
I4-D9a

Survey over Existing Query and Transformation Languages
Revision 2.0

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D9a/D/PU/a2
Responsible editors: Tim Furche
Reviewers: Benedikt Linse and Jakob Henriksson
Contributing participants: Hannover, Heraklion, Manchester, Munich, Nancy,

Venice, webXcerpt
Contributing workpackages: I4
Contractual date of deliverable: 28 February 2006
Actual submission date: 15 April 2006

Abstract
A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many
current Semantic Web approaches to cope with data available in such diverging representation formalisms
as XML, RDF, or Topic Maps. A common query language is the �rst step to allow transparent access to
data in any of these formats. To further the understanding of the requirements and approaches proposed
for query languages in the conventional as well as the Semantic Web, this report surveys a large number of
query languages for accessing XML, RDF, or Topic Maps. ¿is is the �rst systematic survey to consider
query languages from all these areas. From the detailed survey of these query languages, a common
classi�cation scheme is derived that is useful for understanding and di�erentiating languages within and
among all three areas.

¿is revision of deliverable I4-D1 extends that deliverable by a re�ned version of the presented material
that has been published as a chapter in the LNCS tutorial volume for the REWERSE “ReasoningWeb” 2005
summer school as well as short outlooks on further re�nements of the material for upcoming tutorials
and summer school courses.

Keyword List

reasoning, query language, XML, RDF, Topic Maps, OWL, classi�cation, Semantic Web

Project co-funded by the European Commission and the Swiss Federal O�ce for Education and Science within the Sixth Framework
Programme.

© REWERSE 2006.

ii

Survey over Existing Query and Transformation Languages
Revision 2.0

Tim Furche1, François Bry2, James Bailey3, Sebastian Scha�ert4, Benedikt Linse5 Renzo Orsini6, Ian
Horrocks7, Michael Krauss8, and Oliver Bolzer9

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Tim.Furche@ifi.lmu.de

2 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Francois.Bry@ifi.lmu.de

3 Department of Computer Science and So ware Engineering, University of Melbourne
Email: http://www.cs.mu.oz.au/ jbailey/

4 Salzburg Research Forschungsgesellscha
Email: Sebastian.Schaffert@salzburgresearch.at

5 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Benedikt.Linse@ifi.lmu.de

6 Dipartimento di Informatica, Università Ca’ Foscari Venezia
Email: orsini@dsi.unive.it

7 Department of Computer Science, University of Manchester
Email: horrocks@cs.man.ac.uk

8 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Michael.Krauss@ifi.lmu.de

9 Institute for Informatics, Ludwig-Maximilians-Universität München
Email: Oliver.Bolzer@stud.ifi.lmu.de

15 April 2006

Abstract
A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many
current Semantic Web approaches to cope with data available in such diverging representation formalisms
as XML, RDF, or Topic Maps. A common query language is the �rst step to allow transparent access to
data in any of these formats. To further the understanding of the requirements and approaches proposed
for query languages in the conventional as well as the Semantic Web, this report surveys a large number of
query languages for accessing XML, RDF, or Topic Maps. ¿is is the �rst systematic survey to consider
query languages from all these areas. From the detailed survey of these query languages, a common
classi�cation scheme is derived that is useful for understanding and di�erentiating languages within and
among all three areas.

¿is revision of deliverable I4-D1 extends that deliverable by a re�ned version of the presented material
that has been published as a chapter in the LNCS tutorial volume for the REWERSE “ReasoningWeb” 2005

summer school as well as short outlooks on further re�nements of the material for upcoming tutorials
and summer school courses.

Keyword List
reasoning, query language, XML, RDF, Topic Maps, OWL, classi�cation, Semantic Web

iv

Contents

1 Introduction 1
1.1 Selection of Evaluation Criteria . 2
1.2 Selection of Surveyed Query Languages . 3

2 Preliminaries 7
2.1 Collection of Sample Data . 8

3 Evaluation Criteria 13
3.1 Ease of Use . 13
3.2 Functionality . 15

3.2.1 Supported Query Types . 16
3.2.2 Adequacy . 22
3.2.3 Evolution and Reactivity . 27

3.3 Semantics . 27
3.4 Formal Properties and Implementation . 28
3.5 Reasoning . 30
3.6 Ontology Awareness . 31

3.6.1 Type system . 32

4 Query Languages for the Web: An Overview 33
4.1 XML Query Languages . 33
4.2 Textual XML Query Languages . 33

4.2.1 Navigational Languages . 33
4.2.1.1 Lorel . 33
4.2.1.2 XPath . 34
4.2.1.3 XQL . 34
4.2.1.4 XSLT . 35
4.2.1.5 XQuery/Quilt . 36
4.2.1.6 FXT . 36
4.2.1.7 XPathLog . 37
4.2.1.8 CXQuery . 37

4.2.2 Positional Languages . 37
4.2.2.1 XML-QL . 37
4.2.2.2 UnQL . 38
4.2.2.3 XML-RL . 39
4.2.2.4 XMAS . 39

v

4.2.2.5 XET/XDD . 40
4.2.2.6 Xcerpt . 40

4.3 RDF Query Languages . 41
4.3.1 SquishQL-family . 41

4.3.1.1 SquishQL . 41
4.3.1.2 rdfDB Query Language . 42
4.3.1.3 RDQL . 42
4.3.1.4 BRQL . 45
4.3.1.5 TriQL . 46

4.3.2 Query Languages in�uenced by XPath, XSLT or XQuery 47
4.3.2.1 XQuery for RDF: “¿e Syntactic Web” Approach 47
4.3.2.2 XsRQL: An XQuery-style RDF Query Language 48
4.3.2.3 XSLT for RDF: TreeHugger and RDF Twig 49
4.3.2.4 RDFT and Nexus Query Language: XSLT-style RDF Query Languages 51
4.3.2.5 XPath-syle Access to RDF: RDF Path, RPath and RxPath 53
4.3.2.6 Versa . 56

4.3.3 RQL-family . 59
4.3.3.1 RQL . 59
4.3.3.2 SeRQL . 65
4.3.3.3 eRQL . 68

4.3.4 Query Languages using a Controlled Natural Language 69
4.3.4.1 Metalog . 69

4.3.5 Others . 70
4.3.5.1 Algae . 70
4.3.5.2 iTQL . 73
4.3.5.3 N3QL . 74
4.3.5.4 PerlRDF Query Language . 75
4.3.5.5 R-DEVICE Deductive Language . 75
4.3.5.6 RDF-QBE . 76
4.3.5.7 RDFQL . 77
4.3.5.8 TRIPLE . 78
4.3.5.9 WQL . 81

4.4 Topic Maps Query Languages . 82
4.4.1 tolog: Logic Programming for Topic Maps . 82
4.4.2 AsTMA?: Functional-style Querying of Topic Maps? 86
4.4.3 Toma: Querying Topic Maps inspired by SQL . 87
4.4.4 Path-based Access to Topic Maps . 88

4.4.4.1 XTMPath . 88
4.4.4.2 TMPath . 89

4.5 OWL Query Languages . 90
4.5.1 OWL-QL . 90

5 Evaluation Results 93
5.1 A Classi�cation Scheme for Web Query Languages . 93
5.2 Observations on the State of the Art of Web Query Languages 96

6 Conclusion and Outlook 97

vi

7 Web and Semantic Web Query Languages 99
7.1 Introduction . 99

7.1.0.1 Structure. 101
7.2 Preliminaries . 103

7.2.1 ¿ree Data Formats: XML, RDF and Topic Maps 103
7.2.1.1 XML. 103
7.2.1.2 RDF and RDFS. 104
7.2.1.3 Topic Maps. 104

7.2.2 Running Example: Classi�cation-Based Book Recommender 105
7.2.2.1 Sample Data in RDF. 105
7.2.2.2 Sample Data in Topic Maps. 107
7.2.2.3 Sample Data in XML. 108

7.2.3 Sample Queries . 109
7.2.3.1 Selection and Extraction Queries. 109
7.2.3.2 Reduction Queries. 109
7.2.3.3 Restructuring Queries. 109
7.2.3.4 Aggregation Queries. 109
7.2.3.5 Combination and Inference Queries. 110

7.3 XML Query and Transformation Languages . 110
7.3.1 W3C’s Query Languages: Navigational Approach 111

7.3.1.1 Data Selection with XPath . 112
7.3.1.2 ¿e Transformation Language XSLT . 115
7.3.1.3 ¿e Query Language XQuery . 120

7.3.2 Research Prototypes:
¿e Positional Approach to XML Querying . 125
7.3.2.1 Characteristics of the Positional Approach. 125
7.3.2.2 UnQL. 125
7.3.2.3 XML-QL. 126
7.3.2.4 XMAS. 128
7.3.2.5 XML-RL. 129
7.3.2.6 TQL. 130
7.3.2.7 Xcerpt. 131
7.3.2.8 XML-GL. 135
7.3.2.9 X2’s visual interface. 136

7.4 RDF Query Languages . 138
7.4.1 ¿e SPARQL Family . 138

7.4.1.1 Basic RDF Access: SquishQL and RDQL. 138
7.4.1.2 SPARQL. 140
7.4.1.3 TriQL. 141

7.4.2 ¿e RQL Family . 141
7.4.2.1 RQL. 142
7.4.2.2 SeRQL. 144
7.4.2.3 eRQL. 145

7.4.3 Query Languages inspired from XPath, XSLT or XQuery 146
7.4.3.1 XQuery for RDF: ¿e “Syntactic Web Approach”. 146
7.4.3.2 XSLT for RDF: TreeHugger and RDF Twig. 147
7.4.3.3 Versa. 148

vii

7.4.3.4 Path-Based Access to RDF: RDF Path, RPath, RxPath, RxSLT, and
RxUpdate. 150

7.4.3.5 RDFT and the Query Language of Nexus: XSLT-Style RDF Query
Languages. 152

7.4.4 Metalog: Querying in Controlled English . 154
7.4.5 Query Languages with Reactive Rules. 155

7.4.5.1 Algae. 155
7.4.5.2 iTQL. 156
7.4.5.3 WQL. 156

7.4.6 Deductive Query Languages . 157
7.4.6.1 N3QL. 157
7.4.6.2 R-DEVICE. 158
7.4.6.3 TRIPLE . 159
7.4.6.4 Xcerpt. 161

7.4.7 Other RDF Query Languages . 163
7.4.7.1 RDFQL. 164

7.5 Topic Maps Query Languages . 165
7.5.1 tolog: Logic Programming for Topic Maps . 165
7.5.2 AsTMA?: Functional Style Querying of Topic Maps 166
7.5.3 Toma: Querying Topic Maps inspired from SQL . 167
7.5.4 Path-based Access to Topic Maps: XTMPath and TMPath 168

7.6 Conclusion: Salient Aspects of the Query Languages Considered 168

8 Rich Clients need Rich Interfaces
Query Languages for XML and RDF Access on the Web 171
8.1 Tutorial Details . 171
8.2 Outline of the Tutorial . 173

9 RDF Querying: Language Constructs and Evaluation Methods Compared 175

A A Brief History of RDF Serialization Formats 199
A.1 Introduction . 199
A.2 RDF/XML: ¿eW3C Recommendation . 200
A.3 Simpli�ed Syntaxes for RDF/XML . 202

A.3.1 Unstriped Syntax . 202
A.3.2 Simpli�ed Syntax . 202
A.3.3 XMP . 203
A.3.4 Normalized RDF . 203
A.3.5 RxML . 204

A.4 Plain-Text Formats . 204
A.4.1 Notation 3 . 204
A.4.2 N-Triples . 205
A.4.3 Quads . 206
A.4.4 Turtle . 206
A.4.5 TriG . 206

A.5 Triple-based XML Formats . 207
A.5.1 RPV . 207

viii

A.5.2 TriX . 208
A.5.3 RXR . 209

A.6 Features Overview . 210
A.7 Genealogy . 211
A.8 Conclusions . 211

B Evaluation Tables 213

C Revision History 215

ix

x

Chapter 1

Introduction

¿e “Semantic Web” is an endeavor which Tim Berners-Lee, the father of HTML and of HTTP, James
Hendler, and Ora Lassila initiated in 2001 with an article in the Scienti�c American [52]. ¿e “Semantic
Web” vision is that of the current Web which consists of (X)HTML and documents in other XML formats
being extended with meta-data specifying the meaning of these documents in forms usable by both,
human beings and computers:

¿e Semantic Web will bring structure to the meaningful content of Web pages, creating
an environment where so ware agents roaming from page to page can readily carry out
sophisticated tasks for users. [52]

One might see the Semantic Web meta-data added to today’s Web as semantic indices similar to
encyclopedias. A considerable advantage over conventional encyclopedias printed on paper is that the
relationships expressed by Semantic Web meta-data can be followed by computers, very much like
hyperlinks can be followed by programs, and be used for drawing conclusion using automated reasoning
methods.

For the SemanticWeb to function, computers must have access to structured collections of
information and sets of inference rules that they can use to conduct automated reasoning. [52]

A number of formalisms have been proposed in recent years for representing SemanticWebmeta-data,
e.g., RDF [288], Topic Maps [215], and OWL [35]. Whereas RDF and Topic Maps provide merely a syntax
for representing assertions on relationships like “a text is authored by some person”, schema or ontology
languages such as RDFS [74] and DAML+OIL [210] allow to state properties of the terms used in such
assertions, e.g., that no “person” can be a “text”. Building upon descriptions of resources and their schemata
(as detailed in the architectural road map for the Semantic Web [51]), rules expressed in, e.g., SWRL [208]
or RuleML [61], allow the speci�cation of actions to be taken, knowledge to be derived, or constraints to
be enforced.

Essential for realizing this vision is the integrated access to all kinds of data represented in any of these
representation formalisms or even in standard Web languages such as (X)HTML, SVG, or any other XML
format. Considering the large amount and the distributed storage of data available already on the Web,
the e�cient and convenient access to such data becomes the enabling requirement for the Semantic Web
vision. It has been recognized that a reasonably high-level, declarative query language is needed for such
e�cient and convenient access, as it allows to separate the actual data storage from the view of the data a
query programmer operates on.

1

¿erefore, the aim of this survey is to provide an overview over the languages considered for each of the
major representation formalisms used in the nowadays Web, viz., for XML, RDF, Topic Maps, and OWL.
¿is overview is intended to be valuable for comparing, e.g., RDF query languages among themselves,
but to also provide insight on the question, whether a common query language for these representation
formalisms is reasonable. ¿erefore, the following three questions stand at the heart of this survey

• What are the capabilities of a query language considered essential for the di�erent areas? Is it
possible to identify common shortcomings of existing approaches in an area, in particular bymeans
of a comparison of the issues addressed in that particular area with the other areas investigated?

• Enabling reasoning, i.e., the ability to derive new knowledge from existing knowledge in a systematic
way, is perhaps the most distinguishing feature of the “Semantic Web” vision. Convenient and
e�ective querying in such a setting is likely to require at least some degree of reasoning abilities (e.g.,
for mediation of data described with di�ering but convertible vocabularies). ¿erefore this survey
closely investigates, what reasoning abilities the query languages o�er and how these reasoning
abilities are realized.

• Indeed, the extent and realization of reasoning abilities proves to be a crucial di�erential for an-
swering the question, how to classify the query languages surveyed in this work. In Section 5.1
a common classi�cation scheme for Web query and transformation languages oriented on their
Semantic Web “�tness” is proposed and its usefulness for understanding the di�erences among the
query languages is demonstrated.

To this end, this survey starts in Chapter 2 with a concise introduction into the three representation
formalisms considered here, viz. XML, RDF, and Topic Maps. Note, that for most of the discussion OWL is
not considered separately, but rather in conjunction with RDF, since there is a number of query languages
for RDF that use information represented in (some subset of) OWL for querying. However, in Section 4.5
an approach for querying ontologies represented in OWL is discussed to illustrate the challenges one faces
when more powerful ontology languages are considered. Chapter 2 also introduces the scenario used in
most of the query language descriptions. A small collection of data about books and their classi�cation is
introduced on an abstract level and carefully cra ed representations in XML, RDF, and Topic Maps are
proposed and discussed.

1.1 Selection of Evaluation Criteria:

How to evaluate a Web Query Language?

Based upon this collection of sample data, Chapter 3 proposes (a) an exhaustive set of evaluation criteria
based on requirements and use cases for Web query languages previously identi�ed in [255, 294, 108,
177, 28, 124, 94] and extended by additional criteria for investigating the Semantic Web “�tness” of the
query languages in question. As a means for better illustrating the capabilities of the query languages,
the taxonomy of queries proposed in [255] is adapted to the Semantic Web setting and (b) a small set of
queries covering each of the classes in the query taxonomy is proposed. To compare query languages
among di�erent representation formalisms, the queries are presented on a rather abstract level, allowing
them to be applied on XML, RDF, or Topic Maps data.

¿is combined approach has a number ofmerits compared to previous surveys ofWeb query languages,
cf. [4, 160, 66, 65, 252] (surveys of XML query languages) and [76, 253, 314, 125, 200, 318] (surveys and
comparisons of RDF query languages), that have mostly been based on a set of exemplary queries and

2

limited to a small number of evaluation criteria (represented in these queries). However, the crucial aspect
of the “user experience” of a language, i.e., how convenient and e�ective the use of a query language is
for solving practical problems, is not fully covered by this approach, since this aspect is hard to measure
without extensive experimental studies involving users with varying background and expertise. Another
noteworthy limitation of this survey is that, for time and space reasons, not all languages could be covered
in the same detail. Instead, quite a number of languages judged particularly interesting or innovative by the
authors of this survey are discussed in more detail, whereas other languages presented highlighting only
the most interesting features. However, for all 73 languages the full set of 111 criteria have been evaluated
and gathered in tabular form in Appendix B. ¿is limitation is rooted partially in the fact, that there has
been a virtual surge of new Web query languages, in particular of Semantic Web query languages (i.e.,
so far mostly RDF and Topic Maps query languages) in the last two years. Since the beginning of 2004,
a dozen new languages have been proposed or existing proposals have been signi�cantly altered. ¿is
demonstrates both the high relevance and the relative immaturity of the area of (Semantic) Web query
languages. Another area where this survey might be further improved in the future is on the theoretical
foundations of the languages considered. Regarding, e.g., formal semantics and data model, only rather
general statements are noted here. ¿is is motivated by the lack of consideration of such issues in the
majority of the language proposals forming the base of this survey.

Despite these shortcomings the approach taken in this survey also exhibits a number of advantages in
contrast to previous surveys of Web query languages:

• considering both query languages for standard and Semantic Web allows a better understanding of
what the crucial aspects of Semantic Web query languages might be;

• the far larger number of approaches considered gives the results a broader foundation and applica-
bility;

• the evaluation criteria are, where possible, restricted to easily veri�able properties of the query
languages;

• focusing the discussion on a selected set of languages allows more details and a better understanding
for that languages.

Finally it should be noted that, as with any such survey, the selection of both criteria and sample
queries is certainly subjective and might be biased towards a certain result or language, although the
authors of this survey tried carefully to eliminate such bias as far as possible.

1.2 Selection of Surveyed Query Languages:

What is a Web query language?

Chapter 4 presents the query languages surveyed in this paper grouped by the underlying representation
formalism and, where possible, language “family” (i.e., closely related languages are discussed together to
ease the understanding of commonalities and di�erences).

¿e selection of languages requires some justi�cation. One basic premise guided this selection:
Although the distinction is not always clear, the survey should focus on languages designed primarily for
providing e�cient and e�ective access to data. ¿is rather narrow basic premise excludes in particular
three types of languages that are also sometimes considered query languages or at least related to query
languages:

3

• Full programming languages and libraries or APIs for accessing XML. Quite a number of general-
purpose programming languages with focus or at least direct support for XML data have been
proposed recently, e.g., XMLambda [273], CDuce [40], XDuce [211], Xtatic (http://www.cis.
upenn.edu/~bcpierce/xtatic/), Scriptol (http://www.scriptol.com/), Cω (http://research.
microsoft.com/Comega/, [272]), and with special focus on Web services and composition XL [165,
166], Scala [289],Water [309]. All of these languages provide some formof specialized data structures
for representing and accessing XML data. For existing programming languages, convenient access
to XML data can be achieved using some API such as DOM1, SAX2, or XmlPull3 or by means of a
language extension, e.g., HaXML [365] for Haskell, XMerL [371] for Erlang, or XJ [201] for Java.

However, when considering reasoning-aware query languages, the distinction between general-
purpose programming languages and query languages becomes blurred, as such query languages
are o en computationally complete (cf. 5). For the purpose of this survey, a pragmatic approach
has been chosen: a language is included, if querying is a core aspect of the language design or the
approach to accessing Web data is unique and not covered by other proposals.

• Evolution and reactivity. A reactive system allows the speci�cation of the dynamic aspects of a data
storage system, i.e., (a) what changes are allowed (b) how to react when a certain event, such as
the insertion or deletion of some data occurs. Several proposals for adopting previous approaches
such as ECA rules to a Web setting have been published recently. Obviously, there is a close relation
between languages for specifying the reactive behavior of a system and those for querying the
current state as provided by conventional query languages: reactive languages o en employ some
query language for evaluating whether (a) the current event matches any of the reactive rules and
(b) for conditional rules whether the data is currently in a status matching that condition. However,
for this survey only reactive languages that also provide interesting querying abilities are considered.
For a survey of reactive languages for the Web, refer to [11].

• “Rule languages”. Transformations, queries, derivations and reactive behavior can o en conveniently
expressed in rules. Recently, considerable interest in formalizing the rules guiding business decisions
in such a way that they can be (a) understood and possibly even managed without learning a
complicated rule syntax, (b) changed rapidly without refactoring existing programs, and (c) used
directly to automate or support business decisions such as whether a certain customer may receive
a loan or which supplier to use for a certain part. ¿is interest has also triggered the development of
numerous, o en proprietary languages for “rule engines”, i.e., systems that allow the speci�cation
and evaluation of such rules o en as part of so-called expert systems. Examples for languages o en
used in this context include Prolog, F-Logic, and various extensions of these languages. In the Web
context, the serialization and exchange of rules is particularly interesting as demonstrated by, e.g.,
the RuleML [61] initiative.

Again where to draw a line between query languages and general rule languages is not obvious. As
in the cases above, in this survey only languages focusing on the e�cient and e�ective querying of
data are considered with exceptions for approaches that provide interesting insight for querying.

In the future, it might be interesting to extend the languages covered, e.g., to investigate di�erences
and similarities with respect to requirements, principles, and realization of query languages and reactive,
general rule, or programming languages in the Web context.

1http://www.w3.org/DOM/
2http://www.saxproject.org/
3http://www.xmlpull.org

4

http://www.cis.upenn.edu/~bcpierce/xtatic/
http://www.cis.upenn.edu/~bcpierce/xtatic/
http://www.scriptol.com/
http://research.microsoft.com/Comega/
http://research.microsoft.com/Comega/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://www.xmlpull.org

As stated in the introduction, this survey focuses on the language aspect of querying theWeb. ¿erefore,
(a) authoring tools such as visual editors are only considered in the context of the query language they are
based upon and (b) issues related to storing and indexing Web data are not addressed (for a survey on
storage system for RDF refer to [253]).

Despite all these conscious limitations in the kind of languages to be considered, the number of
languages still remaining is still surprisingly large. ¿is demonstrates the increasing interest in the area
of Web query languages, in particular in RDF and Topic Maps query languages for which the respective
standardization bodies have recently started the standardization process for (in the case of RDF, low-level)
query languages. However, in neither case the aim to develop a common query language supporting the
representation formalisms expected to be at the core of a future Semantic Web has received su�cient
priority.

Following the overview of the languages considered, a concise summary of the evaluation results is
given in Chapter 5, the details of which are given in Appendix B. From the evaluation results, a classi�cation
scheme for Web query languages is derived and brie�y discussed by comparing it to previous approaches
for classifying (Web) query languages and by demonstrating the ability to provide an insightful view on
the languages surveyed here.

¿e paper is concluded by Chapter 6 with an outlook on possible improvements of this comparison
and suggestions on interesting research directions derived from the evaluation.

Two appendices give (a) an overview of di�erent serialization formats for RDF (Appendix A) and (b)
the detailed results of the evaluation in tabular format (Appendix B).

5

6

Chapter 2

Preliminaries

In this chapter, a concise overview of the three representation formalisms that form the bases for the query
languages investigated in this work is given. In particular, a small collection of sample data is described
against which queries for assessing the functionality of the query languages considered are evaluated.

¿e “Extensible Markup Language (XML) is a simple, very �exible text format derived from SGML
[. . .]. Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing
an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere.”1
XML [71] ¿e previous quote hints at the dual role that XML is currently performing in the Web context:
First and foremost, XML provides means for de�ning the syntax of new languages simplifying speci�cation
and deployment considerable, as common issues such as character encoding, markup syntax, linking
(ID/IDREF, XLink [142]), mixing markup from di�erent languages, splitting and reassembly of data
fragments (XInclude [263]), etc. are handled uniformly at the level of XML.

However, this is not the only reason for using XML: More and more XML, and the underlying semi-
structured data model, is recognized as a �exible means for representing, exchanging, and processing
heterogeneous data originating from di�erent sources. In this sense, an XML document can be interpreted
as a rooted, directed, non-ranked, ordered graph. For many applications one does not consider the
various reference or linking mechanisms de�ned for XML as part of the data model, thus reducing the
interpretation of an XML document to a non-ranked, ordered tree. Although this is the datamodel adopted
by the W3C (cf. XML Infoset [134] and XQuery 1.0 and XPath 2.0 data model [159]) and the majority of
XML query languages, it is nevertheless recognized that providing means for traversing relations beyond
the parent-child and sibling relation conveyed in the tree. Examples for such relations are links established
by common keys in ID and IDREF attributes, XLink relations that can also be typed just as in RDF (cf. [135]
for a more detailed analysis of the commonalities of RDF and XLink), or application-dependent relations.

As XML has been designed with focus on the �rst role, some peculiarities such as attributes or the lack
of a standardized means, to express that the order of the children of some element is irrelevant and does
not be preserved, make processing XML not always as convenient as one might hope, nevertheless XML is
and most likely will remain the foundation for most Web application that require the exchange of data
and increasingly also for applications where such exchange is not needed.

Basically, an RDF [234, 38] model can be seen as an oriented graph whose nodes are labeled by
either URIs, which describe (Web) resources, or literals (elementary data such as strings or numbers),
or are unlabeled (the so called anonymous or “blank nodes”). ¿e nodes are connected by arcs, also

1http://www.w3.org/XML/

7

http://www.w3.org/XML/

labeled by URIs, which are intended to represent “properties” of nodes (so blank nodes can be used to
“aggregate” properties). A common alternative view of such a graph is a set of triples, called “statements”,
of the form �Subject,Property,Object�, where Subject and Object are graph nodes, and Property is an
arc. While this model accounts for the use of RDF as a very general description framework of Web
resources, properties with special meanings are prede�ned in the RDF [204] and RDFS [204] speci�cations
[258, 234, 204, 74] to describe, for instance, that a node is the “type” (rdf:type)2 of another one, or is
sub-class (rdfs:subClassOf) or sub-property (rdfs:subPropertyOf), etc. RDFS also de�nes a number
of meta-classes, such as rdfs:Class, the class of all classes, or rdfs:Property, the class of all properties.
¿e inheritance model exhibits some peculiarities, viz., (a) that resources can be classi�ed in di�erent
classes that are not related in the subsumption hierarchy, (b) that the subsumption hierarchy can be
cyclic (so that all classes on the cycle are equivalent), (c) that properties are �rst class objects and, in
contrast to most object-oriented subsumption hierarchies, one does not describe which properties can
be associated with a class but rather can specify the domain and range of properties. Based upon the
information provided by an RDFS schema (or, to use another termed used almost equivalently in this
case, ontology) certain inference rules can be speci�ed, e.g., for inferring the transitive closure of the
subsumption hierarchy or the type of an untyped resource that has a property associated for which the
domain is known. OWL [271, 343, 35] extends the means provided by RDFS for de�ning the vocabulary
used in describing resources.

RDF is designed for the exchange of meta-data represented as resource descriptions in an RDF graph.
¿erefore, a syntax for serializing and transferring RDF data is required. However, early approaches for an
XML syntax of RDF have raised considerable critique, mostly for being overly complex to understand and
process. ¿erefore, a large number of alternative serialization formats have been proposed. Appendix A
presents a detailed overview of these serialization formats.

¿e last representation formalism that forms the basis of some of the query languages investigated in
this survey is the ISO Topic Maps standard [215]. Inspired by previous work in the library sciences and
on knowledge indexing, the Topic Maps standard [215] de�nes a data model consisting in a rich set of
modeling primitives for representing, structuring, indexing, and relating knowledge. As the previously
discussed representation formalisms at the core a topic map is a unranked graph with labeled edges and
nodes. ¿e most notable di�erences to RDF are the richer modeling primitives, that include, e.g., the
ability to scope any information provided about a topic and to provide multiple facets of information. Also
instead of binary associations, Topic Maps provides n-ary associations with roles for distinguishing the
members of an association (rather similar to the XLink model for extended links). Topic Maps provides a
basic ontology language for specifying a hierarchy of types of topics and associations.

¿e similarity of Topic Maps and RDF has been recognized and �rst e�orts for integrating the two
formalisms are presented in [239, 178].

From the perspective of this survey, all three representation formalisms can be used to represent the
sample data discussed below varying mostly in the degree to which standard vocabulary is provided for
de�ning the ontology part of the sample data.

2.1 Collection of Sample Data

For reasons of brevity and consistency, all queries operate on the same data, a collection of information on
books. Figure 2.1 shows a graphical representation of an RDF/S graph. For more details see [234, 246, 74].
Note, that some of the RDF statements are represented in a more compact form, e.g., all resources with

2Here and in the rest of this paper, common pre�xes such as rdf, rdfs, owl, xsd, or xtm are assumed to be associated with the
appropriate namespace.

8

type rdfs:Class are depicted as special nodes instead of explicitly showing the rdf:type relation. Also,
special arrows are used for the rdf:type and rdfs:subClassOf relations. Resources are identi�ed with
temporary IDs in the fashion of N3 [49], e.g., _:b1. Note also that the graphical notation used does not
make explicit the connection between the property nodes translator and author (depicted by blue
ellipses) and the instances of this property.

¿e sample data contains a small ontology using only the subsumption (or “is-a-kind-of ”) relation
rdfs:subClassOf and the instance (or “is-a”) relation rdf:type. ¿is ontology is used to illustrate some
of the speci�c requirements for a Semantic Web query language. We believe, that it is su�cient to show
the most interesting issues involved in ontology querying without adding unnecessary complexity. Note,
however that both the following discussion and the criteria for the evaluation are for general Web query
languages including languages for the standard Web only, i.e., where such ontology information can not
be represented in a standardized way but rather using an application dependent vocabulary. Furthermore,
several aspects of the underlying data representation formalisms, such as RDF and Topic Maps, in�uence
the desiderata for a Semantic Web query language even when no ontology is involved.

Since all three representation formalisms use the XML Schema simple datatypes de�ned in [54] for
typing scalar data. ¿e book titles and the names of the authors are string literals (either untyped or typed
as xsd:string). ¿e publication year of a book is typed as Gregorian year (xsd:gYear).

¿e sample data is assumed to be stored at the URL http://example.org/books#3. Where useful,
this URL is associated with the pre�x books, e.g., for referencing the vocabulary de�ned in the ontology
part of the data.

Appropriate (textual) representation of this data in the di�erent representation formalisms are chosen
as basis for the actual queries. Note, that, since the issue of this survey is not to compare the di�erent
representation formalisms, we deliberately chose data and queries that can be handily represented in any
of the formalisms.

Sample data in RDF. As the graphical representation is based on the RDF version of the data, this is
shown �rst using the Turtle serialization syntax proposed in [37], a subset of N3 [49] (for more details on
the syntax used, cf. Appendix A and the citations).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
:Writing a rdfs:Class ;
rdfs:label "Novel" .
:Novel a rdfs:Class ;
rdfs:label "Novel" ;
rdfs:subClassOf :Writing .
:Essay a rdfs:Class ;
rdfs:label "Essay" ;
rdfs:subClassOf :Writing .
:Historical_Essay a rdfs:Class ;
rdfs:label "Historical Essay" ;
rdfs:subClassOf :Essay .
:Historical_Novel a rdfs:Class ;
rdfs:label "Historical Novel" ;
rdfs:subClassOf :Novel ;
rdfs:subClassOf :Essay .
:author a rdfs:Property ;
rdfs:domain :Writing ;
rdfs:range foaf:Person .
:translator a rdfs:Property ;
rdfs:domain :Writing ;
rdfs:range foaf:Person .

3¿e URL is chosen in accordance to RFC 2606 [153] on the use of URLs in sample data.

9

Figure 2.1 Sample Data: Graphical representation of an RDF/S graph

10

_:b1 a :Historical_Novel ;
:title "The First Man in Rome" ;
:year "1990"^^xsd:gYear ;
:author [foaf:name "Colleen McCullough"] .
_:b1 a :Historical_Essay ;
:title "Bellum Civile" ;
:author [foaf:name "Julius Caesar"] ;
:author [foaf:name "Aulus Hirtius"] ;
:translator [foaf:name "J. M. Carter"] .

¿e RDF serialization is, as expected, rather straightforward. Note that both the books and their authors
and translators are represented by anonymous nodes (either without identi�er or with a temporary
identi�er indicated by the _: pre�x.

Sample data in Topic Maps. For the Topic Maps version of the data, the rather compact and readable
Linear Topic Maps syntax [176] is used. ¿e subclass-superclass associations are identi�ed using the pub-
lished subject identi�ers de�ned in XTM [306]. For illustrative purposes the title of a book is represented
as an occurrence of that topic. Finally, it is worth mentioning that this representation has been chosen
more to demonstrate di�erent features of the query languages surveyed than as a natural expression of the
data in Topic Maps. One might, e.g., prefer to use a publication association that connects a book with
its publisher, the year of publication, and the edition. Also, instead of separate associations for author and
translator one could also provide a generic association between persons and books and use appropriate
roles for di�erentiation.

/* Association and topic types for subclass-superclass hierarchy */
[superclass-subclass = "Superclass�Subclass Association Type"
@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass�subclass"]
[superclass = "Superclass Role Type"
@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"]
[subclass = "Subclass Role Type"
@ "http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"]
/* Topic types */
[Writing = "Writing Topic Type"
@ "http://example.org/books#Writing"]
[Novel = "Novel Topic Type"
@ "http://example.org/books#Novel"]
[Essay = "Essay Topic Type"
@ "http://example.org/books#Essay"]
[Historical_Essay = "Historical Essay Topic Type"
@ "http://example.org/books#Historical_Essay"]
[Historical_Novel = "Historical Novel Topic Type"
@ "http://example.org/books#Historical_Novel"]
[year = "Topic Type for a gregorian year following ISO 8601"
@ "http://www.w3.org/2001/XMLSchema#gYear"]
[Person = "Person Topic Type"
@ "http://xmlns.org/foaf/0.1/Person"]
[Author
@ "http://example.org/books#author"]
[Translator
@ "http://example.org/books#translator"]
/* Associations among the topic types */
superclass-subclass(Writing: superclass, Novel: subclass)
superclass-subclass(Writing: superclass, Essay: subclass)
superclass-subclass(Novel: superclass, Historical_Novel: subclass)
superclass-subclass(Essay: superclass, Historical_Essay: subclass)
superclass-subclass(Essay: superclass, Historical_Novel: subclass)
superclass-subclass(Person: superclass, Author: subclass)
superclass-subclass(Person: superclass, Translator: subclass)
/* Occurrence types */
[title = "Occurrence Type for Titles"
@ "http://example.org/books#title"]
/* Association types */

11

[author-for-book = "Association Type associating authors to books"]
[translator-for-book = "Association Type associating translators to books"]
[publication-year-for-book = "Association Type associating translators to books"]
/* Topics, associations, and occurrences */
[p1: Person = "Colleen McCullough"]
[p2: Person = "Julius Caesar"]
[p3: Person = "Aulus Hiritus"]
[p4: Person = "J. M. Carter"]
[b1: Historical_Essay = "Topic representing the book ’The First Man in Rome’"]
author-for-book(b1, p1: author)
publication-year-for-book(b1, y1990)
{b1, title, [[The First Man in Rome]]}
[b2: Historical_Novel = "Topic representing the book ’Bellum Civile’"]
author-for-book(b2, p2: author)
author-for-book(b2, p3: author)
translator-for-book(b2, p4: translator)
{b2, title, [[Bellum Civile]]}

Sample data in XML. Here one of many possible XML representations of the sample format is shown.
For brevity, the information that authors and translators are persons is not represented. Also, note the use
of ID/IDREF links for representing the subsumption data.

<bookdata xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<book type="Historical_Novel">
<title>The First Man in Rome</title>
<year type="xsd:gYear">1990</year>
<author>
<name>Colleen McCullough</name>
</author>
</book>
<book type="Historical_Essay">
<title>Bellum Civile</title>
<author>
<name>Julius Caesar</name>
</author>
<author>
<name>Aulus Hirtius</name>
</author>
<translator>
<name>J. M. Carter</name>
</translator>
</book>
<category id="Writing">
<label>Writing</label>
<category id="Novel">
<label>Novel</label>
<category id="Historical_Novel">
<label>Historical Novel</label>
</category>
</category>
<category id="Essay">
<label>Essay</label>
<category id="Historical_Essay">
<label>Historical Essay</label>
</category>
<category idref="Historical_Novel" />
</category>
</category>
</bookdata>

Alternatively, an XML serialization of the Topic Maps or RDF data shown above could be used. However,
the serializations of both RDF and Topic Maps in XML are rather awkward and would only complicate
the understanding of the issues involved in querying XML.

12

Chapter 3

Evaluation Criteria

¿is survey is guided by a number of evaluation criteria divided roughly in �ve areas: ease of use, func-
tionality, semantics, formal properties and implementation, ontology awareness, and reasoning abilities.
¿e evaluation criteria have been derived (1) from a number of relevant use cases and requirements
speci�cations for web query languages [255, 294, 364, 124, 28, 177, 108, 107], (2) from a close look at the
capabilities and intended scenarios for deployment for the query languages considered here, and (3) from
the design principles and guidelines for the development of a standard and Semantic web query language
described in [83].

As discussed in the introduction, this survey is focused on the suitability of the considered approaches
for querying the Semantic Web. ¿is emphasis is re�ected in many of the following criteria, in particular
in the areas of ontology awareness and reasoning abilities.

In this section, the evaluation criteria are introduced, described and an attempt is made to provide
a justi�cation for the selection of these evaluation criteria. In Chapter 4, a large number of XML and
Semantic Web query languages are closely investigated along the criteria established here. From this
investigation, one can easily observe that the proposed criteria allow the identi�cation of several interesting
classes of query languages re�ecting di�erent approaches, philosophies and requirements for querying the
(Semantic) web.

3.1 Ease of Use

It has been previously mentioned that one of the most important aspects when designing a query language
(or in fact any language to be used, at least partially, by human beings) is the “feeling” of the language or,
in other words, how easy it is to use the language for a given (reasonable) task. Obviously, this is a highly
subjective question and hard to measure without empiric studies. ¿erefore, in Chapter 4 the design
philosophy and rational of several query languages are illustrated in more detail and a set of queries is
used to give a concrete impression of the languages and their di�erences and similarities.

Aside of these restrictions, the following aspects of a query language are investigated to give some
impression of how convenient the use of the language is:

Syntax. Query languages are o en tailored to a speci�c perception as to who will author queries: whereas
expert users usually prefer a human-readable textual syntax (C 1.1.), for beginners or casual users even a
simple textual syntax might already be too intimidating, however an appropriate visual syntax (C 1.2) or a

13

natural language interface (C 1.3) can o enmake a language accessible to such users. Some query languages,
e.g., [287], are designed for automatic generation by programs, therefore automatic query manipulation,
e.g., by means of an XML syntax (C 1.4), is essential. Furthermore, in particular in the semantic web
context, the automatic adaptation of queries, e.g., based on ontological data, is an essential issue. In such
cases,meta circularity (C 1.5) is a desirable language feature, as it allows the adaptation of queries without
involving learning and maintaining an additional programming language and environment.

1.1 Human-readable textual syntax. Does the query language provide a human-readable textual syntax.

1.2 Visual syntax. Is there a graphical editor or visual syntax for the query language?

1.3 Natural language syntax or interface. Is it possible to express queries in some kind of (usually
restricted) natural language, e.g., in a variant of ACE [170].

1.4 XML syntax. Has an XML1 syntax been speci�ed for the query language.

1.5 Meta circularity. Is the query language capable of processing queries written in (at least) one of its
syntactic forms.

Extensibility and Modularity. To be able to support a wide range of users with di�erent degree of
knowledge and expertise, leads to a set of interesting properties of a query language. Above the use of
di�erent syntactical representations of a query for di�erent usage scenarios of the query language has
been discussed. Furthermore, many languages provide some mechanism to allow queries to be written in
amodular (C 1.6) fashion. E.g., views or rules can be provided by more experienced users, if necessary,
and used by beginners transparently.

A similar aspect is that of extensibility (C 1.7): Di�erent users requires o en di�erent functionalities
and it is neither desirable, nor in all cases possible to provide all functionality within a single query
language or processor. Furthermore, an extensible query language will be better equipped to adapt to
emerging use cases in the future.

1.6 Query modularity. What kind of constructs for writing modular queries does the language support?
Such constructs can be views (cf. [254]), rules (cf. [329, 342]), functions (cf. [57]), etc.

1.7 Extensibility. Does the language have a well-de�ned extension mechanism? Is it possible to detect
from within the language what extensions are available in a given environment?

Adherence toConventions. Both a shallow learning curve and the reuse of previously obtained expertise
are supported if a query language uses established conventions where possible. Since this survey considers
query languages not only for a single data representation formalism, such as XML, Topic Maps, and RDF,
an important criterion for the evaluation is which data representation formalisms (C 1.8) are supported
by a query language. Although both OWL and RDFS are based on RDF, they are considered separate
for this survey, as query languages are likely (and in fact do, cf. OWL-QL) to use the abstract model of
OWL rather than query the concrete RDF serialization. Furthermore, both OWL and RDFS introduce
constructs (e.g., rdfs:subClassOf or owl:TransitiveProperty) with a speci�c semantic that should be
supported by a query language.

Related but separate from the issue of the supported data representation formalism is the data model
(C 1.9) used by the query language. ¿e use of a familiar and appropriate data model will certainly reduce

1For this survey, the only syntax considered particularly convenient for automatic processing of queries is XML, as this is the
only syntax used for this particular purpose by the surveyed languages.

14

the time a user requires to become acquaint himself with the query language. Although at �rst glance one
might suspect that all languages for each of the above data representation formalisms use a uniform data
model, this is not the case. E.g., some XML query languages consider the data to be strictly hierarchical,
i.e., a tree, others o�er support for ID/IDREF or similar linking mechanisms, hence use a graph data
model. Similarly, some RDF query languages consider RDF data as mere triples, i.e., relational tuples with
�xed arity 3 (e.g., [332, 282]), some as arbitrary graph (e.g., [221]), some restrict the graph to be acyclic or
rooted (e.g., [302]).

Aside of the data model, also a syntactical similarity (C 1.10) with an existing language might be helpful
for a novice user. However, o en such similarities are merely super�cial and can actually impede the
understanding of a query language as the intuition from the existing language might not apply or at least
not apply in all cases. ¿erefore, the question, on which programming paradigm (C 1.11) a query language
is based upon, is o en more illustrative of the abilities and general “feeling” of a query language.

Finally, all of the representation formalisms for the Web considered here are based on a graph or tree
data model, therefore requiring some accessor constructs (C 1.12) that allow the access to speci�c nodes in
the graph or tree based on their position (or relation) to other nodes. Query languages for structured data
can be roughly classi�ed by the accessor constructs they provide: Pattern-based query languages allow
access to several parts of the graph at once specifying the relations among the accessed nodes by tree or
graph patterns. Path-based query languages use constructs similar to �le-system paths to access (usually)
a single set of nodes based on any number of relations with other nodes in the graph speci�ed in the path
expression. Path-based languages can be further divided in languages that provide only true paths as
accessors and languages where it is possible to describe tree-like queries (cf. [121]). Finally, step-based
query languages provide only constructs for querying the relation of two (sets of) nodes. If it is to be
queried whether more than a single relation holds for a certain set of nodes, the multiple relations have
to be queried separately and joined via variables. A typical example for a step-based query language is
RDQL [332], examples for path-based query languages are XPath [121], RQL [221], and RDFPath [302],
Xcerpt [329] is a pattern-based query language.

1.8 Data representation formalisms. Which of the data representation formalisms (viz. XML, RDF,
RDFS, OWL, Topic Maps) are supported by the query language?

1.9 Data model. What data model is used by the query language?

1.10 Syntactical similarity. Is there a strong syntactical similarity to other query languages, e.g., SQL,
XQuery, or XPath?

1.11 Programming paradigm. What programming paradigm is the query language based upon?

1.12 Accessor constructs. Is the language based on single steps, paths, or patterns for specifying which
nodes in a graph or tree structure to access.

3.2 Functionality

Complementary to the ease of using a query language is its functionality. ¿is survey focuses on three
aspects for measuring the functionality provided by a query language: What kind of queries can be
expressed in the query language? For which of the concepts of the underlying representation formalism(s)
are adequate query constructs provided? Are issues like updates, integrity constraints and active rules
considered?

¿e emphasis on evolution and reactivity might be considered odd, and, indeed, almost none of
the languages and systems analyzed in Chapter 4 does provide an update language, let alone means for

15

specifying reactive behavior. Nevertheless, for the Web in general and even more for the Semantic Web,
there is a clear need for sophisticated reactive components that allow the fast propagation of and reaction
on changes in the (possibly remote) data and other events. ¿erefore, although support for evolution and
reactivity is hardly a very discriminating criterion for the query languages considered in this survey, it is
included to illustrate that a strong integration of query languages and reactive behavior is essential for the
Semantic Web.

¿e following discussion details each of these points in order and proposes a set of evaluation criteria
that are deemed to be useful for judging what functionality is provided by a query language.

3.2.1 Supported Query Types

For the purpose of this survey �ve classes of queries have been identi�ed based upon previous work
on classifying query languages by the provided functionality, most notably [255, 124]. To illustrate these
queries and for later reference, some exemplary queries on the book data from Figure 2.1 are given both in
natural language and in an easy-to-understand graphical notation based on the data graph.

• Selection and Extraction Queries: (C 2.1.1) ¿e most basic type of query is to ask for some of the
information represented in the data, usually based on its content, structure or position within the
entire data.

Query 1. “Select all essays together with their authors and the names of their authors.”

??

Essay

author ? foaf:name

Class “is-a” Relation (rdf:type)

? ?Requested resource Requested (String) Literal

Even such basic queries already raise a number of interesting issues with respect to the capabilities
of a query language:

– Supported result formats (C 2.1.2). ¿e query languages considered in this survey di�er quite
notably in this respect. One of the reasons is the di�erent data representation: Is the data
represented in XML, one could, e.g., return a set or sequence of all book elements (possibly
already containing the authors and their names) or construct new elements grouping the
authors under the related books. However some XML query languages, most notably XPath,
do not support the construction of new elements, but always return a set or sequence of the
selected elements. For RDF data, one might expect that the statements relating books and
authors and the ones associating names to the authors will be returned. However, several
query languages for RDF [LIST] do not return triples, but rather a table with one column per
variable in the query and one row for each result. Similar considerations apply to Topic Maps.

16

– Selection of related information (C 2.1.3). As in the sample query, one is o en not only interested
in one piece of information (e.g., the books), but also in related information (e.g., the authors
and their names). Usually, it should be possible to obtain the relations from the result, e.g. in
the above case one would usually like to know which book relates to which author.

Again, there are a number of path-based query languages, such as XQL [325], XPath 1.0 [121]
or RDFPath [302] that do not provide the ability to select related information.

But there are also cases where one is simply interested in the information itself without the
relations among them. Since representing the relations among the information pieces in
the result is expensive, it is desirable to allow both forms of returning result. Whereas XML
query languages usually allow the author of a query to make this distinction, most RDF query
languages do not provide this possibility.

– Should only books directly classi�ed as “essay” be returned or also ones that are classi�ed
in one of its subclasses, e.g., as “historical essay”? In this case, the query actually involves
inference, see below.

Another �avor of selection queries that is particularly relevant in a Semantic Web context for collec-
tion all information about a particular resource or topic are queries that extract entire substructures
(C 2.1.4) from the data, e.g., a subgraph of an RDF graph.

Query 2. “Select everything related to the book with title ‘Bellum Civile’.”

17

The First Man
in Rome

Julius Caesar

Colleen
McCullough

J. M. Carter

Aulus Hirtius

_:b1

translator

author

Historical
Novel

rdfs:domain

rdfs:domain rdfs:range

rdfs:range

_:b2 author

author

translator foaf:name

author

title

_:p1

_:p2

_:p3

_:p4

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civile

title

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation
(rdfs:subClassOf)String LiteralResource

Essay

Historical
Essay

Novel

Writing foaf:Person

• ReductionQueries: (C 2.1.5) In some cases, instead of specifying precisely what to return, it is easier
to specify what should not be returned as result. One might, e.g., not be interested in any ontology
information or in translators of books for a certain application. ¿e ability to specify what is not to
be returned, is required, e.g., if the schema of the data to be retrieved is not known in advance, but
the schema of the data to be le out is (at least to some extend).

Unless some speci�c support for reduction queries is o�ered by a query language, the speci�cation
of what should not be returned o en requires some form of negation (C 2.1.6).

Query 3. “Select everything except all ontology information and any translators.”

18

The First Man
in Rome

Julius Caesar

Colleen
McCullough

J. M. Carter

Aulus Hirtius

_:b1

translator

author

Writing

NovelEssay

Historical
Novel

Historical
Essay

foaf:Person
rdfs:domain

rdfs:domain rdfs:range

rdfs:range

_:b2 author

author

translator foaf:name

author

title

_:p1

_:p2

_:p3

_:p4

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civiletitle

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation
(rdfs:subClassOf)String LiteralResource

In the context of the SemanticWeb, reduction queries become evenmore relevant, e.g., for combining
information from di�erent sources or for handling trust issues.

• Restructuring Queries: (C 2.1.7) Whenever structured data is to be queried, it is imperative to be
able to change not only the value of the data but also its structure.

Query 4. “Invert the relation ‘author’ from a book to an author to ‘authored’.”

Essay

author

Class “is-a” Relation (rdf:type)

foaf:Person Essay

authored

foaf:Person

Resource

19

In RDF, restructuring of data is used to express statements about statements: A statement that is
to be used as subject of another statement is “rei�ed” by assigning an identi�er I (i.e., an URI) to
the statement and transforming the original statement into three statements for specifying subject,
predicate and object of the statement.

• AggregationQueries: A simple form of derivation of new knowledge, and hence linked to inference,
is the aggregation of data. When structured information is considered, one can not only aggregate
on data values (C 2.1.8) , cf. Query 5 but also on information about the structure (C 2.1.9), as shown
in Query 6.

Query 5. “Return the latest year (the maximum of all years) in which an author with name ‘Julius
Caesar’ published anything (i.e., any ‘Writing’).”

Query 6. “Return each of the subclasses of ‘Writing’ together with the average number of authors
per publication of that type.”

Related to aggregation are the concept of grouping (C 2.1.10) and sorting (C 2.1.11) of the result
returned. Note, that grouping and sorting is not meaningful for all of the representation formalisms
that form the basis of the query languages discussed here, e.g., in RDF statements do not have any
intrinsic order, however sequence container allow the speci�cation of sequences.

• Combination and Inference Queries: O en it is necessary to combine (C 2.1.12) existing but not
explicitly connected information, e.g., from di�erent sources or represented in varying structures.
Many ontologies specify, e.g., which names or identi�ers are synonymous, i.e., refer to the same
entity.

Query 7. “Combine all information about a book named ‘¿e Civil War’ and authored by ‘Julius
Caesar’ with the information about the book with identi�er bellum_civile.”

Combination of existing information o en allows the inference (C 2.1.13) of additional data: if the
two books named “Bellum Civile” and “¿e Civil War” are the same book and “Julius Caesar” is an
other of “Bellum Civile” then he is also an other of “¿e Civil War”.

Another important form of inference queries are queries or views that compute the transitive closure
of relations such as the subClassOf relation used in RDF for de�ning a subsumption hierarchy.

Query 8. “Return the transitive closure for subClassOf relation.”

Writing

NovelEssay

Historical
Novel

Historical
Essay

Class

“is-a-kind-of” Relation
(rdfs:subClassOf)

additional tuples for
transitive closure of
“is-a-kind-of” Relation

Not all inference queries are combination queries, as the following example illustrates, where a new
relation is (intensionally) de�ned based on existing data about books:

20

Query 9. “Return the co-author relation between two persons that stand in author relation with the
same book.”

? author

author

?

?

co-author

? Requested resource

co-author Infered co-author tuples

Whereas some query languages provide special closure operators for specifying which relations are
transitive, others limit queries on the transitive closure to a �xed set of relations, e.g., the subClassOf
relation from RDFS. Finally, some query languages provide a general recursionmechanism, that
allows among others to query the transitive closure of arbitrary relations, even those de�ned
intensionally as above.

2.1.1 Selection queries. Does the query language support selection queries?

2.1.2 Supported result formats. Inwhat serialization or representation formalism can the result be returned?
Possible values are, e.g., input subset (only a subset of the input can be returned), arbitrary XML,
restricted XML (with an explanation of the restriction), one of the RDF serializations (cf. Appendix
A, one of the Topic Map serializations, table (usually with one column for each variable to be
included in the result and one row for each match), set or sequence (for query languages lacking
the ability to select related information).

2.1.3 Selection of related information. Is it possible to return related information within the same query?

2.1.4 Substructure extraction. Are the means provided to select an entire substructure (e.g., a subtree or
subgraph), in particular if the extent of the substructure is not known in advance?

2.1.5 Reduction queries. Does the query language support reduction queries?

2.1.6 Negation. Is it possible to express negation in the query language, e.g., to test the non-existence of
data or to specify reduction queries.

2.1.7 Restructuring queries. Is it possible to rearrange the structure of the input or to create an entirely
new structure?

2.1.8 Aggregation on data values. Can data values be aggregated in the query language?

2.1.9 Aggregation on structure. Is it possible to aggregate over the structure of the date, e.g., to determine
the maximum number of authors for a book?

2.1.10 Grouping. Does the query language support grouping?

2.1.11 Sorting. Does the query language support sorting?

2.1.12 Combination queries. Is it possible to combine information that is not directly connected by the
structure, e.g., by means of a join over some identi�er?

2.1.13 Inference queries. What means for inference queries are provided by the query language? Possible
values are, e.g., closure on prede�ned relations, closure on arbitrary structural relations (e.g., parent-
child and sibling relation in XML or any property in an RDF graph), general recursion.

21

3.2.2 Adequacy

Considering the o en still immature and evolving nature of the current representation formalisms for the
Web and the o en frustrating lake of a common and formal understanding of the underlying data models,
it is not surprising that there is a great variability among the supported features and interpretations of
the underlying representation formalisms among the query languages discussed here: Exemplary issues
are, e.g., whether to consider an XML document with ID/IDREF links as graph or tree data or whether to
support the more controversial features in RDF, e.g., rei�cation and containers.

¿erefore, we consider for each of the representation formalisms separately a number of criteria to
given an impression of what a query languages supports. ¿ese criteria are based on observing where the
surveyed query languages di�er and not meant to be a comprehensive list of features of the representation
formalisms.

• XML:¿e XML data model (as de�ned in [134]) is an ordered tree and therefore provides two basic
structural relations among nodes (representing elements in the document) in a tree: the parent-child
(C 2.2.1) and the sibling (C 2.2.2) relation. XML query languages should support queries involving
either relation and their closures (C 2.2.3), i.e., ancestor-descendant and preceding-following relations.
Note, that XML languages that employ paths for accessing nodes o en allow such relations to be
queried in both directions, e.g., from the parent to the children as well as from a child to its parent.
However, in [297] it has been shown that a restriction to queries where the relations are followed
in “forward” direction (w.r.t. the order in which nodes are visited) is reasonable. A third relation
particular to the XML data model is provided via ID/IDREF links (C 2.2.4). If these relations are
handled transparently, an XML document actually has to be represented as a graph (cf. C 1.8).

Support for the intrinsic order of an XML document o en goes beyond merely providing constructs
for querying the sibling relation: many XML query languages allow to access nodes by their position
(C 2.2.5) within some sequence of related nodes, e.g., the second title of each book. Some query
languages also allow unordered matching (C 2.2.6), where the order among siblings is ignored.
Finally, all XML query languages preserve the order (C 2.2.7) when returning some part of the input
unless the result is reordered speci�cally.

One particular important aspect when considering XML data is that the data o en lacks a �xed
schema or the schema allows for a certain amount of �exibility. ¿erefore any XML query language
should be able to specify both partial queries (C 2.2.8), i.e., queries where only some constraints on
the data are speci�ed and the existence of additional nodes in the data does not a�ect the matching,
and total queries (C 2.2.9), i.e., queries that only match if there is no more data than speci�ed in the
query. Also o en desirable is the ability to specify optional (C 2.2.10) parts of a query: if there is
some data matching an optional sub-query it will be returned, but if no data matches the query other
related items are still returned: E.g., one might want to select all books together with their translators
but still return the books if there is no translator for it. Such optional sub-queries resemble outer or
inner joins in relational databases.

Another important distinction among XML query languages is the support for construction of new
elements (C 2.2.11). It is prerequisite for supporting restructuring queries.

Finally, there are some issues concerning the alignment of an XMLquery language with the emerging
standards de�ned for XML: support for XML Schema [156,357,54] (C 2.2.12)—more details on typing
are discussed below in Section 3.6.1—, support for namespaces (C 2.2.13), support for advanced
linking using XLink [142] and XPointer [189, 188, 140, 141] (C 2.2.14), and construction of compound
documents speci�ed with XInclude [263] (C 2.2.15).

22

• RDF: Beyond simple triple statements that associate two resources (called subject and object) via
a certain property (or predicate), the RDF data model has some peculiarities that require special
attention when discussing a query language for RDF. Even more than in the case of XML, RDF has
been design under the assumption that in a global Semantic Web �xed schema information is o en
unattainable. ¿erefore, all properties in RDF are optional (C 2.2.10) andmulti-valued (C 2.3.1), e.g.,
a book described in RDF can have any number of authors including none. A query language should
provide suitable constructs for optional sub-queries as in the case of XML. Furthermore, properties
are, as any resource, identi�ed by an URI and can therefore be the subject of other statements. In
this case, it is required that a query language is able to query (the identi�ers) of properties (C 2.3.2),
and not only those of subjects and objects. Another aspect of this are containers and collections
in RDF: containers (C 2.3.3) provide the means for expression sets, sequences and alternatives of
resources, e.g., to express that a committee has voted in a certain way without implying that every
single member actually voted in that way. Within sequences access by position (C 2.2.5) is o en
useful, e.g., to obtain the �rst in the sequence of chapters for a book. Alternatives also have to be
handled di�erently from sets or sequences since it can only be derived that at least one of the objects
is actually related to the subject (by the given predicate). Collections (C 2.3.4), introduced only
recently during the revision [38] of the original RDF proposal [246], di�er from containers in their
semantics: collections can be “closed” in the sense that no further elements can be included in the
collection (for example when consulting additional descriptions on the same resource). ¿is is not
the case for RDF containers. Note, that both containers and collections can be reduced to triples
(i.e., binary relations), however requiring considerable e�ort by the user. ¿erefore, speci�c support
for these constructs takes a considerable burden from the query programmer.

A similar consideration applies to one of the more controversial abilities of RDF, viz. to be able to
express statements about statements via rei�cation (C 2.3.5). As stated above, A statement that is
to be used as subject of another statement is “rei�ed” by assigning an identi�er I (i.e., an URI) to
the statement and transforming the original statement into three statements for specifying subject,
predicate and object of the statement. An RDF query language should provide at least support for
the transparent access to rei�ed statements, i.e., the query programmer should not have to specify
whether a statement is rei�ed or not.

E.g., for the attribution of what the source of a statement is, a statement is o en associated with
additional information about its context. Although such context informations are o en useful
and desirable [194, 232], this can only be realized in RDF using rei�cation. ¿erefore, the Jena
Toolkit [190], one of the syntactical forms for RDF [327] discussed in Appendix A and a recent
query language [315] all use the concept of “quads” (C 2.3.6), i.e., triples enriched with an additional
context or source information. ¿is allows not only a more compact formulation of queries but can
also be used for improved storage of such statements (cf. [148]).

As mentioned in Chapter 2 and discussed in further detail in Appendix A, there is a plethora of
di�erent serialization formats for RDF. ¿erefore, it is interesting to note, which serializations (C
2.3.7) can be used for input and for the result of a query.

Issues related to typing and classi�cation of resources are considered when discussing RDFS, OWL
and the ontology awareness

• Topic Maps: Topic Maps [215], as discussed, are an ISO standard for representing “information
about the structure of information resources”. As such, they have several commonalities with RDF,
but are separated in a clearer focus on the application area in which they are intended to be used.
In [28] and [177] use cases and requirements for a upcoming Topic Map query language have been

23

detailed. A large number of these requirements are covered by criteria discussed in other sections
of this survey. However, from previous approaches for the conceptualization of information, Topic
Maps inherit a number of rich modeling concepts that should be supported by a Topic Maps query
language: In contrast to the binary relations of RDF, Topic Maps provide n-ary associations (C
2.4.1) with labeled roles (C 2.4.2) identifying the associated data. As in RDF, association can be
further described by other associations, requiring that the query language supports the querying
of association names (C 2.3.2). Also similar to RDF and XML, which associations can be used for
a certain topic type is not �xed, thus optional sub-queries (C 2.2.10) are o en helpful. ¿ere is a
number of prede�ned associations (C 2.4.3), e.g., for de�ning a sub-class hierarchy similar to RDFS,
some of them with special semantics (e.g., transitivity). Also query languages should support some
of the more advanced concepts of Topic Maps, such as scopes (C 2.4.4), that allow to limit the validity
of an association and facets (C 2.4.5) used to create �lters.
Within Topic Maps, subject identity can be established by the use of subject indicators (also known
subject descriptors). A query language should be able to connect information on the same topic
provided, e.g., from di�erent sources, by querying these subject indicators (C 2.4.6).
As with RDF, there is a number of di�erent proposals for serializing Topic Maps (C 2.4.7), e.g.,
XTM [306], LTM [176], and AsTMa= [27], and it should be noted which of these are supported by a
Topic Maps query language.
One of the most prominent di�erences between Topic Maps and RDF is that essentially in Topic
Maps all “statements” are already rei�ed, i.e., for each association there is a node representing
that association (for more details, [349]. ¿erefore, no special treatment of rei�ed “statements” is
necessary in Topic Maps.

Aside of the concrete aspects of the di�erent representation formalisms, there is a number of features
for a query language that are provided by languages speci�cally designed to be used in a Web context.
Such query languages have to deal with inherent heterogeneity in a global distributed system. Querying
multiple data sources (C 2.5.1) and providingmultiple (o en di�erent) answers to multiple outputs (C 2.5.2)
is just the basis to such querying. ¿e query language should also provide means to reduce the amount
of data being transfered between Web sites, e.g. by limiting the result size (C 2.5.3), support for reduction
queries (C 2.1.5) limiting the answers to what is actually of interest to the user and by supporting for easy
distribution of sub-queries (C 2.5.4) based on the data sources accessed, e.g., by clearly identifying which
parts of a query deal with what data. ¿is relates to the composability of queries (C 2.5.5): O en the result
of one query is to be further re�ned, possibly at another Web site. To maximize interoperability, the query
language should support di�erent output serializations (C 2.5.6) and provide some mechanism for the user
to specify (C 2.5.7) which serialization to choose.

