. sequences of events that have
occurred possibly at different Web sites within a specified time interval, is needed for many
Web-based reactive applications. However, (to the best of our knowledge) existing languages
for reactivity on the Web do in general not consider the issues of detecting and reacting to such
composite events. For processing of composite events, XChange offers composite event queries.

Composite event queries are specified by means of atomic event queries combined using
XChange composite event query constructs. XChange offers a considerable number of such
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constructs along two dimensions: temporal restrictions and event compositions. This section
gives an introduction into XChange constructs for composite event queries. Their syntax and
informal semantics are given here; a formal definition of the semantics is given in Section 2.2.4.

Temporal Restrictions. The role of temporal restrictions on composite event queries is
twofold: they specify interest in events that occur in a given time interval or have a given
duration, and ensure that event data can be released after a bounded time (this is realised by
using legal composite event queries, notion introduced in Section 2.2.3.4).

Note that temporal restrictions do not affect the time point of answer (instance of event
query) detection, they only restrict the events that are answer components. Temporal restric-
tions determine if a rule is fired or not (depending whether the events contained in a candidate
answer satisfy the specified time constraint or not) but when the rule is fired depends only on
the events received.

Absolute Temporal Restrictions. Like for atomic event queries, temporal restrictions can
be specified also for composite event queries, posing temporal restrictions on the constituent
events.

Comp_EvQ ::= Comp_EvQ "in" Finite_Time_Interval

| Comp_EvQ "before" Time_Point

Recall that composite events (detected using composite event queries) do not have an occurrence
time, like atomic events do. Instead, they have a duration determined by their beginning and
ending time, respectively. A composite event c is a candidate answer to a composite event
query of the form

• CEQ in [Time Point1 .. Time Point2] if the beginning time of c is greater than or
equal to Time Point1 and the ending time of c is less than or equal to Time Point2;

• CEQ before Time Point if the ending time of c is less than or equal to Time Point.
Clearly the above stated temporal conditions on c are not enough for detecting c as an
answer to the composite event query CEQ.

Relative Temporal Restrictions. Besides absolute temporal restrictions, also relative tem-
poral restrictions, given by a duration, can be specified for composite event queries. This deci-
sion is rather straightforward considering that each composite event has a length of time and
restricting it may be very useful in practice. For an instance of such a composite event query
(i.e. a composite event), the difference between the ending time and the beginning time of the
instance needs to be less than or equal to the given duration. Relative temporal restrictions can
be given as positive numbers of years, days, hours, minutes, or seconds and their specification
follows the keyword within.

Comp_EvQ ::= Comp_EvQ "within" Duration

Duration ::= Nr DTime

DTime ::= "second" | "minute" | "hour" | "day" | "month" | "year"

XChange requires every composite event query to be accompanied by a temporal restriction
specification. This makes it possible to release each (atomic or partially detected composite)
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event (i.e. to release answers to event queries, or partial instantiations of them) at each Web
site after a finite time. A detailed discussion on the temporal restrictions that should accom-
pany event query specifications for releasing event data is postponed to Section 2.2.3.4. Thus,
language design enforces the requirement of a bounded event lifespan and the clear distinction
between persistent vs. volatile data.

Event Composition. This section introduces XChange’s constructs for specifying (tempo-
ral) patterns over more than one incoming event. With XChange, one can specify conjunctions,
temporally ordered conjunctions, inclusive disjunctions, exclusions, occurrences, and multiple in-
clusions and exclusions of event queries. A discussion of other constructs for event composition
that might be useful in practice is given at the end of this section.

Notation. For simplifying the reading and understanding of examples for composite event
queries, a short notation for the representations of events is used in this section. Thus, the event
messages and the queries against them are ’lifted’ by leaving the envelope of event representation
out. This means that only the content is specified in event queries and incoming events.
Consider the following XChange event query and an incoming event message (they give actually
a shape for event queries and event messages in XChange):

xchange:event {{

xchange:sender {...},

content {{ }}

}}

xchange:event {

xchange:sender {...},

xchange:recipient {...},

xchange:raising-time {...},

xchange:reception-time {...},

xchange:id {...},

content { ... }

}
In the remainder of this section, they are written like:

content {{ }} content { ... }

The role of the ids of event messages is taken by a subscript for the content of the event
message; however, subscripts are used only when they are needed for differentiating between
event messages having the same content. The incoming event stream is a sequence of event
messages given in short notation and separated by ’,’; the direction in which the incoming event
stream grows is from left to right (denoted by −− ... −− >).

Also, beginning time(comp event) and ending time(comp event) are used for denoting the
beginning and ending time, respectively, of composite event comp event.

Conjunctions. Conjunctions specify that instances of each of the specified event queries
needs to be detected in order to detect the conjunctive event query. That is, an answer to each
of the component event queries needs to be found in order to find an answer to the conjunctive
event query. The order in which events occur is not of importance. This is reflected also in the
specification of such an event query – by using curly braces.

A conjunctive event query has arity n and at least one event query needs to be specified
(1 ≤ n). Keyword and introduces such a composite event query in XChange. The grammar
rule defining conjunction event queries in XChange is the following:

Comp_EvQ ::= "and" "{" EvQ ("," EvQ)* "}"
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Example 2.11 (XChange Event Query Specifying Conjunction (1)) The following event
query specifies interest in the occurrence of pairs of events whose contents match the atomic
event queries a{{}} and b{{}}, respectively:

and {

a {{ }},

b {{ }}

}

Assume that the following excerpt of the incoming event stream is received by a Web site after
the above event query has been registered:

-- b {c}, g {a,b}, a {d}, a {e}, b {e} -->

After receiving b{c}, one of the atomic event queries has a match and thus a partial instantiation
of the whole event query exists. Upon reception of a{d} an instance of the event query is detected
(i.e. an answer to the event query has been found); the answer has b{c} and a{d} as components.
The beginning time of the answer is the occurrence time of b{c}, its ending time is the occurrence
time of a{d}.

Upon reception of a{e}, another answer to the event query is detected having as components
b{c} and a{e}. Upon reception of b{e}, the event query has other two answers, one made of
a{d} and b{e}, and one of a{e} and b{e}.

Example 2.12 (XChange Event Query Specifying Conjunction (2)) The following event
query is a slight modification of Example 2.11 (above), where the variable X is to be bound to
the content of the incoming event messages that match the two atomic event queries.

and {

a {{ var X }},

b {{ var X }}

}

Assume that the event stream of the previous example is received by the Web site where the
event query is registered. Recall that variables require equality when occurring more than once
in an event query (like logic programming variables). Thus, upon reception of b{c} the event
query is partial instantiated and the variable X is bound to c. The reception of a{d} offers a
match for the atomic event query a{{ var X}} and the assignment X 7→ d for the variable, but
no instance of the whole event query is detected at this point. An answer to the conjunction
event query is detected upon reception of b{e}; the answer components are a{e} and b{e}, and
the variable X is bound to e.

Example 2.13 (XChange Event Query Specifying Conjunction) Mrs. Smith wants to
visit an exhibition of G. Barthouil on a rainy day. The next XChange event query is used to
detect the conjunction of the exhibition notification and the desired weather forecast notification
that are sent by appropriate Web services.

and {

xchange:event {{

xchange:sender {"http://artactif.com"},
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exhibition {{ painter {"G. Barthouil"},

location {"Marseille"},

time-interval { var TI }

}}

}},

xchange:event {{

xchange:sender {"http://weather.com"},

forecast { date { var D }, city {"Marseille"},

info {"It’s going to rain."} }

}}

} before 2005-08-16T11:15:00

where var D included-in var TI

Temporally Ordered Conjunctions. Temporally ordered conjunctions specify that the oc-
currences of the components need to be successive in terms of time (i.e. query for sequences of
events).

The keyword andthen introduces such an event query whose component event queries are
enclosed in square brackets (for denoting that the order in which events occur is of importance).
A temporally ordered conjunction event query has nth arity and at least two event queries need
to be specified (2 ≤ n).

A total specification (i.e. single square brackets) expresses that the answer to such a com-
posite event query contains only the instances of the component event queries. Between the
instances of the specified event queries other events might occur that do not match the specified
event queries; they neither influence the successful evaluation of the event query, nor are part
of the answer.

A partial specification (i.e. double square brackets) for a temporally ordered conjunction
event query expresses that the answer contains besides the events that answer the component
event queries also all events that have occurred in-between. The practical need for total and
partial specifications for such event queries has been already motivated by the examples of
Section 2.1.7.

The grammar rule for the temporally ordered conjunction event queries are given next:

Comp_EvQ ::= "andthen" "[" EvQ ("," EvQ)+ "]"

| "andthen" "[[" EvQ ("," EvQ)+ "]]"

| "andthen" "[[" EvQ ("," "collect" Query_Term "," EvQ)+ "]

For determining answers to temporally ordered conjunction event queries, the temporal order
between incoming events needs to be taken into account. An atomic event occurs before an
(atomic or composite) event if and only if its occurrence time is before the occurrence or the
beginning time of the second event on the time axis of the incoming events. A composite event
ce1 occurs before another composite event ce2 (i.e. they are successive in terms of time) if and
only if the ending time of ce1 is less than the beginning time of ce2.

Example 2.14 (Event Query Specifying Temporally Ordered Conjunction (1)) The
following event query specifies interest in the occurrence of sequences of events having content
with label a and b, respectively.

andthen [

a {{ }},

28



b {{ }}

]

Consider (again) the excerpt of the incoming event stream received by a Web site where the
above event query has been registered:

-- b {c}, g {a,b}, a {d}, a {e}, b {e} -->

The above event query gets a partial instantiation only upon reception of a{d}, as the event
query looks for sequences of events that begin with a-labelled events (or more precisely event
contents). Upon reception of a{e} another partial instantiation of the event query is realised.
Upon reception of b{e}, two answers to the event query are detected, one represents the sequence
a{d}, b{e}, and one the sequence a{e}, b{e}. The fact that other events have been received
between the reception of a{d} and b{e} does not affect answering the event query with the
sequence of these two events.

Note the difference to the answers of the event query of Example 2.11: sequences b{c}, a{d}
and b{c}, a{e} are not answers to the event query as the temporal order between these events
is not the desired one.

Example 2.15 (Event Query Specifying Temporally Ordered Conjunction (2)) The
following event query specifies interest not only in sequences of events having content with label
a and b, respectively, but also in all events that have occurred in-between.

andthen [[

a {{ }},

b {{ }}

]]

Assume that the above event query is registered at a Web site that receives the excerpt of the
event stream used in the previous examples. Upon reception of b{e} two answers to the event
query are detected, one represents the sequence a{d}, a{e}, b{e} and one the sequence a{e},
b{e}. The first sequence that is detected as answer to the event query collects the event a{e}
because it is received between the answers to the two component, atomic event queries.

Example 2.16 (Event Query Specifying Temporally Ordered Conjunction (3)) An andthen
event query can also be specified to collect only events with a particular pattern.

andthen [[

a {{ }},

collect b {{ var X }},

c {{ }}

]]

The following excerpt of the event stream received by a Web site where the above event query is
posed is used to explain the outcome of such a query:

-- a {e}, b {e}, b {f}, d {}, c {e} -->
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Upon reception of c{e} an answer to the event query is detected, it represents the sequence a{e},
b{e}, b{f}, c{e}. The bindings obtained for the variable X are X 7→ e∨X 7→ f . Note that the
occurrence of event d{} does not affect the successful evaluation of the event query and is not
part of the answer as only non-empty b-labelled events are collected.

Example 2.17 (Event Query Specifying Temporally Ordered Conjunction) The next
XChange event query is used to detect the notification of a flight cancellation and afterwards,
within two hours from its reception, the detection of a notification informing that the accom-
modation is not granted by the airline.

andthen [

xchange:event {{

xchange:sender {"http://airline.com"},

cancellation-notification {{

flight {{ number { var Number } }} }}

}},

xchange:event {{

xchange:sender {"http://airline.com"},

important {"Accommodation is not granted!"}

}}

] within 2 hour

Inclusive Disjunctions. Inclusive disjunctions specify that the occurrence of an instance of
any of the specified event queries suffices for detecting the disjunction event query. A reactive
rule having as event part an inclusive disjunction event query is fired each time an answer to
the specified, component event queries is found. If the component event queries are atomic
then the rule is fired each time an event matching one of the atomic event queries is received.
Even if a temporal restriction specification accompanies such an event query, the time point of
answer detection is not influenced.

The inclusive disjunction event query has arity n and at least one event query needs to be
specified (1 ≤ n). The keyword or denotes an inclusive disjunction in XChange and the event
queries are enclosed in curly braces.

Comp_EvQ ::= "or" "{" EvQ ("," EvQ)* "}"

Note that exclusive disjunctions of event queries can also be specified in XChange by means
of the multiple inclusion and exclusion event queries. They specify a generalised exclusive
disjunction of event queries and are discussed later in this section.

Example 2.18 (XChange Event Query Specifying Inclusive Disjunction (1)) The fol-
lowing event query specifies interest in the occurrence of events having content with label a or
b.

or {

a {{ var X }},

b {{ var X }}

}

Consider the following excerpt of the event stream received by a Web site where the event query
is registered:
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-- b {c}, g {a,b}, a {d} -->

Upon reception of b{c} an answer to the event query is detected. The variable X gets a binding,
X 7→ c. Upon reception of g{a, b} nothing happens as none of the specified atomic event queries
matches it. The reception of a{d} leads to a new answer for the inclusive disjunction event
query and a new binding for the variable, X 7→ d. Thus, each time an event matching one of
the two atomic event queries is received a new answer to the inclusive disjunction event query
is detected and a new binding for the variable is found.

Example 2.19 (XChange Event Query Specifying Inclusive Disjunction) After Orange,
Mrs. Smith wants to visit Arles and Nı̂mes. The next city to visit is chosen depending on the
notification of train tickets and hotel reservation made by appropriate services.

or {

xchange:event {{

xchange:sender {"http://service-nimes.fr"},

service-notification {{

train {{ date {"2005-08-10"},

from {"Orange"}, to {"Nimes"} }},

hotel {{ }}

}}

}},

xchange:event {{

xchange:sender {"http://reservations-arles.fr"},

reservation-notification {{

train {{ date {"2005-08-10"},

from {"Orange"}, to {"Arles"} }},

accommodation {{ }}

}}

}}

} before 2005-05-02T21:30:00

Exclusions. Exclusions (event negation) specify that no instance of the given event query
should have occurred in a finite time interval in order to detect the exclusion event query.

A finite time interval acting as a monitoring window over the incoming event stream is
necessary for the detection of non-occurrence of an event. After an exclusion event query is
posed at a Web site, the incoming events are queried for determining whether an instance of
the specified event query occurred or not. If an instance of the event query occurs then the
exclusion event query has no successful evaluation. At a point in time, it can be determined
whether an event query instance has occurred or not, but one can not predict what kind of
events the future will bring. Thus, the event manager needs to know the time point until non-
occurrence (or occurrence) of event query instances is to be monitored. A (monitoring) time
interval for exclusion event queries is given by a finite time interval or by a composite event
query (recall that their instances have a beginning and an ending time and thus determine a
time interval).

The keyword without introduces exclusion event queries in XChange and the finite time
interval specification or the composite event query follows the keyword during. The following
grammar rules define the exclusion event queries:
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Comp_EvQ ::= "without" "{" EvQ "}" "during" "{" Comp_EvQ "}"

| "without" "{" EvQ "}" "during" Finite_Time_Interval

An XChange exclusion event query is evaluated at the end of the monitoring time interval. That
is, the non-occurrence of an event query instance is evaluated at each successful evaluation of
the composite event query or at the end of the given finite time interval. The firing time point
of a reactive rule having as event part an exclusion event query is the ending time of an instance
of the composite event query or the ending time of the finite time interval. Recall that the firing
time point of a reactive rule having as event part an event query of the form Comp EvQ in
Finite T ime Interval (absolute temporal restriction on a composite event query) is the ending
time of a detected instance of the composite event query Comp EvQ. To reflect the difference
between the time point of evaluation and thus the firing time point of an associated rule, the
keyword during is used instead of in for exclusion event queries.

Example 2.20 (XChange Event Query Specifying Exclusion (1)) The following event
query specifies interest in the non-occurrence of c-labelled events during occurrence of sequences
of events labelled a and b, respectively.

without {

c {{ }}

} during {

andthen [ a {{ }}, b {{ }} ]

}

Assume that the Web site where the above exclusion event query is registered receives the fol-
lowing excerpt of the incoming event stream:

-- a {e}, e {f}, a {d}, c {e, f{g} }, b {f} -->

After receiving the event a{e}, occurrences of events matching c{{}} or b{{}} are monitored.
Upon reception of b{f}, the andthen event query is successfully evaluated with two sequences
as answers, one made of a{e} and b{f}, and one of a{d} and b{f}. Though, the evaluation
of the whole event query is not successful (i.e. the event query has no answer) as the event
c{e, f{g}} has occurred during both answers to the andthen event query (c{{}} � c{e, f{g}}
and an answer is found to the event query whose exclusion is of interest).

Example 2.21 (XChange Event Query Specifying Exclusion (2)) The following exclu-
sion event query is a slight modification of the previous example where some of the component
atomic event queries are augmented with variables.

without {

c {{ var X }}

} during {

andthen [ a {{ var X }}, b {{ }} ]

}

Consider that the above event query is to be evaluated against the excerpt of the incoming
event stream given in the previous example. Upon reception of a{e} the andthen event query is
partially evaluated and the variable gets a binding, the substitution σ1 = {X 7→ e} is obtained.
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The reception of e{f} does not influence the evaluation of the event query. Upon reception of
a{d} another instance of the andthen event query is partially evaluated and a possible binding for
the variable is found, the substitution σ2 = {X 7→ d} is obtained. The event c{e, f{g}} matches
the event query whose exclusion is of interest; the result of c{{var X}} � c{e, f{g}} gives two
possible bindings for the variable, Σ3 = {{X 7→ e}, {X 7→ f{g}}}. Receiving b{f} determines
two answers to be found for the andthen event query. Now, the exclusion event query can
be evaluated. Recall that variables used in event queries require equality when occurring more
than once in a query. Thus, the whole event query is evaluated successfully only once against
the given incoming event stream, with the sequence a{d}, b{f} (no c-labelled events having a
d-child are received, thus the event query is successful). The variable substitution obtained is
σ = {X 7→ d} (σ2 ∧ ¬Σ3).

Example 2.22 (XChange Event Query Specifying Exclusion (3)) The following exclu-
sion event query detects the non-occurrence of c-labelled events within the given time interval.

without {

c {{ }}

} during [2005-05-22T14:00:00 .. 2005-05-22T20:00:00]

Assume that no c-labelled events have occurred within the specified finite time interval; at time
point 2005-05-22T20:00:00 the exclusion event query evaluates successfully.

Variables occurring in the event queries whose exclusion is of interest (i.e. event queries specified
after the keyword without) need to have at least one defining occurrence in the (whole) event
query in order to be further used in an event query or other parts of XChange rules. Each
variable occurrence in XChange rules is associated with a polarity for determining whether a
variable occurring in the event part (or condition part) of the rule can be used in the condition
and action part (or, just in the action part, respectively) of the rule or not (i.e. determining rules’
range restriction). A negative polarity of a variable occurrence expresses a defining occurrence
of the variable. A positive polarity expresses a non-defining variable occurrence. The polarity
of Xcerpt query terms (defined in [64]) is extended for XChange event queries. The polarity
of event queries and the range restriction of XChange rules are postponed to Section 2.5.5. In
Example 2.21 the first occurrence of the variable X has positive polarity as it occurs inside the
event query whose exclusion is of interest, the second occurrence of X has a negative polarity.
Thus, the variable can be used outside the event query (e.g. in complex event queries having
as one of the components the exclusion event query).

Example 2.23 (XChange Event Query Specifying Event Exclusion) The event query
below detects if the notifications of two online reservations made on 10th of July 2005 are not
received within ten days.

without {

and {

xchange:event {{

flight-reservation-notification {{ }}

}},

xchange:event {{

hotel-reservation-notification {{ }}

}}
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}

} during [2005-07-10..2005-07-20]

Quantifications. Quantifications in event queries are used to detect instances that occur (at
least, at most, or exactly) a number of times in a given time interval or between occurrences of
other event query instances.

The keyword times introduces such quantification event queries in XChange. The occur-
rences of instances of a given event query (EvQ) are to be counted within a time interval, which
is either determined by instances of a given composite event query (Comp EvQ) or is directly
given as a finite time interval specification (Finite T ime Interval). The following grammar
rules define such composite event queries in XChange:

Comp_EvQ ::=

"times" M ("any" Vars)? "{" EvQ "}" "during" "{" Comp_EvQ "}"

| "times" M ("any" Vars)? "{" EvQ "}" "during" Finite_Time_Interval

M ::= ("atleast" | "atmost")? Nr Nr ::= [1-9][0-9]*

Vars ::= "var" Var_Name ("," "var" Var_Name)

Example 2.24 (XChange Event Query Specifying Quantification (1)) The following
event query specifies interest in the reception of at least three messages from the secretary within
the specified time interval. Also, the subjects of the messages are of interest (e.g. for using them
in the action part of the rule having the following event part).

times atleast 3 {

secretary-message {{

subject { var S },

content {{ }}

}}

} during [2005-05-23T08:00..2005-05-23T18:00 ]

The event query evaluates successfully if between 2005-05-23T08:00 and 2005-05-23T18:00 at
least three messages are received having the same subject. Being a logical variable, the variable
S requires equality. By dropping the variable S (i.e. specifying just subject{{}} instead of
subject{var s}), the event query detects the reception of at least three messages with possibly
different subjects, but these subjects can not be further used, as no variable is bound to this
information.

By means of the constructs introduced so far, one can detect situations like the reception of three
messages with different subjects, but one can not react upon them by e.g. sending a response
message containing a list of all three messages’ subjects. To overcome this, the approach taken
consists in introducing existential quantified variables, i.e. variables that do not require equality
of bindings in selecting data items. Informally, existential quantification expresses that at least
one binding for the given variable exists.

The specification of existentially quantified variables follows the occurrence specification
(times M). The keyword any precedes the list of the existential variables used in an event
query. Variables not declared as existentially quantified require equality when occurring more
than once in an event query. Declaring a variable as existentially quantified in an event query
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applies to all its occurrences in the component event queries (the property of being existentially
quantified for a variable is inherited in a top down manner to component event queries).

Example 2.25 (Event Query Specifying Quantification (2)) The following event query
specifies interest in the reception of at least three messages from the secretary within the specified
time interval.

times atleast 3 any var S {

secretary-message {{

subject { var S },

content {{ }}

}}

} during [2005-05-23T08:00..2005-05-23T18:00 ]

Assume that the following three messages are received within the given time interval (other kinds
of events might have also been received, but their occurrence does not influence the evaluation
of the above event query):

secretary-message {
subject {"WG I1"},
content {...},...

}

secretary-message {
subject {"WG I5"},
content {...},...

}

secretary-message {
subject {"TTA"},
content {...},...

}

The quantification event query evaluates successfully against an incoming event stream con-
taining the above messages (whose reception times lie inside the given time interval) and the
variable S has three possible bindings; the substitution set Σ = {{S 7→ ”WG I1”}, {S 7→ ”WG
I5”}, {S 7→ ”TTA”}} is obtained.

Multiple Inclusions and Exclusions. Multiple inclusions and exclusions detect occur-
rences of a given number of event query instances and the non-occurrence of instances of the
other specified event queries. It expresses a generalised exclusive disjunction of event queries.

The keyword of preceded by an occurrence specification (e.g. atleast 2) introduces such
event queries in XChange. The occurrence specification expresses how many of the specified
event queries need to have instances; the whole event query evaluates successfully if instances
of the other event queries do not occur during a finite time interval. Again, such a time interval
can be given through a composite event query or directly by giving its begin and end time
points. The multiple inclusions and exclusions event query is used for detecting occurrences
of some event queries and non-occurrences (exclusion) of others, thus it can be evaluated just
at the end of evaluation of the given composite event query or at the end of the time interval
(the keyword during is used). Existentially quantified variables (i.e. variables that do not
require equality when occurring more than once in an event query) can be used also in multiple
inclusions and exclusions event queries. At least one event query needs to be specified after the
occurrence specification. The following grammar rules define such event queries in XChange:

Comp_EvQ ::=

M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}" "during" "{" Comp_EvQ "}"

| M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}"

"during" Finite_Time_Interval
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Recall that M is of the form atleast Nr, atmost Nr, or just Nr (it has been introduced at
the times construct for event queries). Nr is a positive integer greater than 0 and less than
the number of event queries specified after keyword of. An event query of the form 1 of
{EvQ1, EvQ2, ..., EvQn} (where Nr = 1) expresses exclusive disjunction of the instances of
the specified event queries.

Example 2.26 (Event Query Specifying Multiple Inclusions and Exclusions (1)) The
following event query specifies an exclusive disjunction of a-labelled and b-labelled events. The
occurrence of such events is of interest during instances of a conjunctive event query.

1 of {

a {{ var X }},

b {{ var Y }}

} during {

and {

c {{ }},

d {{ var Y }} }

}

Assume that after registering the event query at a Web site, the following excerpt of the event
stream is received:

-- d {g,h}, e {d}, a {k,f}, c{e},

c{f,g}, b{f}, d{e} -->

The event query evaluates successfully two times on the above given stream of events; the in-
stances of the event query are composed of d{g, h}, a{k, f}, and c{e} (for the first answer), and
d{g, h}, a{k, f}, and c{f, g} (for the second answer). The sequences composed of c{e}, b{f},
and d{e}, and c{f, g}, b{f}, and d{e}, respectively, do not represent answers to the whole event
query as the variable Y is a logical one and requires equality.

Multiple inclusions and exclusions event queries specify interest in occurrence of event query
instances and non-occurrence (event exclusion) of other event query instances; one does not
know beforehand which event queries will be answered and which not. Thus, it might be the
case that not all variables used in the event queries will have bindings. Recall the discussion
on variable substitutions for the case of exclusion event queries. Similarly, variables occurring
in the event queries whose inclusion or exclusion is of interest (i.e. event queries specified after
the keyword of) need to have at least one defining occurrence in the (whole) event query in
order to be further used in an event query or other parts of XChange rules. In Example 2.26
the variable Y has a defining occurrence as it will be bound when evaluating the conjunctive
event query (which determines the monitoring time interval). The occurrence of variable X is
non-defining and thus it cannot be further used in the rule having as event part the example
event query. (Though, if the event query is part of a more complex event query, the variable
X might have a defining occurrence in other parts of the complex event query.)

One might argue that the language is too restrictive because of the requirement of at least
one defining occurrence for the variables that need to be used in other parts of an XChange
rule. Another approach would consist in introducing a kind of optionality specification for the
variables that do not have a defining occurrence in the event query; the specification accompa-
nies these variables in the condition and action part of XChange rules. A default value for the
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variable marked “optional” needs also be specified; this value is to be used when no binding for
the variables resulted from a successful evaluation of the event query.

Variables Inside and Outside XChange Event Queries. As the examples introduced
until now have shown, variables can be bound to data items of events received (by using
variables inside atomic event queries), or to atomic events that have occurred on the Web (by
using variables outside atomic event queries). Variables can also be bound to composite events,
i.e. to answers to composite event queries. This is achieved by using variables outside composite
event queries, like

var CE → Comp_EvQ

The variable CE is to be bound to the answers found for Comp EvQ. Answers to compos-
ite event queries contain all atomic events that are used for answering the event query, they
are sequences of atomic events whose representation is an XML document7. Thus, variables
occurring in (more precisely, inside or outside) XChange event queries are bound to data terms.

Nesting XChange Event Queries. XChange constructs for composite event queries can be
nested arbitrarily; thus, complex reactive applications can be easily and elegantly implemented
in XChange.

Example 2.27 (Nesting XChange Event Queries) The following example gives a com-
posite event query for detecting occurrences of a flight cancellation, where the airline does not
grant an accommodation. For this purpose, a temporal ordered conjunction construct, the ex-
clusion construct and temporal restrictions are combined.

andthen [

xchange:event {{

xchange:sender { "http://airline.com" },

cancellation-notification {{

flight {{ number { "AI2021" }, date { "2005-08-21" } }}

}}

}},

without { xchange:event {{

xchange:sender { "http://airline.com" },

accommodation-granted {{ hotel {{ }} }} }}

} during [2005-08-21T17:00..2005-08-21T19:00]

] within 2 hours

Conditions on Composite Event Queries. As for atomic event queries, variables occurring
in composite event queries can also be constrained with conditions specified in a where clause.
(Recall that only non-structural conditions are to be specified, structural conditions are given
through event query patterns.) The following grammar rule defines composite event queries
with condition box specification (for a detailed explanation of Condition, see Section 4.5.4 of
[64]):

7A more detailed discussion on answers to XChange event queries and their representations is given in Section
2.2.3.5.
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Comp_EvQ ::= Comp_EvQ "where" "{" Condition ("," Condition)* "}"

Example 2.28 (Conditions on XChange Composite Event Queries) Consider the sim-
ple composite event query:

without {

a { var X }

} during {

and {

b { var X },

c { var Y } }

} where { X < Y }

The event query detects conjunctions of b-labelled and c-labelled events with no a-labelled event
in-between whose content is the same as for the b event and less than the content of the c event.

It is not that clear which kind of constructs should necessarily be included into a reactive
language developed not only for a single kind of applications, but trying to cover different
classes of applications. Developing use cases for a language entails introduction of new language
constructs and (perhaps) removing others; it also reveals the limits of a language. Moreover,
a tradeoff between the expressive power of the language and the ease of its usage needs to be
found in designing a language. The design of XChange event queries (and in fact of the whole
language XChange) aimed at introducing powerful constructs that ease the programming task.

2.2.3.4 Legal Event Queries

Recall the statement “XChange event queries are such that volatile data remains volatile” given
in Section 2.1.8. An essential trait of event queries (cf. Section 2.2.3.1) is that they ensure that
data of no event is kept forever in memory; that is, the event lifespan is bounded. Though,
(composite) event queries as introduced in the previous section can need an unbounded lifespan
for events.

Example 2.29 (“Illegal” XChange Composite Event Query) The composite event query
below specifies interest in a-labelled events followed by b-labelled events.

andthen [

a {{ }},

b {{ }}

]

Consider the excerpt of the incoming stream received at a Web site where the above event query
is registered:

-- a {e}, b {f}, c {g}, b {h},

a {k} -->

XChange assumes no consumption of events, thus the same event may be part of more than
one instance of a composite event query. After detecting the instance of the above andthen

event query composed of a{e} and b{f}, the atomic event a{e} needs to be kept in memory for

38



waiting to other b events to occur. Upon reception of b{h}, using the events kept in memory,
another instance of the event query is detected (the instance composed of a{e} and b{f}). The
next event received matches the atomic event query a{{}}, thus needs to be kept in memory
for b-labelled events that will possibly be received in the future. (If instead of an andthen event
query an and event query is used, besides a-labelled events also b-labelled events need to be kept
in memory.) As the event manager can not predict which kind of events will be received, event
data needs to be kept forever in memory. For avoiding this, restrictions on composite event
queries are posed.

XChange (composite) event queries are restricted to so-called legal event queries that can
be evaluated with bounded event lifespan. A formal proof of this statement is given in Chapter
6 of [30]. Legal event queries have the promised trait of keeping the clear cut between persistent
and volatile data.

XChange atomic event queries (with or without temporal restrictions) do not require events
to be kept in memory; thus, each atomic event query is considered legal. Restrictions are posed
only on composite event queries whose answer detection requires partially detected instances
to be kept in memory. The main idea is to restrict the time period of monitoring events (which
are possible candidates to answering an event query) to a finite time interval (the programmer
should specify). The following composite event queries are legal:

• composite event queries with absolute or relative temporal restriction;

• composite event queries specifying exclusions, quantifications, last instance, and multiple
inclusions and exclusions of event queries where the monitoring time period is given by a
finite time interval (a during F inite T ime Interval specification).

Legal_EvQ ::= At_EvQ

| LC_EvQ

LC_EvQ ::= Comp_EvQ "in" Finite_Time_Interval

| Comp_EvQ "before" Time_Point

| Comp_EvQ "within" Duration

| "without" "{" EvQ "}" "during" Finite_Time_Interval

| "times" M ("any" Vars)? "{" EvQ "}" "during" Finite_Time_Interval

| "last" "{" EvQ "}" "during" Finite_Time_Interval

| M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}" "during" Finite_Time_Interval

The above-mentioned kinds of legal composite event queries are very restrictive; there are other
composite event queries that do not belong to the classes mentioned but need only events of
bounded lifespan for their evaluation. However, the restrictions offer a set of simple and clear
rules to follow for programming legal event queries.

Example 2.30 (XChange Composite Event Query) The following composite event query
is not legal with respect to the definition above (T2 represents a time point.)

andthen [

a {{ }},

b {{ }} before T2

]
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Though, it can be rewritten as a legal composite event query:

andthen [

a {{ }},

b {{ }} before T2

] before T2

Based on the semantics of the event query and the “legality” of its component event queries,
one can infer whether the whole composite event query is legal or not. The rules for legal
composite event queries need to be extended with the following ones defining (inferred) legal
event queries (the first rule needs to be added to the definition of legal composite event queries
given above):

LC_EvQ ::= Inf_EvQ

Inf_EvQ ::= "or" "{" Legal_EvQ ("," Legal_EvQ)* "}"

| "without" "{" EvQ "}" "during" LC_EvQ

| "times" M ("any" Vars)? "{" EvQ "}" "during" LC_EvQ

| "last" "{" EvQ "}" "during" LC_EvQ

| M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}" "during" LC_EvQ

2.2.3.5 Answers to Event Queries

An answer to an XChange (atomic or composite) event query consists of an (atomic or compos-
ite) event and a substitution set. Answering an XChange event query results in all atomic events
that have been used for this purpose and the set of substitutions for the variables occurring in
the event query. One of the recognised design principles for Web query languages is the answer
closedness, meaning that answers to Web queries can be further queried with the Web query
language. Considering (sequences of) atomic events answering event queries is rather natural
having this principle in mind – answers to event queries can be further queried by event queries.

Considering just the atomic events answering event queries is not enough, the substitution
sets of answers to event queries play an important role – they represent communication means
between the components of XChange reactive rules: The substitutions for the variables occur-
ring in an event query restrict the possible substitutions for the variables occurring in the Web
query and action specification of the same XChange reactive rule. The substitutions provide
data for performing the desired actions, for constructing notifications to be sent to other Web
sites and for constructing new data to be inserted into (local or remote) Web resources’ data.
The maximal substitution set for all variables having at least one defining occurrence in the
event query is considered for the answer to an XChange event query. Substitutions for all
variables are of interest so as to be able to group (e.g. by using the grouping construct all)
the substitutions when used in the action part of XChange rules. Intuitively, a substitution set
Σ answering the event query EvQ is maximal, if there exists no substitution set Υ answering
EvQ such that Σ is a proper subset of Υ. A more general and formal definition of maximal
substitution sets can be found in [64] (Section 7.3, Definition 7.1 on page 147).

Answers to Atomic Event Queries.
An answer to an atomic event query consists of
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(i) the atomic event whose representation (as event message) matched the event query (and
occurred in the given time interval, if a temporal restriction has been specified). Atomic
events, are represented as XML documents – they are XChange event messages. A DTD
for the representation is given in Section 2.2.2.

(ii) the (maximal) substitution set for all variables with a defining occurrence in the event
query; the substitutions are the result of matching (simulation unifying) the atomic event
query with the atomic event given in part (i) of the answer.

Answers to Composite Event Queries.
An XChange composite event is a sequence of atomic events that altogether are used for an-
swering a composite event query. Thus, an answer to a composite event query consists of

(i) a sequence of atomic events that have occurred and have been used to answer the com-
posite event query.

(ii) the (maximal) substitution set for all variables with at least one defining occurrence in
the event query; the substitutions are the result of matching the component atomic event
queries with the atomic events the answer contains. Clearly, the component atomic events
satisfy the temporal pattern given by the composite event query they answer.

Composite events are also represented as XML documents (allowing for further processing)
as a (flat) sequence (with an artificial root to make them valid XML) of all atomic events that
were used for answering the composite event query. The atomic events are ordered by their
reception times. The first and last child elements of a composite event’s representation are
its beginning time and ending time, respectively. A DTD for the representation of XChange
composite events is given next. xchange:event represents an XChange event message; a DTD
for it is given in Section 2.2.2.

<!DOCTYPE xchange:event-seq [

<!ELEMENT xchange:event-seq (

xchange:beginning-time,

(xchange:event)*,

xchange:ending-time)>

<!ATTLIST xchange:event xmlns:xchange CDATA #FIXED

"http://xcerpt.org/xchange">

<!ELEMENT xchange:beginning-time (#PCDATA)>

<!ELEMENT xchange:ending-time (#PCDATA)>

]>

Variables can be bound to composite events, or more exactly to their representation as XML
documents. This can be achieved by restricting a variable to the answers to a composite event
query – by writing var A→ Comp EvQ. The bindings for variable A are the composite events
answering the composite event query Comp EvQ.

Example 2.31 (XML Representation of a Composite Event) The example shows an an-
swer to the composite event query specifying quantifications; the event query has been given as
Example 2.25.
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<xchange:event-seq>

<xchange:beginning-time> 2005-05-23T13:01 </xchange:beginning-time>

<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>

<xchange:recipient> http://lmu.de/smith </xchange:recipient>

<xchange:raising-time> 2005-05-23T13:00 </xchange:reception-time>

<xchange:reception-time> 2005-05-23T13:01 </xchange:reception-time>

<xchange:reception-id> 42 </xchange:reception-id>

<secretary-message>

<subject> Urgent call</subject>

<content> Werner called regarding ...</text>

</secretary-message>

</xchange:event>

<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>

...

</xchange:event>

<xchange:event>

...

<xchange:reception-time> 2005-05-23T15:16 </xchange:reception-time>

...

</xchange:event>

<xchange:ending-time> 2005-05-23T15:16 </xchange:ending-time>

</xchange:event-seq>

Answers to XChange composite event queries (more precisely, their representation) can be “put
in an envelope” and sent as event messages to one or more Web sites. Just as it is easy to
exchange and query information about atomic events, it is also easy to exchange and query
information about composite events. Both kinds of events are data terms (term representation
of XML documents), thus Simulation Unification can be applied for further querying (atomic
or composite) events.

On Representing the Notion of Answer to Composite Event Queries (Discussion)
Other approaches for representing answers have also been investigated, e.g., XML representa-
tions mirroring the nested structure of a composite event query. Following the approach, in
XChange a composite event is an XML document containing answers to the component event
queries and the temporal relations between these answers.

Example 2.32 (XML Representation of a Composite Event (Possible Approach))
Consider the following composite event query, where T1 denotes a specification of a time point:

andthen [

a {{ }},

and {

b {{ }},

c {{ }}

}

] before T1
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Answers to an andthen event query are represented as XML documents with root labelled
xchange:event-andthen containing the answers to the component event queries. Answers
to the and event query are represented as xchange:event-and-labelled documents. An attribute
ordered denotes ordered and unordered child elements. The answers to the above event query
look like in the following (recall that the short notation for atomic events is used, where the root
and the parameters of event messages are missing):

<xchange:event-andthen ordered="true">

<a> .... </a>

<xchange:event-and ordered="false">

<c> .... </c>

<b> .... </b>

</xchange:event-and>

</xchange:event-andthen>

An advantage of having answers mirroring the structure of composite event queries is that Web
sites receiving composite events data can very easily determine the whole or the components of
the composite event queries they answered. A disadvantage of this approach is that the same
atomic events might be found several times in the representation of a single composite event.
However, a flat sequence for representing composite events is better. It is simpler and more
intuitive for users, since no knowledge of the query structure is required. It leads to an easier
definition of declarative semantics (presented in Section 2.2.4), due to the similarity between
sets and sequences. Finally, it is desirable for a query language to have similar input and
output — and the input of event queries is a collection of atomic events arriving sequentially.
In principle, this allows for using the answer to a composite event query as the input to another
event query.

2.2.4 Declarative Semantics for Event Queries

Having discussed the language constructs for event queries informally and intuitively in the
previous section, we now provide a formal, declarative semantics. A formal semantics is desirable
for several reasons [69, chapter 8]. In the context of event queries in XChange, the most
compelling are:

• Standardization. Formal semantics are useful in the standardization of programming
languages. In contrast to informal specifications, formal semantics are clear and unam-
biguous.

• Reference for implementors. Consequently, the availability of formal semantics to
language implementors averts misinterpretations that could lead to different and incom-
patible dialects of the same language in different implementations. A concrete example
here is the need for duplicate elimination (cf. Section 2.2.5.3) in the incremental event
query evaluation we describe later; without work on formal semantics, duplicate elimina-
tion might easily have been overlooked.

• Reference for users. Formal semantics are usually concise and can serve as good
reference for users of a language to look up the meaning of a particular language construct.
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• Basis for formal proofs. Formal proofs about programs in a language or about prop-
erties of a language are only possible with formal semantics. For example, on grounds of
the formal semantics for XChange event queries, one can prove that for every legal event
query, there is some upper bound on the life-spans of all events needed to evaluate (see
[30]).

• Better understanding of the language design. Finally, and maybe most importantly,
definition of formal semantics give new insights into the design of a language. A language
construct that is hard to define formally is likely to be hard to understand and use for a
programmer. Also, the formal definitions help to identify missing or superfluous language
constructs.

The definition of declarative semantics for event queries is done in three steps: First, atomic
events and the stream of incoming atomic events are defined formally. Next, answers to atomic
and composite event queries are defined as sub-sequences of the event stream together with a
substitution set for the variables. Finally, an answering-relation / is defined between queries and
answers. This answering-relation provides the information on when a certain query succeeds
and what its answer is. It is the heart of the declarative semantics and defined by structural
induction on the shape of a query.

The definition of the semantics requires some specific notation, which is introduced as we
proceed.

2.2.4.1 Atomic Events and Event Stream

Atomic events. Atomic events a are data terms d that are received by the query processor
running at some XChange-aware Web site (i.e., they “occur” or “happen”) at a reception-time
r. Together we write this as a = dr.

The domain of data terms T d is defined in [64]. For the understanding of this chapter, only
little knowledge about data terms, simulation unification, etc., is required. We do not give a
full introduction here and will provide the necessary information along the way.

Reception-time, other time points, and time differences are interpreted in a time domain
(T, D). Throughout this chapter we ignore the syntactical representation of time points and
time differences and assume that any time point objects r, b, b′, e, e′ ∈ T, and any time difference
objects w ∈ D are already interpreted objects. While this is a little imprecise on the formal
side, it enhances readability of the formal semantics greatly.

The time domain (T, D) must accommodate time points and time differences (lengths of
time). For this work, it must satisfy the following conditions:

• An equality relation = for both time points and time differences is available.

• There is a total order < on time points indicating that some time point lies temporally
before some other time point.

• In this order, there is a smallest time point 0, and no greatest time point, i.e., time is
infinite for the future.

• A minimum min and a maximum max function for time points are available.

• The time difference between two time points t1 < t2 is t2 − t1.
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• Time differences w, w′ can be compared with w < w′, indicating that w is shorter than
w′.

• Adding a length of time w to a time point t1 results in a time point t2 = t1 +w such that
t2 − t1 = w.

One possibility for the time domain is to use natural numbers N for both time points and time
differences (i.e., T = D = N) with the usual =, <, 0, +, −. Rational numbers Q with the usual
operators work equally well.

Event stream. All atomic events received form together a stream of incoming events (event
stream for short) on which a query is evaluated. In related work [39, 25], this stream of incoming
events is also often called event history. A query registered at an XChange-aware site, can only
“see” events happening after the query was registered; it cannot look into the “past”.8 This
is a basic design assumption that allows to discard each incoming event at some point of time
and avoids storing incoming events forever (cf. 2.2.3.1).

The stream of incoming events E is a finite sequence 〈a1, a2, . . . an〉
e

b of all atomic events
ai = dri

i happening in the time interval [b..e]. The end of the time interval (the “higher”
number) is written in the superscript (the “higher” position) of the sequence, while the begin
is written in the subscript. For correct semantics of an event query, the stream of incoming
events begins at the time b the event query was registered to the system.

The atomic events of an event stream must all lie inside the interval [b..e], and also be
ordered totally with respect to their occurrence time: b ≤ r1 < · · · < rn ≤ e. The total
ordering of atomic events corresponds to the assumption that no two atomic events happen
simultaneously. Note that it suffices to consider a finite sequence: for the evaluation of a query
at some point in time, all events needed in the evaluation have a lower temporal bound (the
time when the query was registered to the system) and an upper temporal bound (the time
when the event is currently evaluated).

To avoid superscript notation, define a function rcp(a) = r for the reception time of an
atomic event a = dr.

2.2.4.2 Answers to Event Queries

Answers. The notion is twofold. An answer to some query consists of:

• a sequence of atomic events s that allowed a successful evaluation of the query on the one
hand, and

• a set of variable substitutions Σ on the other hand.

This corresponds to the notion of answer in other languages, e.g., Xcerpt, where an answer to
a query also consists of matching data terms and substitution sets.

We write answers as a tuple of the event sequence s and the substitution set Σ: (s,Σ).
Sometimes the surrounding parenthesis will be dropped to ease readability: s,Σ.

8Hence, we prefer the term “stream” in this work, as “history” might lead to the conclusion that an event
query looks into the past indefinitely. The term “stream” also integrates nicely with the incremental forward
chaining evaluation of event queries provided in 2.2.5
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Substitution sets. A substitution set Σ is a (finite) set of substitutions σ1, . . . σn. A sub-
stitution σ assigns values, which are data terms, to variable names. We write σ = {X 7→
f [”42”], Y 7→ ”abc”} to indicate that σ assigns the term f [”42”] to the variable named X,
”abc” to Y , and no value to all other variables.9

For later use, we define the restriction Σ |U of a substitution set Σ to a set of variables U .
Intuitively, the substitutions in Σ |U are for the variables of U the same as in Σ, and undefined
(⊥) for all other variables. Formally,

Σ |U= {σ′ | ∃σ ∈ Σ ∀x. σ′(x) = σ(x) if x ∈ U, σ′(x) = ⊥ otherwise }

Event sequences. Event sequences s = 〈a1, . . . an〉
e

b are sequences of temporally ordered
atomic events ai = dri

i together with a beginning time b and an ending time e of the sequence.
It is required that beginning time b is earlier than or equal to all reception times in the sequence,
and ending time e is later than or equal to all reception times in the sequence. Formally:
b ≤ rcp(a1) < rcp(a2) < · · · < rcp(an) ≤ e

Beginning and ending time of an event sequence which is (part of) an answer to a composite
event query correspond to the notion that a composite event stretches over a time interval —
starting with the beginning time of the event sequence. The composite event occurs, i.e., the
rule attached to the query fires, at the ending time of the event sequence.

Note that the stream of incoming atomic events (event stream for short) introduced above
is an event sequence. It contains all atomic events that happened in its duration interval, a
thing that cannot be said for arbitrary event sequences.

Also note that the empty event sequence over some time interval [b..e] —written 〈〉eb— is
considered a legal event sequence by the definition above.

In simple cases, such as an and-conjunction between atomic events, the beginning time b
will be the reception time r1 of the first atomic event in the sequence, and the ending time e the
reception time rn of the last atomic event in the sequence. This is however not true in general.

Again, to avoid super- and subscript notation, define begin(s) = b and end(s) = e for the
beginning and ending times of an event sequence s = 〈a1, . . . an〉

e

b.

Subsequences. To be used in an answer, an event sequence s must be a subsequence of the
event stream E , that is, it contains only atomic events from the event stream. To formalize this
requirement we introduce a subsequence relation between event sequences, represented with
the (round) inclusion sign ⊆. The requirement is then s ⊆ E . However, later in this section
the right hand side can also be an arbitrary event sequence s′ (other then E), giving s ⊆ s′.
Formally we define:

〈a1, . . . an〉
e

b ⊆ 〈a
′
1, . . . a

′
m〉

e′

b′ if and only if

• {a1, . . . an} ⊆ {a
′
1, . . . a

′
m}, and

• b′ ≤ b and e ≤ e′.

9 This is a simplified definition. In [64], substitutions map all variables to construct terms (where X 7→ X

corresponds to no assignment in our simplified definition). There, the slightly more complicated definition is
necessary to define the semantics of Xcerpt rules which include a construction part (cf. [64]). The definition of
the semantics of XChange event queries is the same, not matter which definition of substitution is used. Note
however that a definition of semantics of whole XChange rules needs to accommodate construction and thus
should use the definition from [64].
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An event sequence can also be a complete subsequence of the event stream, that is, it contains
all atomic events from the event stream that lie between the sequence’s beginning and ending
time. This requirement is written with a squared inclusion sign s < E . Again, it is convenient
to define the complete subsequence relation between arbitrary event sequences (s < s′):

〈a1, . . . an〉
e

b < 〈a′
1, . . . a

′
m〉

e′

b′ if and only if

• {a1, . . . an} = {a′
i | b ≤ rcp(a′

i) ≤ e, 1 ≤ i ≤ m}, and

• b′ ≤ b and e ≤ e′.

Note that s < E implies s ⊆ E . Obviously, both relations ⊆ and < are reflexive and transitive.

Union of event sequences. For later use when defining the answer relation /, we also define
the union of two event sequences. The result s′′ = s ∪ s′ is the event sequence containing all
events from s and s′. The resulting event sequence stretches over a time interval covering the
intervals of s and s′. Formally:

〈a1, . . . an〉
e

b ∪ 〈a
′
1, . . . a

′
m〉

e′

b′ =def 〈a
′′
1 , . . . a′′

p〉
e′′

b′′
where

• {a′′
1 , . . . a′′

p} = {a1, . . . an} ∪ {a
′
1, . . . a

′
m}, and

• b′′ ≤ a′′
1 < · · · < a′′

p ≤ e′′, and

• b′′ = min{b, b′} and e′′ = max{e, e′}

The operation ∪ is obviously associative. As usual,
⋃

1≤i≤n si is shorthand for s1 ∪ · · · ∪ sn.

2.2.4.3 Relating Queries and Answers

We will now define a relation expressing when a query q is successfully answered by some answer
(s,Σ). The relation depends on the stream E of incoming atomic events. We write q /E s,Σ
to express that query q is answered by answer (s,Σ) under the event stream E . Recall that we
allowed dropping the parentheses so that q /E s,Σ is just short form of q /E (s,Σ).

It deserves some justification why we use this special answering relation /E instead of some
“normal” model theoretic satisfaction relation, i.e., something along the lines of M |= q[σ] (or
rather E |= q[Σ]). First of all, in XChange an answer is not given by just applying a substi-
tution (set) to a query q; the event sequence part s of an answer needs to be accommodated.
Secondly, this event sequence can, due to partial matches (e.g., andthen [[...]]), contain
more atomic events than actually specified through an event query’s constituent atomic event
queries. Finally, negation is different from classical negation: without q tells us that for all Σ
the query q cannot be answered; classical negation “¬q” would only tell us that there is some
Σ such that E 6|= q[Σ].

For a clean definition of answering substitution sets, we need the notion of negative and
positive polarity of variable occurrences in a composite event query. Intuitively, a variable
occurrence in a composite event query is called negative if evaluation of the composite event
query will yield a value for this variable occurrence. We also say that the variables occurs in
a defining position. Otherwise the variable occurrence is said to be positive (or non-defining).
For example, in
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without {

c [ var X, var Y ]

} during {

andthen [ a{var X}, b{var X} ]

}

the only occurrence of Y is positive (non-defining), and also the first occurrence of X: both are
inside a without and thus a successful evaluation of the query will not yield values for them.
The other two occurrences of X are negative (defining): a successful evaluation of the query
will yield values for them.
Formally, an occurrence of a variable is positive (non-defining) if

• it occurs inside the left query of an XChange without (i.e., in q1 of without q1 during

q2 or without q1 during [b..e]), or if

• it is a positive occurrence according to [64] in the Xcerpt query term of an atomic event
query (e.g., it occurs in Xcerpt without).

It is negative (defining) otherwise.
Assuming a standardization of variables in queries, let V be the set of all variables having

at least one negative occurrence. The variables of V are those that will be assigned values, and
can thus be used in the condition- and action-part of XChange rules.

The answering relation /E is defined inductively on the query q. The induction base is
an atomic query, the induction step uses case distinction on the top-level query operator or
temporal restriction.

For triggering an XChange rule attached to an event query q only those answers (s,Σ)
with maximal substitution sets Σ are considered. Note that there can be several maximal
substitution sets for the same event sequence s.

Intuitively, for an answer (s,Σ) to an event query q, a substitution set Σ is said to be
maximal (w.r.t. a query q and the event sequence s) if there is no substitution set Φ such that
(s,Φ) answers q and Σ is a proper subset of Φ.

Formally, a substitution set Σ is maximal w.r.t. some property P (Σ) and a set of variables
U if and only if for all substitution sets Φ with P (Φ) we have Φ |U⊆ Σ |U (see also [64]). For
our purpose we will have P (Σ) ≡ q /E s,Σ for fixed q, E , s and U = V for V the set of all
variables with at least one negative (defining) occurrence in q.

Atomic Query. q ∈ T q, i.e., q is an atomic event query (T q denotes the set of all possible
Xcerpt query terms). Then, q /E s,Σ holds if and only if

• for all free variables X occurring in q and all σ ∈ Σ, σ(X) is defined and respects all
variable restrictions on X in q (expressions of the form var X -> q’ inside q, see [64,
chapter 7]).

• ∀t ∈ Σ(q) : t � d

• s = 〈dr〉rr < E .

The first and the second line of the definition can be summarized as follows: the query q matches
the data term d under all substitutions from the substitution set Σ.
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The second line deserves some explanation. For a substitution σ and a query q, σ(q) denotes
the ground query term10 resulting from replacing all variable occurrences in q by their value
according to σ (Note that for every variable X in q, the value σ(X) is defined due to line 1).
For a substitution set Σ and a query q, Σ(q) denotes the set of all ground query terms resulting
from the substitutions in Σ, i.e., Σ(q) = {σ(q) | σ ∈ Σ}. The relation � between a ground
query term t and a data term d denotes that t simulates in d; that is to say, t and d “match”.
The necessary formal definitions can, again, be found in [64].

Note that we use a sequence containing a single atomic event here as the answer to the atomic
event query. By this, we make the atomic event query simply a special case of a composite
event query, instead of giving it extra treatment; this makes especially sense since we want to
use it as the base of our inductive definition.

Conjunction. q = and{q1, . . . qn}. q /E s,Σ holds if and only if there exist event sequences
s1, . . . sn such that

• qi /E si,Σ for all 1 ≤ i ≤ n

• s =
⋃

1≤i≤n si

Note that from s being the union of the si it immediately follows that begin(s) = mini begin(si)
and end(s) = mini end(si). This means that a composite event built with and stretches over
the time interval covering all constituent events.

Instead of defining the and-operator with variable arity, it would also suffice to define it
binary and introduce the following rewriting rules to reduce variable arity to binary: and{q1} 7→
q1, and{q1, q2, q3 . . . qn} 7→ and{q1, and{q2, q3, . . . qn}}. We will make use of this possibility when
defining more complicated variable arity operators such as andthen.

Disjunction. q = or{q1, . . . qn}. q /E s,Σ holds if and only if

• qi /E s,Σ for some 1 ≤ i ≤ n

This is the simplest composition operator. The or-query simply “inherits” its answer(s) from
the constituent queries.

Sequence. Defining andthen with variable arity directly would require lots of confusing no-
tation. Instead, we will first define the binary cases for andthen with both complete [ ] and
incomplete [[ ]] specifications, and give rules for reducing the variable arity operator to the
binary case afterwards.

Case q = andthen[q1, q2]. q /E s,Σ holds if and only if there exist event sequences s1 and s2

such that

• qi /E si,Σ for i = 1, 2

• s = s1 ∪ s2

• end(s1) < begin(s2)

The requirements imply that begin(s) = begin(s1) and end(s) = end(s2).

10 A term is called ground if it does not contain variables.
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Case q = andthen[[q1, q2]].
q /E s,Σ holds if and only if there exist event sequences s1, s′, and s2 such that

• qi /E si,Σ for i = 1, 2

• s = s1 ∪ s′ ∪ s2

• end(s1) ≤ begin(s2)

• begin(s′) = end(s1) and end(s′) = begin(s2)

• s′ < E

Again, the requirements imply that begin(s) = begin(s1) and end(s) = end(s2).
The event sequence s′ serves to capture the events happening between the answers s1 and

s2 to q1 and q2, respectively — as demanded by the partial match [[ ]]. The last line of the
definition requires that all those events from the event stream E are contained and no event is
left out (recall that with < we denote a complete subsequence of the event stream).

Case q = andthen[q1, q2, q3, . . . qn], n > 2.
Apply the rewriting rule andthen[q1, q2, q3, . . . qn] 7→ andthen[q1, andthen[q2, q3, . . . qn]].

Case q = andthen[[q1, q2, q3, . . . qn]], n > 2.
Apply the rewriting rule andthen[[q1, q2, q3, . . . qn]] 7→ andthen[[q1, andthen[[q2, q3, . . . qn]]]].

Absolute Temporal Restriction.

