
I4-D8

Declarative Semantics and Query Core for the Xcerpt Query
Language

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D8/D/PU/a1
Responsible editors: Tim Furche
Reviewers: Claude Kirchner and Wolfgang May
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: 28 February 2006
Actual submission date: 15 April 2006

Abstract
¿is article introduces a preliminary declarative semantics for a subset of the language Xcerpt (so-called
grouping-strati�able programs) in form of a classical (Tarski style) model theory, adapted to the speci�c
requirements of Xcerpt’s constructs (e.g. the various aspects of incompleteness in query terms, grouping
constructs in rule heads, etc.). Most importantly, the model theory uses term simulation as a replacement
for term equality to handle incomplete term speci�cations, and an extended notion of substitutions in
order to properly convey the semantics of grouping constructs. Based upon this model theory, a �xpoint
semantics is also described, leading to a �rst notion of forward chaining evaluation of Xcerpt programs.

In a second part of this deliverable, syntax, semantics, complexity, and evaluation for the query core
of Xcerpt (and many other Web query languages such as XQuery and SPARQL) is introduced and dis-
cussed.

Keyword List
reasoning, query language, Semantic Web, model theory, semantics, declarative semantics

Project co-funded by the European Commission and the Swiss Federal O�ce for Education and Science within the Sixth Framework
Programme.

© REWERSE 2006.



ii



Declarative Semantics and Query Core for the Xcerpt Query
Language

François Bry1, Tim Furche2, Benedikt Linse3, Sebastian Scha�ert4, Andreas Schroeder5

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Francois.Bry@ifi.lmu.de

2 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Tim.Furche@ifi.lmu.de

3 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Benedikt.Linse@ifi.lmu.de

4 Salzburg Research Forschungsgesellscha 
Email: Sebastian.Schaffert@salzburgresearch.at

5 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Andreas.Schroeder@ifi.lmu.de

15 April 2006

Abstract
¿is article introduces a preliminary declarative semantics for a subset of the language Xcerpt (so-called
grouping-strati�able programs) in form of a classical (Tarski style) model theory, adapted to the speci�c
requirements of Xcerpt’s constructs (e.g. the various aspects of incompleteness in query terms, grouping
constructs in rule heads, etc.). Most importantly, the model theory uses term simulation as a replacement
for term equality to handle incomplete term speci�cations, and an extended notion of substitutions in
order to properly convey the semantics of grouping constructs. Based upon this model theory, a �xpoint
semantics is also described, leading to a �rst notion of forward chaining evaluation of Xcerpt programs.

In a second part of this deliverable, syntax, semantics, complexity, and evaluation for the query core
of Xcerpt (and many other Web query languages such as XQuery and SPARQL) is introduced and dis-
cussed.

Keyword List
reasoning, query language, Semantic Web, model theory, semantics, declarative semantics



iv



Contents

1 Introduction 1

2 Preliminaries 1
2.1 Xcerpt: A versatile Web Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Data Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Query Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.3 Construct Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.4 Construct-Query Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Range Restrictedness and Strati�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Range Restrictedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Strati�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Ground Query Terms and Ground Query Term Graphs . . . . . . . . . . . . . . . . . . . . 8
2.4 Term Sequences and Successors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Substitutions and Substitution Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Substitution Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Maximal Substitution Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Terms as Formulas 13
3.1 Term Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Xcerpt Programs as Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Application of Substitutions to Xcerpt Terms 14
4.1 Application to Query Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Application to Construct Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Application to Query Term Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Simulation and Simulation Uni�ers 18
5.1 Rooted Graph Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Ground Query Term Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Simulation Order and Simulation Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Simulation Uni�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Interpretations and Entailment 26
6.1 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Satisfaction and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Fixpoint Semantics 29

8 Outlook and Future Work 32
8.1 Semantics of Advanced Xcerpt Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 (Non-)Monotonicity: Negation and Grouping Constructs . . . . . . . . . . . . . . . . . . . 33
8.3 Minimal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



vi



1 Introduction

¿is article introduces a declarative semantics for a restricted formofXcerpt programs (so-called grouping-
strati�able programswithout negation). Although a short introduction to Xcerpt is given in Section 2, this
article does not cover the language in much detail; interested readers can �nd a more thorough descrip-
tion of Xcerpt in e.g. [SB04] and [Sch04]. ¿e aim of the declarative semantics introduced here is to
describe the semantics of Xcerpt programs in a precise and formal, yet intuitive and straightforward,
manner without referring to a concrete implementation of the language. ¿is description should serve as
a reference for verifying the correctness and completeness of language implementations and as a formal
speci�cation for users seeking to get a precise understanding of the language.

¿e declarative semantics is given as a model theory in the style of Tarski (i.e. recursively de�ned over
the formula structure). It follows the semantics for �rst order logic rather closely but needs to take into
account the particularities of Xcerpt terms and programs (e.g. the various aspects of incompleteness in
query terms, grouping constructs in rule heads, etc.). Intuitively, the de�nition of interpretations and
models is straightforward: an interpretation is a set of data terms and speci�es what data terms exist; a
model is then simply an interpretation that consists of the terms that are “produced” by the rules in a
program.

Section 2 brie�y recapitulates the language Xcerpt and introduces several formalisms and denotations
used in the remainder of this article. Section 3 introduces so-called term formulas that can be composed
of Xcerpt terms and logical connectives like , or -. Term formulas depart form �rst order logic in that
they do not distinguish between predicate and term symbols, because the Web consists of “data”, not
“statements”. Next, a notion of substitution sets is described in Section 4. Substitution sets take the role of
substitutions in �rst order logic and logic programming and are required to properly convey themeaning
of Xcerpt’s grouping constructs all and some. Section 5 de�nes ground query term simulation as a relation
between terms that properly conveys the meaning of incomplete term speci�cations (e.g. unordered or
partial). ¿is de�nition is further used in Section 6, where interpretations and the satisfaction of term
formulas is de�ned. In Section 7, a �xpoint semantics for strati�able Xcerpt programs is suggested, �rst
for programs without negation, and then for arbitrary Xcerpt programs. Finally, Section 8 contains some
concluding remarks and perspectives for further re�nement of the semantics. Note that this articlemostly
follows the semantics described in [Sch04].

2 Preliminaries

2.1 Xcerpt: A versatile Web Query Language

An Xcerpt [SB04, Sch04] program consists of at least one goal and some (possibly zero) rules. Rules and
goals contain query and construction patterns, called terms. Terms represent tree-like (or graph-like)
structures. ¿e children of a node may either be ordered, i.e. the order of occurrence is relevant (e.g. in
an XML document representing a book), or unordered, i.e. the order of occurrence is irrelevant and may
be chosen by the storage system (as is common in database systems). In the term syntax, an ordered term
speci�cation is denoted by square brackets [ ], an unordered term speci�cation by curly braces { }.

Likewise, terms may use partial term speci�cations for representing incomplete query patterns and
total term speci�cations for representing complete query patterns (or data items). A term t using a partial
term speci�cation for its subterms matches with all such terms that (1) contain matching subterms for all
subterms of t and that (2) might contain further subterms without corresponding subterms in t. Partial
term speci�cation is denoted by double square brackets [[ ]] or curly braces {{ }}. In contrast, a term
t using a total term speci�cation does not match with terms that contain additional subterms without
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corresponding subterms in t. Total term speci�cation is expressed using single square brackets [ ] or
curly braces { }. Matching is formally de�ned later in this article using so-called term simulation.

Furthermore, terms may contain the reference constructs ^id (referring occurrence of the identi�er id)
and id @ t (de�ning occurrence of the identi�er id). Using reference constructs, terms can form cyclic
(but rooted) graph structures.

2.1.1 Data Terms

Data terms represent XML documents and the data items of a semistructured database, and may thus
only contain total term speci�cations (i.e. single square brackets or curly braces). ¿ey are similar to
ground functional programming expressions and logical atoms. A database is a (multi-)set of data terms
(e.g. the Web). A non-XML syntax has been chosen for Xcerpt to improve readability, but there is a one-
to-one correspondence between an XML document and a data term. Example 1 on the facing page gives
an impression of the Xcerpt term syntax.

2.1.2 Query Terms

Query terms are (possibly incomplete) patternsmatched againstWeb resources represented by data terms.
¿ey are similar to the latter, but may contain partial as well as total term speci�cations, are augmented
by variables for selecting data items, possibly with variable restrictions using the � construct (read as),
which restricts the admissible bindings to those subterms that are matched by the restriction pattern, and
may contain additional query constructs like position matching (keyword position), subterm negation
(keyword without), optional subterm speci�cation (keyword optional), and descendant (keyword desc).

Query terms are “matched” with data or construct terms by a non-standard uni�cationmethod called
simulation uni�cation that is based on a relation called simulation (cf. Section 5). In contrast to Robinson’s
uni�cation (as e.g. used in Prolog), simulation uni�cation is capable of determining substitutions also for
incomplete and unordered query terms. Since incompleteness usually allows many di�erent alternative
bindings for the variables, the result of simulation uni�cation is not only a single substitution, but a (�nite)
set of substitutions, each of which yielding ground instances of the uni�ed terms such that the one ground
termmatches with the other. Whenever a term t1 simulates into another term t2, this shall be denoted by
t1 j t2.

2.1.3 Construct Terms

Construct terms serve to reassemble variables (the bindings of which are speci�ed in query terms) so
as to construct new data terms. Again, they are similar to the latter, but augmented by variables (acting
as place holders for data selected in a query) and the grouping construct all (which serves to collect all
instances that result from di�erent variable bindings). Occurrences of all may be accompanied by an
optional sorting speci�cation.

Example 2
Le : A query term retrieving departure and arrival stations for a train in the train document. Partial
term speci�cations (partial curly braces) are used since the train document might contain additional
information irrelevant to the query. Right: A construct term creating a summarised representation of
trains grouped inside a trains term. Note the use of the all construct to collect all instances of the
train subterm that can be created from substitutions in the substitution set resulting from the query on
the le .
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Example 1
¿e following two data terms represent a train timetable (from http://railways.com) and a hotel reser-
vation o�er (from http://hotels.net).

At site http://railways.com: At site http://hotels.net:

travel {

last-changes-on { "2004-04-30" },

currency { "EUR" },

train {

departure {

station { "Munich" },

date { "2004-05-03" },

time { "15:25" }

},

arrival {

station { "Vienna" },

date { "2004-05-03" },

time { "19:50" }

},

price { "75" }

},

train {

departure {

station { "Munich" },

date { "2004-05-03" },

time { "13:20" }

},

arrival {

station { "Salzburg" },

date { "2004-05-03" },

time { "14:50" }

},

price { "25" }

},

train {

departure {

station { "Salzburg" },

date { "2004-05-03" },

time { "15:20" }

},

arrival {

station { "Vienna" },

date { "2004-05-03" },

time { "18:10" }

}

}

...

}

voyage {

currency { "EUR" },

hotels {

city { "Vienna" },

country { "Austria" },

hotel {

name { "Comfort Blautal" },

category { "3 stars" },

price-per-room { "55" },

phone { "+43 1 88 8219 213" },

no-pets {}

},

hotel {

name { "InterCity" },

category { "3 stars" },

price-per-room { "57" },

phone { "+43 1 82 8156 135" }

},

hotel {

name { "Opera" },

category { "4 stars" },

price-per-room { "106" },

phone { "+43 1 77 8123 414" }

},

...

},

...

}
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travel {{

train {{

departure {{

station { var From } }},

arrival {{

station { var To } }}

}}

}}

trains {

all train {

from { var From },

to { var To }

}

}

2.1.4 Construct-Query Rules

Construct-query rules (short: rules) relate a construct term to a query consisting of AND and/or OR
connected query terms. ¿ey have the form

CONSTRUCT Construct Term FROM Query END

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the construct
term by evaluating the query against Web resources (e.g. an XML document or a database). Queries or
parts of a querymay be further restricted by arithmetic constraints in a so-called condition box, beginning
with the keyword where.

Example 3
¿e following Xcerpt rule is used to gather information about the hotels in Vienna where a single room
costs less than 70 Euro per night and where pets are allowed (speci�ed using the without construct).

CONSTRUCT

answer [ all var H ordered by [ P ] ascending ]

FROM

in {

resource { "http://hotels.net" },

voyage {{

hotels {{

city { "Vienna" },

desc var H Žľő hotel {{

price-per-room { var P },

without no-pets {}

}}

}}

}}

} where var P < 70

END

An Xcerpt query may contain one or several references to resources. Xcerpt rules may furthermore
be chained like active or deductive database rules to form complex query programs, i.e. rules may query
the results of other rules. Recursive chaining of rules is possible (but note that the declarative semantics
described here requires certain restrictions on recursion, cf. Section 2.2). In contrast to the inherent struc-
tural recursion used e.g. in XSLT, which is essentially limited to the tree structure of the input document,
recursion in Xcerpt is always explicit and free in the sense that any kind of recursion can be implemented.
Applications of recursion on the Web are manifold:
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• structural recursion over the input tree (like in XSLT) is necessary to perform transformations that
preserve the overall document structure and change only certain things in arbitrary documents
(e.g. replacing all em elements in HTML documents by strong elements).

• recursion over the conceptual structure of the input data (e.g. over a sequence of elements) is used
to iteratively compute data (e.g. create a hierarchical representation from �at structures with refer-
ences).

• recursion over references to external resources (hyperlinks) is desirable in applications like Web
crawlers that recursively visit Web pages.

Example 4
¿e following scenario illustrates the usage of a “conceptual” recursion to �nd train connections, includ-
ing train changes, from Munich to Vienna.

¿e train relation (more precisely the XML element representing this relation) is de�ned as a “view”
on the train database (more precisely on the XML document seen as a database on trains):

CONSTRUCT

train [ from [ var From ], to [ var To ] ]

FROM

in {

resource { "file:travel.xml" },

travel {{

train {{

departure {{ station { var From } }},

arrival {{ station { var To } }}

}}

}}

}

END

A recursive rule implements the transitive closure train-connection of the relation train. If the
connection is not direct (recursive case), then all intermediate stations are collected in the subterm via

of the result. Otherwise, via is empty (base case).

CONSTRUCT

train-connection [

from [ var From ],

to [ var To ],

via [ var Via, all optional var OtherVia ]

]

FROM

and {

train [ from [ var From ], to [ var Via ] ],

train-connection [

from [ var Via ],

to [ var To ],

via [[ optional var OtherVia ]]

]

}

END
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CONSTRUCT

train-connection [

from [ var From ],

to [ var To ],

via [ ]

]

FROM

train [ from [ var From ], to [ var To ] ]

END

Based on the “generic” transitive closure de�ned above, the following rule retrieves only connections
between Munich and Vienna.

GOAL

connections {

all var Conn

}

FROM

var Conn Žľő train-connection [[ from { "Munich" } , to { "Vienna" } ]]

END

2.2 Range Restrictedness and Stratification

¿edeclarative semantics described in this article assumes certain restrictions on Xcerpt programs: range
restrictedness, negation strati�cation, and grouping strati�cation. Range restrictedness restricts the occur-
rences of variables in rules and grouping and negation strati�cation restricts the way recursion is used
in Xcerpt programs. Note that for all three kinds of restrictions, there exist examples where a relaxation
might be desirable.

2.2.1 Range Restrictedness

Range restrictedness (o en referred to as safe-ness) means that a variable occurring in a rule head also
must occur at least once in every disjunctive part in the rule body. ¿is requirement simpli�es the de�-
nition of the declarative semantics of Xcerpt, as it allows to assume that all query terms are uni�ed with
data terms instead of construct terms (i.e. variable-free and grouping-free terms). Without this restric-
tion, it is necessary to consider unde�ned or in�nite sets of variable bindings, which would be a di�cult
obstacle for a forward chaining evaluation. Besides this technical reason, range restricted programs are
also usually more intuitive, as they disallow variables in the head that are not justi�ed somewhere in the
body.

Range restrictedness can be veri�ed by assigning “polarities” to every term and all its subterms in a
rule such that all terms in the query part initially have negative polarity while the construct term initially
has positive polarity (cf. [Sch04]). A variable occurrence with positive polarity represents a consuming
occurrence of that variable, a variable occurrence with negative polarity represents a de�ning occurrence
of that variable. Polarities may switch if the query contains negation constructs like not or without.
Range restrictedness requires that every variable occurring positively (i.e. as a consuming occurrence)
also must occur negatively (i.e. as a de�ning occurrence) in each disjunctive part of a rule.

Example 5
Consider the following Xcerpt program:
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CONSTRUCT

f{var X, var Y}

FROM

or {

g{var X, var Y, var Z},

and {

h{var X, var Y},

not k{var X, var Z}

}

}

END

Because of the or-construct in the rule body, this rule contains two disjuncts. In the �rst disjunct, the
variables X, Y, and Z occur with negative polarity (because they are part of the query), and the variables X
and Y also occur with positive polarity (because they occur in the rule head). ¿is part of the rule would
thus be range restricted. However, in the second disjunct, only the variables X and Y occur positively,
while X, Y, and Z occur negatively (note that Z is contained within a not-negation). ¿us, this part is not
range restricted.

2.2.2 Stratification

Strati�cation is a technique to de�ne a class of logic programswhere non-monotonic features like Xcerpt’s
grouping constructs or negation can be de�ned in a declarative manner. ¿e principal idea of strati�ca-
tion is to disallow programs with a recursion over negated queries (“negation strati�cation”) or grouping
constructs (“grouping strati�cation”) and thereby preclude undesirable programs that have a non-intuitive
semantics. While this requirement is very strict, its advantages are that it is straightforward to understand
and can be veri�ed by purely syntacticalmeanswithout considering terms that are not part of the program
(as is required by more elaborate techniques like stable models).

Several re�nements over strati�cation have been proposed, e.g. local strati�cation [Prz88] that allow
certain kinds of recursion, but these usually require more “knowledge” of the program or the queried
resources. ¿is section only gives an intuition over grouping and negation strati�cation; strati�cation of
Xcerpt programs is described in detail in [Sch04].

Grouping Strati�cation ¿e grouping constructs all and some are powerful constructs that are justi-
�ed by many practical applications. However, using them in recursive rules allows to de�ne programs
with no useful meaning. Consider for example the program

f�all var X�� f��var X��
f�a�

¿emeaning of such programs is unclear and probably unintended by the program author. ¿e solution
is to disallow recursion of rules with grouping constructs, and to require that all rules on which a rule
with grouping constructs depends can be evaluated �rst. Programs that ful�ll this propertiy are called
grouping strati�able.

