
I4-D7

E�cient Framework for Xcerpt Processing: Principles and
Architecture of theAMaχoSAbstract Machine for Xcerpt

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D7/D/PU/a1
Responsible editors: Tim Furche
Reviewers: Michael Brade and Liviu Badea
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: 28 February 2006
Actual submission date: 14 April 2006

Abstract
Web query languages promise convenient and e�cient access to Web data such as XML, RDF, or Topic
Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for
e�ective and convenient query authoring, particularly tailored to versatile access to data in di�erent Web
formats such as XML or RDF. However, so far it lacks an e�cient implementation to supplement the
convenient language features. AMaχoS is an abstract machine implementation for Xcerpt that aims at
e�ciency and ease of deployment. It strictly separates compilation and execution of queries: Queries
are compiled once to abstract machine code that consists in (1) a code segment with instructions for
evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints
derived by the query compilation. ¿is article summarizes the motivation and principles behind AMaχoS
and discusses how its current architecture realizes these principles.

Keyword List
evaluation,principles,abstract machine,Xcerpt,XML,RDF

Project co-funded by the European Commission and the Swiss Federal O�ce for Education and Science within the Sixth Framework
Programme.

© REWERSE 2006.

ii

E�cient Framework for Xcerpt Processing: Principles and
Architecture of theAMaχoSAbstract Machine for Xcerpt

François Bry1, Tim Furche1, Benedikt Linse1

1 Institute for Informatics, University of Munich, Germany
Email: `�rst-namee.`last-namee@i�.lmu.de

14 April 2006

Abstract
Web query languages promise convenient and e�cient access to Web data such as XML, RDF, or Topic
Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for
e�ective and convenient query authoring, particularly tailored to versatile access to data in di�erent Web
formats such as XML or RDF. However, so far it lacks an e�cient implementation to supplement the
convenient language features. AMaχoS is an abstract machine implementation for Xcerpt that aims at
e�ciency and ease of deployment. It strictly separates compilation and execution of queries: Queries
are compiled once to abstract machine code that consists in (1) a code segment with instructions for
evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints
derived by the query compilation. ¿is article summarizes the motivation and principles behind AMaχoS
and discusses how its current architecture realizes these principles.

Keyword List
evaluation,principles,abstract machine,Xcerpt,XML,RDF

iv

Contents

1 Introduction 1

2 A Brief History of Abstract Machines 2

3 Xcerpt: A Versatile Web Query Language 3
3.1 Data as Terms . 3
3.2 Queries as Enriched Terms . 3
3.3 Programs as Sets of Rules . 4

4 Architecture: Principles 4
4.1 “Execute Anywhere”—Uni�ed Query Execution Environment 4
4.2 “Compile Once”—Separation of Compilation and Execution 5

4.2.1 Extensive static optimization. 5
4.3 “Compile, Classify, Execute”—Uni�ed Evaluation Algorithm 5
4.4 “Optimize All the Time”—Adaptive Code Optimization . 6
4.5 “Distribute Any Part”—Partial Query Evaluation . 7

5 Architecture: Overview 8
5.1 AMaχoS Core . 10
5.2 Query Compiler . 10

6 Conclusion and Outlook 11

v

vi

1 Introduction

E�cient evaluation of Web query languages such as XQuery, XSLT, or SPARQL has received considerable
attention from both academia and industry over recent years. Xcerpt is a novel breed of Web query
language that aims to overcome the split between traditional Web formats such as XML and Semantic
Web data formats such as RDF and Topic Maps. ¿us it avoids the impedance mismatch of using di�erent
languages to develop applications that enrich conventional Web applications with semantics and reasoning
based on RDF, Topic Maps, or similar emerging formats.

However, so far Xcerpt lacks a scalable, e�cient and easily deployable implementation. In this article,
we propose principles and architecture of such an implementation. ¿e proposed implementation deviates
quite notably from conventional wisdom on the implementation of query languages: it is based on an
abstract (or virtual1) machine that executes (interprets) low-level code generated from high-level query
programs speci�ed in Xcerpt.

¿e choice of an abstract machine for implementing a query language might at the �rst glance seem
puzzling. And indeed abstract machines have only very seldom been considered in the past for the
implementation of query languages (the most notable exception being [22]). ¿is is partially due to the
perceived performance overhead introduced by the abstraction/virtualization layer. However, traditional
query processors already separate between query compilation, where a high-level query is translated
into a low-level physical query plan, and query execution, where the query is evaluated according to
that query plan. From this point on, the leap to an abstract machine that fully separates compilation
and execution seems small. In traditional DBMS settings it has, however, never occurred due to the way
query compilation is linked with query execution: cost-based optimizers extensively consider (statistical)
information about the data instances, e.g., for selectivity estimates, and about actual access paths to these
data instances. ¿is information is available as the DBMS has full, central control over the data including
its storage.

When implementing a Web query language such as Xcerpt, one is however faced with a quite di�erent
setting: in-memory processing of queries against XML, RDF, or other Web data that may be local and
persistent (e.g., an XML database or local XML documents), but just as well may have to be accessed
remotely (e.g., a remote XML document) or may be volatile (e.g., in case of SOAP messages or Web
Service access). In other words, it is assumed that most of the queried data is not under (central) control
of a query execution environment like in a traditional DBMS setting, but rather that the queried data
is o en distributed or volatile. ¿is, naturally, hinders the application of conventional indexing and
predictive optimization techniques, that rely on local management of data and statistic knowledge about
that managed data. But, it alsomakes separate compilation and execution possible as the query compilation
is already mostly independent of data storage and instances as information about these is not available at
compilation and execution time but only becomes available at query execution.

To some extent, this setting is comparable to data stream processing where also little is known about
the actual data instances that are to be encountered during query evaluation. ¿e e�cient data stream
systems (such as [3, 1,6]) compile therefore queries into some form of (�nite state or push-down) automata
that is used to continuously evaluate the query against the incoming data.

AMaχoS, the abstractmachine for Xcerpt on semi-structured data, can be seen as an amalgamation
of techniques from these three areas: query optimization and execution from traditional databases and
data stream systems, and compilation and execution of general programs based on abstract or virtual

1Little substantial di�erence is made in the literature between “abstract” and “virtual” machines. Some authors de�ne virtual
machines as abstract machines with interpreters in contrast to abstract machines such as Turing machines that are purely
theoretical thought models. However, this distinction is not widely adopted. In recent years, the term “virtual” machine seems to
dominate outside of logic programming literature.