Case q = q′ in [b..e]. q /E s,Σ holds if and only if

• q′ /E s,Σ

• b ≤ begin(s) and end(s) ≤ e

Case q = q′ before e. q /E s,Σ holds if and only if

• q′ /E s,Σ

• begin(E) ≤ begin(s) and end(s) ≤ e

Note that the time points b and e are treated as already interpreted objects, not their actual
syntactical representation. Albeit being formally a little unsound, this enhances the readability,
as we dispense with an interpretation function for time objects. To be cleaner, one could take
b and e to be syntactic objects in “q = q′ in [b..e]”, and replace b and e with I(b) and I(e) in
the body of the definition, where I is an interpretation function for time objects.

Relative Temporal Restriction. q = q′ within w. q /E s,Σ holds if and only if

• q′ /E s,Σ

• end(s)− begin(s) ≤ w

As in the previous case, the time length w is an already interpreted object, not the actual
syntactical representation.

50



Variable Restriction. q = var X → q′. q /E s,Σ holds if and only if

• q′ /E s,Σ

• for all σ ∈ Σ: σ(X) = xchange:event-seq[ db, d1, . . . dn, de ] where s = 〈dr1

1 , . . . drn
n 〉

b

e,
db = xchange:beginning-time[b], de = xchange:ending-time[e].

Exclusions.

Case q = without {q1} during {q2}. q /E s,Σ holds if and only if

• q2 /E s,Σ

• For all s′ ( E with begin(s) ≤ begin(s′) and end(s′) ≤ end(s) and all Σ′ with q1 /E s′,Σ′

it holds that Σ |V ∩Σ
′ |V = ∅

Remember that V is the set of all variables having at least one negative (defining) occurrence,
i.e., occur at least once outside of a without operator. Variables occurring only positively (i.e.,
variables that are not members of V ) are implicitly universally quantified: for all possible values
of these variables, the query q1 must not be successful. The last line of the definition captures
this.

Case q = without {q1} during [b..e]. Variation on the case above: remove q2 /E s,Σ and
replace begin(s′) with b and end(s′) with e.

Quantifications.

Case q = times n any var X1, . . . , var Xk {q
′} during {q′′}.

(Note that the keyword any is dropped in the case k = 0 and that n ≥ 1.)
q /E s,Σ holds if and only if there exist n event sequences s1, . . . sn and substitution sets
Σ1, . . . Σn, and an event sequence s′′ such that

• s = s′′ ∪
⋃

1≤i≤n si

• q′′ /E s′′,Σ

• q′ /E si,Σi for all 1 ≤ i ≤ n

• begin(s′′) ≤ begin(si) and end(si) ≤ end(s′′) for all 1 ≤ i ≤ n

• Σi |V \{X1,...Xk}= Σj |V \{X1,...Xk} for all 1 ≤ i < j ≤ n

• Σ ⊆
⋃

1≤n Σi

• Σi is maximal (w.r.t. V and q1 /E si,Σi) for all 1 ≤ i ≤ n

• si 6= sj for all 1 ≤ i < j ≤ n

• if there exists an s′ ( E with begin(s) ≤ begin(s′) and end(s′) ≤ end(s), and a Σ′ with
Σ′ |V \{X1,...Xk}= Σ |V \{X1,...Xk} such that q′ /E s′,Σ′, then s′ = si and Σ′ |V⊆ Σi |V for
some 1 ≤ i ≤ n
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For q to be successfully answered, q′ must be answered by at least n different answers (si,Σi)
(lines 3, 7, and 8). The substitution sets Σi must agree on all variables, except the existentially
quantified variables X1, . . . Xk (line 5). The last line requires that there are no more than the
n answers.

Case q = times atleast n any var X1, . . . , var Xk {q
′} during {q′′}.

q /E s,Σ holds if and only if there exist p ≥ n event sequences s1, . . . sp and substitution sets
Σ1, . . . Σp, and an event sequence s′′ such that

• Conditions from above with n replaced by p hold.

Case q = times atmost n any var X1, . . . , var Xk {q
′} during {q′′}.

q /E s,Σ holds if and only if there exist 1 ≤ p ≤ n event sequences s1, . . . sp and substitution
sets Σ1, . . . Σp, and an event sequence s′′ such that

• Conditions from above with n replaced by p hold.

Cases q = times (atleast|atmost)? n any var X1, . . . , var Xk {q
′} during [b..e].

Variations on the above cases: replace q′′ /E s′′,Σ with s′′ = 〈〉eb. (This is a little “trick” where
we use that empty sequences still have a duration. We could have defined the without {q1}
during [b..e]-case in the same manner, but didn’t in order to illustrate the effects it has.)

Multiple Inclusions and Exclusions.

Case q = m of any var X1, . . . var Xk {q1, . . . qn} during {q
′′}.

(Note that the keyword any is dropped in the case k = 0 and that m ≥ 1.)
q /E s,Σ holds if and only if there exist m event sequences s1, . . . sm and substitution sets
Σ1, . . . Σm and a injective mapping ι : {1, . . . m} → {1, . . . n}, and an event sequence s′′ such
that

• s = s′′ ∪
⋃

1≤i≤m si

• q′′ /E s′′,Σ

• qι(i) /E si,Σi for all 1 ≤ i ≤ m

• begin(s) ≤ begin(si) and end(si) ≤ end(s) for all 1 ≤ i ≤ m

• Σi |V \{X1,...Xk}= Σj |V \{X1,...Xk} for all 1 ≤ i < j ≤ m

• Σ ⊆
⋃

1≤m Σi

• Σi is maximal (w.r.t. V and q1 /E si,Σi) for all 1 ≤ i ≤ n

• if there exists an s′ ( E with begin(s) ≤ begin(s′) and end(s′) ≤ end(s), and a Σ′ with
Σ′ |V \{X1,...Xk}= Σ |V \{X1,...Xk} and a 1 ≤ j ≤ n such that qj /E s′,Σ′, then j = ι(i) for
some 1 ≤ i ≤ m

For q to be successfully answered, at exactly m out of the n queries q1, . . . qn have to be answered;
the injection ι tells which. The third line of the definition demands that there are at least m
answered queries, the last line that there are no more than m. Existential quantification of
variables with any is taken care for in line 5.
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Case q = atleast m of any var X1, . . . var Xk {q1, . . . qn} during {q
′′}.

q /E s,Σ holds if and only if there exist p ≥ m event sequences s1, . . . sp and substitution sets
Σ1, . . . Σp and an injective mapping ι : {1, . . . p} → {1, . . . n}, and an event sequence s′′ such
that

• Conditions from above with n replaced by p hold.

Case q = atmost m of any var X1, . . . var Xk {q1, . . . qn} during {q
′′}.

q /E s,Σ holds if and only if there exist 1 ≤ p ≤ m event sequences s1, . . . sp and substitution
sets Σ1, . . . Σp and a injective mapping ι : {1, . . . p} → {1, . . . n}, and an event sequence s′′ such
that

• Conditions from above with n replaced by p hold.

Cases q = (atleast|atmost)? m of any var X1, . . . var Xk {q1, . . . qn} during [b..e].
Variations on the above cases: replace q′′ /E s′′,Σ with s′′ = 〈〉eb.

2.2.5 Operational Semantics: Incremental Evaluation

Having described XChange’s event queries both informally and formally, we now turn to look
at their evaluation. For this, we start by outlining requirements and considerations for the
evaluation of event queries (Section 2.2.5.1). Evaluation of atomic event queries is conceptually
pretty straightforward and we touch this only briefly (Section 2.2.5.2) before turning to the
heart of this section, the evaluation of composite event queries (Section 2.2.5.3). Ideas on
optimizations of the event query evaluation conclude this part of the report (Section 2.2.5.4).

2.2.5.1 Requirements and Considerations

The setting for event query evaluation is as follows: We have a number of (atomic and compos-
ite) event queries q1, . . . qn currently registered in the system. Every time a new atomic event
a is received, we need to check for every event query qi if it can be answered and should trigger
the execution of its rule. The evaluation of the query qi has to consider the new atomic event a
and — if qi is composite — also some atomic events received previously, i.e., some part of the
stream of incoming events the query has “seen” so far.

Incremental Evaluation Preferably, evaluation of event queries should be performed in an
incremental manner. That is, we want to save work done in the evaluation of an event query
on some incoming atomic event for future evaluation on future incoming events. To give an
example, suppose evaluating the composite event query

q = and{ a{var X}, b{var Y} } within 1h

on the stream

< a{1}, b{2} >

of incoming events.
When a{1} is received, we need to evaluate q for the first time. In doing so, we check

whether a{1} answers any of its constituent atomic event queries a{var X}, b{var Y}; indeed
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it answers the first, but not the second. Since a{1} is the first atomic event we receive, we
do not need to check if the second had an answer previously and know that the composite
and-query q is not answered, yet.

When the next b{2} is received, we need to evaluate q again. In doing so, we obviously
have to check whether b{2} answers a{var X} or b{var Y}; indeed it answers the second, but
not the first. Now, the composite query is successful if the first constituent query has been
answered by a previous incoming atomic event. This is the case here: a{1} has answered a{var
X}.

The last fact has already been established in a previous evaluation of q. In an incremental
evaluation of q we “remember” this fact and use it in the current evaluation. In contrast, a
non-incremental evaluation would have to perform the check whether the previously received
a{1} answers any of a{var X}, b{var Y} all-over again.

Constant Evaluation Cost per Incoming Atomic Event. The cost of an evaluation of
a (legal) event query on some incoming atomic event should be kept roughly constant. That
is, it should not grow with the number of atomic events received so far. This guarantees good
performance and predictable response times for an XChange-aware Web site.

Two things are the key to fulfilling this requirement. First, the incremental evaluation
discussed above. It memorizes work done in previous evaluations in order to not redo it. Second,
we need to avoid that the size or number of composite events caused by a single incoming event
grows (w.r.t. to the number of previously received atomic events). The bounded event life-span
for legal event queries gives us a practical bound on the size and number of composite events
since we consider only atomic events inside this temporal bound in forming the composite
event.11

To illustrate the latter, consider as a counter-example the non-legal event query

and { a{var X}, b{var Y} }

being evaluated on

< a{1}, b{1}, a{2}, b{2}, a{3}, b{3}, ... >

Upon reception of b{1}, we have only one composite event, event-seq [ a{1}, b{1} ]. Upon
reception of b{2}, we have already two composite events, event-seq [ a{1}, b{2} ] and
event-seq [ a{2}, b{2} ]. Upon reception of b{3}, we have three composite events, and so
on. The number of composite events grows linearly in the number of previously received atomic
events. Inherently, the processing of each single incoming b{i} thus becomes slower and slower
over time.

Utilization of Bounded Event Life-Span. Due to the definition of legal event queries,
they can be evaluated with events with a bounded life-span. The actual evaluation must make
use of this language feature and discard events whose life-span has expired.

11 Note that this is only a practical bound for the number and size of composite events. Theoretically we could
have atomic events an arrive at times tn = 1 − 1

n
and thus squeeze infinitely many events in the time-interval

[0..1]. Or we could have atomic events an arriving at regular intervals (i.e., tn = n) but with a growing size
sn = n. Practically however, factors like network bandwidth and processor speed limit the data —and thus the
number and size of atomic events— received in some time interval.
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Treatment of Variable Assignments. As we have seen in the introduction of the event
query language (Section 2.2.3) and the declarative semantics (Section 2.2.4), answers to event
queries (and also answers to the constituent event queries of a composite event query) include
each a substitution set assigning values to the free variables in a query. The query evaluation
has the task of finding the maximal substitution set.

This requirement is, of course, somewhat obvious. Still, it does deserve explicit mentioning:
Related work on the evaluation of composite event queries has focused on the evaluation of the
composition operators and possibly also the evaluation of temporal constraints. Prior to work
on XChange, treatment of logical variables (i.e., variables that enforce equality of their assigned
values if they occur in different places of an atomic or composite event query) has, to the best
of our knowledge, not been given much thought. Existing algorithms for composite event query
evaluation cannot be simply reused. They need at least significant adaption. The handling of
logical variables is described later in this report, in the context of the general framework.

2.2.5.2 Evaluation of Atomic Event Queries

Atomic event queries appear as event queries by themselves or as leaves in the query trees
of composite event queries. Evaluation of a given atomic event query is easy enough: for
each incoming event message we test whether it matches with the atomic event query using
Simulation Unification [23]. We need not to know any of the inner workings of Simulation
Unification; it suffices that it is either successful or unsuccessful. In the successful case it
delivers a set of substitutions for the free variables in the atomic event query. Together with
the event message, this forms an answer to the atomic event query.

Whenever an event message comes in, it has to be evaluated against every atomic event query
currently registered as stand-alone or as constituting part of a composite event query. As there
are typically quite many such atomic event queries, efficient evaluation can be crucial for the
system performance and should be the starting-point of any serious discussion on optimization.
We return to this later in Section 2.2.5.4.

2.2.5.3 Evaluation of Composite Event Queries

Evaluation of composite event queries, sometimes also called composite event detection, is best
done in an incremental manner by maintaining a partial evaluation that is update whenever a
new event message comes in.

Related Work on Composite Event Detection. Extensive research on the issue of (incre-
mental) composite event detection has been conducted in the area of active database systems.
The following three attempts to composite event detection are popular. They can be dis-
tinguished by how they represent the partial event query evaluation, or in other words the
“progress” in the detection of a composite event [28, Chapter 5.3]:

• Finite State Automata. A partial event query evaluation can be represented as a
finite state automaton. The states signify the “progress” made in the detection of a
composite event. State transitions are triggered by incoming atomic events. If a final
state is reached, the composite event has been detected. Finite State Automata are
popular since many event query languages bear a strong resemblance to regular expressions
and construction of an automaton from a given regular expression is a well-understood
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problem. An example here is COMPOSE, which has been developed with the Ode (active)
object-oriented database [38, 37, 39].

It is conceivable to use other, less restricted forms of automata, too, say push down
automata. However, to our knowledge, no such attempt has been made.

• Petri Nets. In similar fashion, a partial event query evaluation can be represented as
a (special type of) Petri net. In the active object-oriented database system SAMOS,
so-called SAMOS Petri Nets (S-PN), which are based on Colored Petri Nets, are used
[35, 36]. The main components of an S-PN are places (input places, output places, and
auxiliary places), transitions, and arcs (wiring transitions and places).

For some given composition operator, tokens on input places model successful evaluation of
a constituting event query, tokens on output places successful evaluation of the composite
query. The auxiliary places are used, together with the transitions and the wiring provided
by the arcs, to model dependencies between event occurrences (e.g., “E1” has to occur
before “E2”).

• Query Trees with Bottom-Up Flow of Events. A different approach uses a query
tree (or graph) that mirrors the structure of the syntax tree (operator tree) of a given
composite event query. The leaf nodes represent atomic event queries, the inner nodes
represent composition operators. Atomic events are injected at the leaf nodes, and we
have a bottom-up flow of (partially composed) events in the tree.

For a given composition operator, its inner node has several children, one for each con-
stituting event query. The children provide input data: the successful evaluations of the
constituting event queries. Additionally, each inner node has some kind of storage facility,
used to memorize events (or other information) possibly needed in future evaluations.12

For example, in an evaluation of andthen[a, b] on a, the event a does not make a com-
posite event occur, but has to be memorized for the future (when a b arrives). When the
inner node detects a composite event from the input events and the memorized events, it
outputs the composite event as input to its parent node.

The tree-based approach seems to be the most widely adopted; it has been presented first
in SNOOP [25] and been used in a number of systems subsequently, e.g., GEM [47], EPS
[53], and ruleCore (see Appendix A and [62]).

The basic idea for this kind of incremental evaluation can be found in the rete algorithm
[34]. It describes an incremental forward-chaining evaluation for use in inference systems
where over time new facts are told to the system.

Composite Event Detection in XChange. Composite event detection in XChange uses a
tree-based approach. While approaches based on automata and Petri nets come with computa-
tion models that are well understood in practice and theory, one has to devise new, specialized
algorithms for the data-flow in the tree-based approach. Still, the tree-based approach scores
over the others in the following points:

12 Depending on the event language and its notion of answers, there might be cases where one actually does not
have to memorize events. For some sorts of sequence operators, for example, it can suffice to simply “activate”
the right child when an event from the left child has been detected. This approach is described in [28, chapter
5.3]. In the tree-based approach used in [25], for example, nodes do store events.
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• Reflection of Query Structure. The query evaluation tree reflects the structure of
the query (more precisely, the query’s operator tree). It is thus easy to comprehend and
makes an implementation easier to debug.

In contrast, an automaton constructed from a query bears little resemblance to the query
structure. The construction is potentially error-prone; the same holds for Petri nets.

• Efficiency and Feasibility of Implementation. The tree-based approach has been
shown to be reasonably efficient, and lends itself easily to optimizations such as query
rewriting or exploiting similarities between different queries. As described in [30, Chap-
ter 8], implementation is not too difficult once the needed data structures and algorithms
are understood.

In contrast, implementation of Petri nets can be complex and quite inefficient as argued
in [53]. Implementation of (Finite State) Automata is well-understood and should usu-
ally be computationally efficient; however, there is a danger that the number of states
is exponential in the size of the query, leading to an expensive construction and bad
memory requirements. (Lazy automaton construction can help here but usually makes
implementation significantly harder.)

• Versatility. It has been shown that the tree-based approach can be adapted to various
requirements. GEM [47] presents a version that can deal with delays in event reception
due to unsynchronized clocks. EPS [53] presents a version that also deletes events when
they time out. In this work we present a version that also supports deletion of events
and, moreover, deals with variable assignments (cf. 2.2.5.1).

To our knowledge there has been little work on extending Finite State Automata or Petri
nets to accommodate requirements such as delayed event reception or variables. (The
Petri nets-based SAMOS [36] provides limited access to data contained in events, but
does not provide an easy way to accommodate substitutions or substitution sets arising
from atomic event queries.)

Tree-Based Representation of Partial Event Query Evaluations. Parsing and compil-
ing an event query results in an operator tree. The inner nodes of the operator tree implement
language constructs such as and, or, where, within, without ... during ..., times ...

during ...; the leaves implement atomic event queries. For a given query, we obtain the op-
erator tree in the obvious way.13 For example the query in Figure 2.1(a) corresponds to the
operator tree in Figure 2.1(b).

Note that the construct without {q1} during {q2} is implemented by one node with q1

as left child and q2 as right child. The same applies to times mult {q1} during {q2} and
mult of {q1} during {q2}. In the following we will only consider the operators and, or, and
andthen in their binary forms; variable arity forms can be reduced to binary ones as discussed
in Section 2.2.4.3.

In order to use the operator tree in an incremental evaluation, some inner nodes are extended
for storing composite events (that is, tuples consisting of an event sequence and a substitution

13 In general, e.g., in relational databases, it is not so obvious how to obtain an operator tree from a query
as there is not necessarily a one-to-one correspondence between language constructs and physical operators.
Also, there are usually many operator trees for a query and these can differ significantly in efficiency. Here
however, we have a one-to-one correspondence of language constructs and operators, so we can easily obtain a
basic operator tree that resembles the query’s syntactic structure closely.
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and {

or {

a {{ }},

b {{ }}

},

andthen [

c { var X },

d { var Y }

] where { var X > var Y }

} within 1h

(a) A (composite) event query

within 1h

and

or

a{{ }} b{{ }}

where X > Y

andthen

c{ var X } d{ var Y }

(b) The query’s operator tree

Figure 2.1: A (composite) event query and its operator tree

set). The node stores all composite events it received from its children that might be needed
in the future to compose the answer event. The details depend on the operator and should be
chosen so as to allow an efficient event composition.

Let us consider the storage for or, andthen, and and.

An operator node for or does not need any storage at all; when any of or’s two children
detects an event, this event is immediately handed over to the or’s parent node.

An operator node for andthen must only store events from its left child, e.g., as a list of
events sorted by their ending time. When an event from its right child arrives, this event can
immediately be combined with all the stored events from the left child to form the composite
events that are handed over to the andthen’s parent.

An operator node for and has to store events both from its left child and right child. If an
event from the left child arrives, it has to be combined with all the stored events previously
received by the right child, and vice versa. Accordingly, a reasonable way for the event storage
in an and-node is to maintain one list of events from the left child and another list of events
from the right child.

Other operator nodes might be better implemented with more advanced storage structures
than simple lists. For example, times mult {q1} during {q2} could use for its right child
(q2) a simple list, but for its left child (q1) a table organizing events by their substitution sets
(remember the definition of times: the substitution sets for events matching q1 have to be
equal to provide an answer to the times-query).

Note that it usually suffices to store references to the events, not copies. Especially, for the
potentially large XML documents of event messages we only need to maintain a single copy in
memory, and we can then use references in the operator nodes. The event messages can even
be stored in secondary storage, e.g., on a hard disk: for the event query evaluation we will not
have to access the event messages themselves, only their substitution sets.

So far in this discussion, we have said that the composed composite events are to be handed
over to the parent. The root of the operator tree has, however, no parent. Composite events
handed over by the root to its “non-existent parent” are those composite events that trigger
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execution of the event query’s rule. Instead of this non-existing parent, we can also imagine a
virtual root node that receives the events from the real root and takes care of triggering rule
execution.

Bottom-Up Data-Flow for Event Detection. In the operator tree representing some
event query, incoming event messages are injected at the leaf nodes (which correspond to atomic
event queries). From there, data in the form of composite events, that is, tuples of an event
sequence and a substitution set, flow upwards in the tree. Composite events leaving the root
node trigger execution of the rule attached to the evaluated event query.

We will now illustrate this bottom-up data-flow in the operator tree. The (binary) and-
operator node provides with a simple but sufficiently interesting example.

When the and-operator node is being evaluated we have the following information available:

• events detected in the current evaluation by the left child (newL),

• events detected in the current evaluation by the right child (newR), and

• stored events from previous evaluations, one list for the left child (oldL) and one list for
the right child (oldR).

Here and in the following, “event” will always mean a composite event, that is, a tuple (s,Σ)
of an event sequence and a substitution set. As in Section 2.2.4, an atomic event leaving the
leaf nodes (representing atomic event queries) in the tree can be treated as a special case of a
composite event where the event sequence contains only one event message.
The and-node now has to do two things:

• compute all events that can be composed in the current evaluation from the given four
sets of events newL, newR, oldL, oldR;

• update the event storage for future evaluations, that is, compute event sets oldL’, oldR’
from newL, newR, oldL, oldR.

The second task is trivial: all available events, the new and the old, can play a role in future
evaluations of and. So we have oldL′ := oldL ∪ newL and oldR′ := oldR ∪ newR. Note that
deletion of events due to the bounded life-span is dealt with separately (see next section).

The first task is the interesting one. For every event generated by the right child (either
in the current evaluation or in a previous one) we need to check whether there is an event
generated by the left child such that the two can agree on a common substitution set. In other
words, every tuple ((sL,ΣL), (sR,ΣR)) of events in newL× newR ∪ oldL× newR ∪ newL× oldR
needs to be checked for a suitable common substitution set Σ. If we find one (we will see: Σ
must not be empty), the tuple generates the (composite) and-event (sL ∪ sR,Σ). Note that
we need not check tuples in oldL × oldR; these have already been checked in some previous
evaluation.

We are now left with the following task: We are given two substitution sets ΣL and ΣR

assigning values to all free variables VL and VR in their respective queries. (We will assume
that the substitutions in ΣL assign only values to variables from VL and are undefined for
other variables; analogously for ΣR.) From this we have to compute a maximal “common”
substitution set Σ. Σ must assign values to all free variables of both queries V = VL ∪ VR in a
fashion that it does not “contradict” ΣL or ΣR. More precisely we must have Σ |VL

⊆ ΣL |VL
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and Σ |VR
⊆ ΣR |VR

and Σ maximal. Here, the substitution set Σ = ∅ signifies that ΣL and ΣR

contradict each other and we cannot form a composite event.14

Σ can be computed as some special sort of natural join Σ = ΣL 1 ΣR where

Σ1 1 Σ2 = {σ1 ∪ σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2,∀X. σ1(X) = σ2(X) ∨ σ1(X) = ⊥ ∨ σ2(X) = ⊥}.

An alternative way to view this it to see substitution sets as logical formulas (constraints on the
values a variable can be assigned). Substitutions σ are a conjunction of constraints of the form
X = t (X variable, t data term), e.g., X = f{} ∧ Y = 1 for σ = {X 7→ f{}, Y 7→ 1}. Variables
not being assigned a defined value do not appear in this conjunction. A substitution set is then
a disjunction of its substitutions (it is in disjunctive normal form!). The common substitution
set Σ of ΣL and ΣR can then be obtained by bringing the conjunction of the formulas for ΣL

and ΣR into disjunctive normal form: “Σ = ΣL ∧ ΣR.”15 This view of substitution sets is
beneficial if we need to accommodate negations (see Section 2.2.5.3): we can simply also have
negated constraints X 6= t. Hence, the implementation of event query evaluation in [30] is based
on constraints rather than substitution sets.

The join of substitution sets (or, the conjunction of constraints) is the most important
operation in the incremental event query evaluation. It is used by almost every composition
operator (or is an exception) in one form or another. Need for the join is also an aspect
that distinguishes event query evaluation in XChange from previous work on composite event
detection: previous work usually did not consider variable substitutions obtained from event
data at all.

To conclude this discussion on event detection, we will shortly explain the handling of
andthen[ ]. The andthen[ ] operator stores events from its left child (oldL); events from its
right child are not needed in future evaluations. Upon evaluation, andthen[ ] tests every tuple
((sL,ΣL), (sR,ΣR)) ∈ oldL×newR for end(sL) < begin(sR) and Σ := ΣL 1 ΣR 6= ∅ to generate
new composite events (sL∪sR,Σ). Note that it is not necessary to check tuples from newL×newR
since there we have end(sL) = end(sR) and hence automatically end(sL) ≮ begin(sR).

Top-Down Traversal for Event Deletion. Event detection only adds events to the storages
of the nodes in the operator tree. Event deletion has the task of removing those events from
the storage that are not needed anymore. Whether an event is needed or not is decided by the
bound on the event’s life-span provided by the legal event query we are evaluating.

Event deletion depends on the current time and the life-span bound(s) provided by the event
query. Time restriction operators (in, before,within) put a bound on all events stored in their
subtrees in the operator tree. The same applies to the during FiniteTimeInterval-operators.

Accordingly, we traverse the operator tree top-down to delete events. We maintain an
absolute time interval [min...max] as a restriction for events. All events that lie in this time
interval are still “alive” and can be needed in future event detections. Events that do not (i.e.,
their begin is earlier than min or their end later than max) are to be deleted.

Initially, when starting traversal at the root node, we place no restriction on events, i.e.,
[min..max] := [−∞..now] (where now is the current time and we have end(s) ≤ now for any
event (s,Σ) stored in the tree). At each node in our traversal we do the following:

14 Note the subtle and important difference between Σ = ∅ and Σ = {∅} = {σ⊥} (where σ⊥(X) = ⊥ for all
variables X). The latter is a valid substitution set obtained when no free variables occur in the queries.

15 Taking up on the previous footnote, Σ = ∅ corresponds to the formula false, while Σ = {∅} corresponds to
the formula true.
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• If the node represents a time restriction operator (in, before,within) or a during

FiniteTimeInterval-operator, adjust the time restriction [min..max] to [min′..max′].
The adjustment will be described below. Otherwise leave it unchanged ([min′..max′] :=
[min..max])

• Test every event (s,Σ) stored in the current node against the time restriction [min′..max′];
delete it if [begin(s)..end(s)] 6⊆ [min′..max′].

• Traverse all subtrees of the node with the adjusted restriction [min′..max′].

Note that, while we start the traversal with no restriction ([−∞..now]), for every legal event
query the root node is an operator that immediately adjusts the restriction (definition of legal
event queries in Section 2.2.3.4).

We now are left with describing the adjustment of [min..max] to [min′..max′] at in-,
before-, within-, and during FiniteTimeInterval-nodes.

Case Node is in [b .. e].
An event (s,Σ) has to satisfy [begin(s)..end(s)] ⊆ [min..max], the restriction imposed by the
node’s ancestors, and [begin(s)..end(s)] ⊆ [b..e], the restriction imposed by the current node.
We put the pieces together and have [min′..max′] := [min..max] ∩ [b..e].

Case Node is before e.
Similarly, we do [min′..max′] := [min..max] ∩ [−∞..e].

Case Node is within w.
As before, we have [begin(s)..end(s)] ⊆ [min..max] from the ancestor nodes. Now, any (com-
posite) event being generated in future event detections will have end(s) ≥ now (otherwise it
has already been generated). It also has end(s) − begin(s) ≤ w by the current node’s restric-
tion. In summary [begin(s)..end(s)] ⊆ [(now −w)..now], and this restriction applies also to all
currently stored events if they will be used in constituting future composite events. Therefore,
[min′..max′] := [min..max] ∩ [(now − w)..now].

Case Node is during [b .. e].
As in the in-case: [min′..max′] := [min..max] ∩ [b..e].

Note that this deletion can decide whether or not to delete a stored event solely based on the
current time and the event query. It does not depend on the received events.

Considering the received events could allow us to delete more events, e.g., in a query like
the one of Figure 2.2 we could delete events in the left subtree of times (instances of x{{ }})
based on information about events in the right subtree: for each instance of x{{ }} there must
be an earlier instance of a{} somewhere in the right subtree; otherwise x{{ }} cannot possi-
bly satisfy the requirement to happen during an instance of andthen [ a{}, b{} ]. While
considering received events in such a way can save memory, it would however complicate event
deletion significantly. Whether the win in space consumption justifies the increased time con-
sumption caused by the complication is doubtful. It generally seems preferable to work first
with the simple event deletion and introduce such space-time trade-offs only when they are
really necessary.
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times 3 {

x {{ }}

}

during {

andthen [ a{}, b{} ]

}

within 1h

(a) The event query

within 1h

times 3 during

x{{ }} andthen

a{ } b{ }

(b) The query’s operator tree

Figure 2.2: Operator tree for a times...during...-query

Special Considerations. The preceding sections have provided us with the general ideas
for event detection and event deletion. There are still some smaller details that have to be
explained to be able to evaluate the full event query language as presented in Sections 2.2.3
and 2.2.4.

Duplicate Elimination. The evaluation algorithm discussed above can, in some rare cases,
yield duplicate answers that should not be duplicated according to our formal semantics (Sec-
tion 2.2.4). Consider evaluating the (admittedly somewhat pathological) event query

and {

andthen[ a, b ],

or { a, b }

}

on the event stream E = 〈a0, b1〉
1
0 with the method outlined above. (For simplicity and con-

ciseness we will use simple integers as time points and durations here and in the examples in
the rest of the chapter.) Evaluation of the component andthen [ a, b ] will yield one an-

swer (sandthen = 〈a0, b1〉
1
0). Evaluation of the component or { a, b} will yield two answers

(sor1 = 〈a0〉
0
0 and sor2 = 〈b1〉

1
1). Accordingly, a join of the answers for evaluating the whole

and will, without a duplicate elimination, yield two separate answers that are however equal:

s1 = sandthen ∪ sor1 = 〈a0, b1〉
1
0 and s2 = sandthen ∪ sor2 = 〈a0, b1〉

1
0.

Our formal semantics is based on sets and relations and thus requires that the two answers
are treated as one (note that here the queries have no free variables and thus the substitution
sets are automatically equal). Rather than modifying the evaluation algorithms to catch cases
as the one outlined above, it is easier to leave them as they are and to perform a duplicate
elimination afterwards.

Equal answers are in particular equal in the ending time, so it suffices to perform duplicate
elimination for each single query evaluation on an incoming event message. Also, it suffices to
perform it only for the results delivered by the root node in the operator tree, or in case that
events are counted (times).

Duplicate elimination can be performed in O(n log n)-time (it can be reduced to sorting),
where n is the number of answers delivered by the root node in a single query evaluation.
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Generally, n will be very small (most times 0, in fact), so a naive O(n2) implementation of
duplicate elimination (i.e., compare all tuples) might even be faster in practice. The naive
implementation also avoids having to define an ordering relation on event sequences.

Partial Matches. An andthen[[ ]]-operator with a partial match specification returns as
answer not only event instances matching the specified event queries, but also any atomic events
happening between them. Therefore, the andthen[[ ]]-inner node needs access to these atomic
events. Several possibilities exist; we choose here the following: extend it to have three children:
a left child and a right child, both derived from an event query just as in the case of the total
andthen[ ], and an additional middle child that matches any incoming atomic event. The
node has an event storage for each of its children in the form of a simple list (recall that only
references to these atomic events need to be stored). Detection of events works the same way
as in the total andthen[ ] case. The answer that is passed to the parent node is similarly
extended: those events from the middle child’s storage that happen between the events from
the left and the right child are added to the answer’s event sequence; the answer’s substitution
set is not modified.

Negation. Variables that occur both inside a without-construct and elsewhere in an event
query (with a defining (negative) occurrence), need special consideration. Take, for example,
the event query (using as mentioned above simple integers for time points)

andthen [

without { a {var X} } during [0..1]

b { var X },

]

being evaluated on E = 〈a{0}0, a{1}1, b{2}2, b{1}3〉
0
2.

According to the semantics (Section 2.2.4), the event query evaluates successfully upon

reception of b{2}. The answer is s = 〈b{2}2〉
2
0, Σ = {{X 7→ 2}}. Evaluation is however not

successful upon reception of b{1}, since X 7→ 1 would allow the negated a{var X} to evaluate
successfully.

Keeping in mind that we want to use incremental evaluation, note that in this example the
defining occurrence of X is part of a component (b { var X }) that will be evaluated only
after the component with the non-defining occurrence (without) has been evaluated. Even
more, if we replace andthen [ ] with and { } in the example, we can say nothing about their
evaluation order. It is thus preferable to find a way to accommodate negation without relying
on evaluation order, but rather using only the bottom-up data flow in the evaluation tree.

Our solution is to extend the notion of substitution sets. Up to now, substitutions only
prescribe assignments of values to variables. We extend this, so substitutions can also “forbid”
specific assignments. In the example above, the without-component would thus not prescribe
any assignments (since there are no defining variable occurrences), but it would forbid assign-
ment of 0 or 1 to X: Σn = {σn} with σn = {X 67→ 0, X 67→ 1}.

A join of Σn with Σb1 = {{X 7→ 2}} (from evaluation of b{ var X } at time point 2) in the
evaluation of andthen will succeed with Σ = {{X 7→ 2}}. A join of Σ with Σb2 = {{X 7→ 1}}
(from evaluation of b{ var X } at time point 3) in the evaluation of andthen will fail due to
X 67→ 1 and X 7→ 1.

Forbidding certain assignments also integrates nicely with our alternative view on substi-
tutions sets as constraints on the variables (cf. 2.2.5.3 above). The forbidden assignments
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σn = {X 67→ 0, X 67→ 1} simply give negated constraints ¬(X = 0) ∧ ¬(X = 1). The im-
plementation (see [30, Chapter 8]) is based on constraints rather than substitution sets. It is
especially convenient to use constraints since the Xcerpt prototype implementation [64] provides
a constraint solver we can rely on.

Existentially Quantified Variables. The language construct any in times mult any var X1, . . .
Xk {q} during D and mult of any var X1, . . . Xk {q1, , . . . , qn} during D (where D is an ab-
solute time interval or a composite event query) introduces an existential quantification of the
variables X1, . . . Xk. That is, answers to q or q1, . . . qn respectively need only agree in their
substitutions on all variables except X1, . . . Xk. We cannot simply use the join operation 1

from above (see Section 2.2.5.3) to build the answer to the composite event.
Let us analyze only the case times n any varX1, . . . Xk {q} during D first and state the

problem clearer.
While D runs, q evaluates successfully a couple of times to answers (s1,Σ1), (s2,Σ2), . . . ,

(sN ,ΣN ). These answers could be needed when D finishes to form an answer to the whole
times-query and we store them.

Now, when D finishes, we need to find all subsets with cardinality n of the set S := {(s1,Σ1),
(s2,Σ2), . . . , (sN ,ΣN )} which satisfy the conditions given by the semantics of the times-
operator (cf. 2.2.4.3). These are (1) Σi |V \{X1,...Xk}= Σj |V \{X1,...Xk} for all 1 ≤ i < j ≤ n,
(2) Σ ⊆

⋃

1≤n Σi, and (3) Σi maximal; Σ here denotes the substitution set of the answer of the
whole composite event query.

Our first task is thus finding all subsets of S with cardinality n whose elements are equal
on Σi |V \{X1,...Xk}. This is not hard, we can simply sort the elements (si,Σi) of S into buckets
bj according to their restricted substitution sets Σi |V \{X1,...Xk}. (Note that the substitution
sets are maximal according to the condition (3), so we do not have to look at subsets of the
substitution sets.) A bucket bj = {(sj1,Σj1), . . . (sjnj

,Σjnj
)} delivers an answer for the whole

times-query if and only if it contains exactly n elements (i.e., |bj | = nj = n). Given such
an answering bucket bj , we simply set according to the second condition of the semantics:
Σ′ :=

⋃

1≤l≤nj
Σjl.

If the duration D in the whole times-query is a composite event query q′′, it has an answer
(s′′,Σ′′) and we need to join Σ′ and Σ′′ before giving the result to the parent node in the operator
tree: Σ := Σ′

1 Σ′′. (Note that this can make Σ “smaller” than Σ′; hence the semantics only
requires “⊆”, not “=” in condition (2).) If D is an absolute time interval, simply set Σ := Σ′.

The extension of this idea to times atmost and times atleast is trivial. The extension
to work for the of operator is also not hard: one simply has to modify the conditions on the
bucket, so that its elements must have been generated by different queries.

2.2.5.4 Ideas for Optimizations.

The algorithm outlined up to now leaves much room for optimizations. We now discuss a few
ideas how it could be optimized. Note that these are all only basic ideas that still require a lot
of work to be worked out fully.

Stream-Based Evaluation of Atomic Event Queries. Event query evaluation has to
evaluate a potentially high number of atomic event queries. Atomic event queries can be
registered as stand-alone event queries or as constituting parts of composite event queries. While
in a composite event query’s operator tree inner nodes (implementing composition operators)
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have to be evaluated only when their children deliver new events, the leaves (implementing
atomic event queries) have to be evaluated every time a new event message is received. Since
thus atomic event query evaluation plays such an important role also in composite event query
evaluation, its optimization should usually provide the most benefits and be the most important.

We can formulate the optimization problem as follows: On a single incoming event message
(XML document or data term) t we have to evaluate a number of atomic event queries (Xcerpt
query terms) q1, . . . , qn. Generally we can assume that the XML document t is small enough so
it can fit into main memory.16 The queries q1, . . . , qn are relatively static; only once in a while
one of them will be removed or a new one added. In contrast, we receive new XML documents
t in rapid succession and have to evaluate q1, . . . , qn on each.

Situations like this, where many queries are evaluated repeatedly on single XML documents
(or data points, data tuples, etc.) have been analyzed in data stream processing [18]. In contrast
to traditional database work, where usually the data is indexed, the goal in stream processing is
to perform indexing on the queries; typically one tries to exploit similarities between different
queries such as common sub-expressions, so that these are not evaluated for each query but
only once.

A stream-based evaluation of Xcerpt queries (i.e., atomic event queries) would provide a
great optimization for the event query evaluation in XChange. Surely concepts from stream-
based evaluation of other query languages, esp. XPath [7], can be borrowed for this. For a
stream-based evaluation of Xcerpt queries in the framework of XChange we can however make
some assumptions less common in existing work on stream-processing of XML:

• We only need to process single, whole XML documents one at a time, and can assume
that each of these fits into main memory. This is in contrast to some other work in XML
stream processing, e.g., SPEX [16, 55], where it is assumed that the stream itself is one
large or even infinite XML document.

• Since we can read an incoming XML document completely before starting to evaluate
queries on it, it can be worth considering to perform some (cheap) main-memory indexing
operations on the XML document, say build a hash table for the labels. Preferably, any
such data indexing should be such that it can be performed in one pass while parsing the
XML document.

• Atomic event queries (Xcerpt query terms) allow an equivalent of joins inside a single
event message (XML document) by using the same variable in different places. Many
stream-processing systems explicitly forbid joins within a stream or allow only restricted
forms. Note that joins between two different event messages are also possible in XChange,
but only by means of composite event queries; thus there is no need to consider them here.

Shared Composite Event Detection. Similar to the way stream-based evaluation of atomic
event queries above exploits shared sub-expressions in atomic event queries, one can try to ex-
ploit shared sub-expressions in composite event queries. This can be done both within a single
composite event query, making the operator tree an acyclic graph, and among different com-
posite event queries, leading to a sharing of (sub-)trees. A composite event detection system
performing such optimization is EPS [53].

For example, the operator tree for the single composite event query

16 Keep in mind that during the composite event query evaluation (processing of inner nodes in the operator
tree) t needs not be accessed anymore; it suffices to maintain a reference to it when constructing the event
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within 1h

andthen

and

a{var X} b{var X}

or

and

a{var X} b{var X}

c{var X}

(a) Unoptimized operator tree

within 1h

andthen

and

a{var X} b{var X}

or

c{var X}

(b) Optimized operator graph

Figure 2.3: Optimization of an operator tree into an operator graph

within 1h

andthen

a{var X} and

b{var Y} c{var Z}

within 1h

andthen

d{{ }}

Figure 2.4: Optimization of composite event queries with shared sub-expressions

andthen [

and { a{var X}, b{var X} },

or {

and { a{var X}, b{var X} },

c{var X}

}

] within 1h

depicted in Figure 2.3(a) can be optimized to the graph in Figure 2.3(b).

For another example, the composite event queries

sequences that are part of the answers. Thus t can be moved to secondary memory after the evaluation of all
atomic event queries).

66



andthen [

a{ var X },

and { b{var Y}, c{var Z} }

] within 1h

and

andthen {

and { b{var Y}, c{var Z} },

d{{ }}

} within 1h

share the common sub-expression and{ b{var X}, c{var Y}. We can thus try to optimize
their two operator trees into a graph such that they share a subtree for the common sub-
expression as depicted in Figure 2.4.

When optimizing between different composite event queries, care has to be taken if the
composite event queries were not registered at the same time. A common subtree of an earlier
registered query can have memorized events prior to the registration of a later query; these
events are not relevant for the query that has been registered later and need to be filtered out.

Inhibit or Delay Evaluation of Certain Subtrees. Some operators allow us to inhibit or
delay evaluation of some of their subtrees. Consider the andthen-operator. As long as we have
no answer for the left child, there is no need to evaluate the whole subtree of the right child
at all; we can inhibit evaluation of the right subtree. Alternatively, we can delay evaluation
of the left subtree as long as we have no answer from the right child, and only when we have
an answer from the right child (which might not happen at all!) we start evaluating the left
subtree; this requires that the incoming event messages for the left subtree are memorized while
its evaluation is delayed.17

For the andthen-operator we cannot, of course, inhibit evaluation of the right subtree and
delay evaluation of the left subtree both at the same time. We can however start by inhibiting
evaluation of the right subtree until a first event in the left subtree has been detected and then
switch to delayed evaluation of the left subtree.

Restructuring of Operator Trees. A common query optimization technique in databases
is restructuring the initial operator tree to an equivalent, hopefully more efficient, operator tree.
This relies on laws like commutativity, associativity, or distributivity for the operators of the
query language.

In principle, restructuring of the operator tree as an optimization technique is also possible
for XChange’s event queries. For example, and{ and{ and{a,b}, c }, d } is equivalent to
and{ and{a,b}, and{c,d} }.

We do face two problems however. First, there seem to be only a small number of laws that
can be used for restructuring in XChange’s event query language. The few obvious ones are
associativity of the (binary) and, or, andthen, and distributivity of and and or. (Then again,
maybe we just haven’t found other valuable laws yet.) Second, we have no a priori information
(e.g., a data dictionary containing statistics about data such as number of entries in a table)
available that allows a good cost estimation. The only thing we can do is use statistics gathered
in the past and try to “predict the future” with them and of course use simple heuristics that
do not require any statistical information.

Still, there is one simple optimization that we can learn from relational databases that is
very easy to do and should (if applicable) definitely pay off: push-selection. The where-clause
in XChange gives conditions on the variables, much like a selection σC gives a condition C on
data tuples. If it is used on a more complicated expression, it is often possible to push it into

17 A language with support for lazy evaluation such as Haskell might actually perform such an optimization
automatically without posing any work on the shoulders of the programmer.
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the sub-expression. For example σC(A×B) can be rewritten to σC(A)×B if the condition C
only applies to relation A. Similarly rewriting can be done with some event queries in XChange.
For example:

andthen [

and {

a{ var X },

b{ var Y }

},

c {var Z}

] where { var X < var Y } within 1h

to

andthen [

and {

a{ var X },

b{ var Y }

} where { var X < var Y },

c {var Z}

] within 1h

Push-selection might be a little less important in XChange than in relational databases: in
XChange, the programmer of a query has the freedom to place the where-clause where he
wants it; in relational databases, he is often restricted to Select-Project-Join (SPJ) queries.
But push-selection is still a very valuable addition in XChange as it takes the responsibility of
placing where-clauses efficiently from the programmer’s shoulders.

Efficient Algorithms for Joins of Substitution Sets. Last but not least for an efficient
composite event detection, efficient algorithms for each inner node that implements a composi-
tion operator need to be devised. Foremost, we have to investigate an efficient computation of
the join Σ1 1 Σ2 of substitution sets (or, equivalently the conjunction C1∧C2 of two constraints
in disjunctive normal form) since it is the most frequent operation. Strongly connected with
this is the task to find good supporting data structures for the event storage in a node.

Our join of substitution sets is only a variant of a usual natural join that treats undefined
values differently. Algorithms to efficiently compute joins have been investigated in the database
community for a long time, and it should be no problem to adapt them. In contrast to the usual
assumption made in databases, however, we assume in XChange that substitution sets are small
enough to be kept in main memory. This gives a cost model that is quite different from those
used in databases, so algorithms which are considered inefficient for normal secondary-storage
databases might actually show good performance in XChange and vice versa.

2.3 XChange Conditions – Web Queries

Web queries are queries to persistent data (i.e. data of Web resources); they represent the
“condition part” of XChange reactive rules (cf. Section 2.5). Web queries determine if certain
conditions hold (e.g. a person making a rental order is one of the clients of the rental firm, or
the notification of a flight cancellation concerns Mrs. Smith’s flight) and gather data as variable
bindings that is needed for performing the desired actions (e.g. insertion of a new client in the
database with the information received through the rental order, or booking an overnight stay
for Mrs. Smith where the flight date is used).

2.3.1 Web Queries with Xcerpt

In XChange, Web queries are expressed using the Web and Semantic Web query language
Xcerpt [64] that is being developed in the Rewerse working group I4. An XChange Web
query is an Xcerpt query, that is a negation, conjunction or disjunction of query terms. Query
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terms are used here for specifying patterns for the data to be queried augmented with variables
for selecting data of interest. Variables bindings can be restricted to given patterns. Non-
structural conditions on variables are specified in a where clause attached to the query terms
or the whole query.

Web queries (Xcerpt queries) can query persistent data directly or by querying views con-
structed by means of deductive rules (Xcerpt construct-query rules). A resource specification
inside an Xcerpt query gives the Web resources to be queried. If no resource specification is
given, the Xcerpt query is posed against the data constructed by means of the Xcerpt construct-
query rules contained in the same XChange program; thus, complex querying problems can be
elegantly solved by using views over multiple, heterogeneous data sources. Section 2.5.4 gives
an example of an Xcerpt rule constructing such a view.

This section does not elaborate more on Web queries, as they have been developed as part
of Xcerpt, within Rewerse WG I4. Section 2.5 shows how Web queries are used together with
event queries and action specifications in XChange so as to give reactive rule specifications. For
more information on the query language Xcerpt used for specifying Web queries see [64, 23, 21,
22, 65].

2.3.2 Semantics of Web Queries: Underlying Ideas

Given an XChange program P , the Web queries Q of P ’s reactive rules are Xcerpt queries,
that is conjunctions (denoted and{Q1,...,Qn}, Q1 ∧ · · · ∧Qn or by

∧

1≤i≤n Qi), disjunctions
(denoted or{Q1,...,Qn}, Q1 ∨ · · · ∨ Qn or by

∨

1≤i≤n Qi) or negation (denoted not Q or by
¬Q) of query terms of T q. Also, the deductive rules Drk of the form tk

c ← Qk are Xcerpt
rules. The aim of P ’s deductive rules is to “provide” (inferred or transformed) data for the
Web queries Q. This section presents the underlying ideas of the declarative semantics of the
query language Xcerpt and shows how this fits into the framework of XChange.

A model theory for the query language Xcerpt has been developed (see [64], Chapter 7),
which follows the approach of classical Tarski-style semantics for first order logic. However, the
distinctive features (such as the grouping constructs in the head of the rules and partial speci-
fications of queries) of the language Xcerpt entailed considerable differences from the classical
logic. Classical logic differentiates between terms (representing objects) and atomic formulas
(representing statements about objects); though, Xcerpt terms are atomic formulas expressing
the statement that the respective term exists. Informally, an interpretation is a set of data
terms that specifies what data terms exist and a model is an interpretation containing the
terms inferred by the given Xcerpt rules.

The model theory of Xcerpt considers Xcerpt programs (sets of Xcerpt rules) as formulas.
Query, construct, and data terms, and ⊥ (falsity) and > (truth) are constituents of atomic
formulas. The connectives ∨, ∧, ⇒, ⇔, and ¬, and the quantifiers ∀ and ∃ are used for
constructing compound formulas. Atomic and compound formulas built this way are called term
formulas. The formula representation of a set of rules {Dr1, . . . , Drp} is the conjunction of the
formula representation of each Drk and of the data terms that represent the specified resources
as internalised (data terms are considered part of the program). The grouping constructs need
special treatment and, thus, symbols � · � are used for denoting the scope of all grouping
constructs contained in the rules.

Example 2.33 (Formula Representation of Xcerpt Rules) Consider the following set of
Xcerpt rules:
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a{all var X, var Y} ← and{ b{{var X}}, c{{ d{var X,var Y} }} }

b[ var X ] ← c{{ d[var X] }}

c[ d[e,f], d[g,h] ]

This set of rules is represented as a formula as follows:

∀ Y �a{all var X, var Y} ← b{{var X}} ∧ c{{ d{var X,var Y} }} � ∧
∀ X �b[ var X ] ← c{{ d[var X] }} � ∧ c[ d[e,f], d[g,h] ]

Interpretations. An interpretation is a tuple M = (I,Σ): I is a set of data terms of T d and
Σ 6= ∅ is a grounding substitution set, i.e. provides assignments for all variables with at least
one defining occurrence in the formulas considered.

Satisfaction and Models. An atomic formula F is considered to be satisfied in interpretation
M if and only if its ground instance (obtained by applying the substitutions of Σ to F ) simulates
into a term of I. The satisfaction of a term formula (i.e. atomic or compound formula) is defined
recursively over its structure. The following definition is taken from [64], Section 7.4.2, on pages
151-152:

Definition 2.1 (Satisfaction, Model)

1. Let M = (I,Σ) be an interpretation (i.e. a set of data terms I and a substitution set Σ),
and let t be a construct or query term.

The satisfaction of a term formula F in M , denoted by M |= F , is defined recursively
over the structure of F :

M |= > holds
M |= ⊥ does not hold
M |= t iff for all t′ ∈ Σ(t) there exists a term td ∈ I such that t′ � td

M |= ¬F iff M 6|= F
M |= F1 ∧ · · · ∧ Fn iff M |= F1 and . . . and M |= Fn

M |= F1 ∨ · · · ∨ Fn iff M |= F1 or . . . or M |= Fn

M |= F ⇒ G iff M |= ¬F ∨G
M |= ∀x.F iff for all t ∈ I holds that M ′ = (I,Σ′) |= F ,

where Σ′ =
{

σ ◦ {x 7→ t} | σ ∈ Σ
}

M |= ∃x.F iff there exists a t ∈ I such that M ′ = (I,Σ′) |= F ,
where Σ′ =

{

σ ◦ {x 7→ t} | σ ∈ Σ
}

M |= ∀∗ � tc ← Q� iff M ′ = (I,Σ′) |= tc for a maximal grounding substitution set Σ′

for Q with M ′ |= Q

2. If a formula F is satisfied in an interpretationM, i.e.M |= F , thenM is called a model
of F .

Note that in the definition above, ∀∗ is used to universally quantify all free variables in a
formula.

Given an Xcerpt program Pr, a model for Pr is an interpretation (I,Σ) where I contains
all data terms that are inferred (or produced) by the rules of Pr. Note that I may contain also
data terms that are unrelated to Pr. A concrete example for satisfaction of Xcerpt programs
is given in [64], Chapter 7, pages 152-153. However, the focus in this section is on the parts
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of XChange programs that are expressed in Xcerpt. Recall that an XChange program has
the form P = {Rr1, . . . , Rrm, T r1, . . . , T rn, Dr1, . . . , Drp}, where Rri, 1 ≤ i ≤ m and Trj ,
1 ≤ j ≤ n are reactive rules that may have “condition parts” specified by Xcerpt queries. Also,
Drk, 1 ≤ k ≤ p are Xcerpt rules. Consider Ql, 1 ≤ l ≤ m + n, the Xcerpt queries associated
with the reactive rules of P . The interest is on the satisfaction of the formulas of the form:

Ql ∧
∧

1≤k≤m+n

∀∗ � tck ← Qr
k � ∧dh , 1 ≤ l ≤ m + n ,

,
where Drk is of the form tck ← Qr

k , for 1 ≤ k ≤ p and dh ∈ T
d are data terms that

represent the internalised Web resources that are specified in the queries. Note that the interest
for XChange programs is not on the conjunction

∧

1≤l≤m+n of the formulas given above. As
Definition 2.1 covers also formulas of the form given above, the semantics of the “condition
parts” of XChange reactive rules is given by the model-theoretic approach of Xcerpt.

Example 2.34 (Formula Representation of Condition Parts and Deductive Rules)
Consider an XChange program P that consists of the following rules:

<transaction_spec> ← r a {{ var Z }} ← r <event_query>

a{all var X, var Y} ← and{ b{{var X}}, c{{ d{var X,var Y} }} }

b[ var X ] ← c{{ d[var X] }}

c[ d[e,f], d[g,h] ]

Note that P contains one transaction rule whose event query and transaction specification are
not specified as they do not contribute to the formula representation of Web queries and de-
ductive rules. The deductive rules of P are the Xcerpt rules of Example 2.33 with a slight
modification of the data term. The above “condition part” and set of deductive rules is repre-
sented as formula as follows:

a {{ var Z }} ∧
∀ Y �a{all var X, var Y} ← b{{var X}} ∧
c{{ d{var X,var Y} }} � ∧
∀ X �b[ var X ] ← c{{ d[var X] }} � ∧
c[ d[e,f], d[g,f] ]

A fixpoint semantics for Xcerpt programs without negation is proposed in [64, Chapter 7,
Section 5]. A fixpoint operator TP is defined by applications of which a fixpoint for Xcerpt
programs is iteratively constructed. It is proved that the fixpoint of a program is also a model
of the program [64, Theorem 7.10 on page 155].

2.3.3 Evaluation of Web Queries: Basic Ideas

Evaluating the Web queries given as “condition part” of XChange reactive rules presupposes
evaluating Xcerpt queries against specified resources and chaining of Xcerpt rules so as to
evaluate Xcerpt queries against views constructed by means of Xcerpt rules. The operational
semantics of the query language Xcerpt is defined in [64], Chapter 8. The underlying ideas of
the semantics are shortly described in this section.

An algorithm is defined for evaluating Xcerpt programs based on two parts: an algorithm
called simulation unification is given and a backward chaining algorithm that uses simulation
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unification. The evaluation is based on a simple constraint solver that applies simplification
rules to a constraint store consisting of conjunctions and disjunctions of constraints. An example
of a constraint is a simulation constraint expressing e.g. possible bindings for a variable. The
constraint store yields bindings for the variables occurring in Xcerpt query and construct terms.

Simulation unification takes two terms and returns a set of variable substitutions (called
simulation unifier) such that their applications to the terms make them simulate one into
another. A proof is given for the soundness and completeness of the simulation unification
algorithm in [64].

The backward chaining algorithm used in evaluating Xcerpt programs is inspired by the
SLD resolution calculus used in logic programming [46]. It is shown that the algorithm is
sound with respect to the fixpoint semantics developed for Xcerpt; also a (weak) completeness
of the algorithm (is complete in cases where the algorithm terminates) is proved. Criteria for
termination are also described in [64].

2.4 XChange Actions

2.4.1 Update Patterns

Existing proposals for update languages for the Web rely on a path-expression-matching op-
eration that selects nodes within the input document; the selected nodes are the target of the
update operations. XChange follows another approach for updating data – update specifica-
tions are patterns for the data to be updated augmented with the desired update operations.
By following a pattern-based approach for XChange updates,

• the specification of desired updates is simple and intuitive, as an update specification is
like a form where data needs to be inserted, replaced, or deleted;

• the whole language XChange follows a single approach – a pattern-based one – minimising
thus the effort of learning the language; programmers need only understand the concept
of data patterns.

