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1 Introduction

The REWERSE workpackage A1 is, among others, concerned with modelling, processing and
reasoning with geospatial data. Geospatial data can be (more or less) static or dynamic. More
or less static geospatial data are geospatial ontologies, road maps, addresses etc. Dynamic
geospatial data are, in particular, traffic information, e.g. news about traffic jams, temporary
construction sites, blocked roads, delays or changes in bus or train schedules etc.

Many practical applications of geospatial information processing systems are much more use-
ful if dynamic information is taken into account. Navigation systems are a prominent example
where dynamic information is most useful. ‘Static’ queries to (XML-) databases can, however,
also benefit from dynamic information. A straighforward answer to a query like “where is the
closest pharmacy” can be useless when the road to the closest pharmacy is blocked. As we
have shown in [19], there are in fact many geospatial relations whose evaluation amounts to
a path planning problems. Therefore one of the goals in WG A1 is to consider also dynamic
information in geospatial information processing, and in particular in path planning problems.

Dynamic information usually comes as streams of data, and these data streams must be
processed, usually in several steps, until they can be fed into the final application system.

In this deliverable we present two developments. The first one is a Local Data Stream
Management System (L-DSMS). Data stream management systems are, for example, used in
grids to control the flux of large amounts of data from the data sources, telescopes, for example,
to world wide distributed computer centers. This is not an application for L-DSMS. L-DSMS is
local in the sense that it facilitates the specification and construction of a single Java program
which consists of a network of nodes for processing streams of data. Each such node receives
data from one or several data sources, processes them in a certain way, and delivers the processed
data to one or more data drains. A data drain can be the data source for the next processing
node in the network, or it can be the end application in the whole processing chain. One of
the components of L-DSMS is the SPEX XML–filtering system [21, 22]. It processes XPath [6]
queries on a stream of XML data and can be used to extract interesting information from XML
streams.

The L-DSMS network is configured by XML–files. They contain the list of nodes, and for
each node its sources and drains. Each node corresponds to a Java class whose methods do
the actual processing. The L-DSMS reads the configuration files, loads the corresponding Java
classes and arranges them into the required network.

The second development is an application of the L-DSMS for processing dynamic traffic
information. The traffic information comes from RDS-TMC receivers, is processed in several
steps and then delivered to several application systems. The details are described in section 5.

2 Dynamic Data

The traditional way in which data is managed and made available for processing is via (rela-
tional) Database Management Systems (DBMS), which expect data to be put into the form of
persistent data sets. Whereas for many applications this constitutes a suitable form of data
storage, there exists a growing number of applications which require data to be treated and
processed as a continuous stream [1]. Currently a number of different Data Stream Management
Systems (DSMS) are developed to facilitate access to data streams.

If there are relatively infrequent and only small updates, querying stored data sets is a
reasonable method for data access as opposed to cases, where there is a continuous stream of

1



data which by existence constitutes updates inherently1, or whenever data cannot be stored for
processing.

There are many examples of data streams: news tickers, sensor networks, traffic monitoring,
and usage logs, to name but a few.

2.1 Comparison between DSMS and DBMS

Traditional DBMSs operate on a basis of relatively static data. These static data can then
be queried using a suitable query language (most commonly SQL), whereas at different times
mostly different queries are processed. DSMSs in contrast store a number of rather static
different (continuous) queries which are then processed against an incoming stream of data
which is continuously changing. A comparison between different characteristics of DBMSs and
DSMSs can be found in table 1. A more detailed review of DSMSs with an emphasis on
application requirements, data models, continuous query languages, and query evaluation can
be found in [8].

DBMS DSMS
persistent data (relations) transient data
random access sequential access
single queries continuous queries
(theoretically) infinite secondary memory finite main memory
current state of data relevant ordered access
relatively low and infrequent updates continuous updates
processing speed not critical processing speed critical

Table 1: Characteristics of DBMS and DSMS

2.2 Definition

Chiefly two types of data streams are distinguished in the literature: tuple streams and message
streams. Tuple streams [4, 9] are streams of sequences of flat data items of the same length,
like those used in relational database tables. In contrast to tupels, the single items contained
in message streams are neither flat nor are they of the same size or structure, i.e. they can, for
example, consist of tree like structures, whose size and nesting depth can vary [22].

2.2.1 Tuple Streams

Continuous streams from sensor networks, e.g. temperature or humidity sensors, are typically
formatted as tuples, i.e. a certain number of numerical values transmitted as a sequence. Each
sensor would generate data in the same form, the collection of which builds up the stream.
Although these values could be stored in a relational database, sometimes it is not desirable or
necessary to store them persistently – either because there are too many data, or because the
data are only valuable for a short time and must be processed immediately. In some scenarios
system engineers go to great lengths in order to reduce the amount of data to be transmitted
(e.g. to reduce costs) while still retaining the net information produced. In Traffic and Travel

1Updates are tuples or messages simply appended to the data stream.
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Information systems (TTI, see section 2.3.1), for example, a huge number of sensors on highway
bridges need to transmit traffic information to a central component. Instead of transmitting
data in fixed intervals, different mechanisms are employed to send only data when something
“interesting” is happening (e.g. if there is a change in traffic flow, etc.).

2.2.2 Message Streams

Items in a news ticker cannot be treated in the same way. Although it is technically possible
to produce a tuple of strings, there are far more advanced methods available. One possibility
is the use of XML and an appropriate schema. The schema defines the form of a news item so
that a receiving device can understand the structure. In this case, a suitable schema could be
that a news item has to consist of a title, a location, a source, one or more paragraphs of text,
and – optionally – one or more images. This way, the news items can be adapted in size and
struture to their content while still conforming to their schema. Receiving devices can decode
and display the items depending on the target media.