1

machines.
AMaχoS is designed around a small number of core principles:

1. “Compile once”—compilation and execution is separated in AMaχoS thus allowing (a) di�erent
levels of optimization for di�erent purposes and settings and (b) the distribution of compiled query
programs among query nodes in the Web making light-weight query nodes possible. For details see
Section 4.2.

2. “Execute anywhere”—once compiled, AMaχoS code can be evaluated by any AMaχoS query node.
It is not �xed to the compiling node. In particular, parts of a compiled program can be distributed
to di�erent query nodes. For details see Section 4.1.

3. “Optimize all the time”—not only are queries optimized predictively during query compilation, but
also adaptively during execution (adaprtive query evaluation). For details see Section 4.4.

As a corollary of these three principles AMaχoS employs a novel query evaluation framework for the
uni�ed execution of path, tree, and graph queries against both tree- and graph-shaped semi-structured
data (details of this framework are discussed in Section 4.3 and [8]).

Following a brief look at the history of abstract and virtual machines for program and query execu-
tion (Section 2) and an introduction into Xcerpt (Section 3), the versatile Web query language that is
implemented by the AMaχoS abstract machine, we focus in the course of this article �rst (Section 4) on a
discussion of the principles of this abstract machine that also serves as a further motivation of the setting.
¿e second part (Section 5) of the paper discusses the proposed architecture of AMaχoS and how this
architecture realizes the principles discussed in the �rst part.

2 A Brief History of Abstract Machines

Abstract and virtual machines have been employed over the last few decades, apart from theoretical
abstract machines as thought models for computing, in mostly three areas:

Hardware virtualization. Abstract machines in this class provide a layer of virtual hardware on top of
the actual hardware of a computer. ¿is provides the programs directly operating on the virtual hardware
(mostly operating systems, device drivers, and performance intensive applications) with a seemingly
uniform view of the provided computing resources. ¿ough this has been a focus of considerable research
as early as 1970, cf. [12] only recent years have seen commercially viable implementations of virtual
machines as hardware virtualization layers, most recently Apple’s Rosetta2 technology that provides an
adaptive, just-in-time compiled virtualization layer for PowerPC applications on Intel processors. Currently,
research in this area focuses on providing scalability, fault tolerance [9] and trusted computing [11] by
employing virtual machines, as well as on on-chip support for virtualization.

Operating system-level virtualization A slightly higher level of abstraction or virtualization is provided
by operating system-level virtual machines that virtualize operating system functions. Again, this technol-
ogy has just recently become viable in the form of, e.g., Wine3, a Windows virtualization layer for Unix
operating systems.

2http://www.apple.com/rosetta/
3http://www.winehq.com/

2

http://www.winehq.com/

High-level language virtual machines From the perspective of AMaχoS the most relevant research
has been on virtual machines for the implementation of high-level languages. Again �rst research dates
back to the 1960es [25], but wider interest in abstract machines for high-level languages has been focused
on two waves: First, in the 1980es a number of abstract machines for Pascal (p-Machine, [26]), Ada [14],
Prolog [32], and functional programming languages (G-machine, [16]) have been proposed that focused
on providing platform neutrality and portability as well as precise speci�cations of the operational semantics
of the languages. Early abstract machines for imperative and object-oriented programming languages
have not been highly successful, mostly due to the perceived performance penalty. However, research on
abstract machines for logic and functional programming languages has continued mostly uninterrupted
up to recent developments such as the tabling abstract machine [28] for XSB Prolog.

Recently, the �eld has seen a reinvigoration, cf. [27], triggered both by advances in hardware virtual-
ization and a second wave of abstract machines for high-level programming languages, this time focused
on imperative, object-oriented programming languages like Java and C®. Here, isolation and security are
added to the core arguments for the use of an abstract machine: Each instance of an abstract machine
is isolated from others and from other programs on the host system. Furthermore the analysis of the
abstract machine byte code to ensure, e.g., safety or security properties proves easier than analysis of native
machine code.

¿e most prominent examples of this latest wave are, of course, Sun’s Java virtual machine [19]
and Microso ’s common language infrastructure [15] (CLI). ¿e latter is adding the claim of “language
independence” to the arguments for the deployment of an abstract machine. And indeed quite a number
of object-oriented and functional languages have been compiled to CLI code. With this second wave,
design and principles of abstract machines are starting to be investigated more rigorously, e.g., in [10]
and [31] that compare stack- with register-based virtual machines.

Closest in spirit and aim to the work presented in this paper and to the best knowledge of the authors’
the only other work on abstract machines for Web query languages is [22] that presents a virtual machine
for XSLT as part of recent versions of the Oracle database. However, this virtual machine is focused on a
centralized query processing scenario where a single query engine has control over all data and thus can
employ knowledge about data instances and access paths for optimization and execution.

3 Xcerpt: A Versatile Web Query Language

Xcerpt is a query language designed a er principles given in [7] for querying both data on the standard
Web and data on the Semantic Web. More information, including a prototype implementation, is available
at http://xcerpt.org.

3.1 Data as Terms

Xcerpt uses terms to represent semi-structured data. Data terms represent XML documents, RDF graphs,
and other semi-structured data items. Notice that subterms (corresponding to, e.g., child elements)
may either be “ordered” (as in an XHTML document or in RDF sequence containers), i.e., the order of
occurrence is relevant, or “unordered”, i.e., the order of occurrence is irrelevant and may be ignored (as in
the case of RDF statements).

3.2 Queries as Enriched Terms

Following the “Query-by-Example” paradigm, queries are merely examples or patterns of the queried
data and thus also terms, annotated with additional language constructs. Xcerpt separates querying and

3

http://xcerpt.org

construction strictly.
Query terms are (possibly incomplete) patterns matched against Web resources represented by data

terms. In many ways, they are like forms or examples for the queried data, but also may be incomplete in
breadth, i.e., contain ‘partial’ term speci�cations. Query terms may further be augmented by variables for
selecting data items.

Construct terms serve to reassemble variables (the bindings of which are gained from the evaluation of
query terms) so as to construct new data terms. Again, they are similar to the latter, but augmented by
variables (acting as place holders for data selected in a query) and grouping constructs (which serve to
collect all or some instances that result from di�erent variable bindings).

3.3 Programs as Sets of Rules

Query and construct terms are related in rules which themselves are part of Xcerpt programs. Rules have
the form:

CONSTRUCT construct-term

FROM and { query-term or { query-term ... } ... } END

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the construct
term by evaluating the query against Web resources (e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form complex query programs,
i.e., rules may query the results of other rules. More details on the Xcerpt language and its syntax can be
found in [29, 30].