Negation Strati�cation Xcerpt’s not-construct is evaluated as negation as failure (NaF), i.e. a negated
query succeeds if the query itself fails �nitely (i.e. can be proven to be not provable). NaF is desirable for
a Web query language, because it is close to the intuitive understanding of negation: for instance, it is
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natural to assume that a train not listed in a train timetable does not exist, instead of requiring that every
non-existent train is explicitly listed in the timetable.

Although NaF has a purely operational meaning, it is desirable to provide a declarative semantics as
well, because the latter is usually easier to understand than the evaluation algorithm. Unfortunately, like
recursion over grouping constructs, negation as failure allows for programs whose meaning is unclear.
Consider for instance the following Xcerpt program:

f�a�� not f�a�

Backward chaining evaluation of this rule does not terminate: for proving f�a�, it is necessary to show
(in an auxiliary computation) that f�a� does not hold, which again requires to evaluate the rule, and so
on.

Declaratively, the meaning of this rule is problematic. When representing rules by implication as
in traditional logic programming, this rule is simply equivalent to f�a� -   f�a�, which simpli�es to
f�a�. ¿is interpretation does not re�ect the operational behaviour (which is the de�nition for negation
as failure) described in the previous paragraph. Other approaches have been considered (like Clarke’s
completion or default negation) that interpret the symbol� di�erently, but all of these have similar prob-
lems.

Xcerpt programs are therefore assumed to be also negation strati�able, a syntactic restriction that
excludes such programs that involve problematic use of negation as in the example above. Negation
strati�cation in Xcerpt programs is de�ned in the usual manner (as e.g. in [ABW88]). In strati�able
programs, both recursion and negation are allowed, but a recursion “through negation” is disallowed.

2.3 Ground Query Terms and Ground Query Term Graphs

Let Tq be the set of all query terms.

De�nition 6 (Ground Query Term)
1. A query term is called ground, if it does not contain (subterm, label, namespace, or positional)
variables.

2. Tg
` Tq denotes the set of all ground query terms, and Td

` Tg denotes the set of all data terms.

In the following, we di�erentiate between the ground query term itself and the graphs induced by a
ground query term. Whereas the term itself contains subterms of the form ^id and id@t, all references are
dereferenced in the graph induced by the ground query term. By the position of a subterm in a ground
query term, we mean the position in the list of children of that term. For example, in f{a,b,c}, c is
the subterm at position 3. Likewise, in f{id@a,^id}, id@a is the subterm at position 1, and ^id is the
subterm at position 2. ¿e position of subterms in the graph induced by a ground query term is de�ned
di�erently: in the last example, the subterm a has both the position 1 and the position 2. For this reason,
we will usually speak about successors when referring to the graph induced by a ground query term, and
about subterms, when referring to the syntactical representation of a ground query term.

¿e graph induced by a ground query term (or short: ground query term graph) is de�ned in a straight-
forward manner as follows.
De�nition 7 (Graph Induced by a Ground Query Term)
Given a ground query term t. ¿e graph induced by t is a tuple Gt � �V ,E, r�, with:

1. a set of vertices (or nodes) V de�ned as the set of all (immediate and indirect) subterms of t (in-
cluding t itself).
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Figure 1 Graphs induced by f�a,a�c,d,a�� and f��&1 @ a��c,d,� &1����

a

c d a

f[ ]

a{}

c

f[ ]

d

a{}

2. a set of edges E b V �V �N characterised as follows:

• for all terms t1, t2, t3 > V: if t2 is the subexpression of t1 at position i and of the form ^oid

(a referring occurrence), and t3 is of the form oid @ t’ (a de�ning occurrence), with oid an
identi�er and t’ a term (> V), then �t1, t3, i� > E.

• for all terms t1, t2 > V: if t2 is the subexpression of t1 at position i and not of the form ^oid,
then �t1, t2, i� > E.

3. a distinguished vertex r > V called the root node with r � t.

¿e label of a vertex is either the label, the string value, or the regular expression of the subterm it repre-
sents.

Representing vertices as complete subterms and edges with positions is necessary for the de�nition of
the simulation relation as it conveys information about ordered/unordered and partial/total term spec-
i�cations and the respective positions of subterms in a term. Figure 1 illustrates this de�nition on two
ground query terms. Note that for space reasons, the vertices in both graphs do not contain the subterms,
but only the term labels and speci�cations.

¿e following additional terminology from graph theory is used below. LetG � �V ,E, r� be the graph
induced by a ground query term. For any two nodes v1 > V and v2 > V, if �v1,v2, i� > E for some integer
i (i.e. there is an edge from v1 to v2), v1 and v2 are called adjacent, v2 is the ith successor of v1, and v1 is a
predecessor of v2.

2.4 Term Sequences and Successors

¿e following sections use the notion of (�nite) term sequences to represent the (immediate) successors of
a term. Note that sequences of subterms are used regardless of the kind of subterm speci�cation: in case of
unordered term speci�cations, there is still a sequence of subterms given by the syntactical representation
of the term.

Recall in the following that a function f � N � M can be seen as a (binary) relation f b N � M
such that for every two di�erent pairs �n1,m1� > f and �n2,m2� > f holds that n1 x n2. Considering a
function as a relation is more convenient for the representation of sequences. A function f � N � M is
furthermore called total, if f is de�ned for every element of N.

De�nition 8 (Term Sequence)
1. Let X be a set of terms and let N � �1, . . . ,n� (n C 0) be a set of non-negative integers. A term
sequence is a total function S b N � Xmapping integers to terms.
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Instead of writing S � ��1,a�,�2,b�, . . .�, term sequences are o en denoted by S � `a,b, . . . e.
2. Let S be a term sequence, and let s � �i, t� be an element in S.

• the index of s is de�ned as index�s� � i (projection on the �rst element)
• the term of s is de�ned as term�s� � x (projection on the second element)

If S � `. . . ,a, . . . e is a term sequence, i.e. S � �. . . ,�a, i�, . . .�, then term��a, i�� � a. Since using
term��a, i�� is very inconvenient, we shall o en write a instead of �a, i� and e.g. use a > S instead of
�a, i� > S. Accordingly, we use the notion index�a� to represent the position of the subterm a in the
term sequence, unless we have to distinguish multiple occurrences of a in S.

Note that empty term sequences are not precluded by the de�nition, and term sequences are always
�nite, because they serve to represent the (immediate) successors of a term. Instead of term sequence,
we shall o en simply write sequence as other sequences are not considered in this work. ¿e index of an
element can also be called the position of that element. However, the notion index is preferred to better
distinguish between the position construct in a query term and the position in the sequence.

Sequences allow for multiple occurrences of the same term. For example, both S � `a,b,ae �

��1,a�,�2,b�,�3,a�� and T � `a,a,be � ��1,a�,�2,a�,�3,b�� are term sequences of a and b.
Based on the graph induced by a ground query term, the de�nition of the sequence of successors is

as expected:

De�nition 9 (Sequence of Successors)
Let t be a ground query term, let Gt � �V ,E, t� be the graph induced by t, and let v > V be a node in Gt
(i.e. subterm of t). ¿e sequence of successors of v, denoted Succ�v�, is de�ned as

Succ�v� � ��i,v�� S �v,v�, i� > E�

Note that Succ�v�may be the empty sequence ` e, if v does not have successors.
Consider the term t1 � f�a,a,b�. ¿e sequence of successors of t1 is Succ�t1� � `a,a,be �

��1,a�,�2,a�,�3,b��. Consider furthermore t2 � o1@f�a,� o1,b�. ¿e sequence of successors of t2
is Succ�t2� � `a,o1@f�a,� o1,b�,be � ��1,a�,�2,o1@f�a,� o1,b��,�3,b��. Note that the reference in
t2 is dereferenced (one level).

Mostly, the sequence of successors and the sequence of (immediate) subterms of a term coincide. ¿e
most signi�cant di�erence is that the sequence of successors is already dereferenced, i.e. all references
are “replaced” by the subterms they refer to. For this reason, the remainder of this Section uses the term
successors instead of subterms. Although it is somewhat imprecise, the notion subterm is o en added in
parentheses to emphasise the coincidence of the two sequences in most cases.

In Section 4, the following additional notions of subsequences and concatenation of sequences are
needed. Both de�nitions are straightforward. In order to distinguish subsequences from subsets, we
usually write S� Z S.

De�nition 10 (Subsequences, Concatenation of Sequences)
Let S � `s1, . . . , sme and T � `t1, . . . , tne be term sequences.

1. T is called a subsequence of S, denoted T Z S, if there exists a strictly monotonic mapping π such
that for each �i,x� > T there exists �π�i�,x� > S.

2. ¿e concatenation of S and T, denoted S X T, is de�ned as

S X T � `s1, . . . , sm, t1, . . . , tne
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Consider for example the sequences S1 � `a,be � ��1,a�,�2,b�� and S2 � `a,a,be � ��1,a�,�2,a�,�3,b��.
S1 is a subsequence of S2 with π�1� � 1,π�2� � 3 or with π�1� � 2,π�2� � 3. ¿e concatenation of S1 and
S2 yields

S1 X S2 � `a,b,a,a,be � ��1,a�,�2,b�,�3,a�,�4,a�,�5,b��

2.5 Substitutions and Substitution Sets

In principle, the usual notion of substitutions is also used for Xcerpt terms. However, variable restrictions
occurring in query terms have to be taken into account. As a variable might be restricted, not every
substitution is applicable to every query term.

Also, Xcerpt construct terms extend the usual terms by grouping constructs that group several sub-
stitutions within a single ground instance by using the constructs all and some. For instance, given a
construct term f�all var X� and three alternative substitutions �X ( a�, �X ( b� and �X ( c�, the
resulting data term is f�a,b, c�.

In order to de�ne such groupings, it is therefore necessary to provide a construct that represents all
possible alternatives and can be applied to a construct term. ¿is is called a substitution set below. Since
the application of substitution sets to query and construct terms involves some complexity, it is described
separately in Section 4. Substitution sets are then used in Section 6 which de�nes satisfaction for Xcerpt
term formulas. In the following, substitutions are denoted by lowercase greek letters (like σ or π), while
substitution sets are denoted by uppercase greek letters (like Σ or Π).

2.5.1 Substitutions

A substitution is a mapping from the set of (all) variables to the set of (all) construct terms. In the fol-
lowing, lower case greek letters (like σ or τ) are usually used to denote substitutions. As usual in math-
ematics, a substitution is a mapping of in�nite sets. Of course, �nite representations are usually used,
as the number of variables occurring in a term is �nite. Substitutions are o en conveniently denoted as
sets of variable assignments instead of as functions. For example, we write �X ( a,Y ( b� to denote
a substitution that maps the variable X to a and the variable Y to b, and any other variable to arbitrary
values. In general, a substitution provides assignments for all variables, but “irrelevant” variables are not
given in the description of substitutions.

If a substitution is applied to a query term tq, all occurrences of variables for which the substitution
provides assignments are replaced by the respective assignments (see Section 4.1 below). ¿e resulting
term is called an instance of tq and the substitution. Not every substitution can be applied to every query
term: variable assignments in the substitution have to respect variable restrictions occurring in the pat-
tern for a substitution to be applicable (see also 4.1). If a substitution σ respects the variable restrictions
in a query term tq, it is said to be a substitution for tq. For example, the substitution �X ( f�a�� is
a substitution for var X ; f����, but not for var X ; g����. Note that a substitution cannot be
applied to a construct term, because construct terms may contain grouping constructs that group several
instances of subterms together. Instead, substitution sets are used for this purpose (see below).

A substitution σ is called a grounding substitution for a term t, if σ�t� is a ground query term. Con-
sequently, a grounding substitution is always a mapping from the set of variable names to the set of data
terms (i.e. ground construct terms). A substitution σ is called an all-grounding substitution, if it maps
every variable to a data term. Naturally, every all-grounding substitution is a grounding substitution for
every query term to which it is applicable. Note that the reverse does not hold: a grounding substitution
is grounding wrt. some term t and does not necessarily assign ground terms to variables not occurring
in t.
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A substitution σ1 is a subset of a substitution σ2 (i.e. σ1 b σ2), if σ1�X� � σ2�X� for every variable
name X with σ1�X� x X (i.e. σ1 does not map X to itself), where � denotes simulation equivalence (i.e.
mutual simulation, cf. Section 5.3). Correspondingly, two substitutions σ1 and σ2 are considered to be
equal (i.e. σ1 � σ2), if σ1 b σ2 and σ2 b σ1. For example, �X ( f�a,b�� and �X ( f�b,a�� are equal.
¿is de�nition is reasonable because the data terms resulting from applying two such substitutions are
treated equally in the model theory described below.

¿e composition of two substitutions σ1 and σ2, denoted by σ1Xσ2 is de�ned as �σ1Xσ2��t� � σ1�σ2�t��
for every query term t. Note that the assignments in σ2 take precedence, because σ2 is applied �rst.
Consider for example σ1 � �X ( a,Y ( b� and σ2 � �X ( c�, and a term t � f�var X,var Y�.
Applying the composition σ1 X σ2 to t yields �σ1 X σ2��t� � f�c,b�.

¿e restriction of a substitution σ to a set of variable names V, denoted by σSV, is the mapping that
agrees with σ on V and with the identical mapping on the other variables.

2.5.2 Substitution Sets

A substitution set is simply a set containing substitutions. In the following, upper case greek letters (like
Σ andΦ) are usually used to denote substitution sets.

Substitution sets can be applied to a query or construct term (cf. Sections 4.1 and 4.2). ¿e result of
this application is in general a set of terms called the instances of the substitution set and the term. A
substitution set Σ is only applicable to a query term tq, if all substitutions in Σ are applicable to tq. In this
case, Σ is called a substitution set for tq. Since construct terms do not contain variable restrictions, every
substitution set except for the empty set is a substitution set for a construct term. ¿ere exists no query
or construct term t such that the empty substitution set �� is a substitution set for t.

A substitution set Σ for a term t is called a grounding substitution set, if all instances of t and Σ are
ground query terms or data terms. A substitution set Σ is called an all-grounding substitution set, if all
σ > Σ are all-grounding substitutions.

¿e composition of two substitution sets Σ1 and Σ2, denoted as Σ1 X Σ2, is de�ned as

Σ1 X Σ2 � �σ1 X σ2 S σ1 > Σ1,σ2 > Σ2�

Consider for example the substitution sets Σ1 � ��X ( a�� and Σ2 � ��Y ( b�,�Y ( c��. ¿en
Σ1 X Σ2 � ��X ( a,Y ( b�,�X ( a,Y ( c��.

¿e restriction of a substitution set Σ to a set of variables V, denoted by ΣSV, is the set of substitutions
in Σ restricted to V.

Similarly, the extension of a substitution set Σ restricted to a set of variables V to a set of variables V�

with V b V�, extends every substitution σ in Σ to substitutions σ� by adding all possible assignments of
variables inV�

�V to data terms. For example, the extension of the restricted substitution set ��X( a��
to the set of variables �X,Y� is the (in�nite) set ��X( a,Y ( a�,�X( a,Y ( b�, . . .�

Note that in practice, it would be desirable to de�ne substitution sets as multi-sets that may contain
duplicate elements: if an XML document contains two persons named “Donald Duck”, then it should
be assumed that these are di�erent persons with the same name. Providing a proper formalisation with
multi-sets is, however, not in the scope of this article, as subsequent de�nitions and proofs would be
much more complicated without adding an interesting aspect to the formalisation.

2.5.3 Maximal Substitution Sets

So as to properly convey the meaning of all, it is not su�cient to consider arbitrary substitution sets.
¿e interesting substitution sets are those that are maximal for the satisfaction of the query part Q of a
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rule. As satisfaction is not yet formally de�ned, this property shall for now simply be called P.
Intuitively, the de�nition of maximal substitution sets is straightforward: a substitution set Σ satis-

fying P is a maximal substitution set, if there exists no substitution set Φ satisfying P such that Σ is a
proper subset of Φ. However, this informal de�nition does not take into account that there might be
substitution sets that di�er only in that some substitutions contain bindings that are irrelevant because
they do not occur in the considered term formula Q. Maximal substitution sets are therefore formally
de�ned as follows:
De�nition 11 (Maximal Substitution Set)
Let Q be a quanti�er free query term formula with set of variables V, let P be a property, and let Σ be a
set of substitutions such that P holds for Σ. Σ is called a maximal substitution set wrt. P and Q, if there
exists no substitution setΦ such that P holds forΦ and ΣSV is a proper subset ofΦSV (i.e. ΣSV ` ΦSV).

3 Terms as Formulas

Classical logic distinguishes between

• terms, which are composed of function symbols and serve as data structures representing objects
of the application domain at hand, and

• atomic formulas, which are composed of relation symbols and terms and represent statements
about objects of the application domain.

Statements represented by formulas have truth values, objects represented by terms have no truth value.
In contrast, XML andWeb data does not need this distinction, because it has no (formal) semantics and
merely holds semistructured data. ¿erefore, Xcerpt terms (corresponding to Web data) are considered
as being atomic formulas representing the statement that the respective terms “exist”. A salient aspect of
this representation is the possibility to specify integrity constraints for data terms. ¿ese are, however,
not covered in depth in this article.

3.1 Term Formulas

Atomic formulas are composed of Xcerpt query, construct, and data terms, and of the two special terms
� and � (denoting falsity and truth). As an intuition, such atomic formulas are statements about the
existence or satis�ability of a term. Compound formulas can be constructed in the usual manner using
the binary connectives -, ,,�, and�, the unary connective  , the zero-ary connectives � and �, and
the quanti�ers ¦ and §. Instead of quantifying each variable separately, the construct ¦� may be used to
universally quantify all free variables in a formula. Also, instead of writing F1 - � � � - Fn, we sometimes
write �1BiBn Fi, and instead of writing F1 , � � � , Fn, we sometimes write �1BiBn Fi.

In the following, formulas built in this manner shall be called Xcerpt term formulas, or simply term
formulas. If a term formula consists only of query terms, it is also called query term formula, if it consists
only of construct terms, it is called construct term formula.