A more comprehensive discussion of data streams is not in the scope of this paper, it can
be found, for example, in [3] or [21].

2.3 Examples

The following examples may not be the most typical to illustrate the two prevailing types of
data streams, but they serve well to illustrate the significant impact dynamic data have on
geospatial reasoning processes.

2.3.1 Traffic Information

Traffic and traveller information (TTI) [26] as an important part of Intelligent Transport
Systems (ITS) [17, 7] serves to provide to the traveller real-time information about traffic and
travel conditions, for example, schedules, extraordinary events and incidents, delays, possibly
weather conditions and more. Fig. 1 shows a schematic overview (from [14], p.159).

The aim of TTI is to support the efficient use of network infrastructure, i.e. to improve net-
work capacity and reduce travel time, delays, and fuel consumption, by incorporating TTI into
the routing process of travellers. This way a route can be better optimised to different criteria,
such as minimal overall travel time, minimal cost, or other, offering a much broader range of
(dynamic) parameters2 in order to facilitate more complex cost-functions and, subsequently,
more accurate route planning.

The influence of TTI on travel behaviour (e.g. the optimisation of travel time) can be divided
into three main categories [26]:

• Spatial: Optimise travel time by using different routes which allow for the quickest travel
because of speed limits, number of traffic lights, current and predicted congestion, etc.
(note the important distinction between quickest and shortest route).

• Temporal: Temporal adaptation works similar to spatial adaptation. Instead of shifting
spatially, travel is optimised by temporal shifts, such as avoiding peak times by conducting
the travel before or after the so-called “rush hours”. Temporal and spatial adaptation are
the most common methods, a combination of both is also possible.

2Static attributes of, for example, a street segment include length or number of lanes, while cur-

rent congestion or road surface condition constitue dynamic attributes – the latter being derived from TTI.
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Figure 1: Projected scenario for TTI service provision

• Modal: Modal adaptation means using one or more alternative modes of transportation
(or combinations thereof) for travel. A typical example is the combination of a private
vehicle and public transport by train, for example, travelling with a car to a city-near
park-and-ride station, then taking a train or subway to the final destination near the city
center.

Generally, one has to distinguish between pre-trip information and en-route information [26].
The former is less dynamic in nature and is important for the planning process of a certain route
(e.g. distances, flight schedules, congestion statistics, etc.). The latter is highly dynamic up-
to-date information which concerns an already planned route insofar as it provides information
(e.g. cancelled flights, recently developed traffic congestions, etc.) that would have had impact
on the a priori planning process. It usually leads to an alteration of the route and/or renewed
planning.

Chrobok et al. [5] mention another categorisation which consists of three types of traffic
data: historical, current, and predicted. Statistical analysis is based on historical data in order
to provide information about the state of the traffic network at previous periods in time. Current
data is up-to-date information about the current state of the traffic network, possibly fed into
and enriched by on-line simulations. Predictive data is generated by different means (simulation,
statistical analysis, etc.) and aims at influencing travel behaviour.

TTI can be broadcast by a number of different means and services. One widely used method
is the use of the Traffic Message Channel (TMC) via the Radio Data System (RDS) which serves
as part of the foundation of the protoype described in this article. A more in-depth discussion
of RDS-TMC can be found in section 4.2. In addition to the more classic ways to broadcast TTI
(e.g. spoken messages or RDS-TMC) a number of alternative media have become available in
the recent past, such as DAB, DVB, Internet, GSM, etc., for an overview see for example [15].
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2.3.2 Weather Information

Weather forecasts generate a very similar type of data stream as TTI. Before weather forecasts
are created, typically by simulation, a huge amount of raw weather data from highly distributed
sensors are to be processed, refined and fed into a simulation. These raw data usually consist
of a pair of values, one holding the value of interest (e.g. 980 hPa), the other holding a time
stamp of the measurement. If values are transmitted in regular intervals (e.g. 1 minute), one
single time stamp can be transmit together with a row of values, intermediate time stamps
being extrapolated.

As opposed to the different formats and structures messages can have, tuples of values
are much less complex in nature and can be treated nearly on a value by value basis. They
normally come in regular (usually very short) intervals, and they always conform to one given
(uncomplex) format.

2.3.3 Schedule Updates

Wherever there are scheduled services in operation, there is the possibility of deviations from
the underlying schedules. Well known examples in public transport are busses, trains, subways,
etc. Deviations from the regular schedule are usually expressed as delays, which constitute
temporary updates to an otherwise valid schedule. In this lies the ambivalence of this example.
Because they are static, the primary data are usually kept in traditional data base systems,
e.g. as tables. In these tables, one could find, for example, the information that the train
ICE882 from Munich to Hamburg leaves Munich on weekdays at 07:44 and passes by Hannover
at 12:36. Whenever there is a delay which impacts the regular schedule siginifcantly (i.e. a
cancellation in the worst-case) an update must be available to inform customers about this
fact. One possibility for this would be a continuous data stream containing schedule updates.
Systems providing information about the schedule could subscribe to such a stream and keep
a temporary record of updates until their expiration date. Users accessing the service would
then be informed not only about the scheduled times, but – more or less – about the expected
actual times.

3 The Local Data Stream Management System (L-DSMS)

The architecture of L-DSMS consists of two general framework components and several inte-
grated components comprising the server: the NetworkBroker in the package sttiprak.network
and a number of generic producers/consumers in the package sttiprak.generics.

The NetworkBroker initialises and starts its components in the order of the stream flow,
i.e. from sources to drains. After operation, these are stopped in the opposite order, so that a
drain is stopped before the source it is attached to is stopped. By components (i.e. drains and
sources) the internal network of producers and consumers is meant, which consume the data
stream at one point, filter or transform it, and produce a modified output stream.

