
A2-D5

Links to other WGs

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Dresden/A2-D5/D/PU/b1
Responsible editors: Loı̈c Royer and Michael Schroeder
Reviewers: Gihan Dawelbait and Albert Burger
Contributing participants: Dresden, Munich, Zurich
Contributing workpackages: A2
Contractual date of deliverable: 31 August 2006
Actual submission date: 31 August 2006

Abstract
The deliverable gives an overview over A2’s links to workinggroups I2, I4, and I5. It discusses how
the language ACE can be used for extraction of protein interactions from literature (A2/I2), how Xcerpt
can be used to query bioinformatics contents (A2/I4), and how Prova can be used to implement reactive
bioinformatics workflows (A2/I5).

Keyword List
Bioinformatics and querying, bioinformatics and reactivity, bioinformatics and reasoning

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth Frame-

work Programme.

c© REWERSE 2006.



ii



Links to other WGs

François BryMun, Gihan DawelbaithDre, Norbert FuchsZur Tim FurcheMun, Tobias KuhnZur,
Benedikt LinseMun, Loı̈c RoyerDre, Michael SchroederDre,

Dre Technische Universität Dresden, Germany,Mun LMU Munich Zur University of Zurich,

31 August 2006

Abstract
The deliverable gives an overview over A2’s links to workinggroups I2, I4, and I5. It discusses how
the language ACE can be used for extraction of protein interactions from literature (A2/I2), how Xcerpt
can be used to query bioinformatics contents (A2/I4), and how Prova can be used to implement reactive
bioinformatics workflows (A2/I5).

Keyword List
Bioinformatics and querying, bioinformatics and reactivity, bioinformatics and reasoning



iv



Contents

1 Introduction 1

2 Improving Text Mining with Controlled Natural Language: A Case Study for Protein Interactions (A2/I2) 3
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 3
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3

2.3.1 Formalization of Scientific Results . . . . . . . . . . . . . . .. . . . . . . . . 4
2.3.2 Attempto Controlled English . . . . . . . . . . . . . . . . . . . . .. . . . . . 4
2.3.3 Comparison of Knowledge Representation Languages . .. . . . . . . . . . . 5

2.4 Ontology for Protein Interactions in ACE . . . . . . . . . . . . .. . . . . . . . . . . 5
2.4.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Ontology Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6
2.4.3 Ontology for Protein Interactions . . . . . . . . . . . . . . . .. . . . . . . . 7

2.5 ACE Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8
2.5.1 ACE Summaries for 89 Selected Articles . . . . . . . . . . . . .. . . . . . . 8
2.5.2 ACE Summary as an Integral Part of an Article . . . . . . . . .. . . . . . . . 10
2.5.3 Authoring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

2.6 The Benefits of our Approach . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 13
2.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15

3 Querying Semantic Web Contents:A Case Study In Bioinformatics(A2/I4) 18
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 18
3.3 Data Integration in Bioinformatics . . . . . . . . . . . . . . . . .. . . . . . . . . . . 19
3.4 Case Study: ProteinBrowser . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 20

3.4.1 Prova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Workflow solved with Prova . . . . . . . . . . . . . . . . . . . . . . . .. . . 22
3.4.3 XQuery and XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.4.4 The Workflow Solved with XQuery . . . . . . . . . . . . . . . . . . . .. . . 25
3.4.5 Xcerpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.6 The Workflow solved with Xcerpt . . . . . . . . . . . . . . . . . . . .. . . . 28

3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 31
3.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 33

4 Prova: Rule-based Java Scripting for Distributed Web Applications:A Case Study in Bioinformatics (A2/I5) 36
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 36
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 36
4.3 Prova and Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 37

4.3.1 Main features of Prova’s reaction rules . . . . . . . . . . . .. . . . . . . . . . 37
4.4 The GoProtein tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 39
4.5 Prova code for GoProtein . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 40
4.6 Comparison and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 43

4.6.1 JESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.2 XChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.3 ruleCore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

v



5 Conclusion 46

vi



Contents

1 Introduction

The A2 group works toward a semantic web for the life sciences. As documented in previous deliver-
ables, A2 has developed various use cases and applications using rules and reasoning on the web. Here,
we document how A2 links to the I-technology working groups.There are five technology working
groups:

• I1, rule mark up: This working group is a prerequisite for other I-groups, as it defines syntax and
markup. There is no direct link to A2.