Since data sources are heterogeneous (e.g., w.r.t. the level of structure in the data provided) and may,
in general, contain erroneous or contradicting data, means for vague or approximate query answering (C
2.6.1) and relevance ranking (C 2.6.2) of query answers are o en necessary to deal with Web data sources.
Approximation should be possible not only as in classical information retrieval on the text content of
the data but also on its structure. To some extent, this is already covered by the above discussion, e.g.,
through constructs expressing optional sub-queries that allow for certain variation in the data to be
matched. However, some query languages might provide additional constructs for approximate structure
matching (C 2.6.3). Due to the varying level of structure provided by the data sources, some kind of
text processing can o en not be avoided. ¿erefore, Web query languages might also include classical
information retrieval features as proposed for querying XML data, e.g., in [171] and in the recent extensions
of XQuery and XPath [13]. Such features include full-text queries (C 2.6.4) such as single word-search,
phrase search, ordered multi-word search, and proximity search based on word distance or structure, and

24

word normalization (C 2.6.5), e.g., stemming, stop-word handling, su�x and pre�x removal, or the use of
thesauri, dictionaries or taxonomies.

Data sources are heterogeneous not only with respect to the data representation, but also in their
communication abilities. E.g., some data sources might provide data rather slowly, therefore making it
undesirable to wait with processing that data until all necessary data has actually arrived. In such a case,
an implementation providing progressive processing (C 4.12) of the data can o en provide answers long
before all data has arrived. ¿e dual case are data sources that provide data so rapidly that conventional
techniques for parsing and storing that data (either in memory or in a database) are infeasible. A streamed
(C 4.11) implementation of a query language evaluates queries directly against the stream of incoming
data without requiring expensive data structures to be built.

2.2.1 xml Parent-child relation. Does the query language provide access to the parent-child relation?

2.2.2 xml Sibling relation. Is it possible to query the siblings of a node?

2.2.3 xml Closure relation. Are there means to query the closure of the two base relations parent-child
and sibling.

2.2.4 xml ID/IDREF. Does the query language support the explicit or transparent dereferencing of
ID/IDREF (or similar) linking mechanisms? Possible values for this criterion are: transparent
(i.e., links are automatically resolved and can be queries like parent-child relations), explicit (i.e.,
there is some speci�c construct to be used for following ID/IDREF links), indirectly (i.e., it is
possible to dereference ID/IDREF links but only by querying the actual XML attributes—no speci�c
constructs are provided) and none.

2.2.5 xml,rdf Access by position. Is it possible to access nodes in the structure based upon their absolute
or relative position within the structure? In RDF, this only applies for (sequence) containers.

2.2.6 xml Unordered matching. Is it possible to specify several children for the same node in the XML
structure such that the order among the children is not relevant for �nding a match?

2.2.7 xml Order-preserving result. If the result of a query is a part of the input, is it possible to preserve
the order?

2.2.8 xml Partial queries. Is it possible to specify only partial constraints on the data to be matched by a
query, e.g., allowing for additional children of a node to exist?

2.2.9 xml Total queries. Is it possible to specify that a match must ful�ll exactly the constraint given in the
query, disallowing the existence of additional data.

2.2.10 xml,rdf,tm Optionality. Is it possible to express that certain sub-queries are optional, i.e., that their
result should be included in the total result if they match anything, but if they do not match, the
remainder of the query may still yield result?

2.2.11 xml Construction. Does the query language provide means for constructing new elements and
attributes?

2.2.12 xml XML Schema. Does the query language make use of XML Schema [156, 357, 54] or a similar
schema language such as RELAX NG [122, 123], e.g., for typed queries or type checking of programs
or validation of result?

2.2.13 xml Namespaces. Does the query language support XML namespaces as de�ned in [69, 70]?

25

2.2.14 xml XLink and XPointer. Is there some speci�c support for extended linkingmechanisms as provided
by XLink [142] and XPointer [189, 188, 140, 141]?

2.2.15 xml XInclude. Does the query language allow the construction of compound documents using, e.g.,
XInclude [263]?

2.3.1 rdf Multi-valued properties. Is it possible to query and return properties with multiple values?

2.3.2 rdf,tm Querying property or association identi�ers.. Is it possible to query the identi�ers of properties
or associations, e.g., for �nding properties of properties?

2.3.3 rdf Containers. Does the query language have some provisions for container support, e.g., for
construction of containers, querying a sequence?

2.3.4 rdf Collections. Are there some speci�c constructs for querying and returning collections (de�ned
in [204])?

2.3.5 rdf Rei�cation. Is there some speci�c support for rei�cation in the query language? Such support
can be, e.g., the transparent querying of rei�ed statements or an easy notion for querying and
constructing rei�ed statements.

2.3.6 rdf Quads. Does the query language o�er speci�c support for context or source information
associated with a statement (o en represented as “quads” [327])?

2.3.7 rdf RDF serializations. Which of the di�erent RDF serializations discussed in Appendix A are
supported by the query language and its implementations?

2.4.1 tm Querying n-ary associations. Is it possible to query relations of arbitrary arity?

2.4.2 tm Labeled roles. Is it possible to use roles for querying and construction and to query the role
labels?

2.4.3 tm Prede�ned associations. Does the query language support prede�ned associations such as subclass-
superclass relationship and their special semantics?

2.4.4 tm Scopes. Is their explicit support for scopes in the query language?

2.4.5 tm Facets. Is their explicit support for facets in the query language?

2.4.6 tm Subject indicators. Are (published) subject indicators supported for connecting information
from di�erent data sources?

2.4.7 tm Topic Maps serializations. Which of the Topic Maps serialization formats are supported by the
query language and its implementations?

2.5.1 Multiple data sources. Is it possible to query multiple data sources?

2.5.2 Multiple outputs. Is it possible to generate di�erent answers for sending to multiple Web sites?

2.5.3 Limiting result size. Is there some mechanism for limiting the size of the result retrieved (possibly in
conjunction with an SQL-like o�set construct for paged answer retrieval)?

2.5.4 Sub-query distribution. Does the query language provide convenient means for identifying reason-
able sub-queries for distribution to the data sources, if these provide such a capability?

26

2.5.5 Composability of queries. Is it possible to compose queries?

2.5.6 Output serializations. Which output serializations are supported by the query language? Here, only
general values such as RDF, XML or Topic Maps are given. ¿e di�erent serializations for RDF and
Topic Maps are investigated as criterion C 2.34 and C 2.41.

2.5.7 User-speci�ed serializations. If there are di�erent serializations provided, can the user choose the
serialization (either implicitly by constructing the appropriate serialization directly or by selecting
explicitly the desired output serialization)?

2.6.1 Approximate query answering. Is there a provision in the query language for answering vague or
approximate queries?

2.6.2 Relevance ranking. Does the query language automatically rank answers by their relevance or provide
some means for explicit ranking or scoring of answers?

2.6.3 Approximate structure matching. Does the query language support approximate matching only on
the content or also on the structure of the data?

2.6.4 Full-text queries. Are there means for processing full-text content of the structural data to support,
e.g., word or phrase queries?

2.6.5 Word normalization. If there is some support for full-text and word queries, is it possible to apply
some word normalization such as stemming or normalization based on thesauri before matching?

3.2.3 Evolution and Reactivity

As discussed above, evolution and reactivity are important concepts linked to a query language that
become even more important in the context of the SemanticWeb. ¿ree aspects of evolution and reactivity
are particularly related to query languages (for a more detailed survey, cf. [11]):

2.7.1 Update language. Does the language provide updates or has a related update language been de�ned?

2.7.2 Integrity constraints. Is there some mechanism provided to de�ne and enforce rules that specify
restrictions on how the data can be changed?

2.7.3 Event handling. Is it possible to specify that certain actions should be performed if an event, such as
an update, occurs?

3.3 Semantics

A clear and well-understood formal semantics (C 3.1) enables not only a better understanding of the work-
ings of a query language, but also a certain independence from the actual implementation as queries
written for one implementation of the language should be usable with any other implementation that
follows the semantics. Furthermore, a formal semantics also proved to be very fertile for the develop-
ment of various kinds of implementation-independent optimizations ranging from source-to-source
transformations to operator reordering in logical query plans. ¿ese optimizations have, in contrast to
optimizations on the level of the physical query plan, the advantage that they usually are usually not
speci�c to a single implementations, but rather can be applied to a number of implementations (e.g., with
similar characteristics). Such optimizations o en bene�t from two characteristics of a formal semantics:

27

compositionality (C 3.2) and referential transparency (C 3.3), as these enable “local” optimizations where
the context in which a sub-query occurs does not have to considered. Finally, for any kind of reliable
reasoning (e.g., where also proof traces are to be delivered), a formal and well-understood semantics is
indispensable.

As a reference for implementations and as basis for cost estimations used in query optimization, an
operational semantics (C 3.4) with a rigid mapping into the formal semantics is o en desirable. Such
an operational semantics can, e.g., be provided by means of an abstract machine (C 3.5) together with a
translation from the formal semantics into instructions of that abstract machine.

3.1 Formal semantics. Has a (well-understood) formal semantics been established for the query lan-
guage?

3.2 Compositionality. Is the semantics of the language compositional, i.e., de�ned in such a way that the
semantics of a compound construct is based on the semantics of its parts?

3.3 Referential transparency. Is the semantics of the query language constructs referentially transparent,
i.e., not depending on the context?

3.4 Operational semantics. Has an operational semantics (together with a mapping from the formal
into the operational semantics) been de�ned?

3.5 Abstract machine. Has an abstract machine for the query language been de�ned?

3.4 Formal Properties and Implementation

Aside of a formal semantics, also the status and properties of implementations for a query language is
worth noting. ¿is gives some impression on the capabilities of the query language that are also related to
formal properties such as complexity and completeness.

In the past, in particular for relational databases, two properties have o en be touted to be distinguished
features of query languages in contrast to general purpose programming languages: declarativness (C 4.1),
i.e., that a query language describes what should be result and not how that result can be obtained, and no
computational (Turing) completeness (C 4.2).

[326] de�nes a declarative language as a language where each operation is declarative, i.e., “independent
(does not depend on any execution state outside of itself), stateless (has no internal execution state that
is remembered between calls), and deterministic (always gives the same results when given the same
arguments)” [326]. ¿is de�nition is adopted for the purpose of this survey.

Historically the lack of computational completeness found in many relational query languages such
SQL has been perceived as an advantage both for query writing and query execution and optimization.
Where computational completeness has been required either stored procedures written in some general-
purpose programming language or the embedding of a query language into a host programming language
have been used. However, in the last decade it has been recognized (e.g., during the development of the
latest SQL standard—sometimes collectively referred to as “SQL3”) that computational completeness
actually provides bene�ts in many cases: Embedding in a host language and stored procedures have both
proven to be troublesome with respect to interoperability, performance (in particular for embedding in a
host language) and authoring of queries. In this survey, we therefore also note whether a query language
is computationally complete or not.

In particular for expressive (or even computationally complete) query languages, the issue of scalability
w.r.t. e�ciency is crucial: It should be possible to characterize interesting sub-languages (C 4.3) that can be

28

evaluated with di�erent complexity, such that simple and frequent queries can be evaluated rather quickly,
but queries using more expressive features of the query language might actually take longer. In particular,
it should be noted, whether a polynomial core (C 4.4) has been identi�ed for the query language, i.e., a
sub-language such that all queries written in that language can be evaluated in polynomial (combined)
complexity. O en the evaluation strategies for such sub-languages di�er, therefore an e�cient automatic
classi�cation (C 4.5) of queries in terms of their computational cost is highly desirable.

Additional to the formal properties discussed, this survey also includes a brief overview over the
implementations provided for a query language. ¿e following issues are investigated: number (C 4.6)
of di�erent implementations, status (C 4.7) of the implementation (e.g., prototype, internal production
use, external production use), and support (C 4.8) by major database or Web technology vendors such as
Oracle, IBM, HP, Microso , or large open-source projects such as Apache.

As discussed above, di�erent kinds of implementations of a query language are very desirable in a
Web context with varying application requirements and capabilities of data sources. ¿erefore we note for
each query language whether it has been implementation on top of a database (C 4.9) (i.e., for querying
persistent data where updates are rare and queries are frequent), in an in-memory query processor (C
4.10) (i.e., where both query and data are used once only), and in a streamed (C 4.11) fashion (i.e., where
persistent or continuous queries are evaluated against volatile data). In each of these cases, answers might
be provided once all data has been processed or in a progressive (C 4.12) manner, i.e., as soon as possible.

4.1 Declarativeness. Can the query language be considered declarative following the de�nition from
[326]?

4.2 Computational completeness. Is the query language computationally complete?

4.3 Interesting sub-languages. Have interesting sub-languages been de�ned, e.g., with di�erent complex-
ity characteristics?

4.4 Polynomial core. Has a sub-language with polynomial complexity been proposed?

4.5 Automatic classi�cation. If there are sub-languages with di�erent complexity characteristics, has a
method been proposed to automatically classify queries?

4.6 Number of implementations. How many di�erent implementation have been developed for the
query language?

4.7 Status of implementations. What is the status of these implementations?

4.8 Support. Is there support for the query language by major database or Web technology vendors or
large open-source projects.

4.9 Database implementation. Has the query language been implemented on top of a database?

4.10 In-memory implementation. Has an in-memory processor for the query language been developed?

4.11 Streamed implementation. Has a streamed implementation been provided or considered?

4.12 Progressive implementation. Has a progressive implementation been provided or considered?

29

3.5 Reasoning

Reasoning or the ability to derive additional data based upon the actual data stored in the database has
been an important ability of deductive or logic databases [361, 106] and re�ected in query languages such
as Datalog. Since reasoning is to be considered a de�ning element in the SemanticWeb vision, it is suitable
to ask what kind of reasoning mechanisms query languages to be used in this context provide.

¿e �rst step to reasoning support is the ability to intentionally specify (C 5.1) data, e.g., by means of
rules, views or functions. Although this has already been considered under C 1.6 (‘query modularity’), it
will be noted here again to illustrate where simple derivations of new data are possible. To specify such a
derivation, boolean operators or equivalent constructs are o en used: conjunction (C 5.2, realized, e.g.,
by set intersection), disjunction (C 5.3, realized, e.g., by set union), negation (C 5.4, realized, e.g., by set
di�erence), and quanti�cation (C 5.5, realized, e.g., by relational division). Also being able to specify
optional sub-queries (as discussed in C 2.2.10 (‘optionality’) can ease the speci�cation of derivations.

Based upon derivations as described in the previous paragraph, more powerful reasoning abilities
can be provided. Recursion, in particular, allows the speci�cation of complex derivations such as, e.g.,
the transitive closure of relations or associations. Several forms of recursions are provided by query
languages: general recursion (C 5.6) where rules, views, functions or similar intentional data speci�cations
can be recursive, structural recursion (C 5.7) where some means (e.g., a special operator for computing
the transitive closure of a relation) for recursion along the structure of the data is possible, and transitive
closure only over some prede�ned relations with special semantics (C 5.8).

Together with how to specify inference, it is also necessary to note what inference theory (C 5.9)
is used by a query language (in other words, what kind of reasoning is actually provided). Since the
Web is constantly evolving and the appropriate reasoning may di�er between di�erent domains, some
query languages provide theory extensibility (C 5.10), i.e., provide a well-de�ned interface for adding new
reasoners that either implement a di�erent inference theory or provide additional reasoning abilities for
speci�c domains (e.g., ontology reasoning by a description logics reasoner or temporal reasoning).

5.1 Intensional data speci�cation. Does the query language support the intensional speci�cation of data,
e.g., by means of views?

5.2 Support for conjunctions. Does the query language support the use of conjunctions or similar
operations?

5.3 Support for disjunctions. Does the query language support the use of disjunctions or similar opera-
tions?

5.4 Support for negation. Does the query language support the use of negations or similar operations?

5.5 Support for quanti�cation. Does the query language support the use of quanti�cation or similar
operations?

5.6 General recursion. Is it possible to use general recursion in the query language?

5.7 Structural recursion. Is it possible to traverse the structure of the data recursively (e.g., by means of
a recursive relation descendant in XPath [121])?

5.8 Closure on prede�ned relations. Are there some prede�ned relations that can be traversed recursively
for accessing the transitive closure (e.g., rdfs:subClassOf in RQL [221])?

5.9 Inference theory. What inference theory is used by the query language, if any?

30

5.10 ¿eory extensibility. Is it possible to use di�erent inference theories or to add reasoning abilities for
speci�c domains?

3.6 Ontology Awareness

Aquery language to be used in a SemanticWeb context should be able to incorporate ontologies: Ontologies
can be used to query across data sources with di�erent vocabularies for describing the data by providing a
mediation between these vocabularies. ¿ey can also help to improve the recall of a query by extending
the actual queried terms with semantic information (e.g., related terms, contextual information).

To leverage ontologies for querying, the ontologies and the semantic relations described within have
to be queried. Although recent ontology languages such as RDFS [74] and OWL [271, 343, 35, 304] are
building upon RDF (in that they provide a de�ned set of terms for RDF that allows the de�nition of new
vocabularies), merely support for RDF is not su�cient to be able to access the knowledge contained in the
ontologies appropriately. Rather, a query language has to be aware of the semantics of the terms provided
by RDFS or OWL, e.g., the “is-a” relation (subClassOf relation in RDFS).¿us, the query language can use
the ontology to derive new knowledge about the described instances, e.g., through property propagation.
¿erefore, the querying the data described by the ontology and the ontology (C 6.1.1) itself should be possible
within the same language. ¿e following issues are investigated to classify the level of support for ontology
languages (for this purpose, only RDFS and OWL are considered, since these are the considered by some
of the surveyed query languages):

• RDFS: RDFS [74] provides only a small set of terms for describing vocabularies in RDF. ¿e
semantics of these terms is de�ned in [204]. Some of these terms have speci�c properties, e.g.,
rdfs:subClassOf and rdfs:subPropertyOf are both transitive, others allow a limited form of
reasoning, e.g., if a class C is the range (i.e., the set of possible values) of some property p, written
as an RDF triple �p,rdfs:range,C�, and �x, p, y� (some x has the property pwith value y, then
one can infer that y is an element of class C, i.e., �y,rdf:type,C�.

¿e query languages surveyed here show di�erent support for RDFS (C 6.2.1): Most languages treat
RDFS terms as any other RDF term, i.e., without special consideration. Some languages support
querying the transitive closure (C 6.2.2) of rdfs:subClassOf and rdfs:subPropertyOf, of
which some provide transparent support, others require the explicit speci�cation of the transitive
closure (e.g., by means of a recursive rule, view or function or using a special closure operator). Only
a small number of languages also use RDFS for typing (C 6.2.3), thus providing special constructs,
e.g., to query the extent of a class, and static type checking.

• OWL: Based on previous ontology languages such as DAML+OIL, the recently speci�ed Web
Ontology Language (OWL) [271, 343, 35, 304] is starting to see wide-spread acceptance in academia
and also for certain industrial applications. OWL supports a much larger set of terms for de�ning
and constraining vocabularies. Since the support for OWL is still rather limited (with the notable
exception of OWL-QL [163]), this survey only addresses some general issues related to support for
OWL (C 6.3.1): support for special property classes (C 6.3.2) such as owl:TransitiveProperty or
owl:SymmetricProperty (e.g., when querying properties that are classi�ed as owl:TransitiveProperty
the transitive closure of the property should be used), information propagation (C 6.3.3) for classes in
the subsumption hierarchy (de�ned by rdfs:subClassOf) and for class equivalence, intersection,
etc., and information propagation (C 6.3.4) for individuals (e.g., when using owl:sameAs).

As in the case of RDFS, also OWL can be used for typing (C 6.3.5) the described data.

31

6.1.1 Querying both ontology data and instance data. Does the query language support querying the
ontology data together with the data described by the ontology?

6.2.1 rdfs Support for RDFS. Does the query language support RDFS?

6.2.2 rdfs Transitive closure for subsumption hierarchy. Is it possible to query the transitive closure for the
RDFS subsumption hierarchy (created using rdfs:subClassOf and rdfs:subPropertyOf)?

6.2.3 rdfs Use of RDFS for typing. Is the type system of the query language (at least partially based) on
RDFS and the rdf:type relation?

6.3.1 owl Support for OWL. Does the query language support OWL?

6.3.2 owl Special property classes. Are the classi�cations of properties w.r.t., e.g., transitivity and symmetry,
used for querying?

6.3.3 owl Information propagation for classes. Is information about classes (based on the subsumption
hierarchy and class equivalence etc.) propagated for querying?

6.3.4 owl Information propagation for individuals. Is information about individuals propagated for
querying?

6.3.5 owl Use of OWL for typing. Is the type system of the query language (at least partially based) on
OWL and the rdf:type relation?

3.6.1 Type system

Related to ontologies and schema languages is the issue of typing inWeb query languages. For the purpose
of this survey, we have already introduced two criteria related to typing, viz. the use of ontologies speci�ed
in RDFS or OWL for typing information. For XML, type information can obviously also be provided by
XML schema languages such as XML Schema [156, 357, 54] or RELAX NG [122, 123]. ¿is survey only gives
a brief overview of typing related questions in query languages (following [98]):

6.4.1 Typing. Have typing issues at all been considered for the query language?

6.4.2 Static vs. dynamic typing. Does the query language support static or dynamic typing.

6.4.3 Explicit vs. implicit typing. Is data typed by explicit type declarations or implicitly (e.g., by type
inference as in the statically-typed Haskell or by type inspection as in the dynamically-typed
Smalltalk).

6.4.4 Type inference. Does the query language provide type inference, e.g., to avoid explicit type declara-
tions.

6.4.5 Type coercion. Is it possible to change the type of an expression, either automatically or using, e.g., a
cast operator?

6.4.6 Support for XML Schema simple data types. Both RDF and XML Schema use the same set of “simple”
data types de�ned in [54]. ¿erefore, this criterion notes whether these simple data types are
supported by the query language?

Based upon these 111 evaluation criteria, the following section presents an overview of the evaluation
followed by a short description of the evaluated languages.

32

Chapter 4

Query Languages for the Web: An

Overview

4.1 XML Query Languages

In this chapter, a very brief overview of some XML query languages is provided. For reasons of space and
time, only some of the vast number of XML query languages proposed are considered. In particular, no
visual query are le out for they are hard to evaluate by the evaluation criteria discussed here. Recently,
there has been a number of proposals for combining full-text querying capabilities provided in information
retrieval systems with structured access to XML data. Again, for reasons of space and time, these languages
have not been considered.

4.2 Textual XML Query Languages

4.2.1 Navigational Languages

4.2.1.1 Lorel

Lorel [6] is a query language originally designed for semistructured data (more speci�cally, the language
OEM [303, 180]) that was later adapted to XML data. Its syntax strongly resembles SQL and OQL, but it is
capable of navigating graph structures in a path-like fashion.
Query 10 (Lorel). Select all authors and titles of books written a er 1991 and return them in result

elements contained within a results element.

select xml(results:
(select xml(result:
(select X.author, X.title
from bib.book X
where X.@year > 1991))
))

Lorel is a navigational language with rule-like select-from-where queries. It is capable of querying
several documents and evaluating joins, but order is not considered when querying, as semistructured data
is usually always unordered. Multiple data items can be retrieved by assembling several path selections.
Although the result of a query is a set of object identi�ers (OIDs), XML elements can be constructed

33

using expressions of the form xml(tagname:subexpression). As it descends from OQL, it is capable of
grouping and supports aggregations. Queries can be nested, in which case query and construction are not
separated. Lorel supports a basic type system but is not aware of XML schema information and does not
use type inference.

4.2.1.2 XPath

¿e XML Path Language (XPath) [121] is a W3C recommendation for a selection language whose primary
purpose is to address parts of an XML document. Since it lacks construction and reassembling aspects, it
cannot be considered a full-�edged query language and is thus called a selection language in this thesis.
Many other XML query languages build upon XPath, most prominently XQuery and XSLT.

XPath expressions specify navigation steps within the data tree represented by a document, relative to
a so-called context node (which is initially the root node of the document). An XPath expression consists
of several location steps separated by /, each specifying how to reach a node relative to the previous node’s
position. XPath can thus be considered as a navigational language.

Query 11 (XPath). ¿e following XPath expression selects titles of books with author Dan Suciu and year
attribute with a value greater than 1991:

/bib/book[@year > 1991][author = "Dan Suciu"]/title

Literally, this expression reads: from the root, go to bib elements, from there to book elements for which
holds that the attribute year is greater than 1991 and that contain an author element as child node with a
text value of Dan Suciu, and select all title child nodes.

XPath di�erentiates axes like child, descendant, parent, ancestor or sibling. ¿ese axes can be
classi�ed into forward axes, which contain all such navigations that only move forward in the document
tree and backward axes, which contain all such navigations that only move backward in the document
tree [297]. Since XPath allows both forward and backward axes, evaluation can be very complex and a node
might be visited several times during a selection. However, [297] shows that arbitrary XPath expressions
without variables can be rewritten into equivalent XPath expressions containing only forward axes.

Forward XPath expressions resemble positional pattern, as they no longer specify arbitrary navigations
through the document tree, with the minor exception that a pattern usually does not allow to match the
same node in the document by two di�erent nodes of the pattern:

Query 12 (XPath Forward). In the forward XPath expression

/a[child::b]/*[att="some value"]

the selection * and the child::bmight match the same node in the database:

<a>
<b att="some value"/>

4.2.1.3 XQL

XQL [325, 323] is a variant of XPath that has been proposed and implemented by Microso and others in
lieu of XPath becoming a completed recommendation. It di�ers from XPath only in minor points that are
not relevant to this comparison.

34

4.2.1.4 XSLT

XSLT, the Extensible Stylesheet Language [120], is a language for transforming XML documents. Originally
intended as a powerful style-sheet language, it is o en considered as a query language as well, and the
existence and development of two independentW3C XML query languages is o en criticized. As it was the
�rst available query language for XML, XSLT is very widespread and understood by many programmers.
A multitude of implementations exist (e.g. as part of a standard library for XML processing in Java).

AnXSLT style-sheet is composed of one ormore transformation rules (called templates) that recursively
operate on a single input document. Transformation rules are guarded by patterns, which are expressed in
terms of XPath expressions. ¿e �rst rule whose pattern matches is evaluated, all other rules are ignored.
In contrast to most other query languages, XSLT uses an XML-only syntax:

Query 13 (XSL). Select all authors and titles of books written a er 1991 and return them in result elements
contained within a results element.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/bib">
<results>
<xsl:apply-templates/>
</results>
</xsl:template>
<xsl:template match="book[@year > 1991]">
<result>
<xsl:apply-templates select="title"/>
<xsl:apply-templates select="author"/>
</result>
</xsl:template>
<xsl:template match="title|author">
<xsl:copy-of select="."/>
</xsl:template>
</xsl:stylesheet>

¿is stylesheet is interpreted as follows:

• try to match the root node with the templates in the style-sheets (only �rst template matches)

• create a <results> element and within it try to recursively apply the templates to all child nodes of
<bib>

• for each child node, if the year is greater than 1991, create a <result> element and recursively apply
the rules to the <title> and author children of the context node

• for each <title> and <author> element, copy the complete input to the result.

Like XQuery, XSLT is based on the selection language XPath and thus a navigational language. Since a
template always operates on a single node, neither retrieval of multiple data items nor joins are directly
supported. It is, however, possible to assemble several XPath expressions within a construction pattern.
XSLT always operates on a single input document and is not capable of retrieving data frommore than one
resource. It partly supports ordered/unordered data by using XPath. XSLT allows to construct new data
and grouping, but aggregations are limited to those supported by XPath. Although XSLT is a rule-based
language, it does not really support the separation of construction and querying, as each rule only applies
to a single node. Rules may be called explicitly to form sub-queries, and such calls may be recursive (i.e.
XSLT is Turing complete [229]). XSLT is an untyped language that is unaware of any available schema or
type information.

35

4.2.1.5 XQuery/Quilt

XQuery [57] can be considered the “state-of-the-art” XML Query language as it is the current W3C
recommendation for XML querying and therefore very widespread. XQuery has several predecessors,
of which it resembles most the language Quilt [110], but in�uences from other languages (like XQL and
XML-QL) are re�ected in many constructs.

XQuery queries consist of so called FLWOR (FOR-LET-WHERE-ORDER BY-RETURN) expressions
and use XPath (described above) for the selection of data items. FOR and LET serve to bind variables to
values selected by XPath expressions. Whereas LET binds a variable to a set of data items, FOR iterates over
the di�erent data items in a set. ¿e WHERE part may be used to specify conditions for the selected data
items. ORDER BY has only been introduced recently and allows to order the results in a certain sequence.
RETURNmarks the beginning of a result pattern, which may contain additional XPath selections. XQuery
expressions are enclosed in curly braces and embedded in the construction pattern.

Query 14 (XQuery). Select all authors and titles of books written a er 1991:

<results>
{
FOR $book in document("bib.xml")//book
WHERE $book/@year > 1992
RETURN <result>
{ $book/title }
{ $book/author }
</result>
}
</results>

¿is query iteratively binds the variable $book to all book elements occurring in the document in the FOR
part. ¿e WHERE part ensures that only such books are selected that have an attribute year with a value
larger than 1991. ¿e RETURN part gives a construction pattern that itself again contains subqueries for
selecting the title and authors of the book.

Being based on XPath, XQuery classi�es as a navigational query language. Multiple data items can be
selected only by using multiple XPath expressions. XQuery supports arbitrary nesting of queries as well as
the de�nition of external functions that may contain frequently used subqueries. XQuery is aware of both
schema information and basic types and some implementations support static type checking (e.g. Galax1).
XQuery is not rule-based and heavily mixes querying and construction, making more complex queries
di�cult to read.

4.2.1.6 FXT

¿e language fxt [45], the functional XML transformer, is a transformation language which is similar to
XSLT in that it uses the same kind of pattern-guarded rules to recurse over the input document. However,
fxt aims at optimal performance and thus puts certain limits on patterns and path expressions. Most
importantly, fxt neither supports explicit calling of rules (thus no recursion other than over the document
tree) nor iteration constructs like XSLT’s for-each. However, allows to perform auxiliary computations
by embedding SML expressions in transformation rules.

Query 15 (fxt). Select all authors and titles of books written a er 1991 and return them in result elements
contained within a results element.

<fxt:spec>
<fxt:pat>/bib</fxt:pat>

1http://db.bell-labs.com/galax/

36

http://db.bell-labs.com/galax/

<results>
<fxt:apply/>
</result>
<fxt:pat>//book</fxt:pat>
<fxt:if test=’fromString(Vector2String(getAttribute (String2Vector "year") current))
> 1991’>
<result>
<fxt:apply select="/author"/>
<fxt:apply select="/title"/>
</result>
</fxt:if>
<fxt:pat>//author</fxt:pat>
<fxt:copyContent/>
<fxt:pat>//title</fxt:pat>
<fxt:copyContent/>
</fxt:spec>

fxt is based on the path language fxgrep and thus classi�es as a navigational language. Interestingly,
it allows to select (at most) two data items at once by using so-called binary patterns. ¿e restricted
path language allows neither joins nor to di�erentiate between ordered and unordered queries, and a
transformation always operates on a single input document. fxt allows to construct new elements, but
aggregations and grouping can only be performed by reverting to the underlying functional language SML.
fxt is rule-based but neither allows rule chaining nor separates construction from querying. It supports
basic types but does not take advantage of schema information and performs no type inference outside
SML expressions.

4.2.1.7 XPathLog

LoPiX [269] is an implementation of the XML querying and data manipulation language XPathLog [270].
XPathLog aims at integrating F-Logic with path-based selection in XML documents. Queries in XPathLog
are speci�ed as conjunctions of path expressions in which variables may occur at multiple positions. It
is thus possible to select several nodes in a single selection step. Further queries may refer to variable
bindings. Two elements can be merged by so-called object fusion, which appears to be a mechanism similar
to feature uni�cation. ¿is mechanism can also be used to group elements.

Instead of the transformation approach taken bymost other query languages, where an input document
is transformed into a new output document, XPathLog allows to update existing documents. Updates are
speci�ed by Prolog-like rules where the right-hand part consists of a query and the le -hand part speci�es
how to modify the document.

4.2.1.8 CXQuery

CXQuery, the Constraint XML Query Language [114], is an e�ort to create a declarative query language
with support for schema information. It uses rules similar to Datalog and can use XPath to navigate
the document tree as well as term-based patterns, but apparently, no deep structures are possible (as in
Datalog). Construction is speci�ed by term structures in the head of a rule. Again, nesting does not appear
to be possible.

4.2.2 Positional Languages

4.2.2.1 XML-QL

XML-QL [143] is a positional, rule-based query language for XML and was designed at AT&T Labs. It uses
an XML-based pattern language where variables may occur at arbitrary positions. An XML-QL query
consists of a single CONSTRUCT-WHERE rule which may be divided into several subqueries.

37

Query 16 (XML-QL). Select all authors and titles of books written a er 1991 and return them in result

elements contained within a results element.

WHERE
<bib>
$book
</> IN "bib.xml"
CONSTRUCT <results>
WHERE <book year=$y>
<title>$t</>
<author>$a</>
</book> IN $book, y > 1991
CONSTRUCT <result>
<title>$t</>
WHERE $a2 IN $a
CONSTRUCT <author>$a</>
</result>
</results>

XML-QL patterns are positional, are capable of retrieving multiple data items at once from multiple
sources and evaluate joins over variable name equality. XML-QL does not di�erentiate between ordered
and unordered queries (everything is matched in any order). XML-QL can construct new data, but
grouping can only be achieved by using nested sub-queries (as in the example above). XML-QL supports
aggregations. Queries are rule-based, and sub-queries can be nested into the query rules (as above).
Construction and querying are separated, but this separation is abandoned when using nested sub-queries.
XML-QL is not aware of type information.

4.2.2.2 UnQL

UnQL [93], the Unstructured Query Language is a query language originally developed for querying
semistructured data. UnQL uses a positional, pattern-based selection and a query consists of a single
select ...where ... rule which separates construction from querying. Queries may also be nested, in
which case the separation of querying and construction is abandoned. UnQL uses its own, non-XML
syntax for representing and querying graph-structured data.

Query 17 (XML-QL). Select all authors and titles of books written a er 1991 and return them in result

elements contained within a results element.

select { results: (
select { result: { title: T,
(select { author: A }
where { author: A } in Book)
}
}
where { book: Book } in Bib,
{ year: Y, title: T } in Book) },
Y > 1991
where { bib: Bib } in db

In terms of properties, UnQL is very similar to XML-QL: it uses positional patterns, can retrieve
multiple data items at once and from multiple sources, joins are possible over variable name equality.
However, UnQL can respect the order of data, if desired. Like in XML-QL, construction is possible, but
grouping can only be achieved by using nested sub-queries. Aggregations are supported. Queries are
rule-based, and sub-queries can be nested into the query rules (as in the example above). Construction and
querying are separated, but this separation is abandoned when using nested sub-queries. Like XML-QL,
UnQL is not aware of type information.

38

4.2.2.3 XML-RL

XML-RL [249] is a proposal for a pattern-based query language based on logic programming. Patterns
are expressed by terms that may contain logic variables and may be partly abbreviated with a path syntax
similar to XPath. An XML-RL query program consists of several rules denoted by A
 L1, . . . ,Ln where
A is used for construction and L1, . . . ,Ln are query patterns. Rules may interact via rule chaining and it is
possible to use recursion.
Query 18 (XML-RL). Select all authors and titles of books written a er 1991 and return them in result

elements contained within a results element.
(file:result.xml)
/results/result: (title: $t, {author: $a})

(file:bib.xml)
/bib/book: (@year: $y, title: $t, author: $a), $y > 1991

XML-RL is a positional language, but allows path expressions as abbreviations. It can retrieve multiple
data items from multiple sources and supports joins via variable name equality, as XML-QL and UnQL. It
is not possible to query based on order. XML-RL can construct new data items. Grouping is possible by
means of a special construct {.} and aggregations are supported. Queries programs can be structured by
using more than one rule, and rules may interact via rule chaining. Querying and construction are always
separated. However, computations are usually performed in the query part. XML-RL does not support
type information.

4.2.2.4 XMAS

XMAS [251] part of MIX [30], the XMLMatching And Structuring language, is a declarative, rule-based
query language for XML. Rules are of the form CONSTRUCT ...WHERE ... and resemble XML-QL rules
very closely. However, XMAS provides more powerful constructs for grouping/collection and aggregation,
in a similar way to the grouping construct {.} of XML-RL.
Query 19 (XMAS). Select all authors and titles of books written a er 1991 and return them in result

elements contained within a results element.
CONSTRUCT
<results>
<result>
$T
$A {$A}
</result> {$T}
<results>
WHERE
<bib>
<book year=$Y>
$T: <title/>
$A: <author/>
</>
</> IN "bib.xml"
AND $Y > 1991

Note the grouping expressed by enclosing the collected variables in curly braces. For every instance of $T,
a result element is created. Within every such result element, all authors are collected.

Like XML-QL, XMAS employs positional, rule-based selection, can query multiple data items at once
and from multiple sources. In contrast to XML-QL, joins have to be expressed using an explicit join
operator. XMAS is not capable of querying the order of elements, and does not support incompleteness
in depth. New data can be constructed in rule heads using sophisticated grouping constructs that avoid
nested subqueries. Apparently, aggregations and subqueries are not supported. Construction and querying
is therefore always separated. XMAS is not aware of type information.

39

4.2.2.5 XET/XDD

XET [17], XML Equivalent Transformations, is a pattern-based, rule-based query language for XML aiming
primarily at Semantic Web applications, but also capable of querying generic XML data. XET employs
XML-based patterns enriched with variables for retrieving data items in XML documents. XET rules are
similar to rules in logic programming and support rule chaining. A formal semantics is provided in form
of XDD (XML Declarative Description) and ET (Equivalent Transformations). Unfortunately, there is not
enough information available to express the running example in XET.

4.2.2.6 Xcerpt

Xcerpt [329] is a pattern-based query language for XML inspired by logic programming. It is further
extended in the REWERSE I4 working group following the design principles detailed in [83]. An Xcerpt
program consists of at least one goal and some (possibly zero) rules. Rules and goals contain query and
construction patterns, called terms. Terms represent tree-like (or graph-like) structures. ¿e children of a
node may either be ordered, i.e. the order of occurrence is relevant (e.g. in an XML document representing
a book), or unordered, i.e. the order of occurrence is irrelevant and may be chosen by the storage system
(as is common in database systems). In the term syntax, an ordered term speci�cation is denoted by square
brackets [], an unordered term speci�cation by curly braces { }.

Likewise, terms may use partial term speci�cations for representing incomplete query patterns and
total term speci�cations for representing complete query patterns (or data items). A term t using a partial
term speci�cation for its subterms matches with all such terms that (1) contain matching subterms for all
subterms of t and that (2) might contain further subterms without corresponding subterms in t. Partial
term speci�cation is denoted by double square brackets [[]] or curly braces {{ }}. In contrast, a term
t using a total term speci�cation does not match with terms that contain additional subterms without
corresponding subterms in t. Total term speci�cation is expressed using single square brackets [] or curly
braces { }.

Data Terms represent XML documents and the data items of a semistructured database, and may
thus only contain total term speci�cations (i.e. single square brackets or curly braces). ¿ey are similar
to ground functional programming expressions and logical atoms. A database is a (multi-)set of data
terms (e.g. the Web). A non-XML syntax has been chosen for Xcerpt to improve readability, but there is a
one-to-one correspondence between an XML document and a data term.

Query Terms are (possibly incomplete) patterns matched against Web resources represented by data
terms. ¿ey are similar to the latter, but may contain partial as well as total term speci�cations, are
augmented by variables for selecting data items, possibly with variable restrictions using the construct
(read as), which restricts the admissible bindings to those subterms that are matched by the restriction
pattern, and may contain additional query constructs like position matching (keyword position), subterm
negation (keyword without), optional subterm speci�cation (keyword optional), and descendant (keyword
desc).

Query terms are “matched” with data or construct terms by a non-standard uni�cation method called
simulation uni�cation that is based on a relation called simulation. In contrast to Robinson’s uni�cation
(as e.g. used in Prolog), simulation uni�cation is capable of determining substitutions also for incomplete
and unordered query terms. Since incompleteness usually allows many di�erent alternative bindings
for the variables, the result of simulation uni�cation is not only a single substitution, but a (�nite) set of
substitutions, each of which yielding ground instances of the uni�ed terms such that the one ground term
matches with the other.

Construct Terms serve to reassemble variables (the bindings of which are speci�ed in query terms)
so as to construct new data terms. Again, they are similar to the latter, but augmented by variables (acting

40

as place holders for data selected in a query) and the grouping construct all (which serves to collect all
instances that result from di�erent variable bindings). Occurrences of allmay be accompanied by an
optional sorting speci�cation.

Example. Le : A query term retrieving departure and arrival stations for a train in the train document.
Partial term speci�cations (partial curly braces) are used since the train documentmight contain additional
information irrelevant to the query. Right: A construct term creating a summarised representation of
trains grouped inside a trains term. Note the use of the all construct to collect all instances of the train
subterm that can be created from substitutions in the substitution set resulting from the query on the le .

travel {{
train {{
departure {{
station { var From } }},
arrival {{
station { var To } }}
}}
}}

trains {
all train {
from { var From },
to { var To }
}
}

Xcerpt also provides means for de�ning (possibly recursive) rules. Based upon these ability, an library
of view de�nitions for convenient querying of RDF (and Topic Maps) is currently in development.

4.3 RDF Query Languages

4.3.1 SquishQL-family

4.3.1.1 SquishQL

SquishQL [282, 281] is an RDF query language that has been developed with ease-of-use and similarity to
SQL as main principles. It has been implemented in at least three di�erent processors, most notably in a
slightly modi�ed and further re�ned version, named RDQL, in the Jena Toolkit [190].

Essentially, SquishQL aims at a more intuitive, easy-to-use and fast-to-learn means for accessing RDF
triples than provided by general-purpose RDF APIs. ¿is aim also leads to a certain restriction with
respect to the supported features.

¿e SquishQL query model is in�uenced by [196] and uses so-called “triple patterns” and conjunctions
of these “triple patterns” to specify the structure of the RDF graph to be matched by the query. As stated
in [282] “this results in quite a weak pattern language but it does ensure that in a result all variables are
bound.”

To give an impression of the syntax used by SquishQL, the following example showsQuery 1 formulated
in SquishQL:

SELECT ?essay, ?author, ?authorName
FROM http://example.org/books
WHERE (?essay, <rdf:type>, <books:Essay>),
(?essay, <books:author>, ?author),
(?author, <books:name>, ?authorName)
USING books FOR http://example.org/books#,
rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

Since RDQL is based on andmostly identical to SquishQL, refer to Section 4.3.1.3 for more information
on this language family.

41

Project page:
– (Inkling: http://swordfish.rdfweb.org/rdfquery/, RDFStore: http://rdfstore.sourceforge.
net/)

Implementation(s):
Inkling [281], Jena Toolkit—RDQL [334, 332, 333], RDFStore [319]

Online demonstration:
http://demo.asemantics.com/rdfstore/www2003/

4.3.1.2 rdfDB Query Language

rdfDB [195] is an early proposals for an RDF data base that in�uenced the design of, among others,
SquishQL and RDQL (cf. Section 4.3.1.3). [152] gives an introduction into rdfDB, more details on the
query language can be found in [195].

¿e syntax of rdfDB is SQL-like and as in SQL several di�erent database commands can be executed
in a single session, although no transactions management is provided. Aside of commands for creating
databases, inserting and deleting triples, and de�ning namespaces, the core element of the rdfDB syntax is
the select-from-where clause. As all database commands such a clause is delimited by a </> and returns
bindings for any number of variables speci�ed a er the select such that the pattern speci�ed in the where
clause matches in the database given in the from part.

For illustration of rdfDB consider again Query 1 and a possible implementation of that query in
the rdfDB query language (assuming the content of http://example.org/books has been stored in a
database called booksdata):

enter namespace xmlns:books http://example.org/books# </>
enter namespace xmlns:rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# </>
select ?essay, ?author, ?authorName from booksdata
where (rdf:type ?essay books:Essay), (books:author ?essay ?author),
(books:name ?author ?authorName) </>

rdfDB is considered in�uential on the design of SquishQL and RDQL discussed in this section, but the
development seems to have been halted. Nevertheless, an early implementation of rdfDB is still available
from the project page.

Project page:
http://www.guha.com/rdfdb/

Implementation(s):
prototype available from the project page

Online demonstration:
none

4.3.1.3 RDQL

RDQL, RDF Data Query Language, is a query language for RDF models developed by Andy Seaborne at
HP and recently submitted to theW3C as candidate for standardization [332,282,334,333]. It is an evolution
from several languages, inspired by the work in [196]: rdfDB [195], SquishQL [282], and Inkling [281].

42

http://swordfish.rdfweb.org/rdfquery/
http://rdfstore.sourceforge.net/
http://rdfstore.sourceforge.net/
http://demo.asemantics.com/rdfstore/www2003/
http://www.guha.com/rdfdb/

As SquishQL RDQL does not support the special meaning provided by the RDF schema level, although
at least one of its implementations (viz. in the Jena Toolkit [190]) provide a transparent transitive closure
over the subsumption hierarchies de�ned in RDFS using rdfs:subClassOf or rdfs:subPropertyOf.

A typical RDQL query has a syntax which is reminiscent of SQL, but which is built around a set of
conjuncted triple patterns, i.e. triples of constants or variables, which are resolved on the graph. Such a
process binds the variables to node or property labels, which are URIs and constants, and the result of
the query is a subset of those bindings. Additional constraints on variable values can be used to �lter the
result. For instance, the query:

SELECT ?person
FROM http://somewhere.org/some-rdf-model-of-people
WHERE (?person, <http://example.org/peopleInfo#age>, ?age)
AND ?age > 24

returns the URIs of persons whose age is greater than 24.
SELECT is the only language statement, and its syntax is easily described:

SELECT variables (identi�es the variables whose bindings are returned)
FROM model URI
WHERE list of triple patterns
AND boolean expression (the �lter to be applied to the result)
USING name FOR uri, ...

¿e last clause allows the simpli�cation of queries by introducing names for long URIs. For instance,
the previous query can be rewritten as:

SELECT ?person
FROM http://somewhere.org/some-rdf-model-of-people
WHERE (?person, info:age, ?age)
AND ?age > 24
USING info FOR <http://example.org/peopleInfo#>

¿e language is maintained intentionally simple, operating only on the “data” level of RDF, so that
it could be easily amenable to standardization as a “low-level” RDF language, which relies on higher
level services to make use of rules or inference facilities. As the author explicitly states, “if a graph
implementation provides inferencing to appear as ‘virtual triples’ (i.e. triples that appear in the graph but
are not in the ground facts), then an RDQL will include those triples as possible matches in triple patterns”,
so that no distinction is made between inferred triples and ground triples [332].

¿is language philosophy, moreover, has the e�ect that the prede�ned properties which describe
semantic oriented or “schema” aspects of a model, like type, set or class relations, are treated as ordinary
properties, leading to cumbersome complex queries when those aspects are involved (like, for instance,
a query to return all the elements of a container). ¿is problem, too, could be solved by using other
specialized wrappers around a model.

In the following, we will consider the main aspects of the language according to the classi�cation
criteria previously shown.

Easy of use ¿e queries are fairly simple to write and understand, although the language has no visual
syntax. Its support of the “natural” graph RDF model, with the simple triple patterns, and a SQL-like
syntax, make the language easy to grasp, even for persons non experts of all the intricacies of the semantic

43

web languages and models. Due to the language simplicity, no modularization or extension mechanisms
exist for writing complex queries, but the language can be used inside the Java programming language,
even mixing it, at a certain extent, with low-level calls to the model’s API.

Functionality—Query Types ¿e language supports only selection and extraction, since the result of a
query is a set of bindings based on triple patterns matching and �ltering: no kind of “data restructuring” is
possible, nor the building of new data. Only the basic data level of RDF is supported, and the programmer
must cope with the specialized constructs of the framework like containers, rei�cation, optional properties,
as they were ordinary properties. For instance, the following query extracts all the elements from the bag
(a kind of container) identi�ed by http://somewhere.org/bag1.

SELECT ?y
WHERE (<http://somewhere.org/bag1>, ?x, ?y)
AND ! (?x eq rdf:type && ?y eq rdf:Bag)

¿e �lter part is necessary to eliminate from the result the triple which simple states that the resource
is a bag (i.e. has the property rdf:type equal to rdf:Bag). Queries cannot be compound, and have a
single input and output. ¿e �ltering part allows the use of simple types URIs, strings, numbers, booleans
and the null value, with the corresponding operators. ¿e negation can be used (like in the previous
example). On the other hand, the list of triples are only positively conjuncted: no disjunction, negation or
optional matching is allowed. ¿is, while severely limiting the expressive power of the languages, has the
consequence that a query result is always a set of bindings of values to variables (and not, for instance,
subgraphs). Another important limitation is that, although a variable can be bound to a blank node, there
is no way to specify in a triple that a node is a blank one, neither with a literal nor with a variable. So,
for instance, it is not possible to ask a query which returns all the blank nodes of a graph. No form of
recursion or iteration is allowed: only paths of de�nite lengths can be queried by listing explicitly all the
triples forming the path. Finally, no modi�cation to the data can be carried through the language.

Considering the sample queries from Section 3.2, only the �rst two queries can be expressed in RDQL.
Query 1 could be formulated (exactly as in SquishQL above) as

SELECT ?essay, ?author, ?authorName
FROM http://example.org/books
WHERE (?essay, <books:author>, ?author),
(?author, <books:authorName>, ?authorName)
USING books FOR http://example.org/books#,
rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

Note that everything with an author is considered to be an essay. Otherwise we should add a triple
pattern like the following: (?essay, rdf:type, books:Essay) if each book is classi�ed as an element of
books:Essay. Since RDQL is not ontology-aware and no recursion or other mechanism for computing
the transitive closure of the subsumption hierarchy is available, it is not possible to select all resources
classi�ed as an element of some class that is a sub-class of books:Essay.

For Query 2 a similar problem arises. A �rst version in RDQL could be

SELECT ?property, ?propertyValue
FROM http://example.org/books
WHERE (?essay, <books:book-title>, "Bellum Civile")
(?essay, ?property, ?propertyValue),
USING books FOR http://example.org/books#

Note that a property value could be a node with other properties: however, since no recursive mechanism
is available in the language, we cannot express a transitive closure of all such properties.

44

http://somewhere.org/bag1

As part of the RDQLPlus (http://rdqlplus.sourceforge.net/) implementation of RDQL, an lan-
guage extension called RIDIQL [373] is de�ned providing both updates and transparent use of the inference
abilities of the underlying Jena Toolkit [190].

Semantics No formal semantics has been published for RDQL.

Complexity and implementation ¿e RDQL has several implementations, of which a well known one
is that found in the comprehensive Jena package for semantic web developed in Java at HP Labs [190]. It
can work both with an in-memory representation of an RDF model, as well as, for high scalability, with
a database based one (currently for MySql, Oracle E, Postgres). ¿e database representation allows for
e�cient retrieval of triples by storing them in denormalized tables. ¿e table �elds are indexed so that the
pattern matching engine can retrieve the triples by using the constants as keys for the search. On the other
hand, the �ltering part of the query is evaluated in memory on the resulting tuples. Such an approach,
while not maximizing the performances of the system, allows the query engine to be implemented with
limited complexity.

No formal complexity study of the language has been published so far.

Reasoning No reasoning mechanism is present in the language.

Ontology awareness As already speci�ed, the language ignores every kind of ontological aspect, includ-
ing typing mechanisms. If such aspects must be considered, they must be treated like all the user-de�ned
data.

Project page:
http://www.hpl.hp.com/semweb/rdql.htm

Implementation(s):
Jena Toolkit [190], RAP (RDF API for PHP) [292], PHP XML Classes (http://phpxmlclasses.
sourceforge.net/), RDFStore [319], Rasqal RDFQuery Library (http://www.redland.opensource.
ac.uk/rasqal/), Sesame (http://www.openrdf.org/index.jsp), 3store (http://sourceforge.
net/projects/threestore/, cf. [202]), RDQLPlus (http://rdqlplus.sourceforge.net/)

Online demonstration:
using Sesame: http://www.openrdf.org/demo.jsp
using RAP: http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom_rdql_test.php
using RDFStore: http://demo.asemantics.com/rdfstore/www2003/

4.3.1.4 BRQL

BRQL [315] has been recently developed by members of the W3C “RDF Data Access” Working Group as
an extension of RDQL [332] aligned with the requirements and use cases detailed in [124]. It is still a very
early dra and constantly being improved, therefore this evaluation can only give an impression of the
current status.

Several features missing from RDQL but identi�ed as interesting or necessary for an RDF query
language in [124] are added, most notably:

• ¿e ability to construct a (single) new RDF graph using the CONSTRUCT keyword. ¿e new graph
can be speci�ed with RDQL triple or graph “patterns”.

45

http://rdqlplus.sourceforge.net/
http://www.hpl.hp.com/semweb/rdql.htm
http://phpxmlclasses.sourceforge.net/
http://phpxmlclasses.sourceforge.net/
http://www.redland.opensource.ac.uk/rasqal/
http://www.redland.opensource.ac.uk/rasqal/
http://www.openrdf.org/index.jsp
http://sourceforge.net/projects/threestore/
http://sourceforge.net/projects/threestore/
http://rdqlplus.sourceforge.net/
http://www.openrdf.org/demo.jsp
http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom_rdql_test.php
http://demo.asemantics.com/rdfstore/www2003/

• A query using the DESCRIBE clause returns the “description” of resources matched by the query part
of the expression. ¿e exact meaning of “description” is not yet de�ned.

• In contrast to RDQL, BRQL supports convenient querying for “quads”, i.e., triples with context
information such as source attribution.

• BRQL provides the keyword OPTIONAL to specify triple or graph “patterns” that should be attempted
to match but where failure to match does not cause a query solution to be rejected.

• Finally, also a means for testing the non-existence of tuples is added to the language.

For illustrating the capabilities of BRQL, consider again Query 1. But additionally we also would like
to return any translator of book, if there is any. ¿is can be expressed in BRQL as

SELECT ?essay, ?author, ?authorName, ?translator
FROM http://example.org/books
WHERE (?essay books:author ?author),
(?author books:authorName ?authorName)
OPTIONAL (?essay books:translator ?translator)
USING books FOR http://example.org/books#,
rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

¿anks to the addition of the CONSTRUCT clause, also restructuring and non-recursive inference queries
can be expressed. Query 4 can be implemented by the following expression

CONSTRUCT (?y books:authored ?x)
FROM http://example.org/books
WHERE (?x books:author ?y)
USING books FOR http://example.org/books#

and Query 9 by

CONSTRUCT (?x books:co-author ?y)
FROM http://example.org/books
WHERE (?book books:author ?x)
(?book books:author ?y)
AND (?x neq ?y)
USING books FOR http://example.org/books#,

Project page:
http://www.w3.org/2004/07/08-BRQL/

Implementation(s):
none

Online demonstration:
none

4.3.1.5 TriQL

TriQL [56] is under development at the Freie Universität Berlin, German, and aims to extend RDQL to
query named graph as introduced in TriG [55] by the authors of TriQL. ¿e reasoning for introducing
named graphs in the RDF data model is given in [101].

¿e use of named graphs allows, e.g., the grouping of assertions by source or author. ¿en a query
such as “Get all books with rating above a threshold of 5. Use only information, that has been asserted by
Marcus Tullius Cicero.” can be formulated as

46

http://www.w3.org/2004/07/08-BRQL/

SELECT ?books
WHERE ?graph (?books books:rating ?rating)
(?graph swp:assertedBy ?warrant)
(?warrant swp:authority <http://people.net/cicero>)
USING books FOR http://example.org/books#,
swp FOR <http://www.w3.org/2004/03/trix/swp-1/>

Project page:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

Implementation(s):
none

Online demonstration:
none

4.3.2 Query Languages influenced by XPath, XSLT or XQuery

In this section, a number of query languages are discussed that have been in�uenced or are extensions
of existing XML query languages developed by the W3C. Some of these approaches (viz. [324, 350, 366])
can be implemented directly on top of theses languages merely de�ning some extension functions and
data normalization to be applied before querying. ¿e others propose query languages for RDF that are in
spirit and syntax similar to the XML query languages mentioned above.

4.3.2.1 XQuery for RDF: “The Syntactic Web” Approach

During the initial development on XQuery 1.0 [57], Jonathan Robie et al. proposed in a series of articles
[321,324] the use of XQuery for processing RDF.¿e issue of normalizing RDF before querying is discussed
in detail (cf. Section A.3.4). Based on a suitable normal form (essentially statements are considered as
triples but statements with same subject are grouped), it is shown how XQuery can be used to query such
normalized RDF.

Support for the special semantics of the properties de�ned in RDFS is added by means of several
functions. E.g., the function rdf:instance-of-class computes the sequence of all resources (represented
by their description element) that are an instance of a given class or any of its sub-classes. ¿is is achieved
by the following recursive function de�nition (the �rst parameter is the set of resources on which to
operate):

define function
rdf:instance-of-class($t as element(description)*,
$base-name as xs:string)
as element(description)*
{
$t[rdf:type = $base-name],
for $i in $t[rdfs:subClassOf = $base-name]
return rdf:instance-of-class($t, string($i/@rdf:about))
}

Using this function, Query 1 could be formulated (assuming an appropriate normalization has been
applied to the RDF data) as:

let $t := document("http://example.org/books")//description
for $essay in rdf:instance-of-class($t, "books:Essay"),
$author in $t[rdf:about = $essay/books:author]

47

http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

return
<result>
{$essay, $author}
</result>

¿e result of such a query is a sequence of result elements containing an essay and one of its author. ¿e
name of the author does not need to be queried speci�cally, since that information is already provided as
part of the description of the author selected in the $author variable. ¿e query also illustrates that the
approach of implementing RDF querying on top of an XML query language has the virtue of being able to
return the result of an RDF query in an arbitrary XML format.

¿e approach also covers the normalization and querying of Topic Maps. Similar to RDF specialized
functions are de�ned to support the speci�cities of the Topic Maps data model, e.g., the following function
computes all derived classes de�ned in a Topic Maps:

define function tm:get-derived-classes($topics as element(topics)*,
$derivations as element(associations)*, $base as element(topic))
as element(topics)*
{
let $a := tm:get-association-by-topic-role($topics,
$derivations, $base, "superclass")
for $subclass in tm:get-topic-playing-role($topics,
$a, "subclass", ())
return (
$subclass,
tm:get-derived-classes($topics, $derivations, $subclass)
)
}

Project page:
none

Implementation(s):
can use any XQuery implementation, however function library has not been made available, some
functions are given in [324].

Online demonstration:
none

In [305] it is strongly argued that a uni�ed model of RDF and XML data and a query language based
upon such amodel is essential for the success of the SemanticWeb vision. It is demonstrated, that although
the RDF and XML data models di�er in some points, a common model theoretic interpretation of RDF
and XML data is possible. However, no query language has been proposed based upon this work.

Recently, some information about another approach for extending XQuery for RDF querying, called
REX “RDF Extensions to XQuery”, has been discussed in the W3C Data Access Working Group (cf. [338]).
¿is approach seems to be similar to the one discussed above, however RDF statements are generated
on-demand by a speci�c function related(subject, predicate, object). Also no support for RDFS seems to
be provided yet. Due to lack of information this extension is not considered further in this survey.

4.3.2.2 XsRQL: An XQuery-style RDF Query Language

XsRQL (XQuery-style RDF Query Language) [222] is a very recent proposal for a RDF query language
that borrows from XQuery 1.0 [57], both with respect to the syntax and the design approach. ¿e main
objectives of the language design are simplicity and �exibility. In particular, the language aims at providing

48

a syntax �exible enough to allow both the writing of rather simple, concise and more complex but also
more expressive queries.

At the core of the proposal are two main di�erences from XQuery:

• ¿e data model should be adapted to the speci�cities of RDF. ¿e current dra is rather vague on
this point. Some issues can be inferred from the examples given.

• ¿e path language used for accessing and selecting nodes in the data structure has been adapted to
the RDF data model: Essentially the same syntax as for XPath is used, however only the child axis
is supported. Properties are separated from subjects and objects by using the attribute indicator @
from XPath. However, in contrast to XML attributes, the values (i.e., objects of statements) of RDF
properties are not simple, but rather structured values. ¿erefore a er an property further steps
may follow in a path expression.

Consider once again Query 1. In XsRQL that query could be stated as

declare prefix books: = <http://example.org/books#>;
declare prefix rdf: = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;
for $essay in datasource(<http://example.org/books>)//*[@rdf:type/books:Essay],
$author in $essay/@books:author/*
return
$essay, $author, $author/@books:authorName/*

As XsRQL currently neither supports a closure operation, a descendant-like operator or some other
means of traversing an arbitrary-length path in the data structure, it is not possible to return also resources
classi�ed by any sub-class of books:Essay.

Project page:
http://www.fatdog.com/xsrql.html

Implementation(s):
none

Online demonstration:
none

4.3.2.3 XSLT for RDF: TreeHugger and RDF Twig

Similar in spirit to the approaches discussed in Section 4.3.2.1, TreeHugger [350] allows the querying and
transformation of RDF data in XSLT. However, in contrast to [324] (and due to limitations of XSTL 1.0),
the normalization is performed by means of XSLT extension functions and not by an XSLT program. Also
the normal form of RDF used for querying is based on the RDF striped syntax [73], but properties are
represented both as XML elements and as attributes (raising some problems for multi-valued properties).
¿ree extension functions are provided, one for loading an mere RDF document, one for loading an RDF
document and handling the special vocabulary de�ned by RDFS, and one for loading an RDF document
and handling the vocabulary of both RDFS and OWL.

For accessing nodes in an RDF document XPath is used with a special pre�x inv that allows querying
the inverse of a property.

Query 1 could be expressed by the following XSLT stylesheet with TreeHugger extensions:

49

http://www.fatdog.com/xsrql.html

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:books="http://example.org/books#"
xmlns:th="http://rootdev.net/net.rootdev.treehugger.TreeHugger"
xmlns:rdfs="http://www.w3.org/2000/01/rdf�schema#"
xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
xsl:version="1.0">
<!-- Load RDF document -�
<xsl:variable name="doc"
select="th:documentRDFS(’http://example.org/books’)" />
<xsl:for-each select="$doc/books:Essay">
<xsl:for-each select="books:author/*">
<result>
<xsl:value-of select="inv:books:author" />
<xsl:value-of select="." />
<authorName>
<xsl:value-of select="books:authorName/*" />
</authorName>
</result>
</xsl:for-each>
</xsl:for-each>
</results>

Project page:
http://rdfweb.org/people/damian/treehugger/

Implementation(s):
available from the project page

Online demonstration:
http://swordfish.rdfweb.org/discovery/2003/09/treehugger/

In [366], another approach of extending XSLT 1.0 with functions for querying RDF, called RDF Twig,
is described. In contrast to the previously discussed proposals, it provides di�erent views on the RDF
data corresponding to redundant or non-redundant (i.e., where nodes that are reachable by various paths
are repeated, resp. not repeated) depth or breadth �rst traversals of the RDF graph. Furthermore, two
query mechanisms are provided: A small set of logical operations on the RDF graph (also used in the
example below) and an interface to the RDQL query engine provided by the Jena Toolkit [190] used for
implementing RDF Twig.

To give a feeling for the language, we consider once more Query 1 and how it can be realized in this
query language:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
xmlns:rt="http://nwalsh.com/xslt/ext/com.nwalsh.xslt.saxon.RDFTwig"
xmlns:twig="http://nwalsh.com/xmlns/rdftwig#"
xmlns:books="http://example.org/books#"
xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#">
<xsl:template match="/">
<xsl:variable name="model"
select="rt:load(’http://example.org/books’)"/>
<!-- this is used as default model from now on-�
<xsl:variable name="pType"
select="rt:property(’http://www.w3.org/1999/02/22�rdf�syntax�ns#’,’type’)"/>
<xsl:variable name="essays"
select="rt:find($label, ’books:Essay’)"/>
<xsl:variable name="tree"
select="rt:twig($essays)/twig:result"/>
<results>
<xsl:for-each select="rt:find($label, ’books:Essay’)">
<result>
<xsl:value-of select="rt:twig(.)" />
<xsl:value-of select="rt:twig(.)/twig:result/books:author" />
</result>

50

http://rdfweb.org/people/damian/treehugger/
http://swordfish.rdfweb.org/discovery/2003/09/treehugger/

</xsl:for-each>
</results>
</xsl:template>

For simplicity, only essays and authors are considered, the names of the authors will be returned as well, as
they are reachable from the associated essay and rt:twig(.) returns all information reachable from the
current essay (in this case). RDF Twig does not support RDFS or OWL, therefore only resources classi�ed
directly as books:Essay will be considered by this query.