Recall that only persistent data (i.e. data of Web resources) can be updated, volatile data can
not; thus, when talking about updating data, only updates to persistent data are meant. (Note
that the short notation used in the previous section where the envelope of events has been left
out is not adopted here; all examples given in this section use persistent data!) XChange has
been primarily developed for updating XML data, this includes also any data format having
an XML serialisation (such as RDF data). However, XML data represents data trees while e.g.
RDF data represent graphs. XChange can be used for updating graph data, but one needs
to decide on the semantics of updates on graph data and to modify the update execution
accordingly. A discussion on updating graph data is given later in this section. In the XChange
framework, XML data has a more compact representation as data terms; thus, XChange updates
are patterns for data terms to be modified. Data terms are either local – on the machine the
XChange program is running on – , or remote – on another machine (where possibly another
XChange program is running on) at a given Web resource.

An XChange update specification contains a resource specification (i.e. Web resources whose
data are to be modified) and an update pattern (i.e. gives information about how data is to be
updated). The grammar rules defining XChange (elementary) updates are:
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E_Update ::= "in" "{" "resource" "{" Res_Spec ("," Res_Spec)* "}" ","

U_Term "}"

Res_Spec ::= Uri ("," Format)?

Uri is the URI of the resource on the Web; the optional Format specifies the format (e.g. XML,
HTML, RDF) of data found at Uri and may be used by the runtime system to choose the
correct parser. When more than one Web resource is given in an update specification, the
specified update pattern is used for updating each of them.

The outline of this section is as follows: Section 2.4.1.1 introduces the notion of update
term and discusses general characteristics of update operations in XChange. The sections that
follow discuss in more detail the three kinds of update operations offered by XChange. The
discussion on insertion (Section 2.4.1.2), deletion (Section 2.4.1.3), and replacement (Section
2.4.1.4) specifications applies to updating subterms of data terms; the special case of updating
the root of a data term is discussed in Section 2.4.1.5. Discussions on the chosen approaches to
updating data are offered throughout the whole section.

2.4.1.1 Update Terms

Developing the update language of XChange has shown that patterns are amenable to specifying
updates to Web data. For specifying updates that are to be executed, the language XChange
offers a special kind of patterns, called update terms, which are introduced in this section. This
is consistent with the pattern-based approach that has been followed in designing XChange.

Definition 2.2 (Update Term) An update term is an Xcerpt query term augmented with
the desired update operations. The query term gives a pattern for the data to be modified. The
update operations may be insertions, deletions, or replacements of data. An insertion operation
specifies an Xcerpt construct term that is to be inserted, a deletion operation specifies an Xcerpt
query term for deleting all data terms matching it, and a replace operation specifies an Xcerpt
query term to determine data terms to be modified and an Xcerpt construct term for their new
values.

A more detailed discussion on XChange update operations is given in the subsequent sec-
tions. More than one update operation can be specified in an update term. Moreover, different
kinds of update operations (insertions, deletions, and replacements) can be specified in an up-
date term. Update operations cannot be nested (this will be clear after the update operations
are introduced). Thus, an XChange update term is defined through the following grammar
rules:

U_Term ::= Upattern

| "desc" Upattern

| U_Root

Upattern ::= Label "{" UQ_List "}"

| Label "{{" UQ_List "}}"

| Label "[" UQ_List "]"

| Label "[[" UQ_List "]]"

Label ::= label | "var" Var_Name UQ_List ::= ((Query_Term |
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U_Term) ",")* U_Term ("," (Query_Term | U_Term) )*

| U_Op

U_Op ::= Ins_Op

| Del_Op

| Rep_Op

Lifting (removing) all update operations from an update term produces a query term. This
query term will be called in the following the subjacent query term of the corresponding update
term. For obtaining an update term, update operations are specified in a (subjacent) query
term wherever a query subterm can be specified. The subjacent query term of an update term

(a) specifies a pattern for the data to be modified (note that the pattern is applied to the data
before any updates are performed); only documents whose representation as data term
matches the query are modified (i.e. no updates are executed if simulation unification of
the subjacent query term with the data term to be modified fails);

(b) generates bindings for the specified variables that are to be used in the execution of update
operations specified in the update term.

The update operations specified in an update term

(a) specify what kind of updates to execute, i.e. insertions, deletions, or replacements;

(b) specify which part of the data is to be modified (e.g. where to insert new data), given by
the position of update operations inside an update term;

(c) use variables bound in the subjacent query term, the event part (event query), the con-
dition part (Xcerpt query) of the XChange rule whose action contains the updates to be
executed. Update operations might use also new variables, i.e. variables not occurring in
the subjacent query term, event part, or condition part.

2.4.1.2 Insertion Specification

For inserting new data into a data term, one has first to construct the data (terms) to be
inserted. Thus, an XChange insertion specification contains always an Xcerpt construct term,
i.e. a pattern that makes use of variables to construct new data terms. Where the new data
is to be inserted is given either implicitly (by the position of the update operation inside the
update term) or explicitly (e.g. by explicitly giving the position at which the new data is to be
found after the insertion is performed). The keyword insert is used for specifying insertion
operations in XChange.

The grammar rules defining XChange insertion operations are given next (the constructs
are explained in this section through simple examples):

Ins_Op ::= "insert" Construct_Term

| Order_Ins

| "insert" Mult_Term

Order_Ins :: = "after" Query_Term "insert" Construct_Term

| "insert" Construct_Term "before" Query_Term
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| "at" Position "insert" Construct_Term

Mult_CTerm ::= "all" Construct_Term (Order)?

| "some" Nr Construct_Term (Order)?

| "first" Nr Construct_Term Order

Order :: = "order by" ( AD )? ( LN )? "[" Vars "]"

AD ::= "ascending" | "descending"

LN ::= "lexical" | "numerical"

The subjacent query term of an update term containing insertion specifications is obtained
from the update term by removing the keywords insert and the specifications of the new data
to be constructed that follow insert; positions specifications (of the form at Position) and
keywords before and after are also removed. The obtained specification is a query term that
is to match the data term to be modified.

Example 2.35 (Simple XChange Update Term Specifying Insertion (1)) The follow-
ing update term specifies insertion of data term d{e{}, f{}} in a data term that matches the
subjacent query term a{{b{{}}, h{{}}}}.

a {{

b {{ }},

insert d { e{}, f{} },

h {{ }}

}}

The new data is to be inserted as a child of the root (labelled a). No exact position of the
new child is given; curly braces denote also that the order of child elements is not important.
Consider now the following two data terms: the result of applying the above update term to the
data term on the left yields the data term on the right. The data inserted is written in blue.

a {

b { i{}, j{} },

h { k{} }

}

Before update

a {

b { i{}, j{} },

d { e{}, f{} }

h { k{} }

}

After update

Variables can be used inside insertion specifications; they are bound in the subjacent query,
the event query, and/or the Xcerpt query of a rule and used for constructing the data to
be inserted. The bindings for the variables are nondeterministically chosen from the set of
variable substitutions resulting from evaluating the subjacent query term and the other parts
of the associated rule. Recall that Xcerpt construct terms may contain grouping constructs
(all, some) for gathering all or some of the variable bindings. One may also use insertion
specifications like insert var V → Construct Term; the variable is bound to the data term
constructed with Construct Term and can be further used in other update operations of the
same update term.

Example 2.36 (Simple XChange Update Terms Specifying Insertion (2)) The follow-
ing update term specifies insertion of a data term that is constructed from d{var X} in a data
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term that matches the subjacent query term a{{var X}}. The variable binding that is used to
construct the data term to be inserted is nondeterministically chosen from the set of bindings
that results from matching the subjacent query term with the data term to be modified.

a {{

var X,

insert d { var X }

}}

Consider the following two data terms. The one on the left hand side is to be modified by the
above update term. The result of simulation unifying the subjacent query term with the data
term to be updated is the substitution set Σ = {{X 7→ b{i{}, j{}}, {X 7→ h{k{}}}}. Applying
the update term to the left data term, might result in the right data term. (Since the substitution
set contains two substitutions for X, two possible results are conceivable.) Again, new data is
written in blue.

a {

b { i{}, j{} },

h { k{} }

}

Before update

a {

b { i{}, j{} },

d {

h { k{} }

}

h { k{} }

}

After update

Consider now a slight modification of the above update term; a d-labelled element containing all
bindings for X is to be inserted. The update term is shown in the following example on the left
side; the result of applying the update term to the data term given above on the left is shown in
the following on the right hand side.

a {{

var X,

insert d { all var X }

}}

a {

b { i{}, j{} },

h { k{} },

d {

h { k{} },

b { i{}, j{} }

}

}

Position Specification. When updating ordered data (i.e. documents where the order of
the elements is important), it is necessary to have means for inserting new data at a certain
position in the data terms to be modified. The position can be specified relatively to existing
subterms (i.e. before or after subterms matching a given query term) or explicitly through
integers denoting the subterm position relative to its parent term.

Example 2.37 (Simple XChange Update Terms Specifying Insertion (3)) Suppose
now that one needs to introduce c-labelled elements (right) after each b-labelled element child of
the root (i.e. as next sibling node in the tree representation of data); assume that the data term
to be modified is ordered. Consider the following update term (bindings for the variable X are
obtained from the other parts of the rule having the update term as action):
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a [[

b {{ }},

insert c { var X }

]]

This update term does not have the desired effect. A sample data term is given next; consider
the substitution set Σ = {{X = ”content”}, {X = ”more content”}}. The data term before the
update is shown on the left, after the update on the right.

a [

b { i{} },

h { k{} },

d {},

b {}

]

Before update

a [

b { i{} },

h { k{} },

c { "more content" },

d {},

b {},

c { "content" }

]

After update

As the above data terms show, the given update term can be used for inserting c-labelled nodes
after b-labelled ones, but they are not necessarily next sibling nodes in the result. Thus, XChange
offers also insertions of the form after Query Term insert Construct Term, meaning that
after each data term matching the query term, a new data term is introduced as the next element
in the document order (the next sibling node in the tree representation of the data). The desired
effect can be obtained by using

a [[

after b {{ }} insert c { var X }

]]

In cases where the whole structure of the data to be modified is not known, the insertion after
can not be used for inserting new data before subterms matching a given query term. Thus,
XChange offers also a before counterpart of the insertion after. The insertion specification
has the form insert Construct Term before Query Term, meaning that before each data
term matching the query term, a new data term is introduced as the previous element in the
document order (the nodes will be next sibling nodes in the tree representation of the data).
Note that the position of the construct term in the after and before insertion specifications
denote the position of the new data relative to the subterms matching the given query term.

XChange offers support for introducing new data terms at a given position in the data
term to be modified. Position gives the position of the inserted subterm below its parent term.
Given a parent term in a data term, the first subterm below it has position 1, the last one
position −1. In an insertion specification, the position is either a positive integer or a negative
integer (variables can not be used instead of position specification inside an insert operation).
Thus, inserting new data at position −1 means insertion as the last subterm of the given parent
term. Consider the insertion of a new (sub)term new at position p below a parent b into a data
term where the desired position is taken by a subterm old; after the update, the modified data
term contains below b the subterms new at position p, old at position p + 1, and the subterms
following old at position old position+1, where old positon is the position before the insertion.
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Example 2.38 (Simple XChange Update Terms Specifying Insertion (4)) The follow-
ing update term inserts at last position in a catalogue a discount of 10 percent for all products
not of type New Arrival.

catalogue[[

product {{

id { var PId },

without type { "New Arrival" }

}},

at -1 insert discount {

products { all var PId },

percent { "10" }

}

]]

Multiplicity Specification. With the insertion constructs exemplified until now, one can
not make insertions of the form insert all var Product, as all var Product is not an Xcerpt
construct term. But such kind of insertions are useful in practice. Moreover, one might need
not only to insert all data terms constructed from a given construct term, but perhaps just some
of these data terms (possibly chosen by means of a certain criterion). For this, the grouping
constructs all and some of Xcerpt are used; recall that they gather all and some, respectively,
possible instances of the construct term they precede. An order of the data terms to be inserted
can be specified by means of the order by construct followed by a criteria and list of variables;
the order is determined by the given criteria “applied” on the values of these variable bindings.
(A detailed explanation of the grouping constructs can be found in [64], Section 4.6.2, pages 93
– 99.)

Example 2.39 (Simple XChange Update Terms Specifying Insertion (5)) At some uni-
versities (e.g. the national universities in Romania) the best students are “awarded” by receiving
a studentship for the next teaching term. The following update term is used to introduce in a
data term the five best students (best in terms of their final grade) per teaching unit, for the
ended teaching term.

BestResults {{

TeachingUnit [[

insert var Term,

UnitName { var N },

insert first 5 var Stud order by [ var Grade ]

]]

}}

The students are ordered by their final grade obtained for the ended teaching term. The bindings
for the variables are obtained by evaluating the next Xcerpt query; it represents the condition
part of an XChange rule having in the action part the update term given above.

in { or { resource {"file:ai.xml", "file:net.xml", "file:db.xml"}

},

desc TeachingUnit [[
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Name { var N },

var Term → TeachingTerm {{ }},

Students [[

var Stud → Student {{

FinalGrade { var Grade }

}}

]]

]]

}

Note that XChange insertions have no duplicate elimination semantics, i.e. the subterms con-
structed with the given construct term are inserted regardless whether they already exist in the
data term to be modified or not. For example, applying an update term like

a {{

var X,

insert all var X }}

to a data term results in “doubling” the children of the root.

2.4.1.3 Deletion Specification

In order to delete parts of an XML document one has to specify a (possibly incomplete) pattern
for the data to be deleted. The keyword delete is placed before these query patterns for
specifying deletion operations in XChange. The informal meaning of a deletion operation of
the form delete Query Term can be resumed to (a) all (sub)terms matching Query Term are
to be deleted, and (b) the whole (sub)term (the whole subtree, in the tree representation of the
data) matching Query Term is to be deleted.

Similar to insertion specifications, the data term to be updated needs to match a given
query term – the subjacent query term of the update term. Consider an update term of the
following form (only delete operations are considered for simplicity) label{{q1, q2, ..., qn, delete
qn+1, qn+2, ..., qm}}. The subjacent query term for the given update term may be (obtained by
leaving the keyword delete out)

label{{q1, q2, ..., qn, qn+1, qn+2, ..., qm}}

or label{{q1, q2, ..., qn, qn+2, ..., qm}} (obtained by leaving the whole delete operation out). The
first approach is considered in XChange – the subjacent query term of an update term containing
only delete operations is obtained by leaving the keywords delete out – in the example above,
label{{q1, q2, ..., qn, qn+1, qn+2, ..., qm}}. The rationale behind it is that for deleting subterms
of a data term, these subterms need to exist, that is the data term to be modified needs to
contain subterms matching the query terms following the delete keyword.

The grammar rules defining XChange’s deletion operations are given next:

Del_Op ::= "delete" Query_Term

| "delete" Mult_QTerm

Mult_QTerm ::= "some" Nr Query_Term

| "first" Nr Query_Term (Order)?
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Example 2.40 (Simple XChange Update Term Specifying Deletion (1)) Assume that
a data term is to be modified that matches the query term given below on the left. All c-labelled
subelements of a-labelled elements having at least one subelement labelled b are to be deleted.
The update term given on the right specifies the deletion. Note how easy the desired delete
operation can be specified: one only needs to put the keyword delete in front of the query term
that matches the data terms to be deleted.

desc a {{

b {{ }},

c {{ }}

}}

desc a {{

b{{ }},

delete c {{ }}

}}

Example 2.41 (Simple XChange Update Term Specifying Deletion (2)) The follow-
ing update term deletes all subterms labelled b, regardless of their depth within the a-labelled
term representing the whole document to be modified. Note that only b-labelled subterms are
deleted, their parents (more concrete, their ancestors) remain in the data term if they do not
have the label b.

a {{

delete desc b {{ }}

}}

For inserting data terms at a given position, a construct is offered in XChange; for deleting
data terms having a given position and matching a given query term, no extra construct is
needed. This can be specified inside the query term by means of the construct position of the
language Xcerpt; a query term of the form position Pos q matches those data terms t found
at position Pos in the queried data term, where q � t. The position specification Pos is either
a positive integer (where 1 is the position of the first subterm of a parent), a negative integer
(where −1 is the position of the last subterm), or a variable that matches with the position of
subterm (matching q) and binds to it as a positive integer (cf. [64], Section 4.3.3, pages 73-74).

The update operations exemplified until now have as effect the deletion of all subterms of
a data term matching a given query term. By using Xcerpt’s position specification, subterms
with a given position below its parent term can be deleted (cf. above). However, one has no
means for specifying deletion of a given number of subterms, possibly chosen by using a given
criteria. Thus, two forms of deletion specifications are offered: A delete specification delete
some Nr Query Term (with Nr positive integer, 1 ≤ Nr) specifies deletion of n subterms
matching Query Term, where n is the maximal number of such subterms with n ≤ Nr. A
delete specification delete first Nr Query Term order by (Criteria) [V ariable List] specifies
deletion of the first (regarding the order given by the specified criteria “applied” to the bindings
for the variables of V ariable List) m subterms matching Query Term, where m is the maximal
number of such subterms with m ≤ Nr. The order specification can be left out for deleting
subterms of an ordered term; delete first Nr Query Term specifies deletion of the first (taking
the document order into account) m subterms matching Query Term.

Example 2.42 (Simple XChange Update Term Specifying Deletion (3)) The follow-
ing update term deletes maximal two subterms of the root element; they match b{{varX, varY }},
where the lexical order on the values of variable X determine which are the two terms to be
deleted.
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a {{

delete first 2 b {{ var X, var Y }} order by lexical [ var X ]

}}

Assume that the following substitutions for the variables are obtained by evaluating the other
parts of the XChange rule having the above update term as action part: {X = ”cde”} or
{X = ”abc”} or {X = ”abf”} and {Y = i{}} or {Y = f{”g”}}. The data term to be modified
is given next on the left hand side, while the data term after the deletion has been performed is
given next on the right hand side.

a {

b { i {}, "cde" },

h { k{} },

b { f {}, "abf" },

b { f {"g"}, "abc"},

j { f { k {} }}

}

Before update

a {

b { i{}, "cde" },

h { k{} },

b { f {}, "abf"},

j { f { k {} } }

}

After update

2.4.1.4 Replace Specification

To specify a replace operation, one has to specify a (possibly incomplete) pattern for the data
that is to be modified and a (complete) pattern for the new data to be found instead. The
keyword replaceby is used in XChange for expressing a replace operation.

The grammar rules defining XChange replacement operations are given next:

Rep_Op ::= QTerm "replaceby" CTerm

QTerm ::= Query_Term

| Mult_QTerm

CTerm ::= Construct_Term

| Mult_CTerm

Consider an update term of the following form (only replacement operations are considered for
simplicity) label{{q1, q2, ..., qn, qn+1 replaceby ct , qn+2, ..., qm}}. The subjacent query term for
the given update term is label{{q1, q2, ..., qn, qn+1, qn+2, ..., qm}}; it is obtained by omitting the
keyword replaceby and the specification of the new data to be found instead of qn. Multiplicity
specifications are also left out for obtaining the subjacent query term.

The informal meaning of a replacement operation of the form Query Term replaceby
Construct Term can be resumed to (a) all terms matching Query Term are to be replaced, and
(b) each such term is to be replaced by a data term constructed with Construct Term. (The
constructed data term used for replacement is chosen in the same manner as for insertions.)
Multiplicity specifications (all, some Number, and first Number) for the Construct Term
express that (instead of a single term) a set of terms (containing all, some or first Number
constructed terms) is used for replacing each term t, where Query Term � t. Multiplicity
specifications (some Number and first Number) for Query Term express that a given number
of (instead of all) terms t are to be replaced, where Query Term � t. Multiplicity specifications
for Query Term and for Construct Term can be combined (as the above grammar rules show);
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the resulting replace operations specify that each term of a set of terms is to be replaced by a
set of constructed terms.

Proposition 2.1 (Necessity of Replacement Operation) A replace operation of the form
Q Term replaceby C Term has not the same effect as the sequence of two update operations
of the form delete Q Term and insert C Term, where Q Term, C Term are specifications of
(possibly) multiplicity followed by a query term and a construct term, respectively.

Cf. Proposition 2.1, XChange’s replace operation is not syntactic sugar for a delete and an
insert operations performed in sequence. The next, simple example intends to clarify the effect
of a replace operation in XChange and motivates the previous statement.

Example 2.43 (Simple XChange Update Term Explaining the Replace Operation)
The example gives an update term that specifies the replacement of each binding for the variable
X with a binding for the variable Y .

label {{

var X replaceby var Y

}}

The same binding for Y is used to replace the data terms that are bindings for X. If the XML
document that is queried for bindings for Y is not ordered, the first binding for Y found in the
evaluation process of the corresponding query is used. If this XML document is ordered, the
first, taken the document order in consideration, binding for Y is used for replacement. Some
explanations follow for clarifying the effect of such a replace operation. Bindings for Y are
provided by evaluating the event query and/or Xcerpt query of the XChange rule having the
update term as its head (action part). The following cases for the above replace example can be
distinguished:

• Only one binding for the variable X and only one binding for the variable Y are returned
from the evaluation of the XChange rule containing the update term.

Let {X = x1} and {Y = y1} be the obtained bindings. The update var X replaceby var Y
has the effect of delete x1 and insert y1 (instead).

• More than one binding for X and only one binding for Y are obtained from the evaluation
of the XChange rule containing the update term.

Let {X = x1} or {X = x2} or . . . {X = xn} (with 1 ≤ n) be the bindings for X and
{Y = y1} the binding for Y . The update var X replaceby var Y has the effect of delete
x1 and insert y1 (instead) AND delete x2 and insert y1 (instead) AND ... AND delete
xn and insert y1 (instead).

• More than one binding for X and more than one bindings for Y are obtained from the
evaluation of the XChange rule containing the update term.

Let {X = x1} or {X = x2} or . . . {X = xn} (with 1 ≤ n) be the bindings for X and
{Y = y1} or {Y = y2} or . . . {Y = ym} (with 1 ≤ m) be the bindings for Y . The update
var X replaceby var Y has the effect of delete x1 and insert y1 (instead) AND delete x2

and insert y1 (instead) AND ... AND delete xn and insert y1 (instead) (y1 is chosen as
explained above).
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• More than one binding for X is obtained from the evaluation, but no binding for Y .

In this case, one possibility for performing the update var X replaceby var Y would be to
delete all bindings for the variable X, because there is nothing to be inserted instead. A
replace operation is to be understood as an atomic operation, in the sense that one can
not split it into a delete operation followed by an insert operation. Though, the effect of
a replace operation is sometimes the same as a delete operation followed by a well chosen
insert operation (as in the previous cases). Thus, in XChange an update var X replaceby
var Y has no effect (i.e., the data to be updated remains unchanged) in the case that the
evaluation of the XChange rule containing it does not return bindings for Y .

• There is no binding for X, but more than one binding for Y is obtained from the evalua-
tion.

Using the same arguments as in the previous case, the update operation var X replaceby
var Y has no effect on the data to be updated if no bindings for X are returned from the
evaluation of the XChange rule containing the replace update.

• No binding for X and no binding for Y is obtained from the evaluation. In this case the
replace operation has no effect on the data to be modified.

Example 2.44 (XChange Update Term Converting Prices From Euro to Dollar)
The example gives an XChange update term that specifies the modification of the used currency
from euro to US Dollar. The prices for all flights offered by a specific airline are modified
accordingly to an exchange rate.

in { resource { "http://airline.com" },

flights {{

last-changes { var L replaceby var Today },

currency { "EUR" replaceby "Dollar" },

flight {{

price {{ var Price replaceby var Price * var Exchange }}

}}

}}

}

Note that the construct term var Price ∗ var Exchange of the second replace operation in
the above example shares the variable Price with the query term of the replace operation. This
means that for each subterm matching the price of flights a “corresponding” construct term is
used for replacing.

On Introducing Other Constructs for Specifying Insertion and Replacement in
XChange (Discussion). Language constructs are introduced for easing the programming
task. As already discussed in Section 2.2.3, a tradeoff between the expressive power of a
language and the ease of its usage needs to be found in designing a language. Decisions need
to be taken for introducing (or not) new constructs when use cases are discovered that can not
be solved with the existing language constructs.

Example 2.45 (Example Motivating a New Language Construct) Assume the XML
files catalogue-eu.xml and catalog-usa.xml contain information about products a company
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provides on the European and American market, respectively. One wants to insert all products
of class “New Arrival” found in the European catalogue into the American one; the product
prices should be calculated and inserted directly in US Dollar.

The following query is used to select the products of class “New Arrival”; a variable is used
also for the price, as this is needed later in the update term.

in { resource { "file:catalogue-eu.xml" },

var Product → desc product {{

class { "New Arrival" },

price { var Price } }}

}

For accomplishing the task described above, an update specification is needed for inserting all
bindings for Product into catalog-usa.xml, where the price is calculated from the bindings
for Price and the binding for a variable Exchange (this is obtained by querying another Web
resource where the up-to-date exchange rates are found). Such a problem could be solved by
means of a construct of the form

insert Construct_Term_1

with var VarName replaceby Construct_Term_2

The variable V arName needs to occur as a subterm in the query term to which a variable of
Construct Term 1 is restricted. E.g. the variable Price is bound to a subpattern of the pattern
defining Product. Moreover, Construct Term 1 either contains a single variable or is of the
form var V ar − > Construct Term, where V arName occurs in the query term defining V ar.
Thus, the task of this example can be elegantly accomplished by evaluating the following update
specification:

in { resource { "file:catalog-usa.xml" },

catalog {{

insert all var Product

with var Price replaceby var Price * var Exchange

}}

}

Such a language construct has not been introduced in XChange, as (the class of) examples like
the one given above can be realised by using the existing language constructs; however, the
solution is clearly not that elegant as the one given above. (Note that insertions of new data
terms where some subterms are left out can be easily specified by using the Xcerpt construct
except.)

On the Keywords Chosen for Specifying Updates in XChange (Discussion). Update
operations are specified in XChange by using the keywords insert, delete, and replaceby,
considered as infinitive verbs expressing the kind of updates to perform. One might argue
that these are imperative verbs giving an imperative flavour to the language. The problem of
updating data has indeed an imperative nature. However, XChange is a declarative language
as it specifies the what instead of the how, just like logic programming languages. Another
approach is to use the participle of the verbs insert, delete, and replace by to specify the kind
of changes one desires. Thus, the core XChange update operations would have the following
form
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inserted Construct_Term

deleted Query_Term

Query_Term replacedby Construct_Term

As XChange builds upon Xcerpt, one of the most important issues in designing the language
XChange has been the uniformity e.g. of the language constructs. Thus, as Xcerpt keywords
are specified as infinitive verbs (e.g. CONSTRUCT and not CONSTRUCTED), the same approach is
taken in XChange.

2.4.1.5 Special Case – Updating the Root

The insertion, deletion, and replacement specifications introduced in the previous sections aug-
ment query terms for obtaining update term specifications. The premise of modifying desired
data terms is that the query terms – called subjacent query terms – simulation unify with the
data terms. For updating the root – inserting a data term into an empty Web resource, deleting
the whole data term found at a Web resource, or overwriting (replacing) the data term at a
Web resource – a subjacent query term is neither needed nor allowed, a single update operation
will do.

Imagine an XChange update like a function that takes as arguments an update term and a
data term, and returns a (updated) data term. Data terms represent trees, thus, an XChange
update can be represented as a function that applies an update term to a tree for obtaining the
updated tree. Regardless whether one wants to update the root of a tree, the whole tree, or just
parts of it, the result of the update needs to be a tree. This requirement has consequences on
the possible update operations for updating the root. Their syntax is the same as for the update
operations introduced so far; though, not all update specifications are allowed for updating the
root so as not to violate the previously given requirement.

The following grammar rules define the possible update operations for updating the root:

U_Root ::= "insert" Construct_Term

| "delete" Query_Term

| Query_Term "replaceby" Construct_Term

Insertion into an Empty Resource. In XChange, the update used for inserting data (more
precisely a data term) at a given Web resource Res has the form

in { resource { Res },

insert Construct_Term }

The resource specification is given to emphasize the absence of a query term acting as a subja-
cent one. Note that if the given Web resource contains data (it is not empty), the above update
term constructs a new data term that overwrites the data found at Res. Update operations of
one of the following forms

insert all Construct_Term

insert some Nr Construct_Term , with 0 < Nr

insert first Nr Construct_Term , with 0 < Nr

are not allowed for updating the root. They result in not having a tree representation of data,
but a forest (a sequence of trees). If one wants to insert e.g. all instances of a construct term
in an empty resource, an artificial root should be provided.
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Example 2.46 (Insertion into an Empty Resource) An update that specifies an insertion
of the data term found at http://sn.de into the empty document:
http://software.de/products.xml.

in { resource {"http://software.de/products.xml"},

insert var C

}

The condition part of the XChange rule having the above given update term as action part
contains the following Xcerpt query that binds the variable C:

in { resource {"http://sn.de"},

var C → Catalogue {{ }}

}

Deletion of the Root. For deleting the whole data term found at a given Web resource, a
query term matching it needs to be specified. The XChange update for deleting the (data of)
Web resource Res has the form

in { resource { Res },

delete Query_Term

}

Clearly, if Query Term has the form desc query pattern the data term at Res remains un-
changed. Note that an update term of the form delete varRoot results in deleting the data
term regardless of its structure. Update terms of one of the following forms

delete some Nr Query_Term , with 0 < Nr

delete first Nr Query_Term , with 0 < Nr

are not allowed. They do not have an intuitive meaning when updating the root; thus, are not
considered as update terms in XChange.

Example 2.47 (Deletion of the Root) An update that specifies the deletion of the data
term found at http://software.de/products.xml (i.e., the entire XML document is to be
deleted).

in { resource {"http://sn.de"},

delete Catalogue {{ }}

}

Replacement of the Root. For replacing the data term found at a Web resource with a
new data term, XChange offers the following update specification:

in { resource { Res },

Query_Term replaceby Construct_Term }

Update terms specifying multiplicity are not allowed, neither for Query Term, nor for Cons-
truct Term. The same motivation as for insertion and deletion. As for insertion, if the resource
Res contains data, by applying the following update the data constructed with Construct Term
is to be found at Res (overwriting effect):
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in { resource { Res },

var Root replaceby Construct_Term }

Example 2.48 (Replacement of the Root) An update that specifies the replace of the data
term found at http://sn.de with the data term found at http://software.de.

in { resource {"sn.de"},

Catalogue {{ }} replaceby var P

}

in { resource {"http://software.de"},

var P → Products {{ }}

}

On Alternative Approaches to Updating Data with XChange (Discussion). In con-
trast to existing proposals for update languages for the Web, XChange is a pattern-based
language, which shows that update patterns (called update terms in XChange) can be easily
specified and understood. XChange takes the philosophy of Xcerpt and applies it to specifying
evolution of data on the Web; Xcerpt uses the pattern approach for querying data on the Web –
capability needed (as already shown in the previous sections) for updating (persistent) data and
for querying (volatile) data. For updating Web data with XChange, alternative approaches have
been investigated; this discussion concentrates on these approaches by showing the evolution
towards the current update component of XChange.

Following the first approach that has been investigated, the desired updates have been
executed directly on bindings for variables returned from evaluating an Xcerpt query. Xcerpt
queries are specified as patterns for the data and do not select nodes, but return data terms
as bindings for the variables in the query – they are copies of data terms. Thus, performing
updates directly on the data terms obtained as answers to Xcerpt queries means that only copies
of the data are modified; such updates do not update (modify) the data. Recall Example 2.44,
which specifies the modification of the used currency from Euro to US Dollar. Consider now
the following query term that is needed for binding data terms to variables and modify them
afterwards:

in { resource { "http://airline.com" },

flights {{

var Ch ->last-changes { var L },

var Curr -> currency { "EUR" },

flight {{

var P -> price {{ var Price }}

}}

}}

}

The modification of prices can then be realised by using the following update specification (one
needs to specify where the subterms to be modified are – through the in V ariable specification,
a query term and a construct term for the replace operation):

in { resource { "http://airline.com" },

in var Ch replace var L by var Today,
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in var Curr replace "EUR" by "Dollar",

in var P replace var Price by var Price * var Exchange

}

A solution to the problem of updating only copies of data when using pattern-based query
languages like Xcerpt is to enhance queries with the capability to return pointers to elements
inside data terms. The pointers to data are then used in update specifications. On the other
hand, by using such an approach, patterns and pointers for data would be mixed. For having
a clear language design, a single approach has been followed in XChange – the pattern-based
one – leading to an elegant language, easy to understand and use by practitioners.

Another idea for updating persistent data is to give the intended updates “implicitly” by
specifying how data should look after the updates are performed; following such an approach
consists in specifying the result of the updates instead of the way (given through explicit
update operations) towards the desired result. This would mean that, instead of XChange
update terms, construct terms are used that give a pattern for the data after the update. For
determining the update operations to be executed, a diff function can be used. This idea has
not been incorporated into XChange, as specifying the result of the updates is not that easy as
it seemed at first glance. A small set of update operations and update constructs gives rise to
simpler update specifications. However, thinking in the other direction – to translate XChange
update terms into deductive, construct-query rules – has yielded interesting results that are
given in Section 2.4.3.

2.4.2 Complex Updates as Transactions

XChange updates may be elementary or complex. An elementary update is a change (i.e. insert,
delete, replace) to a persistent data item (e.g. XML or RDF data) that can be expressed by
means of an update term. Complex updates expressing ordered or unordered conjunctions, or
disjunctions of (elementary or complex) updates are also offered by XChange. Such updates are
often required by real applications. E.g. when booking a trip on the Web, one might wish to
book an early flight and the corresponding hotel reservation, or else a late flight and a shorter
hotel reservation. Since it is sometimes necessary to execute such complex updates in an all-
or-nothing manner (e.g. when booking a trip, a hotel reservation without a flight reservation is
useless), XChange has a concept of transactions.

The grammar rule defining XChange updates is the following (an XChange update is an
elementary or a complex update):

Update ::= E_Update | C_Update

The next section discusses elementary updates by shortly revisiting the notion of update pat-
terns introduced in the previous section. Complex updates are combinations of elementary and
complex updates; they are introduced in Section 2.4.2.2. XChange transactions, i.e. XChange
updates executed in an all-or-nothing manner, are discussed in Section 2.4.2.3.

2.4.2.1 Elementary Updates

An elementary update specification is an update term specification accompanied by a resource
specification (giving the Web resources to be modified). Section 2.4.1 offered an introduction
to XChange update terms – patterns for the data to be updated augmented with the desired
update operations. The three kinds of XChange update operations (insertions, deletions, and
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replacements) have been described almost independent from each other (Sections 2.4.1.2, 2.4.1.3,
and 2.4.1.4). However, more than one update operation can be specified in an update term
(nesting update operations does not make sense). Update operations are specified as subterms
inside a query term – called subjacent query term of the update term. Though, for updating
the root of a data term (e.g. inserting data into an empty resource or deleting the whole data
term found at a given Web resource), no subjacent query term is needed – a single update
operation is used.

Definition 2.3 (Subjacent Query Term of an Update Term) Given an update term u,
the subjacent query term of u (denoted subu) is an Xcerpt query term obtained by removing
from u

(a) the insertion operations, except the query terms they may contain due to after or
before position specifications;

(b) the delete keywords and the multiplicity specifications of delete operations;
(c) the replace operations, except the query terms they contain.

Steps (a), (b), and (c) can be performed in arbitrary order for obtaining subu.

For example, for insertion specifications of the form after Query Term insert Construct Term,
the after and insert Construct Term are to be removed for obtaining the subjacent query term
of an update term containing the update operation. Subjacent query terms of XChange update
terms play an important role in the execution of the desired updates.

Proposition 2.2 (Role of Subjacent Query Terms) Let U = (d, u) be an elementary up-
date with data term d to be modified by update term u. If subu � d does not hold, no update
operations of u are to be applied to d.

If the subjacent query term of an elementary update matches the data term to be modified, the
specified update operations are executed. XChange update operations are intensional updates,
they are a description of updates in terms of (standard or event) queries. They can be specified
in XChange as the language inherits the querying capabilities of the language Xcerpt.

Example 2.49 (Elementary Update) At http://airline.com the flight timetable needs to
be updated as reaction to flight cancellations. The information about the cancelled flight is
obtained from the event part of the rule having the following elementary update as action part.

in { resource { "http://airline.com" },

flights {{

last-changes { var L replaceby var RTime },

flight {{ number { var N }, date { var RTime },

delete departure-time {{ }},

delete arrival-time {{ }},

insert news { "Flight has been cancelled!!" }

}}

}}

}

2.4.2.2 Complex Updates

An XChange complex update is an ordered or unordered, conjunction or disjunction of updates
(i.e. of elementary or complex updates). A conjunction of updates expresses that all specified
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updates are to be executed. A disjunction of updates expresses that one of the specified updates
is to be executed.

Complex updates specifying conjunctions are introduced by the keyword and, disjunctions
by the keyword or. Specifications denoting that the XChange update is a complex one are
always total (i.e. partial conjunctions or disjunctions of updates do not make sense). Square
brackets and curly braces are used for denoting that the order of evaluation is of importance or
of no importance, respectively. The grammar rules defining complex updates in XChange are
given next:

C_Update ::= Ordered_CU | Unordered_CU

Ordered_CU ::= "and" "[" Update_List "]"

| "or" "[" Update_List "]"

Unordered_CU ::= "and" "{" Update_List "}"

| "or" "{" Update_List "}"

Update_List ::= Update ("," Update)+

XChange offers four kinds of complex updates – ordered and unordered conjunctions, ordered
and unordered disjunctions of updates. The effect of such updates and the scope of variables
occurring in complex updates are explained in the following for each of these kinds.

Ordered Conjunction of Updates. Consider an XChange complex update specification
o conj of the form o conj = and[u1, u2, ..., un], where 2 ≤ n and ui specify XChange updates.
The effect of u conj is the effect of executing all ui (1 ≤ i ≤ n) sequentially in the order of
their occurrence in the list. This means that the effect of an update ui is “visible” for updates
uj , with j > i. The visibility of update effects is twofold:

(a) the bindings for the variables of ui that are obtained by evaluating ui can be used in
the evaluation of uj with j ≤ i + 1;

(b) consider updates ui and uj with j > i that modify the data found at a resource Res,
and there is no uk with i < k < j that modifies Res. For a data term d at Res before the
updates are performed, ui modifies d and results in having at Res a data term di, whereas uj

modifies the data term di.

Example 2.50 (XChange Complex Update Specifying Sequence of Updates) The fol-
lowing XChange complex update specifies that a flight reservation and a hotel reservation are
to be executed in the specified order. After giving the shape of such an update, an instantiation
of it follows.

and [

<make flight reservation>,

<make hotel reservation depending on the flight schedule>

]

The following complex update specifies that a flight and a corresponding hotel reservation are to
be made for Christina Smith. The bindings for the variables F (the chosen flight) and H (the
chosen hotel) are obtained from the other parts of the rule having the update as action part.
Note that the variables N , B, and E are bound during the evaluation of the first update and
used afterwards in evaluating the second update of the conjunction.
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and [

in { resource { "http://travel-agency.net/flights/" },

desc reservations {{

insert reservation {

var F, var N -> name { "Christina Smith" },

outward-date { var B ->"2005-08-21" },

return-date { var E ->"2005-08-22" } }

}}

},

in { resource { "http://hotels.net/reservations/" },

accommodation {{

insert reservation {

var H, var N,

from { var B }, until { var E } }

}}

}

]

As the example above shows, ordered conjunction of updates is amenable to applications in-
volving sequences of updates to be executed, where the order of update execution plays an
important role. They are useful when data gathered or used in an update is needed for exe-
cuting subsequent ones, or when complex modifications to the same Web resources’ data are
needed.

Unordered Conjunction of Updates. Consider an XChange complex update specification
u conj of the form u conj = and{u1, u2, ..., un}, where 2 ≤ n and ui specify XChange updates.
The effect of u conj is the effect of executing all ui, 1 ≤ i ≤ n, in some arbitrary execution
order. The order of their execution is not given and, thus, the runtime system has the freedom
to choose the execution order.

The scope of variables used in update ui is restricted to ui, i.e. the bindings for the variables
resulted from evaluating ui can not be used in the evaluation of uj with i 6= j. (This restriction
can be lifted, for parallel evaluation of updates; variable substitutions need to be communicated
between the Web sites where the data to be modified are found.) Unordered conjunction of
updates are suitable for specifying updates to be executed that do not “share” other variable
bindings than the ones received from the event query and/or Web query of the rules whose
action they represent.

Note that unordered conjunction of updates that modify the same data may have different
results, depending on the order of their evaluation. This is illustrated by means of an example.

Example 2.51 (Complex Update Specifying Unordered Conjunction of Updates)
The following example specifies that a deletion and an insertion should be executed on the same
data, in text.xml.

and {

in { resource { "file:test.xml" },

a {{ delete b {{}} }},

},

in { resource { "file:test.xml" },
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a {{ insert b { f { "content"} } }},

}

}

Consider that test.xml contains the following data term before any of the updates specified
above are executed:

a {

b { f { "info" } },

b { g { "info" } },

c { h { "info" } }

}

The possible results of executing the unordered conjunction of updates on test.xml are given
next. Depending on the order in which the two updates are executed, one of the following data
terms are obtained (on the left hand side the result of executing the deletion followed by the
insertion, on the right hand side the result of insertion followed by the deletion):

a {

b { f { "content" } },

c { h { "info" } }

}

Delete, insert

a {

c { h { "info" } }

}

Insert, delete

Ordered Disjunction of Updates. Consider an XChange complex update specification
o disj of the form o disj = or[u1, u2, ..., un], where 2 ≤ n and ui specify XChange updates.
The effect of o disj is the effect of executing one single ui, 1 ≤ i ≤ n; the disjunction of updates
is an exclusive one. The ordered specification expresses that the runtime system should try to
execute the updates in the given order, until a (first) update has been successfully executed.
Like for unordered conjunctions of updates, the scope of variables used in update ui is restricted
to ui.

Example 2.52 (XChange Complex Update Specifying Disjunction of Updates) The
following XChange complex update specifies that a travel reservation is to be performed, if no
flight reservation can be made, a train ticket should be reserved. The disjunction update has the
following shape:

or [

<make flight reservation>,

<reserve train ticket>

]

The above template is instantiated to make the desired reservation for Christina Smith; bindings
for the variables are obtained from evaluating the event query and Web query of the rule having
the update as action. Note that one cannot bind a variable to name{”Christina Smith”} and
then use it in the other update of the disjunction.

or [

in { resource { "http://lhs.de/flights/" },
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desc reservations {{

insert reservation {

var Flight, name { "Christina Smith" } }

}}

},

in { resource { "http://db.de/trains/" },

desc tickets {{

insert reservation {

var Train, name { "Christina Smith" } }

}}

}

]

Unordered Disjunction of Updates. Consider an XChange complex update specification
u disj of the form u disj = or{u1, u2, ..., un}, where 2 ≤ n and ui specify XChange updates.
The effect of u disj is the effect of executing one single ui, 1 ≤ i ≤ n. The runtime system
has the freedom to choose the order in which it tries to find and successfully execute one of the
updates. Like for ordered disjunction of updates, the scope of variables used in update ui is
restricted to ui.

2.4.2.3 Transactions

An XChange transaction specification is a group of (elementary or complex) update specifica-
tions and/or explicit event specifications (expressing events that are constructed, raised, and
sent as event messages) that are to be executed in an all-or-nothing manner. That is, either all
specified actions are successfully executed or none of the updates is executed (partial effects of
the updates need to be undone).

Elementary and complex update specifications have been introduced in the previous sections.
They specify (local or remote) Web resources to be modified and the updates to be performed
on their data. An XChange event specification is a (complete) pattern for the event message(s)
to be constructed and sent to one or more Web sites. The notion of event terms is used to
denote such patterns for events to be raised. An event term represents a restricted construct
term that may be preceded by the keyword all.

A restricted construct term is an Xcerpt construct term having root labelled XChange-Name-

space:event and at least one subterm XChange-Namespace:recipient{uri} that specifies a
Web site’s address. The constructed event message is to be sent to the XChange program found
at uri. If more than one subterms of the form XChange-Namespace:recipient {uri} are given
in an event term, the constructed event message is to be sent to all specified recipient Web sites.

An event term of the form all Construct Term is used to raise and send all events that
are constructed with Construct Term by applying the substitutions obtained from the rest of
the XChange reactive rule whose head specifies the event term. Such event terms are useful
e.g. when the event messages to be sent have different content (depending on the variable
substitutions).

Actually, Event Term in the grammar rules given next is not a construct term with arbitrary
structure – it has been generalised to construct term for reasons of simplicity. The following
grammar rules define transactions specifications in XChange:
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Trans ::= Update

| Event_Term

| Ordered_AList

| Unordered_AList

Event_Term ::= Construct_Term

| "all" Construct_Term

Ordered_AList ::= "and" "[" AList "]"

| "or" "[" AList "]"

Unordered_AList ::= "and" "{" AList "}"

| "or" "{" AList "}"

AList ::= Update ("," Action)+

Action ::= Update | Event_Term

A transaction specification can be considered as an ordered or unordered conjunction or dis-
junction of action specifications. Currently, updates and event terms are considered as actions
in XChange. However, this view offers flexibility in extending XChange with other kinds of
actions if considered necessary. The discussion on visibility of update effects for other updates
inside a transaction (including also the usage of obtained variable substitutions) can be ported
to the more general setting of actions (and covering thus event terms or combinations of updates
and event terms).

On XChange Transactions and their Management on the Web. Combinations of
XChange actions are considered transactions if they obey the ACID properties [71] (Atomicity,
Consistency, Isolation, and Durability). Communicating transaction requests and synchronising
the actions to be taken can be implemented to some extent by means of XChange rules; however,
transaction-related issues deserve more investigation in the framework of XChange so as to
realise transaction management on the Web. The idea is to extend XChange with standard
solutions from database systems that are to be adapted to the biggest existing distributed
system – the Web.

Actions performed inside of a distributed transaction on the Web may trigger local or
remote actions that in turn can trigger other actions (i.e. cascading triggering on the Web).
Upon abort of a triggering transaction, rollback of all triggered actions needs to be assured on
the Web, a decentralised environment posing new challenges. A nested transaction model has
been proposed in [74] (for HiPac, pages 184 - 186) for accommodating with the relationship
between a transaction and the rules triggered by it (which in turn can trigger other rules). How
to cope with these kinds of problems has been discussed also in [74] (for Chimera, page 167)
and [60]. Existing proposals for management of triggering transactions and triggered ones in
database systems might prove very useful in extending XChange.

Transactions defined at the level of an XChange-aware Web site, or more concrete in an
XChange program, should recognise contradictory transactions and update specifications, pos-
sibly at compile time, or develop transaction inconsistency resolution strategies. For example,
for insert a and delete a, conceivable strategies would be to execute the update associated with
the reactive rule with higher priority, or not to execute these two updates at all. At moment,
however, XChange does not consider priorities for rules but, at the same time, leaves room for
such kind of extensions.

Contingency mechanisms could be also employed for transaction management on the Web,
i.e. use the events expressing abort of a transaction to specify how to react in case that a
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transaction aborts.

The emphasis in this report is not on a language for distributed transactions on the Web; we
recognise the need for transactions through developed application scenarios and the components
a transaction on the Web might have, and proposes a syntax for event-driven transactions.
A complete investigation and realisation (including formal semantics and implementation) of
transactions on the Web are outside the scope of this report, and are to be further developed
later in the project.

2.4.3 Semantics of Updates

This section discusses the declarative semantics of elementary and complex updates in XChange.
Recall that transactions – combining updates and events to be raised – can be specified in
XChange. Though, this work on declarative semantics is restricted to XChange updates, as
the accent in this report is not on a language for distributed transactions on the Web; we
recognise the need for transactions through developed application scenarios and the components
a transaction on the Web might have, and proposes a syntax for event-driven transactions. The
declarative and operational semantics of transactions on the Web are outside the scope of this
report.

Semantics of Elementary Updates. An XChange elementary update specification consists
of a resource specification and an update term: The resource specification gives the location
and names of the documents to be updated. The update term is a pattern for the data to be
updated augmented with the desired update operations. The effect of an elementary update is
that the data at the given resources has been ’refreshed’ according to the given update term.
The same result can be obtained when constructing the data after the update. In the context
of XChange this means that an elementary update has the same effect as an Xcerpt goal that
constructs the data after the update.

Given an elementary update u for modifying resources Resi, 1 ≤ i ≤ n (a finite number
of Web resources) with update term tu, a corresponding Xcerpt goal Gu exists that constructs
new data at Resi. This (new) data constructed at Resi is the data that would be obtained
by applying tu on the (old) data at Resi. Note that data constructed by Gu overwrites the
old data found at the resources. A set of rewriting rules have been recognised that rewrite an
elementary update u into an Xcerpt goal Gu such that the effect of Gu is the same as the effect
of u. The underlying ideas of rewriting are given in Section 2.4.4.

Thus, the semantics of an elementary update u can be reduced to the semantics of a cor-
responding Xcerpt goal Gu of the form tcu ← Qu. That is, the model theoretical semantics of
Xcerpt, whose underlying ideas have been presented in the previous section, can be used for
defining the semantics of elementary updates in XChange.

An elementary update u is transformed into a goal tc
u ← Qu and gets, thus, a formula

representation ∀∗ � tcu ← Qu � ∧
∧

1≤i≤n dResi
, where dResi

are the data terms to be modified.
The satisfaction of such a formula in an interpretation is defined in Definition 2.1. Intuitively,
the model for the formula expressing the update contains the data terms after the update has
been performed.

Example 2.53 (Declarative Semantics of Elementary Updates) Consider the following
update term:
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bib {{

book {{ price { var P replaceby var P * 1.5 } }}

}}

Assume that the data term to be updated contains books listed with their titles and prices; each
book price needs to be modified. A goal corresponding to the above given update term has the
following formula representation:

∀ P �bib { book { price { var P*1.5 },

all var O }, all var C } ← bib {{ book {{ price

{ var P }, var O }}, var C }} �
∧ bib { currency {"Euro"}, book { title {"Linux in a

Nutshell"}, price {"36"} }, book { title {"Data on the Web"},

price {"40"} } }

A model for the above given formula is M = (I,Σ) where:

I = {

bib { currency {"Euro"}, book { title {"Linux in a Nutshell"}, price {"54"} },

book { title {"Data on the Web"}, price {"60"} } },

bib { currency {"Euro"}, book { title {"Linux in a Nutshell"}, price {"36"} },

book { title {"Data on the Web"}, price {"40"} } }

} Σ = { {∅} }

The interpretation I contains the data terms before and after the update. The formula corre-
sponding to the update term together with the data term to be modified represents an Xcerpt
program that produces the data term where the book prices are replaced by the new prices.

Semantics of Complex Updates. Complex updates specify conjunctions or disjunctions
of (elementary or complex) updates. Based on the formula representation of elementary up-
dates and using the connectors ∧ and ∨ the formula representation of complex updates are
constructed. A formula of the form

(i) F1 ∧ · · · ∧ Fn represents a complex update specifying conjunction of updates,
(ii) F1 ∨ · · · ∨ Fn represents a complex update specifying disjunctions of updates,

where Fi is the formula representation of an elementary or complex update. As for elemen-
tary updates, the Definition 2.1 is used for determining if such a formula is satisfied in an
interpretation or not.

Remark. Observing that the effect of an elementary update can be ’simulated’ by an Xcerpt
goal, the model-theoretical semantics of the query language Xcerpt has been used for defining
the declarative semantics of update language of XChange. However, this approach does not
cover ordered conjunctions and disjunctions of (elementary or complex) updates. Ordered
complex updates enforce an order for performing the given updates. Moreover, some specified
updates might depend on updates that are to be executed before them (so as to use bindings
for the variables obtained after update execution). These features cannot be defined by means
of a model-theoretical semantics.
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2.4.4 Execution of Updates

This section discusses the execution of XChange updates. It considers first some conceivable
approaches for executing updates on Web data (updates specified by means of an update lan-
guage). Then it recalls the model for updating data on the Web and the update operations
considered in this work. The section ends by presenting the approach taken in XChange and
already mentioned in Section 2.4.3; the underlying ideas of the taken approach are given and
explained in detailed steps through a simple example of an XChange update.

Executing Updates to Web Data. Different approaches are conceivable for executing the
update operations specified by means of an update language for Web data; they are determined
by different conditions or criteria that need to be taken into account. First, updating data
depends on the representation formalism and the storage of the data to be modified. One can
find data on the Web (as Web resources data) represented in a multitude of formalisms (such
as HTML, XML, RDF, or relational databases) and data storage (e.g. XML data can be stored
as native XML documents, in relational databases such as Tamino [68], or in object-oriented
databases). Clearly, the representation of data is more important for the language constructs
and the storage of data for the execution of updates specified through these constructs.
Let’s now consider another ’dimension’ of update execution. Updates can be performed

(i) in-place, meaning that the specified update operations are executed directly (data need
not loaded in the memory) on the data to be updated, or

(ii) in-memory, meaning that the data to be updated is loaded in the memory where it is
modified, the data after the update need to be ’placed instead’ of the old (initial) data.
Using this approach, the data after the update can be constructed in memory or the
update operations can be performed on the internal representation of data (e.g. on the
DOM representation when updating XML data).

Also, an update language can have proprietary update execution abilities, or transformation
rules can be provided for the language constructs into existing ’update management’ means.
For the latter case, a mapping between the update constructs of the language and update or
construction constructs of another language are provided; evaluating or executing the obtained
programs yields the same effect as if a proprietary update processor is available. For example,
update operations on XML documents can be mapped into SQL update operations that work on
an XML (relational) database; such XML-to-SQL-mappings eliminate the need to understand
the database structure.

Efficiency issues can play an important role when updating data on the Web; however,
there are few proposals for efficient execution of updates on Web data having (native) XML
storage. For example, finding the least expensive sequence of operations to transform an initial
document (before any update is performed) in the final one (the document after the specified
update are performed) pose interesting research problems.

XChange Updates on the Web. An XChange program is located at one (XChange-aware)
Web site and contains rules specifying ordered or unordered conjunctions and/or disjunctions of
updates. Updates are specified as “action part” of XChange reactive rules; they are performed
after the successful evaluations of the other parts (event query, Web query) of the rules. Thus,
the substitution set Σu = Σeq ∩ Σwq is used for performing the specified updates, where Σeq
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and Σwq are the substitution sets obtained from evaluating the event query part and the Web
query part, respectively.

XChange updates express how data found at one or more Web resources is to be modified,
i.e. how persistent data is to modified. These Web resources are either local or remote. Updates
to local Web resources are executed by the language processor at the Web site. Updates to
remote Web resources are not executed by the processor of the Web site where the update has
been specified; instead updates to remote data are update requests to the Web sites where the
data to be modified is stored. A Web site receiving an update request can try to execute the
update or decide not to execute the requested update. This approach is consistent with the
local control of XChange programs.

An XChange elementary update consists of a resource specification (the resources to be
updated) and an update term (a pattern for the data to be modified augmented with update
operations). The subjacent query term of an update term is the underlying query pattern of
the respective update term. Consider an elementary update u specifying modifications of data
term du through an update term tu whose subjacent query term is stu

; a premise for a successful
execution of the update operations of u is the satisfaction of the condition stu

� du. In other
words, the query stu

needs to evaluate successfully against du for performing the given update
operations on du. The evaluation of the subjacent query term of an update term against the
given data to be modified can represent a ’pre-update operations execution’ step for determining
whether to (try to) execute the update operations on these data or not. However, performance
results need to be compared for executing updates with and without subjacent query term
evaluation for determining which technique is more suitable and less expensive.

XChange update operations specify insertions, deletions, or replacements of data for tree-like
Web data. Executing an update operation

• insert ConstructTerm implies the construction of a data term using ConstructTerm and
the variable substitutions obtained from the other parts of the rule and the evaluation
of subjacent query term; the construction follows closely that of Xcerpt [64]. Where the
constructed data term is inserted is given by the position of the insertion operation inside
the subjacent query term.

• delete QueryTerm deletes all terms matching the QueryTerm; all subterms of these terms
are deleted.

• QueryTerm replaceby ConstructTerm replaces all terms matching the QueryTerm with
a data term constructed with ConstructTerm.

The other constructs for XChange update operations are executed conforming to their meaning
(that have been introduced informally in Section 2.4.1), for example by inserting at a given
position in the document when a position is specified.

An XChange complex update specifies ordered or unordered conjunctions or disjunctions of
(elementary or complex) updates. Executing a complex update

• and [U1, . . . , Un] means executing all Ui, 1 ≤ i ≤ n in the given order so as to use a
substitution set for the variables obtained by executing Ui in the subsequent updates Uj ,
i + 1 ≤ j ≤ n.

• and {U1, . . . , Un} means executing all Ui, 1 ≤ i ≤ n regardless of the execution order
(unordered updates can be executed in parallel).
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• or [U1, . . . , Un] means executing one of the Ui, 1 ≤ i ≤ n by trying to execute the
updates in the given order and stop after the first successful execution of a specified
update.

• or {U1, . . . , Un} means executing one of the Ui, 1 ≤ i ≤ n; the processor can pick freely
the update to be executed from the given ones.

