
I2-D6

Automated Negotiation Mechanisms

Project number: IST-2004-506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document R (report)
Dissemination level: CO (confidential, only for REWERSE partners)
Document number: IST506779/Naples/I2-D6/D/CO/a0.0
Responsible editor(s): P. A. Bonatti
Contributing participants: Naples, Vienna
Contributing workpackages: I2
Contractual date of delivery: 28 February 2006
Actual date of delivery: 19 April 2006

Abstract
Before trust negotiation framework can be used in practice, researchers should give several
kinds of guarantees including the following:

• Are negotiations going to succeed when the policies in principle allow it? The answer is
not trivial, because in some cases the policies are protected as sensitive resources, and this
may prevent peers from explaining exactly what is needed to complete the negotiation.

• Is it possible to minimize the sensitivity of disclosed information? When peers do not
have a complete view of all the options, an optimal strategy might not exist.

In this report we begin to study the impact of policy protection on negotiation success by
using an abstract framework, covering a wide spectrum of strategies and criteria for terminating
negotiations.

Moreover, we start to study the problem of minimizing the sensitivity of the information
disclosed during negotiations.

Keyword List
Strategy interoperability, Credential selection, Sensitivity minimization, Optimal strategies.

c© REWERSE 2006.

Automated Negotiation Mechanisms

P. A. Bonatti1, T. Eiter2, M. Faella1

1 Università di Napoli Federico II
Email: {bonatti,mfaella}@na.infn.it

2 Technische Universität Wien
Email: eiter@kr.tuwien.ac.at

19 April 2006

Abstract
Before trust negotiation framework can be used in practice, researchers should give several
kinds of guarantees including the following:

• Are negotiations going to succeed when the policies in principle allow it? The answer is
not trivial, because in some cases the policies are protected as sensitive resources, and this
may prevent peers from explaining exactly what is needed to complete the negotiation.

• Is it possible to minimize the sensitivity of disclosed information? When peers do not
have a complete view of all the options, an optimal strategy might not exist.

In this report we begin to study the impact of policy protection on negotiation success by
using an abstract framework, covering a wide spectrum of strategies and criteria for terminating
negotiations.

Moreover, we start to study the problem of minimizing the sensitivity of the information
disclosed during negotiations.

Keyword List
Strategy interoperability, Credential selection, Sensitivity minimization, Optimal strategies.

Contents

1 Introduction 1

2 Public negotiations and their complexity 1
2.1 The formal credential selection problem and its complexity 2
2.2 Credential selection using Smodels . 7
2.3 Conclusions and future work . 8

3 Negotiation strategies 8
3.1 Definitions . 8
3.2 Termination Criteria . 11

3.2.1 Cooperation . 11
3.2.2 Cooperation against Monotonic Peers . 12

3.3 Interoperability . 13
3.4 Related work . 14
3.5 Conclusions and future work . 14

iii

1 Introduction

Trust negotiation is promising a high degree of interoperability and flexibility. However, it is
difficult to predict the behavior of the spontaneous protocols that arise from the interaction
of two agents that formulate requests and disclose information based on their own rule-based
policies. Before such a framework can be used in practice, researchers should give several kinds
of guarantees including the following:

• Is the negotiation going to succeed when the policies in principle allow it? The answer
is not trivial, because in some cases the policies are protected as sensitive resources, and
this may prevent peers from explaining exactly what is needed to complete the negotia-
tion. The few papers devoted to this issue in the past are based on specific parametric
strategies and do not really identify the general properties that allow for interoperability
[Yu et al., 2001, Yu et al., 2003].

• Is it possible to minimize the sensitivity of the information disclosed during negotiations?
Again, when policies are protected and peers do not have a complete view of all the
options, an optimal strategy—in this respect—might not exist.

In this report we begin to study the impact of policy protection on negotiation success by
using an abstract framework, covering a wide spectrum of strategies and criteria for terminating
negotiations. We prove some positive results for what we call cooperative peers and a negative
result for what we call focused peers.

Moreover, we start to study the problem of minimizing the sensitivity of the information dis-
closed during negotiations. In this report we focus on a simple special case, in which the policy
of the server and all of its credentials are public. We call such interactions public negotiations
although they are degenerate forms of negotiation with at most two steps. In these scenarios
it is possible to minimize the sensitivity of disclosed information; the underlying assumptions
are compatible with many real world web services, that wish to specify clearly their policies
and wish to publish their certifications to attract customers. These assumptions generalize
the so-called transparent and unilateral negotiations that have been proposed recently in the
Semantic Web community. To our knowledge, this is the first analysis of the optimal disclosure
problem.

We characterize the computational complexity of the sensitivity minimization problem for
this scenario. Moreover, we show how to solve the minimization problem declaratively, by
an embedding into Smodels, an answer set programming engine equipped with optimization
facilities.

The report is organized as follows: First, in Section 2, we study the problem of optimal
credential selection, in scenarios with public server policies and credentials. Then, in Section 3,
we study the effect of policy protection on negotiation success. At the end of each section we
discuss the section’s results and future work.

2 Public negotiations and their complexity

Many commercial web services are likely to publish their policy entirely. Transparency may at-
tract customers wishing to protect their privacy, and hence to minimize information disclosure—
or the sensitivity of it. In fact, knowing at once all the possible ways of obtaining a service lets
clients choose immediately the best option from their point of view. On the contrary, when

1

policies are disclosed incrementally, a client may release some credentials and discover later
that some further condition cannot be satisfied, so the credentials have been disclosed for no
purpose. In other cases, the client might eventually realize that some alternative, less sensitive
set of credentials might have been used instead.