Example 12
¿e following example shows a term formula built up from query terms, implications and quanti�ers. It
represents an integrity constraint that requires all books in the bib.xml document to have at least one
author:

¦ B . bib{{ var B � book{{ }} }} �

§ A . bib{{ var B � book{{ authors{{ var A }} }} }}
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3.2 Xcerpt Programs as Formulas

Like in traditional logic programming, rules in Xcerpt are implications. However, Xcerpt rules with
grouping constructs have a particular semantics that cannot be represented as implications in the usual
manner. We therefore keep the denotation tc � Q to represent rules.

In addition to the usual quanti�ers ¦ and §, the grouping constructs all and some that may be part
of a construct term may bind variables in a formula within a speci�c scope, usually the head and body
of a rule. As these constructs are contained within the term structure, their scope is not immediately
apparent. It is thus useful to introduce new symbols P � Q that are used to indicate the scope of all
the grouping constructs contained in them. In practice, it is neither desirable nor useful to have scopes
extending over di�erent subformulas for the grouping constructs contained in a single construct term,
thus a single scope for all grouping constructs su�ces. ¿e grouping constructs of a construct term always
refer to the variables of a single rule and thus all have the same scope.

Example 13
Consider for example the program (in formula notation)

g{a,b,c}

f{all var X} � g{{var X}}

¿e scope of the all construct in the rule head is made explicit usingP �Q in the followingmanner:

g{a,b,c} , Pf{all var X} � g{{var X}} Q

Asusual, formulas representing programs are always considered to be universally closed, even if quan-
ti�ers are not explicitly given.

Example 14
Consider the following Xcerpt program (in the notation introduced in Section 2 and with internalised
resources):

f{all var X, var Y} � and{ g{{var X}}, h{{ e{var X,var Y} }} }

g[ var X ] � h{{ e[var X] }}

h[ e[a,1], e[b,1], e[c,1], e[d,2] ]

¿e formula representation of this program is as follows:

¦ Y Pf{all var X, var Y} � g{{var X}} , h{{ e{var X,var Y} }} Q ,

¦ X Pg[ var X ] � h{{ e[var X] }} Q ,

h[ e[a,1], e[b,1], e[c,1], e[d,2] ]

¿e variable X in the �rst rule is in the scope of the all construct in the rule head, while the variable
Y is in the scope of the universal quanti�cation represented by ¦Y. Note that the scope of the all is
restricted to the �rst rule and the occurrences of X in the second rule are not a�ected (thus ¦X in the
second rule).

4 Application of Substitutions to Xcerpt Terms

4.1 Application to Query Terms

Since query terms do not contain the grouping constructs all and some, applying substitutions and substi-
tution sets is straightforward. Application of a single substitution yields a single termwhere some variable
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occurrences are substituted, while application of a substitution set yields a set of terms where some vari-
ables are substituted.

De�nition 15 (Substitutions: Application to Query Terms)
Let tq be a query term.

1. ¿e application of a substitution σ to tq, written σ�tq� is recursively de�ned as follows:

• σ�var X� � t� if �X( t�� > σ
• σ�var X ; s� � t� if �X( t�� > σ and σ�s� j t�

• σ�f�t1, . . . , tn�� � σ�f��σ�t1�, . . . ,σ�tn��
• σ�f�t1, . . . , tn�� � σ�f��σ�t1�, . . . ,σ�tn��
• σ�f��t1, . . . , tn��� � σ�f���σ�t1�, . . . ,σ�tn���
• σ�f��t1, . . . , tn��� � σ�f���σ�t1�, . . . ,σ�tn���
• σ�without t� � without σ�t�
• σ�optional t� � optional σ�t�

for some n C 0.

2. ¿e application of a substitution set Σ to tq is de�ned as follows:

Σ�tq� � �σ�tq� S σ > Σ�

Note that not every substitution can be applied to a query term tq. If a variable in tq is restricted as
in var X ; s, then a substitution can only be applied if it provides bindings for X that are compatible
to this restriction. Likewise, a substitution set is only applicable to a query term tq, if all its substitutions
are applicable to tq.

Since query terms never contain grouping constructs, the cardinality of Σ�t� always equals the cardi-
nality of Σ. In particular, if Σ � g, then Σ�t� � g, even if t is a ground query term. Since an interpretation
with an empty substitution set would be a model for any formula, substitution sets in the following are
considered to be non-empty. In case no variables are bound, substitution sets are usually de�ned as
Σ � �g�.

4.2 Application to Construct Terms

Applying a single substitution to a construct term is not reasonable as the meaning of the grouping con-
structs all and some is unclear in such cases. In the following, the application is thus only de�ned for
substitution sets. On substitution sets, the grouping constructs group such substitutions that have the
same assignment on the free variables of a construct term. For each such group, the application of the
substitution Σ yields a di�erent construct term. A variable is considered free in a construct term if it is
not in the scope of a grouping construct. ¿e set of free variables of a construct term tc is denoted by
FV�tc�. ¿e relation � denotes simulation equivalence between two ground terms and is de�ned later in
this article.

De�nition 16 (Grouping of a Substitution Set)
Given a substitution set Σ and a set of variables V � �X1, . . . ,Xn� such that all σ > Σ have bindings for
all Xi, 1 B i B n.
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• ¿e equivalence relation �Vb Σ� Σ is de�ned as: σ1 �V σ2 i� σ1�X� � σ2�X� for all X > V.

• ¿e set of equivalence classes Σ~�V with respect to �V is called the grouping of Σ on V.

• Each of the equivalence classes JσK > Σ~�V is accordingly de�ned as JσK � � τ > Σ S τ �V σ�.

Informally, each equivalence class JσK > Σ~�V contains such substitutions that have the same assign-
ment for each of the variables in V.
Example 17
Given the substitution set Σ � �σ1,σ2,σ3� with

σ1 � �X1 ( a,X2 ( b�,σ2 � �X1 ( a,X2 ( c�, and σ3 � �X1 ( c,X2 ( b�

¿e grouping of Σ on V � �X1� is
• Jσ1K � Jσ2K � ��X1 ( a,X2 ( b�,�X1 ( a,X2 ( c��

• Jσ3K � ��X1 ( c,X2 ( b��

¿e application of a substitution set to a construct term (possibly containing grouping constructs) is
de�ned in terms of this grouping. Given a substitution set Σ, the application Σ�tc� to a construct term
tc with free variables FV�tc� yields exactly SΣ~�FV�tc� S results, one for each di�erent binding of the free
variables in tc.
Example 18
Given a term t � f�X1, g�all X2��, i.e. FV�t� � �X1�. Consider again

Σ � ��X1 ( a,X2 ( b�,�X1 ( a,X2 ( c�,�X1 ( c,X2 ( b��

from Example 17. ¿e result of applying Σ to t is

Σ�t� � �f�a, g�b, c��, f�c, g�b���

¿e following de�nition speci�es how a substitution set is applied to a construct term tc. ¿e de�ni-
tion is divided into two parts: In the �rst part, it is assumed that all substitutions in the substitution set Σ
contain the same assignments for the free variables of tc (variables occurring within the scope of group-
ing constructs are unrestricted). As the quotient Σ~�FV�tc� in this case obviously only contains a single
equivalence class, the application of this restricted Σ to tc yields only a single term, which simpli�es the
recursive de�nition. In the second part of De�nition 19, this restriction is li ed.

Since the construction of data terms requires to construct new lists of subterms, the following de�-
nition(s) use the notion of term sequences introduced in Section 2.4. Recall that a sequence is a binary
relation between a set of integers and a set of terms, and usually denoted by S � `x1, . . . ,xne for some
n and terms xi. Recall furthermore the de�nitions of subsequences and concatenation (De�nition 10 on
page 10).

De�ning the semantics of order by furthermore requires a function sortf�V���, ��, where V is a se-
quence of variables, that takes as arguments a grouping of a substitution set on V and returns a sequence
of substitution sets ordered according to f�V� and the variables in V. f�V� is a total ordering on the set
of substitution sets that assign ground terms to the variables in V comparing variable bindings for the
variables in V. 1

1As the substitution set is grouped on V, all substitutions in JσK (respectively JτK) provide identical bindings for variables
in V.
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De�nition 19 (Substitutions: Application to Construct Terms)
1. Let Σ be a substitution set and let tc be a construct term such that all free variables of tc have the
same assignment in all substitutions of Σ, i.e. Σ~�FV�tc� � �JσK�. ¿e restricted application of Σ to
tc, written JσK�tc�, is recursively de�ned as follows:

• JσK�var V� � `σ�V�e2

• JσK�f�t1, . . . , tn�� � `JσK�f��JσK�t1� X � X JσK�tn��e for some n C 0
• JσK�f�t1, . . . , tn�� � `JσK�f��JσK�t1� X � X JσK�tn��e for some n C 0
• JσK�all t� � Jτ1K�t� X � X JτkK�t� where �Jτ1K, . . . , JτkK� � JσK~�FV�t�

• JσK�all t groupbyV� � Jτ1K�t� X � X JτkK�t� where �Jτ1K, . . . , JτkK� � JσK~�FV�t�8V

• JσK�all t order by f V� � Jτ1K�t� X � X JτkK�t�
where `Jτ1K, . . . , JτkKe � sort�f�V�, JσK~�FV�t�8V�

• JσK�some k t� � Jτ1K�t� X � X JτkK�t� where �Jτ1K, . . . , JτkK� b JσK~�FV�t�

• JσK�some k t groupbyV� � Jτ1K�t� X � X JτkK�t� where �Jτ1K, . . . , JτkK� b JσK~�FV�t�8V

• JσK�some k t order by f V� � Jτ1K�t� X � X JτkK�t�
where `Jτ1K, . . . , JτkKe Z sort�f�V�, JσK~�FV�t�8V�

where JτK1, . . . , JτKk are pairwise di�erent substitution sets.

2. Let tc be a term, and let FV�tc� be the free variables in tc. ¿e application of a substitution set Σ
to tc is de�ned as follows:

Σ�t� � �tc� S JσK > Σ~�FV�tc� , `tc�e � JσK�tc��

Although not explicitly de�ned above, integrating aggregations and functions in this de�nition is
straightforward.

Example 20
Consider the substitution set

Σ � ��X( f�a�,Y ( g�a��, �X( f�a�,Y ( g�b��, �X( f�b�,Y ( g�a���

and the construct terms t1 � h�all var X,var Y� and t2 � h�var X,all var Y�. Grouping Σ according
to the free variables FV�t1� � �Y� in t1 and FV�t2� � �X� in t2 yields

Σ~�FV�t1�
� ���X( f�a�,Y ( g�a��,�X( f�b�,Y ( g�a���, ��X( f�a�,Y ( g�b����

Σ~�FV�t2�
� ���X( f�a�,Y ( g�a��,�X( f�a�,Y ( g�b���, ��X( f�b�,Y ( g�a����

¿e ground instances of t1 and t2 by Σ are thus

Σ�t1� � � h�f�a�, f�b�, g�a��, h�f�a�, g�b�� �
Σ�t2� � � h�f�a�, g�a�, g�b��, h�f�a�, g�b�� �

2Note that σ is the representative of the equivalence class JσK
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4.3 Application to Query Term Formulas

In the following, it is o en interesting to study ground instances not only of terms but also of compound
formulas. ¿e following de�nition de�nes the application of substitution sets to formulas consisting only
of query terms (so-called query term formulas); construct terms are problematic, as they group several
substitutions and thus do not behave “synchronously” with query terms in the same formula. Fortunately,
the formalisation of Xcerpt programs does not need to consider formulas containing construct terms. ¿e
only exception are program rules, which are treated separately anyway.

Applying a substitution set to a query term formula is straightforward: as each substitution in a substi-
tution set represents a di�erent alternative, the application of the substitution set to a query term formula
simply yields a conjunction of all di�erent instances.

De�nition 21 (Substitutions: Application to Query Term Formulas)
Let F be a quanti�er-free term formula where all atoms are query terms (a query term formula).

1. ¿e application of a substitution σ to F, written σ�F�, is recursively de�ned as follows:
• σ�F1 , F2� � σ�F1� , σ�F2�
• σ�F1 - F2� � σ�F1� - σ�F2�
• σ� F�� �  σ�F��
• σ� F�� �  σ�F��

2. ¿e application of a substitution set Σ to F, written Σ�F�, is de�ned as follows:

Σ�F� � �
σ>Σ

σ�F�

5 Simulation and Simulation Unifiers

Matching query termswith data terms is based on the notion of rooted graph simulations [HHK96,Mil71].
Intuitively, a query term matches with a data term, if there exists at least one substitution for the vari-
ables in the query term (called answer substitution of the query term) such that the corresponding graph
induced by the resulting ground query term simulates in the graph induced by the data term. Of course,
graph simulation needs to be modi�ed to take into account the di�erent term speci�cations, descendant
construct, optional subterms, subterm negation, and regular expressions.

To simplify the formalisation below, it is assumed that strings and regular expressions are represented
as compound terms with the string or regular expression as label, no subterms, and a total term speci�-
cation. For example, the string "Hello, World" is represented as the term "Hello, World"{}.

5.1 Rooted Graph Simulation

Pattern matching in Xcerpt (and UnQL, for that matter) is based on a similarity relation between the
graphs induced by two semistructured expressions, which is called graph simulation [HHK96, Mil71].
Graph simulation is a relation very similar to graph homomorphisms, but more general in the sense that
it allows to match two nodes in one graph with a single node in the other graph and vice versa.

¿e following de�nition is inspired by [HHK96, Mil71] and re�nes the simulation considered in
[BS02]. Recall that a (directed) rooted graph G � �V ,E, r� consists in a set V of vertices, a set E of
edges (i.e. ordered pairs of vertices), and a vertex r called the root of G such that G contains a path from
r to each vertex of G. Note that the initial de�nition of a rooted graph simulation does not take into
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Figure 2 Rooted Graph Simulations (with respect to vertex adornment equality)
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account the edge labels of graphs induced by a semistructured expression, it is de�ned on generic, node
labelled and rooted graphs. Note furthermore, that in general, there might be more than one simulation
between two graphs, which leads to the notion ofminimal simulations also de�ned below.

De�nition 22 (Rooted Graph Simulation)
Let G1 � �V1,E1, r1� and G2 � �V2,E2, r2� be two rooted graphs and let � b V1 � V2 be an order or
equivalence relation. A relation S b V1 �V2 is a rooted simulation of G1 in G2 with respect to Žĺþ if:

1. r1 S r2.

2. If v1 S v2, then v1 � v2.

3. If v1 S v2 and �v1,v�1, i� > E1, then there exists v�2 > V2 such that v�1 S v�2 and �v2,v�2, j� > E2

A rooted simulation S ofG1 inG2 with respect to � isminimal if there are no rooted simulations S� ofG1
in G2 with respect to � such that S� ` S (and S x S�).

De�nition 22 does not preclude that two distinct vertices v1 and v�1 of G1 are simulated by the same
vertex v2 ofG2, i.e. v1 S v2 and v�1 S v2. Figure 2 gives examples of simulations with respect to the equality
of vertex adornments. ¿e simulation of the right example is not minimal.

¿e existance of a simulation relation between two graphs (without variables) can be computed e�-
ciently: results presented in [Kil92] give rise to the assumption that such problems can generally be solved
in polynomial time and space. However, computation of pattern matching usually requires to compute
not only one, but all minimal simulations between two graphs, in which case the complexity increases
with the size of the “answer”.

5.2 Ground Query Term Simulation

Using the graphs induced by ground query terms (cf. De�nition 7), the notion of rooted simulation almost
immediately extends to all ground query terms: intuitively, there exists a simulation of a ground query
term t1 in a ground query term t2 if the labels and the structure of (the graph induced by) t1 can be found
in (the graph induced by) t2 (see Figure 3). So as to de�ne an ordering on the set of all ground query
terms, ground query term simulation is designed to be transitive and re�exive.

Naturally, the simulation on ground query terms has to respect the di�erent kinds of term speci�ca-
tion: if t1 has a total speci�cation, it is not allowed that there exist successors (i.e. subterms) of t2 that do
not simulate successors of t1; if t1 has an ordered speci�cation, then the successors of t2 have to appear
in the same order as their partners in t1 (but there might be additional successors between them if the
speci�cation is also partial).
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Figure 3Minimal simulation of f�� a�� ��,a��c,d,a�� �� �� �� in f�&1 @ a�c,d,� &1��
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¿e de�nition of ground query term simulation is characterised using a mapping between the se-
quences of successors (i.e. subterms) of two ground terms with one or more of the following proper-
ties, depending on the kinds of subterm speci�cations and occurrences of the constructs without and
optional. Recall that a mapping is called total if it is de�ned on all elements of a set and partial if it is
de�ned on some elements of a set.

De�nition 23
Given two term sequencesM � `s1, . . . , sme and N � `t1, . . . , tne.

A partial or total mapping π � M � N is called

• index injective, if for all si, sj > Mwith index�si� x index�sj�holds that index�π�si�� x index�π�sj��

• index monotonic, if for all si, sj > M with index�si� @ index�sj� holds that index�π�si�� @

index�π�sj��

• index bijective, if it is index injective and for all tk > N exists an si > M such that π�si� � tk.

• position respecting, if for all si > M such that si is of the form position j s�i holds that index�π�si�� �
j

• position preserving, if for all si > M such that si is of the form position j s�i holds that π�si� is of
the form position l t�k and j� l.

Index monotonic mappings preserve the order of terms in the two sequences and are used for matching
terms with ordered term speci�cations. Index bijectivemappings are used for total term speci�cations.

A position respecting mapping maps a term with position speci�cation to a term with the speci�ed
position and is required (and only applicable) if the term with the sequence of successors (subterms)
N uses total and ordered term speci�cation. E.g. given two terms f��position 2 b�� and f�a,b,b�, a
position respecting mapping maps the subterm position 2 b only to the �rst b, because its position is 2,
but not to the second b, because its position is 3.

A position preserving mapping maps a term with position speci�cation to a term with the same posi-
tion speci�cation; it is applicable in case the sequence of successors of the second term N is incomplete
with respect to order or breadth, as the exact position cannot be determined otherwise in these cases. In
particular, this ensures the re�exivity and transitivity of the ground query term simulation (see¿eorem
28 below). E.g. given the terms f��position 2 b�� and f�a,b, position 2 b�, the subterm position 2 b of
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the �rst term needs to be mapped to the subterm position 2 b of the second term, but cannot be mapped
to the �rst b because its position is not “guaranteed”.