The execution of complex updates is a kind of controlled execution of two or more elementary
or complex updates; the building block consists in executing XChange elementary updates. The
approach taken in XChange for executing elementary updates is discussed in the following.

Updates through Construction. The approach taken for executing XChange updates is
an in-memory execution of updates where the elementary updates are executed by constructing
the data after the update. Mappings between XChange elementary updates and Xcerpt goals
are provided. Data to be updated has a tree-like representation (e.g. XML, or RDF data) stored
as XML documents.

XChange updates specifying modifications as an alternative to an intentional specification,
i.e. constructing the data after the update by means of deductive rules. That is, for each
XChange elementary update a corresponding Xcerpt goal exists, such that evaluating the Xcerpt
goal has the same effect as if the respective update operations were executed directly on the
data. The substitution set obtained from evaluating the other parts of the rule having the
elementary update as action or from executing other specified updates in the action part is
used in evaluating the Xcerpt goal. The data term constructed by evaluating the Xcerpt goal
is the data term after the update; this modified data term overwrites the initial data (the data
before the update).

Given an XChange elementary update u, a corresponding Xcerpt goal G of the form
ConstructTerm→g QueryTerm is constructed by taking the structure of the subjacent query
term and the update operations of u into account. This transformation poses the following
challenges:

(i) partial patterns in u do not offer knowledge about all subterms of terms in the data to
be modified; means are needed for determining whether a term has other subterms than those
specified in the query pattern, and for gathering all these subterms if they exist so as not to
loose data through construction.

(ii) the original order of the terms in the data to be modified needs to be maintained.
(iii) the semantics of XChange update operations needs to be mirrored by the constructed

Xcerpt goals.
(iv) the position specifications in insertion operations express insertion of data at the given

position; means are needed so as to assure that the modified data contains the inserted data at
the given position.

Rewriting rules have been developed for rewriting an XChange elementary update specifica-
tion into a corresponding Xcerpt goal specification. These rules are applied recursively on the
structure of the given update term to obtain a tuple (ConstructTerm,QueryTerm) consisting
of the construct and query part of an Xcerpt goal. The resources given in the elementary up-
date are ’forwarded’ to the query and construct part of the Xcerpt goal. The rewriting rules
comprise the following solutions to the problems mentioned above:

(i) partial patterns imply the use of Xcerpt’s construct optional before a fresh variable in
the goal’s query and gathering of all these in its construct term (so as to ensure that no data
is to be loosed along the construction way);
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(ii), (iv) the desired order of the subterms in the modified data term is assured by combining
the use of ordered patterns with Xcerpt’s ordering of terms based on their position.

(iii) the desired effect of XChange update operations is achieved by a careful development
of the rewriting rules based on the fact that XChange update terms consist of Xcerpt terms
(query terms and construct terms) and update constructs.

The following example explains the transformation steps that are needed in order to go from
an XChange elementary update to a corresponding Xcerpt goal.

Example 2.54 (Flight Reservation Specified as Deductive Rule) Recall Example 2.56
specifying an XChange transaction rule for booking another flight as reaction upon a flight
cancellation. After evaluating the event query and Web query parts, the specified action is to
be performed. Its specification follows:

in { resource { "http://airline.com/reservations/" },

reservations {{

insert reservation { var F, name { "Christina Smith" } }

}}

}

For constructing a corresponding Xcerpt goal for the above given XChange elementary update
simple steps need to be taken by paying attention to the structure of the update term. The
resource http://airline.com/reservations/ to be modified is treated in a straightforward
manner: the query part of the goal queries it and the construct part of the goal specifies it as
the output resource (where the data after the update should be ’put’).
The subjacent query term of the given update term is

reservations {{ }}

which is transformed by applying the rewriting rules into a query term to be used in the query
part of the goal and a construct term to be used in the construct part of the goal. The query
term is obtained by adding a pattern that matches with the subterms of the reservations term;
the subterm and its position are to be bound to the variables Child and CPos, respectively. The
optional construct is used because there is no knowledge about the existence of other made
reservations (or subterms of other kind) at http://airline.com/reservations/. Thus, the
following query term is obtained

reservations {{

optional position var CPos var Child

}}

Let’s turn attention to the construction of the goal’s construct term. The partial specification
turns into total ordered specification so as to keep the order of the subterms as in the initial data
term (i.e. the data term before the update is performed). All subterms of the root reservations
in the initial data term are gathered by means of the construct all (so as not to loose informa-
tion) and ordered by their position in the initial data term (for keeping the initial order). After
these steps, the construct term looks like

reservations [

all optional var Child order by [ var CPos ]

]
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However, using this construct term one just constructs the initial data term without taking
the insertion update into consideration. One more step needs to be made; the construct term
specified in the insertion operation (i.e. after the insert keyword) is a pattern used in the goal’s
construct term for constructing a new subterm of reservations. Thus, the goal’s construct
term is complete as:

reservations [

all optional var Child order by [ var CPos ],

reservation { var F, name { "Christina Smith" } }

]

The corresponding Xcerpt goal built by making the described transformation steps to the ele-
mentary update given at the beginning of this example is the following:

GOAL

out { resource { "http://airline.com/reservations/" },

reservations [

all optional var Child order by [ var CPos ],

reservation { var F, name { "Christina Smith" } }

]

}

FROM

in { resource { "http://airline.com/reservations/" },

reservations {{

optional position var CPos var Child

}}

}

END

The desired booking is realised (i.e. the insertion update is executed) by evaluating the above
given Xcerpt goal. The reservation for Christina Smith is to be found as the last subterm of the
reservations term in the data at http://airline.com/reservations/.

The previously given example of an XChange elementary update is a simple one that keeps
its simplicity in the transformation process and the corresponding Xcerpt goal specification.
However, more complex XChange updates are still easy to be transformed (the rewriting rules
are applied recursively on the structure of the update terms) but lack clear, simple specifications
of the corresponding goal for programmers. As the whole transformation remains hidden and
can be realised by automatic means, programmers need just to use the elegant XChange update
operations.

2.5 XChange Rules

2.5.1 Rules

An XChange program is located at one Web site and consists of one or more rules: Reactive
rules of the form Event query – Web query – Action specify situations of interest and the actions
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to be automatically executed if such situations occur. Deductive rules are Xcerpt rules that
infer new data from existing (persistent) Web data (are views over persistent data).

The language XChange has been deliberately designed to mirror the clear separation between
volatile and persistent data. The language constructs deal either with volatile or with persistent
data for easing their understanding and usage. There are two levels of the language that mirror
the view over the Web data: (a) rules’ level, and (b) reactive rule components’ level.

(a) XChange reactive rules specify reactions to be executed in response to incoming volatile
data. In contrast, XChange deductive rules deal only with persistent data, they query persistent
data and construct new persistent data. XChange deductive rules are rules expressed in the
query language Xcerpt (integrated into XChange), which has been described in [64], and further
developed in Rewerse WG-I4, and are not the focus of this report.

(b) Regarding the components of XChange reactive rules, the Event query refers to (queries)
volatile data and the Web query refers to (queries) persistent data. The Action might refer
to volatile data (by sending event data) or to persistent data (by updating persistent data).
Rule components communicate only through variable substitutions. Substitutions obtained by
evaluating the event query can be used in the Web query and the action part, those obtained
by evaluating the Web query can be used in the action part.

There are two kinds of XChange reactive rules that differ in the action to be executed:
Event-raising rules specify explicit events to be constructed and sent to one or more Web
sites. Transaction rules specify transactions to be executed. Thus, the grammar rules defining
XChange rules are the following:

XCRule ::= React_Rule | Xcerpt_Rule

React_Rule ::= Raise_Rule | Trans_rule

XChange rules can be defined by programmers, system administrators, and non-programmers
with a level of knowledge depending on their application requirements. Being a high-level
language, XChange should not be too difficult to use even by non-experienced programmers.
Moreover, a visual counterpart of XChange is planned that could increase the accessibility of the
language. XChange rules can be defined also by applications – e.g. rules can be automatically
generated based on the dependencies between Web resources’ data.

This section is structured as follows: Section 2.5.2 discusses XChange event-raising rules.
Section 2.5.3 focuses on XChange transaction rules. Deductive rules in XChange are motivated
through an example in Section 2.5.4. This section ends by defining the range restriction of
XChange rules (Section 2.5.5).

2.5.2 Event-Raising Rules

XChange event-raising rules are means for notifying reactive (XChange-aware) Web sites of
(atomic or composite) events that have occurred. They specify event messages to be constructed
and sent to other Web sites as reaction on (local or remote) events. Conditions that need to
hold for raising events can be specified by means of queries to persistent data; these conditions
select data items from persistent data that are used for constructing event messages.

Event-raising rules are introduced by the keyword RAISE followed by an event term, the
(atomic or composite) event query is preceded by the keyword ON, and the Web query by the
keyword FROM. Event term specifications have been introduced in Section 2.4.2.3. Event queries
have been discussed in Section 2.2.3. Web queries are Xcerpt queries [64]. The grammar
rule defining event-raising rules is given next. (Note that just the event term specification is

102



mandatory in XChange event-raising rules; the event query and/or the Web query can be left
out.)

Raise_Rule ::= "RAISE" Event_Term ("ON" EvQ)? ("FROM" Query)? "END"

Incoming events are queried by means of event query EvQ. For each answer to EvQ, the Xcerpt
query Query is evaluated. If Query evaluates successfully, an event message is constructed from
Event Term and is sent to the specified recipient. EvQ and Query select data from incoming
events (volatile data) and Web resources (persistent data), respectively, as bindings for the
variables occurring in the queries. Assuming that the answers to EvQ and Query contain the
substitution sets ΣEvQ and ΣQuery, respectively, for constructing the event message substitution
set Σ = ΣEvQ 1 ΣQuery will be used.

An event that has been raised at a Web site (i.e. its representation has been constructed as
event message to be sent to one or more Web sites) contains as parameters the recipient Web site
(that needs to be given in the event term specification), the sender Web site, and the raising time
(the last two are determined by the event manager of the Web site sending the event message;
the event manager provides this information by inserting it into the event representation before
its sending). The reception time and the event id parameters are determined and inserted by
the event manager of the recipient Web site when the event message is received.

Example 2.55 (XChange Event-Raising Rule) The site http://airline.com has been
told to notify Mrs. Smith’s travel organiser of delays or cancellations of flights she travels with.
The shape of such an event-raising rule is given followed by a concrete, complete XChange
event-raising rule.

RAISE

<event message pattern notifying flight cancellation>

ON

<event query detecting flight cancellations>

END

The following event-raising rule is registered at http://airline.com and detects cancellation
notification events sent by one of the airline’s control points. If the flight AI2021 is cancelled,
the airline notifies the organiser of Mrs. Smith about this event.

RAISE

xchange:event {

xchange:recipient { "http://organiser.com/Smith" },

cancellation-notification { var F }

}

ON

xchange:event {{

xchange:sender { "http://airline.com/control-point20/" },

cancellation {{

var F -> flight {{ number { "AI2021" },

date { "2005-08-21" }

}}

}}

}}

END
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2.5.3 Transaction Rules

XChange transaction rules are means for updating persistent data on the Web and notifying
other XChange-aware Web sites of events occurring during the execution of these updates.
These actions – updates and raising of events – are to be executed as a transaction. Conditions
that need to hold, as a precondition for transaction execution, can be specified by means of
queries to persistent data.

Transaction rules are introduced by the keyword TRANSACTION followed by a transaction
specification, the (atomic or composite) event query is preceded by the keyword ON, and the Web
query by the keyword FROM. Transaction specifications have been introduced in Section 2.4.2.3.
The grammar rule defining transaction rules is given next. (Note that just the transaction
specification is mandatory in XChange transaction rules.)

Trans_Rule ::= "TRANSACTION" Trans ("ON" EvQ)? ("FROM" Query)?

"END"

As for event-raising rules, incoming events are queried by means of event query EvQ. For
each answer to EvQ the Xcerpt query Query is evaluated. If Query evaluates successfully,
the actions specified in transaction Trans are to be executed (either all of them or none).
Assuming that the answers to EvQ and Query contain the substitution sets ΣEvQ and ΣQuery,
respectively, for executing the specified actions (updates and events to be raised) substitution
set Σ = ΣEvQ 1 ΣQuery will be used.

Note that the “event part” is not mandatory for event-raising rules and transaction rules in
XChange, so as to be able to specify e.g. updates that are to be executed not (necessarily) as
reaction to events.

Example 2.56 (XChange Rule for Booking a Flight) The travel organiser of Mrs. Smith
uses the following rule: if the return flight of Mrs. Smith is cancelled then look for and book
another suitable flight. Again, the shape of such a transaction rule is given first.

TRANSACTION

<make flight reservation>

ON

<event query detecting flight cancellations notifications>

FROM

<Web query looking for another suitable flight>

END

The XChange rule of Example 2.55 is used to send event messages to Mrs. Smith’s organiser;
the next XChange transaction rule responds to it by booking another flight. If no suitable flight
is found, no action is performed.

TRANSACTION

in { resource { "http://airline.com/reservations/" },

reservations {{

insert reservation { var F, name { "Christina Smith" } }

}}

}

ON
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xchange:event {{

xchange:sender { "http://airline.com" },

cancellation-notification {{

flight {{ number { "AI2021" },

date { "2005-08-21" } }}

}}

}}

FROM

in { resource { "http://airline.com" },

flights {{

var F -> flight {{

from { "Paris" }, to { "Munich" },

date { "2005-08-21" }

}}

}}

}

END

Example 2.57 (XChange Rule Specifying Sequence of Updates as Action) If no other
suitable return flight is found and the airline does not provide an accommodation, then book for
Mrs. Smith a cheap hotel and inform her secretary about the changes of her schedule. This is
represented in XChange as a rule the travel organiser of Mrs. Smith has. The rule is shaped as
follows:

TRANSACTION

<make hotel reservation>

<and>

<announce secretary of changes of schedule>

ON

<event query detecting cancellations of flights for which

the airline does not provide an accommodation>

FROM

<Web query looking for a suitable hotel>

END

For a cancelled return flight from Paris to Munich, the travel organiser of Mrs. Smith uses the
following XChange rule:

TRANSACTION

and [

in { resource { "http://hotels.net/reservations/" },

reservations {{

insert reservation {

var H, name { "Christina Smith" },

from { "2005-08-21" }, until { "2005-08-22" } }

}} },

in { resource { "diary://diary/my-secretary" },

diary {{
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news {{

insert my-hotel {

remark { "I’m staying in Paris over night!" },

phone { var Tel }, reason { "Flight cancellation." } }

}} }} }

]

ON

andthen [

xchange:event {{

xchange:sender { "http://airline.com" },

cancellation-notification {{

flight {{ number { "AI2021" }, date { "2005-08-21" } }}

}}

}},

without { xchange:event {{

xchange:sender { "http://airline.com" },

accommodation-granted {{

hotel {{ }} }} }}

} during [2005-08-21T15:00:00..2005-08-21T19:00:00]

] within 2 hour

FROM

result [[

var H -> position 1 hotel {{ phone { var Tel } }} }}

]]

END

Note that the Web query (introduced by FROM) does not query a particular Web resource; it
queries a view over the data of two Web resources having different structures. The Xcerpt rule
constructing the view over hotel data is given in the next section (Example 2.58). Variable H
is to be bound to the hotel offering the best price.

2.5.4 Deductive Rules

Deductive rules are means for constructing views over heterogeneous data sources. As exempli-
fied in the previous section, data views are easily and elegantly queried in the Web Query part
of reactive rules. Deductive rules are expressed by using the Web and Semantic Web query
language Xcerpt, which is integrated into XChange.

Xcerpt_Rule ::= "CONSTRUCT" Construct_Term "FROM" Query "END"

Deductive rules of an XChange program can be chained, that is query parts of reactive or
deductive rules can query the result of other deductive rules. This is realised by matching
(simulation unifying) the query part with the construct part – the head – of other deductive
rules. Note that the head of reactive rules can not be queried.

Example 2.58 (Deductive Rule for Gathering Information about Hotels) The follow-
ing Xcerpt rule queries data found at Web resources http://hotels.net and http://hotels-
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paris.fr and constructs a view over the hotel data by gathering information about all hotels
in Paris. The constructed data term contains a list of hotels ordered by their price per room.

CONSTRUCT

result [

all hotel { name { var Name },

price { var Price },

phone { var Phone } } order by ascending [ var Price ]

]

FROM

or {

in { resource { "http://hotels.net" },

accommodation {{

hotels {{

city { "Paris" },

desc hotel {{

name { var Name }

price-per-room { var Price },

phone { var Phone } }} }}

}}

},

in { resource {"http://hotels-paris.fr"},

logement {{

hotel {{

nom { var Name },

telephone { var Phone },

prix { var Price }

}}

}}

}

}

END

Note that the two data terms queried for hotels in Paris have different structures; the above
given rule not only gathers the desired information, but also gives data a uniform structure.

Complex applications specifying reactivity on the Web require a number of features that can
not always be specified by simple programs. In XChange, rules are also means for structuring
complex XChange programs.

2.5.5 Range Restriction

This section discusses range restriction of XChange rules, i.e. a syntactic restriction on admissi-
ble XChange rules. The satisfaction of the range restriction property by the rules of an XChange
program is assumed in defining the formal semantics of XChange. Moreover, range restriction
of XChange rules is a syntactical property that can be statically verified when parsing XChange
programs so as to avoid (some) programming mistakes.
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Intuitively, an XChange rule is range-restricted if every variable occurring in the construct
term(s) of the rule’s head (“action part” or construct part) has at least one defining occurrence
(i.e. an occurrence that “provides” bindings for the variable) in other parts (event query part,
Web query part, or actions that are to be performed before the action containing the respective
construct term) of the rule.

For defining the range restriction of XChange rules, each variable occurrence in XChange
rules is associated with a polarity and an optionality ; these determine whether a variable occur-
ring in a part of the rule can be used in other parts of the respective rule. A negative polarity
(denoted by “-”) of a variable occurrence expresses a defining occurrence of the variable. A
positive polarity (denoted by “+2) expresses a non-defining variable occurrence. Optionality is
given by an attribute optional (denoted by “?”) and not optional (denoted by “!”) for variables
contained in an optional subtree and do not always have bindings.

An XChange program is a set of rules, denoted P = {Rr1, . . . , Rrm, T r1, . . . , T rn, Dr1, . . . , Drp},
where

• Rri, 0 ≤ i ≤ m, are event-raising rules of the form te ←r Q ←r eq (te is an event term,
Q an Xcerpt query, and eq an event query),

• Trj , 0 ≤ j ≤ n are transaction rules of the form tra ←r Q ←r eq (tra is a transaction
specification, Q an Xcerpt query, and eq an event query),

• Drk, 0 ≤ k ≤ p are Xcerpt rules of the form tc ← Q (tc is a construct term and Q an
Xcerpt query), and

• 1 ≤ m + n.

The range restriction of Xcerpt rules (deductive rules Drk, 0 ≤ k ≤ p) is defined in [64], Chapter
6, pages 133-137. Thus, this section discusses only range restriction for XChange reactive rules
of a program P , i.e. event-raising rules Rri, 0 ≤ i ≤ m, and transaction rules Trj , 0 ≤ j ≤ n.
For this, the polarity of event queries, Web queries, and actions need to be defined. As Xcerpt
query terms are needed for defining the polarity of event queries and updates, and construct
terms are needed for defining the polarity of event terms and updates, the definition of polarities
of Xcerpt subterms is given in the following; the polarity of Xcerpt query and construct terms
has been defined in [64], Chapter 6.

Definition 2.4 (Polarity of Xcerpt Subterms)

1. Let t be a query term with polarity p and optionality o.

• if t is of the form without t′, then t′ is of polarity + (regardless of p) and optionality
o

• if t is of the form optional t′, then t′ is of polarity p and optionality ?.

• if t is of one of the forms l{{t′1, . . . , t
′
n}}, l{t′1, . . . , t

′
n}, l[[t′1, . . . , t

′
n]] or l[t′1, . . . , t

′
n]

(n ≥ 0), then t′1, . . . , t′n are of polarity p and optionality o.

• if t is of the form desc t′ then t′ is of polarity p and optionality o.

• if t is of the form var X → t′ then t′ is of polarity p and optionality o.

2. Let t be a construct or data term with polarity p and optionality o.
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• if t is of the form optional t′, then t′ is of polarity p and optionality ?.

• if t is of one of the forms f{t′1, . . . , t
′
n} or f [t′1, . . . , t

′
n] (n ≥ 0), then t′1, . . . , t′n are

of polarity p and optionality o.

• if t is of the forms all t′ or some t′, then t′ is of polarity p and optionality o.

• if t is of the form op(t′1, . . . , t
′
n), with op a function or aggregation identifier, then

t′1, . . . , t′n are of polarity p and optionality o.

The root of a query term is usually of negative polarity (and thus define variable bindings) and
not optional. The root of a construct or data term is of positive polarity and not optional.

2.5.5.1 Polarity of Event Queries

For assigning a polarity to each occurrence of a variable in an XChange event query, polarities
are recursively assigned to each component of an event query. An XChange event query may be
atomic or composite; an atomic event query is an Xcerpt query term with an optional absolute
temporal restriction specification. The above given definition (taken from [64]) represents the
base of defining the polarity of XChange event queries; it defines polarity of atomic event queries
without temporal restrictions. The next definition is used for defining the polarity of XChange
event queries.

Definition 2.5 (Polarity of XChange Event Queries) Let eq be an event query with po-
larity p and optionality o. If eq is of the form:

• eq is an Xcerpt query term, then the Definition 2.4 is used for attributing polarity to its
subterms;

• eq = eq′ in [b..e], or eq = eq′ before e, then eq′ is of polarity p;

• eq = eq′ within w, then eq′ is of polarity p;

• eq = and{eq1, . . . eqn}, then eqi is of polarity p, 1 ≤ i ≤ n;

• eq = andthen[eq1, . . . , eqn] or eq = andthen[[eq1, . . . , eqn]], then eqi is of polarity p,
1 ≤ i ≤ n;

• eq = andthen[[eq1, collect q12, eq2, collect q23, eq3, . . . , eqn]], then eqi and qij are of
polarity p, 1 ≤ i ≤ n, j = i + 1, 2 ≤ j ≤ n;

• eq = or{eq1, . . . eqn}, then eqi is of polarity p, 1 ≤ i ≤ n;

• eq = var X → eq′, then eq′ is of polarity p;

• eq = without {eq1} during {eq2}, then eq1 is of polarity + (regardless of p) and eq2 is
of polarity p;

• eq = without {eq1} during [b..e], then eq1 is of polarity + (regardless of p);

• eq = times (atleast|atmost)? n any var X1, . . . , var Xk {eq
′} during {eq′′}, then eq′

and eq′′ are of polarity p;

• eq = times (atleast|atmost)? n any var X1, . . . , var Xk {eq
′} during [b..e], then eq′

is of polarity p;
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• eq = every n any var X1, . . . , var Xk {eq
′ }, then eq′ is of polarity p;

• eq = withrank n any var X1, . . . , var Xk {eq
′ }, then eq′ is of polarity p;

• eq = last {eq1 } during {eq2 }, then eq1 and eq2 are of polarity p;

• eq = last {eq1 } during [b..e], then eq1 is of polarity p;

• eq = (atleast|atmost)? m of any var X1, . . . var Xk {eq1, . . . eqn} during {eq
′}, then

eq′ and eqi are of polarity p, 1 ≤ i ≤ n;

• eq = (atleast|atmost)? m of any var X1, . . . var Xk {eq1, . . . , eqn} during [b..e], then
eqi is of polarity p, 1 ≤ i ≤ n.

Each of the component event queries of the event query eq having one of the forms given above
are of optionality o.

The root of an event query is of negative polarity (it defines variable bindings) and not
optional. If event exclusion is specified, the polarity changes according to Definition 2.5.

2.5.5.2 Polarity of Web Queries

Web queries in XChange event-raising rules or transaction rules are Xcerpt queries. The polarity
of Xcerpt queries has been defined in [64], Chapter 6, Definition 6.2.

2.5.5.3 Polarity of Actions

XChange actions are raising of events to one or more reactive Web sites, or executing XChange
transactions, i.e. ordered or unordered conjunctions or disjunctions of (elementary or complex)
updates and/or raising of events.

Definition 2.6 (Polarity of XChange Event Terms) Let et be an event term with polarity
p and optionality o.

• if et is an Xcerpt construct term, then the Definition 2.4 is used for attributing polarity
and optionality to its subterms;

• if et is of the form all ct, with ct Xcerpt construct term, then ct is of polarity p and
optionality o.

An XChange update term is a pattern for the data to be updated augmented with update
operations. For attributing polarity to update terms, it suffices to attribute polarity to their
subjacent query terms and the construct terms of the update operations (insertion and replace-
ments). (Recall that XChange update operations cannot be nested.) The subjacent query term
of an update term (Section 2.4.2) is an Xcerpt query term; thus, for attributing polarity to
the subjacent query terms, the part for query terms of Definition 2.4 is used. For attributing
polarity to construct terms that are part of update operations (e.g. insert ct or qt replaceby
ct, with ct construct term and qt query term), the part for construct terms of Definition 2.4 is
used.

The root of a subjacent query term is of negative polarity (it provides bindings) and not
optional; the root of a construct term that is part of an update operation is of positive polarity
(it consumes bindings) and not optional.
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Definition 2.7 (Polarity of XChange Actions) Let a be an XChange action specification
of polarity p.

1. If a is an event term, then Definition 2.6 is used for attributing polarity to its subterms.

2. If a is an elementary update, then its subjacent query term is of polarity p and its construct
terms of polarity +; the specified resources are of polarity +.

3. If a is of one of the forms:

• and [a1, a2, . . . , an] or and {a1, a2, . . . , an}, then every update ai is of polarity p and
every event term aj of polarity +, 1 ≤ i ≤ n, 1 ≤ j ≤ n;

• or [a1, a2, . . . , an] or or {a1, a2, . . . , an}, then every update ai is of polarity p and
every event term aj of polarity +, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

The root of a complex update is of negative polarity and not optional.

Example 2.59 (Polarity in an XChange Rule) The following event-raising rule is used
for settling an appointment with one of Mrs. Smith’s friends. As all terms have associated
attribute not optional, the optionality is not depicted in the example.

RAISE

+xchange:event {

+xchange:recipient {"http://organiser.com/Eva"},

+proposal {

+text {"Can we meet?"},

+on { +var Date }, +at {"14:00"}

}

}

ON

-and {

-without {

+xchange:event {{

+meeting {{

+begin { +var Time },

+date { +var Date }

}}

}}

} during [2005-08-21..2005-08-22],

-xchange:event {{

-xchange:sender {"http://organiser.com/Eva"},

-info {{

-text {"I’m in Munich"},

-date { -var Date }

}}

}}

} before 2005-08-22T22:00

FROM

-in { +resource { "file:/appointments.xml" },
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-schedule {{

-desc -appointments {{

-without +appointment {{

+for { +var Date } }}

}}

}}

}

END

Note that variable Time occurs only once and with positive polarity, that is Time has no occur-
rence that provides bindings for it. The variable Date occurs once with negative polarity, i.e.
the event query against notifications from Eva provides bindings for Date; the variable has more
than one occurrence with positive polarity expressing occurrences where the bindings for Date

are consumed (e.g. in the event term proposing an appointment).

2.5.5.4 Range Restriction of XChange Rules

An XChange transaction rule is range restricted if variables occurring in the construct terms
of the “action part” have at least one defining occurrence in the event query, Web query, or in
the updates that are to be performed before the respective variables are used. An XChange
event-raising rule is range restricted if variables occurring in the event term have at least one
defining occurrence in the event query or Web query.

For simplifying the definition of range restriction of XChange rules, the disjunctive normal
form of an XChange rule is defined next.

Definition 2.8 (Disjunctive Rule Normal Form of XChange Rules) An XChange rule
A←r Q←r Eq is in disjunctive normal form if Q and A are in disjunctive normal form, that
is

(i) an Xcerpt query Q is in disjunctive normal form if it is of the form
∨

j qj, where qj is a
conjunction of query terms and/or negated query terms;

(ii) an action A is in disjunctive normal form if it is an event term or a disjunction of
actions, where each action is a conjunction of elementary updates and/or event terms; the
conjunction of actions preserves the order of action specifications.

Bringing a Web query in its disjunctive normal form is rather straightforward and has
been discussed in [64], Chapter 6. The steps followed for transforming an XChange action
specification into its disjunctive normal deserve some explanation. For bringing an action
specification A in its disjunctive normal form,

1. each ordered disjunction of A is transformed into an unordered one; this step does not
influence the bindings of the variables occurring in the actions specified in the disjunction
(recall that component actions of an unordered or ordered disjunction “share” only the
variable bindings obtained from evaluating the event query and the Web query). Thus,
actions of the form or[a1, a2, ..., an] are transformed into or{a1, a2, ..., an}.

2. each unordered conjunction of action specification of A is transformed into a disjunction
of ordered conjunctions. For example, an unordered conjunction of the form and{a1, a2}
is transformed into

or{
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and[a1, a2],

and[a2, a1] }

Note that the transformation preserves the definition of the scope of variables in unordered
conjunction of actions (cf. Section 2.4.2.2).

3. the last step in the transformation consists in placing the action specification resulted
from applying 1. and 2. to A into disjunctive normal form; this is achieved by recursively
moving conjunctions inward and disjunctions outward by using the rewriting rules:

and[a, or{b, c}] = or{and[a, b], and[a, c]}

and[or{a, b}, c] = or{and[a, c], and[b, c]}

By applying the above stated rules, the order of actions in ordered conjunction specifica-
tions needs to be preserved.

For defining the range restriction of XChange rules, a predicate prob(eq, V ) is defined for
expressing that the event query eq provides bindings for the variable V occurring in eq. If
prob(eq, V ) = True, V can be consumed in other parts of the rule.

Definition 2.9 (Predicate prob - Provides Bindings) Let eq be an event query and V a
variable occurring in eq. The predicate prob(eq, V ) is defined recursively on the structure of eq.
prob(eq, V ) = True, iff

• eq atomic event query and V occurs with negative polarity in eq;

• eq = eq′ in [b..e], or eq = eq′ before e, and prob(eq′, V ) = True;

• eq = eq′ within w and prob(eq′, V ) = True;

• eq = and{eq1, . . . eqn} and ∃i, 1 ≤ i ≤ n such that prob(eqi, V ) = True;

• eq = andthen[eq1, . . . , eqn] or eq = andthen[[eq1, . . . , eqn]], and ∃i, 1 ≤ i ≤ n such that
prob(eqi, V ) = True;

• eq = andthen[[eq1, collect q12, eq2, collect q23, eq3, . . . , eqn]] and ∃i, 1 ≤ i ≤ n such
that prob(eqi, V ) = True or prob(qij , V ) = True;

• eq = or{eq1, . . . eqn} and ∀i, 1 ≤ i ≤ n: prob(eqi, V ) = True;

• eq = without {eq1} during {eq2} and prob(eq2, V ) = True;

• eq = times (atleast|atmost)? n any var X1, . . . , var Xk {eq
′} during {eq′′} and prob(eq′, V ) =

True or prob(eq′′, V ) = True;

• eq = times (atleast|atmost)? n any var X1, . . . , var Xk {eq
′} during [b..e] and prob(eq′, V ) =

True;

• eq = every n any var X1, . . . , var Xk {eq
′ } and prob(eq′, V ) = True;

• eq = withrank n any var X1, . . . , var Xk {eq
′ } and prob(eq′, V ) = True;

• eq = last {eq1 } during {eq2 } and prob(eq1, V ) = True or prob(eq2, V ) = True;
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• eq = last {eq1 } during [b..e] and prob(eq1, V ) = True;

• eq = (atleast|atmost)? m of any var X1, . . . var Xk {eq1, . . . eqn} during {eq
′} and

prob(eq′, V ) = True or ∀i, 1 ≤ i ≤ n: prob(eqi, V ) = True.

For all other cases, prob(eq, V ) = False. Actually, predicate prob states whether a variable
can be considered as having negative polarity in a (composite) event query.

Every XChange rule can be transformed into disjunctive normal form. Based on this result
and using the predicate defined above, the range restriction of XChange rules can be formalised
by the following definitions:

Definition 2.10 (Range Restriction of XChange Event-Raising Rules) Let R be an XChange
event-raising rule and R′ = te ←r

∨

j qj ←r Eq its disjunctive normal form. R is range re-
stricted iff

• forall variables V occurring in te with positive polarity, V occurs in Eq such that prob(Eq, V ) =
True or in each of the qj with negative polarity;

• forall variables V occurring in Eq or in at least one qj with attribute optional and with
negative polarity, and without another non-optional, with negative polarity occurrence of
V in Eq and qj, V is also attributed as optional in all occurrences in Eq, qj, and te.

Definition 2.11 (Range Restriction of XChange Transaction Rules) Let R be an XChange
transaction rule and R′ =

∨

k ak ←r

∨

j qj ←r Eq its disjunctive normal form. R is range re-
stricted iff

• forall variables V occurring in one of the construct terms of ak (that is, in one of the
update or event terms of akl, where ak =

∧

l akl) with positive polarity, V occurs with
negative polarity in Eq and/or in each of the qj, and/or occurs with negative polarity in
at least one of the akl, 1 ≤ l ≤ p, where V in akp;

• forall variables V occurring in Eq or in at least one qj with attribute optional and with
negative polarity, and without another non-optional, with negative polarity occurrence of
V in Eq and qj, V is also attributed as optional in all occurrences in Eq, qj, and ak;

• forall variables V occurring in the subjacent query term of an update term akl with at-
tribute optional and with negative polarity, and without another non-optional, with nega-
tive polarity occurrence of V in Eq, qj, and akw with 1 ≤ w ≤ l − 1, V is also attributed
as optional in all occurrences in the construct terms of akl.

An XChange program P is range restricted if all rules R ∈ P are range restricted.

2.6 Implementation of Use Cases with XChange

We end this Chapter by illustrating XChange on a selected subset of the use cases defined in
our previous deliverable [3]. This subset is also used in Appendix A for illustrating the ruleCore
framework. We have chosen use-cases from a single scenario, the “Rewerse Information System
Portal” [3]. We briefly recall that in this scenario we consider nodes for:
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• participants of the Rewerse project, containing information on their names, country,
url, role in the project, etc;

• working groups, containing information name, id, coordinator and deputy coordinator,
deliverables, participants involved, etc;

• one central node of the project containing general information, and references to the
working groups and participants.

For this scenario, several use cases of reaction to changes in nodes, and evolution and propaga-
tion of changes are defined. Here we use a selection of them to illustrate:

Propagation of updates: for this we selected Use-Case 4.2.1 (Changing Phone Number),
extending it with a variation Use-Case 4.2.1a (Changing Roles) so that the use of trans-
actions may also be illustrated at this basic level;

Dissemination of information: different strategies for propagation and distribution of in-
formation, through Use-Case 4.2.7 (Progress Reports) that illustrates both pull and push
strategies;

Composite events: the notion of event algebras is illustrated by Use-Case 4.2.13 (Progress
Report Late), and is complemented with Use-Case 4.2.14 (Polls: Basic Rules).

Further details on the specification of the use cases are to be found at [3].

2.6.1 Changing and Propagating Contact Information

Use Case 4.2.1 (Changing Phone Number) Phone numbers (or any other contact details) are
updated at the participants nodes (XML format). The updates have to be propagated to the WG
nodes and to the central node.

The following rule runs locally at the participant node http://.../goettingen.xml. It
detects (implicit) events signaling a change in contact information and updates the working
group node resource ”http://.../workinggroup-i5.xml” accordingly.

TRANSACTION

in { resource {"http://.../workinggroup-i5.xml"},

desc person {{

attributes {{ id { var ID } }},

contact {{ }} replaceby var C

}}

}

ON

xchange::event {{

updated-contact {{

person {{

attributes {{ id { var ID } }}

}}

}}

}}

FROM
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in { resource {"http://.../goettingen.xml"},

desc person {{

attributes {{ id { var ID } }},

var C -> contact {{ }}

}}

}

END

A disadvantage of this rule is that the working group node is “hard-coded.” We can make
the rules more flexible by assuming a file "http://rewerse.net/workinggroups.xml" that
lists all working groups and the URIs of their homepages:

TRANSACTION

and {

all in { resource { var H },

desc person {{

attributes {{ id { var ID } }},

contact {{ }} replaceby var C

}}

}

}

ON

xchange::event {{

updated-contact {{

person {{

attributes {{ id { var ID } }}

}}

}}

}}

FROM

and {

in { resource {"http://.../goettingen.xml"},

desc person {{

attributes {{ id { var ID } }},

var C -> contact {{ }}

}}

},

in { resource {"http://rewerse.net/workinggroups.xml"},

desc workinggroup {

homepage { var H }

}

}

}

END

Instead of detecting an implicit event that signals a change in the contact information, we
can also have an explicit event (sent e.g., via an HTML form with HTTP POST) request a
change of contact information. The following rule receives such a request and updates both the
working group and R node:

116



TRANSACTION

and {

in { resource { var R }

desc person {{

attributes {{ id { var ID } }},

contact {{ }} replaceby C

},

in { resource { "http://.../workinggroup-i5.xml" },

desc person {{

attributes {{ id { var ID } }},

contact {{ }} replaceby C

}}

}

}

ON

xchange:event {{

change-of-contact-information {{

resource {{ var R }},

var N -> name {{ }},

var C -> contact {{ }}

}}

}}

FROM

in { resource { var R},

desc person {{

attributes {{ id { var ID } }},

var N

}}

}

END

2.6.2 Change of Role for a Coordinator or Deputy Coordinator

Use-Case 4.2.1a (Changing Roles) The role (coordinator, deputy coordinator or assistant)
assigned to the participation of a person in a working group may be updated at the partici-
pants’ node.

For this use case, we consider a variation where a person requests to change his or her role
attribute to deputycoordinator. This information is propagated from the participant node to
the working group nodes and the project node. The following constraint needs to be observed:
a person can only be coordinator or deputy coordinator of one working group at a time and
each working group has at most one coordinator and at most one deputy coordinator.

TRANSACTION

and {

in { resource { var R },

desc person {{

attributes {{
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id { var ID },

insert role { var NR }

}}

}}

},

in { resource { var W },

resource { http://rewerse.net/project },

workinggroup {{

id { var P },

deputycoordinator {{ }}

replaceby deputycoordinator {{ var G, var F}}

}}

}

}

ON

xchange:event {{

change-of-role {{

resource {{ var R }},

person-id { var ID },

participation { var P },

new-role { "deputycoordinator" }

}}

}}

FROM

and {

in { resource { var R },

desc person {{

attributes {{ id { var ID } }},

name {

givenname { var G },

familyname { var F }

}

}}

},

not in { resource { http://rewerse.net/project.xml },

desc deputycoordinator { var G, var F }

},

not in { resource { http://rewerse.net/project.xml },

desc coordinator { var G, var F }

},

in { resource { http://rewerse.net/workinggroups.xml },

desc workinggroup {{

id { var P },

homepage { var W }

}}

}

}
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END

2.6.3 Progress reports

Use Case 4.2.7 (Progress Reports) The deadline for the progress report is inserted into the
central node, and then communicated to the WGs nodes. From there, the persons are called
to send input (by mail, probably 10 days before the deadline), and the coordinator is called to
produce the report. The coordinator then puts the report in the WG node. An active rule then
publishes the report on the WGs Web page, and removes the deadline entry from the WG node
and from the coordinators person entry in the participants node. Depending on push or pull
strategy, (i) the WG node sends the report to the central node, or (ii) the central node reacts
on the remote event on the WG node.

For implementing this use case, rules must be added at the levels of the working group
nodes, participant nodes and central node.

At the working group node:

TRANSACTION

and {

in { resource { "http://.../workinggroup-i5.xml" },

workinggroup {{

progress-report {

delete deadline {{ }},

insert var R

}

}}

},

all xchange:event {

xchange:recipient { var T },

var P

},

xchange:event {

xchange:recipient { "http://rewerse.net/project" },

var P

}

}

ON

var P -> new-progress-report {{

coordinator { var C },

workinggroup { var W },

var R -> report {{ }}

}}

FROM

in { resource { http://rewerse.net/workinggroups.xml },

desc workinggroup {{

id { var W },

participants {{

participant {{

homepage { var T }
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}}

}}

}}

}

END

At the participant nodes:

TRANSACTION

in { resource { "http://.../goettingen.xml" },

desc person {{

attributes { id {"C"} },

delete deadline {{

type { "progress-report" }

}}

}}

ON

xchange:event {{

new-progress-report {{

coordinator { var C }

}}

}}

END

And at the central node:

RAISE

xchange:event {{

xchange:recipient { "mailto:schwertel@rewerse.net" },

content [

"Hi Uta,",

" All progress report have been received!",

"Regards,",

" XChange"

]

}}

ON

and {

xchange:event {{

new-progress-report {{

number { "2005-1" },

workinggroup { "I1" }

}}

}},

xchange:event {{

new-progress-report {{

number { "2005-1" },

workinggroup { "I2" }

}}
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}},

...

xchange:event {{

new-progress-report {{

number { "2005-1" },

workinggroup { "I5" }

}}

}}

}

END

2.6.4 Late progress reports

Use Case 4.2.13 (Progress Report Late) For each progress report, a deadline is specified when
it must arrive, e.g., <todo type=”progressreport” number=”1-2005” deadline=”28.2.2005”/>
Then, there is a rule that states that if for any WG, the progress report has not been checked in
until noon at the day of the deadline, a message is sent to the WGs coordinator.

RAISE

xchange:event {

xchange:recipient { "mailto:coordinator-i5@rewerse.net" }

}

ON

xchange:event {{

xchange:type { "timer" },

time { "2005-02-28T12:00" }

}}

FROM

in { resource { "http://rewerse.net/project.xml" },

desc progress-report {{

deadline {{ "2005-02-28" }},

workinggroup { "I5" }

without report {{ }}

}}

}

END

2.6.5 Polls

Use Case 4.2.14 (Polls: Basic Rules) We consider the following task: the project office makes a
poll where an answer is needed from each WG coordinator. Then, there are different ways how
to deal with it. Simple rules apply for making the poll known to the relevant persons (push to
the participants’ nodes or pull by them, or a rule at the central node that simply sends a mail
to the people). Incoming responses are stored in the database as contents of the poll element;
they are evaluated after the deadline.
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TRANSACTION

and {

in { resource { "http://rewerse.net/polls.xml" },

polls {{

insert var P

}}

},

all xchange:event {

xchange:recipient { var T },

poll {

id { var PID },

var Q

}

}

}

ON

xchange:event {{

new-poll {

attributes { id{ var PID } },

var P -> poll {{

persons {{ var T }},

var Q -> question {{ }}

}}

}

}}

END

TRANSACTION

in { resource { "http://rewerse.net/polls.xml" },

polls {{

poll {{

attributes { id { var PID } },

insert answer {

var F,

var X

}

}}

}}

}

ON

xchange:event {{

answer { poll-id { var PID },

var F -> person {{ }},

var X -> text {{ }},

}

}}

END
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Chapter 3

A General Framework for
Evolution and Reactivity in the
Semantic Web

As already mentioned in the introduction, a main goal of the Semantic Web is to deal with
the heterogeneity of data formats and languages in the Web and provide unified view(s) on the
Web, as an extension to today’s portals. In contrast to the current Web, the Semantic Web
should be able not only to support querying, but also to propagate knowledge and changes in a
semantic way. This evolution and behavior depends on the cooperation of nodes. This support
for propagation of knowledge and changes, and the ability react on happenings in the Web, is
already provided by the XChange language presented in the previous chapter.

However, in the same way as the goal of the Semantic Web is to bridge the heterogeneity of
data formats, schemas, languages, and ontologies used in the Web to provide semantics-enabled
unified view(s) on the Web, the heterogeneity of concepts for expressing behavior requires for
an appropriate handling on the semantic level. When considering dynamic issues, the concepts
for describing and implementing behavior will surely be diverse, due to different needs, and it
is unlikely that there will be a unique language for this throughout the Web. Since the Web
nodes are prospectively based on different concepts such as data models and languages, it is
important that frameworks for the Semantic Web are modular, and that the concepts and the
actual languages are independent. As such, besides having a concrete language for dealing with
evolution and reactivity, the Semantic Web calls for the existence of a framework able to deal
with this heterogeneity of languages.

In this respect, reactivity and its formalization as Event-Condition-Action (ECA) rules, as
in XChange, provide a suitable common model because they provide a modularization into
clean concepts with a well-defined information flow. It is our stance that ECA rules provide
a generic uniform framework for specifying and implementing communication, local evolution,
policies and strategies, and altogether global evolution in the Semantic Web.

In this chapter, we propose an ontology-based approach for describing (reactive) behavior
in the Web and evolution of the Web that follows the ECA paradigm. We propose a modular
framework for composing languages for events, conditions, and actions by separating the ECA
semantics from the underlying semantics of events, conditions and actions. This modularity
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allows for high flexibility wrt. the heterogeneity of the potential sublanguages, while exploiting
and supporting their meta-level homogeneity on the way to the Semantic Web.

Remember that in the above presentation of XChange each of the three components of ECA
rules was presented separately, and in fact each part uses a (sub)language that in principle
could be combined with other sublanguages. Such a modular framework allows for combining
exactly the three (sub)languages of XChange (with an appropriate treatment of communication
between these (sub)languages by the generic communication between the various parts of an
ECA rule, as will be developed), but also for combining them with other languages for events,
for querying, and for executing actions including updating Web data. This way, it should be
possible to write a rule that reacts on events that are monitored by a system like the ruleCore
system described in Appendix A, then grabs some extra data using e.g. XQuery, perform some
tests on the data, and possibly executes some actions of updating some XML data using the
sophisticated mechanisms of XChange for this purpose. So far, these rules handle distributed
XML data on the Web.

Another important aspect when considering the Semantic Web is that of abstraction levels
of behaviour. As it will be detailed below, it is our opinion that evolution and reactivity will
appear at several levels in the Semantic Web: there will be local basic events and actions,
similar to local database triggers; events on local XML data; global rules in XML data that are
able to react on views that include remote data; and application-level events and rules referring
to the terms of the ontology of an application. The XChange language mainly deals with events
that are communicated (in a push strategy) from outside but are then dealt with locally; also
actions are either updates of XML data, or the raising of events. In the general framework
below we propose to deal also with different levels of behaviour.

Moreover, the ECA rules do not only operate on the Semantic Web, but are themselves
also part of it. In general ECA rules (and their components) must be communicated between
different nodes, and may themselves be subject to being updated; also reasoning about evolution
might be desired. For that, the ECA rules themselves must be represented as objects of the
(Semantic) Web, adhering to an own ontology of rules, and marked up in an (XML) Markup
Language of ECA Rules. A markup proposal for active rules can be found already in RuleML
[63], but it does not tackle the complexity and language heterogeneity of events, actions, and
the generality of rules, as described here. In this report we sketch a markup for active rules,
that will be the basis for a (near) future discussion with the WPI1 of Rewerse (Rule Markup)
in order to establish the final markup proposal.

Structure of the chapter. We start the chapter by summarizing some requirements posed
by evolution and reactivity on the Semantic Web. Here, after some brief points on the important
differences between dealing with the level of the Web versus at the level of the Semantic Web,
we elaborate on the various abstraction levels of behaviour that need to be considered in the
semantic level. This leads a discussion of how to extend the domain ontologies with actions
and events, and the various types of events that need to be considered in a general framework.
Then, we summarize what kinds of rules, according to their tasks in the framework, have to be
covered. Section 3.2 ECA rules on the lowest level, namely triggers on the data model level.

We then discuss the main issue of dealing with the above mentioned heterogeneity of lan-
guages. For this we start, in Section 3.3, by proposing a general structure, rule level ontology
and corresponding markup, for (ECA) reactive rules. In it, basically each rule consists of:

• An event part, in which there must be a description of something that, if it happens, fires
the rule;
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• A condition part, in which, depending on the detected event, may collect some further
(static) data and test conditions on both the event and the collected information to certify
that an action has actually to be executed. Accordingly, this condition part can be further
decomposed into one or more query parts for collecting data, and one test part for the
checking the condition;

• An action part, describing what to do when the event is detected and the condition test
succeeds.

The components of a rule use different sublanguages for expressing events, queries, tests or
actions. Not only the sublanguages of each family share some properties, but there are common
properties of all kind of such sublanguages. We analyse the structure of these languages from
the semantical and structural aspects and summarize their common aspects: they are algebraic
languages, consisting of nested expressions.

Coming back to the rule level, one essential point here is how these parts communicate
with each other. As for XChange, here we also propose the usage of logical variables for this
purpose. Various aspects concerning the definition and usage of these variables are discussed
in Section 3.4. We then proceed in Section 3.5 with defining the general overall semantics
of execution for these rules, including the semantics of execution of expressions in each of the
parts. In Section 3.6 we illustrate each of the Event/Query/Test/Action components with some
(sample) concrete languages. Here we focus on the event component by describing how the event
algebra similar to that of SNOOP [25] is mapped into our framework. A Web-Service-oriented
architecture of the general framework in the Semantic Web based on the “actual” resources (e.g.,
language processors that are associated with the (sub)language resources) of the RDF ontology
is then described in Section 3.7. Section 3.8 shortly sketches some obvious optimizations and
further research issues. Considerations on the planned implementation are fixed in Section 3.9,
including the architecture of the implementation, and an evaluation of possible already existing
component languages. Section 3.10 gives a brief comparison with the existing languages for
active rules for XML and RDF, including the XChange language described in the previous
chapter, and show how they are covered in our framework, and where they can be useful in the
architecture.

A preliminary version of the general framework described in this chapter has been published
in [1], the ontology of rules, rule components and languages, and the service-oriented architec-
ture proposal have been published in [50], and the languages and their markup, communication
and rule execution model can be found in [49].

Issues that we are not dealing with. There are several issues that are explicitly not dealt
with in our approach – because they are encapsulated inside (and “bought with”) the concepts
to be integrated: The detection of composite events is done and provided by the individual
event languages and their engines – we are only providing an environment for embedding them.
In the same way, query evaluation itself is left to the original languages and processors to be
embedded into the global approach. Actual execution of actions (and transactions) is also left
with the individual solutions.

3.1 Requirements Analysis

This section analyses the requirements for ECA-based evolution and reactivity in the Semantic
Web and sets some working hypotheses. We investigate the abstraction levels used in the
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Semantic Web and its infrastructure, the structure of domain ontologies when dealing with
dynamic aspects, then have a more detailed look on the kinds of events that have to be modeled,
and classify several kinds of rules that are then actually needed. Finally we “initialize” the way
towards our approach by discussing triggers as very simple ECA rules and illustrate why this
approach provides a good base, but that a compherensive framework must extend this idea in
many aspects.

3.1.1 Web vs. Semantic Web

Whereas in the conventional XML/HTML Web, ECA models and languages that operate on
the data level and on explicit events are sufficient, the situation for a Semantic Web framework
is much more complex:

• Model (RDF): With RDF, the same resource can be described at different physical locations,
using its URI. Thus, changes in the description of “something” are not necessarily located
at a given node.

• Model (OWL): While some research has already been done in the area of queries and static
reasoning on the OWL level, the extension to events and actions is still completely open.
Domain ontologies must define their (derived) atomic events in terms of changes to the
underlying data, and, in case in addition to just execution of rules, reasoning is intended,
also actions must be described in terms of their effects on the data.

Developing an approach and case-studies for this has been identified as an important task
for understanding what functionality and expressiveness should be provided by languages
for describing behavior.

• Model and Languages: Rules in the Semantic Web exist on different abstraction levels (see
Section 3.1.2) and should “cover” existing approaches. For this, composite events, conditions
involving several nodes, and complex actions must be supported. Here, the existing and
expected future heterogeneity has to be taken into account.

• Model, Languages and Architecture: Rules are themselves part of the Semantic Web. For
this, they have to be seen as resources. On a smaller granularity, rule components and
smaller identifiable parts like individual event descriptions are also resources. Rules and
rule components have to be described not only syntactically in terms of a programming
language, but on the (rule) ontology level which is then translated to actual, executable
specifications in one or more programming languages.

• Languages and Architecture: Languages are resources (that have to be described by a suit-
able ontology). From this point of view, semantics and processors that implement this
semantics are also resources and have to be described and correlated on the ontology level.

3.1.2 Abstraction Levels

Data Model Abstraction Levels. As described above, the Semantic Web can be seen as
a network of autonomous (and autonomously evolving) nodes. Each node holds a local state
consisting of extensional data (facts), metadata (schema, ontology information), optionally a
knowledge base (intensional data), and, again optional, a behavior base. In our case, the latter
is given by the ECA rules under discussion that specify which actions are to be taken upon
which events under which conditions.
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According to the Semantic Web Tower, there are already from the static point of view
several abstraction levels.

In classical database systems, the physical level/model/schema, the logical level/model/schema
(i.e., an abstract data type that can have different implementations/physical models, and as a
database model comes with a generic database query language), and sometimes the export
schema are distinguished.

In the early network data model, there was only the physical model where the query language
constructs were also directly based on. For relational databases, the physical model includes
the tables (i.e., ordered sets) and storage data structures (including indexes etc.), the logical
model is the relational/SQL schema, and the export schema is in most cases also a relational
schema, including views.

With object-oriented databases, there came different physical models, including relational
and “native” storage. The logical model is the object-oriented model with an ODL/OQL
schema; the export model is also the object-oriented one. Object-relational architectures are
those where the physical model is the relational one, the logical model is split into two levels,
the low-level one is the relational model, and the high-level is the object-oriented model, which
also serves as export model.

With XML, the relationships became even more complex. There are several physical models
that can serve for XML data; one of them is again the relational one. XML data can also be
stored in object-oriented structures, as done in the early products Tamino (based on Adabas)
and Excelon (based on Object Store). Several products claimed to use a “native” XML data
model. The “lowest” well-specified XML-related notion is then the Document Object Model
(DOM) [29] as an abstract datatype. Since this model is only on the level of an abstract
datatype and does not support any query language, it is not a logical data model. The logical
data model then is XML, with query languages like XQuery. On the other hand, XML serves
as an export data model when XML views are defined over relational data [31].

In the research community, models like OEM [56] or F-Logic [42] (for which several internal
physical models can be used, e.g., a frame-based one, or a relational one together with Datalog)
came up that are used as logical models, or as export models for integrating data from other
models.

Adding more abstraction with RDF, RDF is seen as the logical data model. Then, between
it and –numerous– physical models, there can be a layer that uses the XML data model or
the relational data model. Using “native” RDF databases, the physical data model can be any
data structure that stores triples, or a frame-based structure like F-Logic. When exporting or
integrating relational or XML data in RDF, RDF serves as export model.

Considering OWL, it qualifies as an export model since –by its reasoning– it defines views
over RDF data as logical model that are queried by the user. From the point of view of the
OWL/RDF user, XML then is not a logical model, but “below” this.

In general, the user works on the export level (which uses in general a data model which is
the same or closely related to the logical level). Queries against the export level are mapped
down to the logical level.

Abstraction Levels in the Conventional Web and in the Semantic Web. For the
conventional (XML) Web and for the Semantic Web, there are different “towers” of data models:

In the conventional Web, there are two levels; the upper of which is XML:

• Data level. Files, SQL databases, XML databases etc. Here local behavior of the databases
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(e.g., integrity maintenance) is located.

• Logical Level: XML. Here local behavior of the nodes (e.g., local application behavior) is
located. Remote actions between tightly coupled nodes (i.e., that use common XML Schemas
etc.) are also possible on this level. Interfaces for Web-Services like SOAP are also on this
(syntactical) level.

In the Semantic Web, the structure of the levels has to be seen from a local and from a global
aspect:

• Data level. Files, SQL databases, XML databases etc. Here again local behavior of the
databases (e.g., integrity maintenance) is located.

• Local Logical Level: this level is provided by an XML or relational model, sometimes omitted
(for RDF databases). Here local behavior of the nodes (e.g., local application behavior) is
located. Remote actions between tightly coupled nodes (i.e., that use common XML Schemas
etc.) are also possible on this level.

• Global Logical/Integrated Level: RDF. Here, integrated behavior (i.e., simple push/pull
communication) will be located; messages between loosely coupled nodes that communicate
in an application domain will be exchanged on this level.

• Semantic Level: OWL. Here, intelligent integrated behavior will be located, i.e., business
rules, policies and strategies that often use derived data (and derived events).

Abstraction Levels of Behavior. In the same way as there are different levels from the
static point of view, behavior can be distinguished wrt. these levels (programming language/-
data structure level, logical level, integrated level, and semantic level), and with different scope
(local or global).

On all these levels, there is behavior. The user and the applications rely on the behavior
on the export model level (OWL), whereas the actual, persistent changes to the database take
place on the physical level (SQL, XML). On this lowest level, several proposals for “triggers”
for XML data analogous to the SQL triggers exist, where with the distributed environment of
XML data on the Web now, two types can be distinguished:

• Local triggers where event, condition, and action components use only the local database
(like for SQL triggers),

• “Web-Level triggers” whose event component is based on data-level events in the local
database, the condition component uses the local database and possibly also remote ones,
and the action component can include arbitrary actions on the Web level (sending messages,
SOAP),

Such trigger concepts for XML and RDF as simple ECA rules will be investigated in more detail
in Section 3.2. A comparison of the framework presented in this work with existing languages
will be given in Section 3.10.