Project page:
http://rdftwig.sourceforge.net/

Implementation(s):
available from the project page

Online demonstration:
none

4.3.2.4 RDFT and Nexus Query Language: XSLT-style RDF Query Languages

RDFT As XsRQL is modeled a er XQuery, RDFT [136] is a dra proposal closely related to XSLT 1.0. As
XSLT 1.0 it uses templates that are matched recursively against the data structure. Naturally, the structural
recursion is performed against an RDF graph, raising issues with cyclic graph structure that are still open
issues in the development of RDFT.

RDFT uses an adaptation of XPath for querying RDF graphs, called NodePath. As in most of the other
approaches oriented on XML query languages, a striped view of RDF [73] is adapted where properties and
other resources alternate. No provision for querying data described with RDFS or OWL is made.

Only a subset of XSLT elements is supported, but a macro mechanism is introduced as illustrated in
the following implementation of Query 1 in RDFT:

<rt:stylesheet rt:version="1.0" xmlns:rt="http://purl.org/vocab/2003/rdft/">
<rt:macro-set rt:prefix="rdf">
<rt:macro name="type"
value="resource(’http://www.w3.org/1999/02/22�rdf�syntax�ns#type’)/resource()"/>
</rt:macro-set>
<rt:root-template>
<rt:apply-templates
rt:select="/resource()[rdf:type = resource("http://example.org/books#Essay")/>
</rt:root-template>
<!-- Template for the Essay
<rt:template pattern="resource()[rdf:type =
resource(’http://example.org/books#Essay’)" />
<xsl:value-of select="." />
<rt:apply-templates
rt:select="resource(’http://example.org/books#author’)/resource()/>
</rt:template>
<!�� Template for the author ��
<rt:template
pattern="resource(’http://example.org/books#author’)/resource()">
<xsl:value-of select="." />
</rt:template>
</rdft:stylesheet>

Again, for simplicity, only books and their authors are returned without considering the names of the
authors. Also note, that the speci�cation is not really clear what the result of such a query will be: an XML
tree or some form of an RDF graph. ¿e description of rt:element seems to indicate the former, the
description of rt:value-of the latter.

51

http://rdftwig.sourceforge.net/

Project page:
http://www.semanticplanet.com/2003/08/rdft/spec

Implementation(s):
none

Online demonstration:
none

Nexus Query Language In [3] another approach for querying RDF (and some form of XML) using an
XSLT-like language is sketched. ¿e basic idea is to translate both RDF/XML and also some non-RDF
XML documents into a hierarchy of elements (that also carry some attributes) based upon the relations
between the elements. ¿e result of a query is then some (also hierarchical) view over this element tree. [3]
gives no consideration w.r.t. cyclic relations among elements but the language used seems to indicate that
only proper hierarchies can be represented.

RDF statements are mapped to nodes in the data model in the following way: nodes in the graph
represent RDF properties; an RDF statement �S,P,O� is represented by edges from all nodes representing
some property with the value S to a node representing the property P with value O. A resource that never
occurs as object is assigned as value to a special property called query:seed. [3] seems to indicate that
there can be only one such query:seed node, an assumption that is clearly invalid for general RDF graphs.

¿e query language provides means for matching such property nodes based on the identi�er (repre-
sented as URI or XML QName) of the property and the type (as determined by an rdf:type statement)
of the value of the property.

Consider again Query 1 and the following Nexus query that implements the query:

<query:plan>
<query:template match="query:seed" type="books:Essay">
<query:call name="query:insert" rename="book">
<query:call name="query:format" rename="title"
value="book:title" />
<query:call name="query:traverse" />
</query:call>
</query:template>
<query:template match="book:author">
<query:call name="query:insert" rename="author">
<query:call name="query:format" rename="name"
value="book:authorName" />
</query:call>
</query:template>
</query:plan>

An excerpt of the result of this query on the sample data from Figure 2.1 would be:

...
<book title="Bellum Civile">
<author name="Julius Caesar" />
<author name="Aulus Hirtius" />
</book>...

Obviously, the syntax is rather verbose and does not inherit the ability of XSLT to write arbitrary XML
as content of an element. Furthermore, the development of the language seems to be stalled as the only
information available on this language is the rather short and o en vague report cited above [3].

Project page:
none

52

http://www.semanticplanet.com/2003/08/rdft/spec

Implementation(s):
not publicly available, no report on any implementation

Online demonstration:
none

4.3.2.5 XPath-syle Access to RDF: RDF Path, RPath and RxPath

Several mostly sketchy proposals [352, 137,302,267]for adapting the XPath-style navigational access to RDF
graphs have been published in recent years. For this survey, two representative ones have been selected,
viz. “Pondering RDF Path” by Sean Palmer and RPath [267], a language designed in the context of device
independence and content adaptation.

RDF Path In [302], a sketch of an RDF Path language is proposed that is closely aligned with XPath. ¿e
aim of this language is to provide clear equivalents for the XPath facilities such as selection of context
nodes, �ltering and location steps, but operating on RDF data. ¿e syntax is similar to XPath but extended
by special node-tests for RDF, such as arc() and subj() for selecting all arcs, resp. all subjects in the RDF
data. Several aspects of XPath not relevant for RDF are dropped. Only basic navigational features are
provided, functions and testing of values is mostly not considered in this early dra . Finally, as in most of
the approaches based on XML query languages, the fact that, in contrast to XML trees, RDF graphs are
not rooted is not considered.

As XPath, this language is not capable to select related information as in Query 1. ¿erefore a slightly
variation of Query 2 is used to illustrates its abilities: “Select the names of all authors of historical essays
with the title ‘Bellum Civile’.”. ¿is query can be realized by the path expression

*[rdf:type/books:Historical_Essay books:title/"Bellum Civile"]/
books:author/*/books:authorName

Appropriate mappings for the pre�xes used in the query have to be established before evaluating the
query (this is also the case in XPath). Also note that due to the lack of support for the special seman-
tics of the vocabulary provided by RDFS, this query will only return resources directly classi�ed as
books:Historical_Essay.

Project page:
http://infomesh.net/2003/rdfpath/

Implementation(s):
none

Online demonstration:
none

RPath [267] is a new RDF query language which is based on the path navigation principle known from
XPath. In fact, themajor design idea behind RPath is to provideXPath for RDF. In its current state, however,
it focuses strongly on CC/PP and UAProf, two RDF applications for describing device characteristics like
color capable, color depth, or screen resolution. CC/PP is the general framework for those device pro�les,
whereas UAProf is a speci�c vocabulary focused on (but not limited to) mobile devices.

53

http://infomesh.net/2003/rdfpath/

As RPath navigates through RDF data using paths, it views this data as graph, not as triples. ¿e
concepts of the language resemble very much that of XPath, that is, location steps, vertex-edge-tests
(corresponding to node-tests in XPath), and predicates. Di�erences to XPath are due to the di�erences
between the data models of XML and RDF, for example: ¿e axes can follow a path along vertices (RDF
predicates) and edges (RDF subjects and objects). ¿e adaptation of most XPath concepts to the RDF data
model is straightforward. One major di�erence, however, is the absence of a root node in the RDF graph,
and the question of �nding a start point for the path expression remains an open topic.

On the other hand, the (current) focus of RPath lies on CC/PP and UAProf, which limit RDF graphs to
rooted two-level trees. ¿e language itself does not o�er any CC/PP-speci�c or UAProf-speci�c features,
all of it can be used to query generic RDF graphs. ¿e implementation of the prototype, however, is
capable of handling the protocol speci�ed by CC/PP, including default pro�les and pro�le di�s, as well as
the data types de�ned by UAProf.

¿e authors of RPath claim its ease of use as the main advantage. As XPath already enjoys widespread
use in the XML world, the learning curve for RPath should be shallower than that for other RDF query
languages for potential users. Another advantage is the tight coupling with CC/PP and UAProf, which
should make RPath suitable to be used in device independence-applications.

RPath has been developed at Keio University, Japan, by Keita Matsuyama, Michael Kraus, Kazuhiro
Kitagawa (Activity lead for the W3C Device Independence), and Nobuo Saito. Currently, development
has been halted.

To convey an impression of the languages capabilities and syntax, the same variation of Query 2 as
above is used: “Select the names of all authors of historical essays with the title ‘Bellum Civile’.”.

/@vertex()[
rdf:type/@books:Historical_Essay and
books:title/@vertex()[equals(‘Bellum Civile’)]
]/books:author/books:authorName

Note, that in contrast to most other path-based approaches to querying RDF data, RPath does not require
the user to write paths where expressions matching vertices (i.e., classes) and edges (i.e., properties)
alternate (similar as in striped RDF [73]). ¿is is possible, as all steps begin with an axis speci�cation and
di�erent axes for vertices and edges are provided. To illustrate this point the same query shown above
could be written using non-abbreviated RPath syntax as:

outerVertex::vertex()[
outEdge::rdf:type/outVertex::books:Historical_Essay and
outEdge::books:title/outVertex::vertex()[equals(‘Bellum Civile’)]
]/outEdge::books:author/outEdge::books:authorName

Project page:
none

Implementation(s):
prototype in Java, based on a CC/PP engine from Sun

Online demonstration:
none

RxPath As part of the Rx4RDF project http://rx4rdf.liminalzone.org/rx4rdf that aims at improv-
ing the accessibility of RDF for non-experts another adaption of XPath for querying RDF data has been
de�ned.

54

http://rx4rdf.liminalzone.org/rx4rdf

In contrast to the approaches discussed above and somewhat related to TreeHugger and RDF Twig,
RxPath is essentially “ a mapping between the RDF Abstract Syntax to the XPath Data Model” [346]. ¿e
mapping consists in four steps:

• One top-level element in the XML document is created for every resource in the RDF model with
the type of the resource as element label.

• “Each root element has a child element for each statement the resource is the subject of. ¿e name
of each child is [the] name of the property in the statement.” [345]

• “Each of these children have [a] child text node if the object of the statement is a literal or a child
element if the object is a resource.” [345]

• “Object elements have the same name and children as the equivalent root element for the resource,
thus de�ning a potentially in�nitely recursive tree.” [345]

As stated, such a mapping might lead to in�nite trees, in particular when evaluating any of the closure
axes of XPath (descendant, following, preceding, etc.) the number of nodes selected in the tree is
no longer �nite. RxPath proposes a circularity-test for the evaluation of such axes, such that whenever
an element with the same URI reference as an anchestor is encountered that element is skipped in the
evaluation. (One consequence of this approach is that blank nodes need to be assigned a unique URI
reference.)

Furthermore, RxPath changes the semantics of the closure axes to only consider elements representing
RDF properties in the original RDF model (this is easy as the mapping from RDF into an XML document
discussed above uses a striped representation of RDF statements [73]). Furthermore, an expression
such as descendant::rdf:type only matches an element representing an rdf:type property where
all elements representing an RDF property actually represent an rdf:type property. In other words,
descendant::rdf:type is more similar to the regular tree expression (rdf:type)* than to the XPath
expression descendant::rdf:type.

Once more we use the same variation of Query 2 as above to illustrate the language syntax: “Select the
names of all authors of historical essays with the title ‘Bellum Civile’.” (assuming the books pre�x is bound
to http://example.org/books-rdfs#):

/books:Historical_Essay[books:title = ‘Bellum Civile’]/
books:author/*/books:authorName

Based on RxPath two more languages have been de�ned: RxSLT [347]is “syntactically identical to
XSLT 1.0” [347], but uses RxPath instead of XPath 1.0. RxUpdate [348] is syntactically very similar to
XUpdate [247], but again uses RxPath instead of XPath to update RDF models.

Project page:
http://rx4rdf.liminalzone.org/rx4rdf

Implementation(s):
prototype in Python, available from project page

Online demonstration:
none

55

http://rx4rdf.liminalzone.org/rx4rdf

4.3.2.6 Versa

Conceived as query language for the Python-based 4Suite2 toolkit for XML and RDF application develop-
ment, Versa3 is a query language for RDF inspired by XPath that can be used as a replacement of XPath for
pattern matching in XSLT. Although inspired by XPath it is su�ciently di�erent to deserve a discussion
separate of the languages shown in the previous section.

¿e details of Versa are described in [295], [290] and [291] present gentle introductions into the
language. ¿e core design principles of Versa, as stated on http://uche.ogbuji.net/tech/rdf/versa/,
are:

• “Strong alignment with XML.” As the 4Suite toolkit provides access to both XML and RDF data
and technologies, the use of Versa to access RDF, e.g., when constructing an XML document with
XSLT is an obvious choice. However, it has not been attempted to provide a single query language
for both XML and RDF data, rather a set of query languages such as XPath and Versa are provided,
each specialized for a certain data formalism.

• “XPath-like idiom.” ¿e approach taken in the 4Suite toolkit, viz. not to provide an integrated
query language for di�erent data formats but rather to use a set of specialized query languages is
all the more viable the more these query languages have in common. ¿erefore, Versa has been
designed with a syntax inspired by XPath, although it arguably deviates quite notably, even more so
than the query languages discussed in the previous section.

• “Extensibility.” Just as XPath, Versa is designed to be extensible in the same way as XPath, i.e., using
externally de�ned extension functions. However, the current version of the speci�cation [295] is
not very clear on this point.

• “Ease of learning.”¿e authors claim that “many users have reported that they become pro�cient
very quickly with Versa.” Justi�ably, they argue that the super�cial similarity some of the other
RDF query languages share with SQL is not actually helpful in many cases as there is considerable
mismatch with regard to the data model used by the languages. Although the traversal constructs
of Versa are designed to be easy to recognize and remember, they are considerable di�erent to
the traversal expressions in XPath (i.e., XPath axes and node-tests) or similar path-based query
languages.

• “Expressiveness.”¿e set of query constructs provided by Versa covers a, for a path-based language
to be used within, e.g., XSLT, surprisingly large set of the functionalities discussed in Section 3.2,
lacking most notably means for de�ning views, functions, and other forms of construction. ¿is
lack can be justi�ed to some extent by the intended use of Versa within some host language that
might provide these means.

At the core of the Versa query language are the assorted traversal and �lter expressions.

• Forward traversal. Versa allows the traversal of one or more properties starting from a list of
subjects to select the objects that are reachable via the given properties. E.g., the expression all() -

books:author -> * selects all resources that are author of another resource. ¿e objects can also
be restricted, e.g., to those containing a certain string. Here * indicates a wildcard, i.e., no further
restriction on the objects. Such traversal expressions can be chained.
¿e following Versa query uses forward traversal operators to implement Query 1 (in the following
discussion of Versa, the namespaces are assumed to be set up externally):

2http://4suite.org/
3http://uche.ogbuji.net/tech/rdf/versa/

56

http://uche.ogbuji.net/tech/rdf/versa/
http://4suite.org/
http://uche.ogbuji.net/tech/rdf/versa/

distribute(type(books:Essay),
".",
"distribute(.�books:author�*,
".", ".-books:authorName�*)")

¿e distribute() function returns a list of lists containing the result of the second, third, . . .
argument evaluated starting from each of the resources selected by the �rst argument. As in XPath, .
denotes the current node in such a context. Here, the �rst argument selects all resources classi�ed as
books:Essay and evaluates starting with these resources the remaining two arguments: ¿e former
returns all those books, the second uses distribute() again to select the authors together with
their name.

• Forward �lter. Just like a traversal, where the object of the traversed statement is select, one can use
a forward �lter to select the subject of a statement. E.g., the Versa query type(books:Essay) |-

books:title -> eq("Bellum Gallicum") selects all essays with a title “Bellum Civile”.

• Backward traversal. Sometimes, one would like to navigate from the objects of a statement to the
subjects. ¿erefore, Versa o�ers also a backward traversal (although, so far no backward �lter is
provided, it can however, be implemented with the general �lter expression discussed below). E.g.,
the query above selecting all essays with a title “Bellum Gallicum” can also be written as

(books:Essay <- rdf:type - *) |- books:title �eq("Bellum Gallicum")

• General traversal.Whereas the traversal operators discussed so far only allow the traversals of paths
with �xed length, Versa also o�ers a function for general traversals, both forward and backward.
¿is function, called traverse, can also be used to traverse paths of arbitrary length. E.g., the
following query obtains all sub-classes of books:Writing:

traverse(books:Writing, rdf:subClassOf, vtrav:inverse, vtrav:transitive)

• General �lter. Similarly, the filter function provides a general �lter, where the result of evaluating
the �rst argument is �ltered by the remaining arguments evaluated in the context of the elements
selected by the �rst one. E.g., to select all essays with title “Bellum Gallicum” and a translator with
name “J. M. Carter” could be implemented by the following query:

filter(books:Essay <- rdf:type - *,
". � books:title�eq(’Bellum Gallicum’)",
". � books:translator�books:translatorName�eq(’J. M. Carter’)"

Following this short overview over the core traversal and �ltering functions of Versa, the language is
further investigated following the criteria proposed in Section 3.2.

Easy of use. Although designed to be closely aligned with XPath, the traversal operators shown above
and the use of functions instead of speci�c syntactical constructs such as predicates in XPath gives Versa a
rather unfamiliar feeling compared to other XPath-oriented languages.

57

Functionality—Query Types. Selection and extraction queries can be easily implemented in Versa,
although as demonstrated by the above implementation of Query 1, the selection of multiple related items
is not very convenient. In contrast to most other RDF query languages, Versa allows the extraction of
arbitrary size graphs, as required by Query 2. Also reduction queries can be expressed, e.g., using negation
or set di�erence. Query 3 can be implemented in Versa by the following query

difference(all(),
union(type(rdfs:Class),
union(type(rdfs:Property,
all() <- books:translator - *))
)
)

¿is query selects all resources except for those that are either (a) a rdfs:Class, (b) a rdfs:Property, or
(c) occur as object in a statement with predicate books:translator.

Neither restructuring nor combination or inference queries can be directly expressed in Versa, as the
result of a Versa query is always a list (or possibly a list of lists). However, queries such as Query 4 and 9
can be approximated, e.g., by returning all the tuples of co-authors of a book:

distribute(all(), ". � books:author�*", ". � books:author�*")

However, this query will also include that, e.g., "Julius Caesar" is a co-author of himself. It does not seem
possible to avoid this in Versa, as the later arguments of distribute are evaluated independently.

Versa also provides a large set of aggregation functions. Query 5 can be implemented by the following
program

max(filter(all(),
". � books:author�books:authorName�eq(’Julius Caesar’)"
)
- books:year �*)

Starting from the �ltered books, the year of publication of those books is selected and the maximum of
these years calculated.

Also Query 6 can be implemented in Versa using the length function for calculating the number of
authors per book:

distribute(traverse(books:Writing, rdf:subClassOf,
vtrav:inverse,vtrav:transitive),
".",
"max(length((. <� rdf:type *) � books:author�*))"
)

Semantics. No formal semantics has been provided so far.

Complexity and implementation. No formal complexity study of the language has been published so
far. Only a single implementations by the authors of the language is available.

Reasoning. No reasoning abilities are provided.

58

Ontology awareness. Versa provides a RDFS-aware type() function that returns all resources that are
classi�ed under the givenRDFS class or one of its sub-classes. ¿e transitive semantics of rdfs:subClassOf
and rdfs:subPropertyOf are not provided by default but can be implemented by the general traversal
function traverse.

Project page:
http://uche.ogbuji.net/tech/rdf/versa/

Implementation(s):
available as part of 4Suite from http://4suite.org/

Online demonstration:
none

4.3.3 RQL-family

4.3.3.1 RQL

RQL [119, 219, 218, 220, 221], the RDF Query Language, has been developed at the ICS-FORTH and
in�uenced several later proposals for RDF query languages such as SeRQL (cf. Section 4.3.3.2, eRQL (cf.
Section 4.3.3.3, and BRQL (cf. Section 4.3.1.4). ¿e reference implementation of RQL has been developed
as part of the RDFSuite [10], a collection of tools that provide e�cient access to increasingly large RDF
stores drawing on established database technology provided by an ORDBMS.¿e architecture of RDFSuite
is shown in Figure 4.1 identifying the three main components of RDFSuite:

• the Validating RDF Parser (VRP), a high-performance, RDFS-aware RDF parser that also allows
the user to specify semantic constraints against which a document should be validated,

• the RDF Schema-Speci�c Data Base (RSSDB), a persistent RDF store based upon the ORDBMS
PostgreSQL (http://www.postgresql.org) that stores RDF data based on its (RDFS) schema, and

• an interpreter for RQL, implemented on top of the RSSDB.

Figure 4.1 RDFSuite Architecture
(from [9], © ERCIM News)

59

http://uche.ogbuji.net/tech/rdf/versa/
http://4suite.org/
http://www.postgresql.org

RQL has also been used in the ICS-FORTH Semantic Web Integration Middleware (SWIM) [118],
where it is used to query data represented as RDF but integrated from di�erent data sources, e.g., XML
documents or relational databases.

In contrast to RDF query languages such as RDQL, that are tailored to be easy to use by providing
only a small set of (o en used) query constructs excluding, e.g., the direct exploitation of RDFS or direct
support for more complex aspects of RDF such as containers or rei�cation, RQL also has the ability to
combine schema and data querying and allows the speci�cation of complex graph patterns.

At the core of RQL is a formal data model for RDF graph data (deviating slightly from standard RDF/S
semantics by disallowing cycles in the subsumption hierarchy and requiring that for each property both
domain and range are de�ned for (a) simpli�cation and (b) alignment with underlying type systems)
based upon typing information provided by an RDFS schema. ¿e salient features of this data model are

• a clear separation between the di�erent RDF/S abstraction layers: (1) data, i.e., description of
resources such as persons, XML documents, etc., (2) schemas, i.e., classi�cations for such resources,
and (3) metaschemas containing the metaclasses (i.e., classes of classes or properties) rdfs:Class
and rdfs:Property and their re�nements)

• �exible type system tailored to the speci�cities of RDF/S by allowing (a) optional and multi-valued
properties, (b) superimposed descriptions of the same resources (i.e., resources can be classi�ed
under di�erent classes not related in the subsumption hierarchy) and (c) the �exible re�nement of
schemas.

Based upon this data model, RQL provide a number of novel query constructs for querying the type
information associated with the RDF data. In the following a condensed overview of the most prominent
query constructs provided in RQL given, more details can be found in [119, 219, 218, 220, 221].

Basic schema queries. As stated above, one of the salient features of RQL is the use of type infor-
mation derived from an RDFS schema. ¿e subsumption hierarchy de�ned by rdfs:subClassOf and
rdfs:subPropertyOf can be accessed in di�erent manners:

• Querying the sub-classes of a class: E.g., subClassOf(books:Writing) returns all sub-classes of
books:Writing (assuming the namespace books is set up properly using USING NAMESPACE books

= &http://example.org/books-rdfs#).

• Querying the sub-properties of a property using subPropertyOf.

• Querying the domain and range of a property. E.g., the following query obtains instances of which
classes can be combined with books:author:

SELECT $C1, $C2
FROM {$C1}books:author{$C2}
USING NAMESPACE books = &http://example.org/books#

¿e $ pre�x of a variable indicates a “class variable”, i.e., a variable ranging on schema classes, in
other words, resources with rdf:type rdfs:Class. ¿erefore, $C1 selects all classes that are in the
domain of books:author and $C2 those in its range.

More explicitly, the query can be stated as (however, since subClassOf is not re�exive, the direct
domain and range are le out):

60

SELECT C1, C2
FROM subClassOf(domain(book:author)){C1}, subClassOf(range(books:author)){C2}
USING NAMESPACE books = &http://example.org/books#

Note, that here the query variables are not pre�xed by $, therefore the values (and not their type)
returned by the subClassOf expressions are used. ¿is is the intended result, as the values returned
by subClassOf are already the classes searched for.

Finally, the query could also be formulated using a type constraint:

SELECT C1, C2
FROM Class{C1}, Class{C2}, {;C1}books:author{;C2}
USING NAMESPACE books = &http://example.org/books#

¿e�rst part of the FROM clause (ClassC1, ClassC2) selects all pairs of classes de�ned in the schema.
¿ese pairs are further constrained by the second part, that stipulates that only such pairs are to be
retained where the �rst class can occur as domain and the second as range of books:author. ¿is
restriction is expressed by a type constraint, written (in general) {X;Y}, where X is bound to the
concrete values (here, e.g., “Julius Caesar”) and Y to the type of the value (here, e.g., Literal, i.e.,
the class of all RDF literals.

• Querying tops and leafs of the subsumption hierarchy. E.g., topclass(books:Historical_Essay)
returns books:Writing on the data from Figure 2.1. Furthermore, it is possible to query the nearest
common ancestor of two classes, e.g., nca(books:Historical_Essay, books:Historical_Novel)

is books:Essay.

• Queryingmeta-schema information. Meta-classes, such as Class, and Property (the class of all
classes, all RDF literals, all properties, resp.) can be queried just as any other class. Obviously, the
extent of a meta-class is a set of classes, as demonstrated above.

• Querying RDF properties. Just as classes can be queried using class variables indicated by a $-pre�x,
RDF properties are selected by “property variables” pre�xed by @. E.g., the following query selects all
properties together with their range that can be attached to resources classi�ed as books:Writing:

SELECT @P, $V
FROM {;books:Writing}@P{$V}
USING NAMESPACE books = &http://example.org/books#

Combining these facilities, one can easily implement Query 8 in RQL:

SELECT X, Y
FROM Class{X}, subClassOf(X){Y}

¿is query returns pairs of all classes such that the �rst class is a super-class of the second one.

Data queries. Obviously, RQL also provides access to the actual resource descriptions. One can access
resources by their type and by navigating to their position in the RDF graph, and further restrictions to
the data to be selected can be speci�ed by �lters:

• Querying the extent of classes and properties. Both classes and properties can be queried for their
(direct and indirect) extent:

61

books:Writing

returns all resources classi�ed as books:Writing or one of its sub-classes. ¿is is equivalent to

SELECT X
FROM books:Writing{X}

If only those resources X shall be returned that are directly classi�ed as books:Writing, i.e., where
an RDF tuple �X,rdf:type,books:Writing� exists, the name of the class must be pre�xed by ^.

Similarly, one can query the extent of a property, e.g.,

^books:author

returns pairs of all resources X,Y that stand in the books:author relation, i.e., where an RDF tuple
�X,books:author,Y� exists.

• Querying by navigation using generalized path epressions [117]. RQL uses generalized path expres-
sions known from, e.g., OQL and Lorel, to allow navigation both in the data and in the schema
graph.

¿is allows for an easy traversal of relations convenient for implementing Query 1:

SELECT X, Y, Z
FROM {X;books:Essay}books:author{Y}.books:authorName{Z}
USING NAMESPACE books = &http://example.org/books#

• Filtering the result. ¿e result of a query can be further restricted by a WHERE clause. E.g., to select
only books and the names of their authors if the title of the book is "Bellum Civile", one could
add a WHERE clause as in the following query:

SELECT X, Y
FROM {X;books:Essay}books:author.books:authorName{Y}, {X}books:title{T}
WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

Mixing schema and data queries. Querying data and schema can be intertwined in any way. In particu-
lar, as shown above, data can be selected based on its type, by providing �lter expressions for the variable
selecting the data. E.g., the expression X;books:Essay restricts bindings for variable X to resources with
type books:Essay.

O en interesting queries not only require the use of type information for �ltering, but also bene�t
from providing type information in the result. Query 2, that asks for a kind of description of the book
with title “Bellum Civile”, could be implemented in RQL in the following way (interpreting “description”
as the schema of a resource):

SELECT $C, (SELECT @P, Y
FROM {Z ; ^$D} ^@P {Y}
WHERE Z = X and $D = $C)
FROM ^$C {X}, {X}books:title{T}
WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

62

¿is query returns all classes under which the resource with title “Bellum Civile” is directly classi�ed
(^$C{X} selects all values in the direct extent of any class). Grouped by these classes, all properties and
classes that can be used as values for the respective property are queried by a nested RQL query and
returned.

Several of the features of RQL are not discussed in length here, such as support for containers, aggre-
gation, schema discovery, etc.

Although the original proposal of RQL does not include view de�nition constructs, RVL [254] provides
such an extension. Using this language, one could, e.g., de�ne the inverse relation of books:author as a
view by the following program:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW authored(Y, X)
FROM {X}books:author{Y}
USING NAMESPACE books = &http://example.org/books#

Such a view can be queried just like any other data, e.g., to select all authors that authored a book
translated by someone called “Carter” together with these books:

SELECT X, Y
FROM {X}mybooks:authored{Y}books:translator{T}
WHERE T like "*Carter*"
USING NAMESPACE books = &http://example.org/books#
USING NAMESPACE mybooks = &http://example.org/books-rdfs-extension#

Concluding this overview of RQL is a short discussion of the query language under the evaluation
criteria proposed in Chapter 3.

Easy of use. ¿e comparatively large and diverse set of features o�ered by RQL, naturally lead to a
somewhat more complicated syntax and semantics if compared to basic query languages such as RDQL
(cf. Section 4.3.1.3. One critique voiced when considering RQL is that the typing features of the language,
although useful for some scenarios, actually complicate the expression of simple queries and are hard to
implement. ¿erefore, both of the proposals for simplifying RQL, viz. SeRQL and eRQL, do not provide
the same level of type information as RQL.

Also the use (and representation) of a number of syntactic constructs, e.g., for distinguishing class
(using $-pre�x), property (using @-pre�x), and data variables (using no pre�x) or for separating direct
(^-pre�x) and full extent (no pre�x) of a class, is neither intuitive nor based on established conven-
tions. Providing also a more verbose version of such constructs, might improve readability and ease the
familiarization with the language.

Functionality—Query Types. As stated already, RQL is far more expressive than basic RDF query
languages such as the SquishQL family. Actually, most of the queries discussed in Section 3.2 can be easily
expressed in RQL (here, we also include the view de�nitions provided by RVL) with the notable exception
of those queries requiring means for traversing the transitive closure of arbitrary relations, instead of only
the two relations rdfs:subClassOf and rdfs:subPropertyOf that constitute the subsumption hierarchy.

An implementation of Query 1 has already been given above. Query 2 can not be expressed in RQL
exactly, as there is no means to select “everything related to some resource”. However, in the above
discussion a modi�ed version of this query, where a resource is described by its schema, is shown.
Reduction queries such as Query 3 can o en concisely be expressed in RQL, in particular, if the reduction
query is, as in this case, based on type information:

63

SELECT S, @P, O
FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},
(Resources minus (SELECT T FROM {B}books:translator{T})){S},
{S}@P{O}
USING NAMESPACE books = &http://example.org/books#

¿is query returns all triples where both the subject and the predicate of the triple is some Resource that
does not occur as object in a statement with predicate books:translator. Note, that Resource is the
top-level schema class, but does not include resources classi�ed as rdfs:Class or rdfs:Property as these
are considered schema objects and therefore contained in a meta-schema class.

An implementation of Query 4 is given above using RVL.
Aggregation queries are also supported by RQL, e.g., consider Query 5 and a possible implementation

in RQL shown below:

max(SELECT Y
FROM {B;books:Writing}books:author.books:authorName{A},
{B}books:pubYear{Y}
WHERE A = "Julius Caesar")

Inference and combination queries o en require traversing the transitive closure of arbitrary relations
or even general recursion, that can both not be expressed in RQL. However, when the inference does not
need recursion, as in Query 9, the query can be expressed in RQL

SELECT A1, A2
FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

or in RVL (allowing the results to be queried as any relation in the original data)

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW mybooks:co-author(A1, A2)
FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

Semantics. RQL has been designed around a formal data model for RDF. Based upon this data model,
both typing rules and formal interpretations of RQL queries have been speci�ed [221]. As discussed above,
the data model slightly deviates from a standard RDF interpretation (as speci�ed in [246]).

Complexity and implementation. No formal complexity study of the language has been published so
far. Aside of the implementation provided by the authors of the language as part of the ICS-FORTH
RDFSuite, the only other implementation of RQL the authors of this survey are aware of is as part of
Sesame [79]. However, for Sesame the typing features of RQL have been disregarded for the most part and
a new RDF query language, called SeRQL, that is based upon RQL has been speci�ed. It is discussed in
the following section.

Reasoning. No speci�c reasoning abilities are provided. In particular, the only form of recursion is
the ability to navigate the transitive closure of certain prede�ned schema relations. However, some non-
recursive inference queries can be realized as shown above. In particular, RQL supports a rich set of
boolean expressions including negation and quanti�cation.

64

Ontology awareness. RQL strongly relies on RDFS for providing type information on the data to be
queried. (An extension to) OWL has not been considered so far.

Project page:
http://139.91.183.30:9090/RDF/RQL/

Implementation(s):
RDFSuite (http://139.91.183.30:9090/RDF/index.html), Sesame (http://www.openrdf.org/)
without type system

Online demonstration:
http://139.91.183.30:8999/RQLdemo/, based on Sesame: http://www.openrdf.org/demo.jsp

4.3.3.2 SeRQL

As part of the EU research project On-To-Knowledge (http://www.ontoknowledge.org/), the Sesame
[79] RDF database has been developed. An initial review of query languages for semi-structured data and
RDF [76] suggested the use of RQL as query language for the On-To-Knowledge project. In [77], this
choice is detailed by de�ning the query language to be used in the On-To-Knowledge project, tentatively
called OTK-RQL. ¿is language is still syntactically nearly identical to RQL, but leaves out in particular
RQL’s entire type system. ¿e current version of Sesame still supports RQL (without typing of queries), but
also provides a novel RDF/RDFS query language claiming to “combine the best features of other (query)
languages (RQL, RDQL, N-Triples, N3)” [95] into a “second generation RDF query language” [78].

SeRQL is described in detail in [95] and [78]. Here, we focus on the di�erences to previous RDF query
languages, in particular to RQL.

¿e most striking di�erences between RQL and SeRQL are:

• SeRQL does not provide any form of typing for RDF resources, only typed literals as provided by the
recent revision of RDF [288] are considered. One reasons the others of SeRQL o�er for avoiding to
provide typing in the query language (aside of the increase complexity of both implementation and
language) is that RDF schema languages are designed to be extensible and a typed query language
therefore needs to provide some mechanism for integrating such extensions (as provided, e.g., by
OWL), making an implementation of such a query language even harder.

• In an e�ort to simplify common queries, SeRQL modi�es and extends the general path expressions
used inRQL: Basic path expressions use a syntax similar toRQL, e.g., {X} <rdf:type> {<books:Essay>}

is the SeRQL notation for a path expression that returns all resources classi�ed under books:Essay
as bindings for the variable X. Compound path expressions, e.g., for selecting a book together with
the names of its authors, use an “empty node”, denoted as {}, instead of the path concatenation . com-
monly used for combining path expressions. ¿eRQLpath expression {X}books:author.books:authorName{Y}
becomes in SeRQL {X}<books:author>{}<books:authorName>{Y}. Furthermore, a number of
short cuts addressing common queries are provided:

– Querying multi-valued properties. Properties in RDF can have multiple values and SeRQL
provides a short cut to query several of these values in a single path expression. ¿is allows
for an easy formulation of Query 9 (note, the use of <! and > for enclosing a URI in contrast
to the use of simple angle brackets (without the exclamation mark) for enclosing QNames)

CONSTRUCT {X} <mybooks:co-author> {Y}
FROM {Book} <books:author> {X, Y}
WHERE X != Y

65

http://139.91.183.30:9090/RDF/RQL/
http://139.91.183.30:9090/RDF/index.html
http://www.openrdf.org/
http://139.91.183.30:8999/RQLdemo/
http://www.openrdf.org/demo.jsp
http://www.ontoknowledge.org/

USING NAMESPACE books = <!http://example.org/books#>
mybooks = <!http://example.org/books-rdfs-extension#>

¿is query is equivalent to

CONSTRUCT {X} <mybooks:co-author> {Y}
FROM {Book} <books:author> {X},
{Book} <books:author> {Y}
WHERE X != Y
USING NAMESPACE books = <!http://example.org/books#>
mybooks = <!http://example.org/books-rdfs-extension#>

– Queryingmultiple properties of the same resource. O en one is interested not only in a single,
but rather in multiple properties of a resource. ¿e following query illustrates the syntactic
short hand provided by SeRQL for this case: It selects the authors of all books with title “Bellum
Civile” and a translator with name “J. M. Carter”.
SELECT Author
FROM {Book} <books:title> {"Bellum Gallicum"};
<books:translator> {} <books:translatorName> {"J. M. Carter"};
<books:author> {Author}
USING NAMESPACE books = <!http://example.org/books#>

Note, the use of the semicolon for separating expressions with the same subject.
– Querying rei�ed statements. A rei�ed expression can be queried by explicitly asking for the
four triples associating the statement with its type (rdf:Statement), subject, predicate, and
object. As this is o en bothersome, SeRQL allows rei�ed statements to be queried by enclosing
the non-rei�ed version of the statement in curly brackets.

• As all properties in RDF are essentially optional (unless considering schema languages such as
OWL), queries where some information is retrieved if it is available without making the query fail
if the information misses are a natural requirement for an RDF query language. SeRQL provides
optional path expressions by enclosing an arbitrary path expressions (including those using the
short hand constructs described above) in square brackets. E.g., the following query retrieves books
together with their title and optionally their translators. If there is a translator and an age for that
translator is speci�ed, that information should also be returned.

SELECT *
FROM {Book} <books:title> {Title};
[<books:translator> {Translator}
[<books:age> {Age}]]
USING NAMESPACE books = <!http://example.org/books#>

Note, the nesting of the optional expressions and the use of * to include bindings for all variables
from the query in the result.

Aside of these issues, it should be noted that the access to schema information has been reduced
to the provision of both the original and the intransitive view of the two RDFS relations de�ning the
subsumption hierarchy.

Easy of use. ¿e expressed goal of the SeRQL authors has been a simpli�cation of previous approaches
such as RQL while retaining the, from the point of view of the SeRQL authors, most useful features that
distinguish RQL from basic RDF query languages such as RDQL. Arguably, simply by reducing the number
of language constructs, SeRQL is easier to grasp and use than RQL. Also, the syntactic short hands are,
where possible, aligned with constructs from established RDF syntaxes such as N3 or N-Triples.

66

However, this is obviously paid for by reducing the expressiveness of the language in comparison
to RQL, therefore requiring more e�ort for writing complex queries that could bene�t from the more
expressive features of RQL.

Functionality—Query Types. As expected, SeRQL can not express all of the queries from Section 3.2
that could be expressed in RQL but still provides more functionality than RDQL. Selection and extraction
queries can be easily expressed in SeRQL with the same limitation as in the case of RQL, viz. that it is
not possible to navigate arbitrary length paths in the graph, e.g., for returning all statements related to a
resource or a “concise bounded description” as de�ned in [351].

In contrast to RQL, SeRQL currently neither provides set operations nor existential or all quanti�ers.
¿erefore, Query 3 can not be expressed in SeRQL.

¿anks to the ability to construct new statements using the CONSTRUCT clause, SeRQL can express
restructuring and simple inference queries as shown above. ¿e restructuring Query 4 can be expressed as

CONSTRUCT {Author} <mybooks:authored> {Book}
FROM {Book} <books:author> {Author}
USING NAMESPACE books = <!http://example.org/books#>
mybooks = <!http://example.org/books-rdfs-extension#>

Aggregation queries can not be expressed, although [95] states that the addition of aggregation queries
to SeRQL is planned.

As shown above, some simple inference queries such as Query 9 can actually be implemented in
SeRQL and thanks to the RDFS-aware storage in Sesame the transitive closure of rdfs:subClassOf is
provided in SeRQL. However, neither the transitive closure of arbitrary relations nor general recursion
can be expressed.

Semantics. No formal semantics has been provided so far, however a formal algebraic model is being
planned according to [95].

Complexity and implementation. No formal complexity study of the language has been published so
far. ¿ere are currently two independent implementations of the language.

Reasoning. Again, only limited reasoning abilities are provided. Using the CONSTRUCT clause one can
implement basic derivations as demonstrated above, however no recursion is provided.

Ontology awareness. SeRQL is RDFS aware in that it provides the ability to query both the explicitly
stored subsumption relations and their transitive closure.

Project page:
Sesame http://www.openrdf.org/

Implementation(s):
available from the Sesame project page, an implementation in Prolog using the SWI-Prolog4 Seman-
tic Web library is provided at http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Library/
SeRQL

4http://www.swi-prolog.org/

67

http://www.openrdf.org/
http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Library/SeRQL
http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Library/SeRQL
http://www.swi-prolog.org/

Online demonstration:
several ones (featuring not only SeRQL as query language, but also RDQL and RQL) accessible at
http://www.openrdf.org/demo.jsp

4.3.3.3 eRQL

In contrast to SeRQL, which aims at providing a language more balanced between expressiveness and
ease-of-use than RQL, eRQL [358] proposes a radical simpli�cation using essentially a keyword-based
interface similar to popular information retrieval systems. It is the expressed goal of the eRQL authors, to
provide a “Google-like query language but also with the capacity to pro�t of the additional information
given by the RDF data”5.

eRQL only provides three query constructs:

• One-word queries. Single keywords are valid eRQL queries. E.g., the query CAESAR returns all
statements such that the string “CAESAR” occurs in their URI or literal value of the subject, predicate,
or object of the statement using case-insensitive matching. Surprisingly, phrase queries (e.g., the
phrase “Bellum civile”) do not seem to be expressible in eRQL.

• Neighborhood queries. Instead of returning only the statements directly containing a keyword as
in the �rst case, neighborhood queries allow the user to also select all statements related to (i.e.,
“in the neighborhood of”) a such a statement. E.g., the query {{CAESAR}} returns all statements
connected by at most two edges in the RDF graph to a node containing “CAESAR”. On the data
from Figure 2.1, the following triples are returned:

_:1 books:author _:2.
_:1 books:authorName "Julius Caesar".
_:1 books:author _:3.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator _:4.

Using {{{CAESAR}}} would also include the names of the other others and the translator, as well as
the triple classifying the book as books:Historical_Essay. eRQL allows any (�nite) number of
such brackets to select a neighborhood of the speci�ed size around the base triples.

• Conjunctive and disjunctive queries. Both, neighborhood and one-word queries can be combined
using the boolean operators AND and OR. No negation is provided, however.

eRQL does not allow the expression of most of the queries given in Section 3.2, since the abilities of
eRQL are more akin to an information retrieval language than a conventional query language. However,
to some extent Query 2 can be expressed simply by the query

{{"Bellum" AND "Civile"}}

¿is query returns all statements containing both the string “Bellum” and the string “Civile” in the URI or
literal value of the subject, predicate, or object together with all statements reachable from these within
two steps. However, this is only a vague approximation of the actual intent of the query. In particular,
eRQL does not allow the selection of a neighborhood with previously unknown size around a resource
(e.g., for obtaining a “concise-bounded descriptions” [351]). In contrast to the claims of the authors of
eRQL, such limited neighborhood queries require a-priori knowledge of the schema of the data to be
queried.

5http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

68

http://www.openrdf.org/demo.jsp
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

Nevertheless, eRQL is one of the few approaches aiming at a combination of information retrieval
features and RDF querying, the need for which is evident when considering the use of RDF for improving
searching in the (Semantic) Web.

Project page:
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

Implementation(s):
eRQLEngine, available from http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

Online demonstration:
none

4.3.4 Query Languages using a Controlled Natural Language

4.3.4.1 Metalog

Metalog [261, 262, 260] is a system for querying and reasoning with Semantic Web data. It has been
introduced around 1998 in [261] leading to the claim of the project page that “Metalog has been the �rst
semantic web system to be designed, introducing reasoning within the Semantic Web infrastructure by
adding the query/logical layer on top of RDF” [http://www.w3.org/RDF/Metalog/].

For two reasons, Metalog is notably di�erent from most of the other RDF query languages discussed
in this chapter:

• It combines querying with reasoning abilities such as implications and explicit representation of
negative information.

• ¿e language syntax is similar to a restricted form of natural language, where only certain keywords
(and their order) is relevant and all other words are discarded. ¿is allows for easy understanding
of queries, although authoring still requires knowledge about the exact keywords and how to use
them.

Metalog’s syntax uses (English) sentences to describe a query. Within a sentence only three kinds of
tokens are actually meaningful for the Metalog processor: variables (or “representations”) are written in
capital letters only, any quote-delimited string is recognized as a “name” and interpreted either as an RDF
literal or a URI, and keywords connect variables and names to queries. ¿e list of keywords available
includes of statements, logical implication expressed by then, imply, or implies, de�nition of variables
using represents, order for building RDF sequence containers, and various keywords for arithmetic
expressions.

Metalog also provides a natural-language-like syntax for stating RDF triples.
¿e following Metalog program implements Query 1:

comment: some definitions of variables (or representations)
ESSAY represents the term "Essay"
from the ontology "http://example.org/books#".
AUTHORED-BY represents the verb "author"
from the ontology "http://example.org/books#".
IS represents the verb "rdf:type"
from RDF "http://www.w3.org/1999/02/22�rdf�syntax�ns#".
BELLUM_CIVILE represents the book "Bellum_Civile"
from the collection of books "http://example.org/books#".
comment: RDF triples written as Metalog statements.
BELLUM_CIVILE IS an ESSAY.
BELLUM_CIVILE is AUTHORED-BY "Julius Caesar".

69

http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/
http://www.w3.org/RDF/Metalog/

BELLUM_CIVILE is AUTHORED-BY "Aulus Hirtius".
comment: a Metalog query
do you know SOMETHING that IS an ESSAY and that is AUTHORED-BY SOMEONE?

As answer to the query shown in the last line of the Metalog program, the interpreter answers with all
de�nitions and the �rst two RDF triples as �rst result, the �rst and the last RDF triple as second result.

An interesting observation about Metalog can be drawn from [259]: A natural-language layer on
top of the textual or XML syntax of any RDF query language might help, in particular non-experts, to
quickly grasp the meaning of queries and what result to expect. In this sense, a translation of Metalog or a
similar restricted form of natural language into some of the more traditional and, in many cases, better
performing approaches discussed in this survey might be worth investigating.

Project page:
http://www.w3.org/RDF/Metalog/

Implementation(s):
prototype, available from the project page

Online demonstration:
none

4.3.5 Others

4.3.5.1 Algae

Algae6 [310, 312] is an RDF query language developed as part of the W3C Annotea project (http://
www.w3.org/2001/Annotea/). ¿e Annotea project provides a research platform for novel collaborative
applications based on shared metadata such as Web annotations, bookmarks, comments, explanations, etc.
When users access a Web site with an Annotea-enabled browser (such as Amaya (http://www.w3.org/
Amaya/), Mozilla or Internet Explorer, the latter two require extensions for using Annotea), one or several
annotation servers are contacted to deliver annotations for the currently visited Web site or to provide a
classi�cation of that Web site based on previously stored bookmarks.

¿e e�cient retrieval of the related information from the annotation server is clearly of high relevance
in such a setting. As the annotations are stored in RDF, an RDF query language, called Algae, has been
developed to address the special needs of this application including the need for updates and simple
reactive rules. In [312], Algae is described in more detail and proposed as a general-purpose RDF query
language.

Algae is centered around two concepts:

• “Actions” are the directives ask, assert, and fwrule that determine whether an expression is used
to query the RDF data, insert data into the graph, or to specify ECA-like rules. Only the �rst of these
is mandatory for an Algae processor, the two others are de�ned in an extension module described
in [311].

• Algae queries produce result sets containing not only bindings for query variables (as, e.g., RDQL
[332]) does, but also triples from the RDF graph that constitute “proofs” for the solution, i.e., that
are required to justify that a certain combination of bindings for the query variables is actually a
match for the query. It is possible to combine several sub-queries in a single Algae expression in
which case the results of each sub-query are combined into a single result set.

6¿e current version is sometimes also referred to as Algae2, since there has been an earlier incarnation with more limited
querying abilities. In this survey, we follow [312] in referring to the language as simply “Algae”.

70

http://www.w3.org/RDF/Metalog/
http://www.w3.org/2001/Annotea/
http://www.w3.org/2001/Annotea/
http://www.w3.org/Amaya/
http://www.w3.org/Amaya/

Table 4.1 Algae result set
?title ?translator Proof
“Bellum Civile” “J. M. Carter” _:1 rdf:type <http://exam...ks-rdfs#Essay>.

_:1 books:author _:2.
_:2 books:authorName ‘‘Julius Caesar’’.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator ‘‘J. M. Carter’’.

Syntactically Algae is based onN-triples (described in [186]) for representing and querying RDF triples.
¿is simple triple syntax is extended by the above mentioned action directives and so-called “constraints”,
written between curly brackets, that specify further arithmetic or string comparisons that must be ful�lled
by a selected tuple.

To illustrate the abilities of Algae, consider Query 1. ¿is query could be realized by the following
Algae expression:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask (?essay rdf:type <http://example.org/books#Essay> .
?essay books:author ?author .
?author books:authorName ?authorName)
collect(?essay, ?author, ?authorName)

¿is query becomes more interesting, if we are only interested in the titles of essays written by “Julius
Caesar” but also want the translators of such books returned, if there are any:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask (?essay rdf:type <http://example.org/books#Essay> .
?essay books:author ?author .
?author books:authorName ‘‘Julius Caesar’’ .
?essay books:title ?title .
~?essay books:translator ?translator .
)
collect(?title, ?translatorName)

Note the use of ~ to declare the translator an optional triple in the query.
Such a query executed against the sample data shown in Figure 2.1, would return the following result

set shown in Table 4.1.

Easy of use Although neither a visual syntax nor a natural language interface is provided, Algae queries
are easy to write and comprehend, although the syntax does not reminiscent of any particular other query
language. In particular, the choice of N-triples (described in [186]) for representing triples is helpful for
easy query formulation. Some of the syntactic short hands, such as ~ require some getting used to, but
o�er the advantage of a concise query formulation.

Algae o�ers an extension mechanism that allows the basic functionality of the language, i.e. the
ask action directive, to be separated from more advanced features such as updates and rules (with the
action directives assert and fwrule) and sorting. A query can state which of the language extensions are
required to evaluate a query.

71

Functionality—Query Types From the queries discussed in Section 3.2, Query 2 can not be expressed
due to the lack of some form of closure or recursion. For the same reasons and additionally the lack
of negation, Query 4 can not be expressed. ¿e support for Queries 5 and 6 falls short due to the lack
of aggregation operators. All other queries can be expressed in Algae, albeit most of them require the
extended action directives discussed in [311].

For Query 4 one could use the following Algae query:

ns books = <http://example.org/books#>
read <http://example.org/books> ()
fwrule ask(?book books:author ?author)
assert (?author books:authored ?book)

Note, however that this query actually becomes an inference rule, as there are no means described to
retract the old books:author relation.

Hence, this realization of Query 4 is more akin to a inference query such as Query 9 that could actually
be implemented as

ns books = <http://example.org/books#>
read <http://example.org/books> ()
fwrule ask (?book books:author ?author1 .
?book books:author ?author2 { ?author1 != ?author2 }
)
assert(?author1 books:co-author ?author2)

Semantics No formal semantics has been published for Algae.

Complexity and implementation Algae has been implemented in the W3C Annotation Server as part
of the Annotea Project. ¿e data can be stored in-memory, in a relational database, as described in [313],
or directly generated from application data. As discussed above, Algae provides extensions for updating
and

No formal complexity study of the language has been published so far.

Reasoning In [311], an extension for Algae is described that allows the statement of rules for intensional
data speci�cation: If a given query succeeds, new data is added to the data store possible drawing data
from the result of the query. ¿ese rules are more similar to ECA-rules, albeit with an action part limited
to inserting new data, than to view de�nitions. No further description of reasoning mechanisms in Algae
is provided.

Ontology awareness As already speci�ed, the language ignores every kind of ontological aspect, includ-
ing typing mechanisms. If such aspects must be considered, they must be treated like all the user-de�ned
data.

It is, however, possible to implement the special semantics of RDFS relations such as rdfs:subClassOf
using Algae rule notation. ¿e following is an implementation of Query 8 in Algae, in that it adds the
transitive closure over rdfs:subClassOf to the data store.

ns rdfs = <http://www.w3.org/2000/01/rdf-schema#>
read <http://example.org/books> ()
fwrule ask (?X rdfs:subClassOf ?Z.
?Z rdfs:subClassOf ?Y
)
assert (?X rdfs:subClassOf ?Y)

72

Project page:
http://www.w3.org/2004/05/06-Algae/ and for theAnnotea project http://www.w3.org/2001/
Annotea/

Implementation(s):
W3C Annotation Server http://annotest.w3.org/annotations

Online demonstration:
Query interface to the W3C Annotation Server using Algae as query language: http://annotest.
w3.org/annotations?explain=false

4.3.5.2 iTQL

For the Kowari Metastore, an open source, scalable, transaction safe database for the storage of metadata,
an RDF query language called iTQL [1] has been de�ned. iTQL provides commands not only for querying
(select), but also for updates (delete, insert) and transaction management (commit, rollback). ¿e
syntax of iTQL is similar to SQL and therefore also reminds of RDQL. As for RDQL, the querying abilities
of the language are rather limited, mostly simple selection is supported.

To illustrate the abilities of the query language, consider again Query 1 and a possible realization in
iTQL:

alias <http://example.org/books#> as books;
alias <http://www.w3.org/2000/01/rdf-schema#> as rdfs;
alias <http://www.w3.org/1999/02/22-rdf-syntax-ns#> as rdf;
select $essay, $author, $authorName
where $essay <books:author> $author
and $author <books:authorName> $authorName
and $essay <rdf:type> $type
and (trans($type <rdfs:subClassOf> <books:Essay>)
or $type <tks:is> <books:Essay>)

As illustrated in the query, iTQL provides the function trans as means for computing transitive closure of
a relation (such as rdfs:subClassOf) and therefore also resources not directly classi�ed as books:Essay
but rather as one of its subclasses are returned. Paths of arbitrary length in the graph can be traversed
using another special function called walk. ¿e above query could also be expressed using walk.

Worth mentioning is the ability to sort the resulting answers and to provide access to answers in a
paged mode using limit and offset as in SQL.

Also, in contrast to the SquishQL-family of query languages discussed in Section 4.3.1, iTQL allows
the speci�cation of nested queries.

Project page:
http://www.kowari.org

Implementation(s):
production use implementation as part of the KowariMetastore and used in the commercial product
Tucana Knowledge Server

Online demonstration:
none

73

http://www.w3.org/2004/05/06-Algae/
http://www.w3.org/2001/Annotea/
http://www.w3.org/2001/Annotea/
http://annotest.w3.org/annotations
http://annotest.w3.org/annotations?explain=false
http://annotest.w3.org/annotations?explain=false
http://www.kowari.org

4.3.5.3 N3QL

A restricted subset of Notation 3 [49] (short N3), an alternative syntax and extension for RDF that
introduces rules, variables, and quoting for easy expression of statements about statements.

Although, as noted in [48], the rules mechanism provided in N3 allows for similar capabilities as those
expected from a query language, [48] proposes a syntax for a query language using more conventional
means such as select-where clauses.

¿e essential di�erence between N3QL and most of the other query languages for RDF discussed in
this survey, is that a query is an N3 expression and all “keywords” in the query are actually RDF properties
of an RDF node representing the query (usually a blank node, but it is also allowed to assign identi�ers to
queries). To illustrate this di�erence, consider Query 1 and its realization in N3QL:

@prefix books: <http://example.org/books#>.
@prefix n3ql: <http://www.w3.org/2004/ql#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
[] n3ql:select { n3ql:result n3ql:is (?book ?author ?authorName) };
n3ql:where { ?book rdf:type books:Essay;
?book books:author ?author;
?author books:authorName ?authorName }.

¿e result of such a query is the RDF graph speci�ed in the n3ql:select clause, in this case a set of
RDF collections (indicated by the collection constructor ()) containing a binding for each of the three
selected variables.

[48] seems to indicate that the semantics of such a query is equivalent to the semantics of a rule where
the where part of the query is the premise of the rule and the select part the implication. However, N3
rules can be used to implement, e.g., the transitive closure of an RDF property:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
{?x rdfs:subClassOf ?z; ?z rdfs:subClassOf ?y}
=> {?x rdfs:subClassOf ?y}

Such an ability is not attributed to queries written in the above syntax.
Since the description of N3QL is very sketchy, it is hard to evaluate its expressive power: In particular,

it is not clear which of the syntactic constructs of N3 can be used in N3QL. [48] states that N3QL is a
restricted form of N3 where formulae cannot be nested and literals cannot be subjects of statements.

In particular, the N3 syntax for anonymous nodes, for navigating in the RDF graph using path
expressions, and for quantifying variables is assumed to be available in N3QL too. ¿is allows for very
concise formulation of queries such as “Return all books written by an author with name ‘Julius Caesar’.”:

@prefix books: <http://example.org/books#>.
@prefix n3ql: <http://www.w3.org/2004/ql#>.
[] n3ql:select { n3ql:result n3ql:is (?book) };
n3ql:where { ?book!books:author!books:authorName ‘‘Julius Caesar’’ }.

Project page:
http://www.w3.org/DesignIssues/N3QL.html

Implementation(s):
prototype, CWM http://www.w3.org/2000/10/swap/doc/cwm.html, EulerSharp http://eulersharp.
sourceforge.net/2003/03swap/

Online demonstration:
none

74

http://www.w3.org/DesignIssues/N3QL.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://eulersharp.sourceforge.net/2003/03swap/
http://eulersharp.sourceforge.net/2003/03swap/

4.3.5.4 PerlRDF Query Language

PerlRDF7 is a collection of APIs for parsing, storing, and querying RDF developed by Ginger Alliance8.
As part of this project, also an RDF query language has been speci�ed. ¿e details of this language are
described in [12].

¿e query language provides path expressions similar to RQL’s general path expression and uses a
familiar Select. . .From. . .Where syntax. An implementation of Query 1 modi�ed to return only those
books with a translator named “J. M. Carter” in this query language is shown in the following:

Select ?book, ?author, ?author�books:authorName
From books:Essay::?book�books:author{?author}
Where ?book�books:translator�books:translatorName=>’J. M. Carter’
Use books For [http://example.org/books#]

¿e query has deliberately written to demonstrate di�erent features of the query language, e.g., the ability
to use path expression not only in the From-clause (as, e.g., in RQL), but also in the Where- and even in
the Select-clause of the query. Furthermore, syntactic short hands for specifying the type of the ?book
variable and the constraint on the literal value selected by the path in the Where clause are used. ¿is query
is equivalent to the following one, that does not use any of these advanced constructs

Select ?book, ?author, ?authorName
From ?book�books:author{?author}�books:authorName{?authorName},
?book�rdf:type{books:Essay},
?book�books:translator�books:translatorName{?translatorName}
Where ?translatorName = ’J. M. Carter’
Use books For [http://example.org/books#]
rdf For [http://www.w3.org/1999/02/22-rdf-syntax-ns#]

¿emost interesting syntactic short hands are the use of books:Essay::?book to type the ?book variable
using a syntax reminiscent of the underlying Perl language and the use of the => operator to mark the
so-called “target element” of a path and place a restriction on the (literal) value of that element.

Project page:
http://www.gingerall.com/charlie/ga/xml/p_rdf.xml

Implementation(s):
available from the project page

Online demonstration:
http://rdf-demo.gingerall.cz/charlie/rdf/act/rdf_demo.act

4.3.5.5 R-DEVICE Deductive Language

¿e R-DEVICE system, presented in [32], is a “deductive object-oriented knowledge-base system for
querying and reasoning about RDF metadata” [http://lpis.csd.auth.gr/systems/r-device.html].
It is a reimplementation of the X-DEVICE language [31] in the C Language Integrated Production Sys-
tem (CLIPS, see http://www.ghg.net/clips/CLIPS.html) using the CLIPS Object-Oriented Language
(COOL).

¿e mapping from RDF triples to objects is achieved in the following way:

7http://www.gingerall.com/charlie/ga/xml/p_rdf.xml
8http://www.gingerall.com/

75

http://www.gingerall.com/charlie/ga/xml/p_rdf.xml
http://rdf-demo.gingerall.cz/charlie/rdf/act/rdf_demo.act
http://lpis.csd.auth.gr/systems/r-device.html
http://www.ghg.net/clips/CLIPS.html
http://www.gingerall.com/charlie/ga/xml/p_rdf.xml
http://www.gingerall.com/

• All resources are represented as objects where the type is determined by the rdf:type property
of the resource. For resources that are classi�ed in multiple classes a dummy class represents a
common subclass of all the classes the resource is classi�ed in.

• Properties are realized as multi-slots (slots with multiple values) in the class that is the domain of
the property. If no domain is given the property can be applied to any resources, therefore is added
as a slot to the class representing rdfs:Resource (the top of the resource object hierarchy).

New assertions (generated, e.g., through rules) can require dynamic class and/or object re-de�nitions.
To illustrate the syntax of R-DEVICE consider the following implementation of Query 1:

(deductiverule q1
?book <- (? (rdf:type books:Essay) (books:author ?author))
?author <- (? (books:authorName ?authorName))
=>
(result (book ?book) (author ?author) (authorName ?authorName))
)

Note, the production-rule like syntax of R-DEVICE. R-DEVICE also provides constructs for traversing
arbitrary length paths of slots and objects (properties and resources) both with and without restriction on
the type of slot that may be traversed. ¿is allows to implement both Query 2, where we want to collect all
things related to the book with title “Bellum Civile” (this is indicated in R-DEVICE by an unconstrained
path of arbitrary length from the book ?book to the related resources ?related),

(deductive rule q2
?book <- (? (rdf:type books:Essay) (books:title ‘‘Bellum Civile’’) (($?p) ?related)
=>
(result (book ?book) (related ?related))
)

and Query 8, where the transitive closure of the rdfs:subClassOf relation is to be computed. ¿e latter
query can be expressed using a recursive sub-path rdfs:subClassOf.

Project page:
http://lpis.csd.auth.gr/systems/r-device.html

Implementation(s):
available from project page

Online demonstration:
none

4.3.5.6 RDF-QBE

In [320] a language for querying RDF graphs following the well-established “query by example” paradigm
[378, 379] is proposed. Essentially, an RDF graph (described in Notation 3 syntax [49]) is used to describe
the query pattern that should be found in the data. Variables in the pattern are expressed as blank nodes
without explicit node identi�ers as described in [234]. ¿is leads to a major restriction of the approach:
query patterns may only form a tree not a graph.9

Query 1 can be expressed in RDF-QBE as

[] a books:Essay; books:author [books:authorName []].

9Contrary to the claim in [320], this does however not reduce the problem to tree matching, as the data is still graph shaped.

76

http://lpis.csd.auth.gr/systems/r-device.html

When considering what this query should return, the problem of handling blank (or anonymous) nodes
in RDF must be addressed. Either some identi�er (scoped only within the collection of data considered at
the moment, for more details see [234]) is assigned to the blank node or the blank node is represented as
the collection of its properties. ¿is issue actually has to be considered by all RDF query languages, in
particular as assigning an identi�er to blank nodes does not mean that blank nodes can be treated as a
node with explicit identi�er.

In general, RDF-QBE provides a very convenient, easy to read syntax, but the trade-o� (acknowledged
in [320]) is the rather low expressiveness of the language, as detailed in Appendix B.

Project page:
none

Implementation(s):
described in [320], but not publicly available

Online demonstration:
none

4.3.5.7 RDFQL

RDF Gateway [214] is a platform for developing and deploying Semantic Web applications combining a
“native” RDF database engine with a Web server and a server-side scripting language. ¿e RDF database
engine allows for the integration of standard and Semantic Web using so-called “virtual tables” and
inference rules for deductive reasoning (so far, libraries for OWL and RDFS are provided). A graphical
editor for RDF graphs statements is provided for easy creation of new data. To enable basic interoperability
with di�erent Semantic Web tools, several RDF serialization formats are supported, viz. RDF/XML, N3
and NTriples (cf. Appendix A).

¿eRDFGateway uses a proprietary query language, referred to as RDFQL, described in [2]. Although
in many ways similar to RDQL there are several noteworthy di�erences:

• Transaction management is realized in RDFQL by database commands for starting and committing
or undoing (rollback) of a transaction.