Moreover, a server may wish to publish at once all the credentials that a client might ask for,
such as certifications proving nice properties of the server (e.g., quality certificates, membership
to organizations such as the Better Business Bureau, etc.)

In this section we are studying the problem of minimizing the sensitivity of disclosed infor-
mation when the server publishes all of its policy and all of its credentials (and hence the client
has all of the information it needs to make an optimal choice).

The elements that the client is using to make an optimal choice are:

• The server’s policy (a stratified Datalog program);

• The server’s portfolio of credentials (a set of ground facts);

• The client’s initial (service) request (a ground fact);

• The client’s release policy (a stratified Datalog program with integrity constraints);

• The client’s portfolio of credentials and declarations.

The client should find a subset of its portfolio that together with the server’s policy entails
the initial request. The credentials in this subset should be releasable according to the release
policy. Moreover, the sensitivity of the set should be minimized.

Formally, this problem can be formulate as a sort of abduction problem. The initial request
is the observable to be proved, and the portfolio is the set of abducibles. The program from
which the observable should be proved can be the union of the server’s rules/facts and of the
client’s policy. To check that disclosed credentials can actually be released according to the
client’s policy, one can introduce suitable integrity constraints such as:

← credential(C), not allow(release,C).

Then the credential selection problem can be formalized as in the next section.

2.1 The formal credential selection problem and its complexity

The credential selection problem (CSEL) can be formulated as follows.
The problem’s instances are tuples 〈P,G, IC,C,Σ, sen〉, where

• P is a finite, stratified logic program (the rules in the release policies of the “server” and
of the “client”);

• G is a goal in terms of a ground atom (modeling the authorization requested by the
“client”);

• IC is a finite set of integrity constraints (representing forbidden combinations of creden-
tials); this is part of the release policy;

2

• C is a finite set of ground facts (the portfolio of credentials and declarations of the
“client”),1 and

• sen : 2C → Σ is a sensitivity aggregation function, where Σ is a finite set (of sensitivity
values) partially ordered by �.

A solution for a CSEL as above is a set S ⊆ C such that

1. P ∪ S |= G,

2. P ∪ S ∪ IC is consistent, and

3. sen(S) is minimal among all S which satisfy 1. and 2.

In practice, examples of possible sensitivity aggregation functions are the maximum or the
sum of numeric sensitivity levels assigned to each credential and declaration. In some cases
(e.g. when a combination of credentials forms a quasi-identifier) sen may be greater than the
sum of the individual sensitivity levels. For example, if zip codes have sensitivity level 2 and
birth dates have sensitivity level 3, their combination represents a quasi-identifier and therefore
the corresponding sensitivity level might be 10 rather than 5.

In the abstract framework, for the purpose of estimating the inherent complexity of the
problem, we only assume sen to be a “monotonic” function computable in polynomial time.
Monotonicity is to be intended as follows:

• if S ⊆ S′ then sen(S) � sen(S′).

From now on we implicitly assume sen to satisfy the above axiom.
We next state some elementary results regarding the computational complexity of CSEL.

For the purpose of these results, we consider the size of an instance of CSEL as the number
of occurrences of symbols in P ∪ {G} ∪ IC ∪ C and in a string BCsen representing a Boolean
circuit which computes, given the characteristic vector of set S ⊆ C of credentials for input,
the value of sen(S) (in a binary encoding). Notice that by just evaluating the circuit, sen(S)
can be computed in polynomial time, and in fact for any polynomial-time computable function
sen(S) such a circuit can be constructed in polynomial time.

Our first result characterizes the complexity of CSEL in the ground (propositional) case, in
terms of a suitable complexity class. We note the following lemma.

Lemma 1. Given a CSEL in which P is ground and S ⊆ C, deciding whether P ∪ S |= G and
P ∪ S ∪ IC is consistent is feasible in polynomial time.

Proof. Indeed, P ∪ S stratified, and thus its unique perfect model, M , can be computed in
polynomial time (see [Dantsin et al., 2001] for background). Checking P ∪S |= G then amounts
to checking M |= G, which is feasible in polynomial time, and testing whether P ∪ S ∪ IC is
consistent to checking whether M |= IC, which also feasible in polynomial time.

Theorem 1. If P and IC are ground then CSEL is FNP//log-complete. The theorem holds
even if P and IC are positive.

1From now on we mention only credentials, for the sake of readability. Implicitely, by “credential” we mean
“credential or declaration”. In the abstract framework adopted here, they are indistiguishable.

3

The complexity class FNP//OptP[O(log n)] (for short, FNP//log) is from
[Chen and Toda, 1995]. Intuitively, FNP//log contains all problems such that a solution
for an instance I can be nondeterministically computed by a transducer in polynomial time,
if the result opt(I) of an NP optimization problem on I is known. Here, opt(I) is an integer
having O(log |I|) bits, where |I| denotes the size of the input I; an NP optimization problem
is the problem of computing the maximum value of any solution for an instance I, given that
deciding opt(I)≥k is in NP, and recognizing solutions is polynomial.

For example, computing the largest set S of pairwise connected nodes in a given graph G
(i.e., a maximum clique) is a problem in FNP//log (observe that different maximum cliques
may exist). Indeed, computing the size of a maximum clique in G is an NP-optimization
problem with O(log |G|) output bits, since testing whether a set S is a clique is easy (just check
whether G has an edge between each pair of nodes in S), and deciding whether opt(G) ≥ k
is in NP (guess a clique of size ≥ k). Note, however, that this problem is not known to be
FNP//log-complete.

Proof. of Theorem 1. Membership. We first have to show membership of the problem. To
this end, we have (a) to find (a) an optimization problem on instances I of CSEL, such that
the optimum value opt(I) has O(log |I|) bits, where deciding opt(I)≥k is in NP, and (b) to
construct, given opt(I), a solution of CSEL nondeterministically in polynomial time.