For realizing behavior in the Semantic Web, also vertical transmission between the levels
is required, including the XML and RDF models. A classification of types of rules wrt. their
functionality and roles in the whole framework will be given in Section 3.1.5.

3.1.3 Domain Ontologies including Dynamic Aspects

The coverage of domain ontologies differs already in the classical data models (and conceptual
models): in the relational model and in the Entity-Relationship model, a domain ontology
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consists only of the static notions, expressed by relations and attributes, or entity types with
attributes and relationships (similar in first-order logic). In the object-oriented model and in
UML, the static issues are described by classes, properties and relationships, and the dynamic
issues are described by actions; in UML also their effects can partly be described.

A complete ontology of an application domain requires to describe not only the static part,
but also the dynamic part, including actions and events (cf. Figure 3.1):

• describing actions in terms of agents, preconditions, and effects/postconditions,

• describing events, i.e., correlating actions and the resulting events, and specifying composite
events, and

• describing composite actions (processes),

◦ in fact, business rules themselves can also be seen as parts of the ontology of an application.

For designing a Semantic Web application or service, in general ontologies of several domains
interfere:

• Application domain ontologies define the static and dynamic notions of the application
domain (banking, travelling, etc.), i.e., predicates or literals (for queries and conditions),
and events and actions (e.g. events of train schedule changes, actions of reserving tickets).

• Application-independent domains that talk about an application; mostly related to classes
of services (messaging, transactions, calendars, generic data manipulation). They can be
generically used in combination with arbitrary application domains. They also provide static
and dynamic notions.

Ontologies of Application-Independent Domains:
communication/messages, transactions, etc.

Atomic Events Literals Atomic Actions

Application-Domain Ontology

Atomic Events Literals Atomic Actions

talk about

Figure 3.1: Kinds and Components of Ontologies

3.1.4 Events

An important aspect is the analysis of types of events that have to be considered. The ontology
of events has to consider the abstraction levels and the application-dependent and application-
independent domain ontologies. There are different kinds of (atomic) events (see explanations
below and Figure 3.2):
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• events of a given application domain (e.g., in banking, travel organizing, administration);
such atomic events are described in terms of the ontologies of the application domain,

• generic parametric events that are not from any specific application domain but that in-
stantiate generic event patterns, e.g., communication (“receive a message about . . . ”) and
transactional events that talk about application domains.

Data level events are also a special kind of such generic (= generic to the data model) events.

Atomic Event

Application
Domain

Atomic Event

Application-
Independent

Domain
AtomicEvent

DataLevel
Atomic Event

Application-
Independent

Domain
Atomic Event

Application
Domain
Ontology

Data Model
Ontology

Application-
Independent

Domain
Ontology

�

�

� �

↓from

↓from ↓from

Figure 3.2: Ontology of Atomic Events

We start with the conceptually simpler events in application-independent domains.

Events in Application-Independent Domains. The application-independent domains
provide patterns of atomic events that are ontologically independent from the actual appli-
cation, but talk about an application; mostly related to classes of services, e.g., messaging or
operations in a data model (cf. Figure 3.3). In general, such events are associated with a certain
node.

Data Model Events. In the same way as for SQL data, there are atomic generic data model-
level (i.e., XML or RDF) events (as will be discussed in more detail Section 3.2 for triggers).
The actions that raise such events are operations of the underlying data model. Thus, they
are generic in the sense that they apply to the schema level of a given data model and only
their parameters, i.e., names of classes and relationships and actual data, are taken from the
application.

Other Generic Events. In the same way as the above data model events, there are generic
events that are not raised by data model-level updates but belong to high-level application-
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Application-Independent Events

receivemessage

at node: URI

content: Any (XML or RDF

description

of something)

sender(s):URI(s) or specifi-

cation of a set

of URIs/sender(s)

time: time

updatetuple

at node: URI

operation:{delete|insert|modify}
values: attribute-old/new-

value-triples

user: name

time: time

Messaging
Ontology

SQL Data Model
Ontology

↓from
↓from

Figure 3.3: Example Events of Application-Independent Domains

independent ontologies that often deal with application-specific information:

• Communication: receiving or sending messages. Such events are parametric with e.g., sender
and receiver (as URIs) and application-specific data (content of the message, possibly the
roles of sender/receiver in this communication).

• Transactions: start, commit, and rollback of transactions. E.g., the “decision” or the mes-
sage from another node that a transaction cannot be executed successfully raises such an
event.

In the following, we also call such events generic parametric events.

Application Domain Events. Atomic application domain events are the visible happen-
ings in the application domain. High-level rules, e.g., business rules use application specific
events (e.g., professor hired($object, $subject, $university)). Such events must be described by
the ontology of an application.

Actions vs. Events. In contrast to simple data-level events on XML or RDF data, on the
application-level there is an important difference between actions and events: an event is a
visible, possibly indirect or derived, consequence of an action. For instance, the action is to
“debit 200E from Alice’s bank account”, and visible events are “a debit of 200E from Alice’s
bank account”, “a change of Alice’s bank account” (that is also immediately detectable from
the update operation), or “the balance of Alice’s bank account becomes below zero” (which
has to be derived from an update). Another example is the action “book person P on flight
LH123 on 10.8.2005” which results in the internal action “book person P for seat 42C of flight
LH123 on 10.8.2005” and the events “a person has been booked for a seat behind the kitchen”,
“flight LH123 on 10.8.2005 is fully booked”, “there are no more flights on 10.8.2005 from X to
Y ”, or “person P has now more than 10.000 bonus miles”. All these events can be used for
formulating (business) rules.
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Reaction to Events. For actually reacting on events, a node must be aware of them. Here,
some issues have to be considered in the Semantic Web since events can be derived ones, and
that they are not necessarily located at a certain node.

• Explicit events are events that have a direct relationship with an action (and, from the
implementation point of view, with a code fragment where they can be “caught”). The
database-level events are obviously explicit ones: an update of the database is an action and
is seen as an event. The receipt of a message is also an explicit event (although originally
resulting from a different (sending) action, it can be caught on the socket level of a node).

• Implicit and derived events: an event is derived if it is defined based on other events, e.g.
“flight LH123 on 10.8.2005 is fully booked” or “there are no more flights on 10.8.2005 from
X to Y ” are derived from “person P is booked for seat 5C of flight LH123 on 10.8.2005”
under certain conditions. Note that there can be multiple derivations for a derived event
(for the second one above, also e.g. “flight AF678 on 10.8.2005 is cancelled”).

Raising and Derivation of Events. The task of becoming aware of implicit events is not the
task of the rule execution, but of application-level reasoning, based on the application ontology.
Thus, there are derivation rules also for events (that can be seen as event-condition-action rules
where the action consists of raising an event); see Section 3.1.5.

Localization of Events. Orthogonal to being derived or not, application-level atomic events
can be associated with a certain node or can describe happenings on the Web-wide level:

• local events: these happen locally at the node. E.g., data model events are in most cases
used locally (by triggers, which then can raise higher-level events or trigger a remote action)

• remote events: From the point of view of a rule, a remote event is an event that is local
(and can be localized) at another node, e.g., “if Amazon offers a new book on X”. Here,
event detection can be done e.g. by monitoring the node (continuous querying) or by a
publish-subscribe-service.

• global events: global events happen “somewhere in the Web”, e.g., “a new book on the
Semantic Web is announced”, or “election of a new chancellor of Germany”. Global events
are (mostly) application-level events where it is not explicitly specified where they actually
occur.

In these cases, event detection is even more complicated since it must also be searched and
derived where and how the event can be detected. Rules using global events require appropriate
communication and notification mechanisms by the Semantic Web infrastructure (that can in
turn also be based on ECA rules). For dealing with global (not located or locatable at a certain
node) implicit (derived), the Semantic Web must provide event broker functionality.

Temporal Delay and Event Wrapping. Event brokering leads to the effect that the time-
points of actual events and the event detection may differ. The actual infrastructure will
probably also use messaging functionality, i.e., not raising an event, but packing it in a message
or event “I became aware that ...”.

Example 3.1 Consider a customer C who wants to buy a Christmas tree, C can state the
following rules:

132



• “if some X announces to sell Christmas trees, go there”. The rule is correct, but not
“complete”: Probably, C will not become aware of the event of announcing, so he will never
get a Christmas tree.

• “if I become aware [by a message] that some X announced to sell Christmas trees, go there”.
This rule is more complete, but, if C becomes aware too late (e.g., after New Year) he will
also go there.

• The correct rule is thus “if I become aware [by a message] [before Christmas] that some X
announced to sell Christmas trees, go there”.

• Nevertheless, the real-world formulation of the rule will be of the style “if some X sells
Christmas trees, I should go there” – which is formally based on an event that X sells a tree
to some Y (which will eventually happen, but C will most probably not be informed about
it).

Thus, in a future stage of Semantic Web rules, the interpretation of rules should provide a
reasoning-based rewriting of rules to get their intended semantics.

Composite Events. Composite events are subject of heterogeneity in that there are multiple
formalisms and languages for describing them. As already mentioned, most of them use event
algebras. The target framework for the Semantic Web must support this heterogeneity.

3.1.5 Types of Rules

In our ECA-based approach, the behavior of domains described in an axiomatic way by (OWL)
ontologies is specified and implemented by ECA rules. In a first step, these descriptions have
to allow to run applications by ECA rules. In the next step, the ontology has to be extended
to preconditions and effects as a base for reasoning.

There are several types of rules that are used for actually specifying the ontology and the
behavior of an application:

• Rules that axiomatize the ontology, i.e., mandatory relationships between actions, objects,
and events that are inherent to the domain. The correctness of the rules must be proven
against the ontology.

• Rules that specify a given application on this domain, e.g., business rules. Changing such
rules result in a different behavior of the application.

ECA Rules. From the external user’s point of view, ECA-Business Rules specify the actual
behavior: “when something happens and some conditions are satisfied, something has to be
done”. Here, events and actions refer to a very high and abstract level of the ontology.

• Such rules are “actual”, user-defined ECA rules since they trigger an action upon an event
“to keep the application running”. Such rules exist on different abstraction levels and
granularity, designed to the notions of the application domain. Changing them changes the
behavior of the application.

• Internally, such rules are also used for implementing mechanisms for detection of derived
and composite events on the respective level.
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ECE Event Derivation Rules: Providing High-Level Events. For implementing high-
level rules, it is necessary that these high-level events are provided somehow: They must be
derived.

• horizontal ECE rules: Here, the event is derived from another high-level event under certain
conditions, e.g., “when a booking for a flight is done, and this is the last seat, then the plane
is completely booked”. The rule is an E-C-E (event-condition-event) rule, e.g., the “action”
consists in deriving/raising an event. The events are logically related and inherent in terms
of the application. Changing such rules would invalidate the application wrt. its ontology.

• upward vertical ECE rules: an abstract event is derived from changes in the underlying
database, e.g., “when the arrival time in a database of a flight of today is changed, this is
actually a delayed flight”. The rule is again an E-C-E (event-condition-event) rule. The
events are not logically related and inherent in terms of the application, but are related due
to the physical implementation of the application (i.e., since an explicit message “flight F
is delayed” is missing, and only visible due to a modification of the database”. Changing
such rules would invalidate the application wrt. its ontology.

As another example, “professor hired($object, $subject)” is (locally) derived at a node from
an insertion of a fact into an SQL, XML, or RDF database.

These rules correspond to the bottom-up semantics of derivation rules: Given the body, do the
head. While “classical” ECA rules are active rules, the above enumeration presented several
kinds of derivation rules. The main difference of these wrt. classical derivation is that the latter
define continuously existing views and are used for querying. In contrast, the event derivation
rules “fire” only once when an event is detected and another event must be raised. Thus, these
ECE rules are more similar to ECA rules than to derivation rules.
The derivation of events by such rules can be done similar to views:

• bottom-up style: they can be “materialized” by raising them explicitly when (and where)
they occur (even if probably nobody is actually interested in them), or

• top-down style: when an application uses a derived event, it runs the rule locally.

High-level events can also be raised as side-effects of high-level actions, see below. When
designing rules, it must be cared that such effects do not cause any behavior twice.

ACA/ACE Rules: Talking about High-Level Actions. High-level actions like “(at a
travel agency) book a travel by plane from Hannover to Lisbon” cannot be executed directly,
but there must be another rule that says how this is implemented (by searching for connections,
possibly via Madrid). Such rules are reduction rules that reduce an abstract action to actions
on a lower level.

On the other hand, there may be another business rule that should be executed whenever
somebody does a plane travel from Germany to Portugal, putting this person on a list for
sending them advertisements about (questionable) tax saving tricks by investing in resorts in
the Algarve. The latter rule should not be defined on the basis of “if there are bookings for a
person via some places that lead from Germany to Portugal” (which would e.g. also fire if a
Tyrolian flies from Innsbruck to Munich and then to Lisbon; the german tax tricks do probably
not apply to him), but could –most declaratively– directly use the abstract action “book a
travel by plane from a german airport to a portuguese airport” for firing the rule.

Thus, there are rules that regard (abstract) actions as events – or in the above case more
exactly, use the event of committing an abstract action. Such rules can be expressed based
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on transactional events, or on messages (“if we get the message that such an abstract action
should be executed”), but in both cases this blurs the declarativity that the action actually is
the reason to react.
Thus, there are several kinds of ACA rules:

• horizontal reduction ACA rules, e.g., “the action of transferring 200E from account A to B
is implemented by debiting 200E from account A and deposing 200E on account B”. This
rule is kind of an A-C-A rule that explains a composite action by its components, both still
in terms of the application domain.

• vertical reduction ACA rules, e.g., “the action of debiting 200E from account A is realized by
reading the account value, adding 200 and writing it”. This rule is also a kind of an A-C-A
rule that reduces a composite action into its components on a lower level.

• horizontal non-reduction ACA rules see an action (that has to be executed for itself) as an
event that should trigger another action, known also as rule chaining.

This kind of ACA rules is more directly related to ECA rules. Changing such rules would
not invalidate the application wrt. the ontology, but just change its behavior.

The above reduction ACA rules correspond to SQL’s INSTEAD triggers: in SQL, INSTEAD-
triggers are used for specifying what updates should actually be done instead of inserting
something into a view (which is not possible), whereas here, simpler actions are specified instead
of an abstract one. Such rules are closely related to the top-down semantics of derivation rules:
To obtain the head, realize the body (cf. Transaction Logic Programming [15]). These rules
describe actions that are logically related and inherent in terms of the application. Some of these
rules are inherent to the ontology of the underlying domain, others specify only the behavior
of a given application (including e.g. policies that are not inherent to the domain).

Since high-level events can also be seen as observations, it is also reasonable to raise them
when an appropriate action is executed. In most cases, this amounts to a simple mapping
from high-level actions to raise high-level events: the action “hire professor($object, $subject)”
directly raises the event “professor hired($object, $subject)” at the same node (and is internally
executed by inserting a fact into an SQL, XML, or RDF database; see downward ACA vertical
rules above).
The execution of both, ACA and ACE rules, must usually be located at the node where the
action is executed (which makes completely sense because ACA is actually the algorithm to
execute an action, and ACE is the communication of its effect on a high level).

Low-Level Rules. The base is provided by update actions on the database level (to which
all abtract actions must eventually be reduced to actually change the state of any node) and
low-level ECA rules, e.g., database triggers for referential integrity or bookkeeping.

Here, neither the event nor the action is part of the application ontology, but both exist and
are related only due to the physical implementation of the application. Such rules guarantee
–together with the RDF views on the database– the integrity of the model; thus, when verifying
a process they also have to be taken into account.

Summary and Interference. The resulting information flow between events and actions is
depicted in Figure 3.4.

Example 3.2 (Actions and Events) Consider the following scenario: A –rule-driven– re-
view process leads to the acceptance of a paper. Here, “acceptance of a paper” is an action
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Figure 3.4: Interference of Events, Actions, and Rules

which is also an event on the Web level – “the paper P of A has been accepted for conference
C”. This event is communicated inside the program committee by mail (push communication).
An internal rule of the conference of the form “when a paper is accepted, send a message to the
author and list it on the conference Web page”. By the latter, the event of “the paper P of A
has been accepted” becomes actually accessible for the public. Communication in the Semantic
Web then should lead to firing other business rules, e.g., at the DBLP publications server and
at citeseer, where lots of “business rules” (later) react upon.

Such rules in the Semantic Web are not formulated on the level of messaging, but assume
the notification about events as given (which is, on a lower level, done by messaging).

The author of an accepted paper probably has a rule “when a paper is accepted (event),
then book a travel to the conference”. This action is submitted as a message “Person P wants
to book a travel from X to Y on date D” to a travel agency. The travel agency reacts on
incoming messages by searching for connections and book an available one, possibly by flights
AA123 from X to Z and BB456 from Z to Y (horizontal rule for decomposing an action into
its constituents). These actual bookings of flights are then submitted to the airline, seats are
assigned, and the booking actually takes place by modifications of the database content (vertical
rules). Assume that this booking reserves the last seat in AA123.

On the other hand, there are several other rules that should fire in this process, e.g., a rule
that removes all completely booked flights from some list, and that raises the price for all flights
between two destinations M and N in case that more than 50% of the total capacity on this
connection for that day is booked.

Both can be done by vertical rules, reacting on database events for booking actual seats, or
on the higher level, e.g. “on any booking between M and N (event), check all flights between two
destinations M and N , and in case that more than 50% of the total capacity on this connection
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for that day is booked, raise the price for the remaining ones by 10E”. In the latter case, the
booking action is immediately also seen as an event “somebody books ...”.

Moreover, there can be a business rule “whenever a person P books a travel from country
C to country D, do ...”. If X is located in C and Y is located in D, but Z is located in a
different country, then, this event cannot be detected from the actual, independent bookings of
the individual flights. Instead, the action “book a travel from X to Y on date D for person P”
should be considered as a high-level event for immediately firing appropriate rules.

3.2 Simple ECA Rules: Data Model Triggers

A simple form of active rules that is often provided by database systems, are triggers. As
shown in Figure 3.4, these triggers on the database level form the lowest level of rules. Reacting
directly to changes in the database, they provide the basic level of behavior. Triggers are simple
rules on the (database) programming language and data structure level. They are associated
with the logical level (i.e., not referring the the implementation of the logical data model,
but acting on its notions). They follow a simple ECA pattern where the conditions are given
in the database query language and the action component is given in a simple, operational
programming language. In SQL, triggers are of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END .

In the Semantic Web, this base level is assumed to be in XML or RDF format. While the SQL
triggers in relational databases are only able to react on changes of a given tuple or an attribute
of a tuple, the XML and RDF models call for more expressive event specifications according to
the (tree or graph) structure.

3.2.1 Triggers on XML Data

Work on triggers for XQuery has e.g. been described in [12] with Active XQuery (using the same
syntax and switches as SQL, with XQuery in the action component) and in [5, 57], emulating
the trigger definition and execution model of the SQL3 standard that specifies a syntax and
execution model for ECA rules in relational databases. The following proposal refines our
previous one developed in [3]:

• ON {DELETE|INSERT|UPDATE} OF xsl-pattern: if a node matching the xsl-pattern is delet-
ed/inserted/updated,

• ON MODIFICATION OF xsl-pattern: if anything in the subtree rooted in a node matching the
xsl-pattern is modified,

• ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node matching the xsl-
pattern,

• ON {DELETE|INSERT|UPDATE} [SIBLING [IMMEDIATELY]] {BEFORE|AFTER} xsl-pattern: if
a node (optionally: only sibling nodes) is modified (immediately) before or after a node
matching the xsl-pattern.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW AS ... (like
in SQL), both referencing the node to which the event happened, additionally INSERTED AS,
DELETED AS referencing the inserted or deleted node.

Similar to the SQL STATEMENT and ROW triggers, the granularity has to be specified for each
trigger:
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• FOR EACH STATEMENT (as in SQL),

• FOR EACH NODE: for each node in the xsl-pattern, the rule is triggered only at most once
(cumulative, if the node is actually concerned by several matching events) per transaction,

• FOR EACH MODIFICATION: each individual modification (possibly for some nodes in the xsl-
pattern more than one) triggers the rule.

The implementation of such triggers in XML repositories can e.g. be based on the DOM Level
2/3 Events or on the triggers of relational storage of XML data. Events/triggers on this logical
level are local (and internal) to the database that provides an RDF view to the outside. Usually,
the actions are local updates of the database (that then effect the RDF view indirectly), or they
raise events on the RDF level (it is see also below), but it is also possible to send XUpdate or
SOAP messages to other nodes, or to state remote XML updates explicitly:

ON INSERT OF department/professor
let $prof:= :NEW/@rdf-uri, $dept:= :NEW/parent::department/@rdf-uri
RAISE RDF EVENT(INSERT OF has professor OF department)

with $subject:= $dept, $property:=has professor, $object:=$prof;
RAISE RDF EVENT(CREATE OF professor)

with $class=professor, $resource:=$prof;

XML: Local and Global Rules in the “Conventional” XML Web. The above events
occur always local in a node and can be detected at this node.

Rules on the XML level of the Web can either be local to a certain node, or they can include
Web data, e.g., reacting on events on views that include remote data, or raising actions on the
Web. For that reason, we call them Web Level Triggers (note that these can already be applied
to the conventional non-semantic Web; whereas for integration reasons in the Semantic Web,
the level of RDF events is preferable).

Actual rules on this level usually are not only based on atomic data-level events, but use own
event languages that are based on a set of atomic events (that are not necessarily just simple
update operations) and that usually also allow for composite events. Their event detection
mechanism is not necessarily located in the database, but can be based on the above triggers.

Such rules require knowledge of the actual XML schema of the corresponding nodes. Pro-
vided a mapping between rules on the XML level and those of the RDF view level, the im-
plementation can (more efficiently) be kept on the XML level, whereas reasoning about their
behavior can be lifted to the Semantic Web level. A Semantic Web framework should also
support this kind of rules.

From the Semantic Web point of view, events on the XML level should usually not be
communicated to other nodes (except very close coupling with nodes using the same schema);
instead semantic events should be derived from them.

3.2.2 Triggers on RDF Data

RDF triples describe properties of a resource. In contrast to XML, there is no subtree structure
(which makes it impossible to express “deep” modifications in a simple event), but there is
metadata. A proposal for RDF events can be found in RDFTL [57, 58]. The following proposal
refines our previous one developed in [3]:

• ON {INSERT|UPDATE|DELETE} OF property [OF class] is raised if a property is added to/up-
dated/deleted from a resource (optionally: of the specified class).
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• ON {CREATE|UPDATE|DELETE} OF class is raised if a resource of a given class is created,
updated or deleted.

On the RDF/RDFS level, also metadata changes are events:

• ON NEW CLASS is raised if a new class is introduced,

• ON NEW PROPERTY [OF CLASS class] is raised, if a new property (optionally: to a specified
class) is introduced.

Besides the OLD and NEW values mentioned for XML, these events should consider as arguments
(to bind variables) Subject, Property, Object, Class, Resource, referring to the modified items (as
URIs), respectively. Trigger granularity is FOR EACH STATEMENT or FOR EACH TRIPLE.

Application-level events (that must be characterized appropriately in the application ontol-
ogy) can then be raised by such rules, e.g.,

ON INSERT OF has professor OF department
% (comes with parameters $subject=dept, $property:=has professor,
% and $object=prof )
% $university is a constant defined in the (local) database

RAISE EVENT (professor hired($object, $subject, $university))

which is then actually an event (e.g., professor hired(prof, dept, univ)) of the application ontology
on which a “business rule” of a publisher could react that says, if a new professor is hired at a
university, then the appropriate list of textbooks should be sent to him. Note that in the above
trigger, this event is only raised – the complete issues of communicating it and detecting it by
the node that actually processes the business rule have to be dealt with separately.

Semantic level. In rules on the semantic, OWL level, the events, conditions and actions refer
to the domain ontology. Concerning detection of such events, there are some differences: plain
RDF events can be detected on the data level. Since OWL is not the immediate data model,
events on the OWL level cannot straightforwardly be detected from any (RDF) database event,
but in general require OWL reasoning. Even more, often the local knowledge of the node is not
sufficient, but in general, OWL events refer to the distributed scenario.

We give here just an example to complete the “upward” transmission of events and show
the difference between the above, mainly syntactical, levels and the semantic level:

ON (professor hired($prof, $dept, $univ))
WHEN $Books := select relevant books for people at this dept
BEGIN do something END

Here, the difference between actions and events shows up: an event is a visible, possibly
indirect or derived, consequence of an action. E.g., the action is to “debit 200E from Alice’s
bank account”, and visible events are “a change of Alice’s bank account” (that is immediately
detectable from the update operation), or “the balance of Alice’s bank account becomes below
zero” (which has to be derived from an update).

More complex rules also use composite events and queries against the Web. Composite
events in general consist of subevents at different locations. Additionally, higher-level events
are not necessarily associated with a given database, and are in general not explicitly raised.
In the above example, both was simple: the source explicitly raised professor hired($object,
$subject, $university), and the publisher can e.g. register at all universities to be notified about
such events. In general, events like “when a publication p becomes known that deals with ...”)
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cannot be detected in this simple way, bust must be derived and obtained from other, more
general information. Here, Semantic Web reasoning comes heavily into play even for detecting
atomic events “somewhere in the Web”. Here, the timepoints of actual events and the event
detection may differ.

3.2.3 Triggers vs. ECA Rules

As shown in Figure 3.4, triggers on the database level form the lowest level of rules. They deal
with data model instead of the application level. Thus, their “home” is inside the database,
using notions of the database model, and their implementation often event depends an the
availability of information from the physical level of the database. Especially, their “events”
coincide directly with the update operations of the database, which are also the actions on
that level. Triggers are not necessarily subject of the modularization of our model. In contrast,
often triggers, although following the ECA paradigm, are only very restricted. They are usually
closely intertwined with the database (e.g., in relational databases), although very efficient
external implementations exist, cf. TriggerMan [40].
In case that triggers are implemented external to a database, the data item where the triggering
event occurs must usually be identifiable and re-findable:

• SQL: OLD and NEW are the modified tuples; all related data can be identified externally
by foreign keys. Furthermore, usually, the ROWID is used that identifies a tuple internally.

• XML: OLD and NEW should at least allow to access the subtrees, but also parent or ancestor
nodes may be of interest. For this, an internal identifier must be accessible. Note that there
may also be triggers that do a modification inside the database relative to the modified
node, e.g., in the subtree.

• RDF: OLD and NEW are the current nodes. Since they in general have a URI, they can be
identified without any problem.

These triggers are usually defined in a homogeneous way on the programming language level
(i.e., data model events of the data model’s update language, queries in the data model’s
query language, and actions are given in as data model updates or as a program segment in a
programming language that includes the data model’s query language). On the higher level,
ECA rules make use of more abstract languages.

3.3 ECA Language Structure

After having discussed and analyzed the requirements for specifying and implementing behavior
in the Semantic Web by active, ECA-style rules, we develop now the structure of such rules
and the required languages.

3.3.1 Language Heterogeneity and Structure: Rules, Rule Compo-
nents and Languages

Rules in general consist of several components. For instance, deductive rules like in Prolog/Dat-
alog consist of a rule head and a rule body ; similar e.g. for F-Logic or Transaction Logic rules.
These languages are rule-based languages – their head and body are both expressions in this
language (but note that e.g. negation may in most cases only occur in rule bodies). In the ECA

140



paradigm, rules are not homogeneous: they consist of an event component, a condition compo-
nent (that together roughly correspond to the “body” since they describe the situations where
the rule is applicable), and an action component (that roughly corresponds to the “head”) –
and all these components use different languages. For example, for database triggers, events
are database events like “on update” (that are raised by update operations), where-clause con-
ditions are expressed in SQL, and actions are SQL programs or updates (that again may raise
events). Another example is the language XChange discussed in Section 2, where the event com-
ponent consists of an event query, the condition component is a test by evaluating an Xcerpt
query, and the action component may contain update actions, transactions, or raising of an
event. Yet another example can be found in this report in Appendix A, for ruleCore, where
the (different) languages for each component are described. The ECA languages mentioned in
the introduction ([13, 12, 5, 58]) also use different languages in each of the components. In
these cases, the event, condition, and action language are usually closely related, but this is not
necessarily always the case. The more complex a scenario is, the more specialized are the used
component languages.
Thus, the semantics of a rule is determined by two constituents:

• the rule semantics or “rule paradigm” that characterizes the interplay between the compo-
nents, and the

• language(s) used in its components.

E.g., deductive rules have several common semantics, either top-down, bottom-up as fixpoints,
or well-founded or stable semantics, independent what underlying language (first-order logic,
F-Logic, Transaction Logic etc.) is used. In the same way, ECA rules have a fixed semantics,
independent what languages are used in the E, C, and A components. An important common
feature here, that has been well discussed already for XChange, is that the communication both
for derivation rules and for ECA rules is done by logical variables; we will discuss this in detail
in Section 3.4.

Rule
RuleParadigm

Name

RuleComponent
RuleSemantics

Name

Language

2..*

uses

uses

uses

provides1..*

Constraints:
RuleParadigm determines number of RuleComponents
RuleComponents ordered or named; using appropriate languages

Figure 3.5: Rules, Rule Components and Languages

An XML markup of rules must cover the structure of rules and rule component languages.
Here, the RuleML language [63] provides general guidelines that must then be specialized for
each paradigm.

In the following, we will investigate general ECA rules. The analysis of the languages will
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be continued in two aspects: semantics/ontology and syntax (i.e., algebraic, variables etc.).

3.3.2 Components and Languages of ECA Rules

In usual Active Databases in the 1990s, an ECA language consisted of an event language, a con-
dition language, and an action language. For use in the Semantic Web, the ECA concept needs
to be more flexible and adapted to the “global” environment of a world-wide living organism
where nodes “speaking different languages” should be able to interoperate. So, different “local”
languages, for expressing events, queries and conditions, and actions have to be integrated in a
common framework.

The target of the development and definition of languages for (ECA) rules and their compo-
nents should be a semantic approach, i.e., based on an (extendible) ontology for these notions
that allows for interoperability and also turns the instances of these concepts into objects of
the Semantic Web itself. The upper level of this ontology is shown as an UML diagram in
Figure 3.7, which will be explained below.

In contrast to previous ECA languages from the database area, we aim at a more succinct,
conceptual separation between the event, condition, and action components, which are (i)
possibly given in separate languages, and (ii) possibly evaluated/executed in different places.
Each of the components is described in an appropriate language, and ECA rules can use and
combine such languages flexibly.

Analysis of Rule Components. A basic form of ECA/active rules are the well-known
database triggers, e.g., as already shown above, in SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END.

For them, condition can only use very restricted information about the immediate database
update. In case that an action should only be executed under certain conditions which involve
a (local) database query, this is done in a procedural way in the pl/sql-fragment. This has the
drawback of not being declarative: reasoning about the actual effects would require to analyze
the program code of the pl/sql-fragment. Additionally, in the distributed environment of the
Web, the query is probably (i) not local, and (ii) heterogeneous in the language – queries against
different nodes may be expressed in different languages. For our general framework, we prefer
a declarative approach with a clean, declarative design as a “Normal Form”: Detecting just
the dynamic part of a situation (event), then check if something has to be done by probably
obtaining additional information by a query and then evaluating a boolean test, and, if “yes”,
then actually do something – as shown in Figure 3.6.

Event

dynamic

Condition

static

Action

dynamic

event query test action

collect test act

Figure 3.6: Components and Phases of Evaluating an ECA Rule

With this further separation of tasks, we obtain the following structure:
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• every rule uses an event language, one or more query languages, a test language, and one
or more action languages for the respective components (for that, we allow several action
components in different languages that have all to be executed,

• each of these languages and their constructs are described by metadata and an ontology,
e.g., associating them with a processor,

• there is a well-defined interface for communication between the E, Q&T, and A components
by variables (e.g., bound to XML or RDF fragments).

This model can be readily extended by adding a fifth optional component – the post-condition
(another test) – resulting in a variation usually called ECAP rules. In most cases, this post-
condition can be omitted by allowing the action language to test for conditions inside the action
component. But it may have particular relevance when considered together with transactional
rules, and for reasoning about the effects of sets of rules.

For applying such rules in the Semantic Web, a uniform handling of the event, query, test,
and action sublanguages is required. For this, rules, their components, and the languages must
be objects of the Semantic Web, i.e., described in XML or RDF/OWL in a generic rule ontology
that contains all required information as shown in the UML model in Figure 3.7.

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language
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Language

Action
Language

Languages Model
Language

Name
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1 0..1
1..*
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�

�
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impl by

Figure 3.7: ECA Rule Components and Corresponding Languages

Markup Proposal: ECA-ML

The model is accompanied by an XML ECA rule (markup) language, ECA-ML. The relation-
ship between the rule components and languages is provided by identifying the languages with
namespaces (from the RDF point of view: resources), which in turn are associated with in-
formation about the specific language (e.g, an XML Schema, an ontology of its constructs, a
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URL where an interpreter is available). The latter issues are discussed in Section 3.7; here we
investigate the languages and the markup itself.

For an XML representation of ECA rules as shown in Figure 3.7, we propose the following
(basic) markup (ECA-ML):

<!ELEMENT rule (%variable-decl,event,query*,test?,action+)>

<!-- %variable-decl is not yet specified in detail here-->

<eca:rule rule-specific attributes>

rule-specific content, e.g., declaration of logical variables
<eca:event identification of the language >

event specification, probably binding variables; see Section 3.5.1
</eca:event>

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others; see Section 3.5.2
</eca:query>

<eca:test identification of the language >

condition specification, using variables; see Section 3.5.3
</eca:test>

<eca:action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones; see Section 3.5.5
</eca:action>

</eca:rule>

The actual languages (and appropriate services etc.) are identified by namespaces and their dec-
larations in the <eca:...> elements (see Section 3.6 for component languages and Example 3.14
later).

A similar markup for ECA rules (without separating the query and test components) has
been used in [13] with fixed languages (a basic language for atomic events on XML data,
XQuery as query+test language and SOAP in the action component). This fixed approach falls
short wrt. the language heterogeneity, and especially the use and integration of languages for
composite events. The same structure is also followed by the XChange transaction rules above,
there again without any intention to deal with heterogeneity of languages: fixed languages are
used for specifying the event, condition (without separating query/test), and action component.
In contrast, here we generalise the approach to allow for using arbitrary languages. Thus, these
other proposals are just possible configurations. Our approach even allows to mix components
of both these proposals.

3.3.3 Opaque Rules

Moreover, there are the existing trigger-style languages that handle specific, simple database
events, simple conditions and actions, with their own syntax as discussed in Section 3.2 above.
Since these triggers work on the logical level and are in general (very efficiently) implemented
based directly on the physical database level, they are not necessarily marked up in ECA-ML.
Often, they are even not subject to the “Semantic Web”, since they are just used to locally
implement something that is specified in a completely different way (e.g., integrity constraints),
or for raising RDF-level events based on an SQL or XML storage. In our ontology, we embed
this as opaque rules as shown in Figure 3.8.
The ECA-ML language provides the following XML markup for opaque rules:
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Figure 3.8: ECA Rule Components and Corresponding Languages II

• eca:opaque with text content (program code of some rule language) and attributes lang
(text) and ref (URI where an interpreter is found, similar to the namespace). The attributes
could be alternative if lang is designed similar to XML’s NOTATION concept that associated
resources with a program URI.

Non-normative example:

<eca:rule>

<eca:opaque name=“SQL trigger” ref= “uri of the trigger language”>

ON database-update WHEN condition BEGIN action END
</eca:opaque>

</eca:rule>

• eca:opaque with element content of a language that provides an opaque syntax itself; then,
there is only a namespace declaration for this language:

Non-normative example:

<eca:rule>

<eca:opaque xmlns:foo=“uri of the trigger language”>

<foo:trigger>

ON database-update WHEN condition BEGIN action END
</foo:trigger>

</eca:opaque>
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</eca:rule>

Note that <foo:trigger> is an element of the markup wrapper language for the native lan-
guage.

This point of view also allows to have rules in any other ECA markup language and just to
“forward” them to “their” service.

Since opaque rules are ontologically “atomic” objects, their event, condition, and action com-
ponents cannot be accessed by Semantic Web concepts.

Note that there are canonic mappings between such triggers and their components and the
general ECA ontology.

3.3.4 Hierarchical Structure of Languages

The approach defines a hierarchical structure of language families (wrt. the embedding of lan-
guage expressions) which relates the different kinds of ontologies (application-dependent and
application-independent) and their components as already described above in Section 3.1.3 and
Figure 3.1 to the languages of rules and rule components as shown in Figure 3.9 [here directly
associating ontologies with the corresponding languages over the same alphabet]: As described
until now, there is an ECA language (that is already described by the above markup), and
there are (heterogeneous) event, query, test, and action languages. Rules will combine one (or
more) language of each of the families. In general, each such language consists of its own,
application-independent syntax and semantics (e.g., event algebras, query languages, boolean
tests, process algebras or programming languages) that is then applied to a domain (e.g. travel-
ling, banking, universities, etc.). The domain ontologies define the static and dynamic notions
of the application domain, i.e., predicates or literals (for queries and conditions), and events
and actions (e.g. events of train schedule changes, actions of reserving tickets, ...). Additionally,
there are domain-independent languages that provide primitives (with arguments), like general
communication, e.g. received message(M) (where M in turn contains domain-specific content).

In the next section, we discuss common aspects of the languages on the “middle” level (that
immediately lead to the tree-style markup of the respective components – thus, here the XML
markup is straightforward). Communication issues between the rule components are discussed
in Section 3.4 before we come to the semantics of rule execution in Section 3.5. Samples of
component languages will be discussed in Section 3.6; a short account on domain languages
including events and actions has been given in Section 3.1.3.

3.3.5 Common Structure and Aspects of E, C, T and A Sublanguages

The four types of rule components use corresponding types of languages that share the same
algebraic language structure, although dealing with different notions:

• event languages: every expression gives a description of a (possibly composite) event. Ex-
pressions are built by composers of an event algebra, and the leaves here are atomic events
of the underlying application domain or an application-independent domain;

• query languages: expressions of an algebraic query language, embedding literals from the
domains;

• test languages: they are in fact formulas of some logic over literals of that logic in the
underlying domains (that determine the predicate and function symbols, or class symbols
etc., depending on the logic);
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Figure 3.9: Hierarchy of Languages

• action languages: every expression describes an action. Here, algebraic languages (like
process algebras) or “classical” programming languages (that nevertheless consist of expres-
sions) can be used. Again, the atomic items are actions of the underlying domains.

Algebraic Languages.

As shown in Figure 3.10, all components have in common that the component languages consist
of an algebraic language defining a set of composers, and embedding atomic elements (events,
literals, actions) that are contributed by the domain languages. Expressions of the language
are then (i) atomic expressions, or (ii) composite expressions recursively obtained by applying
composers to expressions. Due to their structure, these languages are called algebraic languages,
e.g. used in event algebras, algebraic query languages, and process algebras. Each composer has
a given cardinality that denotes the number of expressions (of the same type of language, e.g.,
events) it can compose, and (optionally) a sequence of parameters (that come from another
ontology, e.g., time intervals) that determines its arity (see Figures 3.10 and 3.11).

For instance, “E1 followed by E2 within t” is a binary composer to recognize the occurrence
of two events (atomic or not) in a particular order within a time interval, where t is a parameter.
Event languages define different sets of composers, such as XChange for its composite event
queries (as shown in Section 2.2.3.3), the ruleCore detectors as shown in Appendix A.2.1.2, or
the SNOOP event algebra of [25]. Similar composers are used in process algebras, or also –but
in general syntactically covered– in algebra-based query languages. The boolean algebra with
its composers is well-known.
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Figure 3.11: Syntactical Structure of Expressions of an Algebraic Language

Semantics of Algebraic Languages.

Every algebra expression is assigned a semantics, i.e., from evaluating it (in case of queries: in
a given state). Starting with the semantics of atomic expressions, the semantics of composite
expressions is determined by the composer. The semantics of the different types of algebraic
languages are as follows (see also Section 3.6):
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• event languages: in most cases, the event instance(or sequence) that matches the given
expression pattern,

• query languages: a query result, e.g., a relation or an XML structure,

• test languages: a truth value of a logic (i.e., for classical logics, true or false)

• action languages: the formal semantics of terms of e.g. process algebras are denotational
or operational semantics as state transformers; nevertheless, here we are only interested in
their side effects on the underlying data.

Composition of Algebraic Languages.

For each type of such algebraic languages (i.e., event, query, test, and action languages), the
expressions define and combine entities of the same kind, i.e., again, events, queries, tests, or
actions, possibly with appropriate parameters and logical variables (see below) and using events,
literals, or actions from the respective part of the domain language. Thus, from the ontology
point of view, entities of the same kind described in different languages can be combined (e.g.,
a conjunction of a (sub)formula in first-order logic with one in description logic, or a sequence
(or, more generic, any binary composer of any event language) of an event specified in language
EL1 and one specified in EL2).

The global language concepts and the markup will support this, and we will also explain
how evaluation also smoothly crosses these language borders. Note that Figure 3.11 does not
associate the whole rule components with a language, but each expression is associated to a
language. Sections 3.4 and 3.5 show how such cross-language functionality is provided.

Tree Markup of Algebraic Languages.

Thus, language expressions are in fact trees which are marked up accordingly. The markup ele-
ments are provided by the definition of the individual languages, “residing” in and distinguished
by the appropriate namespaces. As described above, it is also possible to nest composers and
expressions from different languages of the same kind, distinguishing them in the markup by
the namespaces they use. Thus, languages are in fact not only associated once on the rule
component level, but this can also be done on the expression level.

Opaque Rule Components. Analogous to opaque rules, we allow for opaque rule compo-
nents, e.g., conditions that are not expressed in a markup language, but in XQuery, or actions
expressed in Java or Perl. In such cases, again <eca:opaque> elements are used that refer to a
URI for that language.

Language Binding. As shown in Figure 3.11, every expression (i.e., the rule components
and their subexpressions) can be associated with a language: an expression is either

• an atomic one (atomic event, literal, action) that belongs to a domain language (either
application-dependent or application-independent), or

• an opaque one that is a code fragment (not in XML markup) of some event/query/logic/ac-
tion language, or

• a composite expression that consists of a composer (that belongs to a language) and several
subexpressions (where each recursively also belongs to a language – in many cases, the same
as the composer).
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The language binding is made explicit by the namespace that is used in the root node of an
expression (and declared there or in one of its ancestor elements; e.g. in the <eca:rule> element)
or by the lang attribute (for opaque fragments). The namespace declaration always yields a
URI. The value of the lang attribute may either be a URI, or a namespace prefix that is declared
before (and must be resolvd to to URI by the respective application).

The meaning of the URIs will be discussed in Section 3.7 (since there is not yet a stan-
dardization what is “behind” the namespace URI, we propose an intermediate solution that is
sufficient for the infrastructure in our approach). Each of these languages (i.e., their URIs) has
an associated engine that captures the semantics of the (composers of its) language. The engines
provide the (expected) interfaces for communication, must keep their own state information,
including at least the current variable bindings. Specific tasks of the engines then include e.g.
the evaluation of composite events (for the event languages), or the execution of transactions
(for the action engines). Thus, the framework itself does not have to deal with actual event
detection or transaction execution, but only with employing suitable services (provided by the
“owners” of these sublanguages) on the Web.

The leaves of the markup trees are then atomic events, literals, or actions, contributed by
the underlying domains (and residing in the domain’s ontology and namespace).

Special markup elements are provided for using and binding variables in the expressions.

3.4 Communication between Rule Components

Although the languages are heterogeneous wrt. the components, there is a common requirement:
to support language heterogeneity at the rule component level, there must be a precise conven-
tion between all languages how the different components of a rule can exchange information
and interact with each other.
In the following, we assume that every processor implements simple fragments of at least one
XML and RDF query language (default for XML: XPath) for working locally with small XML
or RDF fragments. Such expressions are used in local XSLT-style select=“expr” attributes.

3.4.1 Logical Variables

As for XChange, here we also propose to use logical variables in the same way as in Logic
Programming that can be bound to several things: values/literals, references (URIs), XML or
RDF fragments, or events. The respresentation of the bound items must be in ASCII, e.g.,
URIs, serialized XML, or XML-serialized RDF. The binding of a variable to an event (or a
sequence of events) e.g. occurs in XChange, or in cumulative aperiodic events in the SNOOP
language [25]; they can then be used for extracting values from these events. Variables can
be bound by the rule (as constants upon registration) or by the components and used in later
components.

• Similar to deductive rules, variables used for communication occur free in the components,
their scope is the rule,

• While in deductive rules, variables must be bound by a positive literal in the body1 to

1note that there are different terminologies in the literature about “positive” and “negative” literals: In
Logic Programming, these notions are defined wrt. the rule body, whereas in works based on resolution of
disjunctive clauses, they are defined wrt. those literals (as in Xcerpt/XChange). Since a (Horn) clause p(x)∨¬q(x)
corresponds to a LP rule p(x) ← q(x), in the first case, q(X) is a negative binding whereas in the second case,
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serve as join variables in the body (adhering to safety requirements!) and to be used in the
head, in ECA rules we have four components that induce an information flow according to
Figures 3.6 and 3.7; see Section 3.5 for details of the execution semantics.

• Positive occurrences are defined analogously to deductive rules based on the term/formula
structure (must be done with the semantics of each individual such language).

• Positive occurrences can be used to bind variables to a value. In case that a variable occurs
positively several times, it acts then as a join variable, i.e., the values must coincide; this
e.g. allows for an event component that in some cases binds a variable which is then used
as a join variable in the condition, and in other cases is only bound by the latter.

• Negative occurrences of a variable use the value the variable has been bound before.

• Thus, during execution of a rule, any variable occurring negatively must be bound to a
value earlier on the rule level (e.g., with the rule’s initialization, or by deriving its value
from another variable) or in an “earlier” (E<Q<T<A) or at least “earlier” in the same
component as where the negative occurrence is. This leads to the usual definition of safety
of rules.

• Expressions can also use local variables, e.g., in first-order logic conditions. In this case, the
scope of a variable is local, e.g., by a quantifier.

• Variables in the action component: Using variables as parameters to an action in the ac-
tion component counts as negative occurrences (in case that a language used in the action
component that does not define positive or negative occurrences. Thus, for languages used
in the action component hat do not define the notions of positive/negative occurrences, all
occurrences are negative. Note that this allows for binding a variable in the action compo-
nent, e.g., by allowing for evaluation of queries in that component, like in Transaction Logic
[14] that defines its own notions of positive occurrences.

The relationships between rules, rule components and variables are shown in Figure 3.12):

• for each rule R, R.scopes (the set of all logical variables whose scope is the rule) is the
union of R.occurs positive (before or between evaluating components) and C.free for all its
components C;

• for each component C of a rule R, and also for each expression inside any component,
C.positive, C.negative, C.free, C.bound, denote the sets of variables that occur positively,
negatively, free or bound.

Free variables occur either positively or negatively:
C.free = C.positive ∪ C.negative.

The information which variables are bound in/by an expression is only relevant for expres-
sions, not for the rule components.

Declaration of Variables. Usually, languages based on logical variables do not use explicit
variable declarations. Nevertheless, for illustration, we sometimes specify means for declaring
variables a priori. Then, the binding mechanism can also be extended with a type system. The
markup may optionally contain explicit declarations of variables (see Figure 3.12):

• declaration of variables whose scope is the rule in the eca:rule element,

• declaration of variables to be bound in each of the components, even in subexpressions,

it is a positive binding.

151



ECARule RuleComponent Expression

Variable
name

repr. by

1

see Fig. 3.11↓scopes
*

*pos,neg
free

*
*pos,neg

free,bound
*
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• declaration of variables to be used in each of the components, even in subexpressions.

However, the goal is that this information can be derived from the markup and the semantic
information about the component languages. For this, every service that “offers” a language
should provide the following functionality (in addition to DTD etc.):

• Given an XML or RDF fragment of an instance of the language: Validation of the fragment,
list of all variables that are used, and all variables that occur positively (i.e., can be bound
by this fragment).

3.4.2 Binding and Using Variables

While the semantics of the ECA rules provides the infrastructure for these variables, the markup
of specific languages must provide the actual handling of variables (mainly: binding variables)
in its expressions. We propose to use a uniform handling of variables in the ECA language, and
in E, Q, T, and A component languages.

Variables: Syntax. The ECA-ML language provides constructs for binding variables, where
we borrow from XSLT: use variables by {$var-name}, and bind them by <variable name=“...”>

elements:

• <eca:variable name=“name”>

content
</eca:variable>

where content is any expression (e.g., an event specification or a query) that returns some
value. The variable is then bound to this value (see also Examples 3.3 and 3.6 below).

• <eca:variable name=“name” lang=“xpath” select=“expr”/>

can be used for binding a new variable based on already bound ones in expr. These expres-
sions can be in any language (e.g. XPath) that an ECA service implements for such simple
local evaluations. The above is a shorthand for

<eca:variable name=“name”>

<eca:query>

<eca:opaque lang=“xpath”> expr </eca:opaque>

</eca:query>

</eca:variable>
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These variable elements are allowed in ECA-ML anywhere in the upper level of an ECA rule
(cf. below description of handling functional results). We propose to use similar constructs also
in the component languages, but the actual decision is up to the language designers.

Since we have yet neither presented concrete markup languages for events, conditions and
actions, nor concrete means for binding variables to values extracted from atomic events (both
will be presented in Section 3.6), we illustrate the use of variables by simple rules with opaque
components where each rule component has only a textual, opaque specification that is to be
understood by some language engine.

Rules with Opaque Components; Example for Variables. Opaque rule components are
again marked up as text content of an eca:opaque element that references the language via its
lang attribute (see Example 3.3). In this example, information about communicated variables
and bindings is given explicitly (and used for renaming variables, when e.g. a language accepts
only capitalized variables). Thus, the component elements list all variables that are used or
bound by them (i.e., whose bindings must be exchanged with the engine), also optionally giving
their names in a use attribute (e.g., for embedding JDBC where variables are only named ?1,
?2 etc.).

Example 3.3 Consider an ECA rule with opaque components (using different languages) that,
whenever a flight is cancelled, sends a message to the destination airport that the flight will not
take place:

<eca:rule xmlns:eca=”http://www.eca.org/eca-ml”
xmlns:xpath=”http://www.w3.org/XPath”
xmlns:pseudocode=”http://www.pseudocode-actions.nop”>

<eca:variable name=”Schedule”>http://localhost/schedule.xml</eca:variable>

<eca:variable name=”Flight”/>

<eca:variable name=”Destination”/>

<eca:variable name=”event”>

<eca:event>

<eca:atomic-event>

<travel:cancel-flight/>

<!-- matches any travel:cancel-flight event, e.g.
<travel:cancel-flight code=”LH1234”/> -->

</eca:atomic-event>

</eca:event>

</eca:variable>

<!-- the matched event is now bound to the variable $event -->

</eca:variable name=”Flight”
lang=“xpath” select=”$event/cancel-flight/string(@code)”/>

flq eca:variable name=”Destination”>

<eca:query>

<eca:opaque lang=’xpath’>
<eca:use-variable name=”Flight” use=”$Flight”/>

<eca:use-variable name=”Schedule” use=”$Schedule”/>

string(document($Schedule)//flight[@id=$Flight]/@to)
</eca:opaque>

</eca:query>

</eca:variable>

<!-- evaluates XPath expression and binds the result to the variable ’Destination’ -->
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<eca:test>

<eca:opaque lang=’boolean’>true</eca:opaque>

</eca:test>

<eca:action>

<eca:opaque lang=’pseudocode’>
<eca:use-variable name=”Flight”/>

<eca:use-variable name=”Destination”/>

send “Flight $Flight has been cancelled today” to the destination airport ...
</eca:opaque>

</eca:action>

</eca:rule>

The ECA engine proceeds as follows: It binds the variable Schedule as a constant to the given
value and allocates variables Flight and Destination. The event component consists only of
an atomic event. If such an event, e.g. <travel:cancel-flight code=”LH1234”/> is detected (by
matching), it is bound to the variable event (this semantics coincides with most event detection
semantics that return the relevant event sequence as the result). In the next step, the variable
Flight is bound by evaluating an XPath expression against the value of event, yielding the binding
Flight/“LH1234”.

Next, the ECA engine submits the query where ($Schedule is replaced with the constant URL,
and $Flight replaced with the actual binding “LH1234”) to the XPath engine, that evaluates the
expression and returns its result, i.e., the identifier of the destination airport (e.g., “FRA”).
The ECA engine binds the returned result to its variable Destination. The condition is then
empty (every flight has a destination). Next, the pseudocode fragment in the action component
is equipped with the flight number and the destination airport and a message is sent.

3.4.3 Communication of Results and Variable Bindings

For the framework, the only important thing is here to define interfaces and a format how
to exchange results and variable bindings, i.e., returning results and bound variables from an
expression, and to communicate already bound variables down to expressions for using them
(as join variables or in actions).

Upward Communication: (Functional) Results and (Logical) Variables. There are
several possibilities what the “result” of evaluating a rule component can be:

• Logic-Programming-style languages that bind variables by matching free variables (e.g.
query languages like Datalog, F-Logic, XPathLog). Here, the matches can be literals (Dat-
alog) or literals and structures (e.g., in F-Logic, XPathLog, Xcerpt). Similar techniques can
also be applied to design languages for the event component.

• Functional-style languages that are designed as functions over a database or an event stream:

– query languages that return a set of data items (e.g., SQL, OQL) that can be interpreted
as producing a set of variable bindings (attribute names as variables; probably obtained
by the “renaming” operator of the relational algebra),

– query languages that return a data fragment (e.g. XQuery, Xcerpt – this is only possible
since “schema-free” data like XML exists). Here, the result is not bound to an obvious
variable name. Note that this should result in a set/sequence of variable bindings if a
set/sequence of nodes is created.
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– for event languages, the “result” of an expression can be considered the sequence of
detected events that “matched” the event expression in an event stream (e.g., XChange).

In this case, the languages can also use variables that are bound before. Thus, “downward”
communication is explicit, whereas the upward communication is implicit (and the result
must be bound to a variable by the surrounding language). Note that the answer can even
be empty which sometimes is interpreted as “false”.

• Both forms can be mixed (F-Logic, cumulative operators in event languages).

To cover all of them, we propose a structure as e.g. used in the Florid system [33] where with
each result, a set of variable bindings is associated. We propose the following representation
for interchange of results and variable bindings:

<! ELEMENT answers (answer*)>

<! ATTLIST answers component {event|query} #IMPLIED
reference CDATA/URI #IMPLIED>

<! ELEMENT answer (result?,variable-bindings?)>

<! ATTLIST answer component {event|query} #IMPLIED
reference CDATA/URI #IMPLIED>

<! ELEMENT result ANY >

<! ELEMENT variable-bindings (tuple+) >

<! ELEMENT tuple (variable+) >

<! ELEMENT variable ANY >

<! ATTLIST variable name CDATA #REQUIRED
ref URI #IMPLIED> <!-- variable has either ref or content-->

<eca:answers [component=“{event|query}”] [ref=“string”]>

<eca:answer [component=“{event|query}”] [ref=“string”]>

<eca:result>

any result structure
</eca:result>

<variable-bindings>

<tuple>

<variable name=”name” ref=”URI”/>

<variable name=”name”>

any value
</variable>

:
</tuple>

</variable-bindings>

</eca:answer>

<eca:answer>

:
</eca:answer>

</eca:answer>

A set of answers consists of multiple answers, where each answer consists of a result value
and/or a set of tuples of variable bindings. A variable binding can either be given inline as
serialized XML, or as a URI reference (e.g., to a Web page, or an RDF URI). The answers can
optionally contain a reference to an ID that in case of asynchrounous communication indicate to
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what they are an answer (this is needed for event detection; query handling can be synchronous
or asynchronous).

Note the following:

• In cases where only one single answer is produced (which is often the case for event detection,
or when calling a “functional” Web Service), the outer <answers> may be omitted, returning
only one <answer> structure.

• for services that return no functional result (e.g., a Datalog query service) or no variable
bindings (e.g., an XQuery service), each <answer> structure contains only the relevant subele-
ment.

• for services that return only a single functional result (an event sequence, or an answer to
an XQuery or SQLX query), it is allowed not to mark it up at all. It is then treated as
<result> element of a single answer and can be bound to an ECA-level variable as described
below.

For making the functional result part accessible in the ECA rule, it must immediately be bound
to a variable (since event detection often returns the relevant event sequence in this way, we
illustrate this situation in Section 3.5.1) as described above:

<eca:variable name=“result-var”>

content
</eca:variable>

where content is an event specification or a query according to the above discussion of functional
semantics of events and queries:

• If the result of content is one or more <answer>, then for each <answer>, every <tuple> in
the <variable-bindings> part is extended with the variable result-var which is bound to the
<result> part of the <answer> (see Examples 3.3 and 3.6 and below).

• If the result of content is other XML (or analogously for RDF), result-var is simply bound
to it in the same way as for XSLT (this often saves writing wrappers to the above exchange
format).

Note that most currently existing tools (e.g. query interfaces) do not return their data in such a
format. In such cases, wrappers (that can be provided locally by the ECA service) can be used.
Note that the XQuery return clause (and similar constructs like XML generating functions in
SQLX) can be used to return this format directly (this functionality will especially be used in
the prototype).