The package sttiprak.generics provides generic producers/consumers, such as those fa-
cilitating connectivity via TCP/IP (regarding both input and output), reading from and writing
to files, console output, etc. All further components implement concrete producers/consumers
which are necessary for the TMC XML transformation prototype and not part of the general
infrastructure.

5



As defined by the system architecture and as depicted in Fig. 2, a server can consist of
a number of different combinations of components, i.e. sources, nodes and drains. Databases
(DBMS) and DBMS sources respectively are used to enrich the data stream with data from
traditional databases by either a direct connection to the DBMS or by providing an artificial
data stream which is originating at a DBMS source connected to a DBMS.

WAN

WAN

Source
TCP/IP

Node

Drain
Console

Drain
File

Node

Node

DB

Source
FM/RDS

Node

Join

TCP/IP
Drain

Node

Node

DB
Source

graphical
Visualisation

DB

Source
FM/RDS

OTN
Drain

Node
Join

Figure 2: Examples of server configurations

• Sources can produce a data stream in a number of different ways, for example, by

– reading from a file

– connecting to a suitable service via TCP/IP

– connecting to a DBMS

– directly connecting to some data producing device, e.g. receiver hardware.

Since different applications require different and individual implementations, these are
only some examples.

• Nodes serve the purpose of filtering and transforming the data stream and providing
input for further nodes or drains. It is possible to concatenate a number of nodes in a
row for more complex filtering mechanisms.

• Drains, much like sources, consume data, for example, by:
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– writing to a file

– offering the data stream as a TCP/IP service

– inserting records into tables stored in a DBMS

– providing output on a system console

The topology of a server, i.e. the structure of sources, nodes and drains, as well as their
order and specific configuration parameters is kept in special configuration files. See section 3.2
for more detail on this issue. All the classes used to build a server are located in the package
sttiprak.network.

Corresponding to the above mentioned components, the framework provides a number of
generic classes, which implement the necessary functionality. These are classes which are inde-
pentend from the individual use of the framework and which can be subclassed to be adapted
for specific applications.

3.1 Generic Components

The purpose of generic components is to provide basic I/O and filtering functionality within
the framework. The current implementation includes the following components:

• Socket Source / Drain

Probably the most important I/O mechanisms are network sockets, since they facilitate
the flexible distribution of components over a number of machines which are connected
by a network. On the input side, data sources can be accessed via a fully qualified domain
name and a port number, while on the output side the transformed data stream is made
available to other consumers to be accessed at a configurable local port.

Apart from a connectionless mode (SocketDrain and SocketSource), there exist so called
“polite” counterparts (PoliteSocketDrain and PoliteSocketSource) which require a
formal opening and closing of a connection, as opposed to just terminating the consuming
process. This enables the server to keep track of who is listening to its service.

• File Source / Drain

File sources and drains exist primarily for testing and simulation purposes. Instead of
requiring a receiver set ready to operate or any other data source, previously logged data
can be read from a file and be made available as a data stream. This also allows for
reproducing otherwise unique data streams, which are lost after they have been passed
through the system.

A special variant of the FileDrain is the ConsoleDrain which directs the textual output
directly to a terminal.

• Filter Nodes

Querying of data streams can be achieved through the use of filters. A number of nodes,
each containing a certain single filter configuration, can be combined in a network of
nodes to realise the desired filter options. A sample filter configuration can be found in
the appendix in section A.1.2.

For technical reasons, sources and drains operating on files or sockets are available in two
variants, those processing ByteArrays and those processing Strings.
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3.2 Configuration

Configurations are also part of the generic framework. In order to demonstrate the internal
structures of configurations and their practical use, the following illustration is done in antici-
pation of the concrete use of the prototype with RDS-TMC streams. See section 5 for details
on this matter.

A server configuration is kept in an XML configuration file which describes the topology of
the network of sources, nodes and drains, and their respective configurations.

A node is added to the network by including a node class and providing the necessary
configuration data, for example:

1 <node class="xml.TMCMessage2Xml " prettyPrint ="true" />

Child nodes can be added by using the nesting syntax of XML. The following example means
that node 1 directs its outout to node 2.

1 <node class="A" name="1">

<node class="B" name ="2"/>

3 </node >

More complex networks (other than trees) can be constructed by incorporating references
into nodes or drains. The attribute sourcerefs contains a reference to the providing node/-
source:

1 <node class="A" name="1">

...

3 </node >

...

5 <node class="B" name="2" sourcerefs ="1"/>

This example defines the same relation like the one before, i.e. that node 2 receives its data
from node 1.

The description of a topology must start with sources and end with drains. For example:

1 <source class="S">

<node class="N">

3 <drain class="D"/>

</node >

5 </ source>

The specification of a topology for a complete server could be:

1 <server>

<logging level="INFO">

3 </logging >

<services >

5 <network >

<source class="S">

7 <node class="N">

<drain class="D"/>

9 </node >

8



</source >

11 </network >

</services >

13 </server>

Naturally, the attributes for configuration are different depending on the respective node
type. An overview can be found in the configuratin schema in the appendix in section A.2.2,
some example configurations in sections A.1.2 to A.1.4.

Although L-DSMS generates Java programs which work locally on one machine, it is no
problem to use it for processing streamed data in a network of computers. A socket data drain
of machine A can be linked to a socket data source at machine B, where another instance
of L-DSMS is installed. This way one can distribute different components over a network of
different machines.

3.3 The SPEX Filter Mechanisms

SPEX is an XML filter system for streamed data developed by the Munich group. It uses
pushdown transducer networks for evaluating regular XPath expressions with qualifiers over
streamed XML-data. The SPEX approach enjoys the following attractive features. The trans-
lation of a regular path expression with qualifiers into a transducer network takes a time linear
in the size of the input expression. The evaluation can be performed in one pass over the data
stream. The memory space needed for an evaluation is at most quadratic in the nesting depth of
the XML–document. The computational power needed by each transducer of a SPEX network
is within the 1-DPDT class.