4 Architecture: Principles

¿e abstract machine for Xcerpt, in the following always referred to as AMaχoS, and its architecture are
organized around �ve guiding principles:

4.1 “Execute Anywhere”—Unified Query Execution Environment

As discussed above, possibly the strongest reason to develop virtual machines for high-level languages
is the provision of a uni�ed execution environment for programs in that high-level language. In the
case of Xcerpt, AMaχoS aims to provide such a uni�ed execution environment. In our case, a uni�ed
execution environment brings a number of unique advantages: (1)¿e distributed execution of queries
and query programs requires that the language implementations are highly interoperable down to the
level of answer representation and execution strategies. A high degree of interoperability allows, e.g., the
distribution of partial queries among query nodes (see below). An abstract machine is an exceptionally
well suited mechanism to ensure implementation interoperability as its operations are fairly �ne granular
and well-speci�ed allowing the controlling query node �ne granular control over the query execution
at other (“slave”) nodes. (2) A rigid de�nition of the operational semantics as provided by an abstract
machine allows not only a better understanding and communication of the evaluation algorithms, it
also makes query execution more predictable, i.e., once compiled a query should behave in a predictable
behavior on all implementations. ¿is is an increasingly important property as it eases query authoring
and allows better error handling for distributed query evaluation. (3) Finally, a uni�ed query execution
environment makes the transmission and distribution of compiled queries and even parts of compiled
queries among query nodes feasible, enabling easy adaptation to changes in the network of available query
nodes, cf. Section 4.5.

4

4.2 “Compile Once”—Separation of Compilation and Execution

In the introduction, the setting for the AMaχoS abstract machine has been illustrated and motivated: In
memory processing of queries against XML, RDF, or other Web data that may be local and persistent (e.g.,
an XML database or local XML documents), but just as well may have to be accessed remotely (e.g., a
remote XML document) or may be volatile (e.g., in case of SOAP messages or Web Service access). In
other words, it is assumed that most of the queried data is not under (central) control of a query execution
environment like in a traditional database setting, but rather that the queried data is o en distributed
or volatile. Naturally, this limits the application of traditional indexing and predictive optimization
techniques, that rely on local management of data and statistic knowledge about that managed data.

Nevertheless algebraic optimization techniques (that rely solely on knowledge about the query and
possible the schema of the data, but not on knowledge about the actual instance of data to be queried) and
ad-hoc indices that are created during execution time still have their place under these circumstances.

In particular, such a setting allows for a clean separation of compilation and execution: ¿e high-level
Xcerpt program is translated into AMaχoS code separately from its execution. ¿e translation may be
separated by time (at another time) and space (at another query node) from the actual execution of the
query. ¿is is essential to enable the distribution of pre-compiled, globally optimized AMaχoS programs
evaluating (parts of) queries over distributed query nodes.

4.2.1 Extensive static optimization.

¿is separation also makes more extensive static optimization feasible than traditionally applied in an
in-memory setting (e.g., in XSLT processors such as Saxon4 or Xalan5). Section 5.2 and Figure 5 present a
more detailed view of the query compiler and optimizer employed in the AMaχoS virtual machine. To be
applicable to di�erent scenarios, a control API for the query compilation stage allows the con�guration of
strategy and extent used for optimizing a query during the compilation from high-level Xcerpt programs
to low-level AMaχoS code.

Aside from traditional tasks such as dead (or tautological) branch elimination, detection of unsatis�able
queries, operator order optimization and selection between di�erent realizations for the same high-level
query constructs, the AMaχoS query compiler has another essential task: the classi�cation of each query
in the query program by its features, e.g., whether a query is a path, tree, or graph query (cf. [23, 8]) or
which parts of the data are relevant for the query evaluation. ¿is information is encoded either directly in
the AMaχoS code of the corresponding construct-query rule or in a special hint section in the AMaχoS
program. ¿at hint section is later used by the query engine (the AMaχoS core) to tune the evaluation
algorithm.

4.3 “Compile, Classify, Execute”—Unified Evaluation Algorithm

A single evaluation algorithm is used in AMaχoS for evaluating a large set of diverse queries and data. At
the core of this algorithm stands the “memoization matrix,” a data structure �rst proposed in [29] and
re�ned to guarantee polynomial size in [8]), that allows an e�cient representation of intermediary results
during the evaluation of an Xcerpt query (or more generally an n-ary conjunctive query over graph data).
A sample query and corresponding memoization matrix are shown in Figure 1: ¿e query selects the
names of conferences with PC members together with their authors (i.e., it is a binary query). ¿e right
hand of Figure 1 shows a possible con�guration of the memoization matrix for evaluating that query: d2 is

4http://www.saxonica.com/
5http://xml.apache.org/xalan-j/

5

http://www.saxonica.com/
http://xml.apache.org/xalan-j/

conference

paper name

member

v2

Child+ Child

Child+

Root

Child+

v1

author
v3

v4

v5

Variable Node Sub-Matrix

v5 d2 Variable Node Sub-Matrix

v4 d3

v3 d11

v2 d13

v4 d5 Variable Node Sub-Matrix

Variable Node Sub-Matrix

v1 d6

v1 d7

Figure 1: Sample Query and Memoization Matrix

some conference for which we have found multiple bindings for v4, i.e., the query node matching papers
of the selected conference. ¿e matrix also shows that sub-matrices are shared if the same query node
matches the same data node under di�erent constellations of the remaining query nodes. ¿is sharing is
possible both in tree and graph queries, but in the case of graph queries the memoization matrix represents
only a potential match in which only a spanning tree over the relations in the query is enforced. ¿e
remaining relations must be checked on an unfolding of the matrix. ¿is last step induces exponential
worst-case complexity (unsurprisingly as graph queries are NP-complete already if evaluated against tree
data as shown in [13]), but is in many practical cases of little in�uence.

How to use the memoization matrix to obtain an evaluation algorithm for arbitrary n-ary conjunctive
queries over graphs (that form the core of Xcerpt query evaluation), is shown in [8]. It is shown that the
resulting algorithms are competitive with the best known approaches that can handle only tree data and
that the introduction of graph data has little e�ect on complexity and practical performance.