Downward Communication: Variable Bindings. Downward communication of values is
needed in the following situations during rule evaluation:

• Variables of parameterized rules that are bound at registration time,

• variables bound in previous components are communicated to queries and actions.

The generic format is given by the above <variable-bindings> element that communicates a set of
tuples of variables. As a specific format we propose to support XQuery (e.g. for opaque query
components) by a built-in wrapper: by adding let var := xml-fragment statements in front of
the query.
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3.5 Semantics of Rule Execution

This section deals with the overall semantics of ECA rules and the abstract semantics for each
of the components.

Consider again the above example: For each “cancelled flight” event, the rule is “fired”.
“Fired” means that the event component produces one “answer”. The next “cancelled flight”
message fires another rule instance that will be completely independent.

For that “answer” to the event component, the (one and only) destination is selected, bound
to the Destination variable, and for this pair (Flight, Destination), the action is triggered.

A different (and more complex) situation occurs, if the query component produces several
answers, e.g. for the following task:

Consider the same situation as above, but now notify every customer who has a reser-
vation for this flight (e.g., by SMS).

Comparison: Firing Deductive Rules. For deductive rules (that do not have an event
component) in bottom-up evaluation, the body is evaluated and produces a set of tuples of
variable bindings (Datalog, F-Logic, Transaction Logic, Statelog, XML-QL, XPathLog, Xcerpt;
in some sense also the basic form of XQuery). Then, the rule head is “executed” by iterating
over all bindings, for each binding instantiating the structure described in the head (in some
languages also executing actions in the head).

The semantics of ECA rules should be as close as possible to this semantics, adapted to the
temporal aspect of an event:

ON event AND additional knowledge, IF condition then DO something.

3.5.1 Firing ECA Rules: the Event Component

An event is something that occurs (or, that is detected – in contrast to local databases that
represent a closed world, the occurrence of an event somewhere in the Web does not necessarily
mean that it is actually detected anywhere where it is relevant). Formally, detection of an event
results in an occurrence indication, together with information that has been collected (consider
here the data exchange format discussed in Section 3.4.3). The ECA engine must then execute
the rule accordingly, using the obtained variable bindings. Note that the cardinality of answers
must be considered in this case:

Example 3.4 (Exam Registration) Consider the following scenario: for an exam, first the
(online) registration is opened, then students register, and at a given timepoint, the registration
closes. Assume the events to be marked up as e.g.

<reg open subject=“Databases”/>

<register subject=“Databases” name=“John Doe”/>

<reg close subject=“Databases”/>

A can e.g. describe an action to be taken “if registration for an exam E is opened, students
X1, . . . , Xn register, and registration for E closes”. The composite event is then formulated as
“registration to an exam is closed after (it had been opened and) students s1, . . . , sn registered”
and is reported at the timepoint when the registration closes. With its occurrence indication,
information about the subject E and registered students X1, . . . , Xn is given. Such a cumulative
semantics is provided by appropriate event operators, e.g. by SNOOP [25].

The rule must then be fired for this one event.
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Example 3.5 Consider the following rule: “If flight F is delayed for more than 25 minutes,
do ...”. Information about delayed flights is available all 10 minutes as a message including a
report of the form

<msg:receive-message sender=“service@fraport.com”>

<msg:content>

<travel:delayed-flight flight=“LH1234” time=“30”/>

<travel:delayed-flight flight=“AF0815” time=“90”/>

<travel:delayed-flight flight=“CY42” time=“60”/>

:
<travel:cancelled-flight flight=“AL4711”/>

:
</msg:content>

</msg:receive-message>

There are two ways how to maintain this rule:

• XML level: the rule designer knows that such messages come in, and formulates a suitable
atomic event pattern (cf. Section 3.6.1 as

<eca:rule>

<eca:event>

<eca:atomic-event>

<receive-message sender=“service@fraport.com”>

<content>

<delayed flight=“$flight” time=“$minutes”/>

</content>

</eca:atomic-event>

</eca:event>

:
</eca:rule>

which binds variables flight and minutes.

• Formulating the rule purely in the application domain as

<eca:rule>

<eca:event>

<eca:atomic-event>

<delayed flight=“$flight” time=“$minutes”/>

</eca:atomic-event>

</eca:event>

</eca:rule>

and using an ECE (see Section 3.1.5) event derivation rule “if there is a message whose
content matches event E, then consider E to be detected”.

The answer from the event detection module can result in

• one answer, containing several tuples, or

• several answers, containing one tuple.
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Note that later, the same event pattern will be detected again, which again fires the rule.

In case that an occurrence indication contains multiple tuples of variable bindings, the semantics
must be carefully considered: The tuples must be regarded as semantically independent since
they –although “just by chance” detected at the same time– represent independent events. For
that reason, a correct (but not always most efficient) semantics would be that the ECA engine
immediately separates them and fires independent instances of the rule (see Sections 3.5.4
and 3.8).

Thus, if a final event should report about something set-like, this must be contained in the
semantics of the event language, not of the ECA language – then it is practically too late.
As stated above, an explicitely cumulative semantics is e.g. supported by the SNOOP event
algebra.

In many approaches, the “result” of event detection is the sequence of the events that
“materialized” the event pattern to be detected. In this case, an appropriate way is to bind
this result to a variable as shown above and afterwards the values of other variables can be
extracted from this one.

Example 3.6 Consider the following situation from Example 3.4 and an event specification
(using XPathLog and regular expression syntax in an obvious way):

<eca:rule ... >

<eca:variable name=“Subj”/>

<eca:variable name=“regseq”>

<eca:event>

<eca:opaque lang=’xpathlog-events’>

<eca:bind-variable name=“Subj”/>

reg open[@subject→Subj], register[@subject→Subj]*, reg close[@subject→Subj]
</eca:opaque>

</eca:event>

</eca:variable>

:
</eca:rule>

The returned information from the event detection service in the markup proposed in Sec-
tion 3.4.3 looks as follows, returning the relevant event sequence. The variable Subj has also
been bound in the event component:

<eca:answer component=“event” ref=“identifier”>

<eca:result>

<reg open subject=“Databases”/>

<register subject=“Databases” name=“John Doe”/>

<register subject=“Databases” name=“Scott Tiger”/>

:
<reg close subject=“Databases”/>

</eca:result>

<eca:variable-bindings>

<eca:tuple>

<eca:variable name=“Subj”>Databases</eca:variable>
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</eca:tuple>

</eca:variable-bindings>

</eca:answer>

Next, the variable regseq is bound to the <result> part. The variable bindings after completely
evaluating the event component look as follows:

<eca:variable-bindings>

<eca:tuple>

<eca:variable name=“regseq”>

<reg open subject=“Databases”/>

<register subject=“Databases” name=“John Doe”/>

<register subject=“Databases” name=“Scott Tiger”/>

:
<reg close subject=“Databases”/>

</eca:variable>

<eca:variable name=“Subj”>Databases</eca:variable>

</eca:tuple>

</eca:variable-bindings>

3.5.2 The Query Component

This second component is concerned with static information that is obtained and restructured
from two areas:

• analyzing the data that has been collected by the event component (in the variable bindings),
and

• based on this data, stating queries against databases and the Web.

Whereas the event component of a rule may be “answered” by detecting occurrences of the
event pattern several times, the query component returns all answers at the same time. The
query component is very similar to the evaluation of database queries and rule bodies in Logic
Programming: in general, it results in a set of tuples of variable bindings (that are possible
answers to a query).

Grouping: Set-Valued vs. Multi-Valued. An important issue here is to deal with sets
(e.g., in the above examples, all customers who booked a flight that has been cancelled, or all
students that registered for an exam):

• bind a variable to a collection, e.g.,
β = {Subj→ ’Databases’, student→ {’John Doe’, ’Scott Tiger’, . . . }}, or

• produce separate tuples of variable bindings:
β1 = {Subj→ ’Databases’, student→ ’John Doe’},
β2 = {Subj→ ’Databases’, student→ ’Scott Tiger’}.

We follow again the Logic Programming specification, followed and implemented also in Prova
(cf. Appendix B), that every answer produces a variable binding. For variable binding by
matching (as in Datalog, F-Logic, XPathLog, Xcerpt etc.), this is obvious. Since we also allow
variable bindings in the functional XSLT style, the semantics is adapted accordingly:
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• each answer node of an XPath expression yields a variable binding;

• each node that is returned by an XQuery query yields a variable binding; if the XQuery
query is of the form
<name>{ for ... where ... return ...} </name> ,
then the whole result yields a single variable binding.

Example 3.7 Consider again Example 3.6 where the resulting event contained several regis-
trations of students. For doing anything useful, their names have to be extracted.

1. as multiple string-valued variables:

<eca:rule ... >

:
same as above, binding variables “Subj” and “regseq”

:
<eca:variable name=“Student”>

<eca:query>

<eca:opaque lang=’xpath’>

$regseq//register[@subject=$Subj]/@name/string()
</eca:opaque>

</eca:query>

</eca:variable>

:
</eca:rule>

The above query generates the extended variable bindings
β1 = {Subj→ ’Databases’, regseq→ (as above), Student→ ’John Doe’},
β2 = {Subj→ ’Databases’, regseq→ (as above), Student→ ’Scott Tiger’}.

2. or as a single variable:

<eca:rule ... >

:
same as above, binding variables “Subj” and “regseq”

:
<eca:variable name=“Students”>

<eca:query>

<eca:opaque lang=’xquery’>
<students>

for $s in $regseq//register[@subject=$Subj]/@name/string()
return <name> { $s } </name>

</students>

</eca:opaque>

</eca:query>

</eca:variable>

:
</eca:rule>

This query generates the extended variable binding
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β = { Subj→ ’Databases’, regseq→ (as above),
Students→ <students> <name>John Doe</name>

<name>Scott Tiger</name> </students>}

The above query showed how data from the variable bindings obtained from the event detection
is extracted. Note that this query is very similar to the event queries mentioned in XChange
(instead of the above opaque query, also an Xcerpt/XChange query could have been used).

The next example shows a query against an XML repository in the Web. Again, the answer
of the query component is represented in a single XML variable. This example then leads
immediately to questions about handling the action component.

Example 3.8 Consider an ECA rule with opaque components (using different languages) that,
whenever a flight is cancelled, notifies every customer who has a reservation for this flight (e.g.,
by SMS), and sends a message to the airport hotel with the names of all customers to make a
pre-reservation for this night.

<eca:rule xmlns:eca=“http://www.eca.org/eca-ml”
xmlns:datalog=“http://www.lp.org/datalog”
xmlns:xpath=“http://www.w3.org/XPath”
xmlns:pseudocode=“http://www.pseudocode-actions.nop”>

<eca:variable name=“Bookings”> http://localhost/schedule.xml </eca:variable>

<eca:variable name=“Flight”/>

<eca:event>

<eca:opaque lang=’datalog’>
<eca:bind-variable name=“Flight”/>

flight cancellation(Flight) <!-- matches Flight against received message -->

</eca:opaque>

</eca:event>

<eca:variable name=“Customers”>

<eca:query>

<eca:opaque lang=“xquery”>

<eca:use-variable name=“Flight”/>

<eca:use-variable name=“Bookings”/>

return
<customers>

{ for $c in document($Bookings)//flight[@id=$Flight]/reservation/customer
return $c }

</customers>

</eca:opaque>

</eca:query>

</eca:variable>

<!-- evaluates XPath expression and binds each of the results to the variable ’Customers’ -->

<eca:test>

<eca:opaque lang=’xpath’>

$Customers/customer
</eca:opaque>

</eca:test>

<eca:action>

<eca:opaque lang=’pseudocode’>
<eca:use-variable name=“Customers”/>

<eca:use-variable name=“Flight”/>
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send one message with all Customers/customer/name to the hotel,
then
for each N in Customers/customer/@phonenr do

notify cancellation(Flight, sms:N)
</eca:opaque>

</eca:action>

</eca:rule>

In the first case, the action has a multi-valued semantics, whereas in the second case it has a
set-valued semantics. This simple case could be solved by binding the set of customers to a
variable. The above “solution” moves the solution inside the query component, and is sufficient
in this case, but not in general (and less declarative).

3.5.3 The Test Component

The test component is still concerned with the information obtained so far. It evaluates a
condition which is a mapping from a knowledge base to true/false. In general, the evaluation of
conditions is based on a logic over literals with boolean combinators and quantifiers. A Markup
Language exists with FOL-RuleML [11]. Since first-order logic is in general undecidable, it is
recommended to use suitable fragments. Instead of first-order atoms, also “atoms” of other
data models can be used. Additionaly, we envisage to allow to use simple expressions like
XPath of a language that is locally supported in the ECA engine. Note that XPath expressions
are also literals that result in a true/false (true if the result set is non-empty) value (as in the
above example). Variables are communicated to the test in the same way as above. The test
component returns then the set of tuples that satisfy the condition (for further propagation to
the action component).

3.5.4 Summary of Event, Query and Test Semantics

Given the variable bindings resulting from the event component, the semantics of evaluating
queries is based on the usual answer & join semantics of Logic Programming: for the cases
where queries only contain positive occurrences of variables, the resulting variable bindings of
the event and query components are just the join of the individual sets of variable bindings. As
long as only positive queries are used, the semantics of the query component is commutative.
In case of negative occurrences, the usual safety constraints apply, variables must be bound
positively before they can be used in a negated occurrence. Then, negation is interpreted as
set difference. The test component acts as a selection that removes all variable bindings that
do not satisfy the test.

The normal form induces a sequential operational semantics; other evaluation and execution
strategies are possible based on equivalence transformations (see Section 3.8).

In each stage, the variable bindings are considered as a set of tuples that is represented
in XML as above, and communicated with the event, query and test services. Note that this
allows for aggregation and grouping constructs in queries and tests.

Multiple Occurrences. The “plain” semantics of an ECA rule assumes that a rule is fired for
each individual occurence of the event pattern given in its event component. As shown above,
that multiple independent instances of an event pattern are detected at the same time, and
reported as a whole. In such cases, it is possible to fire the rule for all these occurrences together
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(since we do not bind program variables, but use the notion of logical variables and sets of tuples
of variable bindings, the underlying declarative semantics allows for this). Semantically, there
is a only a difference if transactional issues in the action component are considered. In this case
it is enough to separate the instances when executing the action component.
Nevertheless, some efficiency aspects have to be considered; see Section 3.8.

3.5.5 The Action Component

The action component is the one where actually something is done in the ECA rule: for each
variable binding, the action component is executed. The action component may consist of
several <eca:action> elements which can use different action languages. The semantics is that
all actions are executed. Note that actions are not allowed to bind variables, thus they are
independent on this level. (Note that sequential and conjunctive execution of actions can also
be specified on the level of action languages inside the <eca:action> element.)

Grouping and de-grouping execution steps. Here, the possibility of grouping and de-
grouping is required: it makes a strong difference if a set is represented by one tuple of variables,
or the whole set is bound as a set in one tuple.

Example 3.9 Consider again Example 3.6 where the names of students that have registered
for an exam have been collected:

1. In the first case, we had the following variable bindings:
β1 = {Subj→ ’Databases’, regseq→ (as above), Student→ ’John Doe’} ,
β2 = {Subj→ ’Databases’, regseq→ (as above), Student→ ’Scott Tiger’} ,
i.e., a set of two tuples.

If the action now is “(for each tuple), send the lecturer a mail with the value of the variable
Student”, the lecturer will get two mails, each one with one student.

Instead, we want to send the lecturer one mail with the names of all registered students.

2. For such cases, a functionality for “group by Subject” (which results in only one tuple) would
be useful, e.g. a way to group by Subj, collecting all names in a list (and forgetting about
regseq, resulting in
βgrp = {Subj→ ’Databases’, Student→ {’John Doe’,’Scott Tiger’}},
for which the action then can be called.

3. In the second case, we have only one variable binding (very similar to βgrp above,

β = { { Subj→ ’Databases’, regseq→ (as above),
Students→ <students> <name>John Doe</name>

<name>Scott Tiger</name> </students>}

for which the action can be called immediately (and e.g. submit the XML structure of Students
as the message content).

On the other hand, if the task is “to send a message to each of the registered students”, the first
case is immediately suitable, whereas the second one needs either an iteration inside the action
component (“for each name in Students do ...”) or, – more declaratively on the ECA level –
an ungrouping, resulting in the variable bindings of β1 and β2.

Such cases are very frequent. A rule can even contain actions of both kinds, e.g., in
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For the above E&Q components, “send the lecturer an e-mail with the names of all
students and send a confirmation message to each of the registered students”.

In such cases, the number of variable bindings must be changed by grouping or de-grouping,
dependent on what the result of the E&Q components are. Grouping and ungrouping on the
ECA level is allowed before each <eca:action> element. We propose to inherit these elements
also to the action languages:

• all tuples that coincide in all named variables are grouped together; the other variables
are aggregated as lists, sum, avg etc., or omitted (a default can be specified; aggr-op =
list|sum|avg|omit|...):

<eca:group-by aggr=“aggr-op”>

<eca:group-variable name=“name”/>

:
<eca:group-variable name=“name”/>

<eca:aggr-variable op=“aggr-op” name=“name” aggr-name=“name”/>

:
<eca:aggr-variable op=“aggr-op” name=“name” aggr-name=“name”/>

</eca:group-by>

• Flattening a list or sequence: The new variable binding is obtained by splitting a list, or
applying a query to the variable (XPath, or any default language configured by the ECA
service or the rule). Note that this can also be done by a sequence of <eca:query> elements.

<eca:ungroup-by>

<eca:ungroup-variable>variable-name
[<eca:ungroup-query> ...</eca:ungroup-query>]

</eca:ungroup-variable>

:
<eca:ungroup-variable>variable-name

[<eca:ungroup-query> ...</eca:ungroup-query>]
</eca:ungroup-variable>

</eca:ungroup-by>

3.5.6 Transactions

Although the issue of transactions does not directly have to do with the semantics of ECA
rules, some issues should be raised here. Transactional issues are only concerned with the action
component (events can neither fail nor be rolled back, queries and tests can also not “fail” and
there is nothing to be rolled back). Transactional functionality can be offered independently
by the action languages inside the <eca:action> elements.

Since we stated above that the semantics for excution of the action component is the same as
for executing the head of a deductive rule, i.e., handling it separately for each tuple of variable
bindings, transactions that should cover the whole group must explicitly be expressed on the
ECA level.
For this, we propose an

<eca:transaction attributes> ... </eca:transaction>

element that can occur around or anywhere in an <eca:action> element.
With this, e.g., actions for all tuples can be grouped as a transaction by
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<eca:rule ...>
<eca:event> ...</eca:event>

<eca:query> ...</eca:query>

<eca:test> ... </eca:test>

<eca:transaction>

<eca:action> ... </eca:action>

</eca:transaction>

</eca:rule>

A further element allows to take a group of tuples together for execution of a transaction (note
that in contrast to <eca:group-by>, the number of tuples does not change):

<eca:transaction-group-by/>

<eca:group-variable name=“name”/>

:
<eca:group-variable name=“name”/>

</eca:transaction-group-by>

(e.g., if an event contains a list of delayed flights, the query component returns a pair of variable
bindings for each customer, and the appropriate actions should be separate transactions for each
flight).

3.6 Languages for the Event, Query, Test, and Action
Components

In this section, we illustrate each of the rule components by well-known sample languages. Since
query languages and languages for tests are well-known (e.g., XQuery, first-order logic), we
sketch these aspects only shortly, and focus on the event component and the action component,
taking as sample languages the SNOOP event algebra [25], and the CCS process algebra [52].
Simple instances can also be obtained by straightforward markup versions for languages like
ECA-for-XML, RDFTL etc. that have been mentioned in Section 3.1.2.

3.6.1 Event Component

The event component language is embedded in the language hierarchy as shown in Figure 3.9.
It is based on the event ontology as discussed in Section 3.1.4 and allows to express the events
according to the ontology of atomic events given in Figure 3.2 and provides the specification of
composite events by means of event algebra as shown in Figure 3.11.

Thus, each language used in the event component is made up as a combination of one ore
more event algebras, using atomic events of one or more applications, and possibly atomic
data-level events from several data models, and atomic events from application-independent
services. The structure of the event component is shown in Figure 3.13.

Since the usual semantics of evaluating an event algebra expression is to return the matching
event sequence, subexpressions from different algebras can be combined easily.
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Figure 3.13: Event Component Ontology

3.6.1.1 Handling Atomic Events

The atomic events are the simplest case of event components, and they are also the leaves of
event algebra expressions. They do not belong to the namespace of any event algebra, but
reside in the domain namespaces. We assume that events are available in XML or RDF format.

Example 3.10 (Atomic Events) Events are data fragments that are available in XML markup
or as RDF fragments.

• The events
<travel:cancel-flight code=”LH1234”/>

<travel:cancel-flight><travel:code>LH1234</travel:code></travel:cancel-flight>

are (using different markups) events in the travelling domain that mean that the flight
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“LH1234” is cancelled. Note that more information (e.g., that this concerns today’s flight
that should depart in one hour) must then be accessible from the context. Complete informa-
tion would be available if the event is of the following form <travel:cancel-flight code=”LH1234”
date=”10062005”/>.

• The following events have already been used above in an example:
<uni:reg open subject=“Databases”/>

<uni:register subject=“Databases” name=“John Doe”/>

• in RDF, events are resources of a type “event” that also have a name and are connected to
other resources as parameters.

In the event component of a rule, either inside of a composite event markup, or when the rule
reacts on an atomic event, we propose to use

<eca:atomic-event [xmlns:domain=“namespace”]>

contents
</eca:atomic-event>

elements to denote that “leaves” of the event language level (instead of eca, also the namespace
of the event algebra can be used) are reached; optionally, the namespace of the domain of
the included atomic event can be defined here. Inside of <eca:atomic-event> elements, the
namespaces of the applications are used with the data about the events to be matched.

In general, the event component states some requirements on the events on which a reaction
should be taken, e.g., the name of the event, or also its contents (i.e., its parameters). Since the
event is seen as an XML or RDF fragment, these conditions can be stated as queries against
this fragment.
We investigate two principal ways then to detect and query atomic events of interest (see
examples below):

• pattern-based (e.g. by XML patterns, or like in Xcerpt or XML-QL). In this case, inside
this element, the actual atomic event is specified and variables can be bound to fragments.
XSLT style eca:variable elements or variable references of the form $var-name can be used
inside the pattern to express that a fragment of the event is bound or must match a variable:

<eca:atomic-event>

<travel:cancel-flight code=“$flight”/>

</eca:atomic-event>

or, in the other markup,
<eca:atomic-event>

<travel:cancel-flight>

<eca:variable name=“flight”>

<travel:code/>

</eca:variable>

</travel:cancel-flight>

</eca:atomic-event>

matches any travel:cancel-flight event and binds the variable flight to the code of the flight
(in the first case, only the string value, in the second case the whole element). In case that
flight is already bound, this acts as a (join) condition on the code of the cancelled flight.

• navigation-based: inside the <eca:atomic-event> element, the event itself (as an XML frag-
ment) is available as $event. Then,
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<eca:test lang=“xpath” condition= “xpath-expr”/>

can be used for tests (note that this is the same eca:test as for the test component; instead
of XPath, other simple languages are possible), and elements of the form

<eca:variable name=“var-name” lang=“xpath”
select=“$event/relative-expr...”/>

can be used to access data within the event. Variables can also be addressed by {$var-name}
as in XQuery (for using them as join variable or for binding them to the matched value).

Here, the first variant looks as follows:

<eca:atomic-event>

<eca:test lang=“xpath” condition=“$event/*/name()=’cancel-flight’”/>

<eca:variable name=“flight” lang=“xpath” select=“$event/cancel-flight/@code”/>

</eca:atomic-event>

or
<eca:atomic-event>

<eca:test lang=“xpath” condition=“$event/*/name()=’cancel-flight’”/>

<eca:test lang=“xpath” condition=“$event/cancel-flight/@code=$flight”/>

</eca:atomic-event>

• both ways can also be mixed:

<eca:atomic-event>

<travel:cancel-flight/>

<eca:variable name=“flight” lang=“xpath”
select=“$event/cancel-flight/@code”>

</eca:atomic-event>

Working with the notion of context nodes should also be considered. Then, the current
context node should always be the current position in the event structure (similar to tree-
walking in XSLT):

<eca:atomic-event>

<eca:test lang=“xpath” condition=“./*/name()=’cancel-flight’”/>

<eca:test lang=“xpath” condition=“./*/@code=$flight”/>

</eca:atomic-event>

or
<eca:atomic-event>

<travel:cancel-flight>

<travel:code>

<eca:variable name=“flight” lang=“xpath” select=“text()”/>

</travel:code>

</travel:cancel-flight>

</eca:atomic-event>

Which of the above ways will be supported (or all of them) will be decided in the future.

3.6.1.2 Composite Events: Event Algebras

Event algebras, well-known from the Active Database area, serve for specifying composite events
by defining terms formed by nested application of composers over atomic events. There are sev-
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eral proposals for event algebras, defining different composers. Each composer has a semantics
that specifies what the composite event means.

For dealing with composite events in the context of the ECA rules proposed here, we propose
at least the following composers: “E1 OR E2”, “E1 AND E2” (in arbitrary order), and “E1 AND

THEN E2 [AFTER PERIOD {< | >} time]” the latter one composing two events and using an
additional parameter time, indicating the time that has passed between the occurrence of E1

and E2. Detection of a composite event means that its “final” atomic subevent is detected:

(1) (E1∇E2)(t) :⇔ E1(t) ∨ E2(t) ,
(2) (E14E2)(t) :⇔ ∃t1 ≤ t ≤ t1 : (E1(t1) ∧ E2(t)) ∨ (E2(t1) ∧ E1(t)).
(3) (E1;∆t E2)(t) :⇔ ∃t1 ≤ t ≤ t1+∆t : E1(t1) ∧ E2(t).

Event algebras contain not only the aforementioned straightforward basic connectives, but
also additional operators. A bunch of event algebras have been defined that provide also e.g.
“negated events” in the style that “when E1 happened, and then E3 but not E2 in between”,
“periodic” and “cumulative” events, e.g., in the SNOOP event algebra [25] of the “Sentinel”
active database system. Richer forms of composite events have also been described for XChange
(see Chapter 2). [8] considers a special kind of composite events on XML data that are formed
by XML update operation events, dealing e.g. with updates concerning different subtrees of an
element.

Example 3.11 (Cumulative Event, [25]) A “cumulative aperiodic event”

A∗(E1, E2, E3)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E3(t)

occurs with E3 and reports the collected occurrences of E2 in the meantime. Thus, its detection
is defined as “if E1 occurs, then for each occurrence of an instance of E2, collect it, and when
E3 occurs, report all collected occurrences (in order to do something)”.

A cumulative periodic event can be used for “after the end of a month, send an account
statement with all entries of this month”:

E(Acct) :=
A∗(first of month(m), (debit(Acct,Am)∇deposit(Acct,Am)),first of month(m+1))

where the event occurs with first of next month. The “result” of the expression is the list of all
contributing events (cf. discussion in Section 3.4 and below).

XML Markup for the Event Component. The <eca:event> elements contain elements
according to event algebra languages. Every subexpression is associated by its namespace with
the appropriate components of the language – i.e., an event algebra or atomic expressions from
underlying domains. In general, if an event algebra supports an XML markup, it will define
its own ways for dealing with atomic events and variables. We propose the markup elements
described below for a unified approach.

Example 3.12 The cumulative event from Example 3.6 (there given as a regular expression)
can be given in SNOOP as

A∗(reg open(Subj), register(Subj, Stud), reg close(Subj)) .

The following markup binds the complete sequence to regseq and the subject to Subj:
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<eca:rule ... >

<eca:variable name=“Subj”/>

<eca:variable name=“regseq”>

<eca:event xmlns:xmlsnoop=“http://xmlsnoop.nop”>

<xmlsnoop:cumulative>

<xmlsnoop:atomic>

<uni:reg open>

<xmlsnoop:variable name=“Subj”
lang=“xpath” select=“./@Subject” />

</uni:reg open>

</xmlsnoop:atomic>

<xmlsnoop:atomic>

<uni:register subject=“$Subj”/>

</xmlsnoop:atomic>

<xmlsnoop:atomic>

<uni:reg close subject=“$Subj”/>

</xmlsnoop:atomic>

</xmlsnoop:cumulative>

</eca:event>

</eca:variable>

:
</eca:rule>

Note the similarity to XChange’s “Event queries” that also work on an XML markup of events,
but which is restricted to its own set of event combinators, whereas the above mechanism is
even parametric in the event combinators – each event algebra may implement its own event
detection using this markup proposal.

Example 3.13 The following specifies, in an illustrative, non-normative (XML) markup, an
event for (very simplified) detection of a late train. It is a composite event in the SNOOP
(algebraic) language, and uses atomic events from messaging and the domain of train travels.
The detection of late trains is made either by being warned by mail the travel agency, or by
the occurrence of a domain-specific event signaling changes in a given (pre-defined) source with
expected arrival times:

When a customer registers the rule, the values for the variables myTrain and myTravelAgent
have to be supplied.

<eca:rule xmlns:msg=“http://www.messages.msg/messages”
xmlns:mytravel=“http://www.trains.org”>

<eca:event xmlns:xmlsnoop=“http://xmlsnoop.nop”>

<xmlsnoop:disjunctive>

<xmlsnoop:atomic>

<msg:receive-message sender=“$myTravelAgent”>

<msg:content>

<delayed train=“$myTrain”>

<xmlsnoop:variable name=“newArrival”
lang=“xpath” select=“./@arrivalTime”/>

</xmlsnoop:variable>

</delayed/>
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</msg:content>

</msg:receive-message>

</xmlsnoop:atomic>

<xmlsnoop:atomic>

<xmlsnoop:cond lang=“xpath” test=“$event/*/name()=’mytravel:changeTime’“/>

<xmlsnoop:cond lang=“xpath” test=“$event/*/@trainId=$myTrain“/>

<xmlsnoop:variable name=“newArrival”
lang=“xpath” select=“$event/*/@newTime”/>

</xmlsnoop:atomic>

</xmlsnoop:disjunctive>

</eca:event>

<eca:action> an action specification in any markup </eca:action>

</eca:rule>

The ECA rule engine registers the whole event component at the SNOOP service (identified
by the URL of the xmlsnoop namespace to which the outer element of the event component
refers). This composite event is an “or” of two atomic events: the first one is receiving a
message (marked-up in XML) with an attribute sender which is equal to the value of the variable
myTravelAgent, and with a content with a delayed element with an attribute train coinciding with
that of myTrain, using the xml-pattern matching mechanism. If so, the variable newArrival is
bound to the value of the attribute arrivalTime of that delayed element. The second one is a
domain-specific event travel:changeTime (that occurs “somewhere in the Web” and has to be
detected by Semantic Web mechanisms). It is implicitly bound to $event. The details are then
checked by XPath expressions against $event: If its attribute trainId equals the value of the
variable myTrain, then newArrival is bound to the value of the newTime attribute of the event.

Note that here the event sequence itself (that is returned by the SNOOP event detection
service) is not bound to a variable – all relevant information can be extracted without this.

Next, we show how a certain event algebra service can e.g. extend the above concepts. In
Example 3.12, we illustrated SNOOP’s cumulative event. For collecting all names, the event
sequence has been kept in a variable regseq and was analyzed later by a query against regseq
as illustrated in Example 3.12. An event algebra can e.g. allow to extract a list immediately:

Example 3.14 Consider again the event of Example 3.11. Atomic events are (i) temporal
events that are assumed to be provided/signalled by some service, e.g. as

<temporal:first-of-month month=“5” year=“2005”/>

and (ii) events of the banking application, provided as e.g.,

<banking:deposit account=“1234”>

<amount>200</amount>

</banking:deposit>

The rule is registered (e.g. by a customer) for a given value of $account.

<eca:rule xmlns:banking=“http://www.banking.nop”
xmlns:temporal=“http://www.some.webservice”>

<eca:event xmlns:xmlsnoop=“http://xmlsnoop.nop”>

<xmlsnoop:cumulative-event cumulative-collect=“list”>

<xmlsnoop:cumulative-start>

<xmlsnoop:atomic>

<temporal:first-of-month>
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<eca:variable name=“month” lang=“xpath” select=“$event/*/@month”/>

</temporal:first-of-month>

</xmlsnoop:atomic>

</xmlsnoop:cumulative-start>

<xmlsnoop:cumulative-collect>

<xmlsnoop:disjunctive>

<xmlsnoop:atomic> <banking:debit account=“$account”/>

<xmlsnoop:variable name=“list” lang=“xpath” select=“$event”/>

</xmlsnoop:atomic>

<xmlsnoop:atomic> <banking:deposit account=“$account”/>

<xmlsnoop:variable name=“list” lang=“xpath” select=“$event”/>

</xmlsnoop:atomic>

</xmlsnoop:disjunctive>

</xmlsnoop:cumulative-collect>

<xmlsnoop:cumulative-end>

<xmlsnoop:atomic>

<temporal:first-of-month month=“$month+1”/>

</xmlsnoop:atomic>

</xmlsnoop:cumulative-end>

</xmlsnoop:cumulative-event>

</eca:event>

:
</eca:rule>

Note that here we assume that SNOOP provides the possibility to define the variable list to be
cumulative, i.e., for each

<xmlsnoop:variable name=“list” select=“$event”/>,

the event (as debit/deposit XML element) is appended.
For this, the internal event detection mechanism is required to assign the variable list several

times in an incremental way (such things are allowed by the framework; it is only required that
the evaluation returns variable bindings). In an XML setting, the “list” should just be a sequence
of nodes, as e.g. generated by an XQuery let statement.

Input to the Event Detection Engine.

For each event algebra to be used in this framework, an event detection engine is required, e.g.,
as a Web Service that provides the following functionality (see Section 3.7 for considerations
on the architecture):

• register an event description as an algebra expression using atomic events from application
domains,

• optionally values of already bound variables (by the rule, or when different event languages
are used in a tree),

• atomic events – either they are delivered to the detection engine, or it must get them from
“somewhere”.

In classical databases, for each event, the form of the event (an operation on a tuple) and
the schema of their information was clear (e.g., a student registration number); whereas in
the Semantic Web, this can be more flexible. On the other hand, with XML and RDF, there
are two flexible data formats at hand that allow for representing this information.
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Matching of Atomic Events.

The matching of atomic events with the patterns specified by <eca:atomic-event> elements is
not specific to an event algebra. This matching can either be implemented by the algebra
engine, by the ECA engine (which also relies on such functionality in case of rules whose event
component is an atomic event), by the domain services, or by separate services.

Detection of Composite Events.

The internals of the event detection engine are then concerned with implementing the semantics
of the event combinators, which can be done in different ways:

• Operators as Classes – (cf. RuleCore, Appendix A),

• Tree and event queries – (cf. SNOOP [25], XChange, Chapter 2),

• Automata and Petri Nets – ODE and SAMOS
(here, also a representation of automata states in XML and transformations by XSLT can
be used),

• RDF: describe how an event description transforms into another upon an atomic event. This
semantic solution would require an ontology of event combinators, but allows then for a very
high-level specification of rules.

Existing (sub)languages.

Especially, existing tools can be employed in a service-oriented architecture:

• XChange’s event query mechanism (cf. Chapter 2). Then, the event component is e.g.
marked up by

<eca:rule xmlns:banking=“http://www.banking.nop”
xmlns:temporal=“http://www.some.webservice”>

<eca:event xmlns:xchange=“http://xcerpt.org/xchange”>

<!-- xchange fragment in opaque or xml-markup form -->

</eca:event>

:
</eca:rule>

• RuleCore (cf. Appendix A) is an ECA system that provides an event detection component
where new operators can be added by via appropriate classes. Then, RuleCore can be used
to implement and experiment with arbitrary event algebras.

3.6.2 Queries in ECA Rules for the Web

Queries are stated in query languages, like XQuery (where an XML markup proposal has been
presented in [78]), F-Logic, RDFQL, XPathLog, or Xcerpt. Note that queries that bind (join)
variables can already be used for restricting the results. Queries that are only concerned with
the contents a certain database node can use the query language of this node, often in an opaque
way.

Deeper work in the direction of modelling query languages for the Web also exists, e.g., in
[72] where a UML modelling of the language Xcerpt is shown.
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3.6.3 Tests in ECA Rules for the Web

Tests can be expressed formulas in any logic, e.g., First-Order logic (where an XML markup
is given in [11]), F-Logic, XPath-Logic, or XQuery or Xcerpt (note that in these languages,
expressions that have an empty result also yield the truth value “false”).

3.6.4 The Action Component

Composite actions can e.g. be described by process algebras like CCS or CSP (which makes also
model checking available for verification). The composers here are e.g. (in CCS) + denoting
alternative composition, · denoting sequential composition, × denoting parallel processing, and
a fixpoint (iteration) composer. The markup of such terms is again straightforward. Variables
that are communicated to the action component are accessed as described above for the event
component (and also the query component).

Additional semantics depends on the action language. Possible features are

• iteration over (collection- or set-valued) variables,

• binding and quantification of local variables,

• transactions, etc.

The action language is the most independent one since it only receives variable bindings (which
can be mapped by a wrapper to any language interface), but does not return anything. The
structure and markup of the action component becomes relevant when reasoning about a system
should be done.

Existing (sub)languages.

Again, existing languages and tools can be employed in a service-oriented architecture as de-
scribed in Section 3.7:

• complex updates as provided by XChange,

• calling arbitrary Web Services (by sending SOAP messages).

3.7 Architecture: Languages and Processors as Resources

Rules on the semantic level, i.e., RDF or OWL, lift ECA functionality wrt. two (independent)
aspects: first, the events, conditions and actions refer to the ontology level as described above.
On an even higher level, The above rule ontology and event, condition, and action subontologies
regards rules themselves as objects of the Semantic Web. Together together with the languages
and their processors, this leads directly to a resource-based approach: every rule, rule compo-
nent, event, subevent etc. becomes a resource, which is related to a language which in turn is
related to other resources.

In this section, we propose a Web-Service-based architecture where each language is asso-
ciated with a Web Service that implements the language. For being integrated into the ECA
framework, the Web services must only implement the communication by variable bindings as
discussed in Section 3.4.
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3.7.1 Rules and Rule Components as Resources

Every rule is then interpreted as a network of RDF resources of the contributing ontologies
(ECA, event algebras, applications etc.). Figure 3.14 shows the rule and the event component
given in Example 3.14, combining two application-independent language ontologies:

• the ECA ontology (gray, doublelined),

• the SNOOP ontology of the event algebra: there, the semantics of the SNOOP operators
must be available (gray).

and two application-dependent ontologies:

• the banking application-level ontology: there, the semantics of the atomic events defined in
this ontology must be available (diagonally crosshatched).

• the temporal ontology: there, information about temporal events is available (crosshatched).

This point of view leads to the above service-oriented distributed architecture by associating the
“responsibility” for handling the respective resources by appropriate services. Additionally, e.g.
collections of (sub)events as well as complete (application-specific) rule bases can be designed,
published by associating them with a URI, and reused.

A Modified Rule using a Derived Event. The banking ontology could define a derived
booking event as the disjunction of debit and deposit. The rule could then directly use this
derived event. In the ontology diagram, the only difference would be that the booking node
would be //banking/events#booking and appear diagonally crosshatched (and its semantical
information must be kept at the banking resource – but in this case it can also be used in
specifications that do not know the SNOOP language).

3.7.2 Languages as Resources

The languages of the different types shown in Figure 3.9 (in the above example: SNOOP, bank-
ing, and temporal domain) are associated with resources by associating them with namespaces.
The current W3C proposals do not specify what is actually behind these URIs. The following
resources about languages would e.g. be reasonable:

• XML world (e.g., for languages like XHTML, GML (a Markup language for Geography), or
the Mondial language): a DTD or XML Schema.

• programming languages marked up in XML (e.g., XSLT): a processor that interprets the
language (e.g., a Web Service where one can send an XSLT document and an XML instance
and gets back the result).

• Markup languages for application domains (e.g., Mondial, travelling, or banking): an RD-
F/RDFS or OWL description about the notions of that language. For languages that include
events and action, these should also be specified there.

• Languages of application domains (e.g., travelling, or banking): specifications and services
that provide (static and dynamic) information, e.g., portals, information brokers and event
brokers.

For the basic implementation of the framework, languages must be associated with further
resources of the respective ontologies that are used when actually processing rules. Depending
on the type of ontology (e.g., language or application), the resources must provide the following
functionality:
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//local/rules#monthly-stat //eca#rule
rdf:type

//local/events#raise-monthly-stat //snoop#cumul-ev

has-eventcomp
rdf:type

//eca#event

//eca#compositerdf:subclass

rdf:subclass

//snoop/op#cumul //snoop#disj-ev

//temporal/events#firstofmonth

//eca#ev-op //local/events#booking

snoop:has-operator

rdf:type

snoop:has-start
snoop:has-end

snoop:collect

rdf:type

rdf:subclass

//eca#atomicevent //snoop/op#disj

snoop:has-operatorrdf:type
rdf:type

//banking#atomicevent

//banking/events#debit //banking/events#deposit

snoop:has-disj
snoop:has-disj

rdf:type

rdf:type

rdf:subclass

rdf:subclass

Figure 3.14: Example Rule and Event Component as Resources

• For composite event languages: a service where the composite event can be registered, and
that, when informed about relevant events, runs the detection and informs the client about
success (transferring the resulting variable bindings). Another possibility is a downloadable
class that implements the detection algorithm and provides a suitable interface. Optionally,
a formal semantics could be given using a meta-formalism that allows to derive a detection
algorithm and to reason about.

• For queries, often the respective domain services provide also querying functionality. Al-
ternatively, standalone query services (e.g., a saxon-based service for evaluation of XQuery
queries on the Web) can be used, or queries that are needed frequently can even be registered
by a continuous query service.

• Analogously for action languages. Often (at least in the early stage) this will be simple
updates or Web Service calls.

The application domains are supported by suitable domain services that can be queried, that
raise events and that are able to execute actions.
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• In many cases (e.g., banking domain) the “client” knows which “server” (the bank where
the account is located) provides the relevant atomic events, and where he wants the actions
to be executed.

• For some application areas, there are “master services” that feel “responsible” for the on-
tology. These should also provide notification services for atomic events. In either case,
derived events (that can locally use another event algebra) have to be defined there (since
their definition conceptually also belongs to the ontology, this is not surprising). In the same
way, a service for execution of atomic actions and the definition of composite actions (using
any action language) can be provided.

• for many application areas (such as stocks or travel) there will be multiple services that
support it. Then, either the client cann choose which one is used, or the intermediate
services (ECA and the respective sublanguage) know a suitable partner.

• Application-independent domains are either supported by the client nodes themselves (such
as messaging), or there are dedicated services (e.g. calendar services in the temporal domain).

In the next section, two architectural models are presented how such services can communicate
for implementing this framework.

3.7.3 Architecture and Processing: Cooperation between Resources

Rules can be evaluated locally at the nodes where they are stored, or they can be registered
at some rule evaluation service. The rule evaluation engine –both local or as a service– then
manages the actual handling of rules based on the language URI references. As described
above, every subconcept (i.e., events, conditions, and actions) carries the information of the
actual language it uses in its xmlns:namespace URI attribute (note that this even allows for
nested use of operations of different event algebras). Assume the case where the language
processors are available at these URIs as a Web Service. For event detection (and analogously,
execution of composite actions), at least two resources (or services) must cooperate: Event
detection splits into the event algebra part (that is detected algorithmically by a resource
representing a language ontology, e.g., SNOOP) and the application part that provides atomic
events (detected separately by a resource representing an application ontology). Thus, the
algebra processor must be notified about the atomic actions. This can be done in several ways:

Straightforward: The “straightforward” way is that the client C organizes the communi-
cation between the event generator(s) and the event algebra processor (see Figure 3.15): C
registers rules to be “supervised” at a rule execution service R. For handling the event com-
ponent, R reads the language URI of the event component, and registers the event component
at the appropriate event detection service S (note that a rule service that evaluates rules with
events in different languages can employ several event detection mechanisms).

During runtime, the client C forwards all received events to R, that in turn forwards them
to all event detection engines where it has registered event specifications for C, amongst them,
S. S is “application-unaware” and just implements the semantics of the event combinators for
the incoming, non-interpreted events. In case that a (composite) event is eventually detected by
S, it is signalled together with its result parameters to R. R takes the variables, and evaluates
the query&test (analogously, based on the respective languages), and finally executes the action
(or submits the execution order to a suitable service).
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E detected with params

... evaluation of C with params

... execution of A with params

Figure 3.15: Straightforward Communication x
(UML-style sequence diagram, temporal axis downwards)

Application-centered: The client submits its composite event specification to a service that
is aware of all relevant events in the application domain. This service then employs an appro-
priate event detection service by registering the event specification, and informing it about the
atomic events (e.g., “@bank: please trace the following composite event in language L on my
account” (and employ a suitable event detection service for L)).

Language-centered: When a rule or an event specification is submitted for registration,
this has to be accompanied by information which resource(s) provide the atomic events (e.g.,
“@snoop: my bank is at uri, please supervise my account and tell me if a composite event ev
occurs), or the detection service even has to find appropriate event sources (by the namespaces
of the atomic events). The detection service then contacts them directly. This proceeding
is e.g. appropriate for booking travels where the client is in general not aware of all relevant
events (e.g., “@snoop: you know better than me who is well-informed about events relevant
for traveling, please detect the event evtravel for me”), as illustrated in Figure 3.16: A client
registers a rule (in the travel domain) at R (Step 1.1). R again submits the event component to
the appropriate event detection service S ((1.2), here: snoop). Snoop looks at the namespaces
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of the atomic events and sees that the travel ontology is relevant. The snoop service contacts a
travel event broker (1.3) who keeps it informed (2.2) about atomic events (e.g., happening at
Lufthansa (2.1a) and SNCF (2.1b)). Only after detection of the registered composite event, S
submits the result to R (3) that then evaluates the Q&C component, and probably executes
some actions (4.1, 4.2).
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Event
Detection S
snoop:

ECA
Engine R
eca:

Event
Broker
travel:

Event
Detection
bla:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register rule
eca: travel: snoop:

1.2: register event
travel: snoop:

1.3: register me
travel:

2.1a∗: atomic
events
travel:

2.1b∗: atomic
events
travel:

2.2∗: atomic
events
travel:

3: detected
parameters

4.1: updates
(here:
bookings)

travel:

4.2: messages
(here:
confirm)

travel:

Figure 3.16: Language-Centered Communication

3.8 Normal Form, Evaluation and Optimization [Prelim-
inary]

In Section 3.3, we have given a Normal Form for expressing ECA rules in the Semantic Web
in the general case. Evaluation, optimiziations, and special cases can deviate from this normal
form as long as the original semantics is preserved.

Strategic Optimization

As discussed in Section 3.5.1, there may be cases where several instances of the same event
are detected simultaneously. in this case, the event detection component is allowed either to
return multiple singleton answers, or a set containing multiple answers. In the latter case, the
“correct” semantics would be that the ECA engine immediately splits the result set and fires
one instance of the rule for each occurrence. Nevertheless, the declarative semantics allows to
handle all instances in parallel, only splitting them for transactional reasons when entering the
action component.
When considering to handle the query “for a set a time” or “for one instance a time”,

• In case that multiple event occurrences can be handled in parallel, it is more efficient to
evaluate the query part once, using free variables in all positions (or binding possible values
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in an XQuery let style for restricting the result set), and afterwards join the result with the
original tuples and then splitting the execution.

• Sometimes, it is more efficient (or even the only possible way) to evaluate the query compo-
nent individually for each instance of the rule, e.g. when the “query” is actually a functional
call that requires an input parameter (e.g., obtaining the rates for some hotels from a Web
Service). Nevertheless, instead of splitting the complete rule, here it would be sufficient to
evaluate the query for each tuple, and put the results together.

Here, a new “style” of querying could be useful which has –up to now– only be used inside
algebraic query evaluation: evaluate a query with an input set of tuples of variable bindings
as constraints.

Additionally, in the Web context, if evaluation of a query for some of the values may take longer
time (e.g., obtaining the rates for some hotels over the Web), separating the rule instances is
strongly recommended to go ahead as soon as possible.

These issues require deeper investigation (also in combination with other aspects).

Queries vs. Conditions

The distinction between queries and conditions is often a matter of taste. The main reason to
distinguish between the query and condition part were

• to allow for queries using different languages, that obtain information that is used both in
the condition and the action part, and

• separating the condition.

From the declarative point of view, it is preferable to have a very strict distinction (cf. Fig-
ure 3.6). Queries only serve for obtaining additional information, and the conditions serve for
restricting the execution; cf. SQL or OQL clauses of the form

SELECT ...

FROM (SFW-1 as A), (SFW-2 as B), ... , (SFW-n as X)

WHERE condition;

where in OQL, later SFW-clauses can even use the alias variables of earlier ones.
In contrast, in Logic Programming, every predicate can be seen as a subquery which, serves

for obtaining additional variables, and, by using join variables serves for restricting the set of
variable bindings. In this way, queries can also act as conditions, omitting the test component
completely. At least, parts of a query+condition that are concerned with the same database
can be evaluated more efficiently.

On the other hand, if the query and test components can be covered by using a single
language, this can be combined in the test component. For this, the test component must
interpret an empty result as “false” (which is implicit when using join variables).

Iterator-based vs. Materialized Answers

While the event component always returns a single answer that initializes the execution of a
rule, queries in general return multiple answers. Depending on the implementation, these are
returned all-at-a-time, or as an iterator that enumerates one answer after the other. In the
latter case, the firstb answers can already bereturned before all answers are computed, allowing
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for pipelining with later components. Such properties of languages (or, more exactly, individual
implementations) have to be described in the metadata. In case that an answer is given as an
iterator, subsequent steps can already be executed.

Algebraic Optimization

The structure and markup discussed above resulted in a normal form E-C-T-A and simple
communication by tuples of variable bindings (cf. Sections 3.3.2 and 3.4). For more efficient
evaluation, it is possible to deviate from this normal form, in the same way as e.g. algebraic
optimization in SQL. Where in SQL, a static expression is reorganized, the evaluation of rules
includes a temporal component. Here, the usual strategy of “pushing selections down” can be
applied in such rules as “evaluate comditions as soon as possible”:

• evaluating simple conditions concerning only with information obtained from the events
already after the event detection,

• evaluating simple conditions concerning only with information obtained from the events
already during the event detection,

• mixing query and test parts, testing as soon as the required information has been collected.

Example 3.15 Often, events are e.g., of the form “when an account goes below zero” which
includes implicitly already a condition: “if there is an update of an account where the old value
was > 0 and the new one is < 0”. More complex conditions would e.g. be “if there is a debit
on an account that runs below zero and the person has no regular income ...”. Where to draw
the border between “event” and “condition”?

The above normal form specifies the following:

• the event component only binds variables depending on the type of the event (e.g., “debit”),
the account number and the amount, but does not use any constants for comparisons (“below
zero”).

• Any check of conditions is part of the condition component.

An obvious optimization is to check if the account goes below zero already in an on-the-fly check
during the event detection phase.

Strategic Optimization

The straightforward strategy evaluates the query part for each firing of a rule. In case that
different events fire instances of the same rule, or that queries are used in different rules (recall
that queries and also subqueries are resources that have an identifier and can be reused),
synergies between evaluation of queries for different rules and instances can be exploited.

Here, strategies investigated in the areas of query rewriting and query containment, answer
caching, continuous query services etc. can be applied.

Inter-rule optimization is expected to be especially promising in the service-oriented archi-
tecture, where related tasks are concentrated on dedicated services. The rule execution, event
detection, and also event and information brokering services can also make use of the above
strategies.
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Summary

Optimization in the context of ECA rules using different languages raises a lot of issues con-
cerning the analysis of queries and reasoning about them both on the syntactical, algebraic and
logical level, and on the semantical level.

3.9 Implementation Perspectives

As pointed out in the previous section about global architectures, the implementation of the
framework consists of separate modules which can also exist in different instances, even in
different implementations, sharing common interfaces as defined above. The interfaces can be
refined during the development with the reference prototype.

• (language-independent) ECA engine,

• (language-independent) atomic event matching engine,

• composite event detection engines,

• query language engines, optionally directly coupled with a database,

• action language engines,

• additional services like event brokers and domain information brokers.

The prototype will be implemented incrementally. There exist already the following potential
component services that can potentially be integrated.

3.9.1 ECA engine prototype

The ECA engine prototype implements the functionality described in Section 3.5: registration
of rules, breaking them into parts, registering the event part at an appropriate service, receiving
answers (variable bindings), invoking query services, evaluating conditions and invoking action
services. Depending on the intended architecture, also event forwarding is required. A first
version of the ECA engine version can thus be developed by simulating the other services.

3.9.2 Event Detection

The interface functionality can be defined already without any event algebra, just using atomic
events. Services for composite event detection according to the general interfaces will be devel-
oped separately. Here, the event detection of XChange and of RuleCore (see Appendix A) are
directly available in the project.

XChange. XChange is currently closely connected with the Xcerpt system. Here, a wrapper
that returns variable bindings instead of immediately submitting them to Xcerpt is required.
A first version can be a simple Xcerpt rule that sends a message that contains simply the XML
serialization of the variable bindings. For this XChange/Xcerpt must be wrapped in a Web
Service. Since XChange is still under implementation and redesign, it is appropriate to wait
until a stable version is available and supported.

RuleCore. The RuleCore event detection module returns variable bindings. Wrapping it as
a Web Service makes it immediately integrable.
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3.9.3 Queries and Updates

Here, several alternatives already exist that only need to be wrapped according to the general
interface. Here, pure language implementations for stating queries on independent XML in-
stances have to be distinguished from XML databases. In most cases, opaque query components
will be used since there are not yet query languages using XML-markup.

Saxon. Saxon [41] is an XQuery implementation that allows to state queries against XML
sources on the Web. Wrapping it as a Web Service makes it immediately integrable. Saxon
does not deal with updates.

Xcerpt. Xcerpt is the XML query language developed by REWERSE WG I4. It allows to
state queries against XML sources on the Web. Wrapping it as a Web Service makes it immedi-
ately integrable. A database implementation and a lifting to RDF are planned. Xcerpt supports
updates of documents via XChange’s update actions. Updates are currently implemented by
translating them into the definition of a view and then replacing the original document by this
view. Thus, triggers on the XML level as described in Section 3.2.1 are currently not supported.

Commercial XML-enabled and XML database systems. With Oracle, IBM DB2, MS
SQL Server etc., most classical relational systems habe been XML-enabled in the last years.
For queries, the SQLX standard [31] is supported that embeds XPath into SQL. Updates are
implemented via transformations; thus triggers on the XML level as described in Section 3.2.1
are currently not supported.

eXist. eXist [32] is an open-source XML database that runs as a Web service. For queries,
XQuery is supported; also XSLT is supported for transformations. Updates are possible via
XUpdate and the XQuery+Update extension in the style of [70, 44]. The REWERSE partici-
pant at Göttingen develops extensions to eXist since 2003 in another project; thus an extension
with internal triggers reacting upon updates is possible.

Jena. Jena is an open-source framework that provides functionality as an RDF query lan-
guage; also OWL reasoners can be integrated. Updates are possible; triggers on the RDF
data level as described in Section 3.2.1 are not yet supported (but can be added since it is an
open-source framework).

3.9.4 Actions

The first prototype will support the following “typical” actions that can be executed immedi-
ately by the ECA service:

• raising of events and sending them to appropriate services,

• database updates (e.g., XUpdate messages to eXist),

• Web Service calls.

For an overview of database update functionality in the potential component systems, see above.
Separately, services for implementing intensional actions that are reduced via ACA rules, will
be developed.
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3.9.5 Requirements and Evaluation

Concerning the query and update functionality, it necessary that the underlying data can be
updated and that triggers on the database level are available for getting a “feedback” from
actions to events. High-level events can then be derived.

According to the above evaluation, we envisage to use the following components when having
a basic ECA module:

• an event detection service based on XChange, RuleCore, or an own tool,

• an eXist database as underlying local database that can be updated and provides database-
level triggers,

• Jena (extended with database triggers) as a similar testbed on the RDF/OWL level,

• saxon as an additional pure querying service (for remote data sources that are not updated
by us).

• After consultations with the Xcerpt/XChange developers at PPSWR 2005, we came to the
conclusion that after further development of the Xcerpt/XChange language family in course
of REWERSE I4, Xcerpt-XML, Xcerpt-RDF and XChange will be integrated later, using the
experiences collected until then. Immediate extensions and adaptations to Xcerpt/XChange,
and then continuous adaptation would bind too manpower.

3.10 Relationship with Existing Languages

There are several proposals for “Reactive or ECA Languages for the Web”. Most of these, e.g.
see [2] for a discussion, are very restricted trigger-like languages that operate on a local XML
or RDF database. They are (i) covered by our approach (at least as opaque rules, but can in
general also be marked up explicitly in it), and (ii) used in our approach on the lowest level
for catching data-oriented events. The existing proposals can be grouped into three classes,
corresponding to the discussion in Sections 3.1.2 and 3.2:

• Local triggers where E, C, and A component use only the local database (like for SQL
triggers) – these are not languages for the Web, but only for XML or RDF data,

• “Web-Level triggers” whose E-component is a data-level event in the local database, the
condition component uses the local database and possibly also remote ones, and the action
part can include arbitrary actions on the Web level (sending messages, SOAP),

• ECA rules where the event component uses any events that are known at the node, and the
condition and action component are arbitrary.