To summarise, a position respecting mapping respects the speci�ed position by mapping the subterm
only to a subterm at this position. On the other hand, a position preservingmapping preserves the position
by mapping the subterm only to a subterm with the same position speci�cation.

Besides these properties, ground query term simulation needs a notion of label matches to allow
matching of string labels, regular expressions, or both:

De�nition 24 (Label Match)
A term label l1 matches with a term label l2, if

• if l1 and l2 both are character sequences or both are regular expressions, then l1 � l2 or

• if l1 is a regular expression and l2 is a character sequence, then l2 > L�l1�where L�l1� is the language
induced by the regular expression l1

l1 does not match with l2 in all other cases.

Example 25
1. the labels of the terms f�a,b� and f�b,a�match

2. the labels of the terms f�a,b� and g�b,a� do not match

3. the labels of the terms /.*/ and "Hello World"match

4. the labels of the terms "Hello World" and /.*/ do not match

Let G � �V ,E, t� be the graph induced by a ground query term t. In the following, Succ�t�� denotes
the sequence of all successors (i.e. immediate subterms) of t� in G, Succ��t�� b Succ�t�� denotes the
sequence of all successors of a term t� inG that are not of the form without t��, and Succ��t� denotes the
sequence of all successors of a term t� in G that are of the form without t�� (i.e. Succ��t�� > Succ��t�� �
Succ�t��). Furthermore, Succ!�t�� b Succ�t�� denotes the sequence of all successors of a term t� inG that
are not of the form optional t��, and Succ?�t�� b Succ�t�� denotes the sequence of all successors of a
term t� that are of the form optional t�� (i.e. Succ!�t��>Succ?�t�� � Succ�t��). Note that Succ� b Succ!,
because a combination of without and optional is not reasonable.3

De�nition 26 (Ground Query Term Simulaton)
Let r1 and r2 be ground (query) terms, and let G1 � �V1,E1, r1� and G2 � �V2,E2, r2� be the graphs
induced by r1 and r2. A relation jb V1 �V2 on the sets V1 and V2 of immediate and indirect subterms of
r1 and r2 is called a ground query term simulation, if and only if:

1. r1 j r2 (i.e. the roots are in j)

2. if v1 j v2 and neither v1 nor v2 are of the form desc t nor have successors of the forms without t or
optional t, then the labels l1 and l2 of v1 and v2match and there exists a total, index injective map-
ping π � Succ�v1� � Succ�v2� such that for all s > Succ�v1� holds that s j π�s�. Depending on
the kinds of subterm speci�cations of v1 and v2, π in addition satis�es the following requirements:

3optional only has e�ect on the variable bindings, and withoutmay never yield variable bindings
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v1 v2 it holds that
l1�s1, . . . , sm� l2�t1, . . . , tn� π is index bijective and index monotonic
l1�s1, . . . , sm� l2�t1, . . . , tn� π is index bijective and position respecting

l2�t1, . . . , tn� π is index bijective and position preserving
l1��s1, . . . sm�� l2�t1, . . . , tn� π is index monotonic and position respecting

l2��t1, . . . , tn�� π is index monotonic and position preserving
l1��s1, . . . sm�� l2�t1, . . . , tn� π is position preserving

l2�t1, . . . , tn� π is position respecting
l2��t1, . . . , tn�� π is position preserving
l2��t1, . . . , tn�� π is position preserving

3. if v1 j v2 and v1 is of the form desc t1, then

• v2 is of the form desc t2 and t1 j t2 (descendant preserving, or

• t1 j v2 (descendant shallow), or

• there exists a v�2 > SubT�v2� such that v1 j v�2 (descendant deep)

In all other cases (e.g. combinations of subterm speci�cations not listed above), j is no ground query
term simulation. In subsequent parts of this article, the symbol j always refers to relations that are ground
query term simulations.

Note that although graph simulation allows to relate two nodes of the one graph with a single node of
the other graph, it is desirable to restrict simulations between two ground query terms to injective cases,
i.e. such cases where no two subterms of t1 are simulated by the same subterm of t2. While it makes
certain queries more di�cult, this restriction turned out to be much easier to comprehend for authors of
Xcerpt programs and re�ected the intuitive understanding of query patterns.

Example 27
¿e following comprehensive list of examples illustrates the di�erent requirements for a ground query
term simulation. ¿ey are grouped in categories, each referring to the relevant requirement in De�nition
26.

For illustration purposes, subterms are annotated with their index as subscript. ¿is subscript is not
considered to be part of the label. Also, position is abbreviated as pos, optional is abbreviated as opt,
and without is abbreviated as  for space reasons.

1. total ordered term speci�cation (cf. requirement 2)
Let t1 � f�a1,b2, c3�, t2 � f�a1,b2, c3,d4�, t3 � f�a1, c2,b3�, t4 � f�a1,b2, c3�, and t5 � g�a1,b2, c3�

• t1 j t1: there exists a total, index bijective, and indexmonotonicmappingπ from `a1,b2, c3e to `a1,b2, c3e
with s j π�s�, mapping each subterm to itself.

• t1 ~j t2: there exists no index bijective mapping from `a1,b2, c3e to `a1,b2, c3,d4e, as the two sets have
di�erent cardinality.

• t1 ~j t3: there exists no index monotonic mapping from `a1,b2, c3e to `a1, c2,b3e with s j π�s�; the only
mapping that would satisfy s j π�s�, i.e. �a1 ( a1,b2 ( b3, c3 ( c2�, is not index monotonic.

• t1 ~j t4: the braces of t1 and t4 are incompatible.

• t1 ~j t5: the labels of t1 and t5 do not match.

2. total unordered term speci�cation (cf. requirement 2)
Let t1 � f�a1,b2, c3�, t2 � f�a1,b2, c3,d4�, t3 � f�a1, c2,b3�, t4 � f�a1,b2, c3�, and t5 � g�a1,b2, c3�

22



• t1 j t1: there exists a total and index bijective mapping π from `a1,b2, c3e to `a1,b2, c3e with s j π�s�,
mapping each subterm to itself, thus being position preserving.

• t1 ~j t2: there exists no index bijective mapping from `a1,b2, c3e to `a1,b2, c3,d4e, as the two sets have
di�erent cardinality.

• t1 j t3: there exists a total and index bijective mapping π from `a1,b2, c3e to `a1, c2,b3e with s j π�s�,
the mapping �a1 ( a1,b2 ( b3, c3 ( c2� (it does not need to be index monotonic) and it is trivially
position respecting, because t1 does not contain position subterms.

• t1 j t4: there exists a total and index bijective mapping π from `a1,b2, c3e to `a1,b2, c3e with s j π�s�,
mapping each subterm to itself, thus being position preserving.

• t1 ~j t5: the labels of t1 and t5 do not match

3. partial ordered term speci�cation (cf. requirement 2)
Let t1 � f��b1, c2��, t2 � f�a1,b2, c3,d4�, t3 � f�a1, c2,b3�, t4 � f�a1,b2, c3�, and t5 � f�b1, a2, c3�

• t1 j t1
• t1 j t2: there exists a total, index injective, and index monotonic mapping π � �b1 ( b2, c2 ( c3� with
s j π�s�. It is trivially position respecting.

• t1 ~j t3: there exists no mapping π with s j π�s� that is also index monotonic, because t3 does not
contain b and c in the right order.

• t1 ~j t4: the braces of t1 and t4 are incompatible.

• t1 j t5: there exists a total, index injective, and index monotonic mapping π � �b1 ( b1, c2 ( c3� with
s j π�s�. It is trivially position respecting.

4. partial unordered term speci�cation (cf. requirement 2)
Let t1 � f��b1, c2��, t2 � f�a1,b2, c3,d4�, t3 � f�a1, c2,b3�, t4 � f�a1,b2, c3�, t5 � f�b1, a2, c3�, and t6 �

f�a1,b2,d3�. All mappings π on Succ�t1� are trivially position respecting and position preserving.

• t1 j t1
• t1 j t2: there exists a total, index injective mapping π � �b1 ( b2, c2 ( c3� with s j π�s�

• t1 j t3: there exists a total, index injective mapping π � �b1 ( b3, c2 ( c2� with s j π�s�

• t1 j t4: there exists a total, index injective mapping π � �b1 ( b2, c2 ( c3� with s j π�s�

• t1 j t5: there exists a total, index injective mapping π � �b1 ( b1, c2 ( c3� with s j π�s�

• t1 ~j t6: there exists no total mapping π such that s j π�s� holds for all s, as t6 does not contain a
subterm matching with c2.

5. position speci�cation (cf. requirement 2)
Let t1 � f��c1,pos 2 b2��, t2 � f�a1,b2, c3�, t3 � f�b1, c2, a3�, t4 � f��a1,b2, c3�� and t5 � f��a1,pos 2 b2, c3��

• t1 j t1: there exists a total, index injective, position preserving mapping π � �c1 ( c1,pos 2 b2 (
pos 2 b2� with s j π�s�

• t1 j t2: there exists a total, index injective, position respecting mapping π � �c1 ( c3�,pos 2 b2 ( b2�
with s j π�s�

• t1 ~j t3: there exists no position respecting mapping π with s j π�s�; the only mapping with s j π�s� is
not position respecting, as it contains pos 2 b2 ( b1.

• t1 ~j t4: there exists no position preserving mapping π with s j π�s�, because t4 contains no subterm
of the form pos 2 t�; position respecting is not su�cient, as t4 is incomplete and might match further
terms with b at a di�erent position than 2, e.g. the term f�a1,d2,b3, c4�, in which case j would not be
transitive.

23



• t1 j t5: there exists a total, index injective, position preserving mapping π � �c1 ( c3�,pos 2 b2 (
pos 2 b�� with s j π�s�; in contrast to t4, the term t5 “preserves transitivity” of j.

6. descendant (cf. requirement 3)
Let t1 � desc f�a�, t2 � desc f�a�, t3 � desc f��a,b��, and t4 � g�f�a�,h�b��

• t1 j t2, because f�a� j f�a�

• t1 ~j t3, because f�a� ~j f��a,b��

• t1 j t4, because t4 contains a subterm t�4 such that f�a� j t�4.

5.3 Simulation Order and Simulation Equivalence

Ground query term simulation has been designed carefully to be transitive and re�exive, because it is
desirable that ground query term simulation is an ordering over the set Tg of ground query terms. ¿is
is necessary e.g. for the de�nition of Grouping of a Substitution Set (cf. De�nition 16).

¿eorem 28 (Transitivity and Re�exivity of j [Sch04])
j is re�exive and transitive.

With this result, the following corollary follows trivially:

Corollary and De�nition 29
j de�nes a preorder4 on the set of all ground query terms called the simulation order.

Note that the simulation order is not antisymmetric (e.g. f�a,b� j f�b,a� and f�b,a� j f�a,b�,
but f�a,b� x f�b,a�) and thus does not immediately provide a partial ordering. We therefore de�ne an
equivalence relation as follows:

De�nition 30 (Simulation Equivalence)
Two ground query terms t1 and t2 are said to be simulation equivalent, denoted t1 � t2, if t1 j t2 and
t2 j t1.

¿e meaning of simulation equivalence is rather intuitive: two terms are considered to be equiva-
lent, if they di�er only “insigni�cantly”, e.g. in a di�erent order in the sequence of subterms in unordered
term speci�cations (e.g. f�a,b� and f�b,a�). ¿is is consistent with the intuitive notion of unordered
term speci�cations given above. Note, however, that f�a,a� ~� f�a�, because the �rst term contains two
a subterms, whereas the second contains only one a subterm, i.e. there cannot exist an index bijective
mapping of the successors of the �rst into the successors of the second term (and vice versa). Simula-
tion equivalence plays an important role later, because it allows to consider terms as “equal” that behave
equally.

Simulation equivalence extends to non-ground terms in a straightforward manner: two non-ground
query terms t1 and t2 are simulation equivalent, if for every grounding substitution σ holds that σ�t1� �
σ�t2�. Note that for any two data terms t1 and t2 it holds that if t1 j t2 then t1 � t2, because data terms
do not contain partial term speci�cations.

Note that simulation equivalence is similar, but not equal to, bisimulation, because bisimulation re-
quires the same relation to be a simulation in both directions, whereas simulation equivalence allows two
di�erent relations.

� partitions Tg into a set of equivalence classes Tg~�. On this set, j is a partial ordering. Given two
equivalence classes t̃1 > Tg~� and t̃2 > Tg~�, we shall write t̃1 j t̃2 i� t1 j t2.

4a preorder is de�ned as a transitive, re�exive relation
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Corollary 31
j is a partial ordering on Tg~�.

In this partial ordering, it even holds that given two terms t1 and t2 such that there exists a least upper
bound t3, then t3 is unique except for terms t�3 that are equivalent wrt. �.

5.4 Simulation Unifiers

InClassical Logic, a uni�er is a substitution for two terms t1 and t2 that, applied to t1 and t2, makes the two
terms identical. ¿e simulation uni�ers introduced here follow this basic scheme, with two extensions:
instead of equality, simulation uni�ers are based on the (asymmetric) simulation relation of Section 5
and instead of a single substitution, substitution sets are considered. Both extensions are necessary for
handling the special Xcerpt constructs all and some and incomplete term speci�cations.

Informally, a simulation uni�er for a query term tq and a construct term tc is a set of substitutions Σ,
such that each ground instance tq

�

of tq in Σ simulates into a ground instance tc
�

of tc in Σ. ¿is restric-
tion is too weak for fully describing the semantics of the evaluation algorithm. For example, consider a
substitution set Σ � ��X ( a,Y ( b�,�X ( b,Y ( a�, a query term tq � f�var X� and a construct
term tc � f�var Y�. With the informal description above, Σ would be a simulation uni�er of tq in tc,
but this is not reasonable. We therefore also require that the substitution σ > Σ that yields tq

�

also is
“used” by tc

�

. ¿is can be expressed by grouping the substitutions according to the free variables in tc (cf.
De�nition 16 on page 15).

De�nition 32 (Simulation Uni�er)
Let tq be a query term, let tc be a construct term with the set of free variables FV�tc�, and let Σ be an
all-grounding substitution set. Σ is called a simulation uni�er of tq in tc, if for each JσK > Σ~�FV�tc� holds
that

¦tq
�

> JσK�tq� tq
�

j JσK�tc�

Recall from Section 4 that all substitutions in an all-grounding substitution set assign data terms to
each variable. Intuitively, it is su�cient to only consider grounding substitutions for tq and tc. However,
all-grounding substitution sets simplify the formalisation of most general simulation uni�ers below.

Example 33 (Simulation Uni�ers)
1. Let tq � f��var X,b�� and let tc � f�a,var Y, c�. A simulation uni�er of tq in tc is the (all-
grounding) substitution set

Σ1 � ��X( a,Y ( b�,�X( c,Y ( b��

2. Let tq � f��var X�� and let tc � f�all varY�. A simulationuni�er of tq in tc is the (all-grounding)
substitution set

Σ2 � ��X( a,Y ( b�,�X( a,Y ( a��
Assignments for variables not occurring in the terms tq and tc are not given in the substitutions above.

Simulation uni�ers are required to be grounding substitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding substitution sets can be applied to construct terms
containing grouping constructs, because a grouping is not possible otherwise. ¿is restriction is less
signi�cant than it might appear: as rules in Xcerpt are range restricted, the evaluation algorithm always
determines bindings for the variables in tc, so that it is always possible to extend the solutions determined
by the simulation uni�cation algorithm to a grounding substitution set by merging with these bindings.
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Usually, there are in�nitely many uni�ers for a query term and a construct term. Traditional logic
programming therefore considers the most general uni�er (mgu), i.e. the uni�er that subsumes all other
uni�ers. Since simulation uni�ers are always grounding substitution sets, such a de�nition is not possible
for simulation uni�ers. Instead, we de�ne the most general simulation uni�er (mgsu) as the smallest
superset of all other simulation uni�ers. Note that the notionmost general simulation uni�er is – although
di�erent in presentation – indeed similar to the traditional notion ofmost general uni�ers, because amost
general simulation uni�er subsumes all other simulation uni�ers.

De�nition 34 (Most General Simulation Uni�er)
Let tq be a query term and let tc be a construct term without grouping constructs such that there exists
at least one simulation uni�er of tq in tc. ¿emost general simulation uni�er (mgsu) of tq in tc is de�ned
as the union of all simulation uni�ers of tq in tc.

Note that the most general simulation uni�er is indeed always a simulation uni�er if tc does not
contain grouping constructs. ¿is is easy to see because the union of two simulation uni�ers simply adds
ground instances of tq and tc where for every ground instance tq

�

of tq there exists a ground instance tc
�

of tc such that tq
�

j tc
�

. ¿is does in general not hold for construct terms with grouping.

6 Interpretations and Entailment

¿e de�nition of satisfaction of Xcerpt term formulas, and in particular of Xcerpt programs, is similar to
the approach taken in classical �rst order logic, but di�ers in several important aspects: term formulas do
not di�erentiate between relations and terms, and the incompleteness of query terms and the grouping
constructs in construct terms have to be taken into account. Section 6.1 gives an intuitive meaning of
interpretations for Xcerpt term formulas. Satisfaction is then de�ned in Section 6.2 in terms of the simu-
lation relation introduced earlier in Section 5. Based on this de�nition of satisfaction, entailment between
formulas can be de�ned in the classical manner.

6.1 Interpretations

As terms are considered to be formulas themselves, interpretations – informally – convey whether “a
term exists” or “a term does not exist”. ¿us, a �rst approximation de�nes an interpretation as a set
of data terms (which are also ground query terms). A ground atom (i.e. a ground query term) is then
satis�ed if it is contained in the set, or it simulates into a term that is contained in the set. Since Xcerpt
data terms representWeb pages, this de�nition is natural and close to the application, and thus well suited
for reasoning on the Web. Such a de�nition may be unusual from a Classical Logic perspective, but is
rather common in logic programming for it is close to Herbrand interpretations.

Furthermore, an interpretation provides a grounding substitution set which provides assignments to
all free variables in the formulas considered. Interpretations are thus formally de�ned as follows:

De�nition 35 (Interpretation)
An interpretation M is a tuple M � �I, Σ� where I is a set of data terms and Σ x g is a grounding
substitution set.