¿ememoization matrix forms the core of the query evaluation in AMaχoS. As brie�y outlined in [8],
the method can be parameterized with di�erent algorithms for populating and consuming the matrix.
¿ereby it is possible to adopt the algorithm both to di�erent conditions for the query evaluation (e.g., is
an e�cient label or keyword index for the data available or not) and to di�erent requirements (e.g., are just
variable bindings needed or full transformation queries). ¿e �rst aspect is automatically adapted by the
query engine (cf. Section 5.1), the second must be controlled by the execution control API, cf. Section 5.

4.4 “Optimize All the Time”—Adaptive Code Optimization

As argued above in Section 4.2 a separation of compilation/optimization from execution is an essential
property of the AMaχoS virtual machine that allows it to be used for distributed query evaluation and
Web querying where control over the queried data is not centralized.

¿is separation can be achieved partially by providing a uni�ed evaluation algorithm (Section 4.3)
that tunes itself, with the help of hints from the static optimization, to the available access methods and
answer requirements.

However, separate compilation precludes optimizations based on intricate knowledge about the actual
instances of the data to be queried (e.g., statistical information about selectivity, precise access paths,
data clustering, etc.). ¿is can, to some extent, be o�set by adaptive code optimization. Adaptive query
optimization is a technique sometimes employed in continuous query systems, where also the characteristic
of the data instances to be queried is not known a priori, cf. [2].

6

AMAχOS Node

Local Data Source
—e.g. document
—e.g. database

Remote Data Source
—e.g. Web service

Application
control API (Java)

Application
Web Service API

Application
command-line interface

Xcerpt Node

 Query Compiler

Xcerpt Program
rule 1:
 c1 ← q1,1 ∧ q1,2 ∧ … ∧ q1,k1

rule 2:
 c2 ← q2,1 ∧ q2,2 ∧ … ∧ q2,k2

rule 3:
 c3 ← q3,1 ∨ q3,2 ∨ … ∧ q3,k3

…

rule 1
rule 2

rule n

AMAχOS Code

Hint Segment

Dependency
Segment

Code Segment

…

rule 1

rule 2

rule n

AMAχOS Node

AMAχOS Node

Local Data Source
—e.g. document
—e.g. database

AMAχOS NodeAMAχOS Node

Local Data Source
—e.g. document
—e.g. database

AMAχOS Node

Remote Data Source
—e.g. Web service

rule 1

query
conjunct q1,1

query
conjunct q1,2

rule 2

query
conjunct q2,1

query
conjunct q2,2

Figure 2: Query Node Network

In theAMaχoS virtual machine we go a step further: Not only can the physical query plan expressed in
theAMaχoS code continuously be adapted, but the result of the adaptation can be stored (and transmitted
to other query nodes) as an AMaχoS program for further executions of the same query. Obviously,
such adaptive code optimization is not for free and will most likely be useful in cases where the query is
expected to be evaluated many times (e.g., when querying SOAP messages) or the amount of data is large
enough that some slow-down for observation and adaption in the �rst part of the evaluation is o�set by
performance gains in later parts.

4.5 “Distribute Any Part”—Partial Query Evaluation

Once compilation and execution are separate, the possibility exists that one query node compiles the
high-level Xcerpt program to AMaχoS code using knowledge about the query and possibly the schema of
the data to optimize (globally) the query plan expressed in theAMaχoS code. ¿e result of this translation
can than be distributed among several query nodes, e.g., if these nodes have more e�cient means to access
the resources involved in the query.

Indeed, once at the level of AMaχoS code it is not only possible to distribute say entire rules or sets
of rules, but even parts of rules (e.g., query conjuncts) or even smaller units. Figure 2 illustrates such a
distributed query processing scenario with AMaχoS: Applications use one of the control APIs (obtaining,
e.g., entire XML documents or separate variable bindings) to execute a query at a given Xcerpt node.
¿is implementation of Xcerpt transforms the query into AMaχoS code and hands this code over to
its own AMaχoS engine. Depending on additional information about the data accessed in the query,
this AMaχoS node might decide to evaluate only some parts of the query locally (e.g., those operating
exclusively on local data and those joining data from di�erent sources) and send all the remaining query
parts to other AMaχoS nodes that are likely to have more e�cient access to the relevant data.

7

Compilation API
— simple observation and control API
— compilation strategies

Execution & Answer API

Data Access Layer

Parsing & Verification Layer Compilation Layer

Serialization LayerSchema Access Layer

Execution Layer (AMAχOS)

— control, observation, parameterization
— OO & Web Service API

— program parsing and veri!cation
— multi-parser, normalization, modules

— unsatis!able, tautological parts
— extensive query optimization

— pattern matching engine
— rule dispatcher and engine

— provides access to schema of data
— type checking for compilation

— incremental data access
— storage and indexing engine

— incremental answer creation
— versatile Web format supportDa

ta
Pl

an
e

Pr
og

ra
m

Pl
an

e
Co

nt
ro

l
Pl

an
e

Figure 3: Overview of AMaχoS Components

In contrast to distribution on the level of a high-level query language such as Xcerpt, distribution on
the level of AMaχoS has two main advantages: the distributed query parts can be of �ner granularity and
the “controlling” node can have, by means of code transformation and hint sections, better control of the
“slave” nodes.

Notice, that AMaχoS enables such query distribution, but does not by itself provide the necessary
infrastructure (e.g., for registration andmanagement of query nodes). It is assumed that this infrastructure
is provided by outside means.

5 Architecture: Overview

¿e previous section illustrates the guiding principles in the development of AMaχoS. ¿e remainder of
this article focuses on how these principles are realized in its architecture and discusses several design
choices regarding the architecture.

Notice, that only a small part of the fullAMaχoS architecture as described here has been implemented
so far. We have concentrated in the implementation on the execution and optimization layer, that are also
described in more detail in Sections 5.1 and 5.2.

Figure 3 shows a high-level overview of AMaχoS and its components. ¿e architecture separates the
components in three planes:

Control Plane. ¿e control plane enables outside control of the compilation, execution, and answer
construction. Furthermore, it is responsible for observation and adaptive feedback during execution.