3.10.1 Triggers on XML Data

The existing proposals for XML data inherit much from SQL database triggers. Especially, all
of them react only on atomic database update events.

“Active Rules for XML”, [13].

The proposal for “Active Rules for XML” [13], transfers the “trigger” idea to XML. In contrast
to similar proposals that use the common plain ON ... WHEN ...DO ... syntax, this proposal
is based on an XML markup. The E, C, and A sublanguages are fixed: The event component
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allows for atomic events in the local XML database (monitoring nodes specified by XPath
expressions) that provide the $old and $new values of the updated data items. The condition
component then works on this information and on data from the local database, using XQuery.
In the action component, SOAP methods can be invoked.

It is worth noting that the design of the condition and action component deviates from the
SQL style, in the same direction as the query-test-action combination in our framework: since
the action component’s SOAP invocation acts remote, the introduction of a separate local query
component was necessary that has been done here by extending the condition component: The
condition component consists of an XQuery query that binds variables in a FOR clause, tests
in the WHERE, and then (for each successful binding) “jumps” to the action component that
invokes a SOAP method using the variable bindings of the condition component.

Active X-Query.

The proposal of Active XQuery [12] proposes triggers for XQuery in the style of SQL triggers:

CREATE TRIGGER name

[WITH PRIORITY number]

(BEFORE|AFTER) (INSERT|DELETE|REPLACE|RENAME)+ OF XPathExpression+

[FOR EACH (NODE|STATEMENT)]

[XQuery-LET-clause]

[WHEN XQuery-WHERE-clause]

DO (XQuery-UpdateOP|ExternalOp)

The trigger is associated with an XML resource and reacts after or before changes in the XML
data, with granularities as for SQL. In the same way as in our framework, a query component
that binds variables (LET clause to bind variables) has been introduced before the evaluation
of the condition. The actions are XQuery-update operations, or external actions.

E-C-A for XML [5].

The proposal for an “ECA Language for XML” [5] transfers the “trigger” idea to XML, using
the common

ON event IF condition DO actions

syntax. The E, C, and A sublanguages are fixed: The event component is restricted to inser-
tions or deletions of nodes nodes in the local XML database (monitoring nodes specified by
simple XPath expressions); changes are bound to a variable $delta. The condition and action
components are evaluated separately for each instantiation of $delta. The condition allows
simple XPath expressions (that return true/false – empty/nonempty) connected by boolean
operators and cannot bind extra variables. The action component is a sequence of updates of
local XML data (insertion/deletion of XML nodes).

Here, the condition component extends the SQL only slightly: the condition is not restricted
to the information obtained in the events, but can use simple path expressions to use additional
information from the local database in a restricted way. The action component is weaker (but
cleaner) than in SQL since it does not allow “program fragments”, but only updates.

This proposal is the most restricted one that is discussed in the comparison since it is
completely restricted to the local database.
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3.10.2 Triggers on RDF Data

The trigger concept from [5] has been extended to RDF data in [58]. The E, C, and A sub-
languages are again fixed: events are inserting or deleting an instance of a class or a triple, or
updating a triple; syntax; changes are bound to a variable $delta. The condition is given by
RDFTL’s path expressions (path expressions on RDF graphs, with filters) connected by boolean
operators and cannot bind extra variables. The action component is a sequence of local updates
of RDF data where updates can be inserting or deleting of a resource, or inserting, deleting or
updating an arc. This proposal is also completely restricted to the local database.

3.10.3 ECA Rules on XML

The XChange language has been described in Section 2. The E, C, and A parts are also
fixed, using languages that are closely related to Xcerpt [20]. Events are represented as XML
instances, that can be communicated and queried (XChange event messages). Composite events
are supported, using “event queries” (Xcerpt query language extended by operators similar to
an event algebra). The conditions are Xcerpt queries that collect variable bindings. Actions are
complex updates of Web data (XML or RDF), using an update extension of Xcerpt. The action
component can be executed as transaction. The language uses logical variables to communicate
values between the components.

3.10.4 ECA Rules in XML

RuleCore (cf. Appendix A) is a modular system for executing active rules. The ECA rules
are marked up in XML (rCML – ruleCore Markup Language) and provide a clean dictinstion
between event, conditon, and action part. The focus of ruleCore are the ECA engine itself, and
its event detection component; the query and action component are relatively simple, but can
be replaced by more sophisticated ones. The detection component is also extensible since new
operators can be added by via appropriate classes. In this aspect, ruleCore provides already a
simple form of the prospective framework.

3.10.5 Coverage of our Framework

Trigger-Style languages. The trigger-style languages discussed above could find applica-
tions as low-level rules located inside the databases

• inside the local database, and

• raising higher-level events based on XML update events.

They can be embedded into the framework either as opaque rules (which is reasonable for rules
that are covered inside the database), or by defining a mapping from ECA-ML to their native
languages. Since they all use primitive events, standard query languages and standard update
concepts or SOAP, the embedding into the component markup is straightforward. There are no
components provided by them that could be added to the service-based architecture proposed
in Section 3.7.

Xcerpt and XChange. The XChange/Xcerpt ECA language consists of separate parts that
provide reasonable own semantics and are based on communicating variable bindings:
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• event queries, closely related to event algebras (and with the same functionality; returning
a variable bindings and a sequence of events that materialized a given pattern,

• a query and test language (Xcerpt), returning variable bindings,

• combinators for composite actions.

Thus, every XChange rule can be mapped easily to the ECA-ML markup using opaque com-
ponents. Furthermore, given an XML markup of the above sublanguages, rules can be marked
up in XML completely. The suitablility of Xcerpt/XChange as component languages in the
framework has been analyzed in Section 3.9.

RuleCore. As already mentioned above, with its modular design, ruleCore provides already a
simple form of the prospective framework. On the other hand, the event detection component
with the current event algebra can also be employed in an event detection node in in our
framework.
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Appendix A

ruleCore and the ruleCore
Markup Language (rCML)

In this chapter, that has been done in collaboration with Marco Seiriö (marco@analog.se) from
Analog Software, we present an overview of ruleCore1 [62] and the ruleCore Markup Language
(rCML)2, a language that is used for specification of events and rules in ruleCore. Moreover, for
illustration purposes, we show how to encode in rCML a selection of use cases from deliverable [3]
that were already presented above for XChange. We have also experimented with ruleCore and
rCML for implementing Use Case 6.4.2 (Mirroring, Actuality, and Consistency of data in SCOP
and PDB), i.e., a bioinformatics use case previously reported in [3]. A first implementation of
the bioinformatics use case is expected to be available later this year, and is not further detailed
in this report.

A.1 A brief overview of ruleCore

In this Section we present an overview of the rule engine ruleCore [62]. RuleCore is an active
middleware implemented in Python, Qt, XML, and it supports ECA rules and event monitoring
in heterogeneous environments. For example, a broker system can be used to integrate hetero-
geneous systems, and ruleCore can be attached to such a broker system and react to events
that are sent through the broker.

A.1.1 Architecture

The ruleCore engine is built around a concept of loosely coupled components and is internally
event driven. Components communicate indirectly using events and the publish/subscribe event
passing model. The functionality of the ECA rules are provided by a number of components
working in concert, where each component provides the functionality in a well defined small
area. As the components are not aware of the recipient of the event they publish, it is easy
to reconfigure the engine to experiment with other models besides the more well known ECA
model. For example, one could insert an additional processing step between any of the event,

1ruleCore is a registered trademark of MS Analog Software kb
2rCML is a trademark of MS Analog Software kb

197



condition or action steps. All internal and external events are stored in a relational database
(PostgreSQL). Storing the event occurrences in a database implies that traditional database
tools can be used for off-line analysis, visualization, simulation and reporting.

Figure A.1: ruleCore architecture

At the core of ruleCore lies a component framework, see Figure A.1. The framework provides
services for loading, initializing, starting and stopping components. It also handles persistence
for the components and manages automatic crash recovery for the engine.

Components that receive events contain a local worker thread that processes incoming
events. Processing of events are done asynchronously and in parallel in the different com-
ponents. The framework controls the starting and stopping of threads in order to provide for
an ordered and consistent startup and shutdown procedure. A service layer provides simple
services that are available for all components and the component framework itself. The services
of the service layer are always accessible as opposed to the services provided by the compo-
nents that must be loaded and initialized before usage. The service layer also provides for
encapsulation of external components such as databases.

The components that provide the functionality can broadly be divided into three groups.

• Input components are responsible for implementing support for a specific transport protocol
and accepting events through it. Currently support exists for receiving events with XML-
RPC, TCP/IP Sockets, SOAP, IBM WebSphere MQ, and TIBCO Rendezvous.

• Rule components provide the functionality of the rules. The rule manager, condition manager
and action manager components work together using event passing to implement the ECA
rule execution model.
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• Support components provide functionality that is directly or indirectly used by other com-
ponents. In this group we find components for event routing, event flow management,
persistent state management and management of the configuration of the engine.

A.1.2 Situation detector

In ruleCore terminology a composite event is called a situation. As the main focus of ruleCore
is situation detection, we describe the functionality of the situation detection component in
more detail.

The situation detector is implemented by using a number of detector nodes connected in a
tree structure called a detector tree (similarly to what have been described above for XChange).
Each ECA rule instance contains its own private instance of a detector tree, where each node
in the detector tree implements some type of event detection.

Each node in the detector tree decides locally what event(s) to subscribe to, for example,
a node might need to know when a specific point in time occurs and can then subscribe to a
timer event in order to be informed when this particular point in time occurs. When a node
detects a change it considers to be of interest it sends an event to its parent node.

When the root node in the detector tree receives an event signal, the situation is considered
detected and the rule instance is triggered for condition evaluation. The situation detector can
also detect if there is no possibility for detecting the situation in the future and will inform its
enclosing rule instance about this fact which will then delete itself.

A.2 The ruleCore Markup Language (rCML)

In this Section we describe the ruleCore Markup Language (rCML) that is used for specification
of events and rules in ruleCore. All described features of rCML have been implemented and
are supported by ruleCore. Encodings in rCML are in UTF-8. In order to ease comparisons
with the description of the general model above, in this section we also use the term composite
event rather than situation, as usually coined in ruleCore.

A.2.1 Specification of Event Types

Events are specified inside the <event-defs> element and each individual event type is described
with an <event-def> element. Two different event types are supported in rCML: basic events
and composite events.

A.2.1.1 Basic Events

A basic event in rCML is defined with an <event-def> element that has two attributes:

• type. The attribute type is set to basic for basic events.

• name. A unique value for the name attribute that identifies the event.

Event parameters are specified inside the sub element <parameters> and each individual
parameter is specified with a <parameter> element. Each <parameter> element has two
attributes:

• name. A unique value for the name attribute that identifies the parameter.
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• type. Specification of data type for the parameter. Three data types are supported:

1. string. A string in valid Unicode.

2. number. A decimal number according to ANSI standard X3.274-1996.

3. date. A date in ISO format, e.g., YYYY-MM-DD HH:MM:SS.

Below is an example of a basic event E1 with three parameters:

<event-defs>
<event-def type=’basic’ name=’E1’>

<parameters>
<parameter type=’string’ name=’parameter1’/>
<parameter type=’number’ name=’parameter2’/>
<parameter type=’date’ name=’parameter3’/>

</parameters>
</event-def>

</event-defs>

A.2.1.2 Composite Events

A simple composite event can be defined by using two basic events. However, more complex
composite events are defined by building composite events out of other composite events. A
composite event that contributes to the detection of another composite event is called a sub-
composite event.

A composite event in rCML is defined with an <event-def> element that has two attributes:

• type. The attribute type is set to composite for composite events.

• name. A unique value for the name attribute that identifies the event.

Each composite event defined in rCML has four sub elements:

• <detect-event>. The <detect-event> element specifies the event that is generated when
the composite event is detected.

• <no-detect-event>. The <no-detect-event> element specifies the event that is generated
when the composite event can never be detected. When a composite event cannot be de-
tected, e.g., a composite event using a time point that has already passed, the rule instance
is automatically deleted. The <no-detect-event> event is generated just prior to deletion of
the rule instance containing the composite event that never be detected.

• <event-selector> The <event-selector> element specifies a logical condition (or filter) for
the composite event (see section on specification of conditions for some further details).

• <detector>. The composite event detector itself is defined under the <detector> element.
The detector consists of a number of sub elements (event operators) that describe the com-
posite event.

Each sub element to the <detector> element is an event operator. The following event
operators, some very similar to the ones illustrated in the general framework, are supported:

• The conjunction, disjunction and sequence operators are supported, respectively, by the
<and>, <or> and <sequence> elements. Similar event operators are supported in SNOOP
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[25], Ode [37], and SAMOS [27], and illustrated in the general framework above. For in-
stance, the following example specifies that event E1 is followed by event E2, and that event
E3 occurs after E2:

<detector>
<sequence>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>

</sequence>
</detector>

• The prior sequence operator is supported by the <prior> element. The <prior> element
behaves like the <sequence> element when all of its sub events are basic events. However,
when the sub events are composite events the semantics of the composite event detection are
as follow. The terminating event in a sub-composite event must occur before the terminating
event in the following sub-composite event occurs. The semantics of the prior sequence
operator in rCML is similar to the semantics of the prior event operator as defined in Ode
[37]. The following example specifies that the detection of the sub-composite event CE1
must be completed before the terminating event in the following sub-composite event CE2
occurs:

<detector>
<prior>

<event-ref type=’event’>CE1</event-ref>
<event-ref type=’event’>CE2</event-ref>

</prior>
</detector>

• The relative sequence operator is supported by the <relative> element. The <relative>
element behaves like the <prior> and <sequence> element when all of its sub events are
basic events. The <relative> element requires that the terminating event in a sub-composite
event is detected before the detection of the initiating event in the following sub-composite
event. The semantics of the relative sequence operator in rCML is similar to the semantics
of the relative event operator as defined in Ode [37]. The following example specifies that
the terminating event of the sub-composite event CE1 must be detected before the detection
of the initiating event in the following sub-composite event CE2.

<detector>
<relative>

<event-ref type=’event’>CE1</event-ref>
<event-ref type=’event’>CE2</event-ref>

</relative>
</detector>

• The any operator is supported by the <any> element. A similar event operator is found in
SNOOP [25]. The any event operator will detect when any m events out of the n specified
sub events have occurred, where m ≤ n. The order of detection of the sub events is not
important. Thus, the semantics of the <any> element is similar to the <and> element, but
with the difference that the user can choose that only a limited number of the sub events
need to be detected. The following example specifies that the composite event is detected
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when two out of the three specified sub events E1, E2, or E3 have occurred.

<detector>
<any number=’2’>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>

</any>
</detector>

• The between operator is supported by the <between> element. The between event operator
uses one initiating event and one terminating event to detect the composite event. Any
number of events can occur between the initiating event and the terminating event. All
the events that occur between the initiating event and the terminating event can be stored
for condition evaluation. The between event operator is usable when the initiating and
terminating events of a composite event are known but not how many events that will occur
in between them. The following example specifies that the composite event is detected when
E1 is followed by zero or more events before event E2 occurs.

<detector>
<between>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>

</between>
</detector>

• The not operator is supported by the <not> element. The classical semantics of the NOT
operator when specifying composite events for ECA rules are that an event E is not detected
during an interval specified by two events. For example, a composite event NOT E3 (E1,E2)
is detected if event E3 is not detected between the detection of E1 and E2. Previous systems
[24, 27] have restricted the use of the NOT operator to: (i) a conjunction [24], i.e., event E3
should not occur between (E1 and E2), or ii) a time interval [27], i.e., event E3 should not
occur between 18:00 and 20:00.

The approach taken in rCML generalize the usage of the NOT operator to any type of event
interval. Thus, the NOT operator extends previous usage of the NOT operator for specifying
composite events for ECA rules. The following example specifies that the composite event
is detected when event E5 is not detected during the detection of the sequence (E1, E2,E3).

<detector>
<sequence>

<event-ref type=’event’>E1</event-ref>
<event-ref type=’event’>E2</event-ref>
<event-ref type=’event’>E3</event-ref>
<not>

<event-ref type=’event’>E5</event-ref>
</not>

</sequence>
</detector>

• The count operator is supported by the <count> element. The count event operator, which
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is a simple form of cumulative operator, is used to count how many times its only sub event is
detected within an interval. The interval is configured in such a way that the count operator
knows when it should start and stop counting event occurrences. Thus, a <count> element
is either in an open state (counting) or in a closed state (not counting). The <countcfg>
element has six sub elements that must be in the cocfg namespace:

1. <open-output> - This element specifies the value a <count> element has when it is in
the open state. Possible values are:

– true - Output true to the <count> element.

– false - Output false to the <count> element.

– input - Output the same value as the <count> element receives from the its sub
event.

2. <closed-output> - This element specifies the value a <count> element has when it is in
the closed state. The possible values are the same as for <open-output>.

3. <open-count> - This element describes when to activate (or open) the count operator. It
contains an integer that specifies the number of event occurrences that must have occurred
before the counter starts.

4. <close-count> - This element describes when to close the count operator. It contains an
integer that specifies the number of event occurrences that must have occurred before the
counter is closed. The <close-count> integer should be greater than the <open-count>
integer.

5. <periodic> - This element is used to specify a periodic behaviour of the <count> element.
It means that the <count> element is in the open state as many times as specified by
<open-count> and then in the closed state as many times as specified by <close-count>.
Valid values are ”True” or ”False”.

6. <initial-state> - This element specifies the initial state of the <count> element, which
can be Open or Closed.

In its simplest form, the count operator counts the number of event occurrences:

<count>
<event-ref>E1</event-ref>

</count>

In more advanced forms, the count operator counts the number of event occurrences when
specific conditions are met. For example, the following composite event ignores the first two
occurrences of E1, and counts the following three occurrences of E1:

<detector>
<count>

<cocfg:countcfg xmlns:cocfg=’http://www.rulecore.com/cocfg’>
<cocfg:open-output>true</cocfg:open-output>
<cocfg:closed-output>false</cocfg:closed-output>
<cocfg:open-count>2</cocfg:open-count>
<cocfg:close-count>5</cocfg:close-count>
<cocfg:periodic>False</cocfg:periodic>
<cocfg:initial-state>Open</cocfg:initial-state>

</cocfg:countcfg>
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<event-ref type=’event’>E1</event-ref>
</count>

</detector>

• The timeport operator is supported by the <timeport> element, and it supports specification
of absolute, relative, and periodic time events. Similar events have been proposed by the
active database community.

The following example in rCML specifies an absolute time event Event2, i.e., the timeport
is opened 15th of June 2004 at 12:30:30, and that the timeport closes 15th of June 2004 at
12:30:30.

<detector>
<timeport>

<tpcfg:timers xmlns:tpcfg=’http://www.rulecore.com/tpcfg’>
<tpcfg:timer tpcfg:name=’Timer’>

<tpcfg:start-date>
<tpcfg:year tpcfg:mode=’constant’>2004</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>6</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>15</tpcfg:day>
<tpcfg:weekday tpcfg:mode=”> </tpcfg:weekday>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>30</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>30</tpcfg:second>

</tpcfg:start-date>
<tpcfg:stop-date>

<tpcfg:year tpcfg:mode=’constant’>2004</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>6</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>15</tpcfg:day>
<tpcfg:weekday tpcfg:mode=”> </tpcfg:weekday>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>30</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>30</tpcfg:second>

</tpcfg:stop-date>
<tpcfg:open-output>true</tpcfg:open-output>
<tpcfg:closed-output>false</tpcfg:closed-output>

</tpcfg:timer>
</tpcfg:timers>
<event-ref alias=’e2,alias2’ type=’alias’>Event2</event-ref>

</timeport>
</detector>

The output of a <timeport> element is controlled by a timer. The timer is configured to
open and close the <timeport> element at specific dates and times. Each date specification
consists of seven fields: year, month, day, weekday, hour, minute, and second. Each of the
seven fields can be individually set to different modes that decides how the actual value of
the time field will be calculated:

– The constant mode is the simplest. It requires a constant to be entered for the date part,
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such as 2004 for the year. The constant mode requires you to know in advance the exact
date or time for the field.

– In order to base dates on the occurrence of events, the offset mode can be used. The
offset mode lets you specify an offset in relation to an event occurrence. This is useful if
a date or time should occur some time after a certain event. To create a time that occurs
ten minutes after a certain event you would set all the fields modes to offset and set the
value to zero for all fields except the minutes that would be set to +10.

– Dates and times that occur at a regular interval can be specified with by using the each
mode of a field. For example, if the hour field is set to mode each, the time will occur
each hour. By setting other fields to constant mode the time will occur only on those
times and dates. This could for example be used to have a time to occur each day but
only during a certain month.

The day and weekday fields have a special relationship. The weekday mode of the day field
can be used to set the date to a specific weekday of the month. For instance it could be
used to set the day to the second Tuesday of the month. By using negative offsets the day
is calculated from the end of month. This makes it easy to specify, for example, the last
Sunday of the month. The constant, offset and each modes of the day field works as for the
other fields.

If the weekday field is used, it will be processed as the last step in the date calculation to move
the day of the week to the specified weekday. This enables for example easy specification
of dates like next Friday. This would be done by setting the day field to offset mode with
value +6 and at the same time setting the weekday field to Friday.

Each time field does not have to have the same mode. By using different combinations of the
modes for the different part it is possible to specify dates in an advanced way, for example,
specification of a time point that occurs five hour after an certain event but on the last
Sunday of the next month.

• The state gate operator is supported by the <state-gate> element. A <state-gate> element
can be used to detect whether an object is in a particular state, for example, between 12:00
and 13:00 the object is in the ”LUNCH” state. A <state-gate> element can be opened or
closed depending upon whether a state exists and what parameters a state instance has.
States are specified by the aid of conditions, this means that the actual specification of
when the state LUNCH begins and ends is done in the <condition-def> element, i.e.. the
reference <sgcfg:condition>condition12</sgcfg:condition>.

<detector>
<state-gate>

<sgcfg:state-gate-cfg xmlns:sgcfg=’http://www.rulecore.com/sgcfg’>
<sgcfg:open-output>true< /sgcfg:open-output>
<sgcfg:closed-output>true< /sgcfg:closed-output>
<sgcfg:state-exists>open</sgcfg:state-exists>
<sgcfg:state-selector>

<sgcfg:condition>condition12</sgcfg:condition>
</sgcfg:state-selector>

</sgcfg:state-gate-cfg>
</state-gate>

</detector>
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All state instances are created and deleted by a rule actions.

A.2.2 Specification of Conditions

Conditions are used in a number of places, e.g., as logical conditions for events (event selector),
or as rule conditions. All types of conditions are defined under the <condition-defs> element
and each individual condition is specified with a <condition-def> element.

The <condition-def> element has the following attributes:

• name - The name of the condition. All condition names must be unique.

• composite - Specifies whether the condition is a basic condition or a composite condition
(contains logical operators). Allowed values are “yes” and “no”

• always-true - Allowed values are “yes” and “no”

Each condition definition starts with a parameter selection defined with a number of elements
<parameter> under the <parameters> element. The parameter selection selects parameters
that should be used in the condition evaluation from a number of events. The parameter
selection contains the name of the event, defined with <event-ref> element. The <param-ref>
element defines which parameter of the event should be selected. A selection of event instances
can be done with the <instance> element. Valid values for the <instance> element are ’first’,
’last’, ’all’, an integer selecting the n:th event, or an range of events specified with two integers,
for example ’2-5’. The <function> element defines a function that should be applied to the
selected parameter before is it selected for evaluation in the condition.

<condition-defs>
<condition-def always-true=”no” composite=”yes” name=”Condition 1”>

<parameters>
<parameter name=”selection 1”>

<event-ref>Event1</event-ref>
<param-ref>parameter 1</param-ref>
<instance>first</instance>
<function> mul(, 1.3)</function>

</parameter>
</parameters>

<condition-def>
</condition-defs>

The <expression> element specifies a number of expressions under <expressions>. Each
expression selects two parameter selections, one left hand side (lhs) and one right hand side
(rhs). These are evaluated using the operator defined in the <operator> element.

<expressions>
<expression name=”c1”>

<lhs>
<param-ref>selection 1</param-ref>

</lhs>
<operator>equal</operator>
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<rhs>
<value>42</value>

</rhs>
</expression>

</expressions>

A number of expressions can be combined with the logical operators and, or and not using the
<composite-condition> element. The <condition-ref> element is used to refer to expressions
created with the <expression> element. The <composite-condition> is used to combine several
<expression> elements with the logical operators And, Or and Not.

<composite-condition>
<or>

<condition-ref>c1< /condition-ref>
<condition-ref>c2</condition-ref>

</or>
</composite-condition>

A.2.3 Specification of Actions

Actions are defined under the <action-defs> element and each individual rule action is specified
using the <action-def> element. An <action-def> element can in turn be composed of several
<action-item> elements that are executed in the order they are defined. Thus, <action-def>
element can launch the execution of two applications, where each application call is defined by
a separate <action-item> element.

Four types of rule actions are supported in rCML:

• script - Script actions execute external scripts or applications

• event - Event actions send event occurrences to the ruleCore rule engine

• create–state - Rule actions that create new state items

• delete–state - Rule actions that delete state items

Below is an example of a script action that executes an external application.

<action-defs>
<action-def name=’Action1’>

<action-item type=”script” name=”exec app”>c:\actions\action1.exe
</action-item>

</action-def>
<action-defs>

Below is an example of an event action that send an event occurrence to the rule engine.

<action-defs>
<action-def name=’Action1’>

<action-item type=’event’ name=”>Event1</action-item>
</action-def>

</action-defs>
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Rule actions that create a new state item have the following parameters:

• single, i.e., a single state item is created. If an attempt is made to create a new state nothing
happens, the creation is just ignored.

• single with replace option. Only one single state instance is active but a new state creation
will replace the currently existing state.

• multiple. This parameter creates a new state instance each time the rule action is executed.
If a state instance already exists the old state instance is replaced with the new one.

A.2.4 Specification of ECA Rules

ECA rules are specified inside the <rules> element and each individual ECA rule is described
with a <rule> element. The <rule> element has the following attributes:

• name. A unique value for the name attribute that identifies the rule.

• create. The create attribute controls rule instance creation. Possible values are:

1. single - only a single rule instance is created.

2. single–replace - only a single rule instance exists at any point in time. This implies that
when a new initiator event occurs, the old rule instance is deleted and replaced with a
new rule instance.

3. init - create a rule instance each time an initiator event occurs.

4. reject - create a new rule instance if the event is rejected by all rule instances. Rejection
can be done by the event selector of the rule.

• parameter. Controls how the event parameters of each event are stored during the event
detection process. Allowed values are:

1. append - store all parameters of each event that are involved in the detection of the current
event,

2. first - store only the parameters of the first event in each situation,

3. last - store only the last parameter of the event detection of each event type, or

4. never - do not store parameters at all.

The <rule> element has the following subelements:

• The <description> element contains a description of the rule. This subelement is only for
user convenience and it is not used by the engine.

• The <event-ref> element contains a reference to the composite event that triggers the rule.
The main target of applications for rCML are applications that react on composite events.
However, a simple basic event can also act as a triggering event for a rule by constructing a
composite event with only one sub event.

• The <condition-ref> contains a reference to a condition definition element <condition-def>
that specifies a condition that is evaluated when the rule is triggered by its event.

• The <action-ref> contains a reference to a <action-def> element that is executed if the rule
condition is evaluated to true.

• The <minus-action-ref> contains a reference to a <action-def> element that is executed if
the triggering event can never be detected.

208



• The <instance-limit> element is used to limit the number of the rule instance for each type
of rule. Possible values are:

1. None

2. An integer specifying the maximum number of rule instances.

The <event-ref>, <condition-ref> and <action-ref> and <minus-action-ref> all contain an
attribute called enabled with the possible values of yes or no. Thus a rule whose rule condition
should always be evaluated to true is specified as <condition-ref enabled=’no’></condition-
ref>.

Below is an example of an ECA rule in rCML:

<rules>
<rule parameter=’append’ create=’single’ name=’Rule1’>

<description>A description of this rule</description>
<event-ref enabled=’yes’>E1</event-ref>
<condition-ref enabled=’yes’>Condition12</condition-ref>
<action-ref enabled=’yes’>Action1</action-ref>
<minus-action-ref enabled=’yes’>Action2</minus-action-ref>
<instance-limit>None</instance-limit>

</rule>
</rules>

A.3 Modelling Use Cases in rCML

All use cases in this section have been modelled in the ruleCore Designer, hence some additional
(internal) tags, e.g., <scope>, are present that are not actually needed for the Rewerse

scenarios. An implementation of these uses cases with XChange can be found above, in Section
2.6, where some further detail on the considered scenario are given. For a detailed specification
of the scenario and the use cases see [3].

A.3.1 Use Case 4.2.1 - Changing Phone Number

Use Case 4.2.1 (Changing Phone Number) Phone numbers (or any other contact details) are
updated at the participants nodes (XML format). The updates have to be propagated to the WG
nodes and to the central node.

For this example, we use a local ECA rule that sends an update message to the WG nodes
and the central node.

As only composite events can be directly linked to rules in rCML, a composite event change-
OfPhone is created that simply detects the basic event e1 that is delivered from the event source.
A wrapper needs to be added at the event source that can send the event to the ruleCore. When
rule R1 is triggered by the event changeOfPhone it will trigger Action1. The rule action is com-
posed of two rule actions that will invoke external scripts that forward the update information
to the WG nodes and the central node. All event parameters that participated in the event
detection, i.e., phone and person, are also available to rule actions.

<rules>
<rule create=’single’ parameter=’append’ name=’R1’>
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<description>This rule is used for use case 4.2.1</description>
<event-ref enabled=’yes’>changeOfPhone</event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’yes’>Action1</action-ref>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
</rules>
<event-defs>

<event-def type=’basic’ name=’e1’>
<parameters>

<parameter type=’string’ name=’phone’/>
<parameter type=’string’ name=’person’/>

</parameters>
</event-def>
<event-def type=’composite’ name=’changeOfPhone’>

<detect-event/>
<no-detect-event/>
<event-selector name=”>

<condition/>
<scope>global</scope>
<events>

<event-ref type=’type’>e1</event-ref>
</events>

</event-selector>
<detector>

<event-ref type=’event’>e1</event-ref>
</detector>

</event-def>
</event-defs>
<condition-defs/>
<action-defs>

<action-def name=’Action1’>
<action-item type=’script’ name=’send-update-to-WG-nodes’/>
<action-item type=’script’ name=’send-update-to-central-node’/>

</action-def>
</action-defs>

In summary, the above rule is an event-action rule that is triggered by a basic event, and
sends two update messages in the action part.

A.3.2 Use Case 4.2.7 - Progress Reports

Use Case 4.2.7 (Progress Reports) The deadline for the progress report is inserted into the
central node, and then communicated to the WGs nodes. From there, the persons are called
to send input (by mail, probably 10 days before the deadline), and the coordinator is called to
produce the report. The coordinator then puts the report in the WG node. An active rule then
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publishes the report on the WGs Web page, and removes the deadline entry from the WG node
and from the coordinators person entry in the participants node. Depending on push or pull
strategy, (i) the WG node sends the report to the central node, or (ii) the central node reacts
on the remote event on the WG node:

This scenario can be solved in a number of different ways. For example, the central node
can simply use a basic event (reportSubmitted) and store the progress report. The disadvan-
tage of this approach is that it is not possible to determine which WGs that have submitted
their progress reports by only investigating the event. Instead, a query must be specified that
investigates which reports are already submitted and stored.

Our solution is that each WG has their unique event id, e.g., submitProgress
Report-I1 that is sent to the central node. The progress report is sent to the central node as an
event parameter. Rule R2 is triggered by a disjunction progressReportSubmitted that collects
all valid submitProgressReport-XX events and store each progress report on the central node.

Rule R3 is triggered by a conjunction allReportsReceived, and the rule action sends a noti-
fication to the project officer when all progress reports have been received.

<rules>
<rule create=’single’ parameter=’append’ name=’R2’>

<description>This rule is used in use case 4.2.7 for storing progress
reports that are submitted.</description>
<event-ref enabled=’yes’>progressReportSubmitted< /event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’yes’>storeProgressReport</action-ref>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
<rule create=’single’ parameter=’append’ name=’R3’>

<description>This rule is used in use case 4.2.7 for notifying
the project officer when all progress reports have submitted.</description>
<event-ref enabled=’yes’>allReportsReceived</event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’yes’>notifyProjectOfficer</action-ref>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
</rules>
<event-defs>

<event-def type=’basic’ name=’submitProgressReport-I1’>
<parameters>

<parameter type=’string’ name=’progressReport’/>
</parameters>

</event-def>
<event-def type=’basic’ name=’submitProgressReport-I2’>

<parameters>
<parameter type=’string’ name=’progressReport’/>

</parameters>
</event-def>
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<event-def type=’composite’ name=’progressReportSubmitted’>
<detect-event/>
<no-detect-event/>
<event-selector name=’None’>

<condition/>
<scope>global</scope>
<events>

<event-ref type=’type’>submitProgressReport-I1</event-ref>
<event-ref type=’type’>submitProgressReport-I2</event-ref>

</events>
</event-selector>
<detector>

<or>
<event-ref type=’event’>submitProgressReport-I1</event-ref>
<event-ref type=’event’>submitProgressReport-I2</event-ref>

</or>
</detector>

</event-def>
<event-def type=’composite’ name=’allReportsReceived’>

<detect-event/>
<no-detect-event/>
<event-selector name=”>

<condition/>
<scope>global</scope>
<events>

<event-ref type=’type’>submitProgressReport-I1</event-ref>
<event-ref type=’type’>submitProgressReport-I2</event-ref>

</events>
</event-selector>
<detector>

<and>
<event-ref type=’event’>submitProgressReport-I1</event-ref>
<event-ref type=’event’>submitProgressReport-I2</event-ref>

</and>
</detector>

</event-def>
</event-defs>
<condition-defs/>
<action-defs>

<action-def name=’storeProgressReport’>
<action-item type=’script’ name=’storeReport’/>

</action-def>
<action-def name=’notifyProjectOfficer’>

<action-item type=’script’ name=’sendMailToPO’/>
</action-def>

</action-defs>
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A.3.3 Use Case 4.2.13 - Progress Report Late

Use Case 4.2.13 (Progress Report Late) For each progress report, a deadline is specified when
it must arrive, e.g., <todo type=”progressreport” number=”1-2005” deadline=”28.2.2005”/>
Then, there is a rule that states that if for any WG, the progress report has not been checked in
until noon at the day of the deadline, a message is sent to the WGs coordinator.

For any WG, we first detect a sequence, e.g., todoAnnouncement-I1 followed by submitPro-
gressReport-I1. An internal composite event (conjunction) is used to detect the completion of
the sequence and that the progress report has not occurred. In order for this to work we need
to declare that the submitProgressReport event cannot be an initiator, i.e., <event-ref init=’no’
type=’event’>submitProgressReport-I2</event-ref>. In case the progress report is submitted
before the deadline the detector knows that the overall composite event can never be completed
and removes the rule instance.

<rules>
<rule create=’single’ parameter=’append’ name=’R4’>

<description>This rule is used in use case 4.2.13 for sending
mails to WG coordinators that have not submitted their progress
reports on time</description>
<event-ref enabled=’yes’>lateReports</event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’yes’>sendMailToWGCO</action-ref>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
</rules>
<event-defs>

<event-def type=’basic’ name=’submitProgressReport-I1’>
<parameters>

<parameter type=’string’ name=’progressReport’/>
</parameters>

</event-def>
<event-def type=’basic’ name=’submitProgressReport-I2’>

<parameters>
<parameter type=’string’ name=’progressReport’/>

</parameters>
</event-def>
<event-def type=’basic’ name=’todoAnnouncement-I1’>

<parameters>
<parameter type=’date’ name=’deadline’/>

</parameters>
</event-def>
<event-def type=’basic’ name=’todoAnnouncement-I2’>

<parameters>
<parameter type=’date’ name=’deadline’/>

</parameters>
</event-def>
<event-def type=’composite’ name=’lateReports’>
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<detect-event/>
<no-detect-event/>
<event-selector name=’None’>

<condition/>
<scope>global</scope>
<events>

<event-ref type=’type’>submitProgressReport-I1</event-ref>
<event-ref type=’type’>todoAnnouncement-I1</event-ref>
<event-ref type=’type’>submitProgressReport-I2</event-ref>
<event-ref type=’type’>todoAnnouncement-I2</event-ref>

</events>
</event-selector>
<detector>

<or>
<and>

<sequence>
<event-ref type=’event’>todoAnnouncement-I1</event-ref>
<timeport>

<tpcfg:timers xmlns:tpcfg=’http://www.rulecore.com/tpcfg’>
<tpcfg:timer tpcfg:name=’Timer’>

<tpcfg:start-date>
<tpcfg:year tpcfg:mode=’constant’>2005</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>2</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>28</tpcfg:day>
<tpcfg:weekday tpcfg:mode=’none’/>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>0</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>0</tpcfg:second>

</tpcfg:start-date>
<tpcfg:stop-date>

<tpcfg:year tpcfg:mode=’constant’>2005</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>2</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>28</tpcfg:day>
<tpcfg:weekday tpcfg:mode=’none’/>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>0< /tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>0</tpcfg:second>

</tpcfg:stop-date>
<tpcfg:open-output>true</tpcfg:open-output>
<tpcfg:closed-output>false</tpcfg:closed-output>

</tpcfg:timer>
</tpcfg:timers>

</timeport>
</sequence>
<not>

<event-ref init=’no’ type=’event’>submitProgressReport-I1</event-ref>
</not>
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</and>
<and>

<sequence>
<event-ref type=’event’>todoAnnouncement-I2< /event-ref>
<timeport>

<tpcfg:timers xmlns:tpcfg=’http://www.rulecore.com/tpcfg’>
<tpcfg:timer tpcfg:name=’Timer’>

<tpcfg:start-date>
<tpcfg:year tpcfg:mode=’constant’>2005</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>2</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>28</tpcfg:day>
<tpcfg:weekday tpcfg:mode=’none’/>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>0</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>0</tpcfg:second>

</tpcfg:start-date>
<tpcfg:stop-date>

<tpcfg:year tpcfg:mode=’constant’>2005</tpcfg:year>
<tpcfg:month tpcfg:mode=’constant’>2</tpcfg:month>
<tpcfg:day tpcfg:mode=’constant’>28< /tpcfg:day>
<tpcfg:weekday tpcfg:mode=’none’/>
<tpcfg:hour tpcfg:mode=’constant’>12</tpcfg:hour>
<tpcfg:minute tpcfg:mode=’constant’>0</tpcfg:minute>
<tpcfg:second tpcfg:mode=’constant’>0</tpcfg:second>

</tpcfg:stop-date>
<tpcfg:open-output>true</tpcfg:open-output>
<tpcfg:closed-output>false</tpcfg:closed-output>

</tpcfg:timer>
</tpcfg:timers>

</timeport>
</sequence>
<not>

<event-ref init=’no’ type=’event’>submitProgressReport-I2</event-ref>
</not>

</and>
</or>

</detector>
</event-def>

</event-defs> <condition-defs/>
<action-defs>

<action-def name=’sendMailToWGCO’>
<action-item type=’script’ name=’sendMailToPO’/>

</action-def>
</action-defs>
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A.3.4 Use Case 4.2.14 - Polls: Basic Rules

Use Case 4.2.14 (Polls: Basic Rules) Polls are evaluated as follows:

1. when a poll entry is inserted, evaluate the set of recipients and send them a mail,

2. when a response comes in, store it in the database,

3. when the deadline is over (note that this is actually a sequential event: inserting a poll and
the temporal event of the deadline), query the database and inform the project office about
the result; in case that answers are missing, send another mail to these persons.

Concerning 1, see we use a similar structure as in use case 4.2.1.

<rules>
<rule create=’single’ parameter=’append’ name=’R5’>

<description>This rule is used in use case 4.2.14 for sending mails to
participants of a poll.
</description>
<event-ref enabled=’yes’>poll</event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’yes’>sendMail< /action-ref>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
</rules>
<event-defs>

<event-def type=’basic’ name=’insertOfPoll’>
<parameters>

<parameter type=’string’ name=’poll’/>
</parameters>

</event-def>
<event-def type=’composite’ name=’poll’>

<detect-event/>
<no-detect-event/>
<event-selector name=”>

<condition/>
<scope>global</scope>

<events>
<event-ref type=’type’>insertOfPoll</event-ref>

</events>
</event-selector>
<detector>

<event-ref type=’event’>insertOfPoll</event-ref>
</detector>

</event-def>
</event-defs>
<condition-defs/>
<action-defs>

<action-def name=’sendMail’>
<action-item type=’script’ name=’sendMail’/>
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</action-def>
</action-defs>

Concerning 2, we use the same approach as for storing incoming progress reports as seen in
use case 4.2.7.

Concerning 3, we use a sequence operator as follows:

<rules>
<rule create=’single’ parameter=’append’ name=’R6’>

<description>This rule is used in use case 4.2.14 for sending results
of a poll to the project officer and for sending reminders.</description>
<event-ref enabled=’yes’>E12</event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’yes’>A12</action-ref>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
</rules>
<event-defs>

<event-def type=’basic’ name=’insertOfPoll’>
<parameters>

<parameter type=’string’ name=’poll’/>
</parameters>
</event-def>

<event-def type=’composite’ name=’E12’>
<detect-event/>
<no-detect-event/>
<event-selector name=”>

<condition/>
<scope>global</scope>
<events>

<event-ref type=’type’>insertOfPoll</event-ref>
</events>

</event-selector>
<detector>

<sequence>
<event-ref type=’event’>insertOfPoll</event-ref>
<timeport>

<... spec of deadline>
</timeport>

</sequence>
</detector>

</event-def>
</event-defs>
<condition-defs/>
<action-defs>

<action-def name=’A12’>
<action-item type=’script’ name=’sendResultsToPO’/>
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<action-item type=’script’ name=’sendReminder’/>
</action-def>

</action-defs>

A.3.5 Use case 4.2.15 - complex events

Use Case 4.2.15 (Polls: Cumulative Events) The same activity can be carried out without
actually storing answers, but handling them in a cumulative event (that collects the answers):
when a poll entry is inserted, evaluate the set of recipients and send them a mail, if first, a poll
is issued, and then a set of answers answer(person,answer) comes in, collect the set of persons
and the set of answers until the deadline (atomic events: poll, answer, deadline). The overall
detection of this composite event results in a small XML instance that contains the collected
information.

For this use case, we use a composite event that use the insert of poll as the initiating event
and the deadline as the terminating event. The event operator between is used to collect all
events that occur between the insert of the poll and the deadline.

<rules>
<rule create=’single’ parameter=’append’ name=’R7’>

<description/>
<event-ref enabled=’yes’>E13</event-ref>
<condition-ref enabled=’no’/>
<action-ref enabled=’no’/>
<minus-action-ref enabled=’no’/>
<instance-limit/>

</rule>
</rules>
<event-defs>

<event-def type=’basic’ name=’insertOfPoll’>
<parameters>

<parameter type=’string’ name=’poll’/>
<parameter type=’string’ name=’poll-id’/>
<parameter type=’date’ name=’deadline’/>
<parameter type=’string’ name=’persons’/>

</parameters>
</event-def>
<event-def type=’composite’ name=’E13’>

<detect-event/>
<no-detect-event/>
<event-selector name=”>

<condition/>
<scope>global</scope>
<events/>

</event-selector>
<detector>

<between>
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<event-ref type=’event’>insertOfPoll</event-ref>
<timeport>

<... spec of deadline>
</timeport>

</between>
</detector>

</event-def>
</event-defs>

A.4 Conclusions

In light of the general framework proposed in this deliverable, it is clear that ruleCore is quite
developed in what regards the detection and processing of events. It contains basic events, which
in principle can be anything that can be wrapped and send as an event signal to ruleCore, as
well as composite events with a rich collection of event composition operators.

The event operators timeport and state gates are perhaps the most novel and powerful event
operators in rCML. For example, in ruleCore one can create a composite event that collect all
events that occur five minutes after the LUNCH state the second Monday in each month. In
order to save space, the actual rCML code for this composite event is not shown. However,
most of the rCML code has already been shown in the explanations of the event operators
timeport, state gate, and between.

The condition part, which is optional, may be used to test additional conditions on events
before performing the action. Conditions are logical expressions, that may call functions, and
no support for external database queries is provided. In particular, unlike what happens with
XChange, there is no support for querying XML databases in conditions. In this part all event
parameters are available.

The actions may be (internal) raising of events, as existing in XChange and discussed in the
general framework, or external (wrappers) actions. The external actions call external scripts or
applications. Unlike XChange, there is no specific support for changing/updating Web data.
Again, in the actions part all event parameters are available.

One feature that needs to be extended in ruleCore in the future is more advanced support for
processing XML documents that are submitted as event parameters. As of now, ruleCore/rCML
has no support for extracting specific values in such documents, something that in contrast is
well developed in XChange. In addition, there is no support for using namespaces.

Using ruleCore together with other ECA systems have not been tested in practice. However,
it should be possible to use ruleCore’s event detection module and then simply forward the event
detection signal to another ECA system, such as XChange, for condition evaluation and action
execution, and this is something that will be pursued in the context of the general framework.
The problem at this stage is that it will be time consuming to manually check correct usage of
event parameters etc in both systems, since there is no support for name spaces in ruleCore.
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Appendix B

Prova language description

B.1 Introduction

Prova [43] a Language for Rule Based Java Scripting, Information Integration, and Agent
Programming, mainly contributed by a Rewerse partner (Dresden), is derived from Mandarax
Java-based inference system. It extends Mandarax by providing a proper language syntax,
native syntax integration with Java and agent messaging and reaction rules. Prova is suitable
for use as a rules-based backbone for distributed web applications in biomedical data integration.

• The design goals of Prova

– Marry the benefits of declarative and object-oriented programming;

– Combine the syntaxes of Prolog and Java – ultimate logic and object-oriented languages;

– Expose logic and agent behaviour as rules;

– Access data sources via wrappers written in Java or command-line shells like Perl;

– Make all Java API from available packages directly accessible from rules;

– Run within the Java runtime;

– Enable rapid prototyping of applications;

– Offer a rule-based platform for distributed agent programming.

Prova is useful for data integration tasks when the following is important:

• Location transparency (local, remote, mirrors);

• Format transparency (database, RDF, XML, HTML, flat files, computation resource);

• Resilience to change (databases and web sites change often);

• Use of open source technologies;

• Understandability and modifiability by a non-IT specialist;

• Economical knowledge representation;

• Extensibility with additional functionality;

• Leveraging ontologies.

Example B.1 (Declarative programming)
Consider a table of interacting proteins. We wish to infer all interactions, direct or indirect.

221



In Prova, this can be specified as follows (:- is read as “if”):

Listing B.1: Prova example
1 % Facts (what we know)

interactDirect(a,b).
3 interactDirect(b,c).

interactDirect(c,d).
5

% Rules (how to derive new knowledge)
7 interact(X,Y):-interactDirect(X,Y).

interact(X,Z):-interactDirect(X,Y),interact(Y,Z).

The query :- solve(interact(a,X))., which can be read as “which proteins X interact
with protein a?”, will return the three answers X=b, X=c, and X=d.

Thus, Prova follows classical Prolog closely by declaratively specifying relationships with
facts and rules. Now let us consider an example where access to Java methods is directly
integrated into rules.

Example B.2 (Object-oriented programming)
The code below represents a rule whose body consists of three Java method calls: the first to
construct a String object, the second to append something to the string, and the third to print
the string to the screen.

Listing B.2: Prova example
hello(Name):-

2 S = java.lang.String("Hello "),
S.append(Name),

4 java.lang.System.out.println(S).

B.1.1 Examples solved with Prova

The Prova code very closely resembles the declarative Prolog specification. However, instead of
relying on an internal knowledge base, which needs to be loaded entirely into memory, Prova
can access the GO in a database, which is accessed as needed. In the same way as Prolog,
Prova applies backward-chaining to evaluate queries.

The following Prova code first “imports” some utility functions, like dbopen, which opens
a database connection. One database location is provided in line 4. The script evaluates the
next three statements at once:

• First, it tries to bind a GO term accession number to a given name, in line 7. The answer
is no if the database has no such label for any term. The predicate name2term is defined
later in the code (lines 42-45). It opens a database connection to a current GeneOntology
MySQL database scheme, constructs the where-clause for the SQL statements in line 44 and
issues the SQL query in line 45. The values of the column id in the result set are bound to
the variable T .

• Second, descendant concepts in the ontology are found for small GTPase mediated signal
transduction with the predicate isDesc. In line 20, GO accession ids are bound to T1 if
there is a term with the name N1 and it has an accession id. Line 21 binds all terms which
are sub-concepts of T1 to T2. For this it uses the recursive definition of isa in line 29
which eventually queries the database using the predicate isaDB defined in line 36. In line
43 the database connection is opened. Line 44 just prepares the where-clause for the SQL
statement used in sql select, line 45.
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• The third query is similar to the second one but excluding subclasses of Rho protein signal
transduction in the result.

:-eval(consult ("utils.prova")).
2

% Define database location
4 location(database ,"GO","jdbc:mysql :// server","guest","guest").

6 % Show the ID of the GO term small GTPase mediated signal transduction?
:-solve(name2term ("small GTPase mediated signal transduction",GO_ID)).

8

% Which small GTPase mediated signal transduction processes are listed in the GO?
10 :-solve(isDesc("small GTPase mediated signal transduction",N)).

12 % Which small GTPase mediated signal transduction processes
%apart from Rho are listed in the GO?

14 :-solve(isDesc2(N)).
isDesc2(N):-

16 isDesc("small GTPase mediated signal transduction",N),
not(isDesc("Rho protein signal transduction",N)).

18

% Defining a descendent
20 isDesc(N1,N2) :-

name2term(N1,T1), % N1 has the term id T1
22 isa(T2,T1), % T2 is a T1

term2name(T2,N2). % T2 has the term name N2
24

% A term T is a T
26 isa(T,T).

28 % Recursive definition of is-a:
% A term T2 is a T1 if T3 is a T1 and T2 is a T3

30 isa(T2,T1) :-
isaDB(T3,T1),

32 isa(T2,T3).

34 % This predicate is limited by the number of open connections
% allowed T2 is a T1 if there is a corresponding entry in the

36 % term2term table of the database
isaDB(T2,T1) :-

38 dbopen("GO",DB),
concat ([" term1_id=",T1 ," and relationship_type_id =2"], WhereClause),

40 sql_select(DB,term2term ,[term2_id ,T2],[where , WhereClause ]).

42 % Given the name N, get the term id T
name2term(N,T) :-

44 dbopen("GO",DB),
concat ([" name like ",N],WhereClause),

46 sql_select(DB,term ,[id,T],[where , WhereClause ]).

48 % Given the term id T, get the term name N
term2name(T,N) :-

50 dbopen("GO",DB),
concat (["id=",T],WhereClause),

52 sql_select(DB,term ,[name ,N],[where , WhereClause ]).

The unmodified output of this is shown below. Note there are three paragraphs. One
paragraph per solve statement.

1 GO_ID =4280

3 N="small GTPase mediated signal transduction"
N="Ras protein signal transduction"

5 N="Rho protein signal transduction"
N="Rac protein signal transduction"

7 N=" regulation of small GTPase mediated signal transduction"
N=" regulation of Rac protein signal transduction"

9 N=" negative regulation of Rac protein signal transduction"
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N=" positive regulation of Rac protein signal transduction"
11 N=" regulation of Rho protein signal transduction"

N=" negative regulation of Rho protein signal transduction"
13 N=" positive regulation of Rho protein signal transduction"

N=" regulation of Ras protein signal transduction"
15 N=" positive regulation of Ras protein signal transduction"

N=" negative regulation of Ras protein signal transduction"
17 N=" positive regulation of small GTPase mediated signal transduction"

N=" positive regulation of Rac protein signal transduction"
19 N=" positive regulation of Rho protein signal transduction"

N=" positive regulation of Ras protein signal transduction"
21 N=" negative regulation of small GTPase mediated signal transduction"

N=" negative regulation of Rac protein signal transduction"
23 N=" negative regulation of Rho protein signal transduction"

N=" negative regulation of Ras protein signal transduction"
25

N="small GTPase mediated signal transduction"
27 N="Ras protein signal transduction"

N="Rac protein signal transduction"
29 N=" regulation of small GTPase mediated signal transduction"

N=" regulation of Rac protein signal transduction"
31 N=" negative regulation of Rac protein signal transduction"

N=" positive regulation of Rac protein signal transduction"
33 N=" regulation of Rho protein signal transduction"

N=" negative regulation of Rho protein signal transduction"
35 N=" positive regulation of Rho protein signal transduction"

Observant readers might notice that the answer to the question ”‘Which small GTPase
mediated signal transduction processes apart from Rho are listed in the GO?”’ contains (neg-
ative/positive) regulation of Rho protein signal transduction. In this query we want the list
of processes which are a subclass of small GTPase mediated signal transduction but exclud-
ing subclasses of Rho protein signal transduction. GO currently lists regulation of Rho protein
signal transduction as part of but not as is a Rho protein signal transduction. However (nega-
tive/positive) regulation of Rho protein signal transduction are subclasses of regulation of Rho
protein signal transduction but not of Rho protein signal transduction. Therefore the query is
in fact answered correctly, but the GO contains an inconsistency in its use of part-of and is-a:
regulation of small GTPase mediated signal transduction is-a small GTPase mediated signal
transduction but not part of. We summarize that GO sometimes lists regulations of a process
as part of the general process and sometimes as being a subclass of it.

B.1.2 Prova as distributed Agent programming

B.1.2.1 Agents Architecture Prova-AA

Prova includes syntactically simple constructs allowing for sending messages via either JADE-
HTTP or JMS communication protocols and for specifying sophisticated reaction rules for
processing incoming messages. Due to the natural integration of Prova with Java, Prova-AA
offers a syntactically economic and compact way of specifying agents behaviour while allowing
for efficient Java-based extensions to improve performance of critical operations.

To access Prova-AA features from Prova, additional jar files should be available on the
CLASSPATH and special command-line arguments should be included to launch the relevant
communication platforms. A subdirectory prova-aa/examples of the main prova distribution
directory contains two sets of examples one each working with JADE-HTTP and JMS protocols.
The provided README files in the Prova webpage (www.semanticwebrules.org) explain the
procedures needed to run the examples.

Java Message Service JMS is an industry standard message oriented middleware platform

224



that is part of Java 2 Enterprise Edition J2EE. Prova-AA uses a particular implementation
of JMS called Joram1. This version has the advantage to be open source and mature, and
furthermore, it is now part of a broad ObjectWeb initiative bringing together various middleware
and J2EE technologies that will be used by major Linux vendors like RedHat and Suse. JMS
in general has the advantage of being a guaranteed delivery messaging platform. Intuitively it
means that when computer A sends a message to computer B the latter is not required to be
operational. Once B goes online the messages will be delivered.

While JMS and in particular, Joram JMS, requires configuration files for running individual
JMS hosts, we have decided to use Jade-HTTP protocol to implement communicator platforms.
The Jade-HTTP has only minimal configuration requirements allowing for a creation of ad-hoc
networks of agents.

B.1.2.2 Main features of Prova-AA

The main design philosophy behind Prova-AA is the minimalism and simplicity of the intro-
duced syntax extensions. Prova-AA provides three main constructs for enabling agent commu-
nication: sendMsg predicates, reaction rcvMsg rules, and rcvMsg or rcvMult inline reactions.

• sendMsg predicate

The sendMsg predicate can be embedded into the body of an arbitrary derivation or reaction
rule. It can fail only if the parameters are incorrect and the message could not be sent due to
various other reasons including the dropped connection (note that in the JMS case, the message
may be sent anyway even if the network is down).

The format of the predicate is:

sendMsg(Protocol,Agent,Performative,[Predicate|Args]|Context)

or

sendMsg(Protocol,Agent,Performative,Predicate(Args)|Context)

where Protocol can currently be either self, jade, jms, or queue. It is either the message
to self, a message sent to a message queue of a particular agent running locally in another
thread (queue), or a message sent via jms or jade communication protocols. Agent denotes the
target of the message. For self, jade, and jms methods, Agent is the name of the target agent.
For queue message, Agent is the object representing the message queue of the target agent.
For jade messages, the agent name takes the form agent@machine while for jms messages the
agent locations are read from configuration files and are not specified in the Agent parameter.
Performative corresponds to the semantic instruction the broad characterization of the message.
A standard nomenclature of performative is FIPA Agents Communication Language ACL.

[Predicate|Args] corresponds to the bracketed form and Predicate(Args) corresponds to
functional form of the message content sent in the message envelope. The first form can be
useful to match any literal including arity-0 predicates (in which case, query() is the represented
as [query]) or arity-1 predicates (in which case, query(arg1) is represented as [query,arg1]).
The problem with the functional form is that it is impossible to specify a general pattern
accommodating predicates of arbitrary arity while the bracketed version is compatible with
any arity. Context includes an arbitrary length list of comma-separated parameters that can
be used to identify the message or to distinguish the replies to this particular message from

1Java Agent Development framework, JADE, http://sharon.cselt.it/projects/jade].
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other messages. In particular, it can be useful to include the protocol as part of context for the
recipient of the message to be able to reply by using the same protocol.