¿e set of data terms I conveys what data terms (Web pages) are considered to exist. ¿e substitution
set Σ is necessary to properly treat formulas containing free variables, and allows to provide a recursive
de�nition of satisfaction below. As formulas are usually always (explicitly or implicitly) universally closed,
Σ can be seen as amere technicality of the de�nition and is irrelevant for the general notion of satisfaction.
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For this reason, the following Sections o en somewhat imprecisely equate interpretations with the set of
data terms I.

Note that Σ x g. Otherwise, Σ�t� would yield an empty set of terms even in case t is a ground
query term. As the application of a substitution set to a query term formula yields a conjunction over
all substitutions, application of g would yield an empty conjunction, i.e. �. To de�ne a substitution set
that merely maps each term to itself it has to be speci�ed as Σ � � g �, where the empty substitution σ
corresponds to the identity function.

It is important to note that the interpretations considered here are very speci�c in that they only
consider terms as objects, instead of arbitrary objects. ¿ey are thus similar to Herbrand interpretations
in traditional model theory. However, this restriction is reasonable, as term formulas do not intend to
represent arbitrary objects.

6.2 Satisfaction and Models

Although similar to the de�nition of satisfaction in classical logic, satisfaction for Xcerpt term formulas
di�ers in several important aspects, in particular the satisfaction of atoms (i.e. terms) and of program
rules. A term (atomic formula) is considered to be satis�ed if (and only if) its ground instance simulates
in some term of the interpretation. Considering the Web as an interpretation, this means that a query
term “succeeds” (is satis�ed) if there exists a Web page (data term) such that the ground instance of the
query term simulates into this data term.

Unlike in traditional logic programs, rules in Xcerpt are not treated as (classical) implications (�
below), because the grouping constructs all and some require that the query part of a rule is not only
satis�ed, but that it is also satis�ed in the maximal manner, i.e. the substitution set yielding the ground
instance of the construct termmust include all possible substitutions for which the query part is satis�ed.
Otherwise, interpretations would include answer terms for a rule that di�er from the intuitive under-
standing of the constructs all and some (see Example 38 below). ¿e de�nition of satisfaction for Xcerpt
rules uses the notion of maximal substitution sets de�ned above in De�nition 11.

With the exception of term and rule satisfaction, the following de�nition follows the classical de�ni-
tion of satisfaction. Note in particular, that the negation used in this de�nition is classical negation and
not negation as failure (as the query negation in Xcerpt programs).

De�nition 36 (Satisfaction, Model)
1. LetM � �I, Σ� be an interpretation (i.e. a set of data terms I and a substitution set Σ), and let t be
a construct or query term.

¿e satisfaction of a term formula F in M, denoted by M à F, is de�ned recursively over the
structure of F:
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M à � holds
M à � does not hold
M à t i� for all t� > Σ�t� there exists a term td > I such that t� j td
M à  F i� M ~à F
M à F1 , � � � , Fn i� M à F1 and . . . andM à Fn
M à F1 - � � � - Fn i� M à F1 or . . .orM à Fn
M à F� G i� M à  F -G
M à ¦x.F i� for all t > I holds thatM�

� �I, Σ�� à F,
where Σ� � �σ X �x ( t� S σ > Σ�

M à §x.F i� there exists a t > I such thatM�
� �I, Σ�� à F,

where Σ� � �σ X �x ( t� S σ > Σ�
M à ¦�

P tc � QQ i� M�
� �I, Σ�� à tc for a maximal grounding substitution set Σ� for Q

withM� à Q

2. If a formula F is satis�ed in an interpretationM, i.e.M à F, thenM is called amodel of F.

Note that the maximality requirement in the last part of (1) refers to the satisfaction of Q in M and
ensures that grouping constructs in the head of the rule are substituted properly.

As instances of Xcerpt rules are variable disjoint (so-called standardisation apart), it is possible to
replace Σ by Σ� in the model de�nition for ¦�

P t � Q Q. Otherwise, the substitutions in Σ and Σ�
would have to be merged to Σ X Σ�.
Example 37 (Satisfaction of Term Formulas)
LetM � �I, Σ� be an interpretation with

I �� �f�a,b�, f�a, c�,b�
Σ �� ��X( a, Y ( b�,�X( a, Y ( c��

¿e following statements hold forM:

1. M à f�a,b�, because for each t > Σ�f�a,b�� � �f�a,b�� exists a t� > I with t j t�

2. M ~à f�a,d�, because for t � f�a,d� > Σ�f�a,d�� � �f�a,d�� does not exist a t� > I with t j t�.

3. M à f�a,b�, because for each t > Σ�f�a,b�� � �f�a,b�� exists a t� > I with t j t�

4. M à f��var X,var Y��, because
• σ1 � �X( a, Y ( b� and σ1�f��var X,var Y��� j f�a,b�, and
• σ2 � �X( a, Y ( c� and σ2�f��var X,var Y��� j f�a, c�

5. M à §Z.f��var Z��, becauseM�
� �I, Σ�� with

Σ� � ��X( a, Y ( b, Z ( a�,�X( a, Y ( c, Z ( a��
is a model for f��var Z��

6. M ~à ¦Z.f��var Z��, because there exists a term f�a,b� as substitution for Z such that M ~à
f��f�a,b���

7. M à ¦Z.var Z, because for all t > I holds that M�
� �I, Σ�� with Σ� � ��X ( a, Y ( b, Z (

t�,�X( a, Y ( c, Z ( t��
is a model for var Z5

5¿is result might be surprising from a classical perspective, but it is self-evident when considering terms as formulas:
universal quanti�cation quanti�es over all existing terms, and obviously all these are satis�ed in any interpretation.
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For a program P, a model is intuitively an interpretation that contains all the data terms that are
“produced” by P (and possibly also further data terms unrelated to P).

Example 38 (Satisfaction of Xcerpt Programs)
Let P be the following Xcerpt program (in compact notation):

p{all var X} � q{{var X}}

q{a,b,c}

• the interpretationM1 � �I1,�g�� with I1 � �q�a,b, c�, p�a,b, c�� is a model for P, i.e.M1 à P.

• the interpretation M2 � �I2,�g�� with I1 � �q�a,b, c�, p�a,b�� is no model for P, i.e. M1 ~à P,
because p�a,b� is not the ground instance of p�all var X� by the maximal substitution set for
which q��var X�� is satis�ed

• the interpretation M3 � �I3,�g�� with I3 � �q�a,b, c�, p�a,b, c�, p�a,b�� is a model for P, i.e.
M3 à P, because p�a,b, c� > I; the additional p�a,b� is not produced by P, but irrelevant for the
satisfaction of P inM3.

Note that “terms” with in�nite breadth are precluded by the de�nition of terms and can thus never ap-
pear in an interpretation. Programs where a rule “de�nes” such terms do not have a model. For example,
the program

f�all var X�� g�var X�
g�g�var Y��� g�var Y�
g�a�

does not have a model, because the �rst rule de�nes a “term” of the form f�a, g�a�, g�g�a��, . . .�. To
avoid non-terminating evaluation of such programs, it is desirable to �nd su�cient requirements to pre-
clude such programs syntactically. ¿is is however out of the scope of this article.

7 Fixpoint Semantics

A classical approach to describing the semantics of logic programs is the so-called �xpoint semantics,
�rst proposed by Van Emden and Kowalski [vEK76]. In the �xpoint semantics, a model is constructed
by iteratively trying to apply program rules (using an operator called TP) to a set of data terms and adding
their results until a �xpoint is reached, i.e. no new data terms can be added. ¿is smallest �xpoint is then
a model of the program (assuming that programs do not contain negation).

Example 39
Consider again the program

f�all var X�� g��var X��
g�a�

By de�nition, the starting point is always I0 � g. In the �rst iteration, no rules are applicable, but the
data terms are added to the set. ¿us,

I1 � TP�g� � �g�a��

¿e next iteration allows to apply the program rule. ¿us,

I2 � TP�I1� � �g�a�, f�a��
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Further application of rules does not add new terms, thus I2 is the smallest �xpoint. It is easy to see
that I2 is also a “reasonable” model of the program. Note that there are other �xpoints besides I2, e.g.
�g�a�, f�a�, f�b��, all of them supersets of I2.

¿e following section proposes a �xpoint semantics for Xcerpt programs with grouping constructs
but without negation, and shows that the �xpoint of the program is also a model of a program. Since
the �xpoint semantics is the most precise characterisation of Xcerpt programs available, it is also used
as the reference for the veri�cation of the backward chaining algorithm. Programs with negation are not
considered in this article, but their treatment should be very similar to the treatment of negation in other
logic programming languages. Since Xcerpt programs are negation strati�able, a similar approach to the
approach taken by Apt, Blair, and Walker [ABW88] appears promising.

¿is article slightly diverges from the traditional de�nition of the �xpoint operatorTP in that it de�nes
TP as a function whose result contains not only the new terms but also those given as argument. ¿us, it
is su�cient to simply let TP saturate in iterative applications instead of using a complex notion of powers
of the form TP � n. Arguably, this approach is more straightforward, because it re�ects the intuitive
understanding of program evaluation.

Recall that ω denotes the �rst ordinal number, i.e. the smallest number that is larger than any natural
number. ¿us, Tω

P denotes the application of TP “until a �xpoint is reached” (whether it be �nite or
in�nite). ¿e �xpoint operator is de�ned as follows:
De�nition 40 (Fixpoint Operator TP, Fixpoint Interpretation)
Let P be an Xcerpt program.

1. ¿e �xpoint operator TP is de�ned as follows:

TP�I� � I 8 �td S there exists a rule tc � Q in P and substitution set Σ
such that Σ is the maximal set with �I, Σ� à Q and td > Σ�tc�,
or td is a data term in P �

2. ¿e �xpoint of TP is denoted byMP � Tω
P �g� and called the �xpoint interpretation of P.

A problemwith this �rst de�nition is that it can yield interpretations that contain unjusti�ed terms in
case the program contains grouping constructs, because rules with grouping constructs require the rule
body to be satis�ed maximally, but not all required information might be available in the iteration of TP
where the rule is applied.
Example 41
Consider the following Xcerpt program:

f�all var X�� g��var X��
g�var Y�� h��var Y��
g�a�
h�b�

Applying the �xpoint operator TP yields the following results:

T1
P�g� � �g�a�,h�b��

T2
P�g� � �g�a�,h�b�, g�b�, f�a��

MP � T3
P�g� � �g�a�,h�b�, g�b�, f�a�, f�a,b��

However, f�a� should not occur, because it is not the result of the maximal substitution for g��var X��.
Obviously, applying the �rst rule already in T2

P is too early.
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¿erefore, we re�ne the notion of �xpoint interpretations to �xpoint interpretations for strati�able
programs. Constructing �xpoints for Xcerpt programs containing grouping constructs is based on the
grouping strati�cation of such programs and simply applies the �xpoint operator stratum by stratum,
beginning with the lowest stratum and ending with the highest. ¿e following de�nition follows closely
a de�nition by Apt, Blair, and Walker [ABW88]:

De�nition 42 (Fixpoint Interpretation for Strati�able Programs)
Let P be a program with grouping strati�cation P � P1 > � � � > Pn (n C 1). ¿e �xpoint interpretationMP
is de�ned by

M1 � Tω
P1�g�

M2 � Tω
P2�M1�

�

Mn � Tω
Pn�Mn�1�

withMP � Mn.

Note that this de�nition of MP is in principle applicable to all kinds of strati�cation, i.e. grouping
strati�cation, negation strati�cation, and full strati�cation.

Example 43
Consider the following Xcerpt program strati�able into two strata P1 and P2:

P2 f�all var X�� g��var X��
P1 g�var Y�� h��var Y��

g�a�
h�b�

Applying the �xpoint operator TP1 for the stratum P1 yields the following sets:

T1
P1�g� � �g�a�,h�b��

M1 � T2
P1�g� � �g�a�,h�b�, g�b��

M1 � T2
P1 is a �xpoint for this stratum. Further application of the �xpoint operator TP2 for the stratum P2

to this set then results in:

M2 � T1
P2�M1� � �g�a�,h�b�, g�b�, f�a,b��

it is easy to see thatM2 � T1
P2�M1� is a model of P, and thatM2 does not contain unjusti�ed terms.

We now show that the �xpoint of a program is also amodel. Note, however, that the inverse statement
does not hold:
¿eorem 44
Let P be a grouping strati�ed program without negation. ¿en the �xpointMP of P is a model of P.

Proof. Suppose MP is not a model of P. ¿en there exists a term t not in MP that is required by MP and P. ¿ere
are two cases for this:

• t is a data term in P. By de�nition of TP, t is then inMP.  

• t is a ground instance of a rule in P, i.e. there exists a rule tc � Q in P and a substitution set Σ that is amaximal
substitution withMP à Σ�Q� such that t > Σ�tc�. By de�nition of TP, it holds that Σ�tc� b MP.  
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8 Outlook and Future Work

¿e semantics described in this article is unsatisfactory in that it only covers a limited set of Xcerpt pro-
grams (namely those that are grouping strati�able), does not cover negation (as failure), and does not
provide a theory of minimal model as is usually done in traditional logic programming. ¿e following
sections brie�y suggest re�nements that might be addressed in future work.

8.1 Semantics of Advanced Xcerpt Constructs

Some more advanced Xcerpt constructs are not covered by the model-theoretic semantics described in
this article. ¿is section gives a brief outline over possible approaches for these constructs. More elabo-
rated proposals can be found in [Sch04].

Arithmetic Expressions and Aggregation Functions. Xcerpt construct terms may contain arithmetic
expressions (like +, -, string concatenation, etc.) and aggregation functions (like count, sum, etc., usually
in conjunction with grouping constructs). In general, both arithmetic expressions and aggregation func-
tions are applied to a number of data terms (i.e. ground construct terms) and yield a new data term (for
example, sum can be applied to the three data terms 3, 4, and 5, and yields the data term 12). Extending
the model-theoretic semantics to convey their meaning can be achieved by a simple modi�cation of the
application of substitution sets to construct terms (cf. Section 4.2). Expressions might e.g. be evaluated on
the ground instances that are the result of applying a substitution set to a construct term.

Optional Subterms. Xcerpt query and construct terms may contain so-called optional subterms pre-
ceded by the keyword optional. Intuitively, optional subterms have the following meaning:

• query terms containing optional subterms may match with data terms even if there exists no cor-
responding subterm in the data term, i.e. matching does not fail in this case (but does not yield
variable bindings). On the other hand, if the data term does contain at least one corresponding
subterm, optional subterms are required to match (and possibly yield variable bindings). ¿e se-
mantics of optional subterms in a query term can be formalised by properly adapting the notion
of ground query term simulation (cf. Section 5). To re�ect that optional subterms are required to
match if possible, it is furthermore necessary to allow only those substitutions as valid answers for
a query term and a data term that provide bindings for a maximal subset of variables.

• optional subterms in construct terms may be omitted if a substitution or substitution set does not
provide bindings for at least one of the variables contained in the optional subterm (such “in-
complete” substitutions might be the result of optional subterms in the query part of a rule). ¿e
sematics of optional subterms in a construct term can be formalised by extending the de�nition of
application of substitution sets to construct terms (cf. Section 4.2).

SubtermNegation. In query terms, subtermnegation (using the keyword without) denotes thatmatch-
ing data terms may not contain corresponding subterms that are matched by the negated subterm. For
example, f{{without b}}matches only with data terms that have a root with label f and arbitrary sub-
terms except for such that are matched by b. ¿us, the data term f{a,c} would match, whereas the data
term f{a,b} would not.

¿e semantics of subterm negation is best integrated into the ground query term simulation de�ned
in Section 5. A �rst approach following this idea is described in [Sch04].

32



8.2 (Non-)Monotonicity: Negation and Grouping Constructs

Requiring grouping/negation strati�cation as in this article is too strict for many applications. ¿erefore,
it would be worthwhile to investigate relaxations of these requirements (like local strati�cation [Prz88]) or
even entirely di�erent approaches that have been proposed in the last 20 years (like stable models [GL88]
or paraconsistent interpretations [Bry02]) to non-monotonic constructs in Xcerpt.

8.3 Minimal Models

In traditional logic programming, the �xpoint of a program coincides with its minimal model, which is
simply the intersection of all models of the program. It is easy to see that this approach is not feasible in
the presence of grouping constructs like in Xcerpt. Consider the following simple program P consisting
of a single rule and a single data term:

CONSTRUCT

f{all var X}

FROM

g{var X}

END

CONSTRUCT

g{a}

END

Models for this program are e.g.

• I1 � �g�a�, f�a��

• I2 � �g�a�, g�b�, f�a,b��

• I3 � �g�a�, g�b�, g�c�, f�a,b, c��

Obviously, I1 is the only “desirable” model, and also the �xpoint of P, i.e. I1 � Tω
P �g�. It is easy to see

that the intersection of e.g. I1 and I2 is not a model of P, i.e. the minimal model cannot be determined by
simple set intersections.

Approaches to this problem could rede�ne intersection to “look inside terms”. In the above example,
a solution could be to not only do set intersection but also “term intersection”. ¿us, the intersection of
f�a,b� and f�a�would be f�a�. However, several further problems arise with this kind of de�nition: it
is unclear which terms to intersect, one cannot rely on known properties of set operations (if intersection
is rede�ned, how about union?), and the resulting minimal model semantics is no longer as “declarative”
as would be desirable.

Regardless of the approach taken, the minimal model semantics needs to be simple, because it is
intended to describe the meaning of a program without relying on its operational behaviour; if no rea-
sonable, understandable minimal model semantics can be found, it would probably be preferrable to be
stick to the operational description given in form of the �xpoint semantics.
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Revision History6

Since the publication of I4-D4 two important developments have occured w.r.t. to I4’s query language
Xcerpt that in�uence the semantics discussed in this deliverable:

• A revised syntax has been published in I4-D6 that includes an identi�cation of open issues. Several
of the open issues are also related to the semantics, most notably the question of the proper data
model (in�nite regular trees based with extensional identity or graphs with object or surrogate
identity) and of parameterizable grouping and aggregation. ¿ese issues are expected to be resolved
in the coming months leading to a further update to this deliverable.