As for (a), we take the problem to compute the lowest rank r(s) of a sensitivity value
s ∈ Σ with respect to � such that s = sen(S) for some set of credentials S which satisfies
the conditions 1 and 2 of a solution of CSEL, converted to a maximization problem. The rank
of s ∈ Σ, denoted r(s), is the smallest integer i such that s = si for some maximal chain
s0 ≺ s1 ≺ s2 . . . ≺ sm in Σ. Note that r(s) has log |Σ| many bits, and is easily computable
bottom up in Σ in polynomial time. In particular, r(s) = 0 iff there is no s′ ∈ Σ such that
s′ � s ∧ s 6� s′. We convert this to a maximization problem by considering g(s) = r∗ − r(s),
where r∗ = maxs∈Σ r(s).

Let opt(I) be then the maximum over all g(s) such that s = sen(S) for some set of credentials
S ⊆ C which satisfies 1 and 2. Deciding whether opt(I) ≥ k is in NP, since we can guess an
S ⊆ C and verify in polynomial time that S satisfies conditions 1 and 2 of a solution, and also
that f(sen(S)) ≤ k. This establishes the part (a).

As for part (b), note that any S ⊆ C which satisfies 1 and 2 of a solution of CSEL and has
f(sen(S)) = opt(I) must be a solution of CSEL (however, that for any solution S of CSEL,
f(sen(S)) = opt(I) is not true in general). Thus, given I and opt(I), we can simply guess a
solution S of CSEL and check in polynomial time that S satisfies conditions 1 and 2, and that
f(sen(S)) = opt(I).

Hardness. We show the FNP//log-hardness by a polynomial-time reduction from X-
maximal model: Given a Boolean formula ϕ(Y) on atoms Y = {y1, . . . , ym} and a subset
X ⊆ {y1, . . . , ym}, compute the X-part of a model M of ϕ(Y) such that M ∩X is maximal,
i.e., no model M ′ of ϕ(Y) exists such that M ′ ∩ X ⊃ M ∩ X, where a model M is identified
with the set of atoms that are mapped to true. Completeness of this problem for FNP//log is
shown in [Chen and Toda, 1995].

We will reduce X-maximal model to computing some solution of a CSEL instance in
polynomial time in two parts, according to [Chen and Toda, 1995]. In Part 1, we will show
that, for any instance ϕ(Y) of X-maximal model, an instance f(ϕ(Y)) = 〈P,G, IC,C,Σ, sen〉
of our problem is constructible in polynomial time, where it will be guaranteed that f(ϕ(Y))
has some solution.

4

In Part 2, we will show that, from every solution S of f(ϕ(Y)) and ϕ(Y), some X-maximal
model M of ϕ(Y) can be constructed in time polynomial in the size of S and ϕ(Y).

Without loss of generality, we assume that ϕ(Y) = C1 ∧ · · ·Ck is a satisfiable conjunction
of non-tautological clauses Ci = li,1 ∨ li2 ∨ li3 , i.e., a CNF.
Part 1. We construct the following positive logic program P . Let y′1, . . . , y

′
k, g and c1, . . . , cm

be fresh propositional atoms.

• for each clause Ci and each variable yj occurring in Ci, we set up the rule

ci ← yj ,

if yj occurs positively in Ci, and for each variable yj occurring in Ci, we set up the rule

ci ← y′j ,

if yj occurs negatively in Ci.

• We add the rule
g ← c1, . . . , ck.

The goal G is the atom g, C consists of y1, y
′
1, . . . , ym, y′m, and IC consists of the constraints

← yj , y
′
j , for j = 1 . . . , m.

Intuitively, S ⊆ C satisfies conditions 1 and 2 of a solution, if it corresponds to the (consis-
tent) partial truth assignment to the variables such that yj is set true if yj ∈ S and yj is set
false if y′j ∈ S.

Now we let Σ = {0, 1, . . . ,m}, with � the usual ordering of numbers, and define sen(S) =
|S ∩ {x′ | x ∈ X}| (recall that X ⊆ Y). Intuitively, the sensitivity of S is given by the number
of negative literals ¬yj (represented by y′) where yj ∈ X, that belong to S.

It is then easy to see that S is a solution of this CSEL instance f(ϕ(Y)) if and only if
X \ {x | x′ ∈ S} is an X-maximal model of ϕ(Y) which has largest cardinality. Thus, f(ϕ(Y))
has some solution. Obviously, f(ϕ(Y)) is constructible in polynomial time from ϕ(Y).
Part 2. Given any solution S of f(ϕ(Y)) and ϕ(Y), we can compute the X-maximal model
X \ {x | x′ ∈ S} of ϕ(Y) easily.

Thus, summing up, solving X-maximal model can be polynomially reduced to solving
CSEL, which proves hardness.

Theorem 2. If P is positive and binary, i.e., each rule has at most one atom in the body,
and in IC at most a constant number of credentials occur negatively, then the ground CSEL
problem is solvable in logarithmic work space.

Proof. Let P be a program of this form, and suppose that k credentials occur negatively in
IC. The following holds: If P ∪ S |= G and P ∪ S ∪ IC is satisfiable, then there is some subset
S′ ⊆ S of size |S′| ≤ k + 1 such that P ∪ S′ |= G and P ∪ S′ ∪ IC is satisfiable as well.