The following code shows a complete rule that sends a code base (a fragment of Prova code)
from an external File to the agent Remote that will then assimilate the rules being sent. The
rules are encapsulated in a serializable Java StringBuffer object and sent with the literal for
the built-in predicate consult. The particular version of consult will then read on the Remote
machine the Prova statements from a StringBuffer (in contrast to the standard version of consult
that reads statements from the specified file provided as an input string).

% Upload a rule base read from File to the host at address Remote

%via Prova-JMS

upload_mobile_code(Remote,File) :-

% Opening a file returns an instance of java.io.BufferedReader in Reader

fopen(File,Reader),

Writer = java.io.StringWriter(),

copy(Reader,Writer),

Text = Writer.toString(),

% SB will encapsulate the whole content of File

SB = StringBuffer(Text),

sendMsg(jade,Remote,eval,consult(SB)).

Before the discussion below about the reaction rules, it should be mentioned that messages
for performatives reply, return, and end of transmission are assumed by the runtime engine to
continue with the encompassing conversation preserving an internally maintained conversation-
id. For all other messages, a message is assumed to open a new conversation and is internally
assigned a unique conversation-id. The mechanism of conversation-id(s) is designed in such
a way that the returned messages can be transparently and uniquely matched against inline
reactions patterns (see below).

• Reaction rcvMsg rules

The target agent reacts to the message based on its pattern including the protocol, sender,
performative, message content, and context. Reaction rules are special derivation rules for a
reserved predicate rcvMsg. The syntax of the rcvMsg parameters is exactly the same as that
for the sendMsg parameters except for the Agent parameter corresponding in the rcvMsg case
to the agent from which the message has arrived.

The following code shows a general purpose but simplified reaction rules for queryref mes-
sages. The first rule triggers a non-deterministic derivation of the literal [X|Xs] sent as the
message content by using the local rules and replies to the queryref originator with as many
messages with the performative reply as there are possible instantiations to [X|Xs]. The second
rule sends a special end of transmission message that the originator of the queryref message can
use to determine that the sequence of replies is complete. The Protocol parameter available as
the first parameter allows the recipient of queryref to know the protocol (jade, jms etc.) that
should be used for replies.

% Reaction rule to general queryref

rcvMsg(Protocol,From,queryref,[X|Xs]|Context) :-

derive([X|Xs]),
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sendMsg(Protocol,From,reply,[X|Xs]|Context).

rcvMsg(Protocol,From,queryref,[X|Xs],Protocol) :-

sendMsg(Protocol,From,end_of_transmission,[X|Xs]|Context).

Example B.3 (Lost Updates) The following example implements three communicating agents
which illustrate the need for concurrency control.It consists of the following of a bank agent and
two customer agents.

• The bank agent has (Listing B.3) a knowledge base with facts “balance” storing the name of
the holder and amount and a method to update the amount of a bank account. It also has a
reaction rule, which returns the amount on request or updates it in the event of receiving a
corresponding message from an external agent.

• The first customer agent (Listing B.4) has two methods “credit” and “debit” with two argu-
ments account holder and amount. The example illustrates that “credit” needs to query the
bank agent for the amount, then it should wait for some time and then it should calculate
the new amount and send a message to the bank requesting an update of the account.

• The second customer agent (Listing B.5) credits on the same account upon start concurrently
to illustrate a lost update.

Listing B.3: Lost updates: The bank agent

2 rcvMsg(XID , Protocol , From , inform , update(Type , Name , Amount , NewBalance)) :-
derive(update(Type , Name , Amount , NewBalance)),

4 sendMsg(XID , Protocol , From , reply , update(Type , Name , Amount , NewBalance)).

6 balance ("adila", 100).
balance ("wikan", 200).

8 lock(false).

10

update(Name , NewBalance) :-
12 retractall(balance(Name , _)),

assert(balance(Name , NewBalance)).
14

rcvMsg(XID , Protocol , From , inform , update(Name , NewB)) :-
16 derive(update(Name ,NewB)),

sendMsg(XID , Protocol , From , reply , update(Name , NewB)).
18

rcvMsg(XID , Protocol , From , inform , lock()) :-
20 retractall(lock(_)),

assert(lock(true)),
22 sendMsg(XID , Protocol , From , reply , lock(true)).

24 rcvMsg(XID , Protocol , From , inform , unlock()) :-
retractall(lock(_)),

26 assert(lock(false)),
sendMsg(XID , Protocol , From , reply , lock(false)).

28

30 rcvMsg(XID , Protocol , From , queryref , [X|Xs]) :-
println ([" queryref received.", X | Xs]),

32 derive([X|Xs]),
println ([" queryref derived.", X | Xs]),

34 sendMsg(XID , Protocol , From , reply , [X|Xs]).
rcvMsg(XID , Protocol , From , queryref , [X|Xs]) :-

36 sendMsg(XID , Protocol , From , end_of_transmission , [X|Xs]).

Listing B.4: Lost updates: Client 1

1
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:-eval(do_transaction ()).
3

% The format is agent@machine where the machine is the target machine we are communicating ...
...with

5 remote(" server@bioinf3 ").

7 rcvMsg(XID ,Protocol ,From ,end_of_transmission ,[X|Xs]| LocalContext).

9 do_transaction () :-
transfer ("adila", "wikan", 30).

11

credit(Name , Amount) :-
13 remote(Remote),

sendMsg(XID , jade , Remote , queryref , balance(Name , Balance)),
15 rcvMsg(XID , jade , Remote , reply , balance(Name , Balance)),

println ([" Balance before credit: ", Name , "=", Balance ]),
17

java.lang.Thread.sleep (2000),
19

NewBalance = Balance + Amount ,
21 sendMsg(XID2 , jade , Remote , inform , update(Name , NewBalance)),

rcvMsg(XID2 , jade , Remote , reply , update(Name , _)),
23

java.lang.Thread.sleep (1000),
25

sendMsg(XID3 , jade , Remote , queryref , balance(Name , B)),
27 rcvMsg(XID3 , jade , Remote , reply , balance(Name , B)),

println ([" Balance after credit: ", Name , "=", B]).
29

31 debit(Name , Amount) :-

33 acquire_lock (),

35 remote(Remote),
sendMsg(XID , jade , Remote , queryref , balance(Name , Balance)),

37 rcvMsg(XID , jade , Remote , reply , balance(Name , Balance)),
println ([" Balance before debit: ", Name , "=", Balance ]),

39

java.lang.Thread.sleep (2000),
41

NewBalance = Balance - Amount ,
43 sendMsg(XID2 , jade , Remote , inform , update(Name , NewBalance)),

rcvMsg(XID2 , jade , Remote , reply , update(Name , _)),
45

java.lang.Thread.sleep (1000),
47

sendMsg(XID3 , jade , Remote , queryref , balance(Name , B)),
49 rcvMsg(XID3 , jade , Remote , reply , balance(Name , B)),

println ([" Balance after debit: ", Name , "=", B]),
51

release_lock ().
53

transfer(From , To, Amount) :-
55

acquire_lock (),
57

remote(Remote),
59 sendMsg(XID , jade , Remote , queryref , balance(From , _)),

rcvMsg(XID , jade , Remote , reply , balance(From , B1)),
61

NewB1 = B1 - Amount ,
63 sendMsg(XID2 , jade , Remote , inform , update(From , NewB1)),

rcvMsg(XID2 , jade , Remote , reply , update(From , NB1)),
65

java.lang.Thread.sleep (2000),
67

sendMsg(XID3 , jade , Remote , queryref , balance(To, _)),
69 rcvMsg(XID3 , jade , Remote , reply , balance(To, B2)),
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71 NewB2 = B2 + Amount ,
sendMsg(XID4 , jade , Remote , inform , update(To, NewB2)),

73 rcvMsg(XID4 , jade , Remote , reply , update(To, NB2)),
println ([" Before transfer: ", From , "=", B1, " ", To, "=", B2]),

75 println ([" After transfer: ", From , "=", NB1 , " ", To, "=", NB2]),

77 release_lock ().

79 acquire_lock () :-
remote(Remote),

81 sendMsg(XID , jade , Remote , queryref , lock(_)),
rcvMsg(XID , jade , Remote , reply , lock(false)),

83 % Status = true ,
println ([" lock acquired "]),

85 sendMsg(XID2 , jade , Remote , inform , lock()),
rcvMsg(XID2 , jade , Remote , reply , lock(true)),

87 println ([" account locked "]),
!.

89 acquire_lock () :-
remote(Remote),

91 sendMsg(XID , jade , Remote , queryref , lock(_)),
rcvMsg(XID , jade , Remote , reply , lock(true)),

93 % Status != true ,
println ([" lock not acquired , sleeping "]),

95 java.lang.Thread.sleep (1000),
acquire_lock ().

97

release_lock () :-
99 remote(Remote),

sendMsg(XID2 , jade , Remote , inform , unlock()),
101 rcvMsg(XID2 , jade , Remote , reply , lock(false)),

println ([" account released "]).

Listing B.5: Lost updates: Client 2

2 :-eval(do_transaction ()).

4 % The format is agent@machine where the machine is the target machine we are communicating ...
...with

remote(" server@bioinf3 ").
6

8 % A testing harness for printing incoming end_of_transmission messages.
% rcvMsg(XID ,Protocol ,From ,end_of_transmission ,[X|Xs]| LocalContext) :-

10 % println ([" end_of_transmission for conversation -id ",XID ,": ",[X|Xs]," "| LocalContext ]).
rcvMsg(XID ,Protocol ,From ,end_of_transmission ,[X|Xs]| LocalContext).

12

14 do_transaction () :-
% debit("adila", 20),

16 report_all ().

18 report_all () :-
acquire_lock (),

20 report_account ([" wikan", "adila"], 0),
release_lock ().

22

credit(Name , Amount) :-
24 remote(Remote),

26 sendMsg(XID , jade , Remote , queryref , balance(Name , Balance)),
rcvMsg(XID , jade , Remote , reply , balance(Name , Balance)),

28 println ([" Balance before credit: ", Name , "=", Balance ]),

30 java.lang.Thread.sleep (2000),
% println ([" Line after sleep "]),

32

NewBalance = Balance + Amount ,
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34 sendMsg(XID2 , jade , Remote , inform , update(Name , NewBalance)),
rcvMsg(XID2 , jade , Remote , reply , update(Name , _)),

36 % println (["Old: ",Balance , " New: ", NewB]),

38 java.lang.Thread.sleep (1000),
% println ([" Line after sleep2 "]),

40

sendMsg(XID3 , jade , Remote , queryref , balance(Name , B)),
42 rcvMsg(XID3 , jade , Remote , reply , balance(Name , B)),

println ([" Balance after credit: ", Name , "=", B]).
44

46 debit(Name , Amount) :-

48 acquire_lock (),

50 remote(Remote),
sendMsg(XID , jade , Remote , queryref , balance(Name , Balance)),

52 rcvMsg(XID , jade , Remote , reply , balance(Name , Balance)),
println ([" Balance before debit: ", Name , "=", Balance ]),

54

java.lang.Thread.sleep (1000),
56 % println ([" Line after sleep "]),

58 NewBalance = Balance - Amount ,
sendMsg(XID2 , jade , Remote , inform , update(Name , NewBalance)),

60 rcvMsg(XID2 , jade , Remote , reply , update(Name , _)),
% println (["Old: ",Balance , " New: ", NewB]),

62

java.lang.Thread.sleep (1000),
64 % println ([" Line after sleep2 "]),

66 sendMsg(XID3 , jade , Remote , queryref , balance(Name , B)),
rcvMsg(XID3 , jade , Remote , reply , balance(Name , B)),

68 println ([" Balance after debit: ", Name , "=", B]),

70 release_lock ().

72

report_account ([], Sum) :-
74 println (["Sum of all account=", Sum]).

report_account ([N|Ns], Sum) :-
76 remote(Remote),

sendMsg(XID , jade , Remote , queryref , balance(N, _)),
78 rcvMsg(XID , jade , Remote , reply , balance(N, B)),

NSum = Sum + B,
80 println ([N, "=", B, " ", NSum]),

report_account(Ns, NSum).
82

acquire_lock () :-
84 remote(Remote),

sendMsg(XID , jade , Remote , queryref , lock(_)),
86 rcvMsg(XID , jade , Remote , reply , lock(false)),

% Status = true ,
88 println ([" lock acquired "]),

sendMsg(XID2 , jade , Remote , inform , lock()),
90 rcvMsg(XID2 , jade , Remote , reply , lock(true)),

println ([" account locked "]),
92 !.

acquire_lock () :-
94 remote(Remote),

sendMsg(XID , jade , Remote , queryref , lock(_)),
96 rcvMsg(XID , jade , Remote , reply , lock(true)),

% Status != true ,
98 println ([" lock not acquired , sleeping "]),

java.lang.Thread.sleep (1000),
100 acquire_lock ().

102 release_lock () :-
remote(Remote),
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104 sendMsg(XID2 , jade , Remote , inform , unlock()),
rcvMsg(XID2 , jade , Remote , reply , lock(false)),

106 println ([" account released "]).

108 Results:
---bank

110 queryref received.lock <java.lang.Object._ -834369677 -978847522 >
queryref derived.lockfalse

112 queryref received.lock <java.lang.Object._ -6905464631609046756 >
queryref derived.lockfalse

114 queryref received.balanceadila <java.lang.Object.N@@9 >
queryref derived.balanceadila100

116 queryref received.balancewikan <java.lang.Object.N@@13 >
queryref derived.balancewikan200

118 queryref received.lock <java.lang.Object._517604657 -1267444982 >
queryref derived.lockfalse

120 queryref received.lock <java.lang.Object._1331913378 -1153084111 >
queryref derived.lockfalse

122 queryref received.balancewikan <java.lang.Object.N@@17 >
queryref derived.balancewikan230

124 queryref received.balanceadila <java.lang.Object.N@@19 >
queryref derived.balanceadila70

126

---client 1
128 lock acquired

account locked
130 Before transfer: adila =100 wikan =200

After transfer: adila =70 wikan =230
132 account released

----cleint2
134 lock acquired

account locked
136 wikan =230 230

adila =70 300
138 Sum of all account =300

account released

• Inline reaction rules

If one considers the problem of an agent communicating asynchronously with several agents at
the same time, one must appreciate the difficulty in recognizing the incoming messages that
can look exactly the same but belong to different communication protocols or different stages
of the same communication protocol. It is also important when specifying the code in the form
of rules to maintain the context (or state) of the particular conversation.

Inline reactions simplify the programming style for specifying communication protocols by
offering the user the opportunity to insert the literals for the predicate rcvMsg directly into the
body of the rules. The syntax of the inline rcvMsg parameters is the same as when rcvMsg
occurs in the head of the reaction rules.

The following example contrasts two possible ways of invoking a query for the predicate
gopubmed locally and remotely. In the case of a local query, the gopubmed predicate is invoked
directly from the body of the rule. This results in the instantiation of the result variable SB,
which is communicated back to the invoking object Obj passed as the first parameter in the
head of the rule. In the case of a remote query, a pair of sendMsg/rcvMsg predicates replaces
this local call with the asynchronous remote call to the target agent prova@rocket.

manager("prova@rocket").

local_query_gopubmed(Obj,X,MaxResults,Flags) :-

gopubmed(X,MaxResults,Flags,SB),
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Obj.results_ready(SB).

remote_query_gopubmed(Obj,X,MaxResults,Flags) :-

manager(Manager),

sendMsg(jade,Manager,queryref,gopubmed(X,MaxResults,Flags,SB),id0),

rcvMsg(jade,Manager,reply,gopubmed(X,MaxResults,Flags,SB),id0),

Obj.results_ready(SB).

It should be noted that the inference engine does not wait on the rcvMsg call. Instead, the
execution flow is stored in a transparently constructed temporal reaction rule that is activated
once the message matching the specified pattern in rcvMsg has arrived. The engine then
continues processing other incoming messages and goals. The temporal rule includes the pattern
of the message specified in rcvMsg (or rcvMult, see below) in the head of the rule and all
remaining goals at the current execution point in its body. This behaviour is different from
suspending the current thread and waiting for the replies to arrive as implemented by some
programming languages such as Go!. The Prova-AA execution engine maintains one main
thread while allowing an unlimited number of conversations to proceed at the same time without
incurring the penalty and limitations of multiple threads otherwise used solely for the purpose
of maintaining several conversation states at the same time.

The rcvMsg inline reaction should normally be used only in situation when zero or one replies
are expected. According to the semantics shown for the (outline) queryref reaction rules above,
a special end of transmission message serves as an indicator that no more replies will be arriving.
If the queryref returns no replies because the queried predicate fails, end of transmission will
still be sent to the originator of the query. In the case of a waiting rcvMsg inline reaction in the
form of its corresponding temporal rule, the end of transmission results in discharging of the
temporal rule and failure of the literals that follow rcvMsg. For a single result, the temporal
rule corresponding to rcvMsg is deleted upon the receipt of the reply, and end of transmission
is simply ignored.

If more than one reply is sent back to the query originator rcvMsg will be discharged after
the first reply and all subsequent replies and end of transmission will be ignored unless there
are (outline) reaction rules that will match their pattern. The last Prova-AA construct rcvMult
is introduced in order to deal with the multiple replies situation. The arguments of rcvMult are
exactly the same as for rcvMsg but the semantics is different. The temporal rule corresponding
to rcvMult continues to wait for incoming messages until the end of transmission arrives. For
each incoming reply, the trail of outstanding goals in the search tree will be independently
explored until exhaustion or until a new rcvMsg or rcvMult reaction is encountered.

The following fragment shows how a remote query to predicate parent possibly returning
multiple replies results in non-deterministic exhaustive printing of all the replies until finally,
end of transmission arrives and rcvMult is discharged.

test() :-

% Send a queryref message with replies to be sent back to the agent

sendMsg(jade,Me,queryref,parent(X,Y),id0),

rcvMult(jade,Me,reply,parent(X,Y),id0), println(["Inline reaction

",rcvMult(Me,reply,parent(X,Y),id0)]).

Returning to the issue of transparent processing of conversation-id(s), it should be noted that in
the above example, rcvMult will match only the reply to the sendMsg immediately preceding it.
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If there was another non-reply message sent between these two messages (thereby initiating an-
other conversation) the rcvMult would be implicitly assigned to this messages conversation and
would not have matched the reply. In summary, the current implementation treats send/reply
pairs as belonging to the same conversation and does not allow any other conversation initiating
messages to occur between them. In the future, this design may be changed to include explicit
treatment of conversation-id(s).

B.1.3 Communicator Prova-AA agent for Java applications

We have developed and included with the Prova-AA distribution a special class reagent Com-
municator that allows arbitrary Java applications to embed a Prova-AA agent and become
equal participants in the network of such agents. In this section we describe an example of a
Communicator Prova-AA agent.

The following example shows a fragment of a class BioAgent that instantiates an embed-
ded version Prova-AA Communicator that can exchange messages via JADE-HTTP on port
7779. The Communicator is constructed by calling its constructor with two arguments: the
port number and the file with Prova script with initial goals, facts and rules constituting its
initial rule base. The public variable queueAgent inside a communication represents a message
queue for the Prova engine. The queue insertions and deletions are synchronised by the class
RMessageQueue inside Prova.

final private static String rules = "requestor.prova";

protected Communicator comm;

protected RMessageQueue queueAgent;

public void results_ready( StringBuffer sb ) {

System.out.println( sb );

}

public void submit_gopubmed( String s, int imaxpapers, int imode ) {

RMessage r = new RMessage("");

Integer maxpapers = new Integer(imaxpapers);

Integer mode = new Integer(imode);

r.append_string("[0,\"eval\",[query_gopubmed,")

.append(this)

.append_string(",")

.append(s)

.append_string(",")

.append(maxpapers)

.append_string(",")

.append(mode)

.append_string("]]");

queueAgent.add( r );

}

public static void main(String[] args) {

// ...

comm = new Communicator( "7778", rules );

queueAgent = comm.queueAgent;

}
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The Java application interfaces with the Prova rule base by using this message queue for sub-
mitting goals and using methods similar to the method results ready shown above to receive
results of various asynchronous queries inside the Java or Web application. The distributed
GoPubMed web application embeds a Communicator agent in this way. The listing below
shows how easy a java application can programmatically issue queries to the running GoP-
ubMed system. The listing is the full text of the requestor.prova file used for initialising the
Communicator agent in the BioAgent class as shown above.

gopubmed_server("prova@server_name").

query_gopubmed(BioAgent,X,MaxResults,Flags) :-

gopubmed_server(GoPubMed),

sendMsg(XID,jade,GoPubMed,queryref,gopubmed(X,MaxResults,Flags,SB)),

rcvMsg(XID,jade,GoPubMed,inform,gopubmed(X,MaxResults,Flags,SB)),

BioAgent.results_ready(SB).

The fact gopubmed server stores the agent address of the Prova-AA agent embedded in the
GoPubMed web application. The query for the predicate query gopubmed is called from the
Java application represented by the class BioAgent. In the body of the corresponding rule the
server address is retrieved and a pair sendMsg/rcvMsg is used to query the predicate gopubmed
inside the GoPubMed server agent. Upon the receipt of the reply the method results ready in
BioAgent is called returning a StringBuffer SB with the HTML code for the produced page.

B.1.3.1 Specifying the behaviour of Prova-AA agents as state machines

In this section, we consider a more rigorous, state machines based implementation of the roles
the Prova-AA agents play in conversations. Consider two agent roles Seller and Buyer engaging
in a Direct Buy protocol. The following Prova-AA listings show the specifications and imple-
mentations of the Seller and Buyer roles. The code is included with the Prova distribution as
test049.prova. The general pattern for encoding states and transitions in Prova-AA is:

state_j(...conversation_paramaters...) :-

[!,],

[event_j+1(...),] OR [condition_j_j+1(...), !,]

[actions_j+1(...),]

[state_j+1(...)].

state_j(...) :-

...

state_j+1(...) :-

...

For each state j in the state machine of an agent role, possibly parameterised with additional
conversation parameters passed from the preceding states, we specify a set of rules for predicate
state j. If there is a family of states that are chosen dynamically based on their parameters,
we specify one rule for state j with the particular parameters instantiation. Moreover, if there
are N transitions from state j to subsequent states, there is one rule for state j per transition.
Each rule for state j contains in its body:

• possible Cut (!) used when parameters of state j select this particular parameterised state;

• EITHER the event for a transition j ⇒j+1 using rcvMsg or rcvMult inline reactions;

234



• OR the conditions for this transition;

• the actions that should be executed on entry to state j+1,

• and the call to next state j+1.

If both event and condition are required and there could be multiple different events leading
to different states, we would normally introduce an intermediate state before taking a further
transition guarded by the condition. If there is no multiple choice involved in the event, event
and condition(s) can be combined in one rule. Consider for example, the two rules for the
directbuy seller 1 corresponding to state 1 in Seller. There are two rules because there are
two transitions from state 1. The first rule checks if the product with name Product exists
in the database. If the product is there, as is the case for car(volvo,s60), the Cut follows
and the two messages corresponding to the entry actions for state directbuy seller 2(yes) are
executed. Otherwise, a transition to directbuy seller 2(no) with the corresponding message
sending follows. Consider the transitions from state 1 in Buyer to states 2(agree) and 2(refuse).
The following line rcvMsg(XID,Protocol,From,Perf,Product,seller) allows the agent to wait for a
message for an unspecified performative Perf. The family of states 2 is parameterised by the
particular incoming message (agree or refuse) that are chosen by unification of the predicate
parameters in the heads of the corresponding rules.

%Seller:

:- eval(directbuy_seller_0()).

product(car(volvo,s60),11000). product(car(ford,fiesta),5000).

directbuy_seller_0() :-

rcvMult(XID,Protocol,From,query_ref,Product,buyer),

directbuy_seller_1(XID,Protocol,From,Product).

directbuy_seller_1(XID,Protocol,From,Product) :-

product(Product|_), !,

sendMsg(XID,Protocol,From,agree,Product,seller),

sendMsg(XID,Protocol,From,inform_result,Product,seller),

directbuy_seller_2(yes,XID,Protocol,From,Product).

directbuy_seller_1(XID,Protocol,From,Product) :-

sendMsg(XID,Protocol,From,refuse,Product,seller),

directbuy_seller_2(no,XID,Protocol,From,Product).

directbuy_seller_2(yes,XID,Protocol,From,Product) :- !,

rcvMsg(XID,Protocol,From,request,[Product,Price],buyer),

product(Product,SellerPrice),

directbuy_seller_3(XID,Protocol,From,Product,Price,SellerPrice).

directbuy_seller_2(no,XID,Protocol,From,Product).

directbuy_seller_3(XID,Protocol,From,Product,Price,SellerPrice) :-

Price>SellerPrice,!,

sendMsg(XID,Protocol,From,agree,[Product,Price],seller),

sendMsg(XID,Protocol,From,inform_done,[Product,Price],seller),
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directbuy_seller_4(agree,XID,Protocol,From,Product,Price).

directbuy_seller_3(XID,Protocol,From,Product,Price,SellerPrice) :-

sendMsg(XID,Protocol,From,refuse,[Product,Price],seller),

directbuy_seller_4(refuse,XID,Protocol,From,Product,Price).

directbuy_seller_4(agree,XID,Protocol,From,Product,Price).

directbuy_seller_4(refuse,XID,Protocol,From,Product,Price).

B.2 Organising Travels Scenario

In this section, for illustration purposes, we show a PROVA implementation of the travel
Scenario described in Deliverable I5-D2 [3]. The program consists of two agents a Travel
Agency agent and a customer agent. The implementation follows the main system requirements
described in the Scenario in section 5.2.1 of the deliverable. In order for the system to accomplish
initial planning, the following are required

• Web query language with advanced reasoning capabilities

• support for receiving volatile data

• query and reasoning with volatile data

Further details on the specification of the scenario and use cases are to be found at [3].

B.2.1 Initial Planning

B.2.1.1 Gathering and reasoning with information

Listing 7 contains the Travel Agency agent where information about flights is implemented as
facts, it contains information about origin and destination cities, dates and times of departure
and arrival, class and prices in (lines 1-14). Gathering information and querying the content of
the web can also be realized using PROVA as shown in listing 6. The program issues a query
to the web which then retrieves the XML documents of the query output (Hotels in Rome in
this example) and then parse the XML documents for needed information such as name of the
hotel and availability.

Listing B.6: Organising Travels Scenario: Travel Agency:with web connection

1 :-eval(doSearch ()).

3 searchURL ("http :/// travel/airlines/lang/en-us/itinerary.asp?").

5

doSearch ():-
7 searchDestination("Rome",10,XML),

printXML(XML).
9

11 searchDestination(Query ,Restrict ,XML):-
print ([" Query for ",Query ," at hotels.net"]),

13 searchURL(BaseURL),
concat([BaseURL ,"..."] , URLString0),

15 concat([URLString0 ,"..."] , URLString1),
...

17 retrieveXML(URLString ,XML),
println (["URL Search:", URLString ]),
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19 println ([" done "]).

21 %%%%%%%%%%%%%%%% UTILITIY predicates %%%%%%%%%%%%%%%%%%%%%%

23 retrieveXML(URLString ,Root):-
URL = java.net.URL(URLString),

25 print (["."]) ,
Stream = URL.openStream (),

27 print (["."]) ,
ISR = java.io.InputStreamReader(Stream),

29 XMLResult = XML(ISR),
Root = XMLResult.getDocumentElement (),

31 print (["."]).

33 printXML(XML):-
println(["----------------------------------------------------"]),

35 descendants(XML , "Accomodation", City),
descendantValue(City , "City", City),

37 descendantValue(Name , "Hotel_Name", Name),

39 println ([" CITY:", CITY]),
println ([" NAME:", Name]),

41

println(["----------------------------------------------------"]).
43

handle_exception(Text) :-
45 exception(Ex),

println ([Ex]),
47 Text = ’compensation ’.

49 descendantValue(Node ,Name ,StringName):-
descendantNode(Node ,Name ,Data),

51 StringName = Data.getNodeValue ().

53 descendantNode(Node ,Name ,Data):-
X = Node.getElementsByTagName(Name),

55 X.nodes(ID),
Data = ID.getFirstChild ().

57

59

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61

% Definition of a descendant in any depth
63 % XPath equivalent: //*

descendants(Node ,Node).
65 descendants(Element ,S2):-

children(Element ,S1),
67 descendants(S1,S2).

69 % Definition of a descendant in any depth with given name
% XPath equivalent: //Name

71 descendants(Node ,Name ,Descendant):-
descendants(Node ,Descendant),

73 nodeName(Descendant ,Name).

75 descendantsValueContains(Current ,Name ,ValuePart):-
descendants(Current ,Name ,Node),

77 nodeValue(Node ,Value),
Value.contains(ValuePart).

79

% Simulates an XPath traversal
81 % XPath equivalent: //Name/text()

descendantsValue(Current ,Name ,Value):-
83 descendants(Current ,Name ,Node),

nodeValue(Node ,Value).
85

descendantsIntValue(Current ,Name ,Value):-
87 descendants(Current ,Name ,Node),

nodeValue(Node ,StringValue),
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89 Value = Integer.parseInt(StringValue).

91 children(Element ,Child):-
Childs = Element.getChildNodes (), % Java call returning direct children

93 Childs.nodes(Child).

95 % Definition of a child with a given name
% XPath equivalent: /Name

97 children(Node ,Name ,Child):-
children(Node ,Child),

99 nodeName(Child ,Name).

101

printNode(Node):-
103 nodeName(Node ,Name),

nodeValue(Node ,Value),
105 println ([Name ," = {",Value ,"}"]).

107 nodeName(Node ,Name):-
Name = Node.getNodeName ().

109

nodeValue(Node ,Value):-
111 Data = Node.getFirstChild (),

Raw = Data.getNodeValue (),
113 Value = Raw.trim().

B.2.1.2 Arranging the trip according to plan

Systems that could arrange a trip on the web according to a given plan require:

• Communication of data between systems that cooperate to arrange a trip

• Updates to persistent data

The Travel Agency agent also manages the communication between the two agents by ex-
changing notifications and invoking reaction rules to produce alternatives plans if initial plan
doesn’t hold any more because of a change in the plan conditions such as flight delay as shown
in the example below (lines 48-50 ).

Listing B.7: Organising Travels Scenario: Travel Agency

% == flights =================================================================
2 % No. From To F.Time To Time Date Class Price

flight(fl001 , "Munich", "Milian", "5 -3 -2005/09:30" , "5 -3 -2005/12:00" ,
4 "economy", 70).

flight(fl002 , "Milian", "Florence", "12 -3 -2005/14:45" , "12 -3 -2005/17:00" ,
6 "economy ",30).

flight(fl003 , "Munich", "Rome", "5 -3 -2005/10:00" , "5 -3 -2005/12:00" ,
8 "economy", 60).

flight(fl004 , "Florence", "Munich", "15 -3 -2005/09:30" , "15 -3 -2005/12:00" ,
10 "economy ",65).

flight(fl005 , "Milian", "Florence", "12 -3 -2005/17:42" , "12 -3 -2005/19:40" ,
12 "economy ",35).

flight(fl006 , "Florence", "Munich", "15 -3 -2005/10:30" , "15 -3 -2005/13:00" ,
14 "economy ",95).

16 % requests for all flights
rcvMsg(ID, Protocol , From , query , [flights|Rest]) :-

18 println (["got request for flights "]),
buildFlightList (),

20 flight_list(L),
sendMsg(ID, jade , From , inform , flights(L)).

22

% builds a list of flights that the agent sends afterwards to the client
24 buildFlightList () :-

retractall(flight_list(_)),
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26 assert(flight_list ([])),
flight(ID, From , To, FromDate , ToDate , Class , Costs),

28 flight_list(List),
retractall(flight_list(_)),

30 assert(flight_list ([[ID, From , To, FromDate , ToDate , Class , Costs]|List])),
fail().

32 buildFlightList ().

34 % == simulation ===============================================================

36 % change of the time within tolerable limits
rcvMsg(ID, Protocol , From , query , [simulate_flight_change_1|Rest]) :-

38 debug(" simulating plan change ..."),
sendMsg(ID, jade , From , inform , flight_change ([fl002 , "Milian", "Florence",

40 "12 -3 -2005/14:55" , "12 -3 -2005/17:20" , "economy " ,30])).

42 % change of the day which is not tolerable
rcvMsg(ID, Protocol , From , query , [simulate_flight_change_2|Rest]) :-

44 debug(" simulating plan change ..."),
retractall(flight(fl002 ,_,_,_,_,_,_)),

46 assert(flight(fl002 , "Milian", "Florence", "16 -3 -2005/15:23" ,
"16 -3 -2005/18:00" , "economy ",46)),

48 sendMsg(ID, jade , From , inform , flight_change ([fl002 , "Milian", "Florence",
"16 -3 -2005/15:23" , "16 -3 -2005/18:00" , "economy " ,46])).

50

% cancellation of a flight
52 rcvMsg(ID, Protocol , From , query , [simulate_flight_cancel|Rest]) :-

debug(" simulating plan cancellation "),
54 sendMsg(ID, jade , From , inform , flight_canceled(fl004)).

56 % == auxiliary rules ==========================================================

58 % two rules for the debugging output. the 1st takes lists of strings and the
% 2nd works with simple strings

60 % params: in:LIST list of strings you want to print out
debug([S|R]) :-

62 !,
concat(R,T),

64 concat([S,T],F),
debug(F).

66 % params: in:String the text you want to print out
debug(S) :-

68 println (["[ DEBUG] ",S]).

B.2.2 Arranging the trip

Listing 8 shows the user agent, first the user trip preferences is implemented along with the
hotels and trains sample knowledge bases (a sample for the example purposes). It also contains
the reactions rules that produced alternative plans that still fits the users time frame and
preferences.

B.2.3 Adapt Plan to changes

The Travel agency agent notify the customer agent about changes in the flight schedule, the
customer agent reacts by searching for the best alternative plans like shown in the listing below.

Listing B.8: Organising Travels Scenario: customer

:-eval(test()).
2

% == general settings ========================================================
4 flight_agent (" flight@bioinf3 "). % agent name of flight agency
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6 % == trains ==================================================================
% No. From To F.Time To Time Date Class Price

8 train(tr001 , "Rome", "Venice", "8 -3 -2005/11:11" , "8 -3 -2005/13:12" ,
"economy", 10).

10 train(tr002 , "Venice", "Milian", "9 -3 -2005/13:21" , "9 -3 -2005/16:16" ,
"economy", 12).

12 train(tr003 , "Rome", "Venice", "11 -3 -2005/11:11" , "11 -3 -2005/13:23" ,
"economy", 15).

14

% == hotels ==================================================================
16 % No. Where Name Stars 2RF 1RF Price p.r.

hotel(htl001 , "Rome", "Rome Plaza", "4", "1", "1", "60").
18 hotel(htl002 , "Rome", "Rome In", "3", "1", "1", "20").

hotel(htl003 , "Venice", "Hilton Venice", "5", "1", "1", "70").
20 hotel(htl004 , "Milian", "Milian -In", "3", "1", "1", "20").

hotel(htl005 , "Florence", "Continental Florence", "4", "1", "1", "30").
22

% == preferences =============================================================
24 tripMinStars (3).

tripFrom (" Munich").
26 tripStart ("5 -3 -2005/9:00").

tripEnd ("15 -3 -2005/17:00").
28 tripStations ([" Venice", "Florence", "Rome", "Milian "]).

tripMaxCosts (400).
30

% == reaction rules ==========================================================
32

% reacts to changing in flights
34 rcvMsg(ID, jade , From , inform , [flight_change , Data|_]) :-

println ([""]),
36 Data = [FID , FFrom , To, FromDate , ToDate , Class , Costs],

debug ([" something in flight ", FID , " has changed ... "]),
38 debug ([" flight No. ", FID]),

debugl(" was: "),
40 print_flight(FID),

retractall(flight(FID ,_,_,_,_,_,_)),
42 assert(flight(FID , FFrom , To, FromDate , ToDate , Class , Costs)),

debugl(" is: "),
44 print_flight(FID),

validate_replan ().
46

% reacts to cancellation of flights
48 rcvMsg(ID, jade , From , inform , [flight_canceled , FID|_]) :-

println ([""]),
50 debug ([" flight No.", FID , " was cancelled , ..."]),

retractall(flight(FID ,_,_,_,_,_,_)),
52 retractall(current_plan(_)),

validate_replan ().
54

% == planning related stuff (core) ===========================================
56

% finds the best (cheapest) plan of all
58 best_plan(Plan , Sum) :-

retractall(current_best_plan(_,_)),
60 assert(current_best_plan([], 99999)),

plan(CPlan , CSum),
62 check_plan(CPlan),

current_best_plan(CPlan2 , CSum2),
64 egt(CSum2 , CSum),

retractall(current_best_plan(_,_)),
66 assert(current_best_plan(CPlan , CSum)),

fail().
68 best_plan(Plan , Sum) :-

current_best_plan(Plan , Sum),
70 lt(Sum , 99999).

72 % builds some simple plan
% syntax: [[startDate , ID, endDate], ...]

74 plan(Plan , Sum) :-
% get user ’s preferences
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76 tripFrom(From),
tripStart(FromDate),

78 tripEnd(UntilDate),
tripStations(Cities),

80 tripMaxCosts(PriceLimit),
% flight from home city into country

82 elementOfList(ToCity , Cities , RestCities),
% search window of 1 day

84 addDaysToDate(FromDate , 1, NextDate),
fetch_flight(From , NextDate , ToCity , Costs1 , ArrivalDate1 , FlightNo1),

86 build_plan_node_from_id(FlightNo1 , Node),

88 % flight within country & book some hotels
fetchRestCities(ToCity ,RestCities ,ArrivalDate1 ,PlanRest ,SumRest),

90 lastFlight(_, LastDate),
Plan = [Node|PlanRest],

92 add(SumRest , Costs1 , Sum),
% final calculations and tests

94 dateBeforeDate(LastDate , UntilDate),
print ([""]).

96

% builds a plan that flies from CurrentCity over all Cities with the costs Sum
98 fetchRestCities(_, [], _, [HotelNode , FlightNode], Costs) :-

lastCity(LastCity , FromDate),
100 tripEnd(ToDate),

tripFrom(From),
102 % search for a flight back

fetch_flight(LastCity , ToDate , From , LastCosts , LastDate , LastNo),
104 build_plan_node_from_id(LastNo , FlightNode),

cityFromId(LastNo , _, RealLastDate),
106 retractall(lastFlight(_,_)),

assert(lastFlight(LastNo , RealLastDate)),
108 % search for a hotel for the last days

fetchHotel(LastCity , FromDate , RealLastDate , HotelId , HotelCosts),
110 build_plan_node_from_id(HotelId , HotelNode),

add(HotelCosts , LastCosts , Costs).
112 fetchRestCities(CurrentCity , Cities , StartDate , Plan , Sum) :-

% take some of the cities
114 elementOfList(NextCity , Cities , RestCities),

% define the search window
116 addDaysToDate(StartDate , 5, NextDate),

% try to find some train or plane moving from CurrentCity to NextCity
118 fetch_something(CurrentCity ,NextDate ,NextCity ,NextCosts ,NextDate1 ,NextNo),

build_plan_node_from_id(NextNo , FlightNode),
120 % try to book a hotel from StartDate to NextDate1

cityFromId(NextNo , _, ToDate),
122 retractall(lastCity(_,_)),

assert(lastCity(NextCity , ToDate)),
124 fetchHotel(CurrentCity , StartDate , ToDate , HotelId , HotelCosts),

build_plan_node_from_id(HotelId , HotelNode),
126 fetchRestCities(NextCity ,RestCities ,NextDate1 ,RestPlan , RestSum),

Plan = [HotelNode , FlightNode|RestPlan],
128 add(NextCosts , RestSum , SumZ),

add(SumZ , HotelCosts , Sum).
130

% finds something (flight|train) that departs before GFromDate
132 fetch_something(GFrom , GFromDate , GToCity , GCosts , GToDate , GNo) :-

fetch_train(GFrom , GFromDate , GToCity , GCosts , GToDate , GNo).
134 fetch_something(GFrom , GFromDate , GToCity , GCosts , GToDate , GNo) :-

fetch_flight(GFrom , GFromDate , GToCity , GCosts , GToDate , GNo).
136

% finds a flight that departs before GFromDate
138 fetch_flight(GFrom , GFromDate , GToCity , GCosts , GToDate , GNo) :-

flight(GNo , GFrom , GToCity , GToDate , FromDate , _, GCosts),
140 dateBeforeDate(FromDate , GFromDate).

% finds a train that departs before GFromDate
142 fetch_train(GFrom , GFromDate , GToCity , GCosts , GToDate , GNo) :-

train(GNo , GFrom , GToCity , GToDate , FromDate , _, GCosts),
144 dateBeforeDate(FromDate , GFromDate).

% finds a hotel for the given period
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146 fetchHotel(City , FromDate , ToDate , HotelId , Costs) :-
hotel(HotelId , City , _, Stars , _, _, Costs),

148 tripMinStars(MinStars),
toInt(MinStars , IMinStars),

150 toInt(Stars , IStars),
egt(IStars , IMinStars).

152

% builds a plan node for the item with the given id
154 build_plan_node_from_id(ID, Node) :-

hotel(ID, _, _, _, _, _, _),
156 !,

Node = ["-", ID, "-"].
158 build_plan_node_from_id(ID, Node) :-

flight(ID, _, _, FDate , TDate , _, _),
160 !,

Node = [FDate , ID, TDate].
162 build_plan_node_from_id(ID, Node) :-

train(ID, _, _, FDate , TDate , _, _),
164 !,

Node = [FDate , ID, TDate].
166

168 % == planning related stuff (validation) =====================================

170 % updates plan ’s timestamps
refresh_plan ([] ,[]).

172 refresh_plan ([[_,ID,_]|T], [[NStartDate ,ID,NEndDate ]|NT]) :-
refresh_step(ID, NStartDate , NEndDate),

174 refresh_plan(T,NT).

176 % returns the current timestamps of item with GNo
refresh_step(GNo , GFromDate , GToDate) :-

178 flight(GNo , GFrom , GToCity , GToDate , GFromDate , _, GCosts).
refresh_step(GNo , GFromDate , GToDate) :-

180 train(GNo , GFrom , GToCity , GToDate , GFromDate , _, GCosts).
refresh_step(HotelId , FromDate , ToDate) :-

182 hotel(HotelId , City , _, Stars , _, _, Costs),
FromDate = "-",

184 ToDate = "-".

186 % checks whether the plan is valid or not
check_plan(Plan) :-

188 refresh_plan(Plan , [[StartDate , ID, EndDate ]|T]),
retractall(cp_last_date(_)),

190 assert(cp_last_date(EndDate)),
ccheck_plan(T).

192 ccheck_plan ([]).
ccheck_plan ([["-", _, "-"]|T]) :-

194 !,ccheck_plan(T).
ccheck_plan ([[ StartDate , ID, EndDate ]|T]) :-

196 cp_last_date(LastDate),

198 dateBeforeDate(LastDate , StartDate),

200 retractall(cp_last_date(_)),
assert(cp_last_date(EndDate)),

202

ccheck_plan(T).
204

% == planning related stuff (replanning) ======================================
206

% checks if plan is valid , if necessary creates some new one
208 validate_replan () :-

current_plan(Plan),
210 check_plan(Plan),

!,
212 debug("old plan still holds !").

validate_replan () :-
214 debug("old plan is no longer possible , building a new one ..."),

debug (""),
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216 retractall(current_plan(_)),
best_plan(Plan , Sum),!,

218 assert(current_plan(Plan)),
debug("here is the new plan :"),

220 print_plan(Plan , Sum).
validate_replan () :-

222 debug("sry , no other plan is possible ").

224 % == planning related stuff (data retrieval) =================================

226 % asks the flight agency for the current set of flights
get_all_flights () :-

228 flight_agent(To),
debug ([" querying ", To, " for all available flights ..."]),

230 sendMsg(ID, jade , To, query , flights ()),
rcvMsg(ID, jade , From , inform , [flights ,Flights|_]),

232 debug ("... got response "),
retractall(flight(_,_,_,_,_,_,_)),

234 assert_flights(Flights).

236 % transforms the result list into some facts
assert_flights ([]).

238 assert_flights ([[ID, From , To, FromDate , ToDate , Class , Costs]|R]) :-
assert(flight(ID, From , To, FromDate , ToDate , Class , Costs)),

240 assert_flights(R).

242 % == main method ==============================================================
test() :-

244 get_all_flights (),
best_plan(Plan , Sum),!,

246 assert(current_plan(Plan)),
debug (""),

248 debug("here is the plan :"),
print_plan(Plan , Sum),

250 Thread.sleep (3000),
debug(" starting the rearrangement simulation ..."),

252 debug(" Simulation 1: change of flight; plan is still possible ..."),
flight_agent(To),

254 sendMsg(ID, jade , To, query , simulate_flight_change_1 ()),
debug(" Simulation 2: change of flight; plan is no longer possible ..."),

256 sendMsg(ID2 , jade , To, query , simulate_flight_change_2 ()),
debug(" Simulation 3: cancellation of some flight ..."),

258 sendMsg(ID3 , jade , To, query , simulate_flight_cancel()).

260 % == auxiliary rules ==========================================================

262 print_plan ([], Costs) :-
debug ("================================================"),

264 debug ([" Overall price: ", Costs]),
println ([""]).

266 print_plan ([[_,H|R]|T], Costs) :-
print_item(H),

268 print_plan(T, Costs).

270 print_item(I) :-
print_flight(I), !.

272 print_item(I) :-
print_train(I), !.

274 print_item(I) :-
print_hotel(I), !.

276

print_hotel(ID) :-
278 hotel(ID, City , Name , Stars , _, _, Costs),

debug ([" Hotel: ", Name , " (", Stars , " stars , ", Costs , " Euro)"]).
280

print_flight(ID) :-
282 flight(ID, From , To, FDate , TDate , Class , Price),

debug ([" Flight ", ID, ": ", From , " (", FDate , ") -> ", To, " (",
284 TDate , ") (", Class , ", ", Price , " Euro)" ]).
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286 print_train(ID) :-
train(ID, From , To, FDate , TDate , Class , Price),

288 debug ([" Flight ", ID, ": ", From , " (", FDate , ") -> ", To, " (",
TDate , ") (", Class , ", ", Price , " Euro)" ]).

290

concatLists ([], L2, L2).
292 concatLists ([H|T], L2, [H|R]) :-

concatLists(T, L2, R).
294

elementOfList(X, [X], []) :- !.
296 elementOfList(X, [X|R], R).

elementOfList(X, [F|R], [F|R2]) :-
298 elementOfList(X, R, R2).

300 lastElement(X, [X]) :- !.
lastElement(X, [_|T]) :-

302 lastElement(X, T).

304 cityFromId(ID, City , Date) :-
flight(ID, _, City , _, Date , _, _).

306 cityFromId(ID, City , Date) :-
train(ID, _, City , _, Date , _, _).

308

lastElementsCity(City , Date , L) :-
310 lastElement ([_, ID|], L),

cityFromId(ID, City , Date).
312

314 dateToDMYHM(Date , Day1 , Month1 , Year1 , Hour1 , Minute1) :-
tokenize_list(Date , "/", [Datum , Time|_]),

316 tokenize_list(Time , ":", [Hour , Minute|_]),
tokenize_list(Datum , "-", [Day , Month , Year|_]),

318 toInt(Hour , Hour1),
toInt(Minute , Minute1),

320 toInt(Day , Day1),
toInt(Month , Month1),

322 toInt(Year , Year1).

324 dMYHMToDate(Day , Month , Year , Hour , Minute , Date) :-
implode (":", [Hour , Minute], Time),

326 implode("-", [Day , Month , Year], Datum),
implode ("/", [Datum , Time], Date).

328

add(Num1 , Num2 , Result) :-
330 toInt(Num1 , A),

toInt(Num2 , B),
332 Result = A + B.

334 toInt(Integer.Val , Integer.Val) :-
!.

336 toInt(Val , Integer.Res) :-
Res = Integer.parseInt(Val),

338 !.

340 egt(Integer.Val1 , Integer.Val2) :-
CV = Val1.compareTo(Val2),

342 CV >= 0.

344 lt(Integer.Val1 , Integer.Val2) :-
CV = Val1.compareTo(Val2),

346 CV < 0.

348 elt(Integer.Val1 , Integer.Val2) :-
CV = Val1.compareTo(Val2),

350 CV <= 0.

352 eq(Integer.Val1 , Integer.Val2) :-
CV = Val1.compareTo(Val2),

354 CV = 0.
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356 addDaysToDate(Date , Days , NewDate) :-
dateToDMYHM(Date , Day , Month , Year , Hour , Minute),

358 NewDay = Day + Days ,
dMYHMToDate(NewDay , Month , Year , Hour , Minute , NewDate).

360

dateBeforeDate("-", _) :-
362 !.

dateBeforeDate(_, "-") :-
364 !.

dateBeforeDate(Date1 , Date2) :-
366 dateToDMYHM(Date1 , Day1 , Month1 , Year1 , Hour1 , Minute1),

dateToDMYHM(Date2 , Day2 , Month2 , Year2 , Hour2 , Minute2),
368 eq(Day1 , Day2),

eq(Month1 , Month2),
370 eq(Year1 , Year2),

!,
372 elt(Hour1 , Hour2),

elt(Minute1 , Minute2).
374 dateBeforeDate(Date1 , Date2) :-

dateToDMYHM(Date1 , Day1 , Month1 , Year1 , Hour1 , Minute1),
376 dateToDMYHM(Date2 , Day2 , Month2 , Year2 , Hour2 , Minute2),

elt(Day1 , Day2),
378 elt(Month1 , Month2),

elt(Year1 , Year2).
380

sameDate(Date1 , Date2) :-
382 dateToDMYHM(Date1 , Day1 , Month1 , Year1 , Hour1 , Minute1),

dateToDMYHM(Date2 , Day2 , Month2 , Year2 , Hour2 , Minute2),
384 eq(Day1 , Day2),

eq(Month1 , Month2),
386 eq(Year1 , Year2),

eq(Hour1 , Hour2),
388 eq(Minute1 , Minute2).

390 % two rules for the debugging output. the 1st takes lists of strings and the
% 2nd works with simple strings

392 % params: in:LIST list of strings you want to print out
debug([S|R]) :-

394 !,
concat(R,T),

396 concat([S,T],F),
debug(F).

398 % params: in:String the text you want to print out
debug(S) :-

400 println (["[ DEBUG] ",S]).
% params: in:String the text you want to print out

402 debugl(S) :-
print (["[ DEBUG] ",S]).

404

Output:
406 Travel Agent ----

Supported protocol 1: jade.mtp.http.MessageTransportProtocol
408 Launching a whole in-process platform ...( Profile main=true local -host=bioinf3

port =1101 ...
...services=jade.core.mobility.AgentMobilityService;jade.core.event.NotificationService

410 host=bioinf3 local -port =1101 mtps=jade.util.leap.ArrayList@1e4457d jvm=j2se)
This is JADE 3.2 - 2004/07/26 13:41:05

412 downloaded in Open Source , under LGPL restrictions ,
at http :// jade.cselt.it/

414 http :// bioinf3 :7778/ acc
Agent container Main -Container@JADE -IMTP :// bioinf3 is ready.

416 [11:04:35] Adding node <Container -1> to the platform
[11:04:35] --- Node <Container -1> ALIVE ---

418 got request for flights
[DEBUG] simulating plan change ...

420 [DEBUG] simulating plan change ...
[DEBUG] simulating plan cancellation

422 -------------------------------------------------------------------------------------
Customer ---

424 This is JADE 3.2 - 2004/07/26 13:41:05
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downloaded in Open Source , under LGPL restrictions ,
426 at http :// jade.cselt.it/

Agent container Container -1@JADE -IMTP :// bioinf3 is ready.
428 Supported protocol 1: jade.mtp.http.MessageTransportProtocol(http :// bioinf3 :7778/ acc)

[DEBUG] querying flight@bioinf3 for all available flights ...
430 [DEBUG] ... got response

[DEBUG]
432 [DEBUG] here is the plan:

[DEBUG] Flight fl003: Munich (5 -3 -2005/10:00) -> Rome (5 -3 -2005/12:00) (economy , 60 Euro)
434 [DEBUG] Hotel: Rome In (3 stars , 20 Euro)

[DEBUG] Flight tr001: Rome (8 -3 -2005/11:11) -> Venice (8 -3 -2005/13:12) (economy , 10 Euro)
436 [DEBUG] Hotel: Hilton Venice (5 stars , 70 Euro)

[DEBUG] Flight tr002: Venice (9 -3 -2005/13:21) -> Milian (9 -3 -2005/16:16) (economy , 12 Euro)
438 [DEBUG] Hotel: Milian -In (3 stars , 20 Euro)

[DEBUG] Flight fl002: Milian (12 -3 -2005/14:45) -> Florence (12 -3 -2005/17:00) (economy , 30...
... Euro)

440 [DEBUG] Hotel: Continental Florence (4 stars , 30 Euro)
[DEBUG] Flight fl004: Florence (15 -3 -2005/09:30) -> Munich (15 -3 -2005/12:00) (economy , 65...

... Euro)
442 [DEBUG] ================================================

[DEBUG] Overall price: 317
444 [DEBUG] starting the rearrangement simulation ...

[DEBUG] Simulation 1: change of flight; plan is still possible ...
446 [DEBUG] Simulation 2: change of flight; plan is no longer possible ...

[DEBUG] Simulation 3: cancellation of some flight ...
448 [DEBUG] something in flight fl002 has changed ...

[DEBUG] flight No. fl002
450 [DEBUG] was: [DEBUG] Flight fl002: Milian (12 -3 -2005/14:45) -> Florence ...

...(12 -3 -2005/17:00) (economy , 30 Euro)
[DEBUG] is: [DEBUG] Flight fl002: Milian (12 -3 -2005/14:55) -> Florence ...

...(12 -3 -2005/17:20) (economy , 30 Euro)
452 [DEBUG] old plan still holds!

[DEBUG] something in flight fl002 has changed ...
454 [DEBUG] flight No. fl002

[DEBUG] was: [DEBUG] Flight fl002: Milian (12 -3 -2005/14:55) -> Florence ...
...(12 -3 -2005/17:20) (economy , 30 Euro)

456 [DEBUG] is: [DEBUG] Flight fl002: Milian (16 -3 -2005/15:23) -> Florence ...
...(16 -3 -2005/18:00) (economy , 46 Euro)

[DEBUG] old plan is no longe possible , building a new one ...
458 [DEBUG] here is the new plan:

[DEBUG] Flight fl003: Munich (5 -3 -2005/10:00) -> Rome (5 -3 -2005/12:00) (economy , 60 Euro)
460 [DEBUG] Hotel: Rome In (3 stars , 20 Euro)

[DEBUG] Flight tr001: Rome (8 -3 -2005/11:11) -> Venice (8 -3 -2005/13:12) (economy , 10 Euro)
462 [DEBUG] Hotel: Hilton Venice (5 stars , 70 Euro)

[DEBUG] Flight tr002: Venice (9 -3 -2005/13:21) -> Milian (9 -3 -2005/16:16) (economy , 12 Euro)
464 [DEBUG] Hotel: Milian -In (3 stars , 20 Euro)

[DEBUG] Flight fl005: Milian (12 -3 -2005/17:42) -> Florence (12 -3 -2005/19:40) (economy , 35...
... Euro)

466 [DEBUG] Hotel: Continental Florence (4 stars , 30 Euro)
[DEBUG] Flight fl004: Florence (15 -3 -2005/09:30) -> Munich (15 -3 -2005/12:00) (economy , 65...

... Euro)
468 [DEBUG] ================================================

[DEBUG] Overall price: 322
470 [DEBUG] flight No.fl004 was cancelled , ...

[DEBUG] old plan is no longe possible , building a new one ...
472 [DEBUG] here is the new plan:

[DEBUG] Flight fl003: Munich (5 -3 -2005/10:00) -> Rome (5 -3 -2005/12:00) (economy , 60 Euro)
474 [DEBUG] Hotel: Rome In (3 stars , 20 Euro)

[DEBUG] Flight tr001: Rome (8 -3 -2005/11:11) -> Venice (8 -3 -2005/13:12) (economy , 10 Euro)
476 [DEBUG] Hotel: Hilton Venice (5 stars , 70 Euro)

[DEBUG] Flight tr002: Venice (9 -3 -2005/13:21) -> Milian (9 -3 -2005/16:16) (economy , 12 Euro)
478 [DEBUG] Hotel: Milian -In (3 stars , 20 Euro)

[DEBUG] Flight fl005: Milian (12 -3 -2005/17:42) -> Florence (12 -3 -2005/19:40) (economy , 35...
... Euro)

480 [DEBUG] Hotel: Continental Florence (4 stars , 30 Euro)
[DEBUG] Flight fl006: Florence (15 -3 -2005/10:30) -> Munich (15 -3 -2005/13:00) (economy , 95...

... Euro)
482 [DEBUG] ================================================

[DEBUG] Overall price: 352
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