• SQL-like update commands are provided, including a full data de�nition language.

• Data can be stored in data sources (o en referred to as “tables”, although they di�er from tables in
SQL database by having a �xed schema as they are only meant to store RDF triples or quads) that
can be either disk-based, in-memory or external data sources identi�ed, e.g., by an URI.

• Using the command INFER, deductive rules can be de�ned as part of a RULEBASE to be used when
querying. ¿is allows, e.g., to specify the semantics of RDFS in the following way (note, that an
RDF statement with subject S, predicate P, and objectO is written in RDFQL as {?P ?S ?O}, i.e., in
pre�x notation; note also the use of uri(?u)=?u to detect whether the object of an RDF statement
is a resource (in which case it has an URI and that URI is equal to the “value” of the resource itself)
or a literal):

RULEBASE rdfs
{
INFER {[rdf:type] ?a [rdf:Property]} from {?a ?x ?y};
INFER {[rdf:type] ?x ?z} from {[rdfs:domain] ?a ?z} and {?a ?x ?y};
INFER {[rdf:type] ?u ?z} from {[rdfs:range] ?a ?z}
and {?a ?x ?u} and uri(?u)=?u;

77

INFER {[rdf:type] ?x [rdfs:Resource]} from {?a ?x ?y};
INFER {[rdf:type] ?u [rdfs:Resource]} from {?a ?x ?u} and uri(?u)=?u
INFER {[rdfs:subPropertyOf] ?a ?c}
from {[rdfs:subPropertyOf] ?a ?b} and {[rdfs:subPropertyOf] ?b ?c}
INFER {?b ?x ?y} from {[rdfs:subPropertyOf] ?a ?b}
and {?a ?x ?y}
INFER {[rdfs:subClassOf] ?x [rdfs:Resource]}
from {[rdf:type] ?x [rdfs:Class]}
INFER {[rdfs:subClassOf] ?x ?z} from {[rdfs:subClassOf] ?x ?y}
and {[rdfs:subClassOf] ?y ?z}
INFER {[rdf:type] ?a ?y} from {[rdfs:subClassOf] ?x ?y}
and {[rdf:type] ?a ?x}
}

Query 1 can be implemented in RDFQL by the following program:

session.namespaces["books"] = "http://example.org/books#";
var booksdata = new DataSource("http://example.org/books");
SELECT ?essay, ?author, ?authorName USING booksdata WHERE
{[rdf:type] ?essay [books:Essay]}
and {[books:author] ?essay ?author}
and {[books:authorName] ?author ?authorName}
ORDER BY ?authorName DESC;

Note again the (in the RDF context) uncommon notation of statements with predicate �rst. For
illustration of the ability of RDFQL to return ordered result, an ORDER BY clause is added to the query
that orders the result by the name of the author. Using a rule base as the one shown above for RDFS, even
resources classi�ed by a sub-class of books:Essay will be returned.

Project page:
http://www.intellidimension.com/

Implementation(s):
within the RDF Gateway, personal edition (limited to non-commercial use and the number of
connections allowed) available from project page

Online demonstration:
none (however, the project page can serve as a show case as it is implemented using RDF Gateway)

4.3.5.8 TRIPLE

TRIPLE [341, 342, 203] is a rule-based query, inference, and transformation language for RDF data based
upon ideas published in [138] and with a syntax close to F-Logic [230]. ¿e use of F-Logic for querying
semi-structured data such as XML or RDF is natural, as one of the strengths of F-Logic approaches is the
ability to handle data without a �xed schema demonstrated, e.g., in [250]. Other F-Logic based approaches
are, e.g., XPathLog (see Section 4.2.1.7) and the commercial ontology management platform Ontobroker10.

TRIPLE has been designed to address in particular two weaknesses of previous approaches for RDF
query languages:

• Most previous proposals provide a number of prede�ned constructs implementing the speci�c
semantics of, e.g., RDFS or OWL. ¿e disadvantage of such an approach is the lack of extensibility,
although extensibility is a crucial feature of the underlying representation formalism RDF. In
contrast, TRIPLE only o�ers a basic, rule-based language for Horn logic, that is in large parts

10http://www.ontoprise.de/products/ontobroker

78

http://www.intellidimension.com/
http://www.ontoprise.de/products/ontobroker

identical to F-Logic [230]. ¿is language can be used, where possible, to implement the semantics
of, e.g., RDFS. Where Horn logic is not su�cient, as, e.g., in the case of OWL, TRIPLE is designed
to be extended by external modules implementing, e.g., an OWL reasoner.
Building upon [238, 239] for expressing Topic Maps in RDF and [275] for representing UML in RDF,
the authors argue in [342] that TRIPLE could also be used to query other representation formalisms
for metadata other than RDF.
However, this claim is not demonstrated and, although recent work [178] gives some impression of
an integrated query language for RDF and Topic Maps, the adequacy of TRIPLE for querying Topic
Maps is questionable in light of the rather awkward mappings from Topic Maps to RDF proposed
so far (e.g., many of these approaches result almost exclusively in rei�ed statements).

• Due to the foundation in Horn logic, TRIPLE provides not only a well-de�ned semantics but also
fairly powerful reasoning capabilities (that can be further enhanced by extension modules), both
in contrast to previous approaches. In particular, the use of a rule language for both querying and
reasoning about the queried data is a natural choice, even more so in the context of the Semantic
Web.

Following [342] one can identify a number of areas where TRIPLE di�ers from basic Horn logic (and
logic programming languages such as Prolog). Most of these di�erences are either related to speci�cities
of the RDF data model or the choice of representing properties similar to slots in F-Logic:

• Identifying resources: Resources are identi�ed in RDF byURIs. TRIPLE supports both namespaces
and general resources abbreviations (e.g., isa := rdfs:subClassOf to simplify the notation of
URIs. TRIPLE assumes that all resources are identi�ed properly by an URI, anonymous resources
are not considered so far (there is some indication that this will change in the future in [203]).

• Representing and querying statements: RDF statements are represented as slots and slot values
of the subject in a statement, i.e., subject[predicate -> object]. ¿is allows for easy grouping
and nesting of statements. As in F-Logic, Path expressions inspired by [169] can be used to traverse
several predicates at once.

• Rei�cation: In contrast to many other RDF query languages, TRIPLE provides concise support for
rei�ed statements by enclosing such statements in angle brackets, e.g., Julius_Caesar[believes-><Junius_Brutus[friend-of
-> Julius_Caesar]>].

• Explicitmodel speci�cation: Similar to themodule syntax in some F-Logic systems, TRIPLE allows
the explicit speci�cation of the model in which a statement or atom is true. ¿e model is again
identi�ed by an URI and appended to the statement or atom by @.

Finally, one should note that TRIPLE di�ers from common logic programming languages such as
Prolog in requiring all variable to be explicitly quanti�ed.

With this syntax RDF statements and queries can be expressed in TRIPLE. Assuming the data from
Figure 2.1 has been loaded as part of a model identi�ed by http://example.org/books the following
TRIPLE program implements Query 1:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
books := ’http://example.org/books#’.
booksModel := ’http://example.org/books’.
FORALL B, A, AN result(B, A, AN) <-
B[rdf:type �books:Essay;
books:author �A[books:authorName �AN]]@booksModel.

79

Note, the use of both nesting and grouping of statements for this query. In this formulation, this query
selects only resources directly classi�ed as books:Essay, below it is discussed how this query can be
modi�ed to properly select all resources classi�ed as books:Essay or any of its sub-classes in the RDFS
subsumption hierarchy.

As discussed above, the speci�c semantics of di�erent RDF vocabularies such as RDFS or OWL is
provided on top of the basic language layer, either as external modules or implemented using the Horn
logic reasoning provided by TRIPLE. In [342] the following implementation of RDFS in TRIPLE is given:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
subPropertyOf := rdfs:subPropertyOf.
subClassOf := rdfs:subClassOf.
FORALL Mdl @rdfschema(Mdl) {
transitive(subPropertyOf).
transitive(subClassOf).
FORALL O,P,V O[P�V] <-
O[P�V]@Mdl.
FORALL O,P,V O[P�V] <-
EXISTS S S[subPropertyOf�P] AND O[S�V].
FORALL O,P,V O[P�V] <-
transitive(P) AND EXISTS W (O[P�W] AND W[P�V]).
FORALL O,T O[type�T] <-
EXISTS S (S[subClassOf�T] AND O[type�S]).
}

Note, that this implements only part of the RDFS semantics, e.g., inference from range and domain
restrictions of properties is not provided. However, this is not due to a a limitation of TRIPLE, as adding
the following two rules completes the implementation of RDFS in TRIPLE.

FORALL S,T S[type�T] <-
EXISTS P, O (S[P�O] AND P[rdfs:domain�T]).
FORALL O,T O[type�T] <-
EXISTS P, S (S[P�O] AND P[rdfs:range�T]).

With these rules, the implementation of Query 1 in TRIPLE shown above only needs to be modi�ed
with respect to the model it is evaluated against: instead of @booksModel, @rdfschema(booksModel) is
used, that is the original model “expanded” with the above rules implementing RDFS semantics.

In [342], not only the textual syntax for TRIPLE discussed so far is proposed but also an RDF (and
therefore) XML representation of the language itself (more precisely, for the basic language layer).

Easy of use. Although TRIPLE employs a syntax less familiar to the average query programmer than
languages inspired by main-stream query languages such as SQL or XPath, the close alignment with
F-Logic allows users knowledgeable in logic programming languages to become acquainted with the
language quickly. However, the lack of a visual syntax or a natural language interface makes it hard for
non-experts to formulate. An RDF (and therefore XML) syntax is provided that can indeed be queried by
TRIPLE itself.

As discussed above, TRIPLE allows the explicit speci�cation of the model(s) for which a statement or
formula should hold. Even more, reasoning methods beyond the Horn logic formulae provided by the
basic TRIPLE language can be implemented by external modules.

¿emost striking weakness of the TRIPLE language is a direct consequence of the generality claimed
in [342]. Although data represented in very di�erent formalisms such as RDF, Topic Maps, or UML can be
queried in TRIPLE (e.g., by translating the data to RDF), this leads to rather awkward representations of
many language features. Even for RDF there are certain aspects of RDF, viz. containers, collections, and
anonymous nodes, that are not considered by TRIPLE and can not easily be added to the language.

80

Functionality—Query Types. As just discussed, TRIPLE’s generality is in some cases paid for by a lack
of adequacy for the data representation formalisms claimed to be supported. Regarding the di�erent query
classes discussed in Section 3.2, one can observe, that most of them can be expressed in TRIPLE as already
demonstrated for Query 1 and 8. However, the language does not support aggregation.

Semantics. In [342] the semantics of TRIPLE is given by a mapping of the TRIPLE-speci�c features to
standard Horn logic expressions.

Complexity and implementation. No formal complexity study of the language has been published. So
far, only a single prototype implementation of TRIPLE is available.

Reasoning. As discussed above, TRIPLE not only o�ers full Horn logic reasoning as part of the basic
language but is designed to allow the extensions with speci�c reasoners, e.g., for handling OWL ontologies.

Ontology awareness. Although the basic language does not provide any ontology-speci�c abilities,
ontology awareness can be obtained either by implementing the semantics of the ontology language in the
basic TRIPLE Horn logic (as demonstrated for RDFS above) or by extending the language with speci�c
reasoners tailored for the needs of the ontology language such as OWL.

Project page:
http://triple.semanticweb.org/

Implementation(s):
available from the project page

Online demonstration:
http://ontoagents.stanford.edu:8080/triple/ (not functional at the time of writing), some
information about projects realized with TRIPLE demonstrating its abilities are available from the
project page

4.3.5.9 WQL

Ivanhoe [243] is a frame-based API following ideas from [212, 240] for the Nokia Wilbur Toolkit [245], a
collection of APIs for processing XML, RDF, and DAML written in CLOS (Common Lisp Object System)
and introduced in [241]. In Ivanhoe, resources described using RDF and/or DAML are represented as
frames with a slot for each property of the resource. ¿e (possibly multiple) values of a slot correspond to
objects of RDF statements with the resources represented by the frame as subjects. In [244], a comparison
of a subset of the Ivanhoe API, referred to as Wilbur Query Language or WQL, is described along the
criteria from [200]: ¿ree variants of WQL are discussed:

• the basic path-based query language that allows the selection of some resource reachable by a path
via value, the selection of all resources reachable by a path via all-values, and the test whether
two resources are connected by a certain path using relatedp;

• the embedding of that query language into Common Lisp (abbreviated as WQL+CL). It is not clear,
if there is a restriction on the allowed Common Lisp expressions for this language layer.

81

http://triple.semanticweb.org/
http://ontoagents.stanford.edu:8080/triple/

• based upon the “transparent” (or “hidden”) inference extensions for Wilbur presented in [242], the
�nal layer, abbreviated WQL+CL+inference, uses WQL+CL as query language but assumes a data
store providing inferencing, e.g., for implementing RDFS.

For this survey we concentrate on the �rst query language WQL only, as WQL+CL is more akin to a
programming language than a query language. However, where appropriate the “transparent inferencing”
provided by Wilbur is considered when evaluating WQL.

Consider a query that returns the labels of all classes the book with identi�ed by http://example.
org/books#Bellum_Civile is classi�ed under on the data from Figure 2.1:

(setf *db* (make-instance ’db))
(load-db (make-url "http://example.org/books")
:locator "http://example.org/books")
(add-namespace "books" "http://example.org/books#")
(all-values !"http://example.org/books#Bellum_Civile"
’(:seq !rdf:type (:seq (:rep* !rdfs:subClassOf) !rdfs:label)))

Note, the use of the :seq operator for constructing a sequence of slots (or relations in RDF terms) to be
traversed by the query and of the :rep* operator for traversing the transitive closure of a slot/relation.
all-values returns all resources (represented as frames) reachable by the speci�ed path from the source
frame, i.e., the frame identi�ed by http://example.org/books#Bellum_Civile.

Project page:
Wilbur Toolkit: http://wilbur-rdf.sourceforge.net/

Implementation(s):
available from the project page

Online demonstration:
none

4.4 Topic Maps Query Languages

4.4.1 tolog: Logic Programming for Topic Maps

tolog [174] has been developed as part of the Ontopia Knowledge Suite11, providing access to the core
query engine (cf. Figure 4.2). It has also recently (April 2004) been selected as an initial straw-man for
the ISO Topic Maps Query Language currently under development. ¿e language is speci�ed in [174]
(incomplete), a gentle introduction is presented in the tolog tutorial [175], and in [172, 173] language design
and evolution are addressed.

¿e design is most notably in�uenced by logic programming languages such as Prolog and logic-based
query languages such as Datalog. Some of the more common syntactic constructs have been adapted to
an SQL-like feeling to appeal to query authors without background in logic programming. ¿e in�uence
from logic programming is obvious when considering the basic query constructs used in tolog (here and
in the following, this discussion of tolog is mostly oriented at [175], since the speci�cation is in many
points still un�nished; where possible, extensions described in [173] have been considered):

11http://www.ontopia.net/solutions/products.html

82

http://example.org/books#Bellum_Civile
http://example.org/books#Bellum_Civile
http://example.org/books#Bellum_Civile
http://wilbur-rdf.sourceforge.net/
http://www.ontopia.net/solutions/products.html

Figure 4.2 Overview of the Ontopia Knowledge Suite
(from http://www.ontopia.net/solutions/products.html, © Ontopia)

83

http://www.ontopia.net/solutions/products.html

• Identi�ers. tolog provides several means for identifying a Topic Maps construct, most notably
based on the (internal) ID of a topic and its subject indicator. E.g. the topic (type) “Novel”
in the sample data could be addressed either using its ID, i.e., Novel, or its subject indicator
i"http://example.org/books#Novel". Note the i pre�x in the latter case to distinguish between
di�erent identi�ers used in a topic map. As usual, URI pre�xes can be used to abbreviate such
expressions, e.g., under the pre�x de�nition using books for i"http://example.org/books#"

one can write simply books:Novel to address that topic by its subject indicator. Note, that these
pre�xes are not equivalent to (XML) namespaces, as also the indicator which of the topic identi�ers
to use is included.

• Variables. In contrast to Datalog or Prolog, variables are pre�xed with a $ wherever they are
referenced (this is both for simplicity and to be able to allow uppercase topic IDs). Per default all
variables occurring in a query are returned, however using select $var1, $var2, ... from

query a projection on the variables $var1, $var2, ... can be obtained.

• Predicates. ¿e original tolog proposal (cf. [174]) provides for two kinds of predicates: built-in
and dynamic association predicates. For each association type occurring in a topic map, there is
a so-called dynamic association predicate that allows querying the extent of the association type.
E.g., to query the authors of book b1 in the sample topic map shown in Chapter 2, one can write
authors-for-book(b1, $AUTHOR: author). Note, the use of the association role to identify which
of the two associated topic is the author. In this case, the query processor might be able to infer
the type of $AUTHOR from the type of b1 and the fact that there are only two topics involved in an
authors-for-book association. However, in a query such as authors-for-book($BOOK, $AUTHOR)

the need for specifying the association roles is obvious. Analogously to dynamic association predi-
cates there are also dynamic occurrence predicates.
¿eonly twobuilt-in predicates are instance-of($INSTANCE, $CLASS) and direct-instance-of($INSTANCE,
$CLASS), i.e., predicates that implement the special semantics of the subsumption hierarchy.
Although the dynamic association and occurrence predicates allow for easy authoring of queries,
they require that the query author is aware of the ontology of the data to be queried. ¿is disad-
vantage has been addressed in a recent proposal on extending tolog [173] and already incorporated
into the language tutorial [175]: a number of additional built-in predicates for enumerating the
associations, association roles, occurrences, and topics are provided, that allow querying arbitrary
topic maps without a-priori knowledge of the types used in the topic maps. E.g., Query 2 can only
be implemented using these predicates:

select $RELATED from
title($BOOK, "Bellum Civile"),
related($BOOK, $RELATED)?
related($X, $Y) :- {
role-player($R1, $X), association-role($A, $R1),
association-role($A, $R2), role-player($R2, $Y) |
related($X, $Z), related($Z, $Y)
}.

¿is query also demonstrates the use of conjunctions (denoted by a comma as in prolog), disjunctions
(denoted by an expression parenthesized with curly brackets in which the disjuncts are separated by
|), and inference rules discussed below in detail. Note, the use of the built-in predicates role-player
and association-role that related association roles with topics, respectively associations with
association rules.
Using the notation for disjunctions, one can also specify optional queries.

84

• Inference. As tolog is based on Datalog, it uses a similar syntax for inference rules. E.g., the build-in
predicates instance-of and direct-instance-of can indeed be implemented using only dynamic
association predicates and inference rules as follows (cf. [174]):

direct-instance-of($INSTANCE, $CLASS) :-
i"http://psi.topicmaps.org/sam/1.0/#type�instance"(
$INSTANCE : i"http://psi.topicmaps.org/sam/1.0/#instance",
$CLASS : i"http://psi.topicmaps.org/sam/1.0/#class").
super-sub($SUB, $SUPER) :-
i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass�subclass"(
$SUB : i"http://www.topicmaps.org/xtm/1.0/core.xtm#subclass",
$SUPER : i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass").
descendant-of($DESC, $ANC) :- {
super-sub($DESC, $ANC) |
super-sub($DESC, $INT), descendant-of($INT, $ANC)
}.
instance-of($INSTANCE, $CLASS) :- {
direct-instance-of($INSTANCE, $CLASS) |
direct-instance-of($INSTANCE, $DCLASS), descendant-of($DCLASS, $CLASS)
}.

Note, the use of the subject indicator to access the standardized type-instance and superclass-subclass
associations.

Inference rules can also use negation, however according to [173] the semantics of negation in tolog
is not yet fully speci�ed.

Aside of these central concepts, tolog also provides constructs for aggregation and sorting ([173]
mentions the need for additional aggregation functions), paged queries using limit and offset clauses
similar to SQL, and means for de�ning and using modules of, e.g., inference rules. Furthermore, recent
versions of tolog o�er initial support for function libraries on simple data types similar to [256].

Easy of use. ¿e textual syntax of tolog is closely aligned with logic programming languages in the style
of Prolog or Datalog. Most of the Topic Maps extensions are rather straight-forward. However, neither a
visual syntax nor a natural language interface are provided.

Functionality—Query Types.

Semantics. No formal semantics has been published.

Complexity and implementation. No formal complexity study of the language has been published.
Tolog has been implemented in the Ontopia Knowledge Suite12 and in the open source Topic Maps toolkit
TM4J13. With tolog selected as initial straw-man for the upcoming ISO Topic Maps Query Language, a
more wide-spread adoption of the language is to be expected.

Reasoning. Roughly the same reasoning abilities as in Prolog are provided, although the handling of
negation is unclear in the current documents describing tolog.

12http://www.ontopia.net/solutions/products.html
13http://tm4j.org/

85

http://www.ontopia.net/solutions/products.html
http://tm4j.org/

Ontology awareness. tolog can access and query type information included in a topic map. In particular,
the special semantics of the associations de�ning the subsumption hierarchy is considered. No further
support for ontology languages is provided. However, it is likely that the ISO Topic Maps Constraint
Language14 currently under development will be supported in the future.

Project page:
http://www.ontopia.net/omnigator/docs/query/tutorial.html (language tutorial)

Implementation(s):
as part of the Ontopia Knowledge Suite (http://www.ontopia.net/solutions/products.html)
and the open source Topic Maps toolkit TM4J (http://tm4j.org/).

Online demonstration:
Omnigator is a show-case application implemented using the Ontopia Knowledge suite. It is
available from http://www.ontopia.net/ and an online demonstration can be accessed at http:
//www.ontopia.net/omnigator/models/index.jsp (however, there seems to be noway to directly
test tolog queries in the online demonstrator).

4.4.2 AsTMA?: Functional-style Querying of Topic Maps?

AsTMa? is an “experimental” Topic Maps query language integrated with the rest of the AsTMa language
family developed at the Australian Bond University. It is de�ned in [27]. A language tutorial is also
provided [25].

AsTMa? has a rather di�erent �avor compared to other Topic Maps languages as it is most similar to
functional XML query languages in the style of XQuery [57]. It speci�es several di�erent path languages
than can be used for accessing data in topic maps. ¿ese data can than be further processed by various
query constructs, in particular for constructing XML output.

Query 1 can be implemented by the following AsTMa? query:

<books>
{
forall [$book (Writing)] in http://example.org/books
return
<book>
{$book,
forall $author in ($book �author / author-for-book) return
<author>
{$author}
<name>{$author/bn}</name>
</author>
</book>
}
</books>

Note the almost identical syntax in comparison to XQuery. ¿e query �rst selects all topics with topic type
Writing in http://example.org/books. For each of these books, the author is queried by traversing the
author-for-book association and selecting the topics with author role. Finally, the basename of each
author is returned by the expression $author/bn.

One of the interesting features of AsTMa? is the great variety o�ered for accessing topics and associa-
tions: based on a path expression in one of the path languages or on a constraint written in the AsTMa!.
¿is allows the above query to be formulated as

14http://www.isotopicmaps.org/tmcl/

86

http://www.ontopia.net/omnigator/docs/query/tutorial.html
http://www.ontopia.net/solutions/products.html
http://tm4j.org/
http://www.ontopia.net/
http://www.ontopia.net/omnigator/models/index.jsp
http://www.ontopia.net/omnigator/models/index.jsp
http://www.isotopicmaps.org/tmcl/

<books>
{
forall [$book (Writing)] in http://example.org/books
return
<book>
{$book,
forall [(author-for-book)
Writing : $book
author: $author]
in http://example.org/books return
<author>
{$author}
<name>{$author/bn}</name>
</author>
</book>
}
</books>

Here the association is not queried by a path expression, but rather by a constraint in AsTMa! syntax.

Project page:
http://astma.it.bond.edu.au/querying.xsp

Implementation(s):
as part of the Perl XTMmodule, available via CPAN

Online demonstration:
http://astma.it.bond.edu.au/query/

4.4.3 Toma: Querying Topic Maps inspired by SQL

Due to its wide-spread acceptance, designing a query language with syntax and features similar to SQL is a
natural choice. A �rst proposal for a TopicMaps query language inspired by SQL can be found in [237], that
allows to query topics, topic-types, and associations using a mixture of SQL syntax and path expressions.
E.g., the following query selects all books (i.e., topics classi�ed as Writing) together with their authors:

select topic[book], topic[author]
from topic-type["Writing"].topic[book],
topic[book]..assoc[a]..topic[author],
assoc-type["author�for�book"].assoc[a]

[237] also points out that a close alignment of query language and representation formalism is desirable,
e.g., to allow the user to author a query with (nearly) the same tools used for authoring the topic maps
itself.

Developed at Space Application Services15 in a project for the European Space Agency, Toma [308] is a
more elaborate proposal for a Topic Maps query language along the lines of SQL and path expressions
known from object-oriented query languages. It provides access to all Topic Maps concepts, including an
implementation of the special semantics of the subsumption hierarchy. Information about a topic such as
topic ID, basename, or subject identi�er are accessed using a . notation as in object-oriented languages.
E.g., $topic.bn = ’Julius Caesar’ compares the basename of all topics selected by $topic with the
string “Julius Caesar”. Associations can be traversed using ->, however only the associations with special
semantics such as the instance-of or superclass-subclass association can also be traversed transitively, i.e.,
without knowing the length of the path to be traversed a-priori. Indeed, for traversing the subsumption

15http://www.spaceapplications.com/

87

http://astma.it.bond.edu.au/querying.xsp
http://astma.it.bond.edu.au/query/
http://www.spaceapplications.com/

hierarchy Toma provides the notation $start.super(1..*) that selects all super-classes of the current one.
Instead of 1..* one can specify any interval or single number to indicate how many superclass-subclass
associations shall be traversed. A similar notation is available for instance-of associations.

A Toma expression implementing Query 1 is shown in the following:

select $book, $author, $author.bn
where $book.type(1..*).id = ’Writing’
and author-for-book%a�Writing = $book
and author-for-book%a�author = $author

¿is query selects all topics classi�ed as Writing or one of its subtypes together with their authors and the
basenames of the authors. ¿e link between the book and the author is established by the author-for-book
associating: a topic x is the author of another topic y, if x occurs in role author and y in role Writing in
the same association (the use of %a in the query ensures that the same association is used).

Using the above mentioned constructs for querying the type hierarchy, Query 3 can be implemented
easily: ¿e following Toma query selects all topics that are neither used as type of another topic (i.e., part
of the “ontology”) nor typed as Translator:

select $topic
where $topic.type(1..*).si.sir != ’http://example.org/books#Translator’
and not exists ($t.type(1) = $topic)
and not exists ($t.type(1..*) = $x and $topic.super(1..*) = $x)

In this query all topics are selected that neither (a) have the subject identi�er http://example.org/books#Translator
nor (b) are the type of some topic nor (c) are a sub-class of topic that is the type of some topic.

Project page:
http://www.spaceapplications.com/toma/

Implementation(s):
implementation not freely available

Online demonstration:
none

4.4.4 Path-based Access to Topic Maps

As for RDF and XML query languages, following the success of XPath great interest in path-based query
languages for Topic Maps has been triggered (cf. [26] for an overview of such languages and a plea
for inclusion of path navigation in the upcoming ISO Topic Maps query language). Actually, most
of the current proposals for Topic Maps query languages use some form of path expressions with the
notable exception of tolog (see Section 4.4.1). In the following, two languages focusing on providing
navigational path expressions for accessing Topic Maps languages are investigated. Further proposals for
path expressions as basis for querying Topic Maps are discussed in Section 4.4.2 and 4.4.3.

4.4.4.1 XTMPath

XTMPath [29] is an approach to de�ne an easy-to-use language for accessing data stored in topic maps
using XPath-like path expressions. ¿e language is de�ned in [29] as part of the Perl XTM toolkit, [199]
presents an easy overview. ¿e core principle of the language is to use the way Topic Maps are serialized as
XML documents in XTM [306] as orientation on how to address parts of a topic map. E.g., the expression

88

http://www.spaceapplications.com/toma/

topic[instanceOf/topicRef/@href = "#Historical_Novel"] �nds all topics that are (directly) typed
as a Historical_Novel. ¿e path expression results from the way this information is represented in XTM:

<topic id="b1">
<instanceOf>
<topicRef xlink:href="#Historical_Novel"/>
</instanceOf>
</topic>

So, given an XTM serialization of a topic maps �nding the correct paths for addressing a part of that
topic map is fairly easy.

However, one has to be aware of certain peculiarities of XTMPath:

• Only a very small subset of the language constructs provided in XPath is currently supported by
XTMPath, mostly abbreviated syntax for child and descendant axis and some simple predicates.

• [29] argues that, in contrast to XPath, the XTMPath processor essentially operates on data con-
forming to a single DTD (viz., the XTM DTD). ¿is observation leads to treating the child axis in
most cases as equivalent to the descendant axis. Only in some rare cases (e.g., for instanceOf) a
di�erence between child and descendant is made.

Project page:
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

Implementation(s):
as part of the XTM toolkit available from CPAN

Online demonstration:
none

4.4.4.2 TMPath

TMPath [59, 60] is an “experimental” language for accessing parts of a topic maps in a style similar to
XPath. It has been developed by Dimitry Bogachev, partly as input to the ISO Topic Maps Query Language
working group.

Just as XPath, it is designed to be used as embedded language that implements the selection of (or
access to) parts of the topic maps, that can be used by the host language for further processing.

¿e latest version of TMPath [60] provides a large number of constructs for this task. In contrast to
the strict syntax of compound steps in XPath consisting in axis and node-test with an optional predicate,
TMPath mixes di�erent styles of steps. E.g., the following TMPath expression returns the basename of all
authors, i.e., all topics that occur in the author role in a author-for-book association:

/topic[*;roleOf::author[is-author-of]/role::Writing]/bn::*[1]

¿e syntax *;... is one of the many shortcuts in TMPath specifying a type condition before the semicolon
and arbitrary further conditions a er it.

TMPath also provides means for binding variables using for clauses familiar from XPath. ¿is allows,
e.g., to return a list of all Writings together with their authors:

for $book in /topic[subjectIdentifier = "http://example.org/books#Writing"]
for $author in /topic[*;roleOf::author[is-author-of]/role::Writing = $book]
return list{$book/bn::*[1],$author/bn::*[1]}

89

http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

Although obivously inspired by XPath, the lack of strict rules for representing the various TMPath
step and predicate expressions leads to a rather complicated and hard to read syntax.

Project page:
http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPathRevisited.html

Implementation(s):
unclear, not freely available

Online demonstration:
none

4.5 OWL Query Languages

4.5.1 OWL-QL

OWL Query Language (OWL-QL) combines a formal language for querying OWL ontologies with a
protocol designed to support a dialogue between a querying agent and an answering agent [163]. It is
based on the earlier DAML Query Language (DQL) developed by the Joint US/EU ad hoc Agent Markup
Language Committee [162]. Although based on OWL and RDF, the language is quite generic and could
easily be adapted to other logic based knowledge representation formalisms such as SWRL [207] or SCL16.

Query Language In OWL-QL, the query language itself is based on the standard notion of language
statements (in this case OWL statements) in which some terms are replaced by variables [126]. Queries
will o en resemble standard conjunctive queries with the predicates being OWL classes and properties,
and constants being OWL individuals [209]. An answer to a query consists of a binding for some or all of
the variables in the query, i.e., a set of individual names from the ontology(ies) which, when substituted for
the corresponding variables, give a set of statements that are entailed by the ontology(ies) being queried.
E.g., a query of the form

Person�?x� worksFor�?x,W3C�

asks for persons who work for W3C, and if the ontology contains the statements Person�Jane� and
worksFor�Jane,W3C�, then binding Jane to ?x answers the query as under this binding the statements
in the query are entailed by the ontology.

As usual, there are di�erent kinds of variable: must-bind variables are those which must be be bound to
some individual name (in conjunctive queries, these are usually called distinguished variables); don’t-bind
variables are those for which no explicit binding is required (in conjunctive queries, these are usually
called non-distinguished variables); and may-bind variables are those which may optionally bound to
an individual name. ¿e addition of may-bind variables doesn’t increase the expressive power of the
language (the same result could be achieved by combining the results of queries using only must-bind
and don’t-bind variables), but may be convenient in some applications. Variables that are not bound to
individual names in a query answer are treated as existentially quanti�ed. For full details of the semantics
of OWL-QL, the reader is again referred to [163].

In OWL-QL, standard taxonomic queries, e.g., retrieving all the super-classes of a given class, can be
answered by using RDF properties in query atoms. For example, the query

subClassOf�Person, ?x�
16Common Logic Standard, http://cl.tamu.edu.

90

http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPathRevisited.html
http://cl.tamu.edu

would return all the super-classes of Person.
Given that the semantics of OWL-QL are based on entailment, answering OWL-QL requires, in

general, the use of a theorem prover. One possible technique is to transform both query and ontologies
into First Order Logic and use a FOL order theorem prover; details of an implementation based on this idea
can be found at the DQL project for the Stanford Knowledge Systems Laboratory (http://ksl.stanford.
edu/projects/dql/). Another technique is to reduce the conjunctive queries to standard retrieval queries
that can be answered using a Description Logic (DL) reasoner [209,355,206]; details of an implementation
based on this technique can be found at [179]. Details of a Jess based implementation can be found at [339].

Query Answering Protocol ¿e OWL-QL query answering protocol is designed to cope with the wide
variety of situations that might arise in a heterogeneous web environment:

• there may be many di�erent kinds of server (a query answering service) with access to di�erent
kinds of information represented in many di�erent formats;

• serversmay have only partial information andmay have limitationswith respect to their performance
(speed and/or completeness), the language they can handle (e.g., OWL Lite/DL/Full) and the kinds
of query they are able to answer;

• the querying agent may or may not want or be able to specify all of the ontologies that should be
used in answering a query;

• the querying agent may need only one answer, all possible answers, or something in between;

• the querying agent may consider some parts of the answer to be more important than others;

• and querying agents and servers may use di�erent forms of surface syntax, e.g., RDF or XML.

In order to address these requirements, a query answer can be returned in one or more bundles,
the query agent can specify an upper limit on the size of answer bundles, and a server can indicate the
characteristics of its answer with respect to completeness and duplication. ¿e query agent can also specify
zero or more ontologies and (optionally) additional OWL statements that are to be used in computing the
query answer. Moreover, the query language is speci�ed using an abstract syntax for which many di�erent
serialisations are possible (e.g., an XML serialisation has been de�ned at the DQL project for the Stanford
Knowledge Systems Laboratory, http://ksl.stanford.edu/projects/dql/).

When the query agent speci�es one or more ontology, then only these ontologies can be used to
compute answers.17 Alternatively, the query agent may specify a variable instead of an ontology. In this
case the server is free to use any ontology it chooses to answer the query (the idea here is that the server
can use arbitrary web accessible resources in order to �nd answers to such queries); the actual ontology
used to answer the query may be returned as a binding for the variable, depending on whether it is a
must-bind or may-bind variable.

If the query agent speci�es an upper limit on the size of the answer bundle, then the size of an answer
bundle returned by the server may range from zero up to this limit. An answer bundle from the server
also includes either a process handle or a termination token. In case a process handle is returned, this can
be used by a query agent (not necessarily the same agent) to continue the dialogue by requesting more
answers to the query; a query agent can also terminate the dialogue at this point by sending the server
the process handle with a termination request. A dialogue can be ended by the server using one of three
di�erent types of termination tokens: end simply indicates that no more answers will be provided; none

17Note that these ontologies may import others using OWL’s import mechanism.

91

http://ksl.stanford.edu/projects/dql/
http://ksl.stanford.edu/projects/dql/
http://ksl.stanford.edu/projects/dql/

explicitly asserts that all possible answers have been returned (i.e., the union of the answer sets in this and
any preceding bundles constitute a complete answer to the query); and “rejected” indicates that the server
is unable to answer the query. ¿is last case covers a range of possibilities, including queries being outside
the scope of a particular server (e.g., an OWL DL query sent to an OWL Lite server), or simply ill formed.

¿e speci�cation of OWL-QL envisages servers with di�erent kinds of behaviour regarding the gener-
ation of duplicate answers (although it does not specify a language mechanism whereby this information
could be communicated to a query agent). A non-repeating server is one which guarantees not to duplicate
answers during the course of a dialogue; a terse server is one that will not return redundant answers, where
an answer is considered redundant if it is less speci�c than another answer (i.e., it has the same bindings
for must-bind variables and a subset of the bindings for may-bind variables); a serially-terse server is one
that will not return answers that are redundant with respect to already returned answers (but answers
could be rendered redundant by a subsequent answer).

Project page:
http://ksl.stanford.edu/projects/owl-ql/

Implementation(s):
available from the project page

Online demonstration:
http://onto.stanford.edu:8080/

92

http://ksl.stanford.edu/projects/owl-ql/
http://onto.stanford.edu:8080/

Chapter 5

Evaluation Results

In Appendix B, the detailed evaluation of the query languages discussed above is shown. Here, some of
the most striking results are highlighted.

¿e �rst and most obvious observation that can be derived from the discussion of the query languages
in Chapter 4 and the feature evaluation from Appendix B is the great variety of proposed Web query
languages ranging from path languages providing only the most basic means for data access (XTMPath,
Section 4.4.4.1; RDFPath, Section 4.3.2.5) over similarly basic languages for extracting multiple data items
at once (RDQL, Section 4.3.1.3; XQL, Section 4.2.1.3), languages with and without ontology support to
computationally complete languages with general recursion that are able to query data in any of the
representation formalisms considered here (Xcerpt, Section 4.2.2.6; XQuery, Section 4.2.1.5; TRIPLE,
Section 4.3.5.8) or constrained natural language for querying Semantic Web data (Metalog, Section 4.3.4.1).
¿is variety is also re�ected in the ability of the di�erent query languages to infer data: some languages do
not consider inference, most provide at least some restricted form of inference, e.g., means for computing
the transitive closure of a relation, some allow for a Datalog-like speci�cation of intensional data.

Also rather obvious from the results, although not commonly acknowledge is that similar approaches
occur for XML, RDF, and Topic Maps querying, e.g., basic path-based languages are proposed for all
cases and query languages inspired by logic programming languages such as Prolog or Datalog are o en
the ones providing the riches expressiveness in each area. ¿is is particularly true when considering the
reasoning abilities of the surveyed languages: in all areas languages with no actual reasoning at all, with
very limited reasoning abilities for implementing speci�cities of the underlying representation formalism,
and with strong reasoning support, e.g., by means of general recursion and Horn logic clauses, can be
found.

¿is points to a common classi�cation scheme for the query languages surveyed so far using the
reasoning abilities of a language as distinguishing property. Such a classi�cation scheme is proposed and
discussed in the following section.

5.1 A Classification Scheme for Web Query Languages

In the tradition of the seminal papers by Codd [127] and later by Chandra and Harel [111, 112], query
languages for (relational) data base have o en been characterized by their expressiveness (or completeness
under the relational algebra) and evaluation complexity. However, many recent proposals for Web query
languages have acknowledge previous results (e.g., in [7]) suggesting that such classi�cation schemes have

93

to be altered for a Web context by providing computationally complete languages (e.g., XQuery [57], XSLT
2.0 [227], Xcerpt [329], XPathLog [270], TRIPLE [342], tolog [173]).

For Edutella [286], an RDF-based peer-to-peer (P2P) infrastructure, a language for exchanging queries,
dubbed RDF-QEL, among the nodes in the P2P system has been developed. ¿is language is based
on Datalog but to support a wide range of devices and implementations with di�ering capabilities, �ve
language layers are proposed distinguished by increasing complexity:

• Rule-less queries are queries without rules (or equivalent constructs).

• Conjunctive queries allow only a single, non-recursive rule per predicate.

• Disjunctive queries can use several rules for de�ning a predicate but may not be recursive in any way.

• Linear recursive queriesmay contain predicates de�ned by linear recursion.

• General recursive queriesmay contain arbitrary Datalog predicates.

¿is classi�cation scheme is very useful to estimate the processing capabilities required for evaluating
a query. However, considering the results of this survey, as the traditional classi�cations based on query
complexity, it proves not to deliver an interesting and revealing classi�cation of the languages. ¿is can be
attributed to the fact that the RDF-QEL classi�cation has been de�ned for queries not for languages. E.g.,
the class of linear recursive queries is certainly interesting, however among the languages surveyed here
there is no language that supports only linear recursion.

¿erefore, a novel classi�cation scheme for Web query languages is proposed here. ¿e core classi-
�cation feature used in this scheme is the Semantic Web “�tness”, the reasoning abilities of a language.
Four classes of languages are proposed, the third one divided into two subclasses, yielding the hierarchy
depicted in Figure 5.1:

Class 1: Selection-Only Languages. ¿e main characteristic of these languages, a typical example of
which is XPath [121], is the lack of construction abilities, i.e., they are only able to specify which
part of the input to be selected by the query. A direct consequence of this restriction is the missing
of means for construction of intermediate results such as views, rules or functions. Also most of
these languages operate on a single document (or similar collection of data given by the context).
Although these restrictions limit the expressiveness severely, they also allow for an easy implementa-
tion and, at least in some cases, e�cient evaluation of the languages. Furthermore, these languages
are o en used as part of other technologies or even other query languages, hence allowing the use
of the same basic access functionality and syntax over a wide range of technologies.

Class 2: Non-recursive Languages. In contrast to the selection-only languages, these class of languages
provides somemeans of construction, o en realized by nested queries. However, recursion as needed
for inference queries and the traversal of arbitrary-length paths in a structure are either missing
entirely or only available on some prede�ned relations (e.g., parent-child relation in XML, but no
traversal of arbitrary-length ID/IDREF or XLink relations).
Also, these languages do not speci�cally support the extended semantics provided by ontology
languages such as RDFS or OWL, although in some cases (e.g., RDQL) certain implementations
provide very limited ontology support as part of the storage model.
Such languages can express not only selection, extraction, restructuring, and o en also reduction
queries, but also some inference and combination queries, where a �xed upper bound on the size of
the inferred data exists.
Typical examples of this class are, e.g., RDQL [332] and XML-QL [143].

94

Class 3a: Ontology-aware non-recursive languages. ¿ese languages speci�cally support the use of
ontology information for querying, but do not allow the use of general recursion. A well-known
example for such a language is RQL [221], which employs ontologies for typing and querying but
limits the traversal of arbitrary-length paths to the subsumption hierarchy de�ned in the ontology.

Class 3b: Recursive languages without speci�c ontology support. A large number of query languages,
in particular for querying XML (e.g., XSLT, XQuery), falls into this class: they provide the ability
to express recursive queries on top of the capabilities of Class 2 languages. However, no speci�c
support for ontology reasoning is given. ¿is is not so much a limitation on the expressiveness of the
query languages (most of the languages in this class are computationally complete anyway), as on
the convenience (and potentially e�ciency) for expressing queries relying on ontology information.
¿emechanisms for inferring knowledge from an ontology describing the queried data have to be
explicitly stated in a query.

O en such languages are the basis of extensions (in form of libraries or true language extensions)
for supporting ontology reasoning, i.e., the basis of Class 4 languages.

Class 4: Ontology-aware recursive languages. Only languages that support both general recursion (or
equivalent operations) and the speci�cities of some ontology languages such as RDFS or OWL are
included in this class. Representative languages are, e.g., Xcerpt, TRIPLE, or tolog.

Figure 5.1 Excerpt of the Sureveyed Languages in Classi�cation Scheme

¿is comparison scheme is obviously tailored to querying the kind of data envisioned to be predom-
inant in a Semantic Web setting: Heterogeneous, highly, but o en inconsistently structured. Flexible
means for programmatic manipulation of such data are called for. ¿is entails, in particular, the ability
to query and traverse arbitrary-length paths of related items in the data, both if the relation is expressed
in the structure (e.g., parent-child relationship in XML) or established by other means (e.g., ID/IDREF,
XLink, based on foreign keys such as URIs).

Traversing arbitrary-length paths of related items is one of the most basic inference query that is
required by many use cases proposed for the Semantic vision. Also central to the idea of the Semantic
Web is the use of formally de�ned vocabularies that allow a more precise automated “understanding” of
the data described.

95

¿e classi�cation scheme proposed in this section uses these two observations for providing an
structured view on the languages considered in this survey.

5.2 Observations on the State of the Art of Web Query Lan-

guages

Aside of the classi�cation proposed in the previous section, there are a few additional observations on the
status of Web query languages that can be derived from the above comparison:

• Varying Maturity Level:¿e query languages surveyed in this report vary noticeably in the level of
maturity. As to be expected, query languages for RDF and Topic Maps are in general less evolved
than XML query languages that have been investigated in academia and industry for several years.
But also, e.g., the proposed RDF query languages di�er quite noticeably in their maturity level, some
still barely more than quickly dra ed proposals, some already in production use.

• Intense and Early Standardization Activity: In all three areas, but particularly for XML and Topic
Maps query languages standardization activity from various organizations such as W3C or ISO
precedes or runs parallel to early implementations and research activity. ¿is can lead to a premature
focus on alignment with use cases and requirements proposed by the standardization bodies.

• Layering ofQuery Languages: Apossible explanation in the variety observed in the query languages
proposals surveyed here is that some of the query languages are limited to a speci�c task such as
the selection of data in a XML, RDF, or Topic Maps structure. O en such limited query languages
are than used as a separate access layer in full transformation and query languages. ¿e typical
example for such layering is the use of XPath for accessing nodes in an XML document in XSLT,
which provides more advanced restructuring and transformation capabilities.

• Approximation and Reasoning as an Emerging Issue: At least two issues are receiving increasing
interest recently, bothmotivated by the characteristics of data observed or expected in the (Semantic)
Web:

(1) Not all data is structured properly, quite a lot of interesting information can only be deduced
from full-text processing, and there is (not yet) a common understanding of how to structure data
properly. ¿is leads to the desire for features in the style of information retrieval systems that (a)
allow the processing of full-text data included in the structure and (b) can be extended to allow
queries where the structure of the data is only approximately known (e.g., whether a data item is
represented as element or attribute).

(2) Combining such issues with formal vocabularies (from simple thesauri to ontologies described,
e.g., in OWL full) requires some ability to reason about the provided data, e.g., for discovering
relations between data items not explicitly represented in the structure.

Finally, one should note the similarity of common issues found to be interesting for query languages
from all three areas. E.g., in all cases, one has to consider traversing arbitrary-length paths in the relations
provided by the representation formalism. Also in all cases, ontology information and similar reasoning
techniques can increase the recall of a query in face of heterogeneous descriptions of the data.

96

Chapter 6

Conclusion and Outlook

¿is survey presents a unique look on query languages based upon the diverse formats for data rep-
resentation already used or expected to be used in the (Semantic) Web. It is illustrated that there is a
large number of issues common to query languages in each of these areas that goes well beyond general
design considerations of query languages but is routed in the characteristics of the Web context. ¿e most
prominent issues are the ability to handle heterogeneous data both in structure and content, to support
description of the same or similar information types using di�erent vocabularies, to allow incomplete or
approximate speci�cations of queries, and the consideration of reasoning abilities to be able to integrate,
mediate, and enrich the data provided.

¿e results of the evaluation show that a uni�ed classi�cation scheme for XML, RDF, and Topic Maps
can be derived that is both meaningful and interesting for understanding the di�erent proposals and their
intended usage scenarios. Such a classi�cation scheme together with the detailed results presented in this
report can help identifying interesting languages for varying requirements and provides a better insight in
the state of the art of Web query languages.

In the perception of the authors, these results stress the need for a query language that is able to handle
all these representation formalisms and the plethora of serialization formats proposed for them.

To understand further the requirements for such a language, the REWERSE I4 working group is
investigating design principles (a preliminary report can be found in [83]) and use cases for such a query
language. Xcerpt [329] represents a �rst proposal for a language targeted at the �exibility and reasoning
capabilities required in this setting.

Acknowledgements.We would like to thank Wolfgang May for reviewing a dra of this deliverable
and providing numerous invaluable comments on how to improve both its presentation and content.

¿is research has been funded by the European Commission and by the Swiss Federal O�ce for
Education and Science within the 6th Framework Programme project REWERSE number 506779 (cf.
http://rewerse.net).

97

http://rewerse.net

98

Chapter 7

Web and Semantic Web Query

Languages

A Survey for the REWERSE Reasoning Web 2005 Summer School

For the REWERSE Reasoning Web 2005 summer school, a thorough revision of I4-D1

has been used as the basis for a course on Web and Semantic Web query languages. The

focus of the revision is on a more concise presentation and on more consistent treatment of

the languages. Experimental parts of I4-D1 such as the classification scheme have been

omitted.

A number of techniques have been developed to facilitate powerful data retrieval on the Web and
Semantic Web. ¿ree categories of Web query languages can be distinguished, according to the format of
the data they can retrieve: XML, RDF and Topic Maps. ¿is article introduces the spectrum of languages
falling into these categories and summarises their salient aspects. ¿e languages are introduced using
common sample data and query types. Key aspects of the query languages considered are stressed in a
conclusion.

7.1 Introduction

The Semantic Web Vision

Amajor endeavour in current Web research is the so-called Semantic Web, a term coined by W3C founder
Tim Berners-Lee in a Scienti�c American article describing the future of the Web [52]. ¿e Semantic Web
aims at enriching Web data (that is usually represented in (X)HTML or other XML formats) by meta-data
and (meta-)data processing specifying the “meaning” of such data and allowing Web based systems to
take advantage of “intelligent” reasoning capabilities. To quote [52]:

“¿e Semantic Web will bring structure to the meaningful content of Web pages, creating
an environment where so ware agents roaming from page to page can readily carry out
sophisticated tasks for users.”

99

Figure 7.1 A categorisation of books as it might occur in a Semantic Web ontology

¿e Semantic Web meta-data added to today’s Web can be seen as advanced semantic indices, making
the Web into something rather like an encyclopedia. A considerable advantage over conventional encyclo-
pedias printed on paper, however, is that the relationships expressed by Semantic Web meta-data can be
followed by computers, very much like hyperlinks can be followed by human readers and programs. ¿us,
these relationships are well-suited for use in drawing conclusions automatically:

“For the Semantic Web to function, computers must have access to structured collections of
information and sets of inference rules that they can use to conduct automated reasoning.” [52]

A number of formalisms have been proposed for representing Semantic Web meta-data, in particular
RDF [288], Topic Maps [215], and OWL (formerly known as DAML+OIL) [35, 210]. ¿ese formalisms
usually allow one to describe relationships between data items, such as concept hierarchies and relations
between concepts. For example, a Semantic Web application for a book store could assign categories to
books as shown in Figure 7.1. A customer interested in novels might also get o�ers for books that are in the
subcategory Historical Novels and in the sub-subcategories Classic,Mediæval andModern, although these
books are not directly contained in the category Novels, because the data processing system has access to
the ontology and can thus infer the fact that a book in the categoryMediæval is also a Novel.

Whereas RDF and Topic Maps merely provide a syntax for representing assertions like “Book A is
authored by person B”, schema or ontology languages such as RDFS [74] and OWL allow one to state
properties of the terms used in such assertions, e.g. “no ‘person’ can be a ‘text’ ”. Building upon descriptions
of resources and their schemas (as detailed in the architectural road map for the Semantic Web [51]), rules
expressed in formalisms like SWRL [208] or RuleML [61] additionally allow one to specify actions to take,
knowledge to derive, or constraints to enforce.

Importance of Query Languages for the Web and Semantic Web

¿e enabling requirement for the Semantic Web is an integrated access to the data on the Web that is
represented in any of the above-mentioned formalisms or in formalisms of the “standard Web”, such as
(X)HTML, SVG, or any XML application. ¿is data access is the objective of Web and Semantic Web
query languages. A wide range of query languages for the Semantic Web exist, ranging from pure “selec-
tion languages” with only limited expressivity, to full-�edged reasoning languages capable of expressing
complicated programs, and from query languages restricted to a certain data representation format (e.g.

100

XML or RDF), to general purpose languages supporting several di�erent data representation formats and
allowing one to query data on both the standard Web and the Semantic Web at once.

Structure and Goals of this Survey

¿is survey aims at introducing the query languages proposed for the major representation formalisms
of the standard and Semantic Web: XML, RDF, and Topic Maps. ¿e intended audience are students
and researchers interested in obtaining a greater understanding of the relatively new area of Semantic
Web querying, as well as researchers already working in the �eld that want a survey of the state of the
art in existing query languages. ¿is survey does not aim to be a comprehensive tutorial for each of the
approximately 50 languages discussed. Instead, it tries to highlight important or noteworthy aspects, only
going in depth for some of the more widespread languages. ¿e following three questions are at the heart
of this survey:

1. what are the core data retrieval capabilities of each query language,

2. to what extent, and what forms of reasoning do they o�er, and

3. how are they realised?

7.1.0.1 Structure.

A er brie�y discussing the three di�erent representation formats XML, RDF, and Topic Maps in Section
7.2.1, each of the languages is introduced with sample queries against a common Semantic Web scenario
(cf. Section 7.2.2). ¿e discussion is divided into three main parts, corresponding to the three di�erent
data representation formats XML, RDF, and Topic Maps. ¿e survey concludes with a short summary of
language features desirable for Semantic Web query languages. ¿e outline is as follows:

1. Introduction

2. Preliminaries

2.1 ¿ree Data Formats: XML, RDF and Topic Maps

2.2 Sample Data: Classi�cation-based Book Recommender

2.3 Sample Queries

3. XML Query and Transformation Languages

3.1 W3C’s Query Languages:¿e Navigational Approach

3.2 Research Prototypes: ¿e Positional Approach to XML Querying

4. RDF Query Languages

4.1 ¿e SPARQL Family

4.2 ¿e RQL Family

4.3 Query Languages inspired from XPath, XSLT or XQuery

4.4 Metalog: Querying in Controlled English

4.5 Query Languages with Reactive Rules

101

4.6 Deductive Query Languages

4.7 Other RDF Query Languages

5. Topic Maps Query Languages

5.1 tolog: Logic Programming for Topic Maps

5.2 AsTMA?: Functional Style Querying of Topic Maps

5.3 Toma: Querying Topic Maps inspired from SQL

5.4 Path-based Access to Topic Maps

6. Conclusion

Selection of Query Languages.

¿is survey focuses on introducing and comparing languages designed primarily for providing e�cient
and e�ective access to data on the Web and Semantic Web. In particular, it excludes the following types of
languages:

• Programming language tools for XML. General-purpose programming languages supporting XML
as native data type are not considered, e.g. XMLambda [273], CDuce [40], XDuce [211], Xtatic
(http://www.cis.upenn.edu/~bcpierce/xtatic/), Scriptol (http://www.scriptol.com/), and
Cω (http://research.microsoft.com/Comega/ [272]). XML APIs are not considered, e.g.: DOM
[18], SAX (http://www.saxproject.org/), and XmlPull (http://www.xmlpull.org/). XML-
related language extensions are not considered, e.g.: HaXML [365] for Haskell, XMerL [371] for
Erlang, CLP(Flex) [128] for Prolog, or XJ [201] for Java. General-purpose programming languages
with Web service support are also not considered, e.g.: XL [165, 166], Scala [289], Water [309].

• Reactive languages. A reactive language allows speci�cation of updates and logic describing how
to react when events occur. Several proposals have been made for adapting approaches such as
ECA (Event-Condition-Action) rules to the Web, cf. [11] for a survey. ¿ere is, of course, a close
relationship between such reactive languages and query languages, with the latter o en being
embedded within the former.

• Rule languages. Transformations, queries, consequences, and reactive behaviours can be conve-
niently expressed using rules. ¿e serialisation of rules for their exchange on theWeb is investigated
in the RuleML [61] initiative. Similar to reactive languages, rule languages are also closely related to
query languages.

• OWL query languages. Query languages designed for OWL, e.g., OWL-QL [163], are not considered
for two reasons: (1) ¿ey are still in their infancy, and their small number makes interesting
comparisons hardly possible, (2) the languages proposed so far can only query schemas, i.e., meta-
data but not data, and access data only through meta-data, e.g., returning the instances of a class.

A pragmatic approach has been adopted in this survey: A language of one of the above-mentioned four
kinds is considered if querying is one of its core aspects, or if it o�ers a unique form of querying not
covered by any of the other query languages considered in the survey. Authoring tools, such as visual
editors, are only considered with a query language that they are based upon. ¿e storing or indexing of
Web data is not covered (for a survey on storage systems for XML cf. [369], for RDF cf. to [253]).

102

http://www.cis.upenn.edu/~bcpierce/xtatic/
http://www.scriptol.com/
http://research.microsoft.com/Comega/
http://www.saxproject.org/
http://www.xmlpull.org/

Despite these restrictions, the number of languages is still quite large. ¿is re�ects a considerable and
growing interest in Web and particularly Semantic Web query languages. Indeed, standardisation bodies
have recently started the process of standardisation of query languages for RDF and Topic Maps. It is our
hope that this survey will help to give an overview of the current state of the art in these areas.

7.2 Preliminaries

7.2.1 Three Data Formats: XML, RDF and Topic Maps

7.2.1.1 XML.

Originally designed as a replacement for the language SGML as a format for representing (structured)
text documents, XML nowadays is also widely used as a format for representing and exchanging arbitrary
(structured) data:

¿e “Extensible Markup Language (XML) is a simple, very �exible text format derived from
SGML [. . .]. Originally designed to meet the challenges of large-scale electronic publishing,
XML is also playing an increasingly important role in the exchange of a wide variety of data
on the Web and elsewhere.”1

An “XML document” is a �le, or collection of �les, that adheres to the general syntax speci�ed in the
XML Recommendation [71], independent of the concrete application. XML documents consist of an
optional document prologue and a document tree containing elements, character data and attributes, with
a distinguished root element.

Elements. Elements are used to “mark up” the document. ¿ey are identi�ed by a label (called tag name)
and speci�ed by opening and closing tags that enclose the element content. Opening tags are of the form
<label ...> and contain the label and optionally a set of attributes (see below). Closing tags are of the
form </label> and contain only the label.

Elements may contain either other elements, character data, or both (mixed content). In analogy with
the document tree, such content is o en referred to as children of an element. Interleaving of the opening
and closing tags of di�erent elements (e.g. <i>Text</i>) is forbidden. ¿e order of elements is
signi�cant (so-called document order). ¿is is a reasonable requirement for storing text data, but might
be too restrictive when storing data items of a database. Applications working with XML data thus o en
ignore the document order. If an element contains no content, it may be abbreviated as <label/>, i.e. the
“closing slash” is contained in the start tag.

Attributes. Opening tags of elements may contain a set of key/value pairs called attributes. Attributes are
of the form name = "value", where namemay contain the same characters as element labels and value is
a character sequence which is always enclosed in quotes. An opening tag may contain attributes in any
order, but each attribute name can occur at most once.

References. References of various kinds, (like ID/IDREF attributes and hypertext links) make it possible to
refer to an element instead of explicitly including it.

Document Tree. An XML document can be seen as a rooted, unranked2, and ordered3 tree, if one does
not consider the various referencing or linking mechanisms of XML. Although this interpretation is that

1http://www.w3.org/XML/
2i.e. the number of children of an element is not bounded.
3i.e. the children of an element are ordered.

103

http://www.w3.org/XML/

of the data model retained for XML (cf. XML Infoset [134], XQuery, XPath [159]) and most XML query
languages, it is too simplistic. Indeed, references (as expressed, e.g. through ID and IDREF attributes or
hypertext links) make it possible to express both oriented and non-oriented cycles in an XML document.

7.2.1.2 RDF and RDFS.

RDF [234, 38] data is sets of “triples” or “statements” of the form �Subject,Property,Object�. RDF data is
commonly seen as a directed graph, whose nodes correspond to a statement’s subject and object and whose
arcs correspond to a statement’s property (thus relating a subject with an object). For this reason, properties
are also o en referred to as “predicates”. Nodes (i.e. subjects and objects) are labeled by either (1) URIs
describing (Web) resources, or (2) literals (i.e. scalar data such as strings or numbers), or (3) are unlabeled,
being so-called anonymous or “blank nodes”. Blank nodes are commonly used to group or “aggregate”
properties. Speci�c properties are prede�ned in the RDF and RDFS speci�cations [258, 234, 204, 74], e.g.
rdf:type for specifying the type of resources, rdfs:subClassOf for specifying class-subclass relationships
between subjects/objects, and rdfs:subPropertyOf for specifying property-subproperty relationships
between properties. Furthermore, RDFS has “meta-classes”, e.g. rdfs:Class, the class of all classes, and
rdf:Property, the class of all properties.4

RDFS allows one to de�ne so-called “RDF Schemas” or “ontologies”, similar to object-oriented data
models. ¿e inheritance model of RDFS exhibits some peculiarities: (1) resources can be classi�ed in
di�erent classes that are not related in the class hierarchy, (2) the class hierarchy can be cyclic (so that
all classes on the cycle are “subclass equivalent”), (3) properties are �rst-class objects, and (4) in contrast
to most object-oriented formalisms, RDF does not describe which properties can be associated with a
class, but instead the domain and range of a property. Based on an RDFS schema, “inference rules” can be
speci�ed, for instance the transitivity of the class hierarchy, or the type of an untyped resource that has a
property associated with a known domain.

RDF can be serialised in various formats, the most frequently being XML. Early approaches to RDF
serialisation have raised considerable criticism due to their complexity. As a consequence, a surprisingly
large number of RDF serialisations have been proposed, cf. [83] for a detailed survey.

OWL [271,343,35] extends RDFS with a means for de�ning description vocabularies forWeb resources.
OWL is only considered super�cially in this survey, cf. Section 7.1.

7.2.1.3 Topic Maps.

Topic Maps [215, 306] have been inspired from work in library sciences and knowledge indexing. ¿e
main concepts of Topic Maps are “topics”, “associations”, and “occurrences”. Topics might have “types” that
are topics. Types correspond to the classes of object-oriented formalisms, i.e., a topic is related to each of
its types in an instance-class relationship. A topic can have one or more “names”. Associations are n-ary
relations (with n C 2) between topics. Associations might have “role types” and “roles”. Occurrences are
information resources relevant to a topic. An occurrence might have one or several types characterising
the occurrence’s relevance to a topic, expressed by “occurrence roles” and “occurrence role types” in the
formalism HyTM [215], or only by “occurrence types” in the formalism XTM [306].

“Topic characteristics” denote the names a topic has, what associations it partakes in, and what its
occurrences are. “Facets” (a concept of HyTM but not of XTM) are attribute-value pairs that can be
attached to any kind of topic map component for explanation purposes. Facets are thus a means to attach
to Topic Maps meta-data in another formalism. “Subject identi�ers” denote URIs of resources (called
“subject indicators” or sometimes also “subject identi�ers”) that describe in a human-readable form the

4this survey tries to use self-explanatory pre�xes for namespaces where possible.

104

subject of a Topic Map component. Commonly, subjects and topics stand in one-to-one relationships,
such that they can be referred to interchangeably.

Like RDF data, Topic Maps can be seen as oriented graphs with labeled nodes and edges. Topic Maps
o�er richer data modeling primitives than RDF. Topic Maps allow relationships, called associations, of
every arity, while RDF only allows binary relationships, called properties. Initial e�orts towards integrating
RDF and Topic Maps are described in [239, 178]. Interestingly, Topic Maps associations are similar to the
“extended links” of the XML linking language XLink (http://www.w3.org/XML/Linking/).

7.2.2 Running Example: Classification-Based Book Recommender

In the following, we shall consider as a running example queries in a simple book recommender system
describing various properties and relationships between books. It consists of a hierarchy (or ontology) of
the book categories Writing, Novel, Essay, Historical_Novel, and Historical_Essay, and two books
¿e First Man in Rome (a Historical_Novel authored by Colleen McCullough) and Bellum Civile (a
Historical_Essay authored by Julius Caesar and Aulus Hirtius, and translated by J.M. Carter). Figure 7.2
depicts this data as a (simpli�ed) RDF graph [234, 246, 74]. Note in particular that a Historical_Novel
is both, a Novel and an Essay, and that books may optionally have a translator, as is the case for Bellum
Civile. To illustrate the properties of the di�erent kinds of query languages, the data is in the following
represented in the three representation formalisms RDF, Topic Maps, and XML.