Indeed, suppose for the moment that k = 0. Then, P ∪ S |= G iff there exists some c ∈ S
such that P ∪{c} |= G. This holds since inference of G from P ∪S amounts to the reachability
of some sink c from G in the usual dependency graph of P ∪G. Reachability of c from G can be
decided in nondeterministic logarithmic space (NLOG), und thus P ∪{c} |= G tested in NLOG.
Furthermore, consistency of P ∪ {c} ∪ IC is decidable in NLOG, since this can be reduced to
non-reachability of a node in a graph, which is on co-NLOG, and since co-NLOG = NLOG,

5

also in NLOG. Thus, for a given singleton S = {c}, conditions 1 and 2 of a solution can be
tested in nlog space. Cycling though all c ∈ C, we thus can determine the optimal such S in
nlog space as well, which by axiom 1 for sen is then a solution for CSEL.

Now consider the case were k > 0 credentials occur negatively in IC. Then, like above
either empty or singleton S is sufficient for P ∪ S |= G; however, integrity constraints in
IC containing negative literals might be violated by such S. However, at most k credentials
(from those occurring negatively) need to be added to S to S′ ⊇ S in order to satisfy such
integrity constraints. The number of such S′ is polynomial if k is constant, and each S′ occupies
logarithmic space. Thus, by cyclic through polynomially many candidate S′, and exploiting
axiom 1 for sen, we can find a solution nondeterministically in logarithmic workspace.

We remark that if arbitrarily many credentials may occur in IC under negation, then the
problem is NP-hard even if P consists just of the fact G.

In the non-ground case, the complexity of the problem is expectedly higher. Here we are
concerned with the case of function-free programs, i.e., datalog programs. For such programs,
it is well-known that deciding inference of a ground atom is complete for exponential time (see
[Dantsin et al., 2001]). The following result is thus not difficult to derive.

Theorem 3. The unrestricted CSEL problem is solvable in exponential time, and EXPTIME-
hard. The theorem holds even if P is positive and IC is empty.

Proof. Membership. The membership of the problem in EXPTIME can be shown via a naive
algorithm, which cycles through all subsets S ⊆ C of C and, for each S checks whether con-
ditions 1 and 2 of a solution hold, and maintains a current best such S (according to sen(S))
which is superseded if some better S is encountered. Checking 1 and 2 is, by naive grounding
and Lemma 1 feasible in single exponential time. Thus, overall the algorithm runs in single
exponential × single exponential = single exponential time.

The EXPTIME-hardness can be shown by a simple reduction from deciding whether P |= A
for some positive datalog programs P and an atom A. If we set in CSEL 〈P,G, IC,C,Σ, sen〉
the goal G to A, IC = ∅ and let C = {}, then some solution exists iff P |= A holds.

An important aspect of the EXPTIME hardness in the preceding result is that the arities
of the predicates in P can become arbitrarily large. If the predicate aritities are bounded by a
constant, then the complexity of the problem drops to classes within the polynomial hierarchy.
Indeed, inference P |= A of a ground atom A from a stratified datalog program is decidable in
polynomial time with an NP oracle in this setting. The problem is thus solvable in polynomial
time with an oracle for Σp

2: following a similar line as in the proof of Theorem 2, we can first
compute the sensitivity value s∗ = sen(S∗) of some solution S∗ using the Σp

2 oracle, asking
whether there exists some S ⊆ C which satisfies 1 and 2 of a solution and has sensitivity � s;
given s∗, we can compute an optimal S∗ step by step asking the oracle, for each credential
ci ∈ C = {c1, . . . , cl}, whether there exists some solution S which does not contain ci (if not,
then we include ci).

We also note that the complexity of the problem in the datalog case falls back to the one
of the ground (propositional) case, if the number of variables in each rule is bounded by a
constant, since then the grounding has polynomial size. Note also that this case is not straight
subsumed by the case of bounded predicate arities.

6

2.2 Credential selection using Smodels

When the set of sensitivity levels Σ is a set of reals and sen is a member of a small set of simple
functions, it is possible to embed the CSEL problem into the ASP system Smodels.

Smodels features an optimization facility to minimize the “weight” of stable models. Such
weights are the sum of weights associated to individual ground atoms. This means that objective
functions different from a sum must be encoded with some additional programming effort
(currently we know how to encode only some objective functions). The objective function is
expressed with a directive such as

minimize [A1 = w1, . . . , An = wn]

where w1, . . . , wn are the weights associated to atoms A1, . . . , An, respectively. For more details
the reader is referred to [Simons et al., 2002].

Concerning the abduction problem, there are well-known encodings
[Satoh and Iwayama, 1991, Bonatti, 2004] where the search space is obtained via cyclic
recursion through negation.

The embedding of a CSEL instance 〈P,G, IC,C, sen〉 into Smodels—illustrated in Fig-
ure 1—requires a new propositional symbol c̄ for each atom c ∈ C. This is needed to create the
search space: for each S ⊆ C there exists a stable model M of this program such that c ∈ M
iff c ∈ S and c̄ ∈M iff c ∈ C \ S.

Different aggregation functions sen require different sets of auxiliary rules Asen and different
optimization statements Osen. In the following let C = {c1, . . . , cn}.

• For sen = sum, let Asen = ∅ and Osen = [c1 = sen({c1}), . . . , cn = sen({cn})].

• For sen = max, let Asen be the following set of rules, for i = 1, . . . , n, where the predicates
lev and maxlev are new predicates:

lev(i) ← c where c ∈ C and sen({c}) = i

lev(i) ← lev(i + 1)
maxlev(i) ← lev(i), not lev(i + 1)

and Osen = [maxlev(1) = 1, . . . ,maxlev(m) = m], where m = max{sen({c}) | c ∈ C}.
Intuitively, for all sensitivity levels i below the maximal one, lev(i) holds, and hence
maxlev(j) holds only for the maximal level j. The above rules can be easily generalized
to partially ordered (possibly not numeric) sensitivity levels.