Program Plane. ¿e program plane contains the core components of the architecture: the compilation
and execution layer. It combines all processing that an Xcerpt program partakes when evaluated by
an AMaχoS virtual machine. ¿e �rst step is, naturally, parsing, veri�cation, normalization, module
expansion etc. ¿ese are realized as transformations on the layer of the Xcerpt language and the resulting
normalized, veri�ed, and expanded Xcerpt program can be accessed via the compilation API. However,
usually the result becomes input for the compilation layer where the actual transformation into AMaχoS
code takes place. ¿e details of this layer are discussed below in Section 5.2. In the architecture overview,
we chose to draw the compilation and execution layer as directly connected. However, it is also possible to
access the resulting program (again via the compilation API) and execute it at a later time and even at a

8

rule 1
rule 2

rule n

AM Code
Hint Segment

Dependency
Segment

Code Segment

…

Abstract Machine AMAχOS

Rule Engine

Storage Manager

Pattern Matching Engine

Variable Node Sub-Matrix

v5 d2 Variable Node Sub-Matrix

v4 d3

v3 d11

v2 d13

v4 d5 Variable Node Sub-Matrix

Variable Node Sub-Matrix

v1 d6
v1 d7

Figure 3: Filled Memoization Matrix (on Data of
Figure 1)

T (Q), and a data graph D with nodes N , a memoization
matrix for the evaluation of Q against D is a recursive data
structure representing all possible bindings of query vari-
ables in Q to nodes from D. The memoization matrix is
a relation containing for each qs ∈ SourceVars(T (Q)) and
each possible binding n ∈ N for qs that satisfies all prop-
erty relations on qs one triple (qs, n, M ′) with M ′ a sub-
set of the memoization sub-matrix for Q\SourceVars(T (Q))
such that for each tuple (q′, n′, M ′′) ∈ M ′ and each atom
rel(qs, q

′) ∈ T (Q), it holds that (n, n′) ∈ !rel "D.

Intuitively, this definition requires that the bindings for
source variables in a sub-matrix M ′ are structurally com-
patible with the binding of the source variable in the corre-
sponding tuple of M .

Notice that only the spanning tree of Q, denoted by T (Q),
is considered in the memoization matrix. The memoization
matrix ensures only consistency in respect of relations within
T (Q). It does not ensure that the valuations are consistent
w.r.t. relations outside T (Q). Exploiting the tree shape
of T (Q), thus makes a local evaluation of relations possi-
ble: A full-match can be incrementally computed from local
matches that consider parent and child variables in the tree
query in isolation.

To avoid multiple computations of matches in the case
of queries where the same data node can be a match for a
variable under different constellations of the remaining vari-
ables, the memoization matrix shares tuples where possible:
Each tuple (q, n, M) exists only once and is referenced if
the same tuple may occur in different sub-matrices. Notice,
that sharing of tuples only occurs between sub-matrices at
the same level (i.e., sub-matrices of the same common super-
matrix). The following sections show how this property can
be ensured during the construction of the memoization ma-
trix. Notice once more that this property relies on the tree
structure of the relations checked in the memoization ma-
trix.

It is furthermore assumed that the matrix is clustered by
variables allowing linear access to all entries relating to a
variable.

Figure 3 shows the memoization matrix for the evaluation
of the query from Figure 4 against the sample data graph
from Figure 1.

The algorithms for matrix population discussed in the fol-
lowing section guarantee a population of the matrix for a

conference

paper name

member

v2

Child+ Child

Child+

Root

Child+

v1
author

v3

v4

v5

Figure 4: Modified Sample Query

given n-ary conjunctive query Q against a data graph D
takes at most O(|Vars(Q)| · |N | · |E|) time, where |Vars(Q)|
denotes the number of variables in Q, |N | the number of
nodes, and |E| the number of edges in the data graph D.
Note that in the special case of tree-shaped data, |E| = |N |−
1, so that the worst case complexity becomes O(|Vars(Q)| ·
|N |2). The size of the memoization matrix is in O(Vars(Q) ·
|N |2) independently from the used algorithm, just by assum-
ing sharing of submatrices, as demonstrated in the following.

Lemma 1 (Size of Memoization Matrix). The size
of the memoization matrix M for a query Q and a data
graph D with nodes N is bounded by (2q − 1) · v2, where
q = |V ars(Q)|, and v = |N |.

Proof. By structural induction over T (Q).
Query leaves: It holds that q = 1, and obviously the number
of valuations for a single variable is bounded by v. The size
of the memoization matrix is q · v ≤ (2q − 1) · v2.
Inner query nodes: Let the inner query node i have c chil-
dren. It holds that the sum of nodes of all child queries is
equal to q − 1 =

Pc
j=1 qj (i). There are again at most v

valuations of i. As tuples are shared over parent matrices,
there is at most one tuple for each such valuation. The size
of the sub-matrix contained in the tuple itself is bounded by
c ·v, as each child has at most v assignments. The size of all
tuples for the inner node i (i.e. of the complete sub-matrix
of i) is hence c · v2. The overall matrix size is, using the
induction hypothesis,

cX

j=1

(2qi−1) ·v2 + c ·v2 (i)
= (2(q−1)− c+ c) ·v2 ≤ (2q−1) ·v2.

Based on the populated matrix, the algorithms discussed
in Section 5 traverse the memoization matrix, enforce the
remaining (non-hierarchical) relations, if there are any, and
create the output according to the query semantics intro-
duced above.

4. MATRIX POPULATION
The compact memoization matrix introduced in the last

section can be produced bottom-up (Match↑, Section 4.1)
or top-down (Match↓, Section 4.2), that is, starting with
the root variable and the root data node or with the leaf
variables and all data nodes. While both algorithms have
the same worst case complexity, experimental evaluation in
Section 7 shows that an in-memory implementation of the
bottom-up algorithm has an experimental runtime close to
the worst case complexity, while the top-down approach dis-
plays far better runtime behavior in realistic cases.

Memoization Matrix

Static Function Library

Storage &
Index Hints

— executes current rule
— rules are executed incremental or bulk-wise
— backward vs. forward chaining
— special “rules” such as functions or Web services routed accord.
— data access just a special form of rule

Rule Dispatch
— selects next rule to

execute
— implements rule

backtracking
— uses dependency

graph

Code
Scheduler

Dependency
Hints

Rule Call
(Recursion)

core Xcerpt function library
— similar to XPath and XQuery

function library
— some extensions for RDF

processing
— implemented directly in host

machine not by machine code

Function Call

n-ary conjunctive queries
— against tree or graph data
— path, tree, or graph queries
— uni!cation with rule heads
— based on e"cient memoization matrix (in-

memory algorithm)

Construction Engine

Substitution Sets Answer Construction

rule 1

rule 2

rule n

Runtime Data Access Layer

Qu
er

y C
om

pi
la

tio
n (

se
pa

ra
te

) Serialization or Answer API

In-Memory
Answer Representation

Abstract Machine Code

Figure 4: Architecture of Core Query Engine AMaχoS

later place. Indeed, compilation and execution are properly separated with only one interface between
them: the AMaχoS program containing aside of the expressions realizing individual rules in the Xcerpt
program also supporting code segments that provide hints for the program execution and dependency
information used in the rule dispatcher, cf. Section 5.1.