¿e simple ontology in the book recommender system only makes use of the subsumption (or “is-
a-kind-of ”) relation rdfs:subClassOf and the instance (or “is-a”) relation rdf:type. ¿ough small
and simple, this ontology is su�cient to illustrate the most important aspects of ontology querying. In
particular, querying this ontology with query languages for the standard Web already requires one to
model and query this data in an ad hoc fashion, i.e. there is no uni�ed way to represent this data. A possible
representation is shown in the XML example below.

¿e RDF, Topic Maps, and XML representations of the sample data refer to the “simple datatypes”
of XML Schema [54] for scalar data: Book titles and authors’ names are “string”, (untyped or typed as
xsd:string), publication years of books are “Gregorian years”, xsd:gYear. ¿e sample data is assumed to
be stored at http://example.org/books#, a URL chosen in accordance to RFC 2606 [153] in the use of
URLs in sample data. Where useful, e.g when referencing the vocabulary de�ned in the ontology part of
the data, this URL is associated with the pre�x books.

7.2.2.1 Sample Data in RDF.

¿e RDF representation of the book recommender system directly corresponds to the simpli�ed RDF
graph in Fig. 7.2. It is given here in the Turtle serialisation [37].

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
:Writing a rdfs:Class ;
rdfs:label "Novel" .
:Novel a rdfs:Class ;
rdfs:label "Novel" ;
rdfs:subClassOf :Writing .
:Essay a rdfs:Class ;
rdfs:label "Essay" ;
rdfs:subClassOf :Writing .
:Historical_Essay a rdfs:Class ;
rdfs:label "Historical Essay" ;
rdfs:subClassOf :Essay .
:Historical_Novel a rdfs:Class ;
rdfs:label "Historical Novel" ;

105

http://www.w3.org/XML/Linking/

Figure 7.2 Sample Data: representation as a (simpli�ed) RDF graph.

106

rdfs:subClassOf :Novel ;
rdfs:subClassOf :Essay .
:author a rdfs:Property ;
rdfs:domain :Writing ;
rdfs:range foaf:Person .
:translator a rdfs:Property ;
rdfs:domain :Writing ;
rdfs:range foaf:Person .
_:b1 a :Historical_Novel ;
:title "The First Man in Rome" ;
:year "1990"^^xsd:gYear ;
:author [foaf:name "Colleen McCullough"] .
_:b1 a :Historical_Essay ;
:title "Bellum Civile" ;
:author [foaf:name "Julius Caesar"] ;
:author [foaf:name "Aulus Hirtius"] ;
:translator [foaf:name "J. M. Carter"] .

Books, authors, and translators are represented by blank nodes without identi�ers, or with temporary
identi�ers indicated by the pre�x “_:”.

7.2.2.2 Sample Data in Topic Maps.

¿e Topic Map representation of the book recommender system makes use of the Linear Topic Maps
syntax [176]. Subclass-superclass associations are identi�ed using the subject identi�ers of XTM [306].
For illustration purposes, the title of a book is represented as an occurrence of that book/topic.

/* Association and topic types for subclass-superclass hierarchy */
[superclass-subclass = "Superclass�Subclass Association Type"
@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass�subclass"]
[superclass = "Superclass Role Type"
@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"]
[subclass = "Subclass Role Type"
@ "http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"]
/* Topic types */
[Writing = "Writing Topic Type" @ "http://example.org/books#Writing"]
[Novel = "Novel Topic Type" @ "http://example.org/books#Novel"]
[Essay = "Essay Topic Type" @ "http://example.org/books#Essay"]
[Historical_Essay = "Historical Essay Topic Type"
@ "http://example.org/books#Historical_Essay"]
[Historical_Novel = "Historical Novel Topic Type"
@ "http://example.org/books#Historical_Novel"]
[year = "Topic Type for a Gregorian year following ISO 8601"
@ "http://www.w3.org/2001/XMLSchema#gYear"]
[Person = "Person Topic Type" @ "http://xmlns.org/foaf/0.1/Person"]
[Author @ "http://example.org/books#author"]
[Translator @ "http://example.org/books#translator"]
/* Associations among the topic types */
superclass-subclass(Writing: superclass, Novel: subclass)
superclass-subclass(Writing: superclass, Essay: subclass)
superclass-subclass(Novel: superclass, Historical_Novel: subclass)
superclass-subclass(Essay: superclass, Historical_Essay: subclass)
superclass-subclass(Essay: superclass, Historical_Novel: subclass)
superclass-subclass(Person: superclass, Author: subclass)
superclass-subclass(Person: superclass, Translator: subclass)
/* Occurrence types */
[title = "Occurrence Type for Titles" @ "http://example.org/books#title"]
/* Association types */
[author-for-book = "Association Type associating authors to books"]
[translator-for-book =
"Association Type associating translators to books"]
[publication-year-for-book =
"Association Type associating translators to books"]
/* Topics, associations, and occurrences */
[p1: Person = "Colleen McCullough"]
[p2: Person = "Julius Caesar"]
[p3: Person = "Aulus Hirtius"]

107

[p4: Person = "J. M. Carter"]
[b1: Historical_Essay = "Topic representing the book ’First Man in Rome’"]
author-for-book(b1, p1: author)
publication-year-for-book(b1, y1990)
{b1, title, [[The First Man in Rome]]}
[b2: Historical_Novel = "Topic representing the book ’Bellum Civile’"]
author-for-book(b2, p2: author)
author-for-book(b2, p3: author)
translator-for-book(b2, p4: translator)
{b2, title, [[Bellum Civile]]}

¿e representation given above has been chosen for illustrating query language features. In reality, a
di�erent representation might be more natural. For instance, a ternary association connecting a book
with its author(s), translator, and year of publication could be used. Also, instead of separate associations
for author and translator, use of a generic association between persons and books, and use of roles for
di�erentiation would be reasonable.

7.2.2.3 Sample Data in XML.

XML has no standard way to express relationships other than parent-child. ¿e following is thus one of
many conceivable ad hoc XML representations of the data in the book recommender system. Its use is
obviously highly application-speci�c.

<bookdata xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<book type="Historical_Novel">
<title>The First Man in Rome</title>
<year type="xsd:gYear">1990</year>
<author> <name>Colleen McCullough</name> </author>
</book>
<book type="Historical_Essay">
<title>Bellum Civile</title>
<author> <name>Julius Caesar</name> </author>
<author> <name>Aulus Hirtius</name> </author>
<translator> <name>J. M. Carter</name> </translator>
</book>
<category id="Writing">
<label>Writing</label>
<category id="Novel">
<label>Novel</label>
<category id="Historical_Novel">
<label>Historical Novel</label>
</category>
</category>
<category id="Essay">
<label>Essay</label>
<category id="Historical_Essay">
<label>Historical Essay</label>
</category>
<category idref="Historical_Novel" />
</category>
</category>
</bookdata>

For the sake of brevity, the above representation does not express that authors and translators are
persons. Note the use of ID/IDREF references for expressing the types (e.g. “Novel”, “Historical_Novel”)
of books.

One of the XML-based serialisations of the RDF or Topic Maps representations of the sample data
could be used for comparing XML query languages. Instead, in this article, the XML representation given
above is used, because these XML-based serialisations of the RDF or Topic Maps representations are
awkward, complicated to query, and can yield biased comparisons.

108

7.2.3 Sample Queries

¿e di�erent query languages are illustrated using �ve types of queries against the sample data. ¿is
categorisation is inspired by [255] and [124].

7.2.3.1 Selection and Extraction Queries.

Selection Queries simply retrieve parts of the data based on its content, structure, or position. ¿e �rst
query is thus:

Query 20. “Select all Essays together with their authors (i.e. author items and corresponding names)”

Selection Queries are used in the following to illustrate basic properties of query languages, like the
basic means of addressing data, the supported answer formats, or the way related information (like author
names or book titles) is selected and delivered (grouping). Extraction Queries extract substructures, and
can be considered as a special form of Selection Query. Such queries are commonly found on the Semantic
Web. ¿e following query extracts a substructure of the sample data (e.g. as an RDF subgraph):

Query 21. “Select all data items with any relation to the book titled ‘Bellum Civile’.”

7.2.3.2 Reduction Queries.

Some queries are more concisely expressed by specifying what parts of the data not to include in the
answer. On the Semantic Web, such reduction queries are e.g. useful for combining information from
di�erent sources, or for implementing di�erent levels of trust: It might be desirable to create a simple list
of books from the data in the recommender system, leaving out ontology information and translators:

Query 22. “Select all data items except ontology information and translators.”

7.2.3.3 Restructuring Queries.

In Web applications, it is o en desirable to restructure data, possibly into di�erent formats/serialisations.
For example, the contents of the book recommender system could be restructured to an (X)HTML
representation for viewing in a browser, or derived data could be created, like inverting the relation
author:

Query 23. “Invert the relation author (from a book to an author) into a relation authored (from an author
to a book).”

In particular, RDF requires restructuring for rei�cation, i.e. expressing “statements about statements”.
When reifying, a statement is replaced by three new statements specifying the subject, predicate, and
object of the old statement. For example, the statement “Julius Caesar is author of Bellum Civile” is rei�ed
by the three statements “the statement has subject Julius Caesar”, “the statement has predicate author”, and
“the statement has object Bellum Civile”.

7.2.3.4 Aggregation Queries.

Restructuring the data also includes aggregating several data items into one new data item. As Web data
usually consists of tree- or graph-structured data that goes beyond �at relations, we distinguish between
value aggregation working only on the values (like SQL’s max(�), sum(�), . . .) and structural aggregation
working also on structural elements (like “how many nodes”). Query 24 uses the max(�) value aggregation,
while Query 25 uses structural aggregation:

109

Query 24. “Return the last year in which an author with name ‘Julius Caesar’ published something.”
Query 25. “Return each of the subclasses of ‘Writing’, together with the average number of authors per
publication of that subclass.”

Related to aggregation are grouping (collecting several data items at some common position, e.g. a list
of authors) and sorting (extending grouping by specifying in which order to arrange data items). Note
that they are not meaningful for all representation formalisms. For instance, sorting in RDF only makes
sense for sequence containers, as RDF data in general does not specify order for statements.

7.2.3.5 Combination and Inference Queries.

It is o en necessary to combine information that is not not explicitly connected, like information from
di�erent sources or substructures. Such queries are useful with ontologies that o en specify that names
declared at di�erent places are synonymous:
Query 26. “Combine the information about the book titled ‘¿e Civil War’ and authored by ‘Julius Caesar’
with the information about the book with identi�er bellum_civile.”

Combination queries are related to inference, because inference refers to combining data, as illustrated
by the following example: If the books entitled “Bellum Civile” and “¿e Civil War” are the same book,
and ‘if ‘Julius Caesar” is an author of “Bellum Civile”, then ‘Julius Caesar’ is also an author of “¿e Civil
War”.

Inference queries e.g. compute transitive closures of relations like the RDFS subClassOf relation:
Query 27. “Return the transitive closure of the subClassOf relation.”

Not all inference queries are combination queries, as the following example illustrates:
Query 28. “Return the co-author relation between two persons that stand in author relationships with the
same book.”

Some query languages have closure operators applicable to any relation, while other query languages
have closure operators only for certain, prede�ned relations, e.g., the RDFS subClassOf relation. Some
query languages support general recursion, making it possible and easy to express the transitive closure of
every relation.

7.3 XML Query and Transformation Languages

Most query and transformation languages for XML specify the structure of the XML data to retrieve using
one of the following approaches:

• Navigational approach. Path-based navigation through the XML data queried.

• Positional approach. Query patterns as “examples” of the XML data queried.

• Relational expressions referring to a “�at” representation of the XML data queried.

Languages already standardized, or currently in the process of standardisation by the W3C, are of the
�rst kind, while many research languages are of the second kind. ¿is article does not consider languages
of the third kind, e.g., monadic datalog [183, 182] and LGQ [296]. Such languages have been proposed
for formalizing query languages and reasoning about XML queries. ¿is article also does not consider
special purpose languages like ELog [33] which are not tailored towards querying by humans. Finally,
this article does not consider XML query languages focused on information retrieval, e.g., XirQL [171],

110

EquiX [129], ELIXIR [116], XQuery/IR [72], XXL [356], XirCL [279], XRANK [197], PIX [15], XSEarch [130],
FleXPath [16], and TeXQuery [14]. Although these languages propose interesting and novel concepts
and constructs for combining XML querying with information retrieval methods, they (a) do not easily
compare to the other query languages in this survey and (b) mostly do not provide additonal insight on
the non-IR features of query languages.

7.3.1 W3C’s Query Languages: Navigational Approach

Characteristics of the Navigational Approach. ¿e navigational languages for XML are inspired from
path-based query languages designed for relational or object-oriented databases. Most such database
query languages (e.g., GEM [375], an extension of QUEL, and OQL [103]) require fully speci�ed paths, i.e.,
paths with explicitly named nodes following only parent-child connections. OQL expresses paths with the
“extended dot notation” introduced in GEM [375]: “SELECT b.translator.name FROM Books b” selects
the name, or component, of the translator of books (note that there must be at most one translator per
book for this expression to be legal).

Generalized Path Expressions. Generalized (or regular) path expressions [169,117], allowmore powerful
constructs than the extended dot notation for specifying paths, e.g., the Kleene closure operator on (sub-
)paths . As a consequence and in contrast to the extended dot notation, generalized path expressions do
not require explicit naming of all nodes along a path.

Lorel. Lorel [6] is an early proposal for a query language originally designed for semistructured data, a
data model that was introduced with the “Object Exchange Model (OEM)” [303, 180], and can be seen as a
precursor of XML. Lorel’s syntax resembles that of SQL and OQL, extending OQL’s extended dot notation
to generalized path expressions. Lorel provides a means for expressing:

• Optional data: In Lorel, the query SELECT b.translator.name FROM Books b returns an empty
answer, whereas in OQL it causes a type error, if there is no translator for a book.

• Set-valued attributes: In Lorel, b.author.name selects the names of all authors of a book, whereas
in OQL it is only valid if there is only a single author.

• Regular path expressions, e.g. a (strict) Kleene closure operator for expressing navigation through
recursively de�ned data structures and alternatives in both labeling and structure.

¿e following Lorel query expresses Query 20 against the sample data (treating attributes as sub-
elements since OEM has no attributes):

select xml(results:(
select xml(result:(
select B, B.author
from bookdata.book B
where B.type = bookdata.(category.id)+
))))

Lines 1 and 2 are constructors for wrapping the selected books and their authors into XML elements.
Note the use of the strict Kleene closure operator + in line 5. Note also that Lorel allows entire (sub-) paths
to be repeated, as do most query languages using generalized path expressions.

To illustrate further aspects of Lorel, assume that one is only interested in books having “Julius Caesar”
either as author or translator. Assume also that, as in some representations of the sample data, cf. 7.2.2,
the literal giving the name of the author is either wrapped inside a name child of the author element, or

111

directly included in the author element. Selection of such books can be expressed in Lorel by adding the
following expression to the query a er line 5 B.(author|translator).name? = "Julius Caesar".

StruQL. StruQL [164, 168] relies on path expressions similar to that of Lorel. StruQL is another early
(query and) transformation language for semi-structured data using Skolem functions for construction.

7.3.1.1 Data Selection with XPath

XPath is presented in [121] and [354, 340], as well as many online tutorials. It was de�ned originally as part
of XSL, an activity towards de�ning a stylesheet language for XML (in replacement of SGML’s stylesheet
language DSSSL). XPath provides expressions for selecting data in terms of a navigation through an XML
document. In contrast to the previous approaches based on generalized path expressions, XPath provides
a syntax inspired from �le systems, aiming at simplicity and conciseness. Conciseness is an important
aspect of XPath, since it is meant to be embedded in host languages, such as XSLT or XPointer. Other
aspects such as formal semantics, expressiveness, completeness, and complexity, have not played a central
role in the development of XPath but have recently been investigated at length.

Data model. An XML document is considered as an ordered and rooted tree with nodes for elements,
attributes, character data, namespaces declaration, comments and processing instructions. ¿e root of this
tree is a special node which has the node for the XML document element as child. In this tree, element
nodes are structured re�ecting the element nesting in the XML document. Attribute and namespace
declaration nodes are children of the node of the element they are speci�ed with. Nodes for character
data, for comments, and for processing instructions are children of the node of the element in which they
occur, or of the root node if they are outside the document element. Note that a character node is always
“maximal”, i.e., it is not allowed that two character data nodes are immediate siblings. ¿is model resembles
the XML Information Set recommendation [134] and has become the foundation for most activities of the
W3C related to query languages.

Path expressions. ¿e core expressions of XPath are “location steps”. A location step speci�es where to
navigate from the so-called “context node”, i.e., the current node of a path traversal. A location step consists
of three parts: an “axis”, a “node-test”, and an optional “predicate”. ¿e axis speci�es candidate nodes in
terms of the tree data model: the base axes self, child, following-sibling, and following (selecting
the context node, their children, their siblings, or all elements if they occur later in document order,
resp.), the transitive and transitive-re�exive closure axes descendant and descendant-or-self of the axis
child, and the respective “reverse” (or inverse) axes parent, preceding-sibling, preceding, ancestor,
and ancestor-or-self. Two additional axes, attributes and namespace, give access to attributes and
namespace declarations. Both node-tests and predicates serve to restrict the set of candidate nodes selected
by an axis. ¿e node-test can either restrict the label of the node (in case of element and attribute nodes),
or the type of the node (e.g., restrict to comment children of an element). Predicates serve to further
restrict elements to some neighborhood (which nodes are in the neighborhood of the node selected by an
axis and node-test) or using functions (e.g., arithmetic or boolean operators).

Successive location steps are separated by “/” to form a path expression. A path expression can
be seen as a nested iteration over the nodes selected by each location step. E.g., the path expression
child::book/descendant::name expresses: “for each book child of the context node select its name descen-
dant”.

XPath compares to generalized path expressions as follows:

112

• XPath allows navigation in all directions, while generalized path expressions only allow vertical and
downwards navigation.

• XPath provides closure axes, but does not allow closure of arbitrary path expressions, e.g. as provided
in Lorel.

• XPath has no means for de�ning variables, as it is intended to be used embedded in a host language
that may provide such means. In contrast, Lorel and StruQL o�er variables for connecting path
expressions, making it possible to specify so-called tree or graph queries. Instead, XPath predicates
may contain nested path expressions and thus allow the expression of tree and even some graph
queries. However, not all graph queries can be expressed this way. ¿is has been recognized in
XPath 2.0 [44], a revision of XPath currently under development at the W3C.

Reverse navigation has been considered for generalized path expressions, cf. [96, 97]). However, it has
been shown in [298] that reverse axes do not increase the expressive power of path navigations.

Without closure of arbitrary path expressions, XPath cannot express regular path expressions such
as a.(b.c)*.d (meaning “select d’s that are reached via one a and then arbitrary many repetitions of one
b followed by one c”) and a.b*.c, cf. [266, 265], where also a �rst-order complete extension to XPath is
proposed that can express the second of the above-mentioned path expressions.

Query 1 can only be approximated in XPath as follows:

/descendant::book[attribute::type =
/descendant::category[attribute::id = "Essay"]/
descendant-or-self::category/attribute::id]

XPath always returns a single set of nodes and provides no construction. ¿erefore, it is not possible
to return authors and their names together with the book.

XPath also has an “abbreviated syntax”. In this syntax the above query can more concisely be expressed
as:
//book[@type = "Essay" or //category[@::id = "Essay"]/
descendant-or-self::category/@id]

Query 2 can be expressed in (abbreviated) XPath as:

//book[title="Bellum Civile"]

XPath returns a set of nodes as result of a query, the serialization being le to the host language. Most
host languages consider as results the sub-trees rooted at the selected nodes, as desired by this query. ¿e
link to the category is not expressed by means of the XML hierarchy and therefore not included in the
result.

Query 3 can be approximated in XPath (assuming we identify “ontology information” with category

elements):

/bookdata//*[name(.) != "translator" and name(.) != "category"]

¿is query returns all descendants of the document element bookdata the labels of which (returned
by the XPath function name) are neither "translator" nor "category". While this might at �rst glance
seem to be a convenient solution for Query 3 (the set of nodes returned by the expression indeed does not
contain translators and categories), the link between selected book nodes and the excluded translators is
not removed and in most host languages of XPath the translators would be included as part of their book
parent.

113

Queries 4 and 7–9 cannot be expressed in XPath because they all require some form of construction.
Aggregations, needed by Query 5, are provided by XPath. Query 5 can be expressed as follows:

max(//book[author/name="Julius Caesar"]/year)

¿e aggregation in Query 6 can be expressed analogously. However, Query 6 like Query 1 cannot be
expressed in XPath properly due to the lack of construction.

XPath in industry and research. ¿anks to XPath’s ubiquity in W3C standards (in XML Schema [156],
in XSLT [120], in XPointer [189], in XQuery [58], in DOM Level 3), XPath has been adopted widely in
industry both as part of implementations of the afore-mentioned W3C standards and in contexts not (yet)
considered by the W3C, e.g., for policy speci�cations. It has also been included in a number of APIs for
XML processing in languages for providing easy access to data in XML documents.

XPath has also been deeply investigated in research. Formal semantics for (more or less complete)
fragments for XPath have been proposed in [363, 298, 181]. Surprisingly, most popular implementations
of XPath embedded within XSLT processors exhibit exponential behavior, even for fairly small data
and large queries. However, the combined complexity of XPath query evaluation has been shown to be
P-complete [184, 185]. Various sub-languages of XPath (e.g., forward XPath [298], Core or Navigational
XPath [184], [39]) and extensions (e.g., CXPath [265]) have been investigated, mostly with regard to
expressiveness and complexity for query evaluation. Also, satis�ability of positive XPath expressions is
known to be in NP and, even for expressions without boolean operators, NP-hard [205]. Containment of
XPath queries (with or without additional constraints, e.g., by means of a document schema) has been
investigated as well, cf., e.g., [374, 147, 280, 331]. Several methods providing e�cient implementations of
XPath relying on standard relational database systems have been published, cf., e.g., [191, 192, 299].

Currently, theW3C is, as part of its activity on specifying the XML query language XQuery, developing
a revision of XPath: XPath 2.0 [44]. See [224] for an introduction. ¿e most striking additions in XPath
2.0 are: (1) a facility for de�ning variables (using for expressions), (2) sequences instead of sets as answers,
(3) the move from the value typed XPath 1.0 to extensive support for XML schema types in a strongly
typed language, (4) a considerably expanded library of functions and operators [257], and (5) a complete
formal semantics [151].

Project pages:
http://www.w3.org/TR/xpath for XPath 1.0
http://www.w3.org/TR/xpath20/ for XPath 2.0

Implementations:
numerous, mostly as part of implementations of XPath host languages or APIs for processing XML
(e.g., W3C’s DOM Level 3)

Online demonstration:
none (o�ine XPathTester http://xml.coverpages.org/ni2001-05-25-a.html)

XPathLog. XPathLog [270] is syntactically an extension of XPath but its semantics and evaluation are
based on logic programming, more speci�cally F-Logic and FLORID [250]. XPathLog extends the syntax
of XPath as follows: (1) variables may occur in path expressions, e.g., //book[name � N] � B binds B
to books and N to the names of the books, and (2) both existential and universal quanti�ers can be used
in Boolean expressions. ¿e data model of XPathLog deviates considerably from XPath’s data model:
XML documents are viewed in XPathLog as edge-labeled graphs with implicit dereferencing of ID/IDREF

114

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20/
http://xml.coverpages.org/ni2001-05-25-a.html

references. XPathLog provides means for constructing new or updating the existing XML data, as well as
more advanced reactive features such as integrity constraints.

Project page:
http://dbis.informatik.uni-goettingen.de/lopix/

Implementation:
With the LoPiX system, available from the project page

Online demonstration:
none

FnQuery. FnQuery [335] is another approach for combining path expressions with logic programming.
Attribute lists are used to de�ne a novel representation of XML in Prolog called “�eld-notation”. Data in
this representation can then be queried using FnPath: E.g., the expression

D^bookdata^book-[^title:’Bellum Civile’, ^year:1992]

returns the book with title “Bellum Civile” published in “1990” if the sample data from Section 7.2.2 is
bound to D. As XPathLog FnQuery allows multiple variables in a path expression. It has been used, e.g.,
for visualizing knowledge bases [337] and querying OWL ontologies [336].

Project page:
http://www-info1.informatik.uni-wuerzburg.de/database/research_seipel.html

Implementation:
not publicly available

Online demonstration:
none

7.3.1.2 The Transformation Language XSLT

XSLT [120], the Extensible Stylesheet Language, is a language for transforming XML documents. Trans-
formation is here understood as the process of creating a new XML document based upon a given one.
¿e distinction between querying and transformation has become increasingly blurred as expressive-
ness of both query and transformation languages increase. Typically, transformation languages are very
convenient for expressing selection, restructuring and reduction queries, such as Query 3 above.

XSLT uses an XML syntax with embedded XPath expressions. While the XML syntaxmakes processing
and generation of XSLT stylesheets easier (cf. [368]), it has been criticized as hard to read and overly
verbose. Also XPath expressions use a non-XML syntax requiring a specialized parser.

XSLT computations. An XSLT program (called “stylesheet” re�ecting the origin of XSLT as part of the
XSL project) is composed of one or more transformation rules (called templates) that recursively operate
on a single input document. Transformation rules are guarded by XPath expressions. In a template, one
can specify (1) the resulting shape of the elements matched by the guard expression and (2) which elements
in the input tree to process next with what templates. ¿e selection of the elements to process further is
done using an XPath expression. If no speci�c restriction is given, all templates with guards matching
these elements are considered, but one can also specify a single (named) template or a group of templates

115

http://dbis.informatik.uni-goettingen.de/lopix/
http://www-info1.informatik.uni-wuerzburg.de/database/research_seipel.html

by changing the so-calledmode of processing. XSLT allows also recursive templates. However, recursion
is limited: except for templates constructing strings only, the result of a template is immutable (a so-called
result tree fragment) and cannot be input for further templates except for literal copies. ¿is means in
particular, that no views can be de�ned in XSLT. Work in [229] shows that XSLT is nevertheless Turing
complete, by using recursive templates with string parameters and XSLT’s powerful string processing
functions.

XSLT 2.0. Recently this and other limitations (e.g., the ability to process only a single input document,
no support for XML Schema, limited support for namespaces, lack of speci�c grouping constructs) have
lead to a revision of XSLT: XSLT 2.0 [227]. As with XQuery 1.0, this language is based upon XPath 2.0 [44].
It addresses the above mentioned concerns, in particular adding XML schema support, powerful grouping
constructs, and proper views. ¿e XQuery 1.0 and XPath 2.0 function and operator library [257] is also
available in XSLT 2.0.

Sample Queries. All example queries can be expressed in XSLT. Query 2 and 5 to 8 are omitted as their
solutions are similar enough to solutions shown in the following.

Query 1 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<results>
<xsl:apply-templates select="//book[@type =
//category[@id = ’Essay’]/descendant�or�self::category/@id]"/>
</results>
</xsl:template>
<xsl:template match="book">
<result>
<xsl:copy select = "."/>
<xsl:apply-templates select="author|author/name" />
</result>
</xsl:template>
<xsl:template match="author|author/name">
<xsl:copy-of select="." />
</xsl:template>
</xsl:stylesheet>

¿is stylesheet can be evaluated as follows:

• try to match the root node (matched by the guard / of the template in line 3) with the guards of
templates in the style-sheet (only �rst template matches)

• create a <results> element and within it try to recursively apply the templates to all nodes matched
by the XPath expression in the select attribute of the apply-templates statement in line 5.

• such nodes are book elements matched by the second template which creates a <result> element,
makes a shallow copy of itself and recursively applies the rules to the book’s author children and
their name children.

• for each author or name of an author, copy the complete input to the result.

Aside from templates, XSLT also provides explicit iteration, selection, and assignment constructs:
xsl:for-each, xsl:if, xsl:variable among others. Using these constructs one can formulate Query 1
alternatively as follows:

116

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:for-each select="//book[@type = //category[@id = ’Essay’]/
descendant�or�self::category/@id]">
<result>
<xsl:copy select = "."/>
<xsl:for-each select = "author|author/name">
<xsl:copy-of select="." />
</xsl:for-each>
</result>
</xsl:for-each>
</results>

¿e xsl:for-each expressions iterate over the elements of the node set selected by the XPath expres-
sion in their select attribute. Aside from the expressions for copying input this very much resembles the
solution for Query 1 in XQuery shown in the following section.

Whereas the �rst style of programming in XSLT is sometimes referred to as rule-based, the latter one
is known as the “�ll-in-the-blanks” style, as one speci�es essentially the shape of the output with “blanks”
to be �lled with the result of XSLT expressions. Other programming styles in XSLT can be identi�ed,
cf. [225].

Query 3 can be expressed in XSLT as follows:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="@*|node()">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:template>
<xsl:template match="translator | category" />
</xsl:stylesheet>

¿e �rst template speci�es that for all attributes and nodes, the node itself is copied and their (attribute
and node) children are processed recursively. ¿e second template speci�es that for translators and
category elements, nothing is generated (and their children are not processed). Notice that the �rst
template also matches translator and category elements. For such a case where multiple templates match,
XSLT uses detailed con�ict resolution policies. In this case, the second template is chosen as it is more
speci�c than the �rst one (for more the details of resolution rules, refer to [120]).

Query 4 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<bookdata>
<xsl:apply-template
select="//author[not(name = preceding::author/name)]" />
</bookdata>
</xsl:template>
<xsl:template match="author">
<person>
<name><xsl:value-of select="name" /></name>
<authored>
<xsl:apply-templates
select="//book[author/name=current()/name]" />
</authored>
</person>
</xsl:template>
<xsl:template match="book">
<book>
<xsl:copy-of select="@*" />
<xsl:copy-of select="*[name() != ’author’]" />
</book>
</xsl:template>
</xsl:stylesheet>

117

¿e preceding axis from XPath is used to avoid duplicates in the result. Also note the use of the
current() function in the second template. ¿is function always returns the current node considered
by an XSLT expression. Here, it returns the author element last matched by the second template. ¿is
function is essentially syntactic sugar to limit the use of variables (cf. solution for Query 9).

Query 9 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<results>
<xsl:for-each select="//author">
<xsl:variable name="author" select="." />
<xsl:for-each select="$author/following�sibling::author">
<co-authors>
<name> <xsl:value-of select="$author/name" /> </name>
<name> <xsl:value-of select="current()/name" /> </name>
</co-authors>
</xsl:for-each>
</xsl:for-each>
</results>
</xsl:template>
</xsl:stylesheet>

Here, the solution is quite similar to the XQuery solution for Query 9 shown below (but can use
in following-sibling axis that is only optionally available in XQuery), as variables and xsl:for-each

expressions are used. ¿e solution uses xsl:for-each, as the inner and the outer author are processed
di�erently. A solution without xsl:for-each is possible but requires parameterized templates and named
or grouped templates:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<results>
<xsl:apply-template select="//author" />
</results>
</xsl:template>
<xsl:template match="author">
<xsl:apply-template select="following�sibling::author"
mode="co�author">
<xsl:with-param name="first�co�author" select="." />
</xsl:apply-templates>
</xsl:template>
<xsl:template match="author" mode="co�author">
<xsl:param name="first�co�author" />
<co-authors>
<name> <xsl:value-of select="$first�co�author/name" /> </name>
<name> <xsl:value-of select="name" /> </name>
</co-authors>
</xsl:template>
</xsl:stylesheet>

Note that for clarity neither of these solutions avoids duplicates if two persons are co-authors of
multiple books.

XSLT in industry and academia. XSLT has been the �rst W3C language for transforming and querying
XML and thus has been adopted quickly and widely. A multitude of implementations exist (e.g. as part of
the standard library for XML processing in Java) as well as good practical introductions (e.g.., [354, 225]).

Research on XSLT has not received the same attention that XPath and XQuery have, in particular not
from the database community. A more detailed overview of research issues on XSLT and its connection to
reactive rules is given in [23], here only some core results are outlined: Formal semantics for (fragments
of) XSLT have been investigated in [231, 53]. [229] gives a proof showing that XSLT is Turing complete.

118

Analysis of XSLT is examined in [150], which proposes four analysis properties and presents an analysis
method based on the construction of a template association graph, which conservatively models the
control �ow of the stylesheet. ¿ere is also an important line of theoretical research with regard to analysis
of the behaviour of XSLT. Work in [283] presents a theoretical model of XSLT and examines a number of
decision questions for fragments of this model. Work in [264] examines the question of whether the output
of an XML transformation conforms to a particular document type. Type checking is also addressed
in [359].

E�cient evaluation of XSLT programs is also an important topic. In [216, 248], translations to SQL
are considered. Work in [362] describes incremental methods for processing multiple transformations.
Work in [330] proposes a lazy evaluation for XSLT programs, while [226] describes optimizations based
on experiences from the widely used XSLT processor Saxon. Other speci�c techniques for optimizing
XSLT programs and evaluation are described in [187, 360, 149, 198]. Further engineering aspects of XSLT
programs have also received attention, namely transformation debugging [22] and automatic stylesheet
generation [300, 368].

Project page:
http://www.w3.org/Style/XSL/

Implementation:
very numerous, see project page

Online demonstration:
none

Fxt. fxt [45], the functional XML transformer, is a transformation language similar to XSLT, in particular
with respect to its syntax. However, instead of XPath expressions fxt uses fxgrep patterns that are based
on an expressive grammar formalisms and can be evaluated very e�ciently (cf. [46]). Fxt’s computation
model is also more restricted than that of XSLT due to the lack of named templates.

Project page:
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxt/

Implementation:
available from the project page

Online demonstration:
none

VXT. VXT [307] is a visual language and interactive environment for specifying transformations of
XML documents. It is based on the general purpose transformation language Circus5: Whereas most
other XML query languages employ some form of graph-shaped visualization for both data and queries,
VXT uses treemaps [217] for representing hierarchies: the nesting of the elements in the document is
re�ected by nested of nodes. As XSLT, VXT uses rules to specify transformations. A rule consists in
treemap representation of the queried data and the constructed data. ¿e two representations are linked
by various typed edges indicating, e.g., the copying of a matching node or its content, cf. 7.3

Project page:
none

5http://www.xrce.xerox.com/solutions/circus.html

119

http://www.w3.org/Style/XSL/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxt/
http://www.xrce.xerox.com/solutions/circus.html

Figure 7.3 Treemap representation of a VXT rule
([307], © ACM Press)

Implementation:
not publicly available

Online demonstration:
none

7.3.1.3 The Query Language XQuery

Shortly before the publication of the �nal XPath 1.0 and XSLT 1.0 recommendations, the W3C launched
an activity towards specifying an XML query language. In contrast to XSLT, this query language aims
at a syntax and semantics making it convenient for database systems. Requirements and use cases for
the language have been given in [255, 108, 107]. A number of proposals, e.g., XQL and Quilt, have been
published in answer to this activity, each with varying in�uence on XQuery [58], the language currently
under standardisation at the W3C:

XQL [325, 323] notably in�uenced the development of XPath. Although XQL did not consider the full
range of XPath axes, some language features that have not been included in XPath, e.g., existential and
universal quanti�ers and an extended range of set operations, are under reconsideration for XPath 2.0.

Quilt [110] is in spirit already close to the current version of XQuery, mainly lacking the extensive
type system developed by the W3C’s XML query working group. It can be considered the predecessor of
XQuery.

Although the development and standardisation of XQuery [58] is not completed, XQuery’s main
principles have been unchanged during at least the last two of its four years of development. In many
respects, it represents the “state-of-the-art” of navigational XML query languages.

XQuery Principles. At its core, XQuery is an extension of XPath 2.0 adding functionalities needed by a
“full query language”. ¿e most notable of these functionalities are:

• Sequences. Where in XPath 1.0 the results of path expressions are node sets, XQuery and XPath 2.0
use sequences. Sequences can be constructed or result from the evaluation of an XQuery expression.
In contrast to XPath 1.0, sequences cannot only be composed of nodes but also from atomic values,
e.g., (1, 2, 3) is a proper XQuery sequence.

• Strong typing. Like XPath 2.0, XQuery is a strongly typed language. In particular, most of the (simple
and complex) data types of XML Schema are supported. ¿e details of the type system are described
in [151]. Furthermore, many XQuery implementations provide (although it is an optional feature)
static type checking.

120

• Construction, Grouping, and Ordering.Where XPath is limited to selecting parts of the input data,
XQuery provides ample support for constructing new data. Constructors for all node types as well
as the simple data types from XML Schema are provided. New elements can be created either by
so-called direct element constructors (that look just like XML elements) or by what is referred to as
computed element constructors, e.g. allowing the name of a newly constructed element to be the
result of a part of the query. For examples on these constructors, see the implementations for Query
1 and 3 below.

• Variables. Like XPath 2.0, XQuery has variables de�ned in so-called FLWOR expressions. A
FLWOR expression usually consists in one or more for, an optional where clause, an optional order
by, and a return clause. ¿e for clause iterates over the items in the sequence returned by the
path expression in its in part: for $book in //book iterates over all books selected by the path
expression //book. ¿e where clause speci�es conditions on the selected data items, the order by

clause allows the items to be processed in a certain order, and the return clause speci�es the result
of the entire FLWOR expression (o en using constructors as shown above). Additionally, FLWOR
expressions may contain, a er the for clauses, let clauses that also bind variables but without
iterating over the individual data items in the sequence bound to the variable. FLWOR expressions
resemble very much XSLT’s explicit iteration, selection, and assignment constructs described above.

• User-de�ned functions. XQuery allows the user to de�ne new functions speci�ed in XQuery (cf.
implementation of Query 3 below). Functions may be recursive.

• Unordered sequences. As a means for assisting query optimization, XQuery provides the unordered
keyword, indicating that the order of elements in sequences that are constructed or returned as result
of XQuery expressions is not relevant. E.g., unordered{for $book in //book return $book/name}

indicates that the nodes selected by //bookmay be processed in any order in the for clause and
the order of the resulting name nodes also can be arbitrary (implementation dependent). Note
that inside unordered query parts, the result of any expressions querying the order of elements in
sequences such as fn:position, fn:last is non-deterministic.

• Universal and existential quanti�cation. Both XPath 2.0 and XQuery 1.0 provide some and all for
expressing existentially or universally quanti�ed conditions (see implementation of Query 9 below).

• Schema validation. XQuery implementations may (optionally) provide support for schema valida-
tion, both of input and of constructed data, using the validate expression.

• Full host language. XQuery completes XPath with capabilities to set up the context of path expres-
sions, e.g., declaring namespace pre�xes and default namespace, importing function libraries and
modules (optional), and (again optionally) providing �exible means for serialization that are in fact
shared with XSLT 2.0 (cf. [228]).

In at least one respect, XQuery is more restrictive than XPath: not all of XPath’s axes are mandatory,
ancestor, ancestor-or-self, following,
following-sibling, preceding, and preceding-sibling do not have to be supported by an XQuery
implementation. ¿is is, however, no restriction to XQuery’s expressiveness, as expressions using re-
verse axes (such as ancestor) can be rewritten, cf. [298], and the “horizontal axes”, e.g., following and
following-sibling, can be replaced by FLWOR expressions using the « and » operators that compare
two nodes with respect to their position in a sequence.

For a formal semantics for XQuery 1.0 (and XPath 2.0) see [151]. Comprehensive but easy to follow
introductions to XQuery are given in, e.g., [223, 80].

121

Sample Queries. All nine sample queries can be expressed in XQuery. In the following, an expression
of Query 2 is omitted because it can be expressed as a simpli�cation of the XQuery expression of Query 1
given below. Query 5 can be expressed as for XPath, cf. above. Expressions of Query 8 and 9 are similar.
Since the expression for Query 9 in XQuery exhibits an interesting anomaly, it is given below and no
expression for Query 8 is given.

Query 1 can be expressed in XQuery as follows (interpreting the phrase “an essay” as a book with type
attribute equal to the id of the category “Essay” or one of its sub-categories represented as descendants in
the XML structure):

<results> {
let $doc := doc("http://example.org/books")/bookdata
let $sub-of-essay :=
$doc//category[@id="Essay"]/descendant-or-self::category
for $book in $doc//book
where $book/@type = $sub-of-essay/@id
return
<result>
{ $book }
{ $book/author }
{ $book/author/name }
</result> }
</results>

Note the use of the let clause in line 2: the sequence of all sub-categories of the category with id

“Essay” including that category itself (we use the re�exive transitive axis descendant-or-self) is bound
to the variable. However, in contrast to a for expression, this sequence is not iterated over. Instead of the
where clause in line 4 a predicate could be added to the path expression in line 3 resulting in the expression
$doc//book[@type = $sub-of-essay/@id].

Query 3 requires structural recursion over the tree, while constructing new elements that are identical
to the ones encountered, except omitting translator and category nodes. ¿e following implementation
shows the use of a user-de�ned, recursive function that copies the tree rooted at its �rst parameter $e,
except all nodes in the sequence given as second parameter.

declare function
local:tree-except($e as element(),
$exceptions as node()*) as element()*
{
element {fn:node-name($e)} {
$e/@* except $exceptions, (: copy the attributes :)
for $child in $element/node() except $exceptions
return
if $child instance of element()
(: for elements process them recursively :)
local:tree-except($section)
else (: others (text, comments, etc. copy :)
$child
}
};
document {
let $doc := doc("http://example.org/books")/bookdata
let $exceptions := $doc//translator union $doc//category
local:tree-except($doc, $exceptions)
}

Note the typing of the parameters: the �rst parameter is a single element, the second, a sequence
of nodes and the function returns a sequence of elements. In the main part of the query, the document
constructor is used to indicate that its content is to be the document element of the constructed tree.

Query 4 can be expressed in XQuery as follows:

<bookdata> {
let $a := doc("http://example.org/books")//author

122

for $name in distinct-values($a/name)
return
<person>
<name> { $name } </name>
<authored
{
for $b in doc("http://example.org/books")//book
where some $ba in $b/author
satisfies $ba/name = $name
return
<book> { $b/@*, $b/* except $b/author } </book>
}
</authored
</person>
}
</bookdata>

¿is implementation is in fact similar to the implementation of use case XMP-Q4 in [107] and exhibits
two noteworthy functionalities: (1) ¿e use of distinct-value in line 3 to avoid duplication in the result,
if an author occurs multiple times in the document. (2) ¿e use of an existentially quanti�ed condition
in lines 10–11, to �nd books where some (read: at least one) of the authors have the same name as the
currently considered author.

Using aggregation expressions (see lines 8 and 10), Query 6 can be expressed in XQuery as follows:

<results> {
let $doc := doc("http://example.org/books")/bookdata
for $category in $doc//category[@id="Essay"]//category
return
<category>
{ $category/@id }
<average-number-of-authors>{
fn:avg(for $book in $doc//book
where @type = $category/@id
return fn:count($book/author))
}
</average-number-of-authors>
</category>
}
</results>

Combining data can be expressed in a very compact manner in XQuery, as the following expression of
Query 7 shows:

<book>
{ for $book in doc("http://example.org/books")//book
where title="Bellum Civile" and author/name="Julius Caesar"
return ($book/@*, $book/*)
}
{
for $book in doc("http://example.org/books")//book
where @id="bellum_civile"
return ($book/@*, $book/*)
}
</book>

Query 9 can be expressed in XQuery as follows:

<results>
{ let $doc := doc("http://example.org/books")
for $book in doc("http://example.org/books")//book
for $author in $book/author
for $co-author in $book/author
where $author << $co-author
return
<co-authors>
<name> { $author/name } </name>
<name> { $co-author/name } </name>
</co-authors>

123

}
</results>

¿is implementation does not treat the case where two authors co-authored multiple books. In this
case, duplicates are created by the above solution. To avoid this the following re�nement uses the before
operator « in combination with a negated condition, for specifying that only such pairs of authors should
be considered, where there is no book that occurs prior to the currently considered one and which is also
co-authored by the current pair of authors:

<results>
{ let $doc := doc("http://example.org/books")
for $book in doc("http://example.org/books")//book
for $author in $book/author
for $co-author in $book/author
where $author << $co-author and not(
some $pb in doc("http://example.org/books")//book
satisfies ($pb << $book and
$pb//author/name = $author/name and
$pb//author/name = $co-author/name))
return
<co-authors>
<name> { $author/name } </name>
<name> { $co-author/name } </name>
</co-authors>
}
</results>

XQuery in industry and research. From the very start, XQuery’s development has been followed by
industry and research with equal interest (for reports on the challenges and decisions during this process
see, e.g., [154, 157]). Even before the development has �nished, initial practical introductions to XQuery
have been published, e.g., [223, 80]. Industry interest is also visible in the simultaneous development of
standardized XQuery APIs, e.g., for Java [155], and numerous implementations, both open source (e.g.,
Galax [161]) and commercial (BEA [167], IPSI-XQ [158]). Aside from thesemain-memory implementations,
one can also �nd streamed implementations of XQuery (e.g., [235,34]) where the data �ows by as the query
is evaluated. First results on implementing XQuery on top of standard relational databases (e.g., [139, 193])
indicate that this approach leads to very e�cient query evaluation if a suitable relational encoding of the
XML data is used. Formore implementations, see the XQuery project page at theW3C and the proceedings
of the �rst XIME-P workshop on “XQuery Implementation, Experience and Perspectives”6.

It is intuitively clear that XQuery is Turing complete since it provides recursive functions and con-
ditional expressions. A formal proof of the Turing-completeness of XQuery is given in [229]. E�cient
processing and (algebraic) optimization of XQuery, although acknowledged as crucial topics, have not yet
been su�ciently investigated. First results are presented, e.g., in [377, 113, 376, 115, 268, 146, 353]. Moreover,
techniques for e�cient XPath evaluation, as discussed above, can be a foundation for XQuery optimization.

Beyond querying XML data, it has also been suggested to use XQuery for data mining [367], for
web service implementation [301], for querying heterogeneous relational databases [370], for access
control and policy descriptions [285], for synopsis generation [132], and as the foundation of a visual
XML query language (XQBE) [19], of a XML query language with full-text capabilities [14, 13], and of an
update [322, 81, 109] and reactive [64] language for XML.

Project page:
http://www.w3.org/XML/Query

6http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/

124

http://www.w3.org/XML/Query
http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/

Implementations:
widely implementated (more than 30 implementations), a list of implementations is available at the
project page

Online demonstrations:
several, e.g.: http://www.oakleaf.ws/xquery/xquerydemo.aspx
http://oasys.ipsi.fhg.de/xquerydemo/

http://131.107.228.20/xquerydemo/demo.aspx

7.3.2 Research Prototypes:

The Positional Approach to XML Querying

7.3.2.1 Characteristics of the Positional Approach.

¿e languages discussed in the following all take the positional approach for locating data in an XML
document. ¿is approach is o en derived from logic or functional programming where patterns are used
to specify the position of interesting data inside larger structures.

Essentially, positional languages use expressions that mimic the data to be queried. ¿is allows tree-
or graph-shaped queries to be expressed very similar to tree- or graph-shaped data (as “examples” of the
data to be queried, cf. [379]), whereas navigational languages do not provide this close correspondence.
However, many languages in this sections (e.g., UnQL, TQL, and Xcerpt) do actually use path expressions
mostly as convenient shorthands for parts of queries that are shaped like a single path.

Languages using this “query-by-example” style for queries mostly fall into two categories: (a) query
languages in�uenced by logic or functional programming (UnQL, XML-QL, XMAS, XML-RL, TQL) and
(b) visual query languages or visual interfaces for textual query languages (XML-GL, BBQ, and X2’s visual
query interface).

7.3.2.2 UnQL.

UnQL [92,91,93] (theUnstructured Query Language) is a query language originally developed for querying
semistructured data and nested relational data-bases with cyclic structures. It has later been adopted to
querying XML, but the origins are still apparent in many language properties (for example, UnQL has a
non-XML syntax that is very similar to OEM’s syntax and does not support querying or construction of
ordered data).

¿e evaluation model and core language of UnQL is based upon structural recursion over labeled
trees. It provides both a functional-style language for expressing recursions over trees, cf. [92] and a more
approachable surface syntax.7

¿e following expression uses functional style pattern matching for selecting all books in a tree.

fun f1(T1 u T2) = f1(T1) u f1(T2)
| f1({ L <-- T }) = if L = book then {result <-- book <-- T} else f1(T)
| f1({}) = {}
| f1(V) = {}

UnQL’s surface syntax uses query patterns and construction patterns and a query consists of a single
select ... where ... or traverse rule that separate construction from querying. Queries may be
nested, in which case the separation of querying and construction is abandoned.

Query 1 can be expressed in UnQL as
7¿e syntax from [92, 91] is used and not the slightly di�ering syntax in [93].

125

http://www.oakleaf.ws/xquery/xquerydemo.aspx
http://oasys.ipsi.fhg.de/xquerydemo/
http://131.107.228.20/xquerydemo/demo.aspx

select { results <-- {
select { result <-- { Book,
select { author <-- {
author <-- Author,
authorName <-- Name
} }
where { author <-- \Author } -� Book,
{ name <-- \Name } -� Author
where { book <-- \Book } -� Bib
where bookdata <-- Bib -� DB

¿e� scopes a query pattern, i.e., it speci�es that the le -hand query pattern is to be found in bindings
for the right-hand variable. ¿e� operator is the direct edge traversal operator. E.g., book � author

speci�es that author is a direct child of book in the XML document. Recursive traversals can be speci�ed
using regular path expressions including regular expressions over labels. E.g., _* traverses over arbitrary
many elements with any label, [^book]* over arbitrary many elements with any label except book.

UnQL also provides traverse clauses for reduction and restructuring queries like Query 3:

traverse DB given X
case translator <-- _ then X := {}
case category <-- _ then X := {}
case \L <-- _ then X := {l <-- X}

¿is query is evaluated by traversing the tree in the database and matching recursively each element
against the three case expressions. All elements except translators and categories are copied to the newly
constructed tree, structured as in the input data.

UnQL is probably the �rst language to propose a pattern-based querying (albeit with subqueries
instead of rule chaining) for semistructured data (including XML).

Evaluation and optimization of UnQL has been investigated in [91,93]. UnQL’s evaluation is founded in
graph simulation, see [93]. [91] shows that all queries expressible in UnQL can be evaluated in PTIME.¿is
is true even for queries against cyclic graph data (e.g. XML documents using cyclic ID/IDREF references).
¿is e�ciency is re�ected by UnQL’s expressiveness: on trees encoding relational or nested relational
databases, UnQL is exactly as expressive as relational or nested relational algebra, resp.

Project page:
http://www.research.att.com/~suciu/unql-home.html8

Implementation:
available from the project page

Online demonstration:
none

7.3.2.3 XML-QL.

XML-QL [144, 145] is a pattern- and rule-based query language for XML developed speci�cally to address
the W3C’s call for an XML query language (that resulted in the development of XQuery). Like UnQL, it
uses query patterns (called element patterns in [144]) in a WHERE clause. Such patterns can be augmented
by variables for selecting data. ¿e result of a query is speci�ed as a construction patterns in the CONSTRUCT
clause. An XML-QL query always consists of a single WHERE-CONSTRUCT rule, which may be divided into
several (nested) subqueries.

Query 1 can be expressed in XML-QL as follows:
8Not accessible at the time of writing.

126

http://www.research.att.com/~suciu/unql-home.html

WHERE
<bookdata>
<book>
</> ELEMENT_AS $b
</>
CONSTRUCT
<results>
<result>
$b
WHERE <author>
<name> $n </>
</> ELEMENT_AS $a
CONSTRUCT $a
$n
</>
</>

Variables are preceded in XML-QL by $. Note how the grouping of authors with their books is
expressed using a nested query. Also note the tag minimization (end tags abbreviated by </> as in SGML),
e.g., in line 4 and 5. In line 4, the variable $b is restricted to data matching the pattern in lines 3 and 4.
Such “pattern restrictions” are indicated in XML-QL using the ELEMENT_AS keyword.

One of the main characteristics of XML-QL is that it uses query patterns containing multiple variables
that may select several data items at a time instead of path selections that may only select one data item
at a time. Furthermore, variables are similar to the variables of logic programming, i.e. “joins” can be
evaluated over variable name equality. Since XML-QL does not allow one to use more than one separate
rule, it is o en necessary to employ subqueries to perform complex queries.

Query 6 cannot be expressed inXML-QLdue to lack of aggregation, in particular structural aggregation
(e.g., counting the number of children of an element). ¿e following query returns all books classi�ed in a
sub-category of “Novel”:

WHERE
<book type=$Sub>
</> ELEMENT_AS $b,
<category id=’Novel’>
<category* id=$Sub>
</>
</>
CONSTRUCT $b

As discussed, above joins are simply expressed by repeated occurrences of the same variable (lines 2
and 5). In line 5 a further feature of XML-QL is shown: instead of element labels one can use regular path
expressions in patterns.

Transformation queries such as Query 2, where the output closely resembles the input except for some
rather localized changes (e.g., omission of elements or changing labels), cannot in general be expressed in
XML-QL.

Also XML-QL does not provide any means for testing the non-existence of elements and therefore
cannot express queries such as “Return all books that have no translator.”.

No results on complexity or expressiveness of XML-QL have been published.

Project page:
http://www.research.att.com/~mff/xmlql/doc/

Implementation:
available from the project page

Online demonstration:
none

127

http://www.research.att.com/~mff/xmlql/doc/

7.3.2.4 XMAS.

XMAS [251], the XML Matching And Structuring language is an XML query language developed as part of
MIX [30] and builds upon XML-QL. Like XML-QL, XMAS uses query patterns and construction patterns,
and rules of the form CONSTRUCT ...WHERE However, XMAS extends XML-QL in that it provides a
powerful grouping construct, instead of relying on subqueries for grouping data items within an element.

Query 1 can be expressed in XMAS as follows:

WHERE
<bookdata>
$B: <book>
$A: <author>
<name> $N </name>
</>
</>
</>
CONSTRUCT
<results>
<result>
$B
<book-author>
$A
<name> $N </name>
</> {$A,$N}
</> {$B}
</>

Here, one can observe the two main syntactic di�erences to XML-QL: (1) In XMAS, grouping is
expressed by enclosing the variables on whose bindings the grouping is performed in curly braces and
attaching them to the end of the subpattern that speci�es the structure of the resulting instances. In the
above example, a result element is created for every instance of $B (indicated by {$B} a er the closing tag
of the element result). Within every such result element, all authors of a book (indicated by {$A}) are
collected nested in book-author elements (the book-author element is necessary for grouping variables
are allowed only a er closing tags or single variables in XMAS).

(2) XMAS also provides a more compact syntax for pattern restrictions that allow one to restrict the
admissible bindings of a variable as seen in line 3 ($B in front of the subpattern instead of XML-QL’s
ELEMENT_AS $B at the end).

Grouping queries can be speci�ed even more concisely by using “implicit collection labels”: instead
of specifying the grouping variables explicitly, all variables nested inside square brackets are considered
grouping variables for that grouping, unless there is another grouping (i.e., block enclosed by square
brackets) closer to the variable occurrence. Using implicit collection labels, Query 1 can be expressed as:

WHERE
<bookdata>
$B: <book>
$A: <author>
<name> $N </name>
</>
</>
</>
CONSTRUCT
<results>
[<result>
$B
[<book-author>
$A
<name> $N </name>
</book-author>]
</>]
</>

No results on complexity or expressiveness of XMAS have been published.

128

Figure 7.4 Screenshot of BBQ’s query editor
([284], © Kluwer, B.V.)

BBQ [284] is a visual interface for XMAS that allows browsing of XML data as well as authoring of
XMAS queries based on a DTD of the data to be queried. Figure 7.4 shows the two-pane query editor with
a query pattern on the le and an (empty) construct pattern at the right.

Project page:
http://www.db.ucsd.edu/projects/MIX/

Implementation:
publicly available only as part of the BBQ online demonstration

Online demonstration:
using BBQ http://www.db.ucsd.edu/Projects/MIX/BBQ_User_Interface.html

7.3.2.5 XML-RL.

XML-RL [249] is a a pattern-based query language based on logic programming. Patterns are expressed
by terms that may contain logic variables and may be partly abbreviated with a path syntax similar to
abbreviated XPath. An XML-RL query program consists of one or more rules denoted by A
 L1, . . . ,Ln
where A is used for construction and L1, . . . ,Ln are query pattern. Rules may interact via rule chaining
and it is possible to use recursion.

Query 1 can be expressed in XML-RL as follows:

/results/result: (book:$b, {author: $a}, {authorName: $n})

129

http://www.db.ucsd.edu/projects/MIX/
http://www.db.ucsd.edu/Projects/MIX/BBQ_User_Interface.html

(file:bib.xml)
/bookdata/book: $b(author: $a(name:$n))

¿e URL in line 3 de�nes the input data for the query. Analogously it is also possible to give an URL
in the construct part of the query (line 1). Notice the curly brackets in line 1. ¿ey specify, that authors
and author names are to be grouped by book.

XML-RL does not provide speci�c support for transformation queries such as Query 3, but they can
be solved using recursive rules.

Query 6 can be expressed in XML-RL.

/results/result: ($i, avg-number-of-authors: $avg)

(file:bib.xml)
/bookdata/category: (@id: Writing, category//category/@id: $i),
(file:bib.xml)
/bookdata/book: #b (@type: $i, author: #a),
$avg = count(#a) �count(#b) ;
/bookdata/category: (@id: Writing, category/@id: $i),
(file:bib.xml)
/bookdata/book: #b (@type: $i, author: #a),
$avg = count(#a) �count(#b)

¿is rule has two alternative query expressions (separated as in Prolog by ;) but only a single head.
¿e �rst alternative covers the case of indirect sub-categories of “Writing”, the second the case of direct
ones. In both cases, the id attribute of a category is selected and joined with the type attribute of books.
¿e books are collected in the list variable #b, all their authors in the list variable #a. Finally, the average
number of authors per publication in that sub-category is computed by dividing the number of elements
in the two lists.

No results on complexity or expressiveness of XML-RL have been published.

Project page:
none

Implementation:
not publicly available

Online demonstration:
none

7.3.2.6 TQL.

TQL [133, 99] is an XML query language based upon ambient logic [100], a modal logic conceived for
describing the structural and computational properties of distributed and mobile computation. Ambient
logic uses, for the structural descriptions at least, a logic of labeled trees and is thus a reasonable foundation
for an XML query language.

[99] describes a representation of XML documents in ambient logic, called “information trees”: XML
is considered an edge-labeled graph. No distinction between attributes and elements is considered. Also
the order of elements in an XML document is not preserved.

Based upon this data structure, TQL queries are speci�ed as from ...select rules. Query and
construction are separated (except for grouping queries that are, as in XML-QL and UnQL, expressed
using nested queries), the query is speci�ed in the from clause, the construction in the select clause.
TQL programs consist of a single such rule. Instead of chaining rules, recursion is provided by a special
recursion operator rec similar to the minimal and maximal �x point operators in modal logic. ¿e

130

following expression (taken from [99]) can be used as a condition in from clauses and test, recursively,
whether a tree is binary:

rec $Binary. 0 Or (%[$Binary] | %[$Binary])

Variables are indicated in TQL using $. ¿e expression %[$Binary]matches elements with arbitrary
label (indicated by the wild card %) and satisfying the condition speci�ed in square brackets, viz. to be
binary trees.

Query 1 can be expressed in TQL as follows (assuming $Bib is bound to the sample data from
Section 7.2.2:

from $Bib |= .bookdata[.book [$Book]]
select
results [result [
book [$Book]
| from $Book |= .author [
$Author And .name [$Name]]
select
author-and-name [author [$Author], name [$Name
]]
]
]

As stated above, grouping queries are expressed using nested queries. Notice, how in line 1 (and in line
6) the $Book ($Author) variables are bound to the sub-tree reached by a matching book (author) edge.

TQL provides a rich path syntax for abbreviating path-shaped queries. E.g., the expression

from $Bib |= .bookdata.%*.category[!.id[Writing] | .category*.label[$Label]
select $Label

returns the value of all labels reachable over arbitrary many category edges (.category*) from a
category that may occur at any depth (.%*) and has no id with value “Writing”.

In [99], it is claimed that TQL is particularly well suited for testing integrity constraints or schema
validation, as it provides full boolean expressions including negation, existential, universal quanti�cation,
and (structural) recursion with the rec operator.

Project page:
http://www.di.unipi.it/~ghelli/tql/

Implementation:
available from the project page

Online demonstration:
none

7.3.2.7 Xcerpt.

Xcerpt [88,87,329,41,328] is a query language designed a er principles given in [84] for querying both data
on the “standard Web” (e.g., XML and HTML data) and data on the Semantic Web (e.g., RDF, Topic Maps,
etc. data). ¿is Section addresses using Xcerpt on the “standard Web”, Section 7.4.6, on the Semantic Web.

Xcerpt is “data versatile”, i.e. the same Xcerpt query can access and generate, as answers, data in
di�erentWeb formats. Xcerpt is “strongly answer-closed”, i.e. it not only allows one to construct answers in
the same data formats as the data queries like, e.g., XQuery [108], but also allows further processing of the
data generated by this same query program. Xcerpt’s queries are pattern-based and allow to incompletely
specify the data to retrieve, by (1) not explicitly specifying all children of an element, (2) specifying

131

http://www.di.unipi.it/~ghelli/tql/

descendant elements at inde�nite depths (restrictions in the form of regular path expressions being
possible), and (3) specifying optional query parts. Xcerpt’s evaluation of incomplete queries is based on a
novel uni�cation algorithm called “simulation uni�cation” [89,90]. Xcerpt’s processing of XML documents
is graph-oriented, i.e., Xcerpt is aware of the reference mechanisms (e.g., ID/IDREF attributes and links)
of XML. Xcerpt is rule-based. An Xcerpt rule expresses how data queried can be re-assembled into new
data items. One might say that an Xcerpt rule corresponds to an SQL view. Xcerpt allows both traversal
of cyclic documents and recursive rules, termination being ensured by so-called memoing, or tabling,
techniques. Xcerpt rules can be chained forward or backward, backward chaining being the processing of
choice for the Web. Indeed, if rules can, like Xcerpt’s rules, query any Web site, then a forward processing
of rule-based programs could require starting a program’s evaluation at all Web sites. Xcerpt is inspired
from Logic Programming. However, since it does not o�er backtracking as a programming concept,
Xcerpt can also be seen “set-oriented functional”.

All of the queries from Section 7.2.3 can be expressed in Xcerpt. In the following, solutions for Query
2, 5, 7, and 8 are omitted as they are similar to other solutions shown.

Query 1 can be expressed in Xcerpt as follows:

GOAL
results [
all result [
var Book,
all var Author,
all var AuthorName
]
]
FROM
bookdata {{
var Book �book {{
var Author �author {{
name [var AuthorName] }}
}}
}}
END

As stated above, Xcerpt rules allow a separation of construction and querying. In the query part
(enclosed by FROM and END), a pattern of the requested data is speci�ed: a bookdata element with a book
child (associated with the variable Book using the “pattern restriction” operator�) that in turn has an
author child (bound to the variable Author) with a name child whose content is bound to the Variable
AuthorName. Notice the use of double curly braces in line 10, indicating an incomplete, unordered pattern.
A matching bookdata element may have additional children not speci�ed in the query and the order
among the children is irrelevant for the query. Square brackets as in line 13 and in the construct part
(between GOAL and FROM) specify that the order of the children matters. Single brackets specify that the
pattern is complete. Note that incomplete query patterns might result in several alternative variable
bindings.

Similar to XMAS, Xcerpt allows to group answers using the constructs all and some. Intuitively, all t

collects all possible di�erent instances of the subexpression t that might result from alternative variable
bindings. As shown in the example above, grouping constructs may also be nested. In the example above,
the construct term creates a result subterm for each alternative binding of Book, and within each such
result subterm, it groups all authors and authornames associated with that particular book.

In general, an Xcerpt program may contain multiple rules, as shown in the following solution for
Query 3:

GOAL
var Result
FROM
transform [bookdata {{ }}, result [var Result]]
END
CONSTRUCT

132

transform [var Element, result []]
FROM
desc var Element �/translator|category/
END
CONSTRUCT
transform [var Element, result [var Label [all var Child]]]
FROM
and {
desc var Element �var Label [[var Child]]
where {
and { var Label != "translator", var Label != "category }
},
transform [var Child, result [var ChildTransformed]]
}
END

Xcerpt rules come in two �avors: GOAL ... FROM ... END and CONSTRUCT ... FROM ... END.
¿e �rst may only occur once in a program, speci�es the ultimate result of the entire program similar to
Prolog goals, and does not participate in rule chaining. ¿e latter form is used for all other rules.