• A query core of Xcerpt has been de�ned both syntactically and semantically. Its formal properties
have been studied and an e�cient evaluation technique has been developed for this query core.
¿e details on the query core are discussed in the appended paper.

6Major revisions from deliverable I4-D4.
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ABSTRACT
Query languages for semi-structured data on the Web in
the form of XML or RDF have become an essential part of
many applications and services. N -ary conjunctive queries,
i.e., queries with any number of answer variables, are the
formal core of most Web query languages including XSLT,
XQuery, SPARQL, and Xcerpt. Despite a considerable body
of research on the optimization of such queries against tree-
shaped XML data, little attention has been paid so far to effi-
cient access to graph-shaped XML, RDF, or Topic Maps. We
propose a novel evaluation technique for n-ary conjunctive
queries that applies to both tree- and graph-shaped data.
It has the same complexity as the best known approaches
that are restricted to tree-shaped data only. The core of the
evaluation technique is a memoization data structure, called
“memoization matrix”, which holds (intermediary) results.
It can be populated and consumed in different ways. For
both, population and consumption, we propose two algo-
rithms, each having its own advantages. The complexity
of the algorithms is compared analytically and experimen-
tally.
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1. INTRODUCTION
Semi-structured data in the form of XML or RDF now

dominates data representation and exchange on the Web.
Accessing such Web data, often from multiple sources and
in different formats, is more and more an essential part
of many applications, e.g., for bibliography management,
news aggregation, information classification, and digital as-
set management. Web query languages such as XSLT [10],
XQuery [4], SPARQL [22], or Xcerpt [24] provide convenient
and efficient means to access and process such data, whether
it is stored in native XML or RDF databases or accessed via
Web service query interfaces. Increasingly, Web applications
need access not just to XML data, but also to data in other
Web formats such as RDF or Topic Maps, even in the same
query.

Efficient evaluation of queries over XML data has received
considerable attention in recent years [5, 18, 13], includ-
ing extensive studies of complexity of query evaluation for
XPath [14], XQuery [17], and general conjunctive queries
over trees [15].

However, these techniques and results have considered
XML data as tree-shaped. For many applications, a graph
view of XML is preferable, e.g., when links after XLink,
(X)HTML, or XML’s own ID/IDREF mechanism are con-
sidered first class elements of the data model. Furthermore,
other semi-structured Web data formats such as RDF or
Topic Maps are evidently graph-shaped. Therefore, we pro-
pose in this article a novel evaluation algorithm that exhibits
on tree data the same worst-case complexity as the best
known approaches for tree data, but operates with similar
complexity also on graph data.

We formalize queries against semi-structured data, whether
tree- or graph-shaped, as n-ary conjunctive queries over
unary and binary relations. Conjunctive queries against tree
data form a common formal basis for the query core of a
large set of XML query languages such as UnQL [6], XPath
[14], and thus XQuery [4]. Conjunctive queries against graph
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tree query graph query

tree data O(q · v2 + o) O(vq)
graph data O(q · v · e + o) O(vq)

Table 1: Overview of Combined Time Complexity
(q: number of query variables; e, v number of edges,
vertices resp., in the data; o: size of output)

data form a common query core for RDF query languages
such as SPARQL [22] and general semi-structured query lan-
guages such as Lorel [2] and Xcerpt [24].

Compared to full semi-structured query languages, the
main restrictions of n-ary conjunctive queries are twofold:
(1) They provide no result construction: The result of an
n-ary conjunctive query is just a set of tuples of bindings for
the n answer variables, each tuple representing one match,
whereas full semi-structured query languages allow addi-
tional construction including grouping and aggregation on
these results. (2) They are composition-free in the sense of
[17], i.e., the query can only access the original input data,
but no intermediary results can be constructed or queried,
preventing in particular the use of views, rules, or functions.
The second restriction is less easy to overcome and dropping
it makes the query evaluation far more expensive [17].

An extension of the results presented here that drops the
first restriction is straightforward and covers composition-
free core XQuery without negation [17]. Indeed, the algo-
rithms presented in this paper reaffirm the complexity re-
sults from [17] on tree data and extend them to graph data.

For the evaluation of n-ary conjunctive queries, we present
two algorithms both founded on a compact data structure,
called “memoization matrix”, for memoizing intermediary
results during the evaluation of an n-ary query. The two
algorithms differ only in the way the memoization matrix
is filled: The first algorithm uses a bottom-up strategy for
filling matrix cells starting with variables in leaf nodes of
the query. The second algorithm performs a recursive de-
scent over the query tree populating the matrix top-down
from root to leaf query nodes. More involved population
strategies are conceivable (e.g., a mix of the two presented
algorithms or a pathwise population inspired by [20]), but
only briefly outlined in this article.

Both algorithms can be applied in the same manner to
tree and graph data, only the computation of the structural
relations is affected by the type of data. Unsurprisingly,
the shape of the query has a more pronounced effect on the
complexity and performance of the evaluation algorithms:
Where for path and tree queries the complexity of the evalu-
ation algorithms is polynomial, it requires expontential time
for evaluating graph queries. This is unsurprising in light of
complexity results in [14, 15] that show that evaluation of
graph queries even against tree data is NP-complete.

Two variants of matrix consumption and result genera-
tion algorithms are discussed: The first variant provides an
in-memory representation of all result tuples that is useful if
further processing such as aggregation or grouping is going
to take place on the result tuples, the second variant com-
putes the result tuples on the fly (using, e.g., a simple nested
loop join) in exponential time but requiring only polynomial
space. Both variants are justified and useful, depending on
the construction performed on the results, if any.

The remainder of this article is organized along its con-
tributions:

1: Based on the formalization of the query core of many
semi-structured query languages as n-ary conjunctive que-
ries (Section 2), a memoization technique for the compact
representation of intermediary and final results of an n-ary
conjunctive query is introduced in Section 3. This “me-
moization matrix” forms the core of the proposed novel eval-
uation technique, but allows for variation in two respects:
first the population of the matrix and second the consump-
tion of the matrix for result generation.
2: We introduce two algorithms for populating this matrix,
one bottom-up in Section 4.1, one top-down in Section 4.2,
and compare these algorithms w.r.t. complexity and likely
usage scenarios. In an outlook, further population strategies
are briefly noted. These algorithms can be used for both tree
and graph data.
3: We introduce three algorithms for matrix consumption,
one for tree queries (Section 5.1), one for graph queries (Sec-
tion 5.2) which also enforces the remaining non-hierarchical
relations that are unconsidered during matrix population,
and one based on nested loop joins (Section 5.3). Above
this, we show how order restrictions can be enforced using
the matrix consumption algorithm for graphs (Section 6).
4: Careful complexity analysis of the algorithms in Sec-
tions 4 and Section 5 is complemented by an extensive ex-
perimental evaluation (Section 7) that confirms that the pro-
posed algorithms are competitive with the best known evalu-
ation techniques for tree data but also extend to graph data.
To the best of the authors’ knowledge, it is the first evalua-
tion technique for semi-structured data with this property.
This result applies over all three classes of queries consid-
ered, viz. n-ary path, tree, and graph queries. A summary
of the complexity results for tree and graph queries is given
in Table 1.
5: In an outlook further optimizations regarding advanced
query constructs such as optional query parts or negation
and the relation of the presented technique to relational
query planing and constraint solving are briefly outlined
(Section 8).

2. PRELIMINARIES

2.1 Graph Data Model
From the perspective of their data model, many Web rep-

resentation formats such as XML, RDF, and Topic Maps
have a lot of commonalities: the data is semi-structured,
tree- or graph-shaped, and sometimes ordered, sometimes
not (XML elements vs. XML attributes, RDF sequence con-
tainers vs. bag containers). In this article, we choose finite
unranked labeled ordered simple directed graphs as
common data model for Web data. Precisely, a query is
evaluated against a data graph D over a label alphabet ΣL

and a value alphabet ΣV . A data graph is represented as a
5-tuple

D = (N, E, R,L,V),

where N is the set of nodes of the graph, E ⊂ N ×N ×N
the set of edges, R ⊂ N the set of root vertices, L : N → ΣL

the labeling function, and V : N → ΣV the value assignment
function.

D is a simple directed graph, i.e., there are neither multi-
edges nor loops in the graph (but other, i.e., indirect, cycles
are allowed). This restriction is used to simplify the presen-
tation of the algorithms and complexity results below, but
is not strictly necessary. Indeed, any directed graph D with
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Figure 1: Exemplary Data Graph: Labeled Ordered
Simple Directed Graph

multi-edges and loops can be represented as a simple di-
rected graph D′ by replacing each edge (n1, i, n2) ∈ E with
a new node n ∈ N ′\N and edges (n1, i, n), (n, 1, n2) ∈ E′.
Obviously, D′ has by the number of edges in D more nodes
than D: |N ′| = |N |+ |E| and |E′| = 2 |E|.

D is an ordered graph, i.e., the order of the children of a
node is significant. Since the order is relative to the parent
and a single node can be child of several parents, the order
is associated with the edge rather than with the child node.
It is assumed, that each child has a unique position in the
order of its siblings (p, i, c), (p, i′, c′) ∈ E: i = i′ =⇒ c = c′.
On simple graphs this induces a proper order relation among
siblings, but only on trees an obvious generalization to an
order over all nodes (like document order in XML) exists.

Two labeling functions are provided, viz. L and V. The
first associates conventional node labels with each node, the
second “content” values. The difference is made to be able to
distinguish the cost of comparing two labels vs. two content
values. Furthermore, L is assumed to be total, whereas V
may be undefined for some nodes in the graph. In Figure 1,
an exemplary data graph is shown. Labels are denoted to
the left of the node, “content” values in boxes under the
nodes. A root node is indicated by an incoming arrow.

The definition allows multiple root nodes, e.g., if there are
several connected components in the graph. Any node may
be a root node. In particular root nodes may, in contrast
to usual rooted graph models, have parents. Intuitively,
root nodes are simply highlighted “entrance” points into the
graph that can be chosen arbitrarily when defining the data
graph: If the data graph is a single XML document there
will be a single such root node, however this formalization
also covers collections of XML documents (as in XQuery)
and RDF graphs where, e.g., each subject node can be con-
sidered a root node. In the following, we assume without
loss of generality that a data graph has a single root and
is connected. This ensures that |E| ≥ |N | − 1, and thus
O(|E|+ |N |) = O(|E|).

Specificities of XML, RDF, and Topic Maps such as at-
tributes, namespaces, containers, collections, etc. are not
provided by the basic data model. Handling these specifici-
ties poses no challenge to the evaluation algorithm and com-
plexity analysis in this article and is therefore disregarded
here.

2.2 Conjunctive Queries
Conjunctive queries are a convenient and relevant formal-

ization of the query core of many XML and RDF query
languages such as XSLT, XQuery, SPARQL, and Xcerpt.

Query syntax. A conjunctive query consists of a query head
and a query body. The query body is a conjunction of atoms,
and each atom is a relation over query variables. The do-
main of the query variables are the nodes N of the data
graph D the query is evaluated against. The query head
is a list of answer variable bindings which form an answer
to the query. All answer variables must also occur in the
body of the query. All other variables in the query body are
existentially quantified [1].

In this article, only binary and unary relations are con-
sidered in conjunctive queries (though Section 6 briefly dis-
cusses an extension for handling order relations on graph
data that uses ternary relations). Thus, conjunctive queries
follow the following grammar:

〈query〉 ::= 〈label〉 ‘(’ 〈variable〉 (‘,’ 〈variable〉)* ‘)’
‘←’〈atom〉 (‘,’ 〈atom〉)*

〈atom〉 ::= 〈relation〉 ‘(’ 〈variable〉 (‘,’ 〈variable〉)? ‘)’

Query Relations. Three types of relations may occur in
conjunctive queries: unary “property” relations that restrict
the valuation to nodes with a certain property, binary “struc-
tural” relations that require pairs of nodes to stand in the
queried data graph in a certain structural relation, and bi-
nary “join” relations that compare nodes based on some
property.

The proposed algorithms and complexity considerations
apply to arbitrary property, structural, and join relations
as long as for given nodes, each property relation can be
checked in constant time, each structural relation in O(|E|),
and each join relation in at most O(j(|E|)) for some poly-
nomial j. Additionally, the enumeration of the structurally
related nodes for a given node n must be possible in O(|E|).
For join relations, a parameterized complexity is used to al-
low constant-time value joins based, e.g., on a fixed set of
key values as well as deep-equal or “string value” joins as
in XPath, that access the entire sub-structure rooted at a
node and require in worst-case O(|E|) time to be checked
on a pair of nodes.

In the remainder of this article, we use the property rela-
tion root, which is satisfied only by the root nodes of the
queried data graph, as well as label relations labelσ for all
σ ∈ ΣL (i.e., for all possible labels) that restrict to nodes v
where L(v) = σ.

As structural relations only child and its closures child+

and child∗ are considered. An extension to regular path
expressions (or conditional axes [19]) is straightforward, as a
regular path expression can be checked with data complexity
O(|E|) for two given nodes. In Section 6, an extension with
(ternary) sibling-order relations is briefly outlined.

The join relations used are ident and valequal. ident
is the identity relation, valequal is defined over the value
labeling function V. ident can be used to rewrite queries
with structural relations that form a graph to queries with
structural relations that form a tree but contain additional
valequal atoms.

Figure 2 shows the query graphs for two conjunctive que-
ries. This intuitive representation of graphs is used through-
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out this paper: The representation of labels and values, as
well as root nodes is as in data graphs, but edges are anno-
tated with structural or join relations. Answer variables are
marked by the name of the variable and a black instead of
a gray node.

The two queries both select article authors together with
article titles and conference names if the author is also a
program committee member at the conference. However,
the first one uses a value, the second an identity join. Thus,
the first matches also if just the values are the same but
different nodes are used for the representation of the article
author and the program committee (this is a common way
to model such data in XML), the second only matches if
identical nodes are used (a common way to model the data
in RDF where globally unique identifiers for entities such as
persons are available).

In the remainder of this paper, we assume w.l.o.g. that
every query node (i.e., variable) is reachable from a root
query node by a path of structural relations.

Query semantics. Let D be the data graph the query is
evaluated against and q the number of variables occurring
in Q, then Table 2 gives the precise semantics of n-ary con-
junctive queries over graphs as used in this article. The
semantics is defined based on sets of valuations for query
variables. A valuation t for n variables is an n-ary tuple
with one column for each of the variables. We use t[v]
to denote the binding of variable v in the valuation t, and
[v1 : n1, . . . vq : nq] for the construction of a q-ary tuple. We
also allow an empty tuple []; the combination of the relation
{[]} with a relation R by cartesian is defined as R = {[]}×R.

Query classes. We distinguish graph, tree, and path que-
ries. Tree queries are queries whose graphs are tree-shaped.
Analogously, path queries are queries whose graphs are in
fact single paths. In addition to these basic classes, we intro-
duce the class of structural tree queries. These are queries
where the query without join relations is a tree. There may
be additional arbitrary join relations, so that the complete
graph may be no tree. Both of the example query graphs
from Figure 2 are structural tree queries, but no proper tree
queries.

Although it is known that evaluating graph queries is NP-
complete even against tree data [15], the need for graph que-
ries is evident. It is not only often necessary to retrieve more
than one value but to compare the retrieved values with each
other. Whenever the number of binary relations equals or
exceeds the number of variables, the query is no tree query,

J q(v1, . . . , vn)← atom1, . . . , atomm Kq
D

= πv1,...,vn(J atom1 Kq
D ∩ . . . ∩ J atomm Kq

D)
J unary(x) Kq

D = {t ∈ Nq : t[x] ∈ J unary KD}
J binary(x, x′) Kq

D = {t ∈ Nq : (t[x], t[x′]) ∈ J binary KD}
Jroot KD = R
J labelσ KD = {n ∈ N : L(n) = σ}
Jchild KD = {(n, n′) ∈ N2 : ∃i ∈ N : (n, i, n′) ∈ E}q
child+

y
D

=
S

i>0(Jchild KD)i

Jchild∗ KD =
S

i≥0(Jchild KD)i

J ident KD = {(d, d) ∈ N2}
Jvalequal KD = {(d, d′) ∈ N2 : V(d) = V(d′)}

Table 2: Semantics of n-ary Conjunctive Queries
over Data Graphs

since a tree with q nodes has q − 1 edges and thus a tree
query with n variables has n−1 structural relations. Indeed,
many queries formulated in XQuery, XLST, or XPath fall
into the class of graph queries [7].

Graph-shaped conjunctive queries may have multiple root
or source variables, i.e., variables that occur only as source in
structural relations, but not as sink. Let SourceVars(Q) be
the set of such variables in the query Q. As for data graphs,
we assume in the following w.l.o.g. that there is exactly one
such variable in each query, i.e., that all query graphs are
rooted. We use FreeVars(Q) to reference the answer vari-
ables in Q. We write a ∈ Q to test for the occurrence of an
atom a in Q, and Q\{a1, . . . , an} to remove a set of atoms
a1, . . . , an from Q. For brevity, we use if unambiguous in
the context also Q\{v1, . . . , vn} to indicate the conjunctive
query Q′ that contains all atoms from Q except those in-
volving variables v1, . . . , vn.

Note that (rooted) graph queries can be transformed into
structural tree queries by replacing non-tree structural rela-
tions with identity joins: First, compute a spanning tree,
considering the structural relation edges only. For each
non-tree edge representing a structural relation rel between
variables x and y, take a fresh variable y′. Replace the edge
representing rel(x, y) by the tree edge rel(x, y′), and add
ident(y, y′) to the query Q. The size of the query increases
by the number of non-tree edges, which is linear in the size
of Q, but quadratic in the number of variables in the query.

For a rooted query Q, we denote a spanning tree of Q,
consisting of only structural relations, with T (Q). Based on
this spanning tree, JoinVars(Q) denotes the set of existen-
tially quantified variables contained in an atom that labels
a non-tree edge.

3. MEMOIZATION MATRIX
At the core of the evaluation technique detailed in this pa-

per stands the “memoization matrix”. It is a compact data
structure holding intermediary results of the evaluation of
an n-ary conjunctive query. A memoization matrix asso-
ciates query nodes (i.e., variables) q with bindings n ∈ N
and one sub-matrix, containing for each query child node q′

the compatible bindings n′ ∈ N for q′ under the binding n
for q.