Data Plane. ¿e architecture is completed by the data plane, wherein all access to data and schema of the
data is encapsulated. During compilation, if at all, only the schema of the data is assumed to be available.

It is used for typical schema-based optimization such as the elimination of tautological (always true)
query parts, the detection of erroneous (always false) queries, the unfolding of arbitrary length path
traversals if the length of the paths is known from the schema and small, etc. Furthermore, it is essential
for the dependency analysis later used in the execution layer, that gives information about which conjuncts
in rule bodies are compatible with which rule heads. In the data access layer the actual access to queried
data takes place at execution time. Where possible, data is accessed incrementally and only those portions
of the data are delivered from the data access layer to the execution layer that may actually a�ect the query
outcome (similar to document projection in [21]). ¿e AMaχoS program can contain execution hints
that advise the employment or ad-hoc creation of indices, e.g., to accelerate certain o en used constructs
or sub-queries. Finally the serialization layer is responsible for creating a sequential representation of the
result of a query. For XML it follows closely [17], for other Web formats appropriate serialization support
is provided as well. Again the form of the serialization can be parameterized both in the AMaχoS code
and via the execution control API.

9

5.1 AMaχoS Core

¿e core of theAMaχoS virtual machine is formed by the query execution layer, orAMaχoS proper. Here,
an AMaχoS program (generated separately in the compilation layer, cf. Section 5.2) is evaluated against
data provided by the runtime data access layer resulting in answers that are serialized by the serialization
API.

As shown in Figure 4, the query execution layer is divided in four main components: the rule engine,
the construction engine, the static function library, and the storage manager. Once a program containing
AMaχoS code is parsed information from the hint segment is used to parameterize storage manager and
rule engine. ¿ese parameters address, e.g., the classi�cation of the contained queries (tree vs. graph
queries), the selection of access paths, �lter expressions for document projection, the choice of in-memory
representation (e.g., fast traversal vs. small memory footprint), etc. ¿e rule dependency information is
provided to the rule dispatcher who is responsible for combining the results of di�erent rules and matching
query conjuncts with rule heads. Each rule has a separate segment in the AMaχoS program containing
code for patternmatching and for result construction. Intermediary result construction is avoided as much
as possible, partially by rule unfolding, partially by propagating constraints on variables from rule heads
into rule bodies. Only when aggregation or complex grouping expressions are involved, full intermediary
construction is performed by the construction engine. ¿e rule dispatcher uses the pattern matching engine
for the actual evaluation of Xcerpt queries compiled into AMaχoS code. ¿e pattern matching engine
uses variants of the algorithms described in [8] that are based on thememoization matrix for storage and
access to intermediary results. ¿e rule engine also detects calls to external functions or Web services and
routes such calls to the static function library, that provides a similar set of functions as [20] which are
implemented directly in the host machine and not as AMaχoS code.

For evaluation of full Xcerpt, the pattern matching engine must be able to handle simulation uni�-
cation [?] including matching queries against construct terms that may contain varaibles and grouping
expressions.

For each goal rule in the AMaχoS programs the resulting substitution sets are handed over to the
construction engine (possibly incremental) which applies any construction expressions that apply for that
goal and itself hands the result over to the serialization layer or to the answer API.

¿e most notable feature of the AMaχoS query engine is the separation in three core engines: the
construction, the pattern matching, and the rule engine. Where the rule engine essentially glues the
pattern matching and the construction engine together, these two are both very much separate. Indeed, at
least on the level of AMaχoS code even programs containing only queries (i.e., expressions handled by
the pattern matching engine) are allowed and can be executed by this architecture (the rule dispatcher
and construction engine, in this case, merely forwarding their input).

5.2 Query Compiler

Aside of the execution engine, the query compilation layer deserves a closer look. Here, an Xcerpt
program—represented by an abstract-syntax tree annotated with type information—is transformed into
AMaχoS code. It is assumed that the Xcerpt program is already veri�ed, normalized, modules are
expanded, and type information is added in the prior parsing layer. ¿e query compilation is essentially
divided in three steps: logical optimization, physical plan generation, and code generation.

Logical optimization is similar as in traditional database systems but additionally has to consider rules
and rule dependencies: Xcerpt programs get translated into a logical algebra based on n-ary conjunctive
queries over semi-structured graphs [8]. Expressions in this algebra are then optimized using various
rewriting rules, including dead and tautological query part elimination, join placement optimization,

10

Query Compilation

Logical Optimization—Algebraic Optimization
Physical Plan Generation—Statistical Optimization

Code Generation

Index Selection

Rewriting
System

Typed
AST

Query Classification

Optimized
Logical QP

Translation logical algebra
— patterns: annotated

conjunctive queries over
semi-structured graphs

— rules: unfolding into
complex value or object
algebra where possible

Physical

Query Plan

Data Storage Model Selection

Operator Algorithm Selection

Code
Generator

Rewriting system
— elimination of dead and
 tautological query parts
— join placement optimization
— query compaction
 (common subexpressions)

Query Plan

Canonic

Logical

determines class of query
— path vs. tree vs. graph query
— selection vs. existence test
— top-down vs. bottom-up evaluation

determines realization of operators
— operator unfolding
— join algorithm
— value tests: index and algorithm
— grouping of structural relations:

holistic proc. of paths and trees

indices to generate upon parsing of data
— e.g., structural relation indices
— value and full-text indices
 — namespace indices
 — label indices

in-memory representation of
— data structure
— ordering
— incremental vs. bulk
— schema-speci!c?

generate AM-code
— direct representation of physical

query plan
— platform-independent
— motion of invariant code
— dead-code elimination

Child

Child+

Root

Child+

z

x w

v

y

Child

s

r

πw

w

×

!r(y,z)
y z

πx

x

×

!s(x,w)
s w

Figure 5: Exemplary Join and Projection Specifica-
tion

sub-matrices of a given level share the same structure, each
kind of cartesian product is performed several times for each
sub-matrix.

Of course, these additional selections should be applied
as soon as possible (i.e., pushed down) to keep intermedi-
ate results small. Since existentially quantified variables in-
volved in join conditions must be kept until these joins are
performed, it is furthermore necessary to infer the position
at which each existentially quantified join variable can be
projected away. Hence, a join and projection specification
!−Π−spec is associated with each variable. This specifica-
tion defines which joins and which projections can be per-
formed when outputting the results for x. It furthermore
determines the ordering of joins and projections.