In this article, we use SPEX as a means to filter the produced XML stream by inserting one
or more SPEX nodes into the system architecture (see section 5.1) and by supplying suitable
XPath [6] queries.

SPEX was originally designed to handle infinite and deeply nested XML data streams. The
application of SPEX in the prototype presented in this article serves mainly to illustrate the
possibilities of integration of existing stream processing software. The low complexity and
low bandwidth characteristics of TTI does not necessitate such a powerful stream processor.
Further information about SPEX can be found in [21, 22].

4 RDS / TMC Traffic Information

In this article we take one of the RDS services, the Traffic Message Channel (TMC) as an ex-
ample for a stream of traffic information to be incorporated into a dynamic routing application.

4.1 RDS

The Radio Data System (RDS) [14] is a narrow bandwidth data transmission channel for VH-
F/FM broadcasting. RDS supports data transmission alongside (see Fig. 3) sound broadcasts
and facilitates services which are based on sending a small amount of digital data to a great
number of users. It was developed in the 1970s and early 1980s and is now implemented all
over Western Europe, several Central and East European countries, in parts of Asia Pacific,
South Africa and (using the slightly different [24] Radio Broadcast Data System (RBDS) [23]
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standard) the United States. Rather recent additions to RDS are RDS-TMC (see next section)
and Open Data Applications (ODA) (not discussed here, see [14], chapter 9, instead).

Figure 3: Spectrum of a pilot-tone stereo multiplex signal with RDS

Basic features of RDS include, among others, the following information features, tuning
aids, and programme-related features. Because this list only serves to illustrate the basic ideas
and functionalities of RDS, it is not exhaustive.

• Information Features

– Clock Time (CT): The current time and date can be transmitted in type 4A groups
by the radio stations to keep receivers’ internal clocks within an accuracy of ±0.1
seconds of a certain reference time (e.g. DCF (77.5) kHz in Germany or MSF (60kHz)
in England).

– Enhanced Other Networks (EON): Especially valuable for larger broadcast networks,
EON information, transmitted in type 14 groups, allows the update of a number of
features for programme services other than the currently tuned service. This includes
for example AF, PIN, PS, PTY, TA (described below).

• Tuning Aids (all of type 0A group)

– Programme Identification (PI): This identifier is not intended for display, but for
identifying identical broadcasts on different frequencies. If reception quality is de-
creasing, and if they are equipped with a secondary fm tuner, RDS receivers can
search for broadcasts on other frequencies with indentical PI code which offer better
reception quality (of the very same programme).

– Programme Service Name (PS): This contains the static 8 character identifier to be
displayed to the user.

– Traffic Programme and Traffic Announcement (TP/TA): These flags indicate the
availability of spoken traffic announcements on the currently tuned station (when
used with EON also other stations). This enables the receiver to increase the volume
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and to stop CD or cassette playback whenever spoken announcements are transmit-
ted.

– Alternative Frequencies (AF): This feature provides alternative frequencies for the
currently tuned station in order to optimize reception quality.

• Programme-Related Features

– Programme Type (PTY): A list of 29 standardised choices describing the broadcast
programme enable the user to set the receiver to a certain programme type (e.g. news)
and therefore not choose a specific radio station, but a certain type of broadcast.

– Radio Text (RT): Text messages of up to 64 characters can be coded and broadcast
by the radio text feature. Although many receivers, especially mobile ones, feature
displays with less than 64 characters.

4.2 TMC

TMC [11, 12, 13] was mainly developed in the years from 1984 to 1997 by a number of european
companies and institutions, under the leadership of the European Broadcast Union (EBU), in
order to broadcast TTI messages on VHF/FM broadcast transmissions using RDS [14]. TMC
is one of several RDS features and services, although, compared to some rather simple features
such as tuning aids (PI, PS, TP) or programme-related features (PTY, RT, PIN), it is one of
the most complex standards within RDS.

Figure 4: Structure of RDS baseband coding

The main advantages of digitally broadcast RDS-TMC messages over spoken traffic an-
nouncements are:

• Ansynchronous reception: Users need not be listening at the correct time to the correct
radio station in order to receive information. This especially important for individual
traffic, since onboard systems must not interfere with the drivers’ ability to concentrate
on the traffic.

• Caching mechanisms: Messages are stored in a client device and can be queried any
time. Life cycle management ensures that outdated messages are erased from the memory.

11



• Filtering mechanisms: Several mechanisms exist for filtering out unwanted content, for
example, by event type, current location, or projected path. Furthermore, short repetition
cycles combined with duplicate elimination facilitate timely broadcast of information3.

• Language independence: The binary coded messages rely on the client devices’ abil-
ities to generate human understandable messages. This may require increased device
intelligence but also facilitates the use of different languages.

• Message density: With 1187.5 bps the RDS bandwidth is comparably narrow from a
current viewpoint. Although only some 300 messages can be transmitted per hour [14],
this displays significant advantages over spoken messages. If the information of each
message could be conveyed by an average of 15 seconds of spoken text, the same number of
messages would still produce the unrealistic amount of about 75 minutes of announcement
time.

• Navigation assistance: By incorporating digital traffic announcements into car naviga-
tion systems, the task or navigation and route planning could be substantially improved.

Especially the last point is of great importance for intelligent transport systems which
need to take into account current traffic siituations as well as statistical data and data from
simulations in order to refine and further optimise the movement of goods and passengers in
more and more complex scenarios.

In October 2004 the two major providers of digital map data, Tele Atlas [25] and NAVTEQ
[18] announced future collaboration [16] on the standardisation of traffic codes for digital maps
for the United States, which will be based on the European RDS-TMC Alert-C specifications.