Definition 1. Memoization matrix. Given a query
Q with variables Vars(Q) and spanning tree T (Q), and a
data graph D with nodes N , a memoization matrix for the
evaluation of Q against D is a recursive data structure rep-
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resenting all possible bindings of query variables in Q to
nodes from D. The memoization matrix is a relation con-
taining for each qs ∈ SourceVars(T (Q)) and each possible
binding n ∈ N for qs that satisfies all property relations on
qs one triple (qs, n, M ′) with M ′ a subset of the memoizat-
ion sub-matrix for Q\SourceVars(T (Q)) such that for each
tuple (q′, n′, M ′′) ∈ M ′ and each atom rel(qs, q

′) ∈ T (Q),
it holds that (n, n′) ∈ Jrel KD.

Intuitively, this definition requires that the bindings for
source variables in a sub-matrix M ′ are structurally com-
patible with the binding of the source variable in the corre-
sponding tuple of M .

Notice that only the spanning tree of Q, denoted by T (Q),
is considered in the memoization matrix. The memoization
matrix ensures only consistency w.r.t. relations within T (Q).
It does not ensure that the valuations are consistent w.r.t.
relations outside T (Q). Exploiting the tree shape of T (Q),
this makes a local evaluation of relations possible: A full-
match can be incrementally computed from local matches
that consider parent and child variables in the tree query in
isolation.

The memoization matrix has been proposed first in a vari-
ant of which has been proposed first in [23]. Here, we refine
this proposal with tuple sharing: To avoid multiple compu-
tations of matches in the case of queries where the same data
node can be a match for a variable under different constel-
lations of the remaining variable, the memoization matrix
shares tuples where possible: Each tuple (q, n, M) exists
only once and is referenced if the same tuple may occur in
different sub-matrices. Notice that sharing of tuples only
occurs between sub-matrices at the same level (i.e., sub-
matrices of the same common super-matrix). The following
sections show how this property can be ensured during the
construction of the memoization matrix. Once more that
this property relies on the tree structure of the relations
checked in the memoization matrix.

It is furthermore assumed that the matrix is clustered by
variables in order to allow linear time access to all entries
relating to a variable.

Figure 3 shows the memoization matrix for the evaluation
of the query from Figure 4 against the sample data graph
from Figure 1.

The algorithms for matrix population discussed in the
following section that guarantee a population of the ma-
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trix for a given n-ary conjunctive query Q against a data
graph D takes at most O(|Vars(Q)| · |N | · |E|) time, where
|Vars(Q)| denotes the number of variables in Q, |N | the
number of nodes, and |E| the number of edges in the data
graph D. Note that in the special case of tree-shaped data,
|E| = |N | − 1, so that the worst case complexity becomes
O(|Vars(Q)| · |N |2). The size of the memoization matrix is
in O(Vars(Q) · |N |2) independently from the used algorithm,
just by assuming sharing of submatrices, as demonstrated in
the following.

Lemma 1 (Size of Memoization Matrix). The size
of the memoization matrix M for a query Q and a data
graph D with nodes N is bounded by (2q − 1) · v2, where
q = |V ars(Q)|, and v = |N |.

Proof. By structural induction over T (Q).
Query leaves: It holds that q = 1, and obviously the number
of valuations for a single variable is bounded by v. The size
of the memoization matrix is q · v ≤ (2q − 1) · v2.
Inner query nodes: Let the inner query node i have c chil-
dren. It holds that the sum of nodes of all child queries is
equal to q − 1 =

Pc
j=1 qj (∗). There are again at most v

valuations of i. As tuples are shared over parent matrices,
there is at most one tuple for each such valuation. The size
of the sub-matrix contained in the tuple itself is bounded by
c ·v, as each child has at most v assignments. The size of all
tuples for the inner node i (i.e. of the complete sub-matrix
of i) is hence c · v2. The overall matrix size is

cX
j=1

(2qi−1) ·v2 +c ·v2 (∗)
= (2(q−1)−c+c) ·v2 ≤ (2q−1) ·v2,

using the induction hypothesis.

Based on the populated matrix, the algorithms discussed
in Section 5 traverse the memoization matrix, enforce the
remaining (non-hierarchical) relations, if there are any, and
create the output according to the query semantics intro-
duced above.

4. MATRIX POPULATION
The compact memoization matrix introduced in the last

section can be produced bottom-up (Match↑, Section 4.1)
or top-down (Match↓, Section 4.2), that is, starting with
the root variable and the root data node or with the leaf
variables and all data nodes. While both algorithms have
the same worst case complexity, experimental evaluation in
Section 7 shows that an in-memory implementation of the
bottom-up algorithm has an experimental runtime close to
the worst case complexity, while the top-down approach dis-
plays far better runtime behavior in realistic cases.
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4.1 Bottom-Up Approach
The bottom-up approach (Match↑) is a bulk-processing

approach often employed in secondary-storage databases. It
starts by matching the leaf variables of T (Q) with all nodes
of D, and uses these results to successively fill the domains
of variables that have a common structural relation with
these leaf variables. This process is repeated iteratively until
either a variable domain becomes empty, indicating that the
query has no matches, or the root variable of Q is reached,
indicating that all matches of the query are found.

Algorithm 1 Match↑(Q, D)

1: q ← |Vars(Q)|; VQ ← Vars(Q); N ← nodes(D); ρ← ∅
2: root ∈ SourceVars(Q)
3: while ρ(root) = ∅ do
4: take x ∈ VQ : ρ(x) = ∅ ∧

∀rel(x, x′) ∈ T (Q) : ρ(x′) 6= ∅
5: M ← ∅
6: for all n ∈ N do
7: if ∃rel(x) ∈ Q : n 6∈ Jrel KD then
8: continue n
9: MS ← ∅

10: for all rel(x, x′) ∈ T (Q) do
11: MR ← ∅
12: for all (x′, n′, M ′) ∈ ρ(x′) do
13: if (n, n′) ∈ Jrel KD then
14: MR ←MR ∪ {(x′, n′, M ′)}
15: if MR = ∅ then
16: continue n
17: MS ←MS ∪MR

18: M ←M ∪ {(x, n, MS)}
19: ρ(x)←M
20: if ρ(x) = ∅ then
21: return ∅
22: return ρ(root)

The algorithm uses a helper function ρ to associate vari-
ables with sets of tuples representing bindings for these vari-
ables. ρ is initially empty and populated step by step in the
outer while loop: Starting with the leaf nodes, the algo-
rithm generates the set of tuples ρ(x) (l. 3 and 19) for each
variable x, until either no match is found for a variable and
thus the query fails (returns an empty set) (l. 20–21) or the
root node has been processed (l. 3) and the memoization
matrix for the root node is returned (l. 22).

When processing a variable x (l. 3–21), the algorithm cre-
ates an empty memoization matrix for that variable and iter-
ates over each node n in the nodes N of D (l. 6–18) verifying
first the unary relations (l. 7–8). If any of the relations fails
on n, the next node is tested. If it succeeds, a sub-matrix
MS is initialized (l. 9). For every variable x′ related to x via
a structural relation in the spanning tree T (Q) (l. 10) only
the tuples with nodes n′ that actually satisfy the relation
with n are included in the sub-matrix (l.12–14). A tempo-
rary matrix MR for each relation is used to test whether
there is no matching node pair for that relation. If so, the
current data node is skipped (l. 11 and 15–16). Only if the
matrix M for x is empty at the end of the processing of x,
the query fails as there are no compatible bindings for x in
the data.

Notice, that the algorithm does not specify the details
of row sharing between matrices at the same level. It is
assumed that in l. 14 and l. 18 pointers to M ′, resp. M are

used instead of copies.

Theorem 1 (Complexity of Match↑). Let v = |N |,
q = |Vars(Q)|, and e = |E|. Then, Match↑ is in O(q · v · e)
combined time complexity and in O(q · v2) combined space
complexity.

Proof. There are q variables, so that the outer loop (l. 3)
is bounded by q. The loop over all nodes (l. 6) is bounded
by v. The verification of the property relations takes con-
stant time, as there is a fixed number of such relations in
the language and each test (such as a label test) is assumed
to be constant (l. 7–8). Since T (Q) is a spanning tree there
are at most q − 1 structural relations in that tree that need
to be tested in the iteration over all binary relations (l. 10).
As each binary relation is visited only once (when the source
variable of that relation is processed), the loop body (l. 11–
17) is executed (q−1)·v times. Since at most all nodes in the
document can match with a variable, the iteration in l. 12
is bounded by v. As the verification of (n, n′) ∈ Jrel KD is
required to be in O(e) for structural relations (cf. Section 2),
the overall time complexity is in O(q · v2 · e), if the struc-
tural relations are verified for each pair (n, n′). However, we
can assume that the structural relations are precomputed in
an index structure such as a bit array which provides con-
stant verification of the structural relation at a space cost
of O(v2) and time cost O(v · e). This is an acceptable trade-
off as there are usually only a small number of structural
relations and as the memoization matrix already requires
O(q · v2) space as discussed above. Under this assumption,
the overall combined time complexity becomes O(q · v · e).
The overall space complexity is dominated by the size of
the memoization matrix O(q · v2), as the only helper struc-
tures are the precomputed relations at O(v2) and ρ which
is bounded by q.

Even though the bottom-up approach has a nice upper
bound of computational complexity, it needs further refine-
ments to be usable in practice as the experimental evaluation
in Section 7 demonstrates. To obtain a practically useful
performance, the bottom-up algorithm needs efficient index
structures on the property relations occurring in the query.
Examples of such index structures are so-called streaming
schemes [8]. A further performance increase might result
from evaluating groups of structural and property relations
at once using holistic tree queries, cf. [5, 18]. The benefits
of the latter approach are not clear for n-ary graph queries,
where most query variables are either answer variables or
involved in non-structural joins, preventing large groups of
relations that can be evaluated at once using [18] or similar
approaches. Further investigation of the use of such holistic
schemes for n-ary conjunctive queries with graph-shape is
required, but out of the scope of this paper.

4.2 Top-Down Approach
The runtime of the bottom-up approach can be very close

to its worst case complexity if the query leafs are not se-
lective enough or if efficient evaluation of property relations
through indices is not available. For an in-memory evalua-
tion of n-ary conjunctive queries without indices, the top-
down approach matching the query from the root to the
leafs and restricting the number of candidate nodes primar-
ily based on query structure presents a feasible and often
superior alternative. Furthermore, the top-down algorithm
does not need any adjacency index to guarantee a runtime in
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O(q · v · e). However, iteration over the range of a structural
relation for one data node must be guaranteed in O(e) time.
This assumption holds for any structural relation occurring
in XPath, XSLT, XQuery, SPARQL, or Xcerpt.

Like the bottom-up algorithm, the top-down algorithm
needs an additional helper structure ρ. However, in this case
it associates tuples of query variable and data node to entire
sub-matrices. Constant access is assumed for this structure
by basing it on a two-dimensional array. It is assumed that
ρ = ∅ at the first call of the algorithm. Furthermore, an ex-
plicit “no match” indicator ⊥ is used to mark combinations
of nodes and variables that are certain not to match. This
must be distinguished from the case where the combination
has not yet been computed and the case where there is no
sub-matrix for the combination (i.e., the variable is a leaf in
the query).

Algorithm 2 Match↓(x, n)

1: if ρ(x, n) = ⊥ then
2: return ∅
3: if ρ(x, n) defined then
4: return {(x, n, ρ(x, n))}
5: if ∃rel(x) ∈ Q : n 6∈ Jrel KD then
6: ρ(x, n)← ⊥
7: return ∅
8: MS ← ∅
9: for all rel(x, x′) ∈ T (Q) do

10: MR ← ∅
11: for all n′ ∈ N : (n, n′) ∈ Jrel KD do
12: MR ←MR ∪Match(x′, n′)
13: if MR = ∅ then
14: ρ(x, n)← ⊥
15: return ∅
16: MS ←MS ∪MR

17: ρ(x, n)←MS

18: return {(x, n, MS)}

The top-down algorithm is a typical recursive descent over
the query structure. It has two parameters, a query and a
data node, and computes the memoization matrix for these
two nodes. If called with the root of the query Q and the
root of the data graph D, the result is the memoization
matrix for the evaluation of Q against D.

The algorithm Match↓ operates on pairs (x, n) of variables
and data nodes, and a matching is computed at most once
for each combination of query and data node. Lines 1–4
verify whether a matrix for the given pair of variable and
value has already been computed. If this is the case, the
call immediately returns. The unary relations of the input
variable x are verified on the data node n (l. 5). If any
of the unary relations fails, the matching fails, stores the
information that the pair is incompatible in ρ and returns
(l. 6–7). If n satisfies all unary relations, the sub-matrix
MS of the entry is initialized (l. 8) and Match↓ iterates over
all structural relations in the spanning tree T (Q) with x as
source variable. It creates a temporary matrix MR for each
such relation (l. 10). MR is filled with the result of recursive
calls to Match↓ (l. 12) with any data node n′ that satisfies
the structural relation rel together with n. If the matching
fails, the result of the recursive call is an empty set, thus
leaving MR unchanged. Again, if for any structural relation
in the spanning tree no matching data node is found and
thus MR is still empty in line 13, the matching of x with n

fails (l. 13–15). At the end of the loop starting in line 9, the
temporary matrix MR is added to the sub-matrix MS for x
and n. Finally, if all structural relations for x are processed,
the resulting matrix MS is stored in ρ(x, n), and a matrix
with a single tuple (x, n, MS) is returned representing the
entry for x and n.

Theorem 2 (Complexity of Match↓). Let v = |N |,
q = |Vars(Q)|, and e = |E|. Then, Match↓ is in O(q · v ·
e) combined time complexity and O(q · v2) combined space
complexity.

Proof. The use of matrix memoization (l.1–3, 14, 17)
guarantees that Match↓ is executed at most once for each
combination of variable and data node (x, d). Testing unary
predicates takes again constant time as argued in the proof
of Theorem 1. As each of the q − 1 relations is visited at
most once, the loop over all binary relations (l. 9) is visited
at most (q − 1) · v times. The enumeration of all values of
any structural relation is required to be in O(e) and thus
the set initialization of the inner loop (l. 11) takes time in
O(e). Since there are at most v elements in the range of any
structural relation and the loop body (l. 12) is constant (the
recursive call is amortized by memoization), Match↓ is in
O(q · v · e) combined time complexity. The space complexity
of the memoizatin matrix is O(q · v2), and the size of ρ is
in O(q · v), so that the space complexity of Match↓ is again
dominated by the memoizatin matrix.

As section 7 shows, the algorithm Match↓ is a competitive
algorithm, exhibiting a linear time complexity in many real
world scenarios, even without any index structures. Stream-
ing schemes [8] and similar techniques could most likely be
used to refine the algorithm further and speedup the average
runtime. However, such optimizations are beyond the scope
of this paper.

5. MATRIX CONSUMPTION
The consumption of a memoization matrix for the eval-

uation of a query Q against a data graph D creates the
extensional representation of the result. That is to say, the
compact in-memory result representation in the memoizat-
ion matrix is expanded to a set of valuations for answer vari-
ables, i.e. a set of tuples associating answer variables with
matching data nodes. This is comparable to the transforma-
tion of a non-first-normal-form relation into a flat relation,
except for two details: Nested matrices consist of bindings
for several relations and must hence be decomposed into
partitions before the flattening takes place and a sub-matrix
tuple can be referenced by more than one matrix. With the
same reasoning as for sharing of sub-matrices, the results of
the transformation from matrices to flat valuations must be
memoized to avoid their repeated computation.

In contrast to matrix population, the algorithms for ma-
trix consumption, though still agnostic to the shape of the
data, have to treat tree and graph queries differently. This
is necessary, because graph queries contain binary relations
that are not verified by the matrix population algorithms.
Obviously, there are no such remaining relations in tree que-
ries. This reduces the matrix consumption algorithm to a
simple flattening of the nested memoization matrix to pro-
duce the output. Since the output size of tree queries is
guaranteed to be larger than every intermediate result, the
time and space complexity of the consuming algorithm is
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bounded by the result size. For graph-shaped queries, how-
ever, this is not the case: an intermediate result of exponen-
tial size can be created and only then be reduced through
the remaining binary relations that are not part of the query
spanning tree relations. Thus, even if the output size is sub-
exponential, the matrix consumption for graph queries has
exponential combined time complexity. To illustrate this,
consider the queries from Figure 2: The memoization ma-
trix only enforces the structural relations, but does not con-
sider valequal and ident. These relations may reduce the
result size considerably if they are applied.

In the following three sections, we first take a look at
the basic matrix consumption for tree queries (Section 5.1)
and compare it in a second step (Section 5.2) with the case
for arbitrary graph queries. Finally, we outline briefly the
benefits and drawbacks of a nested loop join for incremental
output generation (Section 5.3).

5.1 Matrix Consumption for Tree Queries
To obtain the set of answers to a query Q against a data

graph D according to the semantics of n-ary conjunctive
queries in Section 2, the algorithm is called with the me-
moization matrix resulting from the application of one of
the Match algorithms in Section 4. In the following algo-
rithms, we rely on the fact that the memoization matrix
for the root variable consists of one single entry, which is
guaranteed by the matrix population algorithms. The ma-
trix population algorithms are called with this single tuple
(x, n, M) as parameter.

As in the top-down population algorithm, a helper struc-
ture ρ for memoizing the flattened relation for each pair of
query and data node is used. It is intially assumed to be ∅.