• If sen increases the sum of individual sensitivity levels when particular combinations
of credentials (e.g., quasi-identifiers) are selected, then for each such combination Cj =
{c′1, . . . , c′k} requiring increment d, let Asen contain the rule

inc(j, d)← c′1, . . . , c
′
k

and let Osen = [c1 = sen({c1}), . . . , cn = sen({cn}), inc(j1, d1) = d1, . . . , inc(jm, dm) =
dm], where inc(j1, d1), . . . , inc(jm, dm) are the heads of the rules in Asen.

From the results of [Simons et al., 2002, Satoh and Iwayama, 1991, Bonatti, 2004] it follows
easily that:

Theorem 4. For each instance I of CSEL, the least cost stable models of the embedding of
Fig. 1 are in one-to-one correspondence with the solutions of I.

7

P ∪ IC ∪ {c← not c̄ | c ∈ C} ∪ {c̄← not c | c ∈ C} ∪ {← notG} ∪Asen

minimize Osen

Figure 1: Embedding CSEL into Smodels

2.3 Conclusions and future work

The problem of minimizing the sensitivity of disclosed information is hard even if all the in-
formation is available to the peer. However, we do not expect policies and portfolios to be
large enough to create real problems; the optimization problem is to be solved on the clients,
so it does not increase the computational load on the server. We have shown how to exploit a
state-of-the-art anser set solver (Smodels) to solve the problem. We are planning to build a
random policy generator to carry out an experimental evaluation of this technique. We are also
planning to exploit other engines, such as DLVHEX, to compare their efficiency with Smodel’s,
and achieve greater flexibility in the definition of the objective function via the external function
calls supported by DLVHEX.

We have not yet tackled the problem of minimizing information disclosure in more general
scenarios, where the policy is disclosed incrementally. This will be the subject of further work.

Finally, it may be interesting to study approximate algorithms for the credential selection
problem.

3 Negotiation strategies

In this section we abstract the negotiation framework of Protune, by removing all details
that are irrelevant to the study of the negotiations between two peers (in this report we do
not address negotiations between 3 or more peers). The strategies for deciding which rules and
credentials are to be disclosed at each step, are classified according to their abstract properties,
for example:

• Truthfulness: the peer does not “invent” any information.

• Monotonicity : the more information is acquired from the other peer, the more is released
to it.

• Focussed : the peer discloses only credentials and declarations that are explicitly asked for
(no spontaneous disclosures).

• Cooperative (w.r.t. some class of scenarios): no other strategy in the same class of scenarios
performs better (i.e. it leads to success in a larger number of cases).

We are interested in interoperability, i.e., the property of successfully completing all nego-
tiations that would be successful if the entire policies were disclosed. This is needed to study
the impact that policy protection has on negotiation success.

3.1 Definitions

We consider the following fixed sets of propositional items:

• a set of names Names;

8

• a set of resources Resources;

• a set of abbreviations Abbr.

We assume that the above sets are finite or denumerable. We assume that Resources contains
a special element Res. We set Prop = Names ∪ Resources ∪ Abbr.

A rule is a pair (A,B), where A (the head of the rule) is an element of Prop, while B (called
the body of the rule) is a subset of Resources ∪ Abbr. We denote the rule (A, {B1, . . . , Bk}) as
A← B1, . . . , Bk. A rule whose body is the empty set is called a fact. A fact (A, ∅) is denoted
by A ← or simply by A, when this does not lead to ambiguities. Rules that are not facts are
called proper rules. We denote Rules the set of all rules.

A program is a finite nonempty set of rules. In this context, the rule A ← B1, . . . , Bk can
be interpreted as follows: if B1, . . . , Bk are all true, then:

the rule called A can be released if A ∈ Names

resource A is owned if A ∈ Resources

property A is true if A ∈ Abbr

A message is a set of rules. We denote Msgs the set of all messages. A release strategy is
a function S : Msgs∗ → Msgs. Given a sequence of messages, a strategy prescribes the next
“move” of the peer.

A peer is a triple P = (P, λ, S), where P is a program, λ : P → Names is an injective
function, assigning names to the rules in P , and S is a release strategy. The program P must
satisfy the following consistency rule:

If A← B1, . . . , Bn ∈ P and A ∈ Names, then there is r ∈ P such that λ(r) = A.

We assume that we are given two peers P1 and P2, where Pi = (Pi, λi, Si). We assume that
peer P2 contains rule Res ←. The objective for peer P1 is to obtain the release of such rule.
We assume that peers do not overload names. Formally, for all α ∈ Names there is at most
one i ∈ {1, 2} such that λi(r) = α for some r ∈ Pi. Moreover, we assume that the following
independency condition holds: if program Pi contains proper rule A ← B1, . . . , Bn, then A
does not appear in the body of any rule in P3−i. As stated in the forthcoming Lemma 2,
this assumption prevents proper rules released from a peer from causing the unlocking of new
information in the other peer.

A negotiation is a finite sequence of messages m0m1 . . .mk, such that for all i ≥ 0, mi =
S1+(i mod 2)(σi−1), where σi−1 denotes the prefix of σ up to the i− 1-th message.

Given a negotiation σ and a peer index i ∈ {1, 2}, we denote received(σ, i) the set of rules
received by peer Pi during σ. Formally, if σ = m0m1 . . .mk, we have received(σ, 1) = m1∪m3∪
. . .mk−1+(k mod 2) and received(σ, 2) = m0 ∪m2 ∪ . . .mk−(k mod 2).

We define the following classes of peers:

• Truthful. For all negotiations σ, we have Si(σ) ⊆ Pi. Intuitively, a peer only transmits
information that is known to it.