Here, the two lower rules transform (recursively) an input element as speci�ed in the query: if it is a
translator or a category the result of the transformation is empty, otherwise the children of the element
are recursively transformed and the result of these transformations is used to reconstruct the structure of
the input data.

Notice the use of the desc operator in lines 10 and 17 indicating a pattern that is incomplete in depth.
Also notice the use of a where clause in line 18 to restrict matches to elements that are neither translators
nor categories. In line 17, a label variable is used: whereas the variable Element is bound to the entire
element matched by the pattern, Label is bound to the label of the element, i.e., a string such as “book”.

Query 4 can be expressed in Xcerpt as follows:

GOAL
bookdata [
all person [
name [var Name],
authored [
all book [
all var NonAuthorChildren
] group by { var Book }
]
]
]
FROM
bookdata {{
desc var Book �book [[
author {{ name [var Name] }},
var NonAuthorChildren �!/author/ {{ }}
]]
}}
END

In the query part all books (at any depth) are selected together with the names of their authors and
non-author children (notice the use of a negated regular expression on the label for the non-author
children). For each name of an author, a person element is constructed (note the position of the all in
line 3) containing the name and an authored element. In the author element all books for that author are
nested again using all with a group by clause for explicitly naming the grouping variable.

Query 6 can be expressed in Xcerpt as follows:

GOAL
results [
all category [
attributes [id [var ID]],
average-number-of-authors [
div(count(all var Author), count(all var Book))
]
]

133

Figure 7.5 Xcerpt and visXcerpt representation of a query

]
FROM
bookdata {{
desc category {{ attributes {{ id [var ID] }} }},
desc var Book �book {{
attributes {{ type [var ID] }},
desc var Author �author {{ }}
}}
}}
END

¿e average number of authors is calculated in line 6 using the structural aggregation function count

over all books and authors for a category. In typical logic-programming style, the join between the id
attribute of categories and the type attribute of books is expressed by repeating the same variable.

Query 9 can be expressed in Xcerpt as follows:

GOAL
results [
all co-authors [
name [var Author],
name [var CoAuthor]
]
]
FROM
bookdata {{
desc book {{
author {{ name {{ var Author }} }},
author {{ name {{ var CoAuthor }} }}
}}
END

¿is query pro�ts from two features of Xcerpt: (1) Xcerpt’s simulation uni�cation is injective. ¿is
ensures that the two children of the book element in line 10 are di�erent without requiring the query
author to explicit state that the author and the co-author must be di�erent. (2) Xcerpt’s grouping is set
based and uses uni�cation for equality, i.e., two terms with same structure and values are considered
equal even if they represent distinct elements in the input. ¿erefore the above program does not generate
duplicates (as, e.g, the �rst XQuery solution for Query 9 in Section 7.3.1x).

A visual language, called visXcerpt [43, 42], has been conceived as a visual rendering of textual Xcerpt
programs, making it possible to freely switch during programming between the visual and textual view, or
rendering, of a program (cf. Figure 7.5 showing a textual and visual representation of an Xcerpt query).

Static type checking methods have been developed for Xcerpt [82, 372] that are based on seeing tree

134

Figure 7.6 Graph representation of an XML-GL query
([105], © Elsevier, Inc.)

grammars in their various disguises, e.g., DTD, XML Schema, RelaxNG, as de�nitions of abstract data
type.

A declarative semantics for Xcerpt has been proposed in [90, 328]. A formal procedural semantics for
Xcerpt has been proposed in [90] in the form of a a proof procedure. An implementation of this semantic
in Haskell has been realized using Constraint Programming techniques [328]. ¿e XQuery use case [107]
has been worked out in Xcerpt (cf. [236] (in German) and [63]). Based on Xcerpt and extending it, a
reactive language called XChange [86, 85] for updates and events on the Web is currently being developed.

Project page:
http://www.xcerpt.org/

Implementation:
available from the project page

Online demonstration:
http://demo.xcerpt.org and, using visXcerpt, http://visxcerpt.xcerpt.org/

7.3.2.8 XML-GL.

XML-GL [104, 105, 131] is a visual, rule-based query language for XML. Queries are speci�ed as rules with
a clear separation between query and construction. Queries are speci�ed on the le -hand of a rule, con-
struction on the right-hand. Figure 7.6 shows an XML-GL rule. Both sides of a rule are essentially (visual)
patterns of the graph structure to be matched or constructed, but enriched with visual representations
of a number of additional operators and functions (such as arithmetic operators, wildcards, predicates,
negation, ordering, etc.). Connections between the two sides indicate where matched data occurs in the
result.

Although XML-GL programs contain only a single rule, complex queries may contain multiple le -
hand and right-hand sides for expressing set queries, such as unions, di�erences, cartesian product, and
even heterogeneous unions. ¿e original proposal of XML-GL does not allow recursive rules, but in [293]
an extension of XML-GL in this direction is proposed.

Recently, a visual interface for XQuery, called XQBE [19, 67], based on XML-GL has been developed.
Figure 7.7 shows the XQBE representation of the following XQuery expression (Query XMP-Q1 in [107]):

<bib>
{

135

http://www.xcerpt.org/
http://demo.xcerpt.org
http://visxcerpt.xcerpt.org/

Figure 7.7 XQBE Query
([67], © Elsevier, Inc.)

“Addison-Wesley”

> 1991

year

bib

year

publisher

bookbook

title

bib
www.bn.com

for $b in document("www.bn.com/bib.xml")/bib/book
where $b/publisher="Addison�Wesley" and $b/@year>1991
return <book year="{$b/@year}"> {$b/title} </book>
}
</bib>

Based on this visualization of XQuery expressions, an interactive editor for XQuery expressions is
described in [67] (cf. Figure 7.8).

Project page:
XQBE: http://dbgroup.elet.polimi.it/xquery/XQBE.html

Implementation:
XQBE: available from the project page

Online demonstration:
none

7.3.2.9 X2’s visual interface.

X2 [278] is a system for visual exploration and retrieval of XML databases. It provides an interactive
environment for authoring visual queries, see Figure 7.9. ¿e employed query language is rather restricted,
but supports querying the order of elements and can be evaluated very e�ciently (see [276]). Instead of
constructing new data based on the results of a query, the system gathers all matched data in a novel data
structure called “Complete Answer Aggregates” [277, 276] and allows the user to browse this structure,
thereby exploring the data contained in the database. While browsing, the user can re�ne and reissue the
query.

Project page:
http://www.cis.uni-muenchen.de/people/Meuss/caa.html and http://www.cis.uni-muenchen.
de/~weigel/Projekte/X2.html

Implementation:
not publicly available

Online demonstration:
none

136

http://dbgroup.elet.polimi.it/xquery/XQBE.html
http://www.cis.uni-muenchen.de/people/Meuss/caa.html
http://www.cis.uni-muenchen.de/~weigel/Projekte/X2.html
http://www.cis.uni-muenchen.de/~weigel/Projekte/X2.html

Figure 7.8 Screenshot of XQBE’s query editor
([67], © Elsevier, Inc.)

Figure 7.9 Screenshot of X2’s query editor
([278], © Springer-Verlag)

137

7.4 RDF Query Languages

RDF Query Languages can be grouped into several families that di�er in aspects like data model, expres-
sivity, support for schema information, and kind of queries. As a “family”, we consider languages that
build upon each other, are heavily in�uenced by each other, or share a large part of their properties. In the
following, we shall consider the six families SPARQL, RQL, XPath-, XSLT-, and XQuery-based Languages,
Metalog, Reactive Languages, and Deductive Languages. In addition, we brie�y introduce a number of
additional languages that don’t fall into one of the above-mentioned families.

7.4.1 The SPARQL Family

¿e SPARQL family consists of the four query languages SquishQL, RDQL, SPARQL, and TriQL. Common
to all four languages in this family is that they “regard RDF as triple data without schema or ontology
information unless explicitly included in the RDF source”.

7.4.1.1 Basic RDF Access: SquishQL and RDQL.

¿emain objectives of SquishQL [282, 281] are ease-of-use and similarity to SQL. SquishQL relies on a
query model for RDF in�uenced by [196]. SquishQL o�ers so-called “triple patterns” and conjunctions
between triple patterns for specifying parts of RDF graphs to retrieved. “¿is results in quite a weak pattern
language but it does ensure that in a result all variables are bound.” [282]. SquishQL queries have the
following form:

SELECT variables (identi�es the variables whose bindings are returned)
FROM model URI
WHERE list of triple patterns
AND boolean expression (the �lter to be applied to the result)
USING name FOR URI, . . .

In SquishQL, Query 20 can be expressed as follows:

SELECT ?essay, ?author, ?authorName
FROM http://example.org/books
WHERE (?essay, <rdf:type>, <books:Essay>),
(?essay, <books:author>, ?author),
(?author, <books:name>, ?authorName)
USING books FOR http://example.org/books#,
rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

In SquishQL, Query 21 can (almost) be expressed as follows:

SELECT ?property, ?propertyValue
FROM http://example.org/books
WHERE (?essay, <books:book-title>, "Bellum Civile")
(?essay, ?property, ?propertyValue),
USING books FOR http://example.org/books#

A property value can be a node with other properties, that an answer to Query 21 should return. Since
SquishQL has no means to express recursion, such indirect properties cannot be returned by the above
query if the schema of the data is unknown or recursive.

Other queries from Section 7.2.3 cannot be expressed in SquishQL.
In a SquishQL query, the AND clause serves to express constraints on variable values so as �lter the

bindings returned. ¿e following query returns the URIs of persons that have authored a book with title
“Bellum Civile”.

138

SELECT ?person
FROM http://example.org/books
WHERE (?book, <books:author>, ?person)
(?book, <books:title>, ?title)
AND ?title = ’Bellum Civile’

An answer to an SquishQL query is a set of bindings for the variables occurring in the query. SquishQL
does not support RDFS concepts.

Project page:
Inkling: http://swordfish.rdfweb.org/rdfquery/

Implementation:
Inkling [281]

RDQL, a “RDF Data Query Language”, is an evolution of the SquishQL versions SquishQL [282], and
Inkling [281] in�uenced by rdfDB [195]. RDQL has been recently submitted to theW3C for standardisation
[332, 282, 334, 333]. RDQL queries have the same form as SquishQL queries. As with SquishQL, an answer
to an RDQL query is a set of bindings for the variables occurring in the query. Like SquishQL, RDQL
supports only selection and extraction queries.

RDQL is intentionally kept simple, operating only on the data level of RDF, with the goal to make
RDQL amenable to standardisation as a “low-level RDF language”. RDQL’s authors see inferencing as a
possible feature of an “RDF implementation”, not of the query language RDQL: “if a graph implementation
provides inferencing to appear as ‘virtual triples’ (i.e. triples that appear in the graph but are not in the
ground facts), then an RDQL query will include those triples as possible matches in triple patterns.” [332].
As a consequence, queries referring to RDFS relations such as type, set or class are cumbersome and/or
complex.

¿e RDQLPlus (http://rdqlplus.sourceforge.net/) implementation of RDQL provides a lan-
guage extension, called RIDIQL [373]. RIDIQL supports updates and a transparent use of the inference
abilities of the Jena Toolkit [190].

Project pages:
http://www.hpl.hp.com/semweb/rdql.htm

RDFStore: http://rdfstore.sourceforge.net/

Implementations:
Jena Toolkit [334, 332, 333, 190], RAP (RDF API for PHP) [292], PHP XML Classes (http://
phpxmlclasses.sourceforge.net/), RDFStore [319],
Rasqal (http://www.redland.opensource.ac.uk/rasqal/),
Sesame (http://www.openrdf.org/index.jsp),
RDQLPlus (http://rdqlplus.sourceforge.net/),
3store (http://sourceforge.net/projects/threestore/) [202].

Online demonstrations:
Sesame: http://www.openrdf.org/demo.jsp
RAP: http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom_rdql_test.php
RDFStore: http://demo.asemantics.com/rdfstore/www2003/

SquishQL and RDQL queries cannot be composed. Negation can be used in �lters, or AND clauses, as
in the previous query, but not in WHERE clauses, i.e. triple patterns can only occur positively. Disjunctions

139

http://swordfish.rdfweb.org/rdfquery/
http://rdqlplus.sourceforge.net/
http://www.hpl.hp.com/semweb/rdql.htm
http://rdfstore.sourceforge.net/
http://phpxmlclasses.sourceforge.net/
http://phpxmlclasses.sourceforge.net/
http://www.redland.opensource.ac.uk/rasqal/
http://www.openrdf.org/index.jsp
http://rdqlplus.sourceforge.net/
http://sourceforge.net/projects/threestore/
http://www.openrdf.org/demo.jsp
http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom_ rdql_test.php
http://demo.asemantics.com/rdfstore/www2003/

and optional matching cannot be expressed. Although a variable in SquishQL and RDQL queries can be
bound to blank nodes, there is no way to specify blank nodes in SquishQL’s and RDQL’s triple patterns.
As a consequence, a query returning the blank nodes of a graph cannot be expressed in SquishQL and
RDQL. SquishQL and RDQL have no form of recursion or iteration: By conjunction of triple patterns,
one can express in SquishQL and RDQL only paths of a given length. Only selection and extraction
queries can be expressed in SquishQL and RDQL, i.e., of the queries of Section 7.2.3, only Query 20 and
(an approximation of) Query 21. Like SquishQL, RDQL does not support RDFS concepts, although at
least one of its implementations, that given in the Jena Toolkit [190], supports the transitive closures of the
RDFS relations rdfs:subClassOf and rdfs:subPropertyOf. No formal semantics has been de�ned for
SquishQL or RDQL. ¿e complexity of SquishQL and RDQL has not been investigated so far.

7.4.1.2 SPARQL.

SPARQL [316], a “Query Language for RDF” formerly called BrQL [315], has been developed bymembers of
the W3C “RDF Data Access” Working Group. SPARQL is an extension of RDQL [332] designed according
to requirements and use cases [124] and is still under development. SPARQL extends RDQL with facilities
to:

• Extract RDF subgraphs.

• Construct, using CONSTRUCT clauses, one new RDF graph with data from the RDF graph queried.
Like RDQL queries, the new graph can be speci�ed with triple, or graph, patterns.

• Return, using DESCRIBE clauses, “descriptions” of the resources matching the query part. ¿e exact
meaning of “description” is not yet de�ned, cf. [351] for a proposal.

• Specify OPTIONAL triple or graph query patterns, i.e., data that should contribute to an answer if
present in the data queried, but whose absence does not prevent to return an answer.

• Testing the absence, or non-existence, of tuples.

SPARQL queries have the following form:

PREFIX Speci�cation of a name for a URI (like RDQL’s USING)
SELECT Returns all or some of the variables bound in the WHERE clause.
CONSTRUCT Returns a RDF graph with all or some of the variable bindings.
DESCRIBE Returns a “description” of the resources found.
ASK Returns whether a query pattern matches or not
WHERE list, i.e., conjunction of query (triple or graph) patterns
OPTIONAL list, i.e., conjunction of optional (triple or graph) patterns
AND boolean expression (the �lter to be applied to the result)

An extension of Query 20 returning the translators of a book, if there are some, can be expressed in
SPARQL as follows:

PREFIX books: http://example.org/books#
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
SELECT ?essay, ?author, ?authorName, ?translator
FROM http://example.org/books
WHERE (?essay books:author ?author),
(?author books:authorName ?authorName)
OPTIONAL (?essay books:translator ?translator)

140

Using the CONSTRUCT clause, restructuring and non-recursive inference queries can be expressed in
SPARQL. Query 23 can be expressed in SPARQL as follows:

PREFIX books: http://example.org/books#
CONSTRUCT (?y books:authored ?x)
FROM http://example.org/books
WHERE (?x books:author ?y)

and Query 28 by

PREFIX books: http://example.org/books#
CONSTRUCT (?x books:co-author ?y)
FROM http://example.org/books
WHERE (?book books:author ?x)
(?book books:author ?y)
AND (?x neq ?y)

Project page:
http://www.w3.org/2001/sw/DataAccess/

Implementation:
none

Online demonstration:
none

7.4.1.3 TriQL.

TriQL extends RDQL by constructs supporting querying of named graphs [101], as introduced in TriG [55]
by the authors of TriQL. Named graphs allow one to �lter RDF statements a er their sources or authors,
like in the following query: “Return the books with rating above a threshold of 5, using only information
asserted by Marcus Tullius Cicero.” ¿is can be expressed in TriQL as follows:

SELECT ?books
WHERE ?graph (?books books:rating ?rating)
(?graph swp:assertedBy ?warrant)
(?warrant swp:authority <http://people.net/cicero>)
USING books FOR http://example.org/books#,
swp FOR <http://www.w3.org/2004/03/trix/swp-1/>

Project page:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

Implementation:
none

Online demonstration:
none

7.4.2 The RQL Family

Under “RQL family”, we group the three languages RQL, SeRQL, and eRQL. Common to these languages
is that they support combining data and schema querying. Furthermore, the RDF data model they rely on
slightly deviates from the standard data model for RDF and RDFS: (1) cycles in the subsumption hierarchy
are forbidden, and (2) for each property, both a domain and a range must be de�ned. ¿ese restrictions

141

http://www.w3.org/2001/sw/DataAccess/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

ensure a clear separation of the three abstraction layers of RDF and RDFS: (1) data, i.e. description of
resources such as persons, XML documents, etc., (2) schemas, i.e. classi�cations for such resources, and
(3) meta-schemas specifying meta-classes such as rdfs:Class, the class of all classes, and rdfs:Property
the class of all of properties. ¿ey make possible a �exible type system tailored to the speci�cities of RDF
and RDFS.

7.4.2.1 RQL.

RQL, the “RDF Query Language”, is developed at ICS-FORTH [119, 219, 218, 220, 221], and the base for the
two other members of the RQL family, SeRQL and eRQL.

Basic schema queries. A salient feature of RQL is the use of the types from RDFS schemas. ¿e query
subClassOf(books:Writing) returns the sub-classes of the class books:Writing9. A similar query, using
subPropertyOf instead of subClassOf, returns the the sub-properties of a property . ¿e following query
returns the domain ($C1) and range ($C2) of the property author de�ned at the URI named book (¿e
pre�x $ indicates “class variable”, i.e., a variable ranging on schema classes). It can be expressed in RQL in
three di�erent manners:

1. using class variables:

SELECT $C1, $C2 FROM {$C1}books:author{$C2}
USING NAMESPACE books = &http://example.org/books#

2. using a type constraint:

SELECT C1, C2 FROM Class{C1}, Class{C2}, {;C1}books:author{;C2}
USING NAMESPACE books = &http://example.org/books#

3. without class variables or type constraints:

SELECT C1, C2 FROM subClassOf(domain(book:author)){C1},
subClassOf(range(books:author)){C2}
USING NAMESPACE books = &http://example.org/books#

¿e query topclass(books:Historical_Essay) returns the top of the subsumption hierarchy, i.e.,
books:Writing, cf. Figure 7.2. A similar query returns leaves of the subsumption hierarchy. ¿e query
nca(books:Historical_Essay, books:Historical_Novel) returns the nearest common ancestor of
the classes of ‘historical essays’ and ‘historical novels’, i.e., the class books:Essay of ‘essays’. RQL has
“property variables” pre�xed by @ using which RDF properties can be queried (like classes using class
variables). ¿e following query, with property variables pre�xed by @, similar to the formerly introduced
class variables, returns the properties, together with their actual ranges, that can be assigned to resources
classi�ed as books:Writing:
SELECT @P, $V FROM {;books:Writing}@P{$V}
USING NAMESPACE books = &http://example.org/books#

Combining these facilities, Query 27 is expressible in RQL as follows:
SELECT X, Y FROM Class{X}, subClassOf(X){Y}.

9Assuming: USING NAMESPACE books = &http://example.org/books-rdfs#

142

Data queries. With RQL, data can be retrieved by its types, by navigating to the appropriate position
in the RDF graph. Restrictions can be expressed using �lters. Classes, as well as properties, can be
queried for their (direct and indirect10) extent. ¿e query books:Writing returns the resources classi�ed
books:Writing or one of its sub-classes. ¿is query can also be expressed as follows: SELECT X FROM books:Writing{X}.
Pre�xing the variable X in the previous queries, yields queries returning only resources directly classi�ed as
books:Writing, i.e., for which a statement �X,rdf:type,books:Writing� exists. ¿e extent of a property
can be similarly retrieved. ¿e query ^books:author returns the pairs of resources X,Y that stand in the
books:author relation, i.e., for which a statement �X,books:author,Y� exists. RQL o�ers extended dot
notation as used in OQL [103], for navigation in data and schema graphs. ¿is is convenient for expressing
Query 20:

SELECT X, Y, Z FROM {X;books:Essay}books:author{Y}.books:authorName{Z}
USING NAMESPACE books = &http://example.org/books#

¿e data selected by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;books:Essay}books:author.books:authorName{Y},
? {X}books:title{T}
WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

Mixed schema and data queries. With RQL, access to data and schema can be combined in all manners,
e.g., the expression X;books:Essay restricts bindings for variable X to resources with type books:Essay.
Types are o en useful for �ltering, but type information can also be interesting on their own, e.g., to return
a “description” of a resource understood as its schema:

SELECT $C, (SELECT @P, Y FROM {Z ; ^$D} ^@P {Y}
WHERE Z = X and $D = $C)
FROM ^$C {X}, {X}books:title{T} WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

¿is query returns the classes under which the resource with title “Bellum Civile” is directly classi�ed;
^$C{X} selects the values in the direct extent of any class.

Further features of RQL are not discussed here, e.g., support for containers, aggregation, and schema
discovery. Although RQL has no concept of “view”, extension RVL [254] of RQL gives a facility for
specifying views. In RVL the inverse relation of books:author can be de�ned as a view as follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW authored(Y, X) FROM {X}books:author{Y}
USING NAMESPACE books = &http://example.org/books#

RQL has been criticised for its large number of features and choice of syntactic constructs (like the
pre�xes ^ for calls and @ for property variables), which resulted in the simpli�cations SeRQL and eRQL of
RDF. RQL is far more expressive than most other RDF query languages, especially those of the SquishQL
family. Most queries of Section 7.2.3, except those queries referring to the transitive closures of arbitrary
relations, can be expressed in RQL: RDF supports only the transitive closures of rdfs:subClassOf and
rdfs:subPropertyOf.

Query 20 is already given in RQL above. Query 21 cannot be expressed in RQL exactly, since RQL
has no means to select “everything related to some resource”. However, a modi�ed version of this query,
where a resource is described by its schema, is also given above. Reduction queries, e.g. Query 22, can
o en be concisely expressed in RQL, in particular if types are available:

10i.e. deduceable by inference.

143

SELECT S, @P, O
FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},
(Resources minus (SELECT T FROM {B}books:translator{T})){O},
{S}@P{O}
USING NAMESPACE books = &http://example.org/books#

An implementation of the restructuring Query 23 is given above in the extension RVL of RQL. RQL is
convenient for expressing aggregation queries, e.g., Query 24:

max(SELECT Y
FROM {B;books:Writing}books:author.books:authorName{A},
{B}books:pubYear{Y}
WHERE A = "Julius Caesar")

Inference queries that do not need recursion, e.g., Query 28, can be expressed in RQL as follows:

SELECT A1, A2 FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

In RVL, an expression of Query 28 can actually create new statements as follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW mybooks:co-author(A1, A2)
FROM {Z}books:author{A1}, {Z}books:author{A2} WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

Both typing rules and a formal semantics for RQL have been speci�ed [221]. No formal complexity
study of RDF has been published yet. An implementation of RDF is given with the so-called “ICS-FORTH
RDFSuite”. RQL has in�uenced several later proposals for RDF query languages, e.g., BrQL and SPARQL,
cf. Section 7.4.1.

Project page:
http://139.91.183.30:9090/RDF/RQL/

Implementation:
RDFSuite (http://139.91.183.30:9090/RDF/index.html)

Online demonstration:
http://139.91.183.30:8999/RQLdemo/

7.4.2.2 SeRQL.

SeRQL [95, 78] is derived from RQL and di�ers from the latter as follows:

• SeRQL does not support RDF and RDFS types, except literal types.

• SeRQL modi�es and extends RQL’s path expressions. SeRQL compound path expressions instead
use an “empty node”, {}, for path concatenation. SeRQL provides a shorthand notation for retrieving
several values of a property in a single path expression, simplifying, e.g., Query 28: In SeRQL, one
can write FROM {Book} <books:author> {X, Y} instead of
FROM {Book} <books:author> {X}, {Book} <books:author> {Y}.
Furthermore, SeRQL supports optional path expressions (using square brackets), e.g.:
SELECT * FROM {Book} <books:title> {Title};

[<books:translator> {Translator} [<books:age> {Age}]].

144

http://139.91.183.30:9090/RDF/RQL/
http://139.91.183.30:9090/RDF/index.html
http://139.91.183.30:8999/RQLdemo/

• SeRQL provides a shorthand notation for expressing several properties of a resource in a FROM
clause. ¿e following SeRQL query returns the authors of books entitled “Bellum Civile” having a
translator named “J.M. Carter” (note the ‘;” separating the di�erent properties):

SELECT Author FROM {Book} <books:title> {"Bellum Gallicum"};
<books:translator>{}<books:translatorName>{"J.M. Carter"};
<books:author> {Author}
USING NAMESPACE books = <!http://example.org/books#>

• SeRQL eases querying a rei�ed statement by enclosing the non-rei�ed version of the statement in
curly brackets.

SeRQL cannot express all queries of Section 7.2.3. Selection and extraction queries can be expressed in
SeRQL (with the same limitation as with RQL, cf. above). In contrast to RQL, SeRQL has neither set
operations, nor existential or universal quanti�cation. As a consequence, Query 22 cannot be expressed in
SeRQL.¿anks to the CONSTRUCT clause, SeRQL, like RQL, can express restructuring and simple inference
queries, e.g., Query 23 can be expressed as:

CONSTRUCT {Author} <mybooks:authored> {Book}
FROM {Book} <books:author> {Author}
USING NAMESPACE books = <!http://example.org/books#>
mybooks = <!http://example.org/books-rdfs-extension#>

Aggregation queries cannot be expressed in SeQL (according to [95], adding aggregation to to SeRQL
is planned). ¿e transitive closure of rdfs:subClassOf is provided in SeRQL’s implementation by means
of the RDFS-aware storage of Sesame. However, neither the transitive closures of arbitrary relations nor
general recursion can be expressed in SerQL.

Project page:
Sesame http://www.openrdf.org/

Implementation:
Implementation in Prolog11: http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Library/SeRQL

Online demonstrations:
http://www.openrdf.org/demo.jsp

7.4.2.3 eRQL.

eRQL [358] proposes a radical simpli�cation of RQL based mostly on a keyword-based interface. It is
the expressed goal of the authors of eRQL to provide with a “Google-like query language but also with
the capacity to pro�t of the additional information given by the RDF data”.12 eRQL has only three query
constructs:
One-word queries. Single words are valid eRQL queries, e.g., the query CAESAR returns all statements in
which the string “CAESAR” occurs in any manner. Surprisingly, “phrase queries” like “Bellum civile” do
not seem to be expressible in eRQL.
Neighbourhood queries. Neighbourhood queries are expressed by varying numbers of curly braces indi-
cating the level of neighbourhood. ¿ey return not only the statements containing a word, as one-word
queries, but also the statements related to (“in the neighbourhood of”) a statement. For instance, the
{{CAESAR}} returns the following statements (cf. Figure 7.2):

11Using the Semantic Web library of SWI Prolog http://www.swi-prolog.org/.
12http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

145

http://www.openrdf.org/
http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Library/SeRQL
http://www.openrdf.org/demo.jsp
http://www.swi-prolog.org/
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

_:1 books:author _:2. _:1 books:title "Bellum Civile".
_:1 books:authorName "Julius Caesar". _:1 books:translator _:4.
_:1 books:author _:3.

{{{CAESAR}}} extends the “neighbourhood” one step further, etc.
Conjunctive and disjunctive queries. Both, neighbourhood and one-word queries can be combined using
the boolean operators AND and OR. No negation is provided, however.

Many queries of Section 7.2.3 cannot be expressed in eRQL. ¿e extraction query Query 21 can
be approximated in eRQL as: {{"Bellum" AND "Civile"}}. eRQL does not allow the selection of a
neighbourhood of unknown size around a resource, e.g., for obtaining a “concise-bounded descriptions”
[351]. Indeed, in contrast to the claims of eRQL’s authors, this requires knowledge of the schema of the
data queried. Nevertheless, the need for a language like eRQL is evident for exploiting RDF data with
search engines.

Project page:
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

Implementation(s):
eRQLEngine cf. project page

Online demonstration:
none

7.4.3 Query Languages inspired from XPath, XSLT or XQuery

¿is section is devoted to languages inspired from, or extending XML query languages. Some of them
(viz. [324, 350, 366]) can be implemented with a few additional functions and/or by normalising the data
before querying.

7.4.3.1 XQuery for RDF: The “Syntactic Web Approach”.

[321, 324] propose to rely on the XML Query Language XQuery (cf. Section 7.3.1) for querying RDF data.
¿e approach, called “Syntactic Web”, consists of (1) a preliminary “normalisation” of the RDF data being
queried essentially by (a) serialising RDF data in XML as collections of statements, and (b) grouping the
statements by their subjects, and (2) de�ning in XQuery, functions conveying the semantics of RDFS,
e.g., a function rdf:instance-of-class returning the (sequence of the) resources (represented by their
description element) that are (direct or indirect) instances of a class:

define function rdf:instance-of-class($t as element(description)*,
$base-name as xs:string)
as element(description)*
{
$t[rdf:type = $base-name],
for $i in $t[rdfs:subClassOf = $base-name]
return rdf:instance-of-class($t, string($i/@rdf:about))
}

Using the function de�ned above, and assuming a convenient normalisation of the RDF data queried,
Query 20 can be expressed as follows:

let $t := document("http://example.org/books")//description
for $essay in rdf:instance-of-class($t, "books:Essay"),

146

http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

$author in $t[rdf:about = $essay/books:author]
return <result> {$essay, $author} </result>

¿e “Syntactic Web” approach also proposes a normalisation of Topic Maps and speci�c XQuery
functions for querying Topic Maps data. ¿is approach has several advantages. It makes it possible to
return answers in any possible XML format and to query both, standardWeb and Semantic Web data with
the same query language, providing the uniformity advocated in [305]. [338] suggests a similar approach.

Project page:
none

Implementation(s):
not publicly available

Online demonstration:
none

7.4.3.2 XSLT for RDF: TreeHugger and RDF Twig.

Similar in spirit to the Syntactic Web Approach [321, 324], TreeHugger [350] proposes to rely on XSLT
for querying and transforming RDF data. Due to limitations of XSTL 1.0, the normalisation of RDF
data is not performed by an XSLT program, but by “extension functions”. ¿e normalisation of RDF is
based on the “striped syntax” [73], with properties represented both as elements and attributes (causing
problems with multi-valued properties). ¿ree extension functions are provided: (1) for loading an RDF
document, (2) for loading an RDF document and handling the vocabulary of RDFS, and (3) for loading
an RDF document and handling the vocabulary of both RDFS and OWL. XPath, upon which XSLT relies,
is extended with a pre�x inv for querying the inverse of an RDF property.

Query 20 can be expressed as follows in TreeHugger:

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:books="http://example.org/books#"
xmlns:th="http://rootdev.net/net.rootdev.treehugger.TreeHugger"
xmlns:rdfs="http://www.w3.org/2000/01/rdf�schema#"
xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
xsl:version="1.0">
<!-- Load RDF document -�
<xsl:variable name="doc"
select="th:documentRDFS(’http://example.org/books’)" />
<xsl:for-each select="$doc/books:Essay">
<xsl:for-each select="books:author/*">
<result>
<xsl:value-of select="inv:books:author" />
<xsl:value-of select="." />
<authorName>
<xsl:value-of select="books:authorName/*" />
</authorName>
</result>
</xsl:for-each>
</xsl:for-each>
</results>

Project page:
http://rdfweb.org/people/damian/treehugger/

Implementation(s):
Cf. project page

147

http://rdfweb.org/people/damian/treehugger/

Online demonstration:
http://swordfish.rdfweb.org/discovery/2003/09/treehugger/

RDF Twig [366] is another extension of XSLT 1.0, with functions for querying RDF. It is based on
“redundant” or “non-redundant” depth or breadth �rst traversals of the RDF graph, , i.e., traversals that
repeat or do not repeat elements in the XML-based representation of RDF that are reachable from by
various paths. Two query mechanisms are provided: A small set of logical operations on the RDF graph,
and an interface to RDQL cf. Section 7.4.1.

Query 20 can be expressed as follows in RDF Twig:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
xmlns:rt="http://nwalsh.com/xslt/ext/com.nwalsh.xslt.saxon.RDFTwig"
xmlns:twig="http://nwalsh.com/xmlns/rdftwig#"
xmlns:books="http://example.org/books#"
xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#">
<xsl:template match="/">
<xsl:variable name="model"
select="rt:load(’http://example.org/books’)"/>
<!-- this is used as default model from now on-�
<xsl:variable name="pType"
select="rt:property(’http://www.w3.org/1999/02/22�rdf�syntax�ns#’,
’type’)"/>
<xsl:variable name="essays"
select="rt:find($label, ’books:Essay’)"/>
<xsl:variable name="tree"
select="rt:twig($essays)/twig:result"/>
<results>
<xsl:for-each select="rt:find($label, ’books:Essay’)">
<result>
<xsl:value-of select="rt:twig(.)" />
<xsl:value-of select="rt:twig(.)/twig:result/books:author" />
</result>
</xsl:for-each>
</results>
</xsl:template>

Project page:
http://rdftwig.sourceforge.net/

Implementation:
Cf. project page

Online demonstration:
none

7.4.3.3 Versa.

Developed as part of the Python-based 4Suite XML and RDF toolkit13, Versa [290, 295, 291] is a query
language for RDF inspired from, but signi�cantly di�erent to, XPath. Versa can be used in lieu of XPath
in the XSLT version of 4Suite. Like the Syntactic Web Approach, TreeHugger, and RDF Twig, Versa is
aligned with XML. Like XPath, Versa can be extended by externally de�ned functions. Versa’s authors
claim that Versa is easier to learn than RDF query languages inspired from SQL.

Versa has constructs for a forward traversal of one ormoreRDFproperties, e.g., all() - books:author

-> * selects those resources that are author of other resources. Instead of the wildcard *, string-based
restrictions can be expressed. Using Versa’s forward traversal operators, Query 20 can be expressed as
follows:

13http://4suite.org/

148

http://swordfish.rdfweb.org/discovery/2003/09/treehugger/
http://rdftwig.sourceforge.net/
http://4suite.org/

distribute(type(books:Essay), ".",
"distribute(.�books:author�*, ".", ".-books:authorName�*)")

¿e function distribute() returns a list of lists containing the result of the second, third, . . . argument
valuated starting from each of the resources selected by the �rst argument. As in XPath, . denotes the
current node.

Versa has aForward �lter for selecting the subject of a statement, e.g., type(books:Essay) |- books:title

-> eq("Bellum Civile") returns the essays entitled “Bellum Civile”. Versa has also constructs for a back-
ward traversal (but no backward �lter), e.g., the essays entitled “Bellum Civile” can also be returned
by (books:Essay <- rdf:type - *) |- books:title -> eq("Bellum Gallicum"). Versa’s function
traverse serves to traverse paths of arbitrary length, e.g., the following query returns all sub-classes of
books:Writing:
traverse(books:Writing, rdf:subClassOf, vtrav:inverse, vtrav:transitive)

Similarly, Versa’s function filter provides a general �lter, e.g., all essays entitled “Bellum Gallicum”
having a translator named “J. M. Carter” are returned by the following query:

filter(books:Essay <- rdf:type - *,
". � books:title�eq(’Bellum Gallicum’)",
". � books:translator�books:translatorName�eq(’J. M. Carter’)"

Selection and extraction queries can be easily implemented in Versa, although the selection of related
items is not very convenient, as the above implementation of Query 20 demonstrates. In contrast to most
RDF query languages, Versa allows the extraction of RDF subgraphs of arbitrary sizes, as required by
Query 21. Reduction queries can be expressed in Versa, e.g., using negation or set di�erence. Query 22
can be implemented in Versa as follows:

difference(all(),
union(type(rdfs:Class),
union(type(rdfs:Property,
all() <- books:translator - *))
)
)

Restructuring, combination, and inference queries cannot be expressed in Versa, as the result of a
Versa query is always a list (possibly a list of lists). However, Query 23 and 28 can be approximated in
Versa as follows:
distribute(all(), ". � books:author�*", ". � books:author�*")

Answers to this query include "Julius Caesar" (as if he would be a co-author of himself !). ¿is does
not seem to be avoidable with Versa. Versa also provides several aggregation functions. Query 24 can be
expressed as follows in Versa:

max(filter(all(),
". � books:author�books:authorName�eq(’Julius Caesar’)"
)
- books:year �*)

Query 25 can be implemented in Versa using the function length as follows:

distribute(traverse(books:Writing, rdf:subClassOf,
vtrav:inverse,vtrav:transitive),
".",
"max(length((. <� rdf:type *) � books:author�*))"
)

149

Neither a formal semantics, nor the language complexity have been investigated so far.

Project page:
http://uche.ogbuji.net/tech/rdf/versa/

Implementation(s):
available as part of 4Suite from http://4suite.org/

Online demonstration:
none

7.4.3.4 Path-Based Access to RDF: RDF Path, RPath, RxPath, RxSLT, and RxUpdate.

[302] sketches a language called RDF Path. RDF Path’s syntax is similar to that of XPath. Node-tests for
RDF data are added, e.g., arc() and subj(), and constructs of XPath not relevant for RDF are dropped.
Functions and value tests are not considered in depth in this early dra . ¿e fact that, in contrast to XML
trees, RDF graphs do not have roots is not considered. As a consequence, �nding a starting point for an
RDF Path expression is an open issue.

Query 20 is not expressible, since related information cannot be selected. A variation of Query 21,
“Return the names of all authors of historical essays entitled ‘Bellum Civile’.” can be expressed as follows:

*[rdf:type/books:Historical_Essay books:title/"Bellum Civile"]/
books:author/*/books:authorName

Project page:
http://infomesh.net/2003/rdfpath/

Implementation(s):
none

Online demonstration:
none

RPath [267] is another adaption of XPath to RDF, though focused on two RDF applications, CC/PP,
a formalism for expressing device pro�les, and UAProf, a formalism for expressing characteristics of
(mobile) computers such as screen resolution and colour depth. RPath has location steps, vertex-edge-tests
corresponding to node-tests in XPath, and predicates. RPath di�erences from XPath re�ect the di�erences
between the data models of XML and RDF, e.g., RPath’s axes can follow a path along vertices (RDF
predicates) and edges (RDF subjects and objects). As with RDF Path, the fact that RDF graphs are not
rooted is not considered. ¿us, it is not clear where an RPath expression should start from. ¿is might not
be too serious a problem, for the CC/PP and UAProf yield RDF graphs that are rooted two-level trees.

¿e variation of Query 21 considered above, “Return the names of all authors of historical essays entitled
‘Bellum Civile’.” can be expressed as follows:

/@vertex()[
rdf:type/@books:Historical_Essay and
books:title/@vertex()[equals(‘Bellum Civile’)]
]/books:author/books:authorName

In contrast to most RDF query languages inspired from XPath, RPath does not require specifying
paths where expressions match vertices, i.e., RDF classes, and edges (properties), alternate (like in striped
RDF [73]). ¿us, the previous query can also be expressed as follows:

150

http://uche.ogbuji.net/tech/rdf/versa/
http://4suite.org/
http://infomesh.net/2003/rdfpath/

outerVertex::vertex()[
outEdge::rdf:type/outVertex::books:Historical_Essay and
outEdge::books:title/outVertex::vertex()[equals(‘Bellum Civile’)]
]/outEdge::books:author/outEdge::books:authorName

Project page:
none

Implementation(s):
prototype in Java, based on a CC/PP engine from Sun

Online demonstration:
none

RxPath is another adaption of XPath to RDF, de�nedwithin the project Rx4RDF14, aiming at improving
the accessibility of RDF for non-experts. In contrast to RDF Path and RPath, and similarly to TreeHugger
and RDF Twig, RxPath is essentially “a mapping between the RDF Abstract Syntax to the XPath Data
Model” [346]. ¿is mapping is performed in four steps:

1. A top-level XML element is created for every RDF resource where the tag is the type of the resource,

2. “Each root element has a child element for each statement the resource is the subject of. ¿e name
of each child is [the] name of the property in the statement” [345],

3. “Each of these children have [a] child text node if the object of the statement is a literal or a child
element if the object is a resource.” [345], and

4. “Object elements have the same name and children as the equivalent root element for the resource,
thus de�ning a potentially in�nitely recursive tree.” [345].

Since this mapping might lead to in�nite trees, RxPath relies on a circularity-test for the evaluation of such
axes ensuring that elements previously encountered are skipped (as a consequence, blank nodes have to be
assigned a unique URI.) Furthermore, RxPath changes the semantics of the closure axes to only consider
elements representing RDF properties in the original RDF model (this is easy as the mapping from RDF
into an XML document discussed above uses a striped representation of RDF statements [73]). Finally, an
expression such as descendant::rdf:type only matches an element representing an rdf:type property
if all elements on the path to that property that represent any RDF property actually represent an rdf:type
property. ¿us, descendant::rdf:type is actually closer to the regular tree expression (rdf:type._)*
than to the XPath expression descendant::rdf:type.

¿e variation of Query 21 considered above, “Return the names of all authors of historical essays with the
title ‘BellumCivile’.” can be expressed as follows (assuming the pre�x booksdenotes http://example.org/books-rdfs#):

/books:Historical_Essay[books:title = ‘Bellum Civile’]/
books:author/*/books:authorName

Based on RxPath, two languages have been de�ned, RxSLT [347] and RxUpdate [348]. RxSLT is
“syntactically identical to XSLT 1.0” [347], but uses RxPath instead of XPath 1.0. RxUpdate is syntactically
very similar to XUpdate [247], but again uses RxPath instead of XPath to update RDF models. Note that
RxSLT, like XSLT, is only capable of producing XML. ¿us, new RDF data can only be created by using
the XML serialisation of RDF.

14Phttp://rx4rdf.liminalzone.org/rx4rdf

151

http://rx4rdf.liminalzone.org/rx4rdf

Project page:
http://rx4rdf.liminalzone.org/rx4rdf

Implementation(s):
Cf. project page (prototype in Python)

Online demonstration:
none

7.4.3.5 RDFT and the Query Language of Nexus: XSLT-Style RDF Query Languages.

RDFT [136] is a dra proposal closely related to XSLT 1.0. Like XSLT 1.0., RDFT uses templates that are
matched recursively against the data structure. Since the structural recursion is performed against an RDF
graph which can be cyclic, termination must be ensured. ¿is issue has not yet been addressed. RDFT
uses an adaption of XPath, called NodePath, for querying RDF graphs expressed in XML as “striped” [73].
Querying RDFS or OWL data has not yet been addressed.

RDFT only supports a subset of XSLT. A macro mechanism is introduced, as illustrated in lines 3–7
and 10 of the following implementation of Query 20 (for simplicity, only books and their authors are
returned without considering the author’s names):

<rt:stylesheet rt:version="1.0"
xmlns:rt="http://purl.org/vocab/2003/rdft/">
<rt:macro-set rt:prefix="rdf">
<rt:macro name="type"
value="resource(
’http://www.w3.org/1999/02/22�rdf�syntax�ns#type’)/resource()"/>
</rt:macro-set>
<rt:root-template>
<rt:apply-templates
rt:select="/resource()[rdf:type =
resource("http://example.org/books#Essay")/>
</rt:root-template>
<!-- Template for the Essay
<rt:template pattern="resource()[rdf:type =
resource(’http://example.org/books#Essay’)" />
<xsl:value-of select="." />
<rt:apply-templates
rt:select="resource(’http://example.org/books#author’)/resource()/>
</rt:template>
<!�� Template for the author ��
<rt:template
pattern="resource(’http://example.org/books#author’)/resource()">
<xsl:value-of select="." />
</rt:template>
</rdft:stylesheet>

¿e [136] speci�cation is not clear about the result of such a query: An XML tree or some form of an
RDF graph? ¿e description of rt:element seems to indicate the former, the description of rt:value-of
the latter.

Project page:
http://www.semanticplanet.com/2003/08/rdft/spec

Implementation(s):
none

Online demonstration:
none

152

http://rx4rdf.liminalzone.org/rx4rdf
http://www.semanticplanet.com/2003/08/rdft/spec

[3] sketches another approach to querying RDF, and some form of XML, using an XSLT-like language.
¿e basic idea is to translate RDF (expressed in XML) and also some non-RDF XML documents into
a hierarchy of (attribute carrying) elements, based on the relations between the elements. ¿e result of
a query is some (hierarchical) view over this element tree. [3] does not address cyclic relations among
elements but the language used seems to indicate that only proper hierarchies can be queried. RDF
statements are mapped to nodes of an XML document as follows: Nodes represent RDF properties, an
RDF statement �S,P,O� is represented by edges from all nodes representing some property with the value
S to a node representing the property P with value O. A resource that never occurs as an object is assigned
as value to a special property called query:seed. [3] seems to indicate that there can be only one such
query:seed node, an assumption that does not hold for general RDF graphs. ¿e query language provides
a means for matching such property nodes based on the identi�er (represented as URI or XML QName)
of the property and the type (as determined by an rdf:type statement) of the value of the property.

Query 20 can be expressed as follows:

<query:plan>
<query:template match="query:seed" type="books:Essay">
<query:call name="query:insert" rename="book">
<query:call name="query:format" rename="title"
value="book:title" />
<query:call name="query:traverse" />
</query:call>
</query:template>
<query:template match="book:author">
<query:call name="query:insert" rename="author">
<query:call name="query:format" rename="name"
value="book:authorName" />
</query:call>
</query:template>
</query:plan>

An excerpt of the result of this query on the sample data from Figure 7.2 would be:
...
<book title="Bellum Civile">
<author name="Julius Caesar" />
<author name="Aulus Hirtius" />
</book>...

Project page:
none

Implementation(s):
not publicly available, no report on any implementation

Online demonstration:
none

XsRQL: AnXQuery-Style RDFQuery Language. XsRQL [222], an XQuery-style RDFQuery Language,
is inspired from XQuery 1.0 [57], aiming at simplicity and �exibility. XsRQL departs from XQuery as
follows: (1)¿e data model is adapted from RDF ([222] is rather vague on this point), (2) the path language
considered is adapted to RDF and has only the axis child, (3) RDF properties are distinguished (from
subjects and objects) by using @.15

Query 20 can be approximated in XsRQL as follows:

15 In XPath, @ indicate (�at) XML attributes. Since RDF properties are structured, in XsRQL a path expression may follow a @
step.

153

declare prefix books: = <http://example.org/books#>;
declare prefix rdf: = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;
for $essay in
datasource(<http://example.org/books>)//*[@rdf:type/books:Essay],
$author in $essay/@books:author/*
return
$essay, $author, $author/@books:authorName/*

XsRQL neither supports closure, nor a descendant-like axis, nor some other means of traversing an
arbitrary-length path in the data structure. ¿erefore, it is not possible to also return resources classi�ed
by any sub-class of books:Essay.

Project page:
http://www.fatdog.com/xsrql.html

Implementation(s):
none

Online demonstration:
none

7.4.4 Metalog: Querying in Controlled English

Metalog [261, 262, 260] is a system for querying and reasoning with Semantic Web data. Its early proposal
has led to the claim that “Metalog has been the �rst semantic web system to be designed, introducing
reasoning within the Semantic Web infrastructure by adding the query/logical layer on top of RDF” cf.
http://www.w3.org/RDF/Metalog/. Metalog notably di�ers from other RDF query languages for two
reasons: (1) Metalog combines querying with reasoning, and (2) the language syntax is a controlled natural
language (English), i.e., a non-ambiguous language reminding of natural language.

Query 20 can be expressed in Metalog as follows:

comment: some definitions of variables (or representations)
ESSAY represents the term "Essay"
from the ontology "http://example.org/books#".
AUTHORED-BY represents the verb "author"
from the ontology "http://example.org/books#".
IS represents the verb "rdf:type"
from RDF "http://www.w3.org/1999/02/22�rdf�syntax�ns#".
BELLUM_CIVILE represents the book "Bellum_Civile"
from the collection of books "http://example.org/books#".
comment: RDF triples written as Metalog statements.
BELLUM_CIVILE IS an ESSAY.
BELLUM_CIVILE is AUTHORED-BY "Julius Caesar".
BELLUM_CIVILE is AUTHORED-BY "Aulus Hirtius".
comment: a Metalog query
do you know SOMETHING that IS an ESSAY and that is AUTHORED-BY SOMEONE?

Project page:
http://www.w3.org/RDF/Metalog/

Implementation(s):
Cf. project page

Online demonstration:
none

154

http://www.fatdog.com/xsrql.html
http://www.w3.org/RDF/Metalog/
http://www.w3.org/RDF/Metalog/

Table 7.1 Answer to Query 20
?title ?translator Proof
“Bellum Civile” “J. M. Carter” _:1 rdf:type <http://exam...ks-rdfs#Essay>.

_:1 books:author _:2.
_:2 books:authorName ‘‘Julius Caesar’’.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator ‘‘J. M. Carter’’.

7.4.5 Query Languages with Reactive Rules.

7.4.5.1 Algae.

Algae16 is an RDF query language developed as part of the W3C Annotea project (http://www.w3.org/
2001/Annotea/) aiming at enhancing Web pages with semantic annotations, expressed in RDF and
collected from ‘annotation servers’, asWeb pages are browsed. Algae is based on two concepts: (1) “Actions”
are the directives ask, assert, and fwrule that determine whether an expression is used to query the RDF
data, insert data into the graph, or to specify ECA-like rules. (2) Answers to Algae queries are bindings
for query variables as well as triples from the RDF graph as “proofs” of the answer. Algae queries can be
composed. Syntactically, Algae is based on the RDF syntax N-triples [186]. Algae extends the N-triple
syntax with the above mentioned “actions” and with so-called “constraints”, written between curly brackets,
that specify further arithmetic or string comparisons to be ful�lled by the data retrieved.

Query 20 can be expressed as follows:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask (?essay rdf:type <http://example.org/books#Essay> .
?essay books:author ?author .
?author books:authorName ?authorName)
collect(?essay, ?author, ?authorName)

¿is query becomes more interesting if we are not only interested in the titles of essays written by
“Julius Caesar” but also want the translators of such books returned, if there are any:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask (?essay rdf:type <http://example.org/books#Essay> .
?essay books:author ?author .
?author books:authorName ‘‘Julius Caesar’’ .
?essay books:title ?title .
~?essay books:translator ?translator .
)
collect(?title, ?translatorName)

Note ~ used to declare ‘translator’ an optional. ¿is query returns the answer given in Table 7.1.
Query 21 and Query 23 cannot be expressed in Algae due to the lack of closure, recursion, and negation.

Queries 24 and 25 cannot be expressed in Algae due to the lack of aggregation operators. All other queries
can be expressed in Algae, most of them requiring ‘extended action directives’ [311].

No formal semantics has been published for Algae.

Project page:
http://www.w3.org/2004/05/06-Algae/ and for theAnnotea project http://www.w3.org/2001/
Annotea/

16Also called “Algae2”. ¿is survey follows [312] and retains the name “Algae”.

155

http://www.w3.org/2001/Annotea/
http://www.w3.org/2001/Annotea/
http://www.w3.org/2004/05/06-Algae/
http://www.w3.org/2001/Annotea/
http://www.w3.org/2001/Annotea/

Implementation(s):
W3C Annotation Server http://annotest.w3.org/annotations

Online demonstration:
Query interface to the W3C Annotation Server using Algae as query language: http://annotest.
w3.org/annotations?explain=false

7.4.5.2 iTQL.

iTQL, a query and update language, has been de�ned for Kowari Metastore, an open source database for
the storage of RDF data. iTQL o�ers commands for querying, select, updating, delete and insert, and
transaction management, commit and rollback. ¿e syntax of iTQL is reminiscent of SQL, and therefore
also of RDQL. ¿e querying capabilities of iTQL are limited like those of RDQL: iTQL supports only
simple selections. iTQL allows nested queries.

Query 20 can be expressed as follows in iTQL:

alias <http://example.org/books#> as books;
alias <http://www.w3.org/2000/01/rdf-schema#> as rdfs;
alias <http://www.w3.org/1999/02/22-rdf-syntax-ns#> as rdf;
select $essay, $author, $authorName
where $essay <books:author> $author
and $author <books:authorName> $authorName
and $essay <rdf:type> $type
and (trans($type <rdfs:subClassOf> <books:Essay>)
or $type <tks:is> <books:Essay>)

iTQL’s function trans computes the transitive closure of a relation, in the example of rdfs:subClassOf.
Paths of arbitrary length in an RDF graph can be traversed using iTQL’s function walk. Like SQL, iTQL
allows sorted answers and accessing answers in a paged mode using limit and offset.

Project page:
http://www.kowari.org

Implementations:
Kowari Metastor
Tucana Knowledge Server

Online demonstration:
none

7.4.5.3 WQL.

WQL, Wilbur Query Language, is the name given in [244] to query primitives of Ivanhoe [243], a frame-
based API inspired from [212, 240] for the Nokia Wilbur Toolkit [245], a collection of APIs for XML, RDF,
and DAML written in CLOS, Common Lisp Object System [241].

In WQL, like in Ivanhoe, a RDF or DAML resource is represented as a frame with a slot for each
property. ¿e (possibly multiple) values of a slot correspond to objects of RDF statements, with the
resources represented by the frame as subjects. ¿ree WQL variants are discussed and compared in [200]:

• a basic query language, WQL proper, with constructs value and all-values for a path-based
selection of one or all resources, and relatedp for testing resource relations.

156

http://annotest.w3.org/annotations
http://annotest.w3.org/annotations?explain=false
http://annotest.w3.org/annotations?explain=false
http://www.kowari.org

• an embedding, called WQL+CL, of the above-mentioned basic language in Common Lisp.17

• WQL+CL+inference, an extension of WQL+CL, with a data store providing inferencing based upon
the “transparent” (or “hidden”) inference extensions described in [242].

In the following,WQLproper and, where appropriate, the “transparent inferencing” ofWQL+CL+inference
are considered. WQL+CL is not considered, for it is more akin to a programming language than a query
language.

¿e following query returns the labels of all classes the book identi�ed by http://example.org/

books#Bellum_Civile belongs to:

(setf *db* (make-instance ’db))
(load-db (make-url "http://example.org/books")
:locator "http://example.org/books")
(add-namespace "books" "http://example.org/books#")
(all-values !"http://example.org/books#Bellum_Civile"
’(:seq !rdf:type (:seq (:rep* !rdfs:subClassOf) !rdfs:label)))

Note :seq constructing a sequence of slots, i.e., RDF relations, to be traversed by the query and
:rep* traversing the transitive closure of a slot/relation. all-values returns all resources, (represented
as frames, reachable on the speci�ed path from the source frame, i.e., the frame with identi�er http:
//example.org/books#Bellum_Civile.

Project page:
Wilbur Toolkit: http://wilbur-rdf.sourceforge.net/

Implementation:
Cf. project page

Online demonstration:
none

7.4.6 Deductive Query Languages

7.4.6.1 N3QL.

N3QL, sketched in [48], is derived from the rule fragment of Notation 3 [49] (shorthand N3), a syntax for
and extension of RDF with variables, rules, and quoting for easy expression of statements about statements.
N3QL di�ers from the rule fragment of N3 in that its syntax has “query language style” clauses such as
select and where.

An N3QL query is an N3 expression and all N3QL reserved words are the RDF properties of an RDF
(usually, but not necessarily) blank node representing the query.

Query 20 can be expressed as follows in N3QL:

@prefix books: <http://example.org/books#>.
@prefix n3ql: <http://www.w3.org/2004/ql#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
[] n3ql:select { n3ql:result n3ql:is (?book ?author ?authorName) };
n3ql:where { ?book rdf:type books:Essay;
?book books:author ?author;
?author books:authorName ?authorName }.

17It is unclear whether WQL+CL restricts Common Lisp.

157

http://example.org/books#Bellum_Civile
http://example.org/books#Bellum_Civile
http://example.org/books#Bellum_Civile
http://example.org/books#Bellum_Civile
http://wilbur-rdf.sourceforge.net/

¿e answer to this query is the RDF graph speci�ed in the n3ql:select clause, a set of RDF collections
(indicated by the collection constructor ()) of bindings for the three variables.

[48] seems to indicate that a N3QL query is equivalent to a N3 rule, the where part of the N3QL
query being the rule’s premise, and the select part, the rule’s consequence. However, whereas N3 rules
can express transitive closures, this is not the case of N3QL queries. ¿e following N3 rule speci�es the
transitive closure of a RDF property:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
{?x rdfs:subClassOf ?z; ?z rdfs:subClassOf ?y}
=> {?x rdfs:subClassOf ?y}

Note that the description of N3QL does not clearly specify which of the syntactic constructs of N3 can
be used in N3QL. [48] states that N3QL is a restricted form of N3 where formulae cannot be nested and
literals cannot be subjects of statements. ¿e N3 syntax for anonymous nodes, for navigating in the RDF
graph using path expressions, and for quanti�ed variables gives rise to concise expressions of of queries
such as “Return the books written by the author named ‘Julius Caesar’.”:

@prefix books: <http://example.org/books#>.
@prefix n3ql: <http://www.w3.org/2004/ql#>.
[] n3ql:select { n3ql:result n3ql:is (?book) };
n3ql:where { ?book!books:author!books:authorName ‘‘Julius Caesar’’ }.

Project page:
http://www.w3.org/DesignIssues/N3QL.html

Implementations:
CWM http://www.w3.org/2000/10/swap/doc/cwm.html

EulerSharp http://eulersharp.sourceforge.net/2003/03swap/

Online demonstration:
none

7.4.6.2 R-DEVICE.

R-DEVICE [32] is a “deductive object-oriented knowledge-base system for querying and reasoning about
RDF metadata.”18 It is a reimplementation of the X-DEVICE language [31] in the C Language Integrated
Production System, or CLIPS, cf. http://www.ghg.net/clips/CLIPS.html, using the CLIPS Object-
Oriented Language, COOL. RDF triples are mapped to objects as follows:

• RDF resources are represented as objects, the types of which are the resource’s RDF types, i.e., the
values of the rdf:type properties. For resources that are classi�ed in multiple classes, a ‘dummy
class’ is introduced which represents a common subclass of all the classes the resource is classi�ed
in.

• RDF properties are realized as multi-slots, i.e., slots with multiple values, in the class which is the
domain of the property. If no domain is given, i.e., if the property can be applied to any resources, a
slot is added to the class representing rdfs:Resource, the top of the RDF resource hierarchy.

Assertions generated, e.g., through rules, can require dynamic class and/or object re-de�nitions.
Query 20 can be expressed as follows:

18http://lpis.csd.auth.gr/systems/r-device.html

158

http://www.w3.org/DesignIssues/N3QL.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://eulersharp.sourceforge.net/2003/03swap/
http://www.ghg.net/clips/CLIPS.html
http://lpis.csd.auth.gr/systems/r-device.html

(deductiverule q1
?book <- (? (rdf:type books:Essay) (books:author ?author))
?author <- (? (books:authorName ?authorName))
=>
(result (book ?book) (author ?author) (authorName ?authorName))
)

Note the production-rule like syntax of R-DEVICE.
R-DEVICE provides constructs for traversing arbitrary length paths of slots and objects, properties

and resources, both with and without restriction on the type of slot that may be traversed. ¿is allows one
to implement both Query 21 and Query 27. Query 21 can be expressed as follows:

(deductive rule q2
?book <- (? (rdf:type books:Essay) (books:title ‘‘Bellum Civile’’)
(($?p) ?related)
=>
(result (book ?book) (related ?related))
)

Project page:
http://lpis.csd.auth.gr/systems/r-device.html

Implementation:
Cf. project page

Online demonstration:
none

7.4.6.3 TRIPLE

TRIPLE [341, 342, 203] is a rule-based query, inference, and transformation language for RDF. TRIPLE is
based upon ideas published in [138]. TRIPLE’s syntax is close to F-Logic [230]. F-Logic is convenient for
querying semi-structured data, e.g., XML and RDF, as it facilitates describing schema-less or irregular
data [250]. Other approaches to querying XML and/or RDF are XPathLog and the ontology management
platform Ontobroker19. TRIPLE has been designed to address two weaknesses of previous approaches
to querying RDF: (1) Prede�ned constructs expressing RDFS’ semantics that restrain a query language’s
extensibility, and (2) lack of formal semantics.

Instead of prede�ned RDFS-related language constructs, TRIPLE o�ers Horn logic rules (in F-Logic
syntax) [230]. Using TRIPLE rules, one can implement features of, e.g., RDFS. Where Horn logic is not
su�cient, as is the case of OWL, TRIPLE is designed to be extended by external modules implementing,
e.g., an OWL reasoner. ¿anks to its foundations in Horn logic, TRIPLE can inherit much of Logic
Programming’s formal semantics. Referring to, e.g., a representation of UML in RDF [238, 239], the
authors of TRIPLE claim in [342] that TRIPLE is well-suited to query non-RDF meta-data. ¿is can be
questioned, especially if, in spite of [178], one considers the rather awkward mappings of Topic Maps into
RDF proposed so far.

TRIPLE di�ers from Horn logic and Logic Programming as follows [342]:

• TRIPLE supports resources identi�ed by URIs.

• RDF statements are represented in TRIPLE by slots, allowing the grouping and nesting of statements;
like in F-Logic, Path expressions inspired from [169] can be used for traversing several properties.

19http://www.ontoprise.de/products/ontobroker

159

http://lpis.csd.auth.gr/systems/r-device.html
http://www.ontoprise.de/products/ontobroker

• TRIPLE provides concise support for rei�ed statements. Rei�ed statements are expressed in TRIPLE
enclosed angle brackets, e.g.:
Julius_Caesar[believes-><Junius_Brutus[friend-of -> Julius_Caesar]>]

• TRIPLE has a notion of module allowing speci�cation of the ‘model’ in which a statement, or an
atom, is true. ‘Models’ are identi�ed by URIs that can pre�x statement or atom using @.

• TRIPLE requires an explicit quanti�cation of all variables.

Query 20 can be approximated as follows:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
books := ’http://example.org/books#’.
booksModel := ’http://example.org/books’.
FORALL B, A, AN result(B, A, AN) <-
B[rdf:type �books:Essay;
books:author �A[books:authorName �AN]]@booksModel.

¿is query selects only resources directly classi�ed as books:Essay. Query 20 is properly expressed
below.

TRIPLE’s rules give rise to specify properties of RDF. [342] gives the following implementation of a
part of RDFS’s semantics:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
subPropertyOf := rdfs:subPropertyOf.
subClassOf := rdfs:subClassOf.
FORALL Mdl @rdfschema(Mdl) {
transitive(subPropertyOf).
transitive(subClassOf).
FORALL O,P,V O[P�V] <-
O[P�V]@Mdl.
FORALL O,P,V O[P�V] <-
EXISTS S S[subPropertyOf�P] AND O[S�V].
FORALL O,P,V O[P�V] <-
transitive(P) AND EXISTS W (O[P�W] AND W[P�V]).
FORALL O,T O[type�T] <-
EXISTS S (S[subClassOf�T] AND O[type�S]).
}

Inference from range and domain restrictions of properties are not implemented by the rule given
above. ¿is is not limitation of TRIPLE, though, for the following rules provides them:

FORALL S,T S[type-$>$T] <-
EXISTS P, O (S[P-$>$O] AND P[rdfs:domain-$>$T]).
FORALL O,T O[type�T] <-
EXISTS P, S (S[P-$>$O] AND P[rdfs:range-$>$T]).