Since join order optimization is out of the scope of this
paper, the output algorithm abstracts from these topics by
assuming the existence of a specification !−Π−spec for each
variable, and of a function that applies these join specifi-
cation to a set of valuation sets. Using a set of valuations
instead of a canonical cartesian product allows to use joins
instead of selections, increasing the performance of the out-
put algorithm considerably. The join and projection specifi-
cation is typically created by the query planner and can be
executed by a conventional relational query engine.

Figure 5 shows an example of a join and projection specifi-
cation. Recall, that JoinVars(Q) is the set of join variables,
i.e., the set of variables that are existentially quantified (no
answer variables) and occur in at least one binary relation
that is not part of T (Q).

Algorithm 4 OutputG(x, n, M)

1: if ρ(x, n) defined then
2: return ρ(M)
3: if x ∈ FreeVars(Q) ∪ JoinVars(Q) then
4: AS ← {{[x : n]}}
5: else
6: AS ← {{[]}}
7: for all x′ ∈ π1(M) do
8: Ax′ ← ∅
9: for all n′, M ′ : (x′, n′, M ′) ∈ M do

10: Ax′ ← Ax′ ∪ OutputT (x′, n′, M ′)
11: AS ← AS ∪ {Ax′}
12: A ←apply !−Π−spec(x) to AS

13: ρ(x, n) ← A
14: return A

The new algorithm however exhibits exponential worst

case runtime in that it may perform at worst q−3 cartesian
products without any selection based on non-tree edges (q
being again q = |V ars(Q)|). In this case, the size and time
complexity are both in O(|N |q), as the output algorithm
keeps the set of valuations in memory.

Furthermore, the cost of value-based joins that are as-
sessed with a cost function j(|N |) must be considered. The
worst case estimation is as follows: as every variable can
be involved in a join, there are at most q − 1 value-based
joins (as equality is transitive, a query with more than q−1
joins can be transformed into an equivalent query with q−1
joins). Furthermore, every tuple of an exponential sized in-
termediate result is joined with each value-based join. As
the application of a join reduces the result size by a factor at
least linear in |N |, the overall runtime can be aproximated
as O(

Pq
i=2 j(|N |) · |N |i) = O(j(|N |) · |N |q).

Proposition 2 (Complexity of OutputG). The al-
gorithm OutputG has O(j(|N |) · |N |q) time complexity and
O(|N |q) space complexity.

Creating a structural tree query from a graph query is
unfavorable for this worst case complexity, since it is ex-
ponential in the number of variables and the corresponding
structural tree query with value joins for a graph query has
up to twice the number of variables as the graph query.
For realistic cases however, this is a technique to transform
tree-relation join conditions that are not verifiable in con-
stant time into identity joins. Alternatively, it is possible in
the match algorithms to create (in the top-down approach
reasonably small) on-the-fly indexes for the non-tree struc-
tural relations, assuring a fast verification of these relations
in Output. The quadratic increase of the exponential factor
can hence be avoided.

5.3 Incremental Matrix Consumption for Trees
and Graphs

The previous two algorithms are tailored to provide an
in-memory representation of all answers of a query and are
thus both in time and space complexity bound by the out-
put size. An in-memory representation of the answers is
useful to perform further processing based on the answers,
e.g., for structural grouping, aggregation, or ordering. How-
ever, in many cases an incremental output of the answers
is preferable, in particular if further processing can also be
realized in an incremental manner. Incremental answer gen-
eration can be realized using the algorithm OutputNLJ , a
slightly modified incremental nested loop join over the me-
moization matrix. The algorithm uses the structure of the
matrix instead of join attributes, but is otherwise – leaving
aside partitioning issues – a standard nested loop join and
therefore omitted here for space reasons.

Proposition 3 (Complexity of OutputNLJ).
The algorithm OutputNLJ has time complexity O(|N |q) and
space complexity O(q · n2) on tree queries, on graph queries
time complexity O(j(|N |) · |N |q) and space complexity O(q ·
n2).

The advantage of OutputNLP is the low space complexity
that is essentially bound by the size of the memoization ma-
trix. However, this advantage is paid for by an exponential
time complexity in almost all cases. Furthermore, this expo-
nential time complexity is reached in many practical cases,
making this algorithm suitable only for cases where space

 Translator

Abstract Machine Code

Figure 5: Architecture of Query Compiler for AMaχoS

and query compaction. Furthermore, where reasonable, rules are unfolded to avoid the construction of
intermediary results during execution.

In contrast, physical plan generation di�ers notably, as the role of indices and storage model is inverted:
In traditional databases these are given, whereas in the case of AMaχoS the query compiler generates
code in the hint section indicating to execution engine and storage manager which storage model and
indices (if any) to use. Essential for execution is also the classi�cation of queries based on shape of the
query and (static) selectivity estimates. E.g., a query with highly selective leaves but low selectivity in inner
nodes is better evaluated in a bottom-up fashion, whereas a query with high selectivity in inner nodes
pro�ts most likely from a top-down evaluation strategy. Operator selection is rather basic, except that it is
intended to implement also holistic operators for structural relations where entire paths or even sub-trees
in the query are considered as parameter for a single holistic operator, cf., e.g., [5, 24].

An AMaχoS program can, in many respects, be considered a serialization of a physical query plan
for an Xcerpt program. Notice, however that it provides only local operator sequencing, as rules are kept
separate and only at run-time the sequencing of rule applications is performed by the rule dispatcher, cf.
Section 5.1.

¿erefore, the code generator is rather simple, performing only basic serialization tasks and simple
code optimizations such as motion of invariant code [18].

To conclude, the query compilation layer employs a mixture of traditional database and program
compilation techniques to obtain an AMaχoS program from the Xcerpt input that implements the Xcerpt
program and is, given the limited knowledge about the actual data instances, likely to perform well during
execution. ¿e compilation process is rather involved and expected to be time expensive if all stages
are considered. A control API is provided to control the extent of the optimization and guide it, where
possible. We believe that in many cases an extensive optimization is called for, as the query program can be
reused and, in particular if remote data is accessed, query execution dominates by far query compilation.