5 TMC to XML Transformation Prototype

The availability of TTI for any device or application is depending on the acessibility of some
source for this type of information. Car navigation systems can, for example, be connected to an
RDS compatible radio receiver. As sales have risen and RDS radios have become quite common,
marginal costs for the necessary hardware components have been declining which further opens
the market to other devices and fields. GPS receivers for mobile solutions sometimes also
contain an RDS compatible FM receiver, although this is not as common.

However, in cases where there is no FM receiver at hand, an alternative source for TTI must
be found. Routing applications running on standard PCs (which usually don’t have built in
FM receivers), for example, belong to this category. One possible solution is to substitute radio
transmission and receiver hardware with an internet connection and a web service, which has
been the objective of a project described in this section. The main goal of the project was to
provide the following functionality:

• FM Receiver

This is the first of only two hardware components of the system. In our testbed there are
currently two RDS capable FM receivers attached via serial ports to a server. They can be
tuned to different radio stations and can be set to provide a raw binary RDS data stream

3Rather optimistic refresh cycles of 15 minutes would lead to an average latency of 7.5 minutes, whereas the

typical RDS-TMC cycles of 120 seconds result in only 60 seconds of latency.
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at the serial port. By design, the FM receiver shall neither block the frequencies from 15
to 23kHz nor above 53kHz, since this is where RDS data is transmitted (see Fig. 3).

• RDS Decoder

This second hardware component produces the raw RDS bit stream by isolating and
decoding the signals around 57kHz at a rate of 1187.5 bits per second. This stream is
directly delivered to the receiver’s serial port, which is connected to the server machine.

• TMC Decoder

The first task entirely realised in software is the decoding of RDS groups from the raw
data stream. RDS groups consist of 4 data blocks which contain 26 bits each. Of these
104 bits (4 ∗ 26), 40 bits (10 in each block) are used for error correction, which leaves a
net payload of 16 bits per block or 64 bits per group (see Fig. 4). TMC messages contain
the group id 8A.

• XML Stream Generator

At this stage, the raw TMC data are transformed to XML corresponding to a customized
schema (see section 5). Furthermore, the data are enriched with the contents of the Event
Code List (ECL) and Location Code List (LCL). This enables devices which cannot access
these code lists to nevertheless display the textual contents of TMC messages, instead of
rather cryptic raw binary data. Being part of the core of the system, this process is
described in detail in section 5.1.

• SPEX Filter Mechanisms

In contrast to classic querying of relational data, which produces a result set designed
to meet the users demands, the processing of data streams needs other mechanisms to
query or filter the incoming data. We use a system called SPEX [21, 22], which has been
developed by a former member of the Munich team, Dan Olteanu, as a powerful filtering
mechanism for our system. This way, the stream optionally passes one or more nodes
which filter according to certain criteria to produce a suitable output stream. More detail
about this can be found in section 5.1, SPEX is described in detail in [21].

• Configuration Component

In order to facilitate easy (re-)configuration of the different components, the networks
of nodes which the stream passes through is configured entirely via a single XML file.
In this file the respective sources and drains, as well as (filter-) nodes and the necessary
parameters are specified.

• Visualisation Component

Apart from the textual output of TMC messages, which strongly resemble the usual
spoken announcements on the radio, graphical output in form of symbols on a map display
is also provided. Easily implemented on different digital map systems, we show the basic
procedure of how to integrate these graphical messages with an SVG-based map system
rendered in a conventional internet browser window. Strictly speaking, this component
is not part of the TMC to XML transformation prototype, nevertheless similar output
mechanisms like the one provided here would logically be the consumers of the provided
data stream.
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5.1 System Architecture

5.2 Custom Components

The generic components (see section 3.1) are used and extended to provide the basic function-
ality for the processing of RDS-TMC data. This section describes the individual adaptation of
each component to its role in the processing of TMC data streams.

As the system offers a very flexible way to combine and integrate different nodes and the
individual structure is very much depending on the respective application of the system, we can
only provide some examples for illustration purposes.

Fig. 2 on page 6 shows two configurations involving RDS-TMC sources. The structure in the
middle shows a sample configuration involving a graphical output of DB-enriched RDS-TMC
data. Here, current traffic messages are displayed in combination with statistical congestion
information coming from a tertiary source through an attached DBMS. The example on the
right of fig. 2 shows a different configuration. The purpose of this structure is the combination
of two sources into a joint stream , e.g. enriching RDS-TMC data with data from a DB-stored
weather report system. The joint stream is then published for applications on the web, accesible
through a TCP/IP drain.

5.2.1 Radio Data System Component (RDS)

As a receiver, we use a device called Easyway Light available from the Institut für Rundfunk-
technik (IRT) [10]. It is designed for testing purposes and provides the following connectors:
aerial antenna, audio equipment, DC power, and RS-232 serial port. The following classes can
be found in sttiprak.rds and sttiprak.rds.easyway respectively.

The components, which read data from the device are named accordingly. Data is read
directly from the device by rds.easyway.EasyWaySource. Further transformations are done in
rds.EasyWayRDSChunk2RDSBlock, which generates RDS blocks, and rds.RDSBlock2RDSGroup,
which produces RDS groups from the blocks (see Fig. 4). Intermittendly multi group messages
are connected using rds.RDSGroup8AMultiGroupLinker.

Furthermore, there exist some filtering functions, which pertain directly to the raw RDS
data and are therefore handled at this early stage (before the main filtering facilities can be ap-
plied). rds.RDSGroupCorrectnessCondition indentifies and drops incorrectly received groups.
Certain types of groups can be filtered by rds.RDSGroupFilterCondition, and rds.RDSGroup-

8ARepetionConditon only lets groups pass, which have been transmitted at least twice .