With the rules given above, the approximation of Query 20 given above only needs to be modi�ed
so as to express the ‘model’ it is evaluated against: instead of @booksModel, @rdfschema(booksModel)
should be used, i.e., the original ‘model’ should be extended with the above-mentioned implementing
RDFS’ semantics. Most queries of Section 7.2.3 can be expressed in TRIPLE. Aggregation queries cannot
be expressed in TRIPLE, for the language does not support aggregation.

[342] speci�es an RDF, and therefore XML, syntax for a fragment of TRIPLE. By relying on translations
to RDF, one can query data in di�erent formalisms with TRIPLE, e.g., RDF, Topic Maps, and UML. ¿is,
however, might lead to rather awkward queries. Some aspects of RDF, viz. containers, collections, and
anonymous nodes, are not supported by TRIPLE. ¿e complexity of TRIPLE has not been investigated so
far.

160

Project page:
http://triple.semanticweb.org/

Implementation:
Cf. project page

Online demonstration:
Cf. project page
http://ontoagents.stanford.edu:8080/triple/20

7.4.6.4 Xcerpt.

Xcerpt [88,87,329,41], cf. http://xcerpt.org, is a language for querying both data on the “standardWeb”
(e.g., XML and HTML data) and data on the Semantic Web (e.g., RDF, Topic Maps, etc. data). Using
Xcerpt for querying XML data is addressed in Section 7.3.2.7. ¿is Section is devoted to applying Xcerpt to
querying RDF data.

¿ree features of Xcerpt are particularly convenient for querying RDF data. (1) Xcerpt’s pattern-based
incomplete queries are convenient for collecting related resources in the neighbourhood of some given
resources and to express traversals of RDF graphs of inde�nite lengths. (2) Xcerpt chaining of (possibly
recursive rules) is convenient for expressing RDFS’s semantics, e.g., the transitive closure of the subClassOf
relation, as well as all kinds of graph traversals. (3) Xcerpt’s optional construct is convenient for collecting
properties of resources.

All nine queries from Section 7.2.3 can be expressed in Xcerpt’s both on the XML serialization (cf.
Section 7.3.2) and on the RDF serialization of the sample data from Section 7.2.2. ¿e following Xcerpt
programs show solutions for the queries against the RDF serialization.

[62] proposes two views on RDF data: as in most other RDF query languages as plain triples with
explicit joins for structure traversal and as a proper graph.

On the plain triple view, Query 1 can be expressed in Xcerpt as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22�rdf�syntax�ns#"
DECLARE ns-prefix books = "http://example.org/books#"
GOAL
result [
all essay [
id [var Essay],
all author [
id [var Author],
all name [var AuthorName]
]
]
]
FROM
and{
RDFS-TRIPLE [
var Essay:uri{}, "rdf:type":uri{}, "books:Essay":uri{}
],
RDF-TRIPLE [
var Essay:uri{}, "books:author":uri{}, var Author:uri{}
],
RDF-TRIPLE [
var Author:uri{}, "books:authorName":uri{}, var AuthorName
]
}
END

20Not functioning at the time of writing.

161

http://triple.semanticweb.org/
http://ontoagents.stanford.edu:8080/triple/
http://xcerpt.org

Using the pre�xes declared in line 1 and 2, the query pattern (between FROM and END) is a conjunction of
tree queries against the RDF triples represented in the predicate RDF-TRIPLE. Notice that the �rst conjunct
actually uses RDFS-TRIPLE. ¿is view of the RDF data contains all basic triples plus the ones entailed by
the RDFS semantics [204] (cf. [62] for a detailed description). Using RDFS-TRIPLE instead of RDF-TRIPLE
ensures that also resources actually classi�ed in a sub-class of books:Essay are returned.

Xcerpt’s approach to RDF querying shares with [321] and a few other approaches in Section 4.3 the
ability to construct arbitrary XML as in this rule.

On Xcerpt’s graph view of RDF, the same query can be expressed as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22�rdf�syntax�ns#"
DECLARE ns-prefix books = "http://example.org/books#"
GOAL
result [
all essay [
id [var Essay],
all author [
id [var Author],
all name [var AuthorName]
]
]
]
FROM
RDFS-GRAPH {{
var Essay:uri {{
rdf:type {{ "books:Essay":uri {{ }} }},
books:author {{
var Author:uri {{
books:name {{ var AuthorName }}
}}
}}
}}
}}
END

¿e RDF graph view is represented in the RDF-GRAPH predicate. Here, the RDFS-GRAPH view is used
that extends RDF-GRAPH as RDFS-TRIPLE extends
RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each resource is a direct child element
in RDF-GRAPH with a sub-element for each statement with that resource as object. ¿e sub-element is
labeled with the URI of the predicate and contains the object of the statement. As Xcerpt’s data model is a
rooted graph this can be represented without duplication of resources.

In contrast to the previous query no conjunction is used but rather a nested pattern that naturally
re�ects the structure of the RDF graph with the exception that labeled edges are represented as nodes with
edges to the elements representing their source and sink.

To illustrate this graph view, consider the following rule showing how to generate the graph view from
the triple view introduced above:

CONSTRUCT
RDF-GRAPH {
all var Subject @ var Subject:var SubjectType {
all optional var Predicate {
^var Object
},
all optional var Predicate {
var Literal
}
} }
FROM
or{
RDF-TRIPLE[
var Subject:var SubjectType{},
var Predicate:uri{},
optional var Literal as literal{{}},
optional var Object:/uri|blank/{{}}

162

],
RDF-TRIPLE[
/.*/:/.*/{{}},
/.*/:/.*/{{}},
var Subject:var SubjectType{{}}
] }
END

Notice the use of the optional keyword in lines 16 and 17. ¿is indicates that the contained part of
the pattern does not have to occur in the data, but if it does occur the contained variables are bound
appropriately. Optional allows queries with alternatives to be expressed very concisely and is therefore
crucial for RDF where all properties are optional by default.

In lines 3 and 5 the construction of a graph is shown: by using the operators @ and ^ a (possibly cyclic)
link can be constructed.

Xcerpt rules are convenient for making the language “RDF serialisation transparent”. For each RDF
serialisation, a set of rules expresses a translation from or into that serialisation. However, the rules for
parsing RDF/XML [38], the o�cial XML serialisation, are very complex and lengthy due to the high degree
of �exibility RDF/XML allows. ¿ey can be found in [62], similar functions for parsing RDF/XML in
XQuery are described in [324]. ¿e following rules parse RDF data serialised in the RXR (Regular XML
RDF) format [21], a far simpler and more regular RDF serialisation.

¿e following rule extracts all triples from an RXR document. Since di�erent types (such as URI, blank
node, or literal) of subjects and objects of RDF triples are represented di�erently in RXR, the conversion
of the RXR representation into the plain triples is performed in separate rules, see [62].

DECLARE ns-prefix rxr = "http://ilrt.org/discovery/2004/03/rxr/"
CONSTRUCT
RDF-TRIPLE[
var Subject, var Predicate:uri{}, var Object
]
FROM
and[
rxr:graph {{
rxr:triple {
var S �rxr:subject{{}},
rxr:predicate{ attributes{ rxr:uri{ var Predicate } } },
var O �rxr:object{{}}
}
}},
RXR-RDFNODE[var S, var Subject],
RXR-RDFNODE[var O, var Object]
]
END

Querying RDF data with Xcerpt is the subject of ongoing investigation [62].

7.4.7 Other RDF Query Languages

RDF-QBE [320] is inspired fromQBE [378,379], the database query language that introduced the celebrated
“Query by Example” paradigm. An RDF graph, expressed in the syntax of Notation 3 [49]), is used to
describe query patterns, variables are expressed as blank nodes that, according to [234] doe not have
explicit identi�ers. ¿e representation of variables as blank nodes leads to a major restriction of RDF-QBE
: Query patterns can only be tree-shaped.21 RDF-QBE is especially convenient for expressing selection
and extraction queries. However, the expressive power of RDF-QBE is limited: Not all queries of Section
7.2.3 can be expressed.

21 [320] (wrongly) suggests that this restriction reduces query-answering to tree matching because the data queried is not
necessarily tree-shaped.

163

Project page:
none

Implementation:
described in [320] but not publicly available

Online demonstration:
none

7.4.7.1 RDFQL.

RDFQL is the query language of RDF Gateway [214], a platform for developing and deploying Semantic
Web applications combining a “native” RDF database engine, a Web server, and a server-side scripting
language. ¿e RDF database engine allows for the integration of standard and Semantic Web using
so-called “virtual tables” and inference rules for deductive reasoning (so far, libraries for OWL and RDFS
are provided). RDF Gateway supports several serialisations of RDF, viz. RDF/XML, N3, and NTriples.
Although similar to RDQL, cf. Section 7.4.1, RDFQL di�ers from RDQL as follows: (1) RDFQL includes
database commands for transactionmanagement, e.g., commit and rollback, (2) RDFQL includes SQL-like
update commands, (3) RDFQL allows accessing data from disk-based, in-memory, or external22 “data
sources”, and (4) RDFQL’s command INFER allows speci�cation of deduction rules to be used when
querying.

With RDFQL’s rules, the semantics of RDFS can be expressed as follows:

RULEBASE rdfs
{
INFER {[rdf:type] ?a [rdf:Property]} from {?a ?x ?y};
INFER {[rdf:type] ?x ?z} from {[rdfs:domain] ?a ?z} and {?a ?x ?y};
INFER {[rdf:type] ?u ?z} from {[rdfs:range] ?a ?z}
and {?a ?x ?u} and uri(?u)=?u;
INFER {[rdf:type] ?x [rdfs:Resource]} from {?a ?x ?y};
INFER {[rdf:type] ?u [rdfs:Resource]} from {?a ?x ?u} and uri(?u)=?u
INFER {[rdfs:subPropertyOf] ?a ?c}
from {[rdfs:subPropertyOf] ?a ?b} and {[rdfs:subPropertyOf] ?b ?c}
INFER {?b ?x ?y} from {[rdfs:subPropertyOf] ?a ?b}
and {?a ?x ?y}
INFER {[rdfs:subClassOf] ?x [rdfs:Resource]}
from {[rdf:type] ?x [rdfs:Class]}
INFER {[rdfs:subClassOf] ?x ?z} from {[rdfs:subClassOf] ?x ?y}
and {[rdfs:subClassOf] ?y ?z}
INFER {[rdf:type] ?a ?y} from {[rdfs:subClassOf] ?x ?y}
and {[rdf:type] ?a ?x}
}

{?P ?S ?O} denotes in RDFQL an RDF statement with subject S, property P, and object O, i.e.,
RDFQL uses a pre�x notation for RDF statements. uri(?u)=?u serves to detect whether the object of
an RDF statement is a resource (in which case it has an URI and this URI is equal to the “value” of the
resource itself) or a literal.

Query 20 can be implemented as follows:

session.namespaces["books"] = "http://example.org/books#";
var booksdata = new DataSource("http://example.org/books");
SELECT ?essay, ?author, ?authorName USING booksdata WHERE
{[rdf:type] ?essay [books:Essay]}
and {[books:author] ?essay ?author}
and {[books:authorName] ?author ?authorName}
ORDER BY ?authorName DESC;

22I.e., identi�ed, e.g., by an URI.

164

Project page:
http://www.intellidimension.com/

Implementations:
RDF Gateway
Cf. project page for a limited, non-commercial use

Online demonstration:
none23

7.5 Topic Maps Query Languages

7.5.1 tolog: Logic Programming for Topic Maps

tolog [174,175,172,173] is the query language of the Ontopia Knowledge Suite24. tolog has also been selected
in April 2004 as an initial straw-man for the ISO Topic Maps Query Language. tolog is inspired from Logic
Programming and has SQL-style constructs. tolog provides a means for identifying a topic by its (internal)
identi�er and its subject indicator, e.g., the topic (type) “Novel” of the sample data can be accessed either by
its identi�er Novel, or its subject indicator i"http://example.org/books#Novel".25 URI pre�xes can be
used, e.g., using books for i"http://example.org/books#" gives rise to the short form books:Novel

for the above-mentioned subject indicator. Note that tolog URI pre�xes contain indicators and therefore
di�er from XML namespaces. In tolog, all occurrences of variables must be pre�xed with $.

¿e original version of tolog [174]) has two kinds of Prolog-like “predicates”, “built-in” and “dynamic
association predicates”. tolog has a “dynamic association predicate” for querying the extent of each as-
sociation type, e.g., authors-for-book(b1, $AUTHOR: author) selects the authors of book b1 (note
the association role identifying the topic ‘author’). tolog has only two “dynamic association predicates”
similar to “dynamic occurrence predicates”. ¿e original version of tolog has only two “built-in predi-
cates”, instance-of($INSTANCE, $CLASS) and direct-instance-of($INSTANCE, $CLASS), conveying
the semantics of the subsumption hierarchy.

¿ecurrent version of tolog [173,175] has further built-in predicates, e.g., role-player and association-role,
for enumerating the associations, association roles, occurrences, and topics. ¿ese allow querying arbi-
trary topic maps without a-priori knowledge of the types used in the topic maps. Query 21 can only be
implemented only using these predicates:

select $RELATED from
title($BOOK, "Bellum Civile"),
related($BOOK, $RELATED)?
related($X, $Y) :- {
role-player($R1, $X), association-role($A, $R1),
association-role($A, $R2), role-player($R2, $Y) |
related($X, $Z), related($Z, $Y)
}.

Conjunctions are expressed, as in Prolog, by commas. Disjunctions are in curly braces the disjuncts
being separated by |.

¿e built-in predicates instance-of and direct-instance-of can indeed be implemented using
tolog rules as follows [174]:

23However, the project page implemented in RDF Gateway is a show case.
24http://www.ontopia.net/solutions/products.html
25¿e pre�x i serves to distinguish di�erent identi�ers.

165

http://www.intellidimension.com/
http://www.ontopia.net/solutions/products.html

direct-instance-of($INSTANCE, $CLASS) :-
i"http://psi.topicmaps.org/sam/1.0/#type�instance"(
$INSTANCE : i"http://psi.topicmaps.org/sam/1.0/#instance",
$CLASS : i"http://psi.topicmaps.org/sam/1.0/#class").
super-sub($SUB, $SUPER) :-
i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass�subclass"(
$SUB : i"http://www.topicmaps.org/xtm/1.0/core.xtm#subclass",
$SUPER : i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass").
descendant-of($DESC, $ANC) :- {
super-sub($DESC, $ANC) |
super-sub($DESC, $INT), descendant-of($INT, $ANC)
}.
instance-of($INSTANCE, $CLASS) :- {
direct-instance-of($INSTANCE, $CLASS) |
direct-instance-of($INSTANCE, $DCLASS), descendant-of($DCLASS, $CLASS)
}.

Negation is available, however its semantics in tolog is not yet speci�ed [173]. tolog has constructs
for aggregation and sorting (although deemed insu�cient [173]), paged queries using limit and offset

as in SQL, and a module concept. ¿anks to tolog’s (possibly recursive) rules, Queries 26 and 27 can be
implemented in tolog.

Neither the formal semantics, nor the complexity of tolog have been investigated yet.

Project page:
http://www.ontopia.net/omnigator/docs/query/tutorial.html26

Implementations:
Ontopia Knowledge Suite: http://www.ontopia.net/solutions/products.html
Topic Maps toolkit TM4J: http://tm4j.org/

Online demonstrations:
Omnigator: http://www.ontopia.net/
http://www.ontopia.net/omnigator/models/index.jsp27

7.5.2 AsTMA?: Functional Style Querying of Topic Maps

AsTMa? [27, 25] is a functional query language in the style of XQuery [57]. AsTMa? o�ers several path
languages for accessing data in topic maps. With AsTMa?, answers can be re-structured, yielding new
XML documents.

Query 20 can be implemented as follows:

<books>
{ forall [$book (Writing)] in http://example.org/books
return
<book>
{$book,
forall $author in ($book �author / author-for-book) return
<author>
{$author}
<name>{$author/bn}</name>
</author>
</book> }
</books>

Query 20 can also be implemented as follows, using path expressions for accessing topics and associa-
tions:

26Tutorial.
27¿e demonstrator does not seem to support testing tolog queries.

166

http://www.ontopia.net/omnigator/docs/query/tutorial.html
http://www.ontopia.net/solutions/products.html
http://tm4j.org/
http://www.ontopia.net/
http://www.ontopia.net/omnigator/models/index.jsp

<books>
{ forall [$book (Writing)] in http://example.org/books
return
<book>
{$book,
forall [(author-for-book)
Writing : $book
author: $author]
in http://example.org/books return
<author>
{$author}
<name>{$author/bn}</name>
</author>
</book> }
</books>

Project page:
http://astma.it.bond.edu.au/querying.xsp

Implementation):
As part of the Perl XTMmodule, available via CPAN

Online demonstration:
http://astma.it.bond.edu.au/query/

7.5.3 Toma: Querying Topic Maps inspired from SQL

Toma [237, 308] combines SQL syntax and path expressions for querying Topic Maps, i.e., the following
query selects all books, speci�ed as topics classi�ed as Writing, with their authors:

select topic[book], topic[author]
from topic-type["Writing"].topic[book],
topic[book]..assoc[a]..topic[author],
assoc-type["author�for�book"].assoc[a]

Toma provides access to all Topic Maps concepts, including the subsumption hierarchy. Informa-
tion about a topic such as topic identi�er, basename, and subject identi�er are accessed using the long
name, or . notation, common in object-oriented languages, e.g., $topic.bn = ’Julius Caesar’ com-
pares the basename, short bn, of topics, short by $topic, with the string “Julius Caesar”. Associations
can be traversed using ->, prede�ned associations with special semantics, such as the instance-of and
superclass-subclass associations, can be traversed transitively when traversing the subsumption hierarchy.
$start.super(1..*) selects all super-classes of the current class. Instead of 1..*, an interval, or a single
number, can indicate how many superclass-subclass associations should be traversed. A similar notation
is available for instance-of associations.

Query 20 can be expressed as follows:

select $book, $author, $author.bn
where $book.type(1..*).id = ’Writing’
and author-for-book%a�Writing = $book
and author-for-book%a�author = $author

Query 22 can be expressed as follows:

select $topic
where $topic.type(1..*).si.sir != ’http://example.org/books#Translator’
and not exists ($t.type(1) = $topic)
and not exists ($t.type(1..*) = $x and $topic.super(1..*) = $x)

167

http://astma.it.bond.edu.au/querying.xsp
http://astma.it.bond.edu.au/query/

¿is query selects all topics that are neither used as type of another topic, nor typed Translator. All
topics are selected that neither (a) have the subject identi�er http://example.org/books#Translator,
nor (b) are the type of some topic, nor (c) are a sub-class of some topic that is some topic’s type.

Project page:
http://www.spaceapplications.com/toma/

Implementation:
Not freely available

Online demonstration:
none

7.5.4 Path-based Access to Topic Maps: XTMPath and TMPath

Following the success of XPath, a number of path-based query languages have been proposed for Topic
Maps, cf. [26] for an overview of a plea for the inclusion of path navigation in the upcoming ISO Topic
Maps query language.

XTMPath [29] is a path-based query language relying on the XTM [306] serialisation of topic maps in
XML. ¿e following path selects all topics that are (directly) typed
Historical_Novel:
topic[instanceOf/topicRef/@href = "\#Historical_Novel"]}

¿is path expression re�ects the XTM serialisation:

<topic id="b1">
<instanceOf> <topicRef xlink:href="#Historical_Novel"/> </instanceOf>
</topic>

Note that (1) Only a limited subset of the XPath constructs is supported by XTMPath, mostly the
child and descendant axis and some simple predicates (in XPath’s abbreviated syntax), and (2) XTMPath
operates on data conforming to a single DTD28, viz., the DTD of XTM DTD [29], leading to treating the
axis “child” like the axis “descendant” with a few exceptions, e.g., instanceOf.

Project page:
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

Implementation:
Available from CPAN as part of the XTM toolkit

Online demonstration:
none

7.6 Conclusion: Salient Aspects of the Query Languages Con-

sidered

¿is article is an attempt to give a survey of both query languages proposed for the “standard Web” (i.e.,
basically XML data), and query languages for the Semantic Web (i.e. mostly RDF and Topic Maps). Query

28Document Type De�nition, cf. [71].

168

http://www.spaceapplications.com/toma/
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

languages targeting OWL have not been considered in this survey, because as of writing (March 2005),
they still are in their infancy and the few languages proposed so far can only query meta-data.

Inspite of the exclusions described in Section 7.1 (programming languages tools for XML, reactive
languages for the Web, rules languages, and OWL query languages) a considerable number of languages
have been considered in this article. Indeed, we are not aware of any other e�ort to survey Web and/or
Semantic Web query languages at the same level of depth and breadth.

Even though the �eld is moving extremely fast and new proposals are always emerging, it is already
possible and worthwhile to stress some of the salient aspects of Web and Semantic Web query languages:

Path vs. Logic or Navigational vs. Positional. Web and Semantic Web query languages express basic
queries using one of two paradigms, paths à la XPath, or Logic, à la Logic Programming. ¿ese two
paradigms can also be named “navigational” and “positional”, respectively, stressing that (path-oriented)
navigations inherently con�ict with referential transparency. Onemight expect that both kinds of languages
will continue to be investigated, yielding interesting opportunities for further comparison and research.

Logical Variables. WhenWeb and SemanticWeb query languages have variables, they almost always are
logical variables, i.e., Logic Programming or Functional Programming variables, as opposed to variables
in imperative programming languages that are amenable to explicit assignments.

Referential Transparency and (Weakor Strong)Answer-Closure. Referential Transparency (i.e., within
the same scope, an expression always means the same), the trait of declarative languages, is, if not fully
achieved, obviously striven for by both positional and logic, query languages, especially in Semantic
Web query languages. Some query languages are “weakly answer-closed” or “answer-closed” in the sense
of [107], i.e., they deliver answers in the formalism of the data queried. A few query languages are “strongly
answer-closed”, i.e., they make query programs possible that can further process data generated by these
very programs. Arguably, strong answer-closure is important for structuring programs and sustaining the
so-called “separation of concerns” in programming. One might expect that positional Web and Semantic
Web query languages will mature into well-designed, referentially transparent and strongly answer-closed
languages.

Backtracking-free Logic Programming or Set-Oriented Functional Query Evaluation. Positional, or
logic query languages that o�er construct similar to rules or views, are, with a few exceptions or unclear
cases, backtracking-free. Equivalently, they can be called set-oriented functional. ¿is convergence of two
programming paradigms in Web query languages seems promising for further research.

Incomplete Queries and Answers. Many query languages o�er means for incomplete speci�cations
of queries, paying tribute to the “semi-structured” [5] nature of data on the Web, i.e., that data on the
Web either has no schemas or does not fully respect its schema. Incomplete query speci�cations are
extremely useful on the Semantic Web, too. In querying an RDF graph or topic maps, incomplete queries
are very useful for easily accessing the neighbourhood of resources. Indeed such incomplete speci�cations
considerably simplify and ease programming.

Versatile vs. Data Format Speci�c Query Languages. Most RDF query languages are RDF-speci�c, and
even speci�cally designed for one serialisation. ¿e authors are convinced that an evolution towards data
format “versatile” languages that are capable of easily accommodating XML, RDF, Topic Maps, OWL, etc.
without requiring “serialisation consciousness” from the programmer, should be striven for.

169

Reasoning Capabilities. Interestingly, but not surprisingly, not all XML query languages have views,
rules, or similar concepts allowing the speci�cation of other forms of reasoning. Surprisingly, the same
holds true of RDF query languages. Many authors of RDF query languages see deduction and reasoning
to be a feature of an underlying RDF store o�ering materialisation, i.e., completion of RDF data with
derivable data prior to query evaluation. ¿is is surprising, because one might expect many Semantic
Web applications to access not only one RDF data store at one Web site, but instead many RDF data stores
at di�erent Web sites and to draw conclusions combining data from di�erent stores. Such an RDF query
scenario requires, on the decentralised and open Web, deduction at query time, i.e., when queries are
evaluated.29

Language engineering. Language engineering issues, e.g., abstract data types and static type checking,
modules, polymorphism, and abstract machines, have clearly not yet made their way in the Web query
languages, as they did not in database query languages. ¿is situation opens avenues for promising research
of great practical, as well as theoretical relevance.

29Indeed, materialising conclusions from all possible combinations of Web sites is infeasible.

170

Chapter 8

Rich Clients need Rich Interfaces

Query Languages for XML and RDF

Access on the Web

A Tutorial at the German XML Tage 2006

To be held at the XML tage 2006 in Berlin, this tutorial is closely based on a revision

of the material presented in this deliverable. It focuses on Web query languages for both

server and client processing and covers both XML and RDF query languages.

Access to Web data has become an integral part of many applications and services. In the past, such
data has usually been accessed through human-tailored HTML interfaces. Nowadays, rich client interfaces
in desktop applications or, increasingly, in browser-based clients ease data access and allow more complex
client processing based on XML or RDF data retrieved through Web service interfaces. Convenient
speci�cations of the data processing on the client and �exible, expressive service interfaces for data access
become essential in this context. Web query languages such as XQuery, XSLT, SPARQL, or Xcerpt have
been tailored speci�cally for such a setting: declarative and e�cient access and processing ofWeb data. ¿is
tutorial introduces, compares, and classi�es the most relevant exemplars of Web query languages for XML,
RDF, and/or TopicMaps data. Interesting features as well as di�erences in expressiveness and adequacy
are digested along practical and concrete use cases. Emphasis is placed on recent W3C standardization
activities, contrasted with alternative approaches from industry and academia.

8.1 Tutorial Details

Length of Tutorial:
3h (three hours). Giving the attendants an impression of current Web query languages and a set of
guidelines for their use in developing and deploying Web applications requires a certain breadth
for the tutorial. Despite a careful selection of highly relevant exemplars from the large number of
languages considered in the underlying survey, a three hour time frame is necessary to cover the
material in su�cient depth.

171

Intended Audience:
¿e topic is highly relevant for both practitioners and managers involved in the creation of modern
Web applications that use Web service interfaces for data access. In this context, the tutorial serves
as a decision help on how to provide �exible access to large data bases through query interfaces. In
particular, the impact of query language concepts and features on the intended service are discussed.
¿e tutorial is also relevant for experts in XML or Semantic Web technology as it provides a novel
perspective over areas of research usually considered separate and introduces into many languages
that are still largely unknown. However, though both the underlying survey and the tutorial itself
provide ample pointers to more in-depth coverage of the languages considered, it is not intended as
a comprehensive introduction into any of the languages discussed to the depth needed to be able to
use them immediately.

Required Knowledge:
A basic understanding of Web technologies such as XML, HTTP, andWeb Services is needed. Some
knowledge of RDF and/or similar Semantic Web technologies is advantageous though not strictly
necessary. Prior knowledge on query languages or Web query interfaces is not required though it
certainly helps in some of the tutorial parts.

(Short) Tutorial Description:
Convenient speci�cations of Web data processing on the client and �exible, expressive service inter-
faces for data access on the server become essential in the context of Web services commoditizing
structured information on theWeb. Web query languages such as XQuery, XSLT, SPARQL, or Xcerpt
have been tailored speci�cally for such a setting: declarative and e�cient access and processing of
Web data. ¿is tutorial introduces, compares, and classi�es the most relevant exemplars of Web
query languages for XML, RDF, and/or TopicMaps data. ¿e selection of these languages is based
upon a recent survey of Web query languages [24] conducted by the authors. Interesting features as
well as di�erences in expressiveness and adequacy are digested along practical and concrete use
cases. Emphasis is placed on recent W3C standardization activities, contrasted with alternative
approaches from industry and academia. ¿e tutorial concludes with a discussion of advantages
and challenges for deploying Web query languages today.

Overview/Outline of the Tutorial:
See following section.

Prior Presentations of this Tutorial:
An extended version of the tutorial (with intensive exercises) has been conducted (by James Bailey,
François Bry, and Tim Furche) at the “Reasoning Web” 2005 Summer School, Mdina, Malta. A
slightly shorter version has been presented (by Sebastian Scha�ert) at the Franco-Mexican (Summer)
School on Distributed Systems, Grenoble, France. ¿e tutorial is based on an extensive survey of
Web and Semantic Web query languages published as a chapter [24] in the Springer tutorial volume
“Reasoning Web”.

Technical Requirements:
¿eonly technical requirements of the tutorial are common presentation equipment for the lecturers
including an HTML browser for the slides. ¿ere are no technical requirements for the participants
of the tutorial.

Note on Presenters:
¿is tutorial is based on work from all of the authors. At least two of the tutorial authors will present

172

it, if accepted, at the “XML-Tage” 2006. ¿e survey chapter [24] forms the basis of this tutorial
but the material has been extended and updated continuously. ¿is tutorial particularly considers
also two recent developments: First, the ongoing activities on rule languages and rule interchange
at the W3C and their relevance for Web query languages; second, the challenges for Web query
languages arising from novel Web applications such as Google Maps, Flickr, or Zimbra, where the
communication between Web browser and Web server moves more and more from “plain” HTML
to (syntactically and semantically) “rich” XML and RDF data that can be processed by the client in
more interesting ways than plain HTML.

Tutorial Language:
Based on the preferences of the conference organizers, the tutorial can be held either in English or
in German language.

8.2 Outline of the Tutorial

In this tutorial, a large number of Semantic Web query languages are considered with focus on those (a)
already seeing wide-spread adoption, (b) under consideration for standardization, or (c) providing novel
and in�uential perspectives on Semantic Web querying.

¿e languages considered can roughly by divided in three groups based on the format of the data
queried (XML, RDF, or TopicMaps). Additionally, the tutorial also gives a brief outlook into two very
recent research directions: rules and rule interchange in Web query languages and versatile Semantic
Web query languages that allow intertwined access to data in di�erent representation formalisms, e.g., to
RDF and Topic Maps data. ¿e actual discussion of the query languages will therefore be oriented on the
following structure:

1. Introduction, Sample Data, and Query Scenario (15 minutes)

2. XML Query Languages (60 minutes)

(a) “W3C’s Query Languages: ¿e Navigational Approach” introduces the mainstream XML query
languages XPath, XQuery, XSLT. Emphasis is placed on foundational principles and recent develop-
ments.

(b) “¿e Positional Approach to XML Querying: An Better Way?” surveys a group of alternative
query languages from academia that suggest a di�erent approach for XML querying similar to the
“Query-by-Example” [379] paradigm for relational data.

3. RDF Query Languages (60 minutes):

(a) “¿e SPARQL family” presents the family of languages originating from the proposal of SquishQL
[282]. ¿e focus lies on RDQL [332, 332], a widely adopted RDF query language implemented,
e.g., in HP’s Jena Toolkit [190], and on SPARQL [317], the RDF query language currently under
standardization at the W3C.

(b) “¿eRQL family” discusses the RQL [218] language, a very di�erent perspective on RDF querying
than SPARQL focused on a strong type system and rich, but complex language constructs. Several
proposals for simplifying RQL, e.g., SeRQL and eRQL, highlight strength and weaknesses of this
approach.

(c) “Navigational Access to RDF: Versa” presents the only exemplar of an RDF query language that
uses the navigational access dominating the mainstream XML query languages.

173

(d) “Reactive Rules in RDF Query Languages” discusses reactive rules and their use in some pro-
totypical RDF query languages, e.g., Algae [312], the query language of the W3C Annotea project,
iTQL [1] and Nokia’s WQL [244], two industry proposals for RDF query languages.

(f) “Deductive Query Languages.” A �nal pitch on RDF query languages is provided by query
languages in logic-programming style. TRIPLE [342] is an early proposal based on frame logic.
Xcerpt [329, 328] is a query language developed by some of the authors of this tutorial that inte-
grates RDF querying with access to other data formats, especially XML, and provides Prolog-style
reasoning.

4. Topic Maps Query Languages (15 minutes):

In contrast to RDF, the number of query languages for Topic Maps is still rather small. ¿erefore
this part of the tutorial only brie�y skims over the most important developments including the
current standardization activities at ISO that are expected to result in a standard Topic Maps Query
Language.

5. Outlook on Rules andWeb Querying (10 minutes):

Many of the above mentioned languages have rules or similar mechanisms, e.g., for integrating Web
data, basic reasoning, or reactivity. ¿e W3C is currently starting an activity to standardize rule
languages and rule interchange on theWeb. Goals and charter of this activity, as well as its relevance
for the larger topic of this tutorial, are brie�y summarized.

6. Outlook on Versatile Web Query Languages (10 minutes):

¿e vision of versatile Web query languages will be introduced and exempli�ed using Xcerpt
[329, 328].

7. Summary and Conclusion (10 minutes):

¿e discussion of the query languages closes with a summary and comparison of central language
features.

174

Chapter 9

RDF Querying: Language Constructs

and Evaluation Methods Compared

A Survey for the REWERSE Reasoning Web 2006 Summer School

For the 2006 REWERSE Reasoning Web 2006 summer school, a course on RDF query

languages, illuminating language constracts, and evaluation methods is being prepared

at the moment. The course material is based on a thorough revision and extension of the

RDF part of I4-D1 that (1) updates the material where necessary, (2) gives a more in-depth

consideration to SPARQL, the soon-to-be-finished W3C recommendation for RDF querying,

(3) discusses a list of language constructs that are desirable or challenging in RDF query

languages, and (4) introduces into the current state of the art in evaluation and optimization

techniques for these languages.

During the last two years, a plethora of query languages for RDF have been proposed. ¿ese languages
can be grouped into the following “families”: ¿e “SPARQL family”, including SquishQL, RDQL, RDFQL,
SPARQL, and TriQL; the “RQL family” including RQL, SeRQL, and eRQL; the “XQuery inspired family”
including the so-called “syntactic Web approach” to RDF querying and XsRQL; the “XSLT inspired family”
including TreeHugger, RDF Twig, RDFT, and the query language of Nexus; the “XPath inspired family”
including Versa, RDF Path, RPath, RxPath, and RxSLT; the “Controlled English family” currently with only
Metalog; the “reactive rule family” including Algae, iTQL, WQL; the “deductive rule family” including
N3QL, R-DEVICE, TRIPLE, and Xcerpt; the “QBE inspired family” including RDF-QBE, RDFQL, and
visXcerpt. ¿e lecture introduces into these families and their languages. ¿en, compares these families
and languages considering �rst the constructs, second the evaluation methods, and third the reasoning
capabilities of the languages. Concerning the language constructs, the capability to express grouped
selection of RDF data, optional selections, triple-based vs. path-based data selection are considered.
Concerning query evaluation, the capability to access RDF data at sites retrieved from partial answers, to
cope with non-trivial cases, including cyclic dependencies and/or data, and to traverse (arbitrary length)
paths in the RDF graph e�ciently are considered. Concerning reasoning, the capability to derive data
implied by the RDF and RDFS semantics and by user de�ned rules are considered.

175

176

Bibliography

[1] iTQL Commands. Online only, 2004.

[2] RDFQL Database Command Reference. Online only, 2004.

[3] Langdale Consultants . Nexus Query Language. Online only, 2000.

[4] S. Abiteboul. Querying Semi-Structured Data. In Proc. International Conference on Database
¿eory, 1997.

[5] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kaufmann, 1999.

[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. ¿e Lorel Query Language for
Semistructured Data. International Journal on Digital Libraries1(1):68-88, April 1997., 1(1):68–88,
1997.

[7] S. Abiteboul and V. Vianu. Queries and Computation on the Web. In Proc. International Conference
on Database ¿eory, pages 262–275, 1997.

[8] Adobe Extensible Metadata Platform (XMP), 2001, Adobe Systems Inc.

[9] S. Alexaki, N. Athanasis, V. Christophides, G. Karvounarakis, A. Maganaraki, D. Plexousakis, and
K. Toll. ¿e ICS-FORTH RDFSuite: High-level Scalable Tools for the Semantic Web. ERCIM News,
(51 (Special Issue on the Semantic Web)), 2002.

[10] S. Alexaki, V. Christophides, G. Karvounarakis, and D. Plexousakis. ¿e ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases. In Proc. International Workshop on the Semantic
Web, 2001.

[11] J. Alferes, W. May, and P. Patranjan. State of the Art on Evolution and Reactivity, 2004, Deliverable.

[12] G. Alliance. RDF::Core::Query—Implementation of Query Language. Online only, 2004.

[13] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath, M. Rys, and J. Shanmuga-
sundaram. XQuery and XPath Full-Text, 2004, W3C, Working Dra . Available from: http:
//www.w3.org/TR/xquery-full-text-requirements/.

[14] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-Text Search Extension to
XQuery. In Proc. Int. World Wide Web Conf., 2004.

177

http://www.w3.org/TR/xquery-f ull-text-requirements/
http://www.w3.org/TR/xquery-f ull-text-requirements/

[15] S. Amer-Yahia, M. F. Fernandez, D. Srivastava, and Y. Xu. PIX: Exact and Approximate Phrase
Matching in XML. In Proc. ACM SIGMOD Conf., 2003.

[16] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible Structure and Full-Text
Querying for XML. In Proc. ACM SIGMOD Conf., 2004.

[17] C. Anutariya, V. Wuwongse, and V. Wattanapailin. An Equivalent-Transformation-Based XML
Rule Language. In Proc. International Workshop on Rule Markup Languages for Business Rules in the
Semantic Web, 2002.

[18] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol, J. Robie, R. Sutor,
C. Wilson, and L. Wood. Document Object Model (DOM) Level 1 Speci�cation. Recommendation,
W3C, 10 1998.

[19] E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and Implementation of a Graphical Interface
to XQuery. In Proc. Symposium of Applied Computing, pages 1163–1167. ACM Press, 2003.

[20] D. Backett. New Syntaxes for RDF. Online only, November 2003.

[21] D. Backett. Modernising Semantic Web Markup. In Proc. XML Europe, April 2004.

[22] E. Bae and J. Bailey. CodeX: an approach for debugging XSLT transformations. InWeb Information
Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth International Conference on, 2003.

[23] J. Bailey. Transformation and Reaction Rules for Data on the Web. In Proc. Australasian Database
Conference, 2005.

[24] J. Bailey, F. Bry, T. Furche, and S. Scha�ert. Web and Semantic Web Query Languages: A Survey. In
J. Maluszinsky and N. Eisinger, editors, Reasoning Web Summer School 2005, pages 35–133. Springer-
Verlag, LNCS 3564, 2005.

[25] R. Barta. AsTMa? Tutorial. Technical report, Bond University, 2003.

[26] R. Barta. Path Language for Topic Maps: Full speed ahead? Online only, 2004.

[27] R. Barta. AsTMa= Language De�nition. Online only, 2007.

[28] R. Barta and L. Garshol. Topic Map Query Language, Use Cases, December 2003, ISO/IEC, Technical
document. Available from: http://www.y12.doe.gov/sgml/sc34/document/0449.htm.

[29] R. Barta and J. Gylta. XTM::Path, 2002.

[30] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, and P. Velikhov. XML-Based
InformationMediation withMIX. In Proc. ACM SIGMOD International Conference onManagement
of Data, 1999.

[31] N. Bassiliades and I. Vlahavas. Intelligent Querying of Web Documents Using a Deductive XML
Repository. In Proc. Hellenic Conference on Arti�cial Intelligence, April 2002.

[32] N. Bassiliades and I. Vlahavas. Capturing RDF Descriptive Semantics in an Object Oriented
Knowledge Base System. In Proc. International Word Wide Web Conference, May 2003.

[33] R. Baumgartner, S. Flesca, andG. Gottlob. ¿e ElogWeb Extraction Language. In Proc. International
Conference on Logic for Programming, Arti�cial Intelligence, and Reasoning, December 2001.

178

http://www.y12.doe.gov/sgml/s c34/document/0449.htm

[34] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An Evaluation of Binary XML Encoding
Optimizations for fast Stream based XML Processing. In Proc. Int. World Wide Web Conf., pages
345–354. ACM Press, 2004.

[35] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, and
L. Stein. OWLWeb Ontology Language—Reference, 2004, W3C, Recommendation. Available from:
http://www.w3.org/TR/owl-ref/.

[36] D. Beckett. A retrospective on the development of the RDF/XML Revised Syntax. Online only,
June 2003.

[37] D. Beckett. Turtle - Terse RDF Triple Language, February 2004.

[38] D. Beckett and B. McBride. RDF/XML Syntax Speci�cation (Revised), 2004, W3C, Recommendation.
Available from: http://www.w3.org/TR/rdf-syntax-grammar/.

[39] M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath Fragments. In Proc. International
Conference on Database ¿eory, 2003.

[40] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-Centric General-Purpose Language. In
Proc. International Conference on Functional Programming, 2003.

[41] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Scha�ert, and C. Wieser. Xcerpt and visXcerpt: Twin Query
Languages for the Semantic Web. In Proc. Int. Semantic Web Conf., 11 2004. I4 I3.

[42] S. Berger, F. Bry, and S. Scha�ert. A Visual Language for Web Querying and Reasoning. In
Proc. Workshop on Principles and Practice of Semantic Web Reasoning, LNCS 2901. Springer-Verlag,
December 2003.

[43] S. Berger, F. Bry, S. Scha�ert, and C. Wieser. Xcerpt and visXcerpt: From Pattern-Based to Visual
Querying of XML and Semistructured Data. In Proc. Int. Conf. on Very Large Databases, 2003.

[44] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and J. Simeon. XML Path
Language (XPath) 2.0, 2005, W3C, Working Dra .

[45] A. Berlea andH. Seidl. fxt—ATransformation Language for XMLDocuments. Journal of Computing
and Information Technology, Special Issue on Domain-Speci�c Languages, 2001.

[46] A. Berlea andH. Seidl. Binary Queries for Document Trees. Nordic Journal of Computing, 11(1):41–71,
2004.

[47] T. Berners-Lee. A strawman Unstriped syntax for RDF in XML. Online only, May 1999.

[48] T. Berners-Lee. N3QL—RDF Data Query Language. Online only, 2004.

[49] T. Berners-Lee. Notation 3, an RDF language for the Semantic Web. Online only, 2004.

[50] T. Berners-Lee. Primer: Getting into RDF and Semantic Web using N3. Online only, 2004.

[51] T. Berners-Lee. Semantic Web Road Map. Online only, 2004.

[52] T. Berners-Lee, J. Hendler, and O. Lassila. ¿e Semantic Web—A new form of Web content that is
meaningful to computers will unleash a revolution of new possibilities. Scienti�c American, 2001.

179

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-synt ax-grammar/

[53] G. J. Bex, S.Maneth, and F.Neven. A FormalModel for an Expressive Fragment of XSLT. Information
Systems, 27(1):21–39, 2002.

[54] P. Biron and A. Malhotra. XML Schema Part 2: Datatypes, 2001, W3C, Recommendation. Available
from: http://www.w3.org/TR/xmlschema-2/.

[55] C. Bizer. ¿e TriG Syntax. Online only, April 2004.

[56] C. Bizer. TriQL—A Query Language for Named Graphs. Online only, 2004.

[57] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery 1.0: An XML
Query Language, 2005, W3C, Working Dra .

[58] S. Boag, D. Chamberlin, M. F. FernÃąndez, D. Florescu, J. Robie, and J. SimÃľon. XQuery 1.0: An
XML Query Language. Working dra , W3C, 2 2005.

[59] D. Bogachev. TMPath – Introduction. Online only, 2003.

[60] D. Bogachev. TMPath – Revisited. Online only, 2004.

[61] H. Boley, B. Grosof, M. Sintek, S. Tabet, and G. Wagner. RuleML Design. Online only, 2002.

[62] O. Bolzer. Towards Data-Integration on the Semantic Web: Querying RDF with Xcerpt. Diplomar-
beit/Master thesis, University of Munich, 2 2005.

[63] O. Bolzer, F. Bry, T. Furche, S. Kraus, and S. Scha�ert. Development of Use Cases, Part I: Illustrating
the Functionality of a Versatile Web Query Language. Deliverable I4-D3, REWERSE, 3 2005. I4.

[64] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. Int. Conf. on Data Engineering,
page 403. IEEE Computer Society, 2002.

[65] A. Bonifati and S. Ceri. Comparative Analysis of Five XML Query Languages. ACM SIGMOD
Record, 2000.

[66] A. Bonifati and D. Lee. Technical Survey of XML Schema and Query Languages. Technical report,
University of California, Los Angeles, Computer Science Dept., 2001.

[67] D. Braga, A. Campi, S. Ceri, and E. Augurusa. XQuery by Example. In Proc. Int. World Wide Web
Conf., 2003.

[68] T. Bray. RPV: Triples Made Plain. Online only, 2002.

[69] T. Bray, D. Hollander, and A. Layman. Namespaces in XML, 1999,W3C, Recommendation. Available
from: http://www.w3.org/TR/REC-xml-names/.

[70] T. Bray, D. Hollander, A. Layman, and R. Tobin. Namespaces in XML 1.1, 2004, W3C, Recommen-
dation. Available from: http://www.w3.org/TR/xml-names11/.

[71] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language
(XML) 1.0 (¿ird Edition), 2004, W3C, Recommendation. Available from: http://www.w3.org/
TR/REC-xml/.

[72] J.-M. Bremer and M. Gertz. XQuery/IR: Integrating XML Document and Data Retrieval. In Int.
Workshop on the Web and Databases, 2002.

180

http://www.w3.org/TR/xmlschem a-2/
http://www.w3.org/TR/REC-xml- names/
http://www.w3.org/TR/xml-name s11/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

[73] D. Brickley. RDF: Understanding the Striped RDF/XML Syntax. Online only, October 2001.

[74] D. Brickley, R. Guha, and B. McBride. RDF Vocabulary Description Language 1.0: RDF Schema,
2004, W3C, Recommendation. Available from: http://www.w3.org/TR/rdf-schema/.

[75] D. Brickley and L. Miller. FOAF Vocabulary Speci�cation, May 2004.

[76] J. Broekstra, C. Fluit, and F. van Harmelen. ¿e State of the Art on Represenation and Query
Languages for Semistructured Data. On-To-Knowledge EU-IST-1999-10132 Deliverable 8, Aidmin-
istrator Nederland b.v., 2000.

[77] J. Broekstra and A. Kampman. Query Language De�nition. On-To-Knowledge EU-IST-1999-10132
Deliverable 9, Aidministrator Nederland b.v., 2001.

[78] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Language. In Proc.
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, 2003.

[79] J. Broekstra, A. Kampman, and F. Harmelen. Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. In Proc. International Semantic Web Conference, 2002.

[80] M. Brundage. XQuery: ¿e XML Query Language. Addison-Wesley, 2004.

[81] E. Bruno, J. L. Maitre, and E. Murisasco. Extending XQuery with Transformation Operators. In
Proc. ACM symposium on Document Engineering, pages 1–8. ACM Press, 2003.

[82] F. Bry, W. Drabent, and J. Maluszynski. On Subtyping of Tree-structured Data A Polynomial
Approach. In Proc. Workshop on Principles and Practice of Semantic Web Reasoning, St. Malo, France,
volume 3208 of LNCS. REWERSE, Springer-Verlag, 9 2004. I4 I3.

[83] F. Bry, T. Furche, L. Badea, C. Koch, S. Scha�ert, and S. Berger. Identi�cation of Design Principles
for a (Semantic) Web Query Language. Deliverable I4-D1, REWERSE, 2004.

[84] F. Bry, T. Furche, L. Badea, C. Koch, S. Scha�ert, and S. Berger. Querying the Web Reconsidered:
Design Principles for Versatile Web Query Languages. Journal of Semantic Web and Information
Systems, 1(2), 2005. I4.

[85] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications of the Language
XChange. In Proc. Symposium of Applied Computing. ACM, 3 2005. I4 I5.

[86] F. Bry, P.-L. Pătrânjan, and S. Scha�ert. Xcerpt and XChange: Logic Programming Languages for
Querying and Evolution on the Web. In Proc. Int. Conf. on Logic Programming, LNCS, 2004.

[87] F. Bry and S. Scha�ert. A Gentle Introduction into Xcerpt, a Rule-based Query and Transformation
Language for XML. In Proc. Int. Workshop on Rule Markup Languages for Business Rules on the
Semantic Web, 2002.

[88] F. Bry and S. Scha�ert. ¿e XML Query Language Xcerpt: Design Principles, Examples, and
Semantics. In Proc. Int. Workshop on Web and Databases, volume 2593 of LNCS. Springer-Verlag,
2002.

[89] F. Bry and S. Scha�ert. Towards a Declarative Query and Transformation Language for XML and
Semistructured Data: Simulation Uni�cation. In Proc. Int. Conf. on Logic Programming, volume
2401 of LNCS. Springer-Verlag, 7 2002.

181

http://www.w3.org/TR/rdf-sche ma/

[90] F. Bry, S. Scha�ert, and A. Schröder. A contribution to the Semantics of Xcerpt, a Web Query and
Transformation Language. In Proc. Workshop Logische Programmierung, March 2004.

[91] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. In Proc. ACM SIGMOD Conf., pages 505–516. ACM Press, 1996.

[92] P. Buneman, S. B. Davidson, and D. Suciu. Programming Constructs for Unstructured Data. In
Proc. Int. Workshop on Database Programming Languages, page 12. Springer-Verlag, 1996.

[93] P. Buneman,M. Fernandez, andD. Suciu. UnQL: AQuery Language andAlgebra for Semistructured
Data Based on Structural Recursion. VLDB Journal, 9(1):76–110, 2000.

[94] S. Buxton and M. Rys. XQuery and XPath Full-Text—Requirements, 2004, W3C, Working Dra .
Available from: http://www.w3.org/TR/xquery-full-text-requirements/.

[95] A. b.v. and S. A. Ltd. ¿e SeRQL query language, chapter 5. Aduna b.v., Sirma AI Ltd., 2002.

[96] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of Conjunctive Regular
Path Queries with Inverse. In Proc. Int. Conf. on the Principles of Knowledge Representation and
Reasoning, pages 176–185, 2000.

[97] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Query Processing using Views for
Regular Path Queries with Inverse. In Proc. ACM Symposium on Principles of Database Systems,
pages 58–66, 2000.

[98] L. Cardelli. Type systems, chapter 103, pages 2208–2236. ACM Press, 1996.

[99] L. Cardelli and G. Ghelli. TQL: a Query Language for Semistructured Data based on the Ambient
Logic. Mathematical Structures in Computer Science, 14(3):285–327, 2004.

[100] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients. In Proc.
Symposium on Principles of Programming Languages, pages 365–377. ACM Press, 2000.

[101] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance and Trust. Technical
Report HPL-2004-57, HP Labs, 2004.

[102] J. Carroll and P. Stickler. TriX: RDF Triples in XML. Online only, May 2004.

[103] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda,
and F. Velez, editors. Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[104] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca:. XML-GL: A Graphical
Language for Querying and Reshaping XML Documents. In Proc. W3C QL’98 – Query Languages,
1998.

[105] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. TancaÂă. XML-GL: a Graphical
Language for Querying and Restructuring XML Documents. In Proc. Int. World Wide Web Conf.,
1999.

[106] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer Verlag, 1990.

[107] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML Query Use Cases,
2005, W3C, Working Dra .

182

http://www.w3.org/TR/xquery-f ull-text-requirements/

[108] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query (XQuery) Requirements,
2003, W3C, Working Dra .

[109] D. Chamberlin and J. Robie. XQuery Update Facility Requirements. Working dra , W3C, 2005.

[110] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heterogeneous Data
Sources. In Proc. Workshop on Web and Databases, 2000.

[111] A. Chandra and D. Harel. Computable queries for relational data bases (Preliminary Report).
Journal of Computer Systems and Sciences, 21:156–178, 1980.

[112] A. Chandra and D. Harel. Structure and Complexity of Relational Queries. Journal of Computer
Systems and Sciences, 25(1):99–128, 1982.

[113] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware XQuery Answering System. In Proc.
Workshop on the Web and Databases, 2002.

[114] Y. Chen and P. Revesz. CXQuery: A Novel XML Query Language. In Proc. International Conference
on Advances in Infrastructure for Electronic Business, Science, and Medicine on the Internet, 2002.

[115] Z. Chen, H. V. Jagadish, L. V. Lakshmanan, and S. Paparizos. From Tree Patterns to Generalized
Tree Patterns: On E�cient Evaluation of XQuery. In Proc. Int. Conf. on Very Large Databases, 2003.

[116] T. T. Chinenyanga and N. Kushmerick. An Expressive and E�cient Language for XML Information
Retrieval. Journal of the American Society for Information Science and Technology, 53(6):438–453,
2002.

[117] V. Christophides, S. Cluet, andG.Moerkotte. Evaluating Queries with Generalized Path Expressions.
In Proc. ACM SIGMOD International Conference on Management of Data, pages 413–422, 1996.

[118] V. Christophides, G. Karvounarakis, I. Ko�na, G. Kokkinidis, A. Magkanaraki, D. Plexousakis,
G. Ser�otis, and V. Tannen. ¿e ICS-FORTH SWIM: A Powerful Semantic Web Integration
Middleware. In Proc. International Workshop on Semantic Web and Databases, 2003.

[119] V. Christophides, D. Plexousakis, G. Karvounarakis, and S. Alexaki. Declarative Languages for
Querying Portal Catalogs. In Proc. DELOS Workshop: Information Seeking, Searching and Querying
in Digital Libraries, 2000.

[120] J. Clark. XSL Transformations (XSLT) Version 1.0, 1999, W3C, Recommendation.

[121] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0, 1999, W3C, Recommendation.

[122] J. Clark and M. Makoto. RELAX NG Speci�cation, 2001, OASIS, Committee Speci�cation.

[123] J. Clark and M. Makoto. Regular-grammar-based validation—RELAX NG, 2002, International
Organisation for Standardization, Dra International Standard.

[124] K. Clark. RDF Data Access Use Cases and Requirements, 2004, W3C, Working Dra .

[125] K. Clark and D. Connolly. RDF Data Access Design Evaluations. Online only, 2004.

[126] E. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM,
13(6):377–387, 1970.

183

[127] E. Codd. Relational Completeness of Data Base Sublanguages. In R. Rustin, editor, Database
Systems: Courant Computer Science Symposia 6. Prentice-Hall, 1972.

[128] J. Coelho and M. Florido. CLP(Flex): Constraint Logic Programming Applied to XML Processing.
In Proc. Int. Conf. on Ontologies, Databases, and Applications of Semantics for Large Scale Information
Systems, volume 3291 of LNCS. Springer-Verlag, 2004.

[129] S. Cohen, Y. Kanza, Y. Kogan, Y. Sagiv, W. Nutt, and A. Serebrenik. EquiX—a search and query
language for XML. Journal of the American Society for Information Science and Technology, 53(6):454–
466, 2002.

[130] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine for XML. In Proc.
Int. Conf. on Very Large Databases, 2003.

[131] S. Comai, E. Damiani, and P. Fraternali. Computing Graphical Queries over XML Data. ACM
Transactions on Information Systems, 19(4):371–430, 2001.

[132] S. Comai, S. Marrara, and L. TancaÂă. XMLDocument Summarization: Using XQuery for Synopsis
Creation. In Proc. Int. Workshop on Database and Expert Systems Applications, 2004.

[133] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. ¿e Query Language
TQL. In Proc. Int. Workshop on the Web and Databases, 2002.

[134] J. Cowan and R. Tobin. XML Information Set (Second Edition), 2004, W3C, Recommendation.
Available from: http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[135] R. Daniel. Harvesting RDF Statements from XLinks, 2000, W3C, Note.

[136] I. Davis. RDF Template Language 1.0. Online only, September 2003.

[137] N. Deakin. ReoPath. Online only, 2003.

[138] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service for RDF. In Proc.
W3C QL’98 – Query Languages 1998, December 1998.

[139] D. DeHaan, D. Toman, M. P. Consens, and M. T. ÃŰzsu. A Comprehensive XQuery to SQL
Translation using Dynamic Interval Encoding. In Proc. ACM SIGMOD Conf., pages 623–634. ACM
Press, 2003.

[140] S.DeRose, R.Daniel, E.Maier, and J.Marsh. XPointer xmlns() Scheme, 2003,W3C, Recommendation.
Available from: http://www.w3.org/TR/xptr-xmlns/.

[141] S. DeRose, E. Maier, and R. Daniel. XPointer xpointer() Scheme, 2002, W3C, Working Dra .
Available from: http://www.w3.org/TR/xptr-xpointer/.

[142] S. DeRose, E. Maier, and D. Orchard. XML Linking Language (XLink) Version 1.0, 2001, W3C,
Recommendation. Available from: http://www.w3.org/TR/xlink/.

[143] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language for
XML, 1998, W3C, Note. Available from: http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[144] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language for
XML. In Proc. W3C QL’98 – Query Languages 1998. W3C, 1998.

184

http://www.w3.org/TR/2004/REC -xml-infoset-20040204/
http://www.w3.org/TR/xptr-xml ns/
http://www.w3.org/TR/xptr-xpo inter/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/1998/NOT E-xml-ql-19980819/

[145] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML. In
Proc. Int. World Wide Web Conf., 1999.

[146] A. Deutsch, Y. Papakonstantinou, and Y. Xu. ¿e NEXT Logical Framework for XQuery. In Proc.
Int. Conf. on Very Large Databases, 2004.

[147] A. Deutsch and V. Tannen. Containment and Integrity Constraints for XPath Fragments. In Proc.
Int. Workshop on Knowledge Representation meets Databases, 2001.

[148] C. Dollin. Jena Toolkit—Rei�cation Howto. Online only, 2003.

[149] C. Dong and J. Bailey. Optimization of XML Transformations Using Template Specialization. In
Proc. Int. Conf. on Web Information Systems Engineering, 2004.

[150] C. Dong and J. Bailey. Static Analysis of XSLT Programs. In Proc. Australasian Database Conf.,
pages 151–160. Australian Computer Society, Inc., 2004.

[151] D. Draper, P. Frankhauser, M. FernÃąndez, A. Malhotra, K. Rose, M. Rys, J. SimÃľon, and P. Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. Working dra , W3C, 2 2005.

[152] E. Dumbill. Putting RDF to Work. Online only, 2000.

[153] D. Eastlake and A. Panitz. Reserved Top Level DNS Names. RFC 2606, IETF, 1999.

[154] A. Eisenberg and J. Melton. An early Look at XQuery. SIGMOD Record, 31(4):113–120, 2002.

[155] A. Eisenberg and J. Melton. An early Look at XQuery API for Java™(XQJ). SIGMOD Record,
33(2):105–111, 2004.

[156] D. Fallside. XML Schema Part 0: Primer, 2001, W3C, Recommendation. Available from: http:
//www.w3.org/TR/xmlschema-0/.

[157] P. Fankhauser. XQuery Formal Semantics: State and Challenges. SIGMOD Record, 30(3):14–19,
2001.

[158] P. Fankhauser and P. Lehti. XQuery by the book: ¿e IPSI XQuery Demonstrator. In XML
Conference & Exhibition, 2002.

[159] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and XPath 2.0 Data
Model, 2004, W3C, Working Dra .

[160] M. Fernandez, J. Simeon, and P. Wadler. XML Query Languages: Experiences and Exemplars, 1999,
Dra . Available from: http://www.w3.org/1999/09/ql/docs/xquery.html.

[161] M. FernÃąndez, J. SimÃľon, B. Choi, A. Marian, and G. Sur. Implementing XQuery 1.0 : ¿e Galax
Experience. In Proc. Int. Conf. on Very Large Databases, 2003.

[162] R. Fikes, P. Hayes, and I. Horrocks. DAML Query Language (DQL): Abstract Speci�cation, 2002,
DAML Joint Committee.

[163] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – A Language for Deductive Query Answering on
the Semantic Web. Journal of Web Semantics, To appear.

185

http://www.w3.org/TR/xmlschem a-0/
http://www.w3.org/TR/xmlschem a-0/
http://www.w3.org/1999/09/ql/ docs/xquery.html

[164] D. Florescu, M. Fernandez, A. Levy, and D. Suciu. A Query Language and Processor for a Web-site
Management System. In Proc. Workshop on Management of Semi-structured Data, 1997.

[165] D. Florescu, A. GrÂ§nhagen, and D. Kossmann. XL: An XML Programming Language for Web
Service Speci�cation and Composition. In Proc. International World Wide Web Conference, May
2002.

[166] D. Florescu, A. GrÂ§nhagen, and D. Kossmann. XL: An XML Programming Language for Web
Service Speci�cation and Composition. Computer Networks, 42(5), 2003.

[167] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. J. Carey, and A. Sun-
dararajan. ¿e BEA Streaming XQuery Processor. VLDB Journal, 13(3):294–315, 2004.

[168] D. Florescu, A. Levy, M. Fernandez, and D. Suciu. A Query Language for a Web-site Management
System. SIGMOD Record, 26(3):4–11, 1997.

[169] J. Frohn, G. Lausen, and H. Upho�. Access to Objects by Path Expressions and Rules. In Proc.
International Conference on Very Large Databases, 1994.

[170] N. Fuchs, U. Schwertel, and R. Schwitter. Attempto Controlled English (ACE) Language Manual,
Version 3.0. Technical Report 99.03, Department of Computer Science, University of Zurich, 1999.

[171] N. Fuhr and K. Gross. XIRQL: a Query Language for Information Retrieval in XML Documents.
In Proc. ACM Conference on Research and Development in Information Retrieval, 2001.

[172] L. Garshol. tolog—A topic map query language. In Proc. XML Europe, 2001.

[173] L. Garshol. Extending tolog—Proposal for tolog 1.0. In Proc. Extreme Markup Languages, 2003.

[174] L. Garshol. tolog 0.1. Technical report, Ontopia, 2003.

[175] L. Garshol. tolog–Language tutorial. Online only, 2004.

[176] L. Garshol. ¿e Linear Topic Map Notation. Online only, 2007.

[177] L. Garshol and R. Barta. Topic Map Query Language, Requirements, November 2003, ISO/IEC,
Dra . Available from: http://www.y12.doe.gov/sgml/sc34/document/0448.htm.

[178] L. M. Garshol. Living with Topic Maps and RDF. Online only, 2003.

[179] B. Glimm. A Query Language for Web Ontologies. Bachelor thesis, Hamburg University of Applied
Sciences, University of Manchester, 2004.

[180] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A Standard Textual Interchange Format for
the Object Exchange Model (OEM). Technical report, Database Group, Stanford University, 1996.

[181] G. Gottlob and C. Koch. Monadic Queries over Tree-Structured Data. In Proc. Annual IEEE
Symposium on Logic in Computer Science, pages 189–202. IEEE Computer Society, 2002.

[182] G. Gottlob and C. Koch. Monadic Datalog and the Expressive Power of Languages for Web
Information Extraction. In 51, editor, Journal of the ACM, volume 1, pages 74–113, 2004.

[183] G. Gottlob, C. Koch, and R. Pichler. E�cient Algorithms for Processing XPath Queries. In Proc.
International Conference on Very Large Databases, 2002.

186

http://www.y12.doe.gov/sgml/s c34/document/0448.htm

[184] G. Gottlob, C. Koch, and R. Pichler. ¿e Complexity of XPath Query Evaluation. In Proc. ACM
Symposium on Principles of Database Systems, 2003.

[185] G. Gottlob, C. Koch, and R. Pichler. XPath Query Evaluation: Improving Time and Space E�ciency.
In Proc. International Conference on Data Engineering, 2003.

[186] J. Grant and D. Backett. RDF Test Cases, February 2004, W3C.

[187] S. Groppe and S. BÃűttcher. XPath Query Transformation based on XSLT Stylesheets. In Proc. Int.
Workshop on Web Information and Data Management, pages 106–110. ACM Press, 2003.

[188] P. Grosso, E. Maier, J. Marsh, and N. Walsh. XPointer element() Scheme, 2003, W3C, Recommenda-
tion. Available from: http://www.w3.org/TR/xptr-element/.

[189] P. Grosso, E. Maier, J. Marsh, and N. Walsh. XPointer Framework, 2003, W3C, Recommendation.
Available from: http://www.w3.org/TR/xptr-framework/.

[190] H. L. S. W. R. Group. Jena – A Semantic Web Framework for Java. Online only, 2004.

[191] T. Grust. Accelerating XPath Location Steps. In Proc. ACM SIGMOD Conf., 2002.

[192] T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath Evaluation in any RDBMS. ACM
Transactions on Database Systems, 29(1):91–131, 2004.

[193] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. Int. Conf. on Very Large Databases,
2004.

[194] R. Guha. Contexts: A Formalization and Some Applications. PhD thesis, Stanford University, 1995.

[195] R. Guha. rdfDB Query Language. Online only, 2000.