• Monotonic. Given two negotiations σ and σ′, if received(σ, i) ⊆ received(σ′, i), then
Si(σ) ⊆ Si(σ′).

9

Termination. A termination criterion is a set of negotiations F . If a negotiation belongs
to F , then it is considered terminated with failure. A negotiation σ is successful if the fact
Res belongs to received(σ, 1). Clearly, a termination criterion F cannot contain any successful
negotiation.

We are only interested in termination criteria that bound the length of negotiations. For-
mally, there is no infinite negotiation such that all of its prefixes are neither terminated nor
successful.

Security. Given a negotiation σ and a peer Pi = (Pi, λi, Si), we say that rule r ∈ Pi is
unlocked for Pi at σ if λ(r) is provable using the rules in Pi plus the rules in the current
negotiation σ. We denote unlocked(σ, i) the set of all unlocked rules for Pi at σ.

We say that peer Pi is secure if it only reveals unlocked rules. Formally, for all negotiations
σ, Si(σ) ⊆ unlocked(σ, i).

In the following, we restrict to truthful and secure peers.

Focus. Let σ be a negotiation and i a peer index. The set relevant(σ, i) is the smallest subset
of Pi satisfying the following condition: For all (A,B) ∈ Pi, if A occurs in the body of a rule in
received(σ, i) ∪ relevant(σ, i), then (A,B) ∈ relevant(σ, i).

Given a set V ⊆ Pi, we say that the peer Pi is focused w.r.t. V if, for all negotiations σ, we
have that Si(σ) ⊆ relevant(σ, i)∪ V . Intuitively, a focused peer only reveals information that is
either relevant or voluntary.

Interoperability. We define the most liberal release strategy to be the strategy that always
transmits all the proper rules in the program, plus those facts that are currently releasable
(e.g., whose name is provable in the current negotiation). We say that peers P1 and P2 are
interoperable if there is a successful negotiation or there is no successful negotiation even when
peers employ the most liberal release strategy.

Cooperation. Next, we want to formalize the assumption that, other things being equal,
peers are interested in achieving a successful negotiation. To this purpose, we employ the
game-theoretic notion of domination.

Consider a termination criterion F . Given two peers Q1 and Q2, let val(Q1,Q2) = 1 if
they achieve a successfull negotiation and 0 otherwise. Given two peers Q1 = (P, λ, S1) and
Q2 = (P, λ, S2) having the same program and name labeling, we say that Q1 is dominated by
Q2 (w.r.t. F) if for all peers P, val(Q1,P) ≤ val(Q2,P), and there exists a peer P∗ such that
val(Q1,P∗) < val(Q2,P∗). Intuitively Q1 is dominated by Q2 if Q2 is at least as good as Q1

in achieving successful negotiations, and it is definitely better in at least one case. Domination
defines a strict (i.e. irreflexive) partial order on peers sharing the same program and name
labeling.

We say that a peer is undominated (w.r.t. F) if it is not dominated by any peer in the same
category. For instance, a focused peer is undominated if it is not dominated by any focused
peer. We say that the peer Pi is cooperative (w.r.t. F) if it is undominated.

10

3.2 Termination Criteria

Consider the following family of termination criteria. For all k > 0, let

Fk =

{
σ = σ0σ1 . . . σn | σn−k+1 ∪ σn−k+2 ∪ . . . ∪ σn ⊆

n−k⋃
i=0

σi

}
.

Intuitively, Fk stipulates that a negotiation is failed as soon as the peers exchange k messages
that bear no new information. A message that bears no new information is called a vacuous
mesasge. We proceed to show some properties of peers that are cooperative w.r.t. a termination
criterion in this family. For simplicity, we develop the arguments for P1.

3.2.1 Cooperation

For all k > 0, in order to be cooperative w.r.t. Fk, peers do not send vacuous messages that
lead to immediate termination, unless they have no other choice. This property is expressed by
the following theorem. For a negotiation σ = m0m1 . . .mn and an integer 0 ≤ j ≤ n + 1, let
tail(σ, j) the set of the last j messages in σ. Formally, tail(σ, j) = {mn−j+1, . . . ,mn}, where it
is understood that tail(σ, 0) = ∅.

Theorem 5. Assume that P1 is cooperative w.r.t. Fk, for some k > 0. For all negotiations σ,
if S1(σ) ⊆ received(σ, 2) and all messages in tail(σ, k − 1) are vacuous, then unlocked(σ, 1) ⊆
received(σ, 2).

Proof. Assume by contradiction that there is a negotiation σ such that S1(σ) ⊆ received(σ, 2),
but there is a rule r ∈ unlocked(σ, 1) \ received(σ, 2). We show that P1 is dominated by another
peer P ′1 = (P1, λ1, S

′
1). The strategy S′

1 behaves exactly like S1, except that S′
1(σ) = S1(σ)∪{r}.

First, we have to check that, for all peers P2, val(P1,P2) ≤ val(P ′1,P2). Consider any peer
P2; if P1 and P2 do not give rise to the negotiation σ, then P ′1 behaves exactly like P1 and so,
if P1 achieves a successful negotiation, so does P ′1. Next, assume that P1 and P2 do give rise
to the negotiation σ. Then, val(P1,P2) = 0 and certainly P ′1 cannot do any worse than this.

Finally, we have to exhibit a peer P2 that prefers P ′1 over P1. We define P2 so that, together
with P1, it gives rise to σ. Moreover, P2 releases Res as soon as it receives r. It follows from
the construction that val(P1,P2) = 0 and val(P ′1,P2) = 1.

Among the consequences of Theorem 5 is the fact that peers that are cooperative w.r.t. F1

do not send vacuous messages unless they have no other choice. The following examples show
that Theorem 5 is somewhat tight. In the following, we write r : A ← B to denote the rule
A← B and to signify that r is its name, i.e. r = λ(A← B).