5.2.2 Traffic Message Channel Component (TMC)

The class tmc.RDSGroup2TMCMessage takes an 8A group and transforms it into an internal
representation of a TMC message. In this step, the data is transformed into a more easily
manageable format and is enriched by the corresponding data from the ECL and LCL tables.
Whereas from the ECL only the textual equivalent of the event code and its parameters are
taken, the location code is enriched by hierarchical information. This means that in addition
to an event code, e.g. ’12733’ and its textual name ’A9 Pfaffenhofen’ (part of highway number
9), also all its parent’s codes and names in the hierarchy are included, i.e. ’602, Pfaffenhofen a.
d. Ilm’ (name of the region), ’294, Oberbayern’ (Upper Bavaria), ’264, Bayern’ (Bavaria), and
’1, Deutschland’ (Germany, see also table 2). All the corresponding classes can be found in the
package sttiprak.tmc.
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Code No. Name RefA RefL Off+ Off- Exit
1 – Deutschland – – – – –
...

...
...

...
...

...
...

...
263 – Baden Württemberg 1 – – – –
264 – Bayern 1 – – – –
265 – Saarland 1 – – – –

...
...

...
...

...
...

...
...

293 – Niederbayern 264 – – – –
294 – Oberbayern 264 – – – –
295 – Oberfranken 264 – – – –

...
...

...
...

...
...

...
...

601 – Peine 273 – – – –
602 – Pfaffenhofen a. d. Ilm 294 – – – –
603 – Pforzheim 284 – – – –

...
...

...
...

...
...

...
...

12732 A9 Allershausen 418 7219 12733 12731 67
12733 A9 Pfaffenhofen 602 7219 12734 12732 66
12734 A9 In der Holledau 602 7219 12735 12733 –

...
...

...
...

...
...

...
...

Table 2: Extract from the German Location Code List

The reason for enriching the data (and thereby arguably introducing redundancy) is to
enable devices without access to, or enough storage capacity for the ECL/LCL to process
and display the entire relevant information. A device may, for example, need to filter out all
messages not regarding a certain region. Including the enriched location information this is a
simple task: drop any messages not containing the area code. Without this information, each
location code must be hierarchically backtracked to its regional code in order to decide whether
to drop the package or not.

5.2.3 Transformation into XML

The data in a TMC message are then transformed into a continuous XML stream by xml.TMC-

Message2Xml contained in the package sttiprak.xml. A reverse transformation can be done by
xml.Xml2TMCMessage, XML–filtering using XPath queries can be done in the node SpexNode

(cf. sec. 5).

5.2.4 Visualisation Component (OTN)

As mentioned earlier, a proprietary visualisation component based on SVG is used to dis-
play traffic messges on a map [20]. The system requires an XML file containing the cur-
rent state of the TMC channel, in valid OTN syntax [2]. The current state of the TMC
channel means the set of currently valid messages which are tracked and kept up-to-date
by tmc.TMCMessageManagement and sent to the child nodes in regular intervals. Currently,
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OTNDrain is the only node designed to receive such data and generate the necessary OTN file.
These components can be found in the package sttiprak.tmc.

6 Impact on Reasoning Process

In the recent decades navigation systems have come a long way from industrial applications in
aviation and navigation to the current substantial rise of demand in personal, mobile, and car
navigation. In this transition to a widely used technology the main requirements also have to
be adjusted in different aspects. One of the most important factors in future applications will
be the adaptation to the individual context in which route planning takes place. Adaptation to
context includes not only the time of day, means of transportation used, network structures and
other overall constraints, but also, and more importantly, dynamic factors such as current traffic
and weather situation (including complex effects of congestions, delays in scheduled operations,
etc.) and the overall optimisation of many thousands of individual routing requests.

For some time now traffic information has played a rather minor role in routing applications
due to the scarse availability and suboptimal quality of the provided data. Available data
underly latency and volatility issues, which current reactive systems struggle to cope with.
Reactive systems only track traffic data and, for example, record the occurence of increased
traffic density, changes in average speed, or traffic jams in general. In the future, these systems
will be perfected by means of statistics, simulation and prediction of traffic information to
improve the quality of data and facilitate their timely delivery, within a proactive system.
In some research projects even car-to-car communication (ad-hoc networking) is developed to
generate and transmit e.g. data about road surface conditions to following vehicles within mere
milliseconds, to insure the flow of information for the purpose of early warning and to trigger
appropriate reactions, such as speed reduction or collision avoidance.

But even in cases when data of acceptable quality (i.e. accurate and up-to-date data) can
be incorporated into the routing process, there is still a need for sophisticated techniques to
really make use of these volatile informations, before the situation changes, which it constantly
does.

6.1 Traffic Information

The main goals of incorporating traffic information into routing applications are to optimise
travel by (1) avoiding blocked or congested road segments and (2) providing a form of load
balancing between alternative route segments.

1. In the pre-trip stage, current traffic messages are incorporated into route processing so as
to avoid problematic road segments altogether. The result is an optimised route, which
does not include road segments for which significant incidents, such as traffic jams, heavy
road works, accidents, etc., have already been reported.

En-route, the navigation unit constantly processes incoming traffic messages and checks
them for relevance regarding the planned route. This can be divided into two separate
and independent tasks. One task deals exclusively with the road segments which are part
of the current route. Should a new incident be reported for such a segment the system
must decide whether to change the current route, depending on the severity and possible
alternative subroutes. Major traffic jams on highways can sometimes be avoided by using
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secondary roads. The other task deals with already know incidents, regardless of whether
they concern road segments which are part of the current route or not. Should a formerly
reported incident be cancelled (e.g. traffic jam has dissolved, accident has been cleared,
etc.) or reduced in severity (e.g. 10 minutes waiting time in front of a tunnel instead of 2
hours), it might be advisable to initiate re-planning in cases when the road segement in
question would have been part of the initial planning, but had been disregarded because
of the reported incident.