[196] R. Guha, O. Lassila, E. Miller, and D. Brickley. Enabling Inferencing. In Proc. W3C QL’98 – Query
Languages 1998, December 1998.

[197] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Keyword Search over XML
Documents. In Proc. ACM SIGMOD Conf., 2003.

[198] Z.Guo,M. Li, X.Wang, andA. Zhou. Scalable XSLTEvaluation. In Proc. Asia Paci�cWebConference,
2004.

[199] J. Gylta. XTMPath, Manipulating Topic Map Data Structures. Online only, 2002.

[200] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF Query Languages. In Proc.
International Semantic Web Conference, 2004.

[201] M. Harren, M. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and R. Bordawekar. XJ: Integration
of XML Processing into Java. In Proc. International World Wide Web Conference, 2004.

[202] S. Harris and N. Gibbins. 3store: E�cient Bulk RDF Storage. In Proc. International Workshop on
Practical and Scalable Semantic Systems, 2003.

[203] A. Harth. Triple Tutorial. Online only, 2004.

187

http://www.w3.org/TR/xptr-ele ment/
http://www.w3.org/TR/xptr-fra mework/

[204] P. Hayes and B. McBride. RDF Semantics, 2004, W3C, Recommendation. Available from: http:
//www.w3.org/TR/rdf-mt/.

[205] J. Hidders. Satis�ability of XPath Expressions. In Int. Workshop on Databse Programming Languages,
2003.

[206] I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic Satis�ability.
In Proc. International Semantic Web Conference, pages 17–29. Springer-Verlag, 2003.

[207] I. Horrocks and P. Patel-Schneider. A Proposal for an OWL Rules Language. In Proc. International
World Wide Web Conference, pages 723–731. ACM, 2004.

[208] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic Web
Rule Language—Combining OWL and RuleML, 2004, W3C, Member submission. Available from:
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[209] I. Horrocks and S. Tessaris. A Conjunctive Query Language for Description Logic ABoxes. In Proc.
National Conference on Arti�cial Intelligence, 2000.

[210] I. Horrocks, F. van Harmelen, and P. Patel-Schneider. DAML+OIL, 2001, Joint US/EU ad hoc
Agent Markup Language Committee, Revised Language Speci�cation. Available from: http:
//www.daml.org/2001/03/daml+oil-index.html.

[211] H. Hosoya and B. Pierce. XDuce: A Typed XML Processing Language. ACM Transactions on
Internet Technology, 3(2):117–148, 2003.

[212] J. Hynynen and O. Lassila. On the Use of Object-Oriented Paradigm in a Distributed Problem
Solver. AI Communications, 2(3):142–151, 1989.

[213] T. D. C. M. Initiative. DCMI term declarations represented in RDF schema language. Online only,
March 2003.

[214] Intellidimension. RDF Gateway. Online only, 2004.

[215] ISO/IEC 13250 Topic Maps, 1999, International Organization for Standardization, International Stan-
dard. Available from: http://www.y12.doe.gov/sgml/sc34/document/0322_files/iso13250-
2nd-ed-v2.pdf.

[216] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT Programs to E�cient SQL Queries. In Proc.
Int. World Wide Web Conf., pages 616–626. ACM Press, 2002.

[217] B. Johnson and B. Shneiderman. Tree-maps: a Space-Filling Approach to the Visualization of
Hierarchical Information Structures. In Proc. Int. Conf.on Visualization, pages 284–291, 1991.

[218] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A Declarative
Query Language for RDF. In Proc. International World Wide Web Conference, May 2002.

[219] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying RDF Descriptions
for Community Web Portals. In Proc. Journees Bases de Donnees Avancees, 2001.

[220] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, and
K. Tolle. Querying the Semantic Web with RQL. Computer Networks and ISDN Systems Journal,
42(5):617–640, August 2003.

188

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/Submission/ 2004/SUBM-SWRL-20040521/
http://www.daml.org/2001/03/d aml+oil-index.html
http://www.daml.org/2001/03/d aml+oil-index.html
http://www.y12.doe.gov/sgml/s c34/document/0322_files/iso13 250-2nd-ed-v2.pdf
http://www.y12.doe.gov/sgml/s c34/document/0322_files/iso13 250-2nd-ed-v2.pdf

[221] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, and
K. Tolle. RQL: A Functional Query Language for RDF. In P. Gray, P. King, and A. Poulovassilis,
editors,¿e Functional Approach to Data Management, chapter 18, pages 435–465. Springer-Verlag,
2004.

[222] H. Katz. XsRQL: an XQuery-style Query Language for RDF. Online only, 2004.

[223] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie, M. Rys, J. Simeon, J. Tivy, and
P. Wadler. XQuery from the Experts: A Guide to the W3C XML Query Language. Addison-Wesley,
1st edition, 8 2003.

[224] M. Kay. XPathÂă2.0 Programmer’s Reference. John Wiley, 8 2004.

[225] M. Kay. XSLT 2.0 Programmer’s Reference. John Wiley, 3rd edition, 8 2004.

[226] M. Kay. XSLT and XPath Optimization. In XML Europe, 2004.

[227] M. Kay. XSL Transformations (XSLT) Version 2.0, 2005, W3C, Working Dra .

[228] M.Kay, N.Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and XQuery 1.0 Serialization. Working
dra , W3C, 2 2005.

[229] S. Kepser. A Simple Proof of the Turing-Completeness of XSLT and XQuery. In Proc. Extreme
Markup Languages, 2004.

[230] M.Kifer, G. Lausen, and J.Wu. Logical Foundations of Object Oriented and Frame Based Languages.
Journal of ACM, 42:741–843, 1995.

[231] C. Kirchner, Z. Oian, P. Singh, and J. Stuber. Xemantics: a Rewriting Calculus-Based Semantics of
XSLT. Technical Report A01-R-386, LORIA, 2002.

[232] G. Klyne. Contexts for RDF Information Modelling. Online only, 2000.

[233] G. Klyne and J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax,
February 2004, W3C.

[234] G. Klyne, J. Carroll, and B. McBride. Resource Description Framework (RDF): Concepts and Abstract
Syntax, 2004, W3C, Recommendation. Available from: http://www.w3.org/TR/rdf-concepts/.

[235] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An Optimizing XQuery
Processor for Streaming XML Data. In Proc. Int. Conf. on Very Large Databases, 2004.

[236] S. Kraus. Use Cases für Xcerpt: Eine positionelle Anfrage- und Transformationssprache für das
Web. Diplomarbeit/Master thesis, University of Munich, 2004.

[237] R. Ksiezyk. Answer is just a question [of matching Topic Maps]. In Proc. XML Europe, 2000.

[238] M. Lacher and S. Decker. On the Integration of Topic Maps and RDF Data. In Proc. Extreme
Markup Languages, 2001.

[239] M. Lacher and S. Decker. RDF, Topic Maps, and the Semantic Web. Markup Languages: ¿eory and
Practice, 3(3):313–331, December 2001.

189

http://www.w3.org/TR/rdf-conc epts/

[240] O. Lassila. BEEF Reference Manual—A Programmer’s Guide to the BEEF Frame System, Second
Version. Technical Report HTKK-TKO-C46, Department of Computer Science, Helsinki University
of Technology, 1991.

[241] O. Lassila. Enabling Semantic Web Programming by Integrating RDF and Common Lisp. In Proc.
Semantic Web Working Symposium, july 2001.

[242] O. Lassila. Taking the RDFModel¿eoryOut for a Spin. In Proc. SemanticWebWorking Symposium,
June 2002.

[243] O. Lassila. Ivanhoe: an RDF-Based Frame System. Online only, 2004.

[244] O. Lassila. Wilbur Query Language Comparison. Online only, 2004.

[245] O. Lassila. Wilbur Semantic Web Toolkit. Online only, 2004.

[246] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax Speci�cation,
1999, W3C, Recommendation. Available from: http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[247] A. Laux and L. Martin. XUpdate—XML Update Language, 2000, XML:DB Initiative, Working Dra .
Available from: http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html.

[248] J. Liu and M. Vincent. Query translation from XSLT to SQL. In Proc. Int. Database Engineering and
Applications Symposium, 2003.

[249] M. Liu. A Logical Foundation for XML. In Proc. International Conference on Advanced Information
Systems Engineering. Springer-Verlag, 2002.

[250] B. Ludäscher, R. Himmeroeder, G. Lausen, W. May, and C. Schlepphorst. Managing Semistructured
Data with FLORID: A Deductive Object-oriented Perspective. Information Systems, 23(8):1–25,
1998.

[251] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. A Brief Introduction to XMAs, 1999, Database
Group, University of California, San Diego.

[252] R. Luk, H. Leong, T. Dillon, A. Chan, W. B. Cro , and J. Allan. A Survey in Indexing and Searching
XMLDocuments. Journal of the American Society for Information Science and Technology, 53(6):415–
437, 2002.

[253] A.Magkanaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and T. Anh. Ontology Storage
and Querying. Technical Report 308, Foundation for Research and Technology Hellas, April 2002.

[254] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the Semantic Web
¿rough RVL Lenses. In Proc. International Semantic Web Conference, October 2003.

[255] D.Maier. Database Desiderata for an XMLQuery Language. In Proc. W3C QL’98 – Query Languages
1998, December 1998.

[256] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators, 2004,
W3C, Working Dra .

190

http://www.w3.org/TR/1999/REC -rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC -rdf-syntax-19990222/
http://xmldb-org.sourceforge. net/xupdate/xupdate-wd.html

[257] A.Malhotra, J. Melton, and N.Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators. Working
dra , W3C, 2 2005.

[258] F. Manola, E. Miller, and B. McBride. RDF Primer, 2004, W3C, Recommendation. Available from:
http://www.w3.org/TR/rdf-primer/.

[259] M. Marchiori. ¿e Pseudo Natural Language Interface. Online only, 2004.

[260] M.Marchiori, A. Epifani, and S. Trevisan. Metalog v2.0: Quick User Guide. Technical report, W3C,
2004.

[261] M. Marchiori and J. Saarela. Query + Metadata + Logic = Metalog. In Proc. W3C QL’98 – Query
Languages 1998, December 1998.

[262] M. Marchiori and J. Saarela. Towards the Semantic Web: Metalog. Online only, 1999.

[263] J. Marsh and D. Orchard. XML Inclusions (XInclude) Version 1.0, 2004, W3C, Candidate Recom-
mendation. Available from: http://www.w3.org/TR/xinclude/.

[264] W.Martens and F. Neven. Frontiers of tractability for typechecking simple XML transformations.
In Proceedings of the ACM Symposium on Principles of Database Systems (PODS), pages 23–34, 2004.

[265] M. Marx. Conditional XPath, the First Order Complete XPath Dialect. In Proc. ACM Symposium
on Principles of Database Systems, pages 13–22. ACM, 6 2004.

[266] M. Marx. XPath with Conditional Axis Relations. In Proc. Extending Database Technology, 2004.

[267] K.Matsuyama, M. Kraus, K. Kitagawa, and N. Saito. A Path-Based RDF Query Language for CC/PP
and UAProf. In Proc. IEEE Conference on Pervasive Computing and Communications Workshops,
2004.

[268] N.May, S. Helmer, and G. Moerkotte. Quanti�ers in XQuery. In Proc. Int. Conf. onWeb Information
Systems Engineering, 2003.

[269] W. May. LoPiX: a System for XML data Integration and Manipulation. In Proc. International
Conference on Very Large Databases, 2001.

[270] W.May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data Manipulation Lan-
guage. ¿eory and Practice of Logic Programming, 3(4):499–526, 2004.

[271] D. McGuinness and F. van Harmelen. OWL Web Ontology Language—Overview, 2004, W3C,
Recommendation. Available from: http://www.w3.org/TR/owl-features/.

[272] E. Meijer, W. Schulte, and G. Bierman. Programming with Circles, Triangles and Rectangles. In
Proc. XML Conference and Exhibition, 2003.

[273] E. Meijer and M. Shields. XMLambda: A functional language for constructing and manipulating
XML documents. Online only, 1999.

[274] S. Melnik. Simpli�ed Syntax for RDF. Online only, December 1999.

[275] S. Melnik. Representing UML in RDF. Online only, 2000.

191

http://www.w3.org/TR/rdf-prim er/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/owl-feat ures/

[276] H. Meuss and K. U. Schulz. Complete Answer Aggregates for Treelike Databases: a novel Approach
to combine querying and navigation. ACM Transactions on Information Systems, 19(2):161–215,
2001.

[277] H. Meuss, K. U. Schulz, and F. Bry. Towards Aggregated Answers for Semistructured Data. In Proc.
Int. Conf. on Database ¿eory, pages 346–360. Springer-Verlag, 2001.

[278] H. Meuss, K. U. Schulz, F. Weigel, S. Leonardi, and F. Bry. Visual Exploration and Retrieval of XML
Document Collections with the Generic System X2. Journal on Digital Libraries, 2005.

[279] H. Meyer, I. Bruder, A. Heuer, and G. Weber. ¿e Xircus Search Engine. In INEX Workshop, pages
119–124, 2002.

[280] G. Miklau and D. Suciu. Containment and Equivalence for an XPath Fragment. In Proc. ACM
Symposium on Principles of Database Systems, pages 65–76. ACM Press, 2002.

[281] L. Miller. Inkling: RDF query using SquishQL. Online only, 2004.

[282] L. Miller, A. Seaborne, and A. Reggiori. ¿ree Implementations of SquishQL, a Simple RDF Query
Language. In Proc. International Semantic Web Conference, June 2002.

[283] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In Proceedings of the
Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, May
15-17, 2000, Dallas, Texas, USA, pages 11–22. ACM, 2000.

[284] K. D. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for Integrated Browsing and
Querying of XML. In Proc. Conf. on Visual Database Systems, pages 277–296. Kluwer, B.V., 2000.

[285] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access Control using Static Analysis. In Proc.
ACM Conf. on Computer and Communications Security, pages 73–84. ACM Press, 2003.

[286] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch.
Edutella: A P2P Networking Infrastructure Based on RDF. In Proc. International World Wide Web
Conference, May 2002.

[287] M. Nilsson and W. Siberski. RDF Query Exchange Language (QEL): Concepts, Semantics and RDF
Syntax. Online only, February 2004.

[288] M. Nilsson, W. Siberski, and J. Tane. Edutella Retrieval Service: Concepts and RDF Syntax. Online
only, June 2004.

[289] M. Odersky. Report on the Programming Language Scala. Technical report, Ecole Polytechnique
Federale de Lausanne, 2002.

[290] U. Ogbuji. ¿inking XML: Basic XML and RDF techniques for knowledge management: Part 6:
RDF Query using Versa. Online only, April 2002.

[291] U. Ogbuji. Versa by example. Online only, 2004.

[292] R. Oldakowski and C. Bizer. RAP: RDF API for PHP. In Proc. International Workshop on Interpreted
Languages, 2004.

192

[293] B. Oliboni and L. Tanca. A Visual Language should be easy to use: a Step Forward for XML-GL.
Information Systems, 27(7):459–486, 2002.

[294] F. Olken and J. McCarthy. Requirements and Desiderata for an XML Query Language. In Proc.
W3C QL’98 – Query Languages 1998, December 1998.

[295] M. Olson and U. Ogbuji. Versa Speci�cation. Online only, 2003.

[296] D. Olteanu. Evaluation of XPath Queries against XML Streams. Dissertation/Ph.D. thesis, University
of Munich, 1 2005.

[297] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In Proc. EDBT Workshop on
XML Data Management, LNCS 2490. Springer Verlag, 2002.

[298] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In Proc. EDBT Workshop on
XML-Based Data Management, volume 2490 of LNCS. Springer-Verlag, 3 2002.

[299] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs: Insert-friendly XML
Node Labels. In Proc. ACM SIGMOD Conf., pages 903–908. ACM Press, 2004.

[300] K.Ono, T. Koyanagi,M.Abe, andM.Hori. XSLT StylesheetGeneration by ExamplewithWYSIWYG
Editing. In Proc. Symposium on Applications and the Internet, 2002.

[301] N. Onose and J. Simeon. XQuery at your Web Service. In Proc. Int. World Wide Web Conf., pages
603–611. ACM Press, 2004.

[302] S. Palmer. Pondering RDF Path. Online only, 2003.

[303] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across Heterogeneous
Information Sources. In Proc. International Conference on Data Engineering, pages 251–260, 1995.

[304] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWLWebOntology Language—Semantics and Abstract
Syntax, 2004, W3C, Recommendation. Available from: http://www.w3.org/TR/owl-semantics/.

[305] P. Patel-Schneider and J. Simeon. ¿e Yin/Yang Web: XML Syntax and RDF Semantics. In Proc.
International World Wide Web Conference, May 2002.

[306] S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0, 2001, TopicMaps.org, Speci�cation. Available
from: http://www.topicmaps.org/xtm/index.html.

[307] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: a Visual Approach to XML Transformations. In
Proc. ACM Symposium on Document Engineering, pages 1–10. ACM Press, 2001.

[308] R. Pinchuk. Toma - Topic Map Query Language. Online only, 2004.

[309] M. Plusch. Water: Simpli�ed Web Services and XML Programming. Wiley, 2002.

[310] E. Prud’hommeaux. Algae2 HOTWO. Online only, 2003.

[311] E. Prud’hommeaux. Algae Extension for Rules. Online only, 2004.

[312] E. Prud’hommeaux. Algae RDF Query Language. Online only, 2004.

[313] E. Prud’hommeaux. Optimized RDF Access to Relational Databases. Online only, 2004.

193

http://www.w3.org/TR/owl-sema ntics/
http://www.topicmaps.org/xtm/ index.html

[314] E. Prud’hommeaux and B. Grosof. RDF Query Survey. Online only, 2004.

[315] E. Prud’hommeaux and A. Seaborne. BRQL – A Query Language for RDF. Online only, 2004.

[316] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF, February 2005.

[317] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Working dra , W3C, 2
2005.

[318] A. Reggiori and A. Seaborne. RDF Query and Rule languages: Use Cases and Examples. Online
only, 2004.

[319] A. Reggiori and D.-W. van Gulik. RDFStore—Perl API for RDF Storage. Online only, 2004.

[320] D. Reynolds. RDF-QBE: a Semantic Web Building Block. Technical Report HPL-2002-327, HP
Labs, 2002.

[321] J. Robie. ¿e Syntactic Web: Syntax and Semantics on the Web. In Proc. XML Conference and
Exposition, December 2001.

[322] J. Robie. Updates in XQuery. In XML Conference & Exhibiton, 2001.

[323] J. Robie, E. Derksen, P. Frankhauser, E. Howland, G. Huck, I. Macherius, M. Murata, M. Resnick,
and H. SchÂŽning. XQL (XML Query Language). Online only, 1999.

[324] J. Robie, L. M. Garshol, S. Newcomb, M. Fuchs, L. Miller, D. Brickley, V. Christophides, and
G. Karvounarakis. ¿e Syntactic Web: Syntax and Semantics on the Web. Markup Languages:
¿eory and Practice, 3(4):411–440, 2001.

[325] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proc. W3C QL’98 – Query
Languages 1998, December 1998.

[326] P. V. Roy and S. Haridi. Concepts, Techniques, and Models of Computer Programming. MIT Press,
2004.

[327] S. Russell and S. Palmer. Quads. Online only, 2002.

[328] S. Scha�ert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. Disserta-
tion/Ph.D. thesis, University of Munich, 2004.

[329] S. Scha�ert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt. In
Proc. Extreme Markup Languages, August 2004.

[330] S. Schott and M. L. Noga. Lazy XSL Transformations. In Proc. ACM Symposium on Document
Engineering, pages 9–18. ACM Press, 2003.

[331] T. Schwentick. XPath Query Containment. SIGMOD Record, 2004.

[332] A. Seaborne. RDQL – A Query Language for RDF. Online only, January 2004.

[333] A. Seaborne. RDQL – RDF Data Query Language. Online only, 2004.

[334] A. Seaborne. A Programmer’s Introduction to RDQL. Online only, 2002 April.

194

[335] D. Seipel. Processing XML-Documents in Prolog. InWorkshop on Logic Programming, 2002.

[336] D. Seipel and J. Baumeister. Declarative Methods for the Evaluation of Ontologies. KI–KÃĳnstliche
Intelligenz, 4:51–57, 2004.

[337] D. Seipel, J. Baumeister, and M. Hopfner. Declaratively Querying and Visualizing Knowledge Bases
in XML. In Proc. Int. Conf. on Applications of Declarative Programming and Knowledge Management,
2004.

[338] R. Shearer. REX evaluation. Online only, 2004.

[339] M. Sheshagiri and A. Kunjithapatham. A FIPA Compliant Query Mechanism Using DAML Query
Language (DQL). Online only, 2004.

[340] J. E. Simpson. XPath and XPointer. O’Reilly, 1st edition, 9 2002.

[341] M. Sintek and S. Decker. TRIPLE—An RDF Query, Inference, and Transformation Language. In
Proc. Deductive Database and Knowledge Management, October 2001.

[342] M. Sintek and S. Decker. TRIPLE—A Query, Inference, and Transformation Language for the
Semantic Web. In Proc. International Semantic Web Conference, June 2002.

[343] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language—Guide, 2004, W3C,
Recommendation. Available from: http://www.w3.org/TR/owl-guide/.

[344] A. Souzis. RxML 1.0 Speci�cation. Online only, 2004.

[345] A. Souzis. RxPath. Online only, 2004.

[346] A. Souzis. RxPath Speci�cation Proposal. Online only, 2004.

[347] A. Souzis. RxSLT. Online only, 2004.

[348] A. Souzis. RxUpdate. Online only, 2004.

[349] M. Sperberg-McQueen. How can Tom butter his bread with a knife, if there is a dearth of bread in
the larder?, 2001.

[350] D. Steer. TreeHugger 1.0 Introduction. Online only, 2003.

[351] P. Stickler. CBD—Concise Bounded Description. Online only, 2004.

[352] A. Swartz. RDFPath Proposal. Online only, 2001.

[353] I. Tatarinov and A. Halevy. E�cient Query Reformulation in peer Data Management Systems. In
Proc. ACM SIGMOD Conf., pages 539–550. ACM Press, 2004.

[354] J. Tennison. XSLT and XPath On¿e Edge. John Wiley, 10 2001.

[355] S. Tessaris. Questions and Answers: Reasoning and Querying in Description Logic. PhD thesis,
University of Manchester, Department of Computer Science, April 2001.

[356] A.¿eobald and G.Weikum. ¿e XXL Search Engine: Ranked Retrieval of XMLData using Indexes
and Ontologies. In Proc. ACM SIGMOD Conf., pages 615–615. ACM Press, 2002.

195

http://www.w3.org/TR/owl-guid e/

[357] H.¿ompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures, 2001,
W3C, Recommendation. Available from: http://www.w3.org/TR/xmlschema-1/.

[358] K. Tolle and F. Wleklinski. easy RDF Query Language (eRQL). Online only, 2004. Available from:
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/.

[359] A. Tozawa. Towards Static Type Checking for XSLT. In Proc. ACM Symposium on Document
Engineering, pages 18–27. ACM Press, 2001.

[360] A. Trombetta and D. Montesi. Equivalences and Optimizations in an Expressive XSLT Fragment.
In Proc. Int. Database Engineering and Applications Symposium, 2004.

[361] J. Ullman. Principles of Database and Knowledge-Base Systems. W. H. Freeman, 1990.

[362] L. Villard and N. LayaÃŕda. An Incremental XSLT Transformation Processor for XML Document
Manipulation. In Proc. Int. World Wide Web Conf., pages 474–485. ACM Press, 2002.

[363] P. Wadler. Two semantics for XPath. Online only, 2000.

[364] G. Wagner. Seven Golden Rules for a Web Rule Language. IEEE Intelligent Systems, 18(5), 2003.

[365] M. Wallace and C. Runciman. Haskell and XML: Generic Combinators or Type-Based Translation.
In Proc. International Conference on Functional Programming, 1999.

[366] N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Proc. Extreme Markup Languages, 2003.

[367] J. W. W. Wan and G. Dobbie. Mining Association Rules from XML data using XQuery. In
Proc. Workshop on Australasian Information Security, Data Mining Web Intelligence, and So ware
Internationalisation, pages 169–174. Australian Computer Society, Inc., 2004.

[368] S. Waworuntu and J. Bailey. XSLTGen: A System for Automatically Generating XML Transforma-
tions via Semantic Mappings. In Proc. Int. Conf. on Conceptual Modeling, 2004.

[369] F. Weigel. A Survey of Indexing Techniques for Semistructured Documents. Master’s thesis,
Institute for Informatics, University of Munich, http://www.pms.ifi.lmu.de/index.html#PA_
Felix.Weigel, 2002.

[370] N. Wiegand. Investigating XQuery for Querying across Database Object Types. SIGMOD Record,
31(2):28–33, 2002.

[371] U. Wiger. XMErl—Interfacing XML and Erlang. In Proc. International Erlang User Conference,
2000.

[372] A. Wilk and W. Drabent. On Types for XML Query Language Xcerpt. In Proc. Workshop on
Principles and Practice of Semantic Web Reasoning, LNCS 2901. Springer-Verlag, 2003.

[373] C. Wilper. RIDIQL Reference. Online only, 2004.

[374] P. T. Wood. On the Equivalence of XML Patterns. In Proc. Int. Conf. on Computational Logic, pages
1152–1166. Springer-Verlag, 2000.

[375] C. Zaniolo. ¿e Database Language GEM. In Proc. ACM SIGMOD Conf., 1983.

196

http://www.w3.org/TR/xmlschem a-1/
http://www.dbis.informatik.un i-frankfurt.de/~tolle/RDF/eRQ L/
http://www.pms.ifi.lmu.de/index.html#PA_Felix.Weigel
http://www.pms.ifi.lmu.de/index.html#PA_Felix.Weigel

[376] X. Zhang, K. Dimitrova, L. Wang, M. E. Sayed, B. Murphy, B. Pielech, M. Mulchandani, L. Ding,
and E. A. Rundensteiner. Rainbow: multi-XQuery Optimization using Materialized XML Views.
In Proc. ACM SIGMOD Conf., pages 671–671. ACM Press, 2003.

[377] X. Zhang, B. Pielech, and E. A. Rundesnteiner. Honey, I shrunk the XQuery!: an XML Algebra
OptimizationApproach. InProc. InternationalWorkshop onWeb Information andDataManagement,
pages 15–22. ACM Press, 2002.

[378] M. Zoof. Query By Example. In Proc. AFIPS National Computer Conference, 1975.

[379] M. Zoof. Query By Example: A Data Base Language. IBM Systems Journal, 16(4):324–343, 1977.

197

198

Appendix A

A Brief History of RDF Serialization

Formats

A.1 Introduction

¿e Resource Description Framework (RDF) is a language for making simple statements about resources
on the World WideWeb in form of a graph of nodes and edges representing the resources, their properties
and values. A standard XML syntax for serializing RDF graphs, RDF/XML, exists. Yet, in the �ve years
a er the initial release of RDF, numerous alternative serialization formats have been proposed. ¿is report
attempts to present an overview of the di�erent proposals and the motivations behind their creation.

¿e serialization formats presented here can be categorized into three general classes, depending
on the use of XML and how a RDF graph is seen: either as fully connected graph or as collection of
subject-property-object triples. RDF/XML and it’s simpli�cation attempts try to map the nodes and edges
of a RDF graph directly to elements in a XML tree. ¿e plain-text formats deriving fromN3 concentrate on
the individual triples that make up the graph and record them in a non-XML form. ¿e newest generation
of serialization formats, TriX and RXR also focus on the triples, but use XML to specify them. A forth
class of formats, specially designed for embedding RDF data into XHTML and other XML languages are
not considered in this report.

Figure A.1 A sample RDF Graph

199

¿e RDF graph presented in Figure A.1 will be used throughout this report, serialized into each
format. It describes this report and it’s author using the Friend-Of-A-Friend [75] and Dublin Core [213]
vocabularies.

A.2 RDF/XML: The W3C Recommendation

When RDF became a W3C Recommendation for the �rst time in 1999, [246] de�ned together with the
formal RDF model a XML based syntax for serializing RDF graphs: RDF/XML. Because of the di�erences
in the underlying information models of RDF and XML, one being an edge-and-node-labeled directed
graph of resources and properties identi�ed by URIs and the other being a node-labeled tree of elements
and attributes identi�ed by the combination of namespace and tag name, the speci�cation proposed a
mapping where both resources and properties where converted to XML elements and nested into each
other. By using the XML namespace mechanism, it was possible to split an URI into two parts and form
an XML element name. ¿e main concept behind RDF/XML later became to be known as striping [73], as
resources and properties alternate in the nested XML structure.
Query 29. RDF/XML describing this report and it’s author.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >
<rdf:Description rdf:about="http://www.fakeroot.net/sw/rdf�formats/">
<rdf:type>
<rdf:Description rdf:about="http://xmlns.com/foaf/0.1/Document" />
</rdf:type>
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>
<rdf:Description>
<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog>
<rdf:Description rdf:about="http://slashdot.jp/~Oliver/journal/" />
</foaf:weblog>
</rdf:Description>
</foaf:maker>
</rdf:Description>
</rdf:RDF>

Example 29 is a RDF/XML document for the RDF graph from Figure A.1. rdf:Description elements
represents the resource identi�ed by the URI in it’s rdf:about attribute. Blank nodes do not have a
rdf:about attribute, but can optionally have a rdf:nodeID attribute to distinguish them from other blank
nodes in the same graph. Direct children of a rdf:Description elements are the properties describing
the resource. For these, the URI identifying the property is used as the element name, by splitting the URI
into a pre�x and a su�x, used as XML namespace and local part.

RDF/XML allows to shorten the serialization using various abbreviations. For instance, a property
with a literal as object can be expressed using a XML attribute. Also the resource that is the object of
an statement can be named in the rdf:resource attribute of the element for the property, instead of an
rdf:Description child element. Also the value of a resource’s rdf:type property can be used as the
resouce’s element name instead of rdf:Description. Example 30 is also a RDF/XML document for Figure
A.1, but much shorter then the previous example, through the use of abbreviations.
Query 30. RDF/XML with abbreviations.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"

200

xmlns:foaf="http://xmlns.com/foaf/0.1/" >
<foaf:Document rdf:about="http://www.fakeroot.net/sw/rdf�formats/"
dc:title="A Brief History of RDF Serialization Formats" >
<foaf:maker>
<rdf:Description foaf:name="Oliver M. Bolzer">
<foaf:weblog rdf:resource="http://slashdot.jp/~Oliver/journal/" />
</rdf:Description>
</foaf:maker>
</rdf:Description>
</rdf:RDF>

Many more possibilities to serialize the same graph using RDF/XML exist, because the aggregation
of multiple statements about a single resource into children of a single rdf:Description element are
not mandatory. Also, instead of deeply nesting resources and properties, it is possible to create a shallow
structure with all rdf:Description elements directly under the root. Example 31 is another serialization
of Figure A.1, this time in a very verbose way.

Query 31. Very verbose RDF/XML.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >
<rdf:Description rdf:about="http://www.fakeroot.net/sw/rdf�formats/">
<dc:title>A Brief History of RDF Serialization Formats/<dc:title>
</rdf:Description>
<foaf:Document rdf:about="http://www.fakeroot.net/sw/rdf�formats/">
<foaf:maker rdf:nodeID="oliver">
</rdf:Description>
<rdf:Description rdf:nodeID="oliver">
<foaf:name>Oliver M. Bolzer</foaf:name>
</rdf:Description>
<rdf:Description rdf:nodeID="oliver">
<foaf:weblog rdf:resource="http://slashdot.jp/~Oliver/journal/" />
</rdf:Description>
</rdf:RDF>

Examples 29-31 all represent the exact same RDF graph. A er being processed by a RDF/XML parser,
there should be no di�erence between them. But from the view point of XML tools, each one is a completely
di�erent XML document. Because of this syntactic variability, it is very di�cult to use standard XML
tools like XPath, XSLT and XQuery with arbitrary RDF/XML documents.

Furthermore, several other problems have been identi�ed with RDF/XML, which all led to the devel-
opment of the subsequent serialization formats. ¿e following are among the most notable:

• It is impossible to distinguish an XML element for a RDF node from one for a property without
knowledge about the striping.

• ¿e triples that make up the RDF graph are hard to make out.

• Many di�erent things are used to to represent URIs: element names, attribute names and attribute
values.

• It is impossible to specify a single DTD or XML Schema that validates all RDF/XML documents.

• Di�cult to read for humans.

In 2001, the RDF Core Working Group was created, partly to �x the RDF/XML syntax and clean up
the whole speci�cation. ¿is e�ort led to the revised RDF/XML Syntax Speci�cation [38], which became a
W3C Recommendation in early 2004. However, tough the speci�cation has undergone a major clean up

201

and the syntax is now speci�ed in a cleaner and much more concise manner, the basics have not changed
and the problems arising from RDF/XML’s structure have not been solved. [36] gives an overview of the
problems of the �rst RDF/XML speci�cation as well as the issues identi�ed during the revision process.

A.3 Simplified Syntaxes for RDF/XML

A.3.1 Unstriped Syntax

Only fewmonth a er the publication of [246], Tim Berners-Lee started experimenting with simpli�cations
of RDF/XML. In [47] he considered a modi�cation of RDF/XML without the node/property striping,
named “Unstriped Syntax”. In it, XML elements are only used for the edges in the RDF graph, with the
subjects speci�ed using the newly introduced rdf:for attribute.
Query 32. Single Statement using the Unstriped RDF/XML Syntax.

<dc:title rdf:for="http://www.fakeroot.net/sw/rdf�formats/">A Brief History of RDF
Serialization Formats</dc:title>

Alternately, a default subject for all nested elements can be be given using a rdf:about attribute on
the parent element, similar to RDF/XML. Blank nodes and deep nesting of elements are handled as in
RDF/XML.
Query 33. Figure A.1 serialized using the Unstriped Syntax.

<someelement rdf:about="http://www.fakeroot.net/sw/rdf�formats/">
<rdf:type rdf:about="http://xmlns.com/foaf/0.1/Document" />
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>
<foaf:weblog rdf:about="http://slashdot.jp/~oliver/journal/" />
<foaf:name>Oliver M. Bolzer</foaf:name>
</foaf:maker>
</someelement>

However, lacking a suitable parent element (somelement in the above example), use of the rdf:Description
element is recommended, undermining the Unstriped Syntax’s basic principle that elements are only to be
used for properties.

Because it addresses only the striping issue and none of the other problems with RDF/XML, the
Unstriped Syntax has not been pursued further than it’s “strawman dra ” status.

A.3.2 Simplified Syntax

Inspired by the Unstriped Syntax, Sergey Melnik followed up with another simpli�ed RDF/XML syntax
[274], in which each element’s type, whether it is a node or an edge of the RDF graph, can be determined
by looking at it’s attributes. As with the Unstriped Syntax, each XML element by default denotes an edge
of the graph. ¿e subject is speci�ed in a rdf:for attribute and it’s object in a rdf:resource attribute or
in case of a blank node, using child elements. In absence of a rdf:for attribute, the subject is de�ned to
be the parent element’s object, instead of an explicitly set “default subject”, removing the need to use an
extra element to denote a resource.
Query 34. Figure A.1 serialized using the Simpli�ed Syntax.

<rdf:type rdf:for="http://www.fakeroot.net/sw/rdf�formats/"
rdf:resource="http://xmlns.com/foaf/0.1/Document">
<dc:title rdf:for="http://www.fakeroot.net/sw/rdf�formats/">A Brief History of RDF Serialization
Formats</dc:title>

202

<foaf:maker rdf:for="http://www.fakeroot.net/sw/rdf�formats/">
<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog rdf:resource="http://slashdot.jp/~Oliver/journal/" />
</foaf:maker>

Only when an element has a rdf:instance attribute, does it denote a node identi�ed by the URI in the
attribute’s value. In such a case, the element’s name is taken to be the node’s rdf:type. ¿ough this feature
reintroduces striping, it is explicit and easily detectable. Example 35 shows parts of our example RDF
graph utilizing this feature.

Query 35. Simpli�ed Syntax using rdf:instance.

<foaf:Document rdf:instance="http://www.fakeroot.net/sw/rdf�formats/">
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>...</foaf:maker>
</foaf:Document>

A.3.3 XMP

Faced with the need to embed meta-data into the various media formats produced by it’s tools, Adobe
decided to adopt RDF as the core of it’s “Extensible Metadata Platform” [8]. Instead of going for the full
RDF/XML format, Adobe uses only a proper subset, disallowing XML literals and rei�cation in order to
simplify processing and reduce the complexity of the expressible RDF graphs. As these removed features
are rarely used, it is likely that the majority of RDF/XML documents on the Internet are also valid XMP
data.

A.3.4 Normalized RDF

In 2001, Jonathan Robie demonstrated that a “normalized” form of RDF/XML could be e�ectively queried
using XQuery, an XML query language without any knowledge about RDF. In [321] he argued, that by
standardizing on one of the many possible syntactic variants of RDF/XML, it would be possible to use
standard XML tools to e�ectively query, transform and otherwise process RDF/XML documents.

Going through several re�ning steps in his paper, Robie arrived at a �at form, where all statements
about a single resource are grouped together and all groups put under a common parent, thus avoiding
deep nesting of statements.

Query 36. Figure A.1 in “normalized” RDF/XML.

<rdf:Description about="http://www.fakeroot.net/sw/rdf�formats/">
<rdf:type>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:type>
<dc:title>A Brief History of RDF Serialization Formats</dc:title>
<foaf:maker>http://fakeroot.net/staff/Oliver</foaf:maker>
</rdf:Description>
<rdf:Description about="http://fakeroot.net/staff/Oliver">
<foaf:name>Oliver M. Bolzer</foaf:name>
<foaf:weblog>http://slashdot.jp/~Oliver/journal/</foaf:weblog>
</rdf:Description>

Being only a technical demonstration for the possibility of querying RDF using XQuery, details like
the di�erence between resources and literals as objects or blank nodes are not addressed. In Example 36 a
new URI had to be assigned to identify the maker of the document.

203

A.3.5 RxML

RxML [344] is a serialization format by Adam Souzis created as component of his Rx4RDF suite of
RDF-related technologies. It is unique in it’s consistent use of XML element names to encode all URIs
extending the way properties are handled in RDF/XML to subjects and objects. Each child of the root
rx:rx element speci�es a resource describe in the RxML document. It’s children are in turn the properties
and the grandchildren are objects: either text children for literals or empty elements for resources. Nesting
is not allowed, limiting the maximum depth of the XML tree to 3. Blank nodes are identi�ed by resources
who’s URIs begin with ‘bnode:’.
Query 37. Figure A.1 in RxML

<rx:rx xmlns:rx=’http://rx4rdf.sf.net/ns/rxml#’

xmlns:bnode=’bnode:’

xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:fakeroot=’http://www.fakeroot.net/sw/’

xmlns:dc=’http://purl.org/dc/elements/1.1/’

xmlns:foaf=’http://xmlns.com/foaf/0.1/’ >

<fakeroot:rdf-formats>

<rdf:type><foaf:Document /></rdf:type>

<dc:title>A Brief History of RDF Serialization Formats</dc:title>

<foaf:maker><bnode:Oliver /></foaf:maker>

</fakeroot:rdf-formats>

<bnode:Oliver>

<foaf:name>Oliver M. Bolzer</foaf:name>

<foaf:weblog><journal xmlns="http://slashdot.jp/~Oliver/" /></foaf:weblog>

</bnode:Oliver>

</rx:rx>

While the consistent use of XML element names for URIs seems an elegant solution, it is accompanied
by a fatal problem: some URIs can’t be expressed due to restrictions in the characters allowed for element
names in XML. In Example 37, the document’s URI (http://www.fakeroot.net/sw/rdf-formats/) can’t be
turned into a XML element name because of the trailing ’/’ that had to be omitted.

A.4 Plain-Text Formats

A.4.1 Notation 3

Meanwhile, giving up on a usable XML syntax for RDF, Tim Berners-Lee proposed Notation 3, also known
as N3 [49]. Contrary to previous serialization formats, N3 is not a XML based format. Born out of a
pseudo-syntax people started using in various discussion forums instead of RDF/XML, N3 focuses on the
triples that make up a RDF graph and writes them down in a straight manner: subject, property, object .
Query 38. A single Statement in N3.

<http://www.fakeroot.net/sw/rdf-formats/> <http://purl.org/dc/elements/1.1/title>
"A Brief History of RDF Serialization Formats" .

Two shortcuts are provided to combine several statements. A semicolon introduces another property
about the same subject and a comma introduces another object with the same property and subject. Blank

204

nodes are identi�ed by using square brackets as objects, putting the statements about that blank node
inside the brackets. Additionally, N3 allows the use of short pre�xes to abbreviate long URIs, similar to
the namespace pre�xing mechanism in XML. Also the very common rdf:type predicate can be abreviated
to just an a. [50] gives an excellent introduction to the basics of N3.

Query 39. Figure A.1 in N3.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
<http://www.fakeroot.net/sw/rdf-formats/> a foaf:Document;
dc:title "A Brief History of RDF Serialization ...";
foaf:maker [
foaf:weblog <http://slashdot.jp/~Oliver/journal>;
foaf:name "Oliver M. Bolzer"] .

N3 supports rei�cation by quoting statements within curly braces. A quoted statement can then be
used as subject for another statement.

Query 40. Rei�cation in N3.

{ ex:Moby_Dick foaf:maker ex:Oliver .} ex:trustable ex:false .

N3 is also not just an serialization format for RDF graphs. It has additional support beyond RDF,
allowing whole graphs to be quoted as well as formulation of rules and queries using variables and
quanti�cation. While most people only think of N3 as a serialization format, some people think of N3 as a
rule language, while others consider it a query language. To avoid confusion, attempts have been made to
de�ne subsets of N3 according to capability: N3 RDF, N3 Rules and full N3.

Being easy to read for both humans and machines, N3 was quickly adopted by the Semantic Web
community as the format used for online discussions about RDF. Today, various tools and query language
implementations for RDF accept N3 as input and output format together with RDF/XML.

A.4.2 N-Triples

N-Triples is aminimalist subset of N3, only allowing one triple per linewithout any abbreviations. Designed
for RDF Test Cases [186], it is intended to be extremely easy to parse and generate by scripts. To avoiding
any nesting, Blank nodes need to be identi�ed by a temporary identi�er starting with _:. N-Triples neither
supports URI abbreviation, nor rei�cation.

Query 41. Figure A.1 in N-Triples.

<http://www.fakeroot.net/sw/rdf-formats/> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.org/foaf/0.1/Document> .
<http://www.fakeroot.net/sw/rdf-formats/> <http://purl.org/dc/elements/1.1/title>
"A Brief History of RDF Serialization Formats" .
<http://www.fakeroot.net/sw/rdf-formats/> <http://xmlns.org/foaf/0.1/maker> _:a .
_:a <http://xmlns.org/foaf/0.1/weblog> <http://slashdot.jp/~Oliver/journal> .
_:a <http://xmlns.org/foaf/0.1/name> "Oliver M. Bolzer" .

Because of it’s precise and simple syntax and straight accordance with the RDF’s concept of triples
([233]), N-Triples is o en encountered in introductory documents about RDF, such as [258].

205

A.4.3 Quads

When aggregating RDF statements from multiple sources and saving them locally, tracking the origin, or
context, of each statement becomes more and more important. Some storage systems store the URI of
origin together with each triple, forming a “quad". Quads [327] is an extention of N-Triples, adding an
optional forth element for such context information.

Query 42. A single statement that originated at http://www.fakeroot.net/sw/SampleG.rdf, in Quads

<http://www.fakeroot.net/sw/rdf-formats> <http://purl.org/dc/elements/1.1/title>

"A Brief History of RDF ..." <http://www.fakeroot.net/sw/SampleG.rdf> .

¿e speci�cation of Quads includes further extentions such as “compound names” and statement
terminators other than the dot, but the semantics of them are not further explained.

A.4.4 Turtle

While more and more RDF-related tools adopted N3 in addition to RDF/XML, most of them implemented
only a ad-hoc subset of N3, leaving out some of the more complex features that go beyond the RDF model.
In light of such development, Dave Beckett proposed in the end of 2003 a new plain-text format Turtle
([20], [37]), extending N-Triples with some of the commonly used and well understood features of N3,
while staying within the RDF model. Turtle deliberately skips support for rei�cation.

Among the features taken fromN3 are short pre�xes for longURIs and the abbreviations using commas
and semicolons, as well as blank node creation using square brackets and collections. Also the default
character encoding has been changed from US-ASCII to UTF-8.

Query 43. Figure A.1 in Turtle.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
<http://www.fakeroot.net/sw/rdf-formats/> a foaf:Document;
dc:title "A Brief History of RDF Serialization ...";
foaf:maker [
foaf:weblog <http://slashdot.jp/~Oliver/journal>;
foaf:name "Oliver M. Bolzer"] .

Example 43 is identical to Example 39 given above for N3 above, due to Turtle being mostly a subset of
N3.

A.4.5 TriG

TriG [55] is the newest in the plain-text line of formats descending from N3, proposed by Chris Bizer.
Dubbed as “a compact and readable alternative to the XML-based TriX” [55], TriG extends Turtle beyond
theb RDF model by adding support for serializing multiple graphs in one �le, with the ability to give each
a distinct name [101].

Query 44. Figure A.1 with additional name in TriG.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
@prefix fakeroot: <http://www.fakeroot.net/sw/> .
fakeroot:SampleG { fakeroot:rdf-formats/ a foaf:Document;
dc:title "A Brief History of RDF Serialization ...";

206

foaf:maker [
foaf:weblog <http://slashdot.jp/~Oliver/journal>;
foaf:name "Oliver M. Bolzer"] .
}

Example 44 shows the graph from Figure A.1, given the name http://www.fakeroot.net/sw/SampleG .
It’s triples are grouped together using curly braces, with the name prepended.

A.5 Triple-based XML Formats

During 2003, while completing the revision of RDF/XML,Dave Beckett summarized the inherent problems
of RDF/XML and collected requirements and ideas for new serializations formats in [36]. Based on the
experiences with N3 and RPV (see below), Beckett argued, that such a formats should be closely based on
the RDF graph via the terminology in [233] and be minimal in the number of alternate forms for the same
RDF graph.

¿ough not a format proposal, [36] de�nes the up-to-date most extensive list of requirements for a
new XML format.

A.5.1 RPV

In 2002, despite the increasing popularity of N3, Tim Bray still felt the need for a XML based format and
created RPV [68] in order to leverage XML’s diverse assets, such as support for Internationalization and
widely-deployed base of so ware. ¿e goals was to create a format that was entirely unambiguous and
highly human-readable, by emphasizing the triples that make up a RDF graph.

RPV takes a subject centric view on triples, collecting statements about a single resource together,
similar to the Normalized RDF approach by Robie. Instead of using property names as element names,
RPV utilizes only two tags: R (as in resource) and PV (as in property/value). URIs are speci�ed using the
attributes r, p and v for resource, property and value, respectively. Blank nodes are emulated by giving a R
element an id attribute but no r attribute.
Query 45. Figure A.1 in RPV.

<R r="http://www.fakeroot.net/sw/rdf�formats/">
<PV p="http://www.w3.org/1999/02/22�rdf�syntax�ns#type" v="http://xmlns.org/foaf/0.1/Document" />
<PV p="http://purl.org/dc/elements/1.1/title">A Brief History of RDF ...</PV>
<PV p="http://xmlns.org/foaf/0.1/maker" v="#oliver" />
</R>
<R id="oliver">
<PV p="http://xmlns.org/foaf/0.1/weblog" v="http://slashdot.jp/~Oliver/journal" />
<PV p="http://xmlns.org/foaf/0.1/name">Oliver M. Bolzer</PV>
</R>

In order to abbreviate long URIs, RPV allows the use of the attributes rBase, pBase, and vBase,
providing base URIs similar to xml:base for resource, property and value, respectively. ¿ese bases apply
to the element and all contained elements. As only one such base is allowed for each type, the usability is
very limited in situations using vocabularies with varying pre�xes.
Query 46. RPV with abbreviated URIs.

<R r="http://www.fakeroot.net/sw/rdf�formats/"
pBase="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
vBase="http://xmlns.org/foaf/0.1/" >
<PV p="type" v="Document" />
<PV p="http://purl.org/dc/elements/1.1/title">A Brief History of RDF ...</PV>

207

<PV p="http://xmlns.org/foaf/0.1/maker" v="#oliver" />
</R>

RPV supports rei�cation using the rpv attribute on a R element, pointing to another R element’s id.
In Example 46, in the �rst R element, identi�ed as foo by the id attribute, statements are made about
Mobuy_Dick. ¿en in the second R element, pointing to the �rst R element using the rpv attribute, the
statements are stated to be not trustable.

Query 47. Rei�cation in RPV.

<R id="foo" r="http://example.org/Moby_Dick">
<PV p="http://xmlns.com/foaf/0.1/maker" v="http://example.org/Oliver" />
</R>
<R rpv="#foo">
<PV p="http://example.org/trustable" v="http://example.org/false" />
</R>

¿ough never actually used in any implementation, RPV animated others to pursue the goal of a
XML-based format that emphasizes the triples instead of trying to somehow map RDF graphs to XML
trees.

A.5.2 TriX

Following up on the requirements proposed by Beckett, Jeremy J. Carroll and Patrick Stickler in [102]
designed the XML-based format TriX. ¿e authors take an unique approach by �rst de�ning an absolutely
minimal base format without any abbreviations and then using XSLT for syntactic extentions, together
with stylesheets that convert to the base format. In addition, TriX goes beyond the original RDF model by
supporting Named Graphs [101] and literals as subjects.

A TriX document contains one or more graphs, each optionally with a name. Each graph consists
of one or more triples. ¿e triple element is the core of TriX, containing three children. ¿e position
of each child determines whether the child is the subject, the property or the object of the triple. ¿e
element used identi�es it’s type.¿e uri element is used for unabbreviated URIs, while the id element is
used for identifying blank nodes. plainLiteral is used for String literals, while typedLiteral is used
for any other type of literal in combination with a datatype attribute.

Query 48. Figure A.1 in TriX.

<TriX xmlns="http://www.w3.org/2004/03/trix/trix�1/">
<graph>
<uri>http://www.fakeroot.net/sw/SampleG</uri>
<triple>
<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
<uri>http://xmlns.org/foaf/0.1/Document</uri>
</triple>
<triple>
<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<uri>http://purl.org/dc/elements/1.1/title</uri>
<plainLiteral>A Brief History of RDF Serialization Formats</plainLiteral>
</triple>
<triple>
<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<uri>http://xmlns.org/foaf/0.1/maker</uri>
<id>x</id>
</triple>
<triple>
<id>x</id>
<uri>http://xmlns.org/foaf/0.1/weblog</uri>

208

<uri>http://slashdot.jp/~Oliver/journal/</uri>
</triple>
<triple>
<id>x</id>
<uri>http://xmlns.org/foaf/0.1/name</uri>
<plainLiteral>Oliver M. Bolzer</plainLiteral>
</triple>
</graph>
</TriX>

Example 48 is the sampleRDFgraph serialized using the basic TriX format. ¿ename http://www.fakeroot.net/
sw/SampleG is attached to it via the uri element directly under graph. ¿ough being very verbose, the
triples are clearly identi�able.

TriX allows syntactic extentions that make the syntax more human-friendly through the use of XSLT.
One popular trick to increase readability of RDF serializations is to allow a XML QName-like abbreviation
for URIs. By declaring an appropriate stylesheet processing instruction, TriX allows such syntactic sugar.
Example 49 is one triple from the graph serialized in TriX, using the qname element to abbreviate long
URIs.

Query 49. Syntactic Extentions in TriX using XSLT.

<?xml-stylesheet type="text/xml"
href="http://www.w3.org/2004/03/trix/all.xsl" ?>
<TriX xmlns="http://www.w3.org/2004/03/trix/trix�1/"
xmlns:rdf="http://www.w3.org/1999/02/22�rdf�syntax�ns#"
xmlns:foaf="http://xmlns.org/foaf/0.1/" >
<graph>
<triple>
<uri>http://www.fakeroot.net/sw/rdf-formats/</uri>
<qname>rdf:type</qname>
<qname>foaf:Document</qname>
</triple>
</graph>
</TriX>

Other syntactic sugars demonstrated by the authors of TriX include the use of xml:base as another
method for URI-abbreviation, tags for speci�c typed literals and collections. ¿e authors even go as far as
suggesting RDF/XML as an TriX extention, based on the possibility of writing an RDF/XML parser in
XSLT.

A.5.3 RXR

Discontent with TriX’s decision to support features beyond the original RDF model, it’s dependency on
XSLT and the risk of ad-hoc extentions, Dave Beckett continued with the work he had began in [36] and
formulated in [21] another proposal for a triple-centric XML-based format, RXR (Regular XML RDF).

Similar to TriX, the triple element, containing three children, is at the heart of RXR. But, instead
of relying on the position, the children’s roles are unambiguously identi�ed by the elements subject,
predicate and object. URIs are then given as value to the uri attribute, while literals are given as element
content, with an optional datatype attribute. Blank nodes are speci�ed with the blank attribute.

Query 50. Figure A.1 in RXR.

<graph xmlns="http://ilrt.org/discovery/2004/03/rxr/">
<triple>
<subject uri="http://www.fakeroot.net/sw/rdf�formats/" />
<predicate uri="http://www.w3.org/1999/02/22�rdf�syntax�ns#type" />
<object uri="http://xmlns.org/foaf/0.1/Document" />

209

</triple>
<triple>
<subject uri="http://www.fakeroot.net/sw/rdf�formats/" />
<predicate uri="http://purl.org/dc/elements/1.1/title />
<object>A Brief History of RDF Serialization Formats</object>
</triple>
<triple>
<subject uri="http://www.fakeroot.net/sw/rdf-formats/" />
<predicate uri="http://xmlns.org/foaf/0.1/maker" />
<object blank="x" />
</triple>
<triple>
<subject blank="x" />
<predicate uri="http://xmlns.org/foaf/0.1/weblog" />
<object uri="http://slashdot.jp/~Oliver/journal/" />
</triple>
<triple>
<subject blank="x" />
<predicate uri="http://xmlns.org/foaf/0.1/name" />
<object>Oliver M. Bolzer</object>
</triple>
</graph>

Example 50 shows again the RDF graph from Figure 1, this time serialized using RXR. Despite it’s
verbosity, the triples are clearly recognizable.

RXR does not allow any abbreviations of URIs or other complexities such as XML literals. One notable
exception are collections, supported by RXR through the collection element. Multiple statements with
the same subject and predicate can be aggregated using this facility.
Query 51. Collections in RXR.

<graph xmlns="http://ilrt.org/discovery/2004/03/rxr/">
<triple>
<subject uri="http://example.org/box" />
<predicate uri="http://example.org/contains" />
<collection>
<object>apple</object>
<object>pear</object>
<object>potato</object>
</collection>
</triple>
</graph>

¿ree tripled are contained in Example 51. ¿e same triples could also have been written separately,
using three triple elements.

A.6 Features Overview

Feature�Format RDF/XML XMP N3 N-Triples Turtle TriG RPV TriX basic TriX ext. RXR
XML X X X X X X

URI abbreviation X X X X X X X
Statement Aggregation X X X X X X

Deep Nesting X X X X X
Blank Nodes X X X X X X X X X X
Collections X X X X X X X
Typed Literals X X X X X X X X X
Rei�cation X X X* X X* X*

Features beyond RDF X X X X
*: Rei�cation using Named Graphs

210

Normalized RDF, the Unstriped Syntax and Simpli�ed Syntaxe are not listed, as they were only
incomplete sketches and not concrete format proposals.

A.7 Genealogy

Figure A.2 is an attempt at portraying the genealogy of the formats described in this document. ¿e newer
formats were obviously in�uenced by most if not all preceding formats. Yet some had a stronger in�uence,
others less. ¿e depicted a�nities are based on citations by the proposals and statements made by the
respective authors.

Figure A.2 Genealogy of RDF serialization formats
(“Beckett, 2003” refers to [36]. ¿ough not a concrete format proposal itself, it is included here as a major source of
inspiration and guidance for the subsequent format proposals.)

Successor or Revision

Textual non-XML FormatXML Format

RDF/XML

N3

Unstriped
Syntax

Simplified
Syntax XMP

Normalized
RDF RPV

Beckett, 2003

RXR

TriX

RDF/XML
(revised)

N-Triples Turtle
TriG

1999 2000 2001 2002 2003 2004

Extension Simplification/Restriction Notable Influence

A.8 Conclusions

¿e challenge of serializing RDF graphs and the dissatisfaction of the Semantic Web community with
RDF/XML has brought forward numerous proposals for alterternate serialization formats, most of which
have been described here. A er various early attempts to simplify RDF/XML failed to gain support, the
idea of directly mapping RDF nodes and edges to XML elements appears to have been abandoned in favor
of a more triple-centric view of RDF graphs.

N3 has seen wide adoption by the Semantic Web community as a triple-centric and human-friendly
format. However actual implementations vary greatly in the supported features of N3. Current devel-
opments indicate a high chance that future implementations will standardize on Turtle as an adequate
common denominator of the N3-based proposals.

Still, many in the community feel the need for a triple-centric XML-based format, in order to facilitate
interchange between heterogenous systems leveraging existing XML tools. TriX and RXR are the current

211

contestants for such a format, but it is still too early to speculate on which will prevail.
Considering the disputes concerning support for new features like graph naming and literals as subjects,

it is likely that the world will see yet more format proposals in the near future. Until some consensus is
reached, RDF/XML remains the only formally standartized format all implementations must support.

212

Appendix B

Evaluation Tables

For space reasons, the detailed evaluation results are given for only a limited selection of languages.
¿e full details can be obtained from the authors and are available on the working group page: http:
//rewerse.net/I4.

213

http://rewerse.net/I4
http://rewerse.net/I4

214

Appendix C

Revision History1

¿e content of this deliverable has been revised several times since its publication in August 2004. As part
of this revision process additional authors have contributed to the survey, e.g., with a more in-depth look
at XSLT, with a section on query languages and rule interchange at the W3C, and with a complete revision
of the RDF part focusing more on language constructs and evaluation methods.

¿e �rst major revision of the presented material orginiates from a course on Web and Semantic Web
query languages for the REWERSE “Reasoning Web” summer school 20052. For this summer school the
material of the deliverable has been revised to give the surveyed languaguages a more uniform treatment
and to clarify the main aspects of query language research in each area. ¿e material has been published
in an LNCS tutorial volume [24].

For the XML Tage 20063 a tutorial based on the content of this survey is under preparation. It will
focus on the di�erent forms of Web query languages with particular emphasis on W3C recommendations.
¿ematerial has been updated from the 2005 “Reasoning Web” summer school and a look at the relation
between query languages and recent standardization activities on rule languages for the Web has been
added.

Finally, a revision focusing on the RDF part of thematerial is underway for the ReasoningWeb summer
school 20064. ¿is revision focuses only on RDF query languages, but emphasizes in that part common
or innovative language constructs and evaluation methods.

Overall these revisions have contributed to (a) disseminate the content of the deliverable D1 to a
wider audiences and (b) to re�ne the survey in particular areas, most notably RDF query languages and
rule-based query languages.

1Major revisions from deliverable I4-D1.
2http://reasoningweb.org/2005/
3http://www.xmltage.de/
4http://reasoningweb.org/2006/

215

http://reasoningweb.org/2005/
http://www.xmltage.de/
http://reasoningweb.org/2006/

	Introduction
	Selection of Evaluation Criteria
	Selection of Surveyed Query Languages

	Preliminaries
	Collection of Sample Data

	Evaluation Criteria
	Ease of Use
	Functionality
	Supported Query Types
	Adequacy
	Evolution and Reactivity

	Semantics
	Formal Properties and Implementation
	Reasoning
	Ontology Awareness
	Type system

	Query Languages for the Web: An Overview
	XML Query Languages
	Textual XML Query Languages
	Navigational Languages
	Lorel
	XPath
	XQL
	XSLT
	XQuery/Quilt
	FXT
	XPathLog
	CXQuery

	Positional Languages
	XML-QL
	UnQL
	XML-RL
	XMAS
	XET/XDD
	Xcerpt

	RDF Query Languages
	SquishQL-family
	SquishQL
	rdfDB Query Language
	RDQL
	BRQL
	TriQL

	Query Languages influenced by XPath, XSLT or XQuery
	XQuery for RDF: ``The Syntactic Web'' Approach
	XsRQL: An XQuery-style RDF Query Language
	XSLT for RDF: TreeHugger and RDF Twig
	RDFT and Nexus Query Language: XSLT-style RDF Query Languages
	XPath-syle Access to RDF: RDF Path, RPath and RxPath
	Versa

	RQL-family
	RQL
	SeRQL
	eRQL

	Query Languages using a Controlled Natural Language
	Metalog

	Others
	Algae
	iTQL
	N3QL
	PerlRDF Query Language
	R-DEVICE Deductive Language
	RDF-QBE
	RDFQL
	TRIPLE
	WQL

	Topic Maps Query Languages
	tolog: Logic Programming for Topic Maps
	AsTMA?: Functional-style Querying of Topic Maps?
	Toma: Querying Topic Maps inspired by SQL
	Path-based Access to Topic Maps
	XTMPath
	TMPath

	OWL Query Languages
	OWL-QL

	Evaluation Results
	A Classification Scheme for Web Query Languages
	Observations on the State of the Art of Web Query Languages

	Conclusion and Outlook
	Web and Semantic Web Query Languages
	Introduction
	Structure.

	Preliminaries
	Three Data Formats: XML, RDF and Topic Maps
	XML.
	RDF and RDFS.
	Topic Maps.

	Running Example: Classification-Based Book Recommender
	Sample Data in RDF.
	Sample Data in Topic Maps.
	Sample Data in XML.

	Sample Queries
	Selection and Extraction Queries.
	Reduction Queries.
	Restructuring Queries.
	Aggregation Queries.
	Combination and Inference Queries.

	XML Query and Transformation Languages
	W3C's Query Languages: Navigational Approach
	Data Selection with XPath
	The Transformation Language XSLT
	The Query Language XQuery

	Research Prototypes: The Positional Approach to XML Querying
	Characteristics of the Positional Approach.
	UnQL.
	XML-QL.
	XMAS.
	XML-RL.
	TQL.
	Xcerpt.
	XML-GL.
	X2's visual interface.

	RDF Query Languages
	The SPARQL Family
	Basic RDF Access: SquishQL and RDQL.
	SPARQL.
	TriQL.

	The RQL Family
	RQL.
	SeRQL.
	 eRQL.

	Query Languages inspired from XPath, XSLT or XQuery
	XQuery for RDF: The ``Syntactic Web Approach''.
	XSLT for RDF: TreeHugger and RDF Twig.
	Versa.
	Path-Based Access to RDF: RDF Path, RPath, RxPath, RxSLT, and RxUpdate.
	RDFT and the Query Language of Nexus: XSLT-Style RDF Query Languages.

	Metalog: Querying in Controlled English
	Query Languages with Reactive Rules.
	Algae.
	iTQL.
	WQL.

	Deductive Query Languages
	N3QL.
	R-DEVICE.
	TRIPLE
	Xcerpt.

	Other RDF Query Languages
	RDFQL.

	Topic Maps Query Languages
	tolog: Logic Programming for Topic Maps
	AsTMA?: Functional Style Querying of Topic Maps
	Toma: Querying Topic Maps inspired from SQL
	Path-based Access to Topic Maps: XTMPath and TMPath

	Conclusion: Salient Aspects of the Query Languages Considered

	Rich Clients need Rich Interfaces Query Languages for XML and RDF Access on the Web
	Tutorial Details
	Outline of the Tutorial

	RDF Querying: Language Constructs and Evaluation Methods Compared
	A Brief History of RDF Serialization Formats
	Introduction
	RDF/XML: The W3C Recommendation
	Simplified Syntaxes for RDF/XML
	Unstriped Syntax
	Simplified Syntax
	XMP
	Normalized RDF
	RxML

	Plain-Text Formats
	Notation 3
	N-Triples
	Quads
	Turtle
	TriG

	Triple-based XML Formats
	RPV
	TriX
	RXR

	Features Overview
	Genealogy
	Conclusions

	Evaluation Tables
	Revision History