Algorithm 3 OutputT (x, n, M)

1: if ρ(x, n) defined then
2: return ρ(x, n)
3: if x ∈ FreeVars(Q) then
4: A← {[x : n]}
5: else
6: A← {[]}
7: for all x′ ∈ π1(M) do
8: Ax′ ← ∅
9: for all n′, M ′ : (x′, n′, M ′) ∈M do

10: Ax ← Ax′ ∪ OutputT (x′, n′, M ′)
11: A← A×Ax′

12: ρ(x, n)← A
13: return A

The OutputT algorithm unfolds the compact solution rep-
resentation to a set of valuations, eliminating duplicates
(note the set union l. 10). The algorithm returns a set of
valuations, each representing a match of the query in the
data. Given a triple (x, n, M), it is first verified whether the
answers have already been computed and memoized in ρ in
an earlier call for (x, n), in which case they are immediately
returned (l. 1–2). Otherwise, the answer set A is initialized
accordingly to the type of x (l. 3–6). In the case that x
is no free variable, bindings for x should not be part of the
answer set. Thus the empty tuple is used as initial valua-
tion. Matrix M is partitioned by variables (l. 7–9). Note
that since the considered structural relations stem from a
spanning tree, the variable x′ determines also the structural
relation of the partition. The result of each partition is
stored into Ax′ . The innermost loop (l. 6) iterates over each

pair of data node n, and sub-matrix M ′ of the current parti-
tion. The result of the recursive calls to OutputT (x′, n′, M ′)
are collected in Ax′ . The result A is then multiplied by Ax′

to create the answer (l. 11). The answer set is a relation
over the free variables of Q, as required by the semantics
(cf. Section 2.2).

Proposition 1 (Complexity of OutputT ). The al-
gorithm OutputT has O(|V ars(Q)|·|N |2+|Q(D)|) time com-
plexity where |Q(D)| denotes the result size.

Proof sketch. Each matrix is transformed to an answer
set with result size, and the intermediate sets can only get
as large as the final results. The worst case scenario is that
each recursive call to OutputT creates an answer set of re-
sult size. In this case, the elimination of duplicates takes
O(2 · |Q(D)| · log(2 · |Q(D)|)) = O(|Q(D)| · log |Q(D)|) using
a sort-based elimination, and O(|Q(D)|) using a nondegen-
erating hash-based duplicate elimination. As the complete
matrix structure of size O(|V ars(Q)| · |N |2) must be tra-
versed to create the output, the worst case complexity be-
comes O(|V ars(Q)| · |N |2 + |Q(D)|).

Duplicate bindings are generated by projection; as exis-
tentially quantified variables are dropped, equal bindings of
the remaining variables are produced. The problem is the
same as duplicate generation in relational databases, and it
can be reasonably assumed that the same elimination tech-
niques may be used (such as [3]).

Avoiding duplicate generation when evaluating tree que-
ries against tree data has been studied extensively, e.g., in
[16, 21]. Though such techniques are beyond the scope of
this paper, Section 8 briefly addresses the support of regular
path expressions that can drastically reduce the number of
existential variables in a query and thus, in many queries,
the need for duplicate elimination.

5.2 Matrix Consumption for Graph Queries
In [15] it is shown that the evaluation of graph-shaped con-

junctive queries over the relations Child and
Child∗ is already NP-complete on tree data. Nevertheless,
the need for graph-shaped queries is evident, especially when
comparison relations such as valequal and equal are sup-
ported. This is evidenced by the fact that queries in all of
XSLT, XQuery, SPARQL, and Xcerpt make extensive use of
graph-shaped queries and formalizations for graph-shaped
queries can cover much larger sub-sets of these languages
than those restricted to tree-shaped queries.

The matrix method applies to graph-shaped queries in the
following way: First, a spanning tree T (Q) over the struc-
tural relations of Q is computed offline. Second, Match↓
or Match↑ is applied to create the memoization matrix of
the query problem. Finally, this memoization matrix is con-
sumed with a new output algorithm, OutputG.

The new algorithm must verify whether the produced val-
uations satisfy all relations that are not part of the spanning
tree T (Q). To put it another way, the non-tree relations im-
pose additional selection conditions on the produced valua-
tions. These additional selection conditions are distributed
over cartesian products that the consumption algorithm for
tree queries computes. They are combined into joins, with
possibly non-atomic conditions, if more than one relation
must be verified in one cartesian product. Due to the nested
structure of the memoization matrix, the output algorithm
performs q−2 different kinds of cartesian products. As sev-
eral sub-matrices of a given level share the same structure,
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Figure 5: Exemplary Join and Projection Specifica-
tion

each kind of cartesian product is performed several times for
each sub-matrix.

Of course, these additional selections should be applied
as soon as possible (i.e., pushed down) to keep intermedi-
ate results small. Since existentially quantified variables in-
volved in join conditions must be kept until these joins are
performed, it is furthermore necessary to infer the position
at which each existentially quantified join variable can be
projected away. Hence, a join and projection specification
1−Π−spec is associated with each variable. This specifica-
tion defines which joins and which projections can be per-
formed when outputting the results for x. It furthermore
determines the ordering of joins and projections.

Since join order optimization is out of the scope of this
paper, the output algorithm abstracts from these topics by
assuming the existence of a specification 1−Π−spec for each
variable, and of a function that applies these join specifi-
cation to a set of valuation sets. Using a set of valuations
instead of a canonical cartesian product allows to use joins
instead of selections, increasing the performance of the out-
put algorithm considerably. The join and projection specifi-
cation is typically created by the query planner and can be
executed by a conventional relational query engine.

Figure 5 shows an example of a join and projection specifi-
cation. Recall, that JoinVars(Q) is the set of join variables,
i.e., the set of variables that are existentially quantified (no
answer variables) and occur in at least one binary relation
that is not part of T (Q).

Algorithm 4 OutputG(x, n, M)

1: if ρ(x, n) defined then
2: return ρ(x, n)
3: if x ∈ FreeVars(Q) ∪ JoinVars(Q) then
4: AS ← {{[x : n]}}
5: else
6: AS ← {{[]}}
7: for all x′ ∈ π1(M) do
8: Ax′ ← ∅
9: for all n′, M ′ : (x′, n′, M ′) ∈M do

10: Ax′ ← Ax′ ∪ OutputT (x′, n′, M ′)
11: AS ← AS ∪ {Ax′}
12: A←apply 1−Π−spec(x) to AS

13: ρ(x, n)← A
14: return A

The new algorithm however exhibits exponential worst
case runtime in that it may perform at worst q−3 cartesian

products without any selection based on non-tree edges (q
being again q = |V ars(Q)|). In this case, the size and time
complexity are both in O(|N |q), as the output algorithm
keeps the set of valuations in memory.

Furthermore, the cost of value-based joins that are as-
sessed with a cost function j(|N |) must be considered. The
worst case estimation is as follows: as every variable can
be involved in a join, there are at most q − 1 value-based
joins (as equality is transitive, a query with more than q−1
joins can be transformed into an equivalent query with q−1
joins). Furthermore, every tuple of an exponential sized in-
termediate result is joined with each value-based join. As
the application of a join reduces the result size by a factor at
least linear in |N |, the overall runtime can be aproximated

as O(
Pq

i=2 j(|N |) · |N |i) = O(j(|N |) · |N |q).

Proposition 2 (Complexity of OutputG). The al-
gorithm OutputG has O(j(|N |) · |N |q) time complexity and
O(|N |q) space complexity.

Creating a structural tree query from a graph query is
unfavorable for this worst case complexity, since it is ex-
ponential in the number of variables and the corresponding
structural tree query with value joins for a graph query has
up to twice the number of variables as the graph query.
For realistic cases however, this is a technique to transform
tree-relation join conditions that are not verifiable in con-
stant time into identity joins. Alternatively, it is possible in
the match algorithms to create (in the top-down approach
reasonably small) on-the-fly indexes for the non-tree struc-
tural relations, assuring a fast verification of these relations
in Output. The quadratic increase of the exponential factor
can hence be avoided.

5.3 Incremental Matrix Consumption for Trees
and Graphs

The previous two algorithms are tailored to provide an
in-memory representation of all answers of a query and are
thus both in time and space complexity bound by the out-
put size. An in-memory representation of the answers is
useful to perform further processing based on the answers,
e.g., for structural grouping, aggregation, or ordering. How-
ever, in many cases an incremental output of the answers
is preferable, in particular if further processing can also be
realized in an incremental manner. Incremental answer gen-
eration can be realized using the algorithm OutputNLJ , a
slightly modified incremental nested loop join over the me-
moization matrix. The algorithm uses the structure of the
matrix instead of join attributes, but is otherwise – leaving
aside partitioning issues – a standard nested loop join and
therefore omitted here for space reasons.

Proposition 3 (Complexity of OutputNLJ). The
algorithm OutputNLJ has time complexity O(|N |q) and space
complexity O(q · |N |2) on tree queries, on graph queries time
complexity O(j(|N |) · |N |q) and space complexity O(q · |N |2).

The advantage of OutputNLP is the low space complexity
that is essentially bounded by the size of the memoization
matrix. However, this advantage is paid for by an exponen-
tial time complexity in almost all cases. Furthermore, this
exponential time complexity is reached in many practical
cases, making this algorithm suitable only for cases where
space consumption is clearly more important than run time
of the evaluation algorithm.
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Jnext KD = {(c, c′) : ∃(p, i, c), (p, i′, c′) ∈ E : i + 1 = i′}q
next+

y
D

= {(c, c′) : ∃(p, i, c), (p, i′, c′) ∈ E : i < i′}
Jnext∗ KD = {(c, c′) : ∃(p, i, c), (p, i′, c′) ∈ E : i ≤ i′}

Table 3: Semantics of Order Relations

6. ORDER RELATIONS ON GRAPH DATA
In the previous sections, graph-shaped data is considered

equivalent to tree-shaped data w.r.t. query evaluation. Al-
though the worst case complexity of the matrix population
algorithms is the same for both cases, the order of two sib-
ling nodes becomes context dependent in graphs, cf. Section
2.1.

For the support of ordered queries in graph data, a ternary
relation next and its closures next+, next∗ are introduced
(cf. Table 3). In fact, once the matrix consuming algorithms
support join conditions, the handling of the ternary order
relations is simple: it can be handled as additional join con-
dition in the join and projection specification of each node
(cf. Figure 6).

Besides this very rudimentary exploit of order relations
as join conditions in the output algorithm, it is possible
to take advantage of them in the matrix population algo-
rithms, if the edge position from the data model is accessi-
ble. Assuming that Next∗(x, y, y′) must hold and that I is
the set of positions of all y valuations and I ′ of y′ respec-
tively, it must obviously hold that ∀i ∈ I : i ≤ max(I ′)
and ∀i′ ∈ I ′ : min(I) ≤ i′. If the domain of y is populated
before y′ (as the match algorithm does in its recursive de-
scent), these conditions can be used to reduce the number
of candidate valuations for y′, and prune valuations for y:
When populating the domain of y′, the minimum position
of valuations of y is known, so that the condition can be
imposed on all valuations of y′. After populating y′, all val-
uations of y that have a position greater than the maximum
position of y′ valuations can be dropped.

7. EXPERIMENTAL EVALUATION
The experimental evaluation is based on both synthetic

and real data. The set of structural relations is extended
by the additional relation attribute in order to support
attribute queries. The tests have been executed on an AMD
Athlon 2400XP machine with 1GB main memory. The al-
gorithms are implemented in Java executed on JVM ver-
sion 1.5.0 06-b05. All tests show the processing time with-
out data parsing. Each measurement is averaged over 500
runs. The algorithms have been implemented straightfor-
wardly close to the form presented without additional opti-
mizations.

Synthetic data is used to demonstrate and confirm the
complexity of the presented algorithms. The real data sce-
narios stem from the University of Washington XMLData
repository1, and demonstrate the competitiveness of the al-
gorithms in their basic form.

The first experiment confirms on synthetic data that the
memoization of intermediary results is essential, not only for
the complexity but also for the experimental query evalua-
tion time. The Match↓ algorithm without memoization of
variable domains (i.e., the helper structure ρ and all access

1
http://www.cs.washington.edu/research/xmldatasets/
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Figure 6: Join and Projection Specification with Or-
der Relation

to it is removed from the algorithm) exhibits an exponen-
tial growth of time consumption in the size of the query (cf.
Figure 7), because several common sub-matrices are built
repeatedly. Though the exponential growth of the output
size can be a factor, the query used in these experiments is
unary and produces a linear output. In contrast, Figure 8
depicts the effect of increasing arity in a worst-case scenario,
where the query is entirely unrestrictive and a binding for
one answer variable is related to all bindings of all other
variables.

Figures 9 and 10 show a comparison between the two ap-
proaches for matrix population discussed in this article. A
path query consisting of four variables and child∗ (descen-
dant) relations only, but without label restrictions, is used.
This query exhibits worst case complexity for the top-down
algorithm Match↓, as the match context is never restricted
by a previous context. As expected, the plot shows a qua-
dratic runtime growth in the data size for the top-down al-
gorithm. The bottom-up approach exhibits, as expected, a
cubic runtime when lacking index structures for the child∗

relation, whereas the runtime of the bottom-up algorithm
with child∗ index and top-down is almost entirely identical
(to the extent that the two plots are nearly indistinguishable
in Figure 10).

The above experiments clearly reinforce the theoretical
complexity results derived in this work. Moreover, at least
the top-down algorithm performs quite well even in its basic
form discussed here in real query scenarios. Figure 11 shows
how the runtime of the top-down algorithm scales with the
data size for path-, tree-, and graph-shaped queries. These
queries are executed against the MONDIAL database of ge-
ographical information, cf. http://www.dbis.informatik.

uni-goettingen.de/Mondial/. The plot shows additionally
that already for path queries the bottom-up algorithm ex-
hibits polynomial runtime; the naive bottom-up approach
has an average runtime that is very close to its worst-case.
On the other hand, the Match↓ exhibits a linear runtime
in all queries, even in the graph query case. This shows
manifestly the power of the context-aware processing of a
top-down approach.

The final test on increasing fragments of a large XML doc-
ument (the Nasa dataset from the above mentioned repos-
itory) shows that the runtime of Match↓ scales nicely with
the data size and is very competitive even in the basic form
implemented for these experiments.

45



 0.01

 0.1

 1

 10

 100

 1000

 10000

0 5 10 15 20 25 30 35 40

tim
e 

(m
se

c,
 lo

ga
rit

hm
ic

)

query size (variables)

without memoization
with memoization

Figure 7: Effect of Memoization over Query Size
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Figure 11: Path, Tree, and Graph Queries over Real-
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life Data

8. EXTENSIONS AND OUTLOOK
Though the experimental evaluation shows that even the

basic form of the proposed top-down algorithm performs
nicely, there are quite a number of extensions and further
optimizations likely to give interesting results: First of all,
there are extensions of the top-down matching algorithm to
a complete unification algorithm, needed for pattern match-
ing as in Xcerpt [24]. This algorithm must handle negated
and optional query parts as in general tree patterns [9].

Arc consistency, as used in constraint solving algorithms,
can be used to reduce the size of the matrix structure. First
experiments have shown, however, that verification of arc
consistency does not always improve evaluation time: in
cases where the runtime of Match↓ is linear in the data
size, applying arc consistency renders the runtime quadra-
tic. This effect arises when the number of actually performed
joins is reduced drastically through the query context.

Above this, partial unnesting of matrices can be used to
remove existentially quantified variables eagerly at matrix
population time: a link to and from an existentially quan-
tified variable valuation is replaced by a direct link. In this
way, the space complexity of path queries can be reduced
from O(|Vars(Q)| · |N |2) to O(n · |N |2), n being the arity
of the query. One step in this direction is the support of
more expressive structural relations, e.g., conditional axes
[19] that allow collapsing entire paths both for population
and consumption of the matrix. Indeed, [20] uses a similar
approach for the computation of complete answer aggregates
over tree data.

Relational query planning and execution techniques could
be incorporated to improve duplicate elimination [3] and to
optimize the partitioning of relations between spanning tree
and join specifications as well as the choice of an efficient
join specification.

Finally, we plan to investigate a combination of bottom-
up and top-down matching techniques, in order to combine
the benefits of both a sophisticated bottom-up approach,
i.e., early pruning in the case of selective query leaves, and
the contextual narrowing of a top-down approach.

9. RELATED WORK
As previously mentioned, the complexity of conjunctive

queries and monadic queries over trees is studied thoroughly
in [15, 12]. A restriction of the bottom-up algorithm dis-
cussed in this article to conjunctive tree queries is roughly
similar to the complete answer aggregates algorithm of [20]
and has the same complexity.

Matching conjunctive queries against trees and graphs can
be seen as a constraint solving problem. It is well established
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that tree-shaped constraint problems (i.e., tree queries) can
be solved in O(q · v2) [11] where q is the number of vari-
ables and v the variable domain size. This result assumes,
however, O(1) verification time for all relations. Further-
more, the implication from arc to global constraint consis-
tency used in this result, does not hold for graph-shaped
constraint problems.

In [15] it is shown that there are special cases where arc
consistency is at least sufficient to retrieve one single consis-
tent solution: if all binary constraints have the X-property
(read: X-underbar) over an order <, arc-consistency is suffi-
cient to guarantee that the minimal solution (in terms of the
same ordering <) is consistent. It follows that the evaluation
of n-ary graph queries with X-relations is only exponential
in the number of free variables. It can further be derived
that the general problem is NP-complete and thus an algo-
rithm as proposed here with worst case exponential runtime
is the best achievable to present knowledge.

Another field of important related work are structural in-
dexing techniques [5, 8, 18]. Indexes are an orthogonal as-
pect to the matrix method that can be used to improve
the runtime of the presented algorithms. Considering entire
paths or trees at once through physical operators such as
twig joins [5] is a promising and widely researched technique
for tree data. Their application to the discussed algorithms
is straightforward. However, most structural indexing tech-
niques do not exhibit obvious extensions to graph data.

10. CONCLUSION
With the rise of XML and RDF, processing both graph-

and tree-shaped n-ary queries against semi-structured data
becomes ever more important. The memoization matrix is a
compact recursive non-redundant data structure that holds
the solution sets to such queries. In case of tree queries, it
contains the exact solutions to the queries, whereas in case
of graph queries intermediary results: the solutions to the
query represented by a spanning tree chosen for the popu-
lation of the matrix. By separating the evaluation of n-ary
queries in two phases, viz. the population and the consump-
tion of the memoization matrix, we demonstrate several in-
sights in tree- and graph-shaped query evaluation: (1) We
show that the shape of the data, whether tree or graph, does
for the most part not affect the query complexity for n-ary
conjunctive queries. (2) We show that a unified algorithm
for both tree- and graph-shaped semi-structured queries is
feasible and both in worst-case complexity and in experi-
mental performance competitive for reasonable queries and
data. (3) By this, we extend previously known results for
the evaluation of tree and graph queries against tree data
to graph data and show where complexity and experimental
performance is affected by the change.
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