• I2, policy languages, enforcement, composition: Among others the I2 group works on ACE,
Atempto Controlled English. We show how this formal language can be used for text-mining of
biomedical literature. The result of this collaboration between I2 and A2 has been published in:

– Tobias Kuhn, Loı̈c Royer, Norbert E. Fuchs, and Michael Schroeder. Improving text min-
ing with controlled natural language: A case study for protein interactions. In Ulf Leser,
Barbara Eckman, and Felix Naumann, editors, Proc. of 3rd International Workshop on Data
Integration in the Life Sciences 2006 (DILS’06), volume LNBI. Springer, 2006

• I3, composition and typing: Typing is an important mechanism to achieve consistency of a model.
In systems biology, there are mark-up languages, which allow sharing of metabolic networks.
Typing is useful for such networks to infer properties of proteins and interactions. The Paris
group, who is a member of I3 and A2, has developed the Biocham system and has developed a
type system for it, which is published in:

– François Fages, Sylvain Soliman, Type Inference in Systems Biology, Proceedings of Com-
putational Methods in Systems Biology, CMSB 2006.

• I4, querying: A central working group of REWERSE is dedicated to query languages for the web.
As discussed in previous deliverables, bioinformatics poses specific requirements to querying, as
data can be large, distributed, and in varying formats such as text, HTML, XML. A2 groups from
Bucarest, Dresden, and Edinburgh have cooperated with I4 todiscuss and address these problems.
The results have been published in 4 papers. The two papers byBry et al. discuss general design
principles for the semantic web. Doms et al. and Royer et al. compare the concrete query
languages Xcerpt and Prova.

– François Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian Schaffert, and Sacha
Berger: Querying the Web Reconsidered: Design Principles for Versatile Web Query Lan-
guages. International Journal of Semantic Web and Information Systems (IJSWIS) 1 (2),
April-June 2005

– François Bry, Christoph Koch, Tim Furche, Sebastian Schaffert, Liviu Badea, Sacha Berger:
Querying the Web Reconsidered: Design Principles for Versatile Web Query Languages.
Int. J. Semantic Web Inf. Syst. 1(2): 1-21 (2005)

– Andreas Doms, Tim Furche, Albert Burger, and Michael Schroeder. How to query the
GeneOntology. In Catherine Bounsaythip, editor, Proc. of KRBIO’05: Symposium on
Knowledge Representation in Bioinformatics, 2005

1



– Loı̈c Royer, Benedikt Linse, Thomas Wchter, François Bry,and Michael Schroeder. Query-
ing the semantic web: A case study. In Christopher Baker and Kei-Hoi Cheung, editors,
Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences. Springer, 2006

• I5, reactivity and evolution: The I5 group develops a general framework for reaction rules in-
cluding concrete implementations such as Prova and RuleCore. A2 and I5 collaborate on Prova,
a language specifically designed for systems integration inbioinformatics. Kozlenkov et al. dis-
cusses a use case involving a client/server architecture with remote servers, which implement a
workflow integrating detailed information for proteins from remote sites.

– Alex Kozlenkov, Rafael Penaloza, Vivek, Nigam, Loı̈c Royer, Gihan Dawelbait, and Michael
Schroeder. Prova: Rule-based Java Scripting for Distributed Web Applications: A Case
Study in Bioinformatics. In Sebastian Schaffert, editor, Proceedings of Workshop on Reac-
tivity on the Web at the International Conference on Extending Database Technology (EDBT
2006). Springer, 2006

To summarise, the collaboration between I-groups and A2 aredocumented in 7 papers spanning a
wide range of technologies from I2, I3, I4, and I5. Here, we give details of the collaboration between
A2 and I2 (chapter 2), A2 and I4 (chapter 3), A2 and I5 (chapter4).

2



2 Improving Text Mining with Controlled Natural Language: A
Case Study for Protein Interactions (A2/I2)

2.1 Abstract

Linking the biomedical literature to other data resources is notoriously difficult and requires text mining.
Text mining aims to automatically extract facts from literature. Since authors write in natural language,
text mining is a great natural language processing challenge, which is far from being solved. We propose
an alternative: If authors and editors summarize the main facts in a controlled natural language, text
mining will become easier and more powerful. To demonstratethis approach, we use the language
Attempto Controlled English (ACE). We define a simple model to capture the main aspects of protein
interactions. To evaluate our approach, we collected a dataset of 459 paragraph headings about protein
interaction from literature. 56% of these headings can be represented exactly in ACE and another 23%
partially. These results indicate that our approach is feasible.

2.2 Introduction

We introduce a new paradigm of how to make knowledge of scientific papers accessible by computers.
We focus on the fields of life sciences – particular biology – but our approach could be used in other
fields as well.