2. While there exists the possibility of quasi-equal distribution by statistical means, this
measure can only be realised in an accurate way in centralised environments . It is based
on the idea that a significant number of similar route requests are occuring within the
same area, for example, daily commute into and out of major cities. In many cases of
similar starting points and destinations, routing applications would propose similar, if not
in part identical routes. In each individual case this is exactly the desired behaviour, but
the overall performance of the network infrastructure would not be optimal, since there is
no load balancing between alternative routes with nearly identical cost. In a decentralised
system, individual routing applications could choose the resulting route from the top three
or 5 best results at random in order to insure that not all similar cases lead to identical
routes. In a centralised system, the resulting routes could be equally distributed over
the network infrastructure in order to avoid subsequent congestion on individual road
segments (i.e. already at the planning stage).

6.2 Schedule Updates

As outlined in section 2.3.3 schedule updates hold information critical to a routing application
similar to TTI. When planning a route involving a sequence of connections between scheduled
services, e.g. subway, regional train, airplane, etc., then the transitions between independently
operated systems can be critical. Delays on one of the involved sections could easily render
the whole route useless. If, for example, a delay of a train leads to missing a subsequent
flight. In some scenarios this is somewhat less critical due to high frequency of individual
services (e.g. subways operating every 5 minutes). In general, longer intervals between services
(e.g. one flight per day or week) and longer overall travel time, possibly including more critical
transistions, lead to situations where taking into account possible delays (allowing for idle
periods and therefore longer travel time as a trade off) is becoming increasingly important.

The more complex interdependencies of scheduled operations present an interesting field for
further research. These dynamics cannot simply be incorporated into classic cost functions and
therefore a different, specially suited approach must be developed. This approach should facil-
itate multi modal processing of heterogeneous network structures while still being compatible
to the graph based framework of classic routing applications.

7 Summary

The Flexible Data Stream Management System (L-DSMS), which includes the SPEX XML–
filtering system, is a general purpose Java framework which can be used to configure and execute
networks of processing nodes for manipulating data streams. The system will be made available
as an open source package.
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The particular application to processing TMC traffic information is also described in this
deliverable. The TMC messages are recieved by special radio receivers, turned into XML
streams, filtered by the SPEX system, and directed to several application systems. As one of
the next steps we plan to combine this dynamic information with static geospatial information
for advanced geospatial information processing in the Semantic Web context.
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A Selected code excerpts

A.1 Configuration Files

A.1.1 Server configuration

1 <?xml version="1.0" encoding="ISO -8859-1" ?>

3 <server>

<logging level="INFO"/>

5 <services >

<network>

7 <source class="rds.easyway.EasyWaySource " device="/dev/ttyS0"

frequency ="107.2">

<node class="rds.easyway.EasyWayRDSChunk2RDSBlock">

9 <node class="rds.RDSBlock2ByteArray ">

<drain class="generics .ByteArraySocketDrain " port="9777"

period="1"/>

11 </node >

</node >

13 </source>

</network >

15 </services >

</server>

A.1.2 Filter mechanism configuration

<?xml version="1.0" encoding="ISO -8859-1" ?>

2

<server >

4 <logging level="INFO">

</logging >

6 <services >

<network>

8 <source class="generics .StringSocketSource " host="localhost "

port="9778">

<node class="xml.SpexNode " xpath="/descendant::TMCMessage[

descendant::locationName/child::text ()=’Bayern ’]">

10 <drain class="generics .ConsoleDrain "/>

</node >

12 </source>

</network >

14 </services >

</server>

A.1.3 Raw XML configuration
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1 <?xml version="1.0" encoding="ISO -8859-1" ?>

3 <server>

<logging level="INFO">

5 </ logging>

<services >

7 <network >

<source class="generics .ByteArraySocketSource " host="nihiru.pms.

ifi.lmu.de" port="9777">

9 <node class="rds.ByteArray2RDSBlock ">

<node class="rds.RDSBlock2RDSGroup ">

11 <node class="generics .Filter">

<and>

13 <condition class="rds.RDSGroupCorrectnessCondition"/>

<condition class="rds.

RDSGroup8ARepetitionCondition"/>

15 </and>

<node class="rds.RDSGroup2RDSGroup ">

17 <node class="rds.RDSGroup8AMultiGroupLinker">

<node class="tmc.RDSGroup2TMCMessage "

locationDB ="LocationList_de .csv" eventDB="

EventList_en_de .csv" lang="de_DE">

19 <node class="xml.TMCMessage2Xml " prettyPrint

="true">

<drain class="generics.ConsoleDrain "/>

21 <drain class="generics.StringSocketDrain "

port="9778"/>

</node >

23 </node >

</node >

25 </node >

</node >

27 </node >

</node >

29 </source>

</network >

31 </services >

</server>

A.1.4 Visualisation configuration

<?xml version="1.0" encoding="ISO -8859-1" ?>

2

<server >

4 <logging level="INFO">

</logging >

6 <services >

<network >
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8 <source class="generics .ByteArraySocketSource " name ="

SocketSource " host="nihiru.pms.ifi.lmu.de" port="9777 ">

<node class="rds.ByteArray2RDSBlock ">

10 <node class="rds.RDSBlock2RDSGroup ">

<node class="generics .Filter">

12 <condition class="generics.AndCondition ">

<condition class="rds.RDSGroupFilterCondition" group="

8A"/>

14 <condition class="rds.RDSGroupCorrectnessCondition"/>

</condition >

16 <node class="rds.RDSGroup2RDSGroup ">

<drain class="HumanreadableRDSGroupDrain" name="

HumanReadableDrain "/>

18 </node >

</node >

20 <node class="rds.RDSGroup2RDSGroup ">

<drain class="visualization .RDSTestFrameDrain "

locationDB ="src/tmcdatabases /LocationList_de .

csv" locationNameDB ="de.lmu.ifi.pms.sttiprak.

tmc.LocationNames " eventDB="src/tmcdatabases /

EventList_en_de .csv"/>

22 </node >

</node >

24 </node >

</source >

26 </network >

</services >

28 </server>
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A.2 Schemas

A.2.1 RelaxNG-Schema for Configurations

grammar {

2 start =

element server {

4 #

# Defines the logging levels

6 #

element logging {

8 #

# Defines the global logging level

10 #

attribute level { "DEBUG" | "INFO" | "WARNING" | "ERROR" | "

FATAL" },

12

#

14 # Defines the logging level for a single class.