6 Conclusion and Outlook

We present a brief overview over the principles and architecture of a novel kind of abstract or virtual
machine, the AMaχoS virtual machine, designed for the e�cient, distributed evaluation of Xcerpt query

11

programs against Web data.
In particular, we show how the Web setting a�ects traditional assumptions about query compilation

and execution and forces a rethinking of the conclusions drawn from these assumptions. ¿e proposed
principles and architecture re�ect these changing assumptions

1. by emphasizing the importance of a coherent and clearly speci�ed execution environment in form of
an abstract machine for distributed query evaluation,

2. by separating query compilation from query execution (as in general programming language execu-
tion),

3. by employing a uni�ed query evaluation algorithm for path, tree, and graph queries against tree and
graph data, and

4. by emphasizing adaptive optimization as a means to ameliorate the loss of quality in predictive
optimization due to lack of knowledge about remote or volatile data instances.

Implementation of the proposed architecture is still underway, �rst results on the implementation
of the query engine have been reported in [8] and in [4], demonstrating the promise of the discussed
method and architecture.

Acknowledgements.

¿is research has been funded by the European Commission and by the Swiss Federal O�ce for Education
and Science within the 6th Framework Programme project REWERSE number 506779 (cf. http://
rewerse.net).

References

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul,
and S. Zdonik. Aurora: a NewModel and Architecture for Data StreamManagement. VLDB Journal,
12(2):120–139, 2003.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 261–272, New York, NY, USA, 2000. ACM Press.

[3] S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD Record, 30(3):109–120,
2001.

[4] S. Berger, F. Bry, T. Furche, B. Linse, and A. Schroeder. Beyond XML and RDF: ¿e Versatile Web
Query Language Xcerpt. In Proc. Int. Conf. on World Wide Web, 2006.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 310–321, New York, NY, USA, 2002.
ACM Press.

[6] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, and M. Spannagel. ¿e XML Stream Query
Processor SPEX. In Proc. Intl. Conf. on Data Engineering. IEEE, 2005.

12

http://rewerse.net
http://rewerse.net

[7] F. Bry, T. Furche, L. Badea, C. Koch, S. Scha�ert, and S. Berger. Querying the Web Reconsidered:
Design Principles for Versatile Web Query Languages. Journal of Semantic Web and Information
Systems, 1(2), 2005.

[8] F. Bry, A. Schroeder, T. Furche, and B. Linse. E�cient Evaluation of n-ary Queries over Trees and
Graphs. Submitted for publication, 2006.

[9] E. Bugnion, S. Devine, K. Govil, andM. Rosenblum. Disco: Running Commodity Operating Systems
on Scalable Multiprocessors. ACM Transactions on Computer Systems, 15(4):412–447, 1997.

[10] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron. ¿e Case for Virtual Register Machines. In
Proc. Workshop on Interpreters, Virtual Machines and Emulators, pages 41–49, New York, NY, USA,
2003. ACM Press.

[11] T. Gar�nkel, B. Pfa�, J. Chow,M. Rosenblum, andD. Boneh. Terra: a VirtualMachine-based Platform
for Trusted Computing. In Proc. of ACM Symposium on Operating Systems Principles, pages 193–206,
New York, NY, USA, 2003. ACM Press.

[12] R. P. Goldberg. Survey of Virtual Machine Research. IEEE Computer Magazine, 7(6):34–45, 1974.

[13] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive Queries over Trees. Journal of the ACM, 53(2),
2006.

[14] L. J. Groves and W. J. Rogers. ¿e Design of a Virtual Machine for Ada. In Proc. ACM Symposium on
Ada Programming Language, pages 223–234, New York, NY, USA, 1980. ACM Press.

[15] ISO/IEC. 23271, Common Language Infrastructure (CLI). International Standard 23271, ISO/IEC,
2003.

[16] T. Johnsson. E�cient Compilation of Lazy Evaluation. SIGPLAN Notices, 19(6), 1984.

[17] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and XQuery 1.0 Serialization. Working
dra , W3C, 2005.

[18] J. Knoop, O. Rüthing, and B. Ste�en. Optimal Code Motion: ¿eory and Practice. ACM Tranactions
on Programming Languages and Systems, 16(4):1117–1155, 1994.

[19] T. Lindholm and F. Yellin. ¿e Java Virtual Machine Speci�cation. Addison-Wesley Professional, 2nd
edition, 1999.

[20] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators. Working
dra , W3C, 2005.

[21] A. Marian and J. Siméon. Projecting XML Documents. In Proc. Int. Conf. on Very Large Data Bases,
2003.

[22] A. Novoselsky. ¿e Oracle XSLT Virtual Machine. In XTech 2005: XML, the Web and beyond, 2005.

[23] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In Proc. EDBT Workshop on
XML-Based Data Management, volume 2490 of LNCS. Springer-Verlag, 3 2002.

[24] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs: Insert-friendly XML
Node Labels. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 903–908. ACM Press,
2004.

13

[25] D. L. Overheu. An Abstract Machine for Symbolic Computation. Journal of the ACM, 13(3):444–468,
1966.

[26] S. Pemberton and M. Daniels. Pascal Implementation: ¿e P4 Compiler and Interpreter. Ellis
Horwood, 1982.

[27] M. Rosenblum. ¿e Reincarnation of Virtual Machines. Queue, 2(5):34–40, 2004.

[28] K. Sagonas and T. Swi . An Abstract Machine for Tabled Execution of Fixed-order Strati�ed Logic
Programs. ACM Transactions on Programming Languages and Systems, 20(3):586–634, 1998.

[29] S. Scha�ert. Xcerpt: A Rule-BasedQuery and Transformation Language for theWeb. Dissertation/Ph.D.
thesis, University of Munich, 2004.

[30] S. Scha�ert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt. In Proc.
Extreme Markup Languages, 2004.

[31] Y. Shi, D. Gregg, A. Beatty, and M. A. Ertl. Virtual Machine Showdown: Stack versus Registers. In
Proc. ACM/USENIX Int. Conf. on Virtual Execution Environments, pages 153–163, New York, NY,
USA, 2005. ACM Press.

[32] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International, 1983.

14

	Introduction
	A Brief History of Abstract Machines
	Xcerpt: A Versatile Web Query Language
	Data as Terms
	Queries as Enriched Terms
	Programs as Sets of Rules

	Architecture: Principles
	``Execute Anywhere''---Unified Query Execution Environment
	``Compile Once''---Separation of Compilation and Execution
	Extensive static optimization.

	``Compile, Classify, Execute''---Unified Evaluation Algorithm
	``Optimize All the Time''---Adaptive Code Optimization
	``Distribute Any Part''---Partial Query Evaluation

	Architecture: Overview
	AMaoS Core
	Query Compiler

	Conclusion and Outlook