First, peers that are cooperative w.r.t. F1 are not forced to always disclose all unlocked
information.

Example 1. Consider peer P1, whose program is P1 = {r1
1 : C1; r2

1 : C2; r1
1; r2

1} (where the
identifier before each colon is the name of the rule on the right of the colon). In the first
message, P1 releases only C1, then it also releases C2. Notice that P1 is not behaving in a
monotonic way. By inspection, the only peer that has any chance to dominate P1 is the peer
P ′1 that immediately releases both C1 and C2. However, there is a peer P2 that prefers P1

over P ′1. Namely, it is the (non-monotonic) peer that releases Res only after two messages. We
conclude that P1 is cooperative w.r.t. F1. 2

11

Moreover, for k > 1, cooperative peers can even emit vacuous messages when not forced to
do so.

Example 2. Consider the termination condition F3. Consider peer P1 with the same program
as in Example 1. This time, its release strategy is to first emit the empty message, then release
C1 and then release C2. P1 is not monotonic, but it is cooperative, essentially because it does
not terminate the negotiation by its own fault. For instance, the peer P ′1 that has the same
program as P1, but immediately releases both C1 and C2 does not dominate P1. The peer P2

that unconditionally releases Res after the third message (and sends empty messages otherwise)
prefers P1 over P ′1. A similar example can be built for all k > 1. 2

3.2.2 Cooperation against Monotonic Peers

Peers that are cooperative w.r.t. F1 against monotonic peers always release all unlocked infor-
mation.

Theorem 6. If P1 is cooperative w.r.t. F1 against monotonic peers, then for all negotiations
σ, we have S1(σ) = unlocked(σ, 1).

Proof. Assume by contradiction that there is a negotiation σ such that P1 retains rule r after
σ. Formally, r ∈ unlocked(σ, 1), r 6∈ received(σ), and r 6∈ S1(σ). We can check that P1 is
dominated by another peer P ′1 = (P1, λ1, S

′
1), where S′

1(ρ) = unlocked(ρ, 1) for all negotiations
ρ.

First, for all monotonic peers P2, if P1 and P2 lead to a successful negotiation, so do P ′1 and
P2. In particular, suppose that P1 and P2 lead to the successful negotiation ρ, while P ′1 and P2

lead to the negotiation ρ′. Using the fact that P2 is monotonic, we can prove by induction that
ρ is step-wise contained in ρ′. It remains to be checked that no vacuous message occurs in ρ′

before Res is released. Since both P ′1 and P2 are monotonic, they do not recover from vacuous
messages. In other words, a vacuous message in ρ′ would imply that all subsequent messages
are also vacuous.

Finally, we show that there is a peer P2 that “prefers” P ′1 over P1. We define P2 as follows:
at the beginning, P2 behaves in such a way as to obtain negotiation σ. Then, P2 waits for rule
r in order to release Res. Finally, P2 issues a vacuous message in reply to σ · S1(σ). One can
check that P2 can be built in such a way as to be monotonic. We obtain the contradiction that
P1 is dominated by P ′1.

For all k > 0, in order to be cooperative w.r.t. Fk against monotonic peers, peers do not
send vacuous messages after a series of k−2 vacuous messages, unless they have no other choice.

Theorem 7. Assume that P1 is cooperative w.r.t. Fk, for some k > 0, against monotonic
peers. For all negotiations σ, if S1(σ) ⊆ received(σ, 2) and all messages in tail(σ, k − 2) are
vacuous, then unlocked(σ, 1) ⊆ received(σ, 2).

Proof. Assume by contradiction that there is a negotiation σ such that P1 sends a vacuous
message after σ, although it could send some new rule r. Formally, there is r ∈ unlocked(σ, 1),
r 6∈ received(σ), while S1(σ) ⊆ received(σ). We can check that P1 is dominated by another peer
P ′1 = (P1, λ1, S

′
1), where S′

1 coincides with S1 except for (σ) = S1(σ)∪{r}. The proof proceeds
similarly to the one of Theorem 6.

However, being cooperative w.r.t. Fk, for k > 1, against monotonic peers, does not imply
revealing all unlocked information at once.

12

Example 3. Suppose we are using termination criterion F2, and consider peer P1 from Ex-
ample 1. As before, the only peer that has any chance to dominate P1 is the peer P ′1 that
immediately releases both C1 and C2. However, it is easy to check that P1 and P ′1 are in fact
equivalent w.r.t. all monotonic peers P2. So, P1 is cooperative against monotonic peers. 2

Moreover, cooperative peers can also send vacuous messages, provided they do not lead to
immediate or 1-step delayed termination.

3.3 Interoperability

We remind that all peers are assumed to be truthful and secure. The following example shows
that two peers that are cooperative w.r.t. F1 need not be interoperable.

Example 4. Consider P1 from Example 1. As for P2, we set P2 = {r1
2 : Res; r1

2 ← C2}. As
release strategy, we set S2(σ) = unlocked(σ, 2) for all negotiations σ. It is easy to check that
P2 is truthful, secure and cooperative w.r.t. F1. P1 and P2 have a successful negotiation under
the most liberal release strategy, namely the negotiation {C1; C2}{Res; r1

2 ← C2}. However,
they do not achieve a successful negotiation under their own strategies. 2

Before we can prove the main theorem of this section, we need to state the following lemma.
It essentially affirms that the set of unlocked rules depends only on the facts released so far,
and not on the proper rules. It is a direct consequence of the independency condition that we
put on the definition of peer.

Lemma 2. Given a peer Pi and two negotiations σ1 and σ2, if the set of facts in σ1 is contained
in the set of facts in σ2, then unlocked(σ1, i) ⊆ unlocked(σ2, i), for all i = 1, 2.