#

16 element logger {

attribute class { text },

18 attribute level { "DEBUG" | "INFO" | "WARNING" | "ERROR" | "

FATAL" }

}?

20 }

element services {

22 element network {

element source {

24 nodeConfig ,

nodeOrDrain *

26 }+

}

28 }

30 nodeConfig = attribute class { text }

attribute * { text } # any further Attributes may be specified here.

32

nodeOrDrain = ( element node { nodeConfig , nodeOrDrain * }

34 | element drain { nodeConfig , nodeOrDrain * } )

}

A.2.2 RelaxNG-Schema for XML-TMC stream

1 grammar {

3 #

# Defines the stream.

5 #
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start =

7 element TMCStream {

element TMCMessage {

9 #

# The meta element contains additional information

about the

11 # TMCMessage .

#

13 element meta{

element id{ xsd:integer },

15 element timestamp { text }, # should be: xsd:dateTime

element frequency { xsd:float },

17 element sender{ text }?

},

19 #

# The primary element of the TMCMessage will mostly be

the

21 # only one in the TMCMessage element. It contains the

basic

# information contained in every TMCMessage . All other

elements

23 # are optional and only used if the data is provided

by the sender.

#

25 element primary {

eventElement +,

27 multiLocationElement +

},

29 #

# References to the initial cause of the problem

described in the primary

31 # element (such as a queue on route A caused by an

accident on route B)

#

33 element crosslink {

eventElement ,

35 singleLocationElement

}?,

37 #

# Describes a diversion hint. Sometimes a diversion is

specific for certain

39 # destinations , sometimes global.

# Sometimes a detailed diversion advice is given ,

sometimes not.

41 #

element diversion {

43 element advicedRoute {

multiLocationElement +

45 }?,

destinationElement *

47 }*

24



}*

49 }

51 #

# Describes an event. An event may affect certain drivers to

53 # a destination only.

#

55 eventElement = (knownEvent | unknownEvent )

57 unknownEvent =

element event {

59 element unknownEventCode { xsd:int }

}

61

knownEvent =

63 element event {

element eventCode { xsd:int },

65 element eventName { multilanguage }+,

element updateClass

67 {

element code{ xsd:int },

69 element name{ multilanguage }+

},

71 element nature

{

73 element code{ "information " | "forecast" | "silent" },

element name{ multilanguage }+

75 },

element urgency

77 {

element code{ "extremely  urgent" | "urgent" | "normal"

},

79 element name{ multilanguage }+

},

81 element quantifier

{

83 element code{ xsd:int },

element name{ multilanguage }+,

85 element value{ xsd:decimal }

}?,

87 element duration

{

89 element code{ "short" | "longer" },

element startTime { text }?, # should be: xsd:dateTime

91 ( element stopTime { text } # should be: xsd:dateTime

| element until{ text } # should be: xsd:dateTime

93 )

},

95 #

# Describes a speed limit advice for drivers to specific

locations .
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97 #

element speedAdvice

99 {

element limit {

101 attribute unit { text },

xsd:int

103 },

destinationElement ?

105 }?,

element lengthOfRouteAffected { (xsd:int | "more than 100 km"

) }?,

107 supplementaryElement *,

destinationElement ?

109 }

111 #

# Describes a supplementary information element. An information

113 # may affect only given for drivers to a specific destination .

#

115 supplementaryElement = knownSI | unknownSI

117 unknownSI =

element supplementaryInformation {

119 element unknownCode { xsd:int }

}

121

knownSI =

123 element supplementaryInformation {

element code { xsd:int },

125 element name { multilanguage }*,

destinationElement ?

127 }

129 #

# A destination describes a location to which a diver may

131 # pass by or drive to.

#

133 destinationElement =

element destination

135 {

singleLocationElement

137 }

139 #

# A multiLocationElement describes a nested location tree structure ,

141 # a location may have more than one children .

#

143 multiLocationElement =

( knownMLE

145 | unknownLocation

| element unknownContinuation { empty }
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147 )

149 unknownLocation =

element location

151 {

element unknownLocationCode { xsd:int }

153 }

155 knownMLE =

element location

157 {

location .id,

159 ( (linearLocationContent ?, multiLocationElement *)

| pointLocationContent

161 )

}

163

#

165 # A singleLocationElement describes a nested location path structure ,

# a location may have at most one child.

167 #

singleLocationElement = (knownSLE | unknownLocation )

169

knownSLE =

171 element location

{

173 location .id,

( (linearLocationContent ?, singleLocationElement )

175 | pointLocationContent

)

177 }

179 location.id =

element locationCode { xsd:int },

181 element locationName { multilanguage }*,

element type{ text },

183 element typeName{ multilanguage }*

185 linearLocationContent =

element roadNumber { text },

187 element positiveEndName { multilanguage }*,

element negativeEndName { multilanguage }*,

189 element direction { "unknown" | "positive " | "negative " | "both"

}

191 pointLocationContent =

element direction { "unknown" | "positive " | "negative " | "both"

}

193

multilanguage =

195 attribute lang{ text },

27



text

197 }
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