Theorem 8. For all k > 0, if both peers are cooperative w.r.t. Fk against monotonic peers,
then they are interoperable.

Proof. Assume that P1 and P2 lead to the successful negotiation σ under the most general
release strategy. Assume also that P1 and P2 give rise to the negotiation σ′ when using their
original release strategies.

If k = 1, using Theorem 6 and Lemma 2, we can prove that the set of facts that are released
at each step in σ and σ′ is the same. This leads immediately to the conclusion that σ′ is
successful. In particular, if a vacuous message occured in σ′, it should a fortiori occur in σ,
since in σ all proper rules are released in the first two steps, and all facts are released at the
same time as in σ′.

If k > 1, assume by contradiction that σ′ is terminated, and consider the last two vacuous
messages. By Theorem 7, peers had no other choice than emitting these vacuous messages. Let
C be the set of facts released during σ′. Clearly, we have that Res 6∈ C. Now, find the greatest
index i such that the set of facts in σi is contained in C. By Lemma 2, since the facts in σ′ are
not sufficient for either P1 or P2 to release any further fact, the same applies to σi. We obtain
the contradiction that, even under the most liberal release strategy, P1 and P2 cannot release
any new fact after σi.

Finally, the following result states that focused peers may not be interoperable, even when
cooperative against cooperative peers.

13

Theorem 9. For all k > 0, there are two peers that are focused and cooperative w.r.t. Fk,
against cooperative peers, but are not interoperable.

Proof. Consider the peers having the following programs:

P1 = {r1
1 : C1; r2

1 : r1
1} P2 = {r1

2 : Res; r2
2 : r1

2 ← C1}.

First, we prove that there is a successful negotiation under the most general release strategy.
Such negotiation is {C1}{Res; r1

2 ← C1}.
On the other hand, assume that peers employ the most liberal release strategy that is

focused and cooperative against cooperative peers. Such strategy simply prescribes to reveal
all information that is unlocked and relevant. Since rule r2

2 cannot be unlocked, peer P1 will
not transmit C1, as it is not relevant. Thus, the negotiation will fail according to Fk, for all
k > 0.

3.4 Related work

There are only a few previous works on strategy interoperability [Yu et al., 2001,
Yu et al., 2003]. They address specific families of strategies, defined on the basis of struc-
tures that resemble proof trees, and on sequences of transformations over sets of those trees.
We aimed at a more general setting, based on abstract properties of the strategies and not
on their internal structure. As a side effect we obtain—we believe—simpler definitions and
a clearer picture of which are the real properties that enable interoperability. Currently, the
results of [Yu et al., 2001, Yu et al., 2003] are stronger over their family of strategies, but we
are currently extending our results by means of local properties of individual policies (see the
next section).

3.5 Conclusions and future work

The impact of policy protection on negotiation success is negligible for all cooperative peers
against monotonic peers. These are the “most successful” agents among those designed to
interact with peers that release more information when they get more (a reasonable assumption
in normal situations; we are not interested in guaranteeing interoperability with agents that
only try to steal information). It turns out that these peers can also interact successfully with
each other (if their policies permit), even if they are not monotonic themselves. We are still
investigating the meaning of this somewhat surprising result; it might be a symptom that our
requirement on strategies is too strong and can be relaxed.

On the contrary focused peers (i.e. those that never release a piece of information unless
it is explicitly requested) do not enjoy this property. Unofrtunately, focussed peers are very
common, so we are studying suitable local conditions that ensure interoperability. They will be
the subject of a future work.

Our current results show also that for some cooperative peers, the number of “empty”
messages that sanctions the end of a negotiation is not so important from the point of view of
the result of the negotiation. Peers are forced to react only during the last few steps before
termination, so a termination criterion based on a high number of empty messages may only
have the effect of slowing down the negotiation. Simons, Winslett and Yu obtained compatible
results in an unpublished work (personal communication); they prove that the number of empty
messages can be restricted to [0, 4] for their family of strategies.

14

Several other interesting aspects remain to be addressed. For example, a peer might adopt
different termination criteria, such as a fixed bound on negotiation steps. The study of alter-
native termination protocols are an interesting subject for further research. Last but not least,
multi-party negotiations still need to be addressed.

Acknowledgements

We are grateful to Silvie Spreeuwenberg and Daniel Olmedilla for their precious comments and
suggestions.

References

[Bonatti, 2004] Bonatti, P. A. (2004). Abduction over unbounded domains via ASP. In
de Mántaras, R. L. and Saitta, L., editors, Proc. of ECAI’04, pages 288–292. IOS Press.

[Chen and Toda, 1995] Chen, Z.-Z. and Toda, S. (1995). The Complexity of Selecting Maximal
Solutions. Information and Computation, 119:231–239.

[Dantsin et al., 2001] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complexity
and Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–425.

[Satoh and Iwayama, 1991] Satoh, K. and Iwayama, N. (1991). Computing abduction by using
the TMS. In ICLP, pages 505–518.

[Simons et al., 2002] Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and imple-
menting the stable model semantics. Artif. Intell., 138(1-2):181–234.

[Yu et al., 2001] Yu, T., Winslett, M., and Seamons, K. (2001). Interoperable strategies in au-
tomated trust negotiation. In CCS ’01: Proceedings of the 8th ACM conference on Computer
and Communications Security, pages 146–155. ACM Press.

[Yu et al., 2003] Yu, T., Winslett, M., and Seamons, K. (2003). Supporting Structured Creden-
tials and Sensitive Policies through Interoperable Strategies in Automated Trust Negotiation.
ACM Transactions on Information and System Security, 6(1).

15