Our approach consists of letting authors express their scientific results in a formal summary that
could be an integral part of the papers they publish. We arguethat it is more reasonable to let the
authors formalize their own results, instead of trying to extract these results from the articles.

This section explains our motivation, introduces the language Attempto Controlled English (ACE)
and compares it with other knowledge representation languages. Section 2.4 shows how ACE is used
to build an ontology for protein interactions. In Sect. 2.5 we use this ontology as foundation for the
expression of scientific results and we show how 89 selected articles could have been summarized in
ACE. Section 2.6 shows the benefits of our approach and Sect. 2.7, finally, gives a short outlook.

2.3 Motivation

Biomedical scientists are challenged by an ever-increasing amount of scientific papers. The indexing
servicePubMed1 shows the huge quantity of literature that the scientists have to face. It contains at the
moment 16 million articles and grows every year by over 600’000 articles. All these biomedical articles
are written in natural language. That means that we cannot easily process them with computers. But,
facing the quantity of literature, it is clear that we need computational support in order to manage the
contained knowledge.

In the last years,text miningandinformation extraction– which build both upon natural language
processing (NLP) – gained an increasing interest in biomedical sciences. They aim to extract some kind
of formal knowledge from natural language texts, which is generally considered a very demanding task.
Even the basic problem ofnamed entity recognition, that aims to identify named entities (e.g. protein
names) in natural texts, is far from being solved. Other major aspects of text mining are the extraction
of relationships (e.g. protein interactions), the automatic classification of texts, and the generation of
new hypotheses on the basis of the available literature [3].TheBioCreAtIvEcontest [21] nicely shows,
that even sophisticated tools for text mining have a considerable lack of precision and recall: For a

1http://www.pubmed.gov

3



simple “named entity recognition”-task the precision ranged up to 86% and the recall was at most 84%.
Another attempt is described in [4]: Information about protein-interactions was extracted from a data set
of 1.2 million sentences that were taken from biomedical abstracts. They achieved a precision of 91%,
but with a poor recall of only 21%. We recommend [3] and [12] for a more comprehensive overview of
the “accomplishments and challenges” of text mining.

As a first step towards a better management of biomedical literature, controlled vocabularies like
MeSH2 and theGene Ontology3 have been created. They serve to classify biomedical publications
and to link them to other resources.GoPubMed4, for example, is a search engine that connects the
abstracts from PubMed with the formal structure of the Gene Ontology. Thus a researcher can exploit
the Gene Ontology for the search of relevant literature. Such tools are very valuable for scientists
and there has been a notable progress in the last years, but itwill never be possible to extract all the
information correctly. There is inherent ambiguity and vagueness in natural language that prevents its
perfect processing by computers.

For this reason we present an alternative approach: The authors of scientific articles formally sum-
marize their own results. Such formal summaries are added tothe articles which makes them processable
by computers. This requires a formal language that on the onehand is easy to learn and understand, and
on the other hand is expressive enough to represent even complicated scientific results. It is clear that
this approach is not applicable for papers that have been written without the formal summaries, and that
means that we still need NLP or manual extraction for such papers. Thus we propose rather a concept
for the future than a solution for today’s problems. To explore our approach we use Attempto Controlled
English as knowledge representation language.

2.3.1 Formalization of Scientific Results

Since we want to access scientific results by computers, we have to formalize this knowledge at some
point. Today researchers write their results in natural language. To extract these results and to formalize
them, manual or computer-supported text mining is necessary. Thus the formalization is accomplished
by computer-programs or by humans, and in either case it is done without the help of the corresponding
researchers. The article is the only source of information.Since such articles are highly domain-specific,
they require a lot of background knowledge. Therefore the formalization is a very demanding task, even
for humans. Altogether this causes a lot of knowledge to be lost in the vast amount of biomedical
literature.

We claim that most of these problems can be solved, if we simply let the authors of scientific articles
formalize their own results. The researchers themselves are the most qualified to understand their results,
and thus they can give the most precise formal representation. This is not even a big extra-effort for a
scientist, since he already has a – more or less – formal modelof the domain in his mind, and must write
an abstract anyway. He just needs to learn how to express his knowledge in a formal way. This means
that we need to provide an intuitive, yet formal language in which a scientist can write his results.

2.3.2 Attempto Controlled English

Attempto Controlled English (ACE)5 is a controlled natural language that has been developed by Nor-
bert E. Fuchs and his group at the University of Zurich. ACE isa subset of natural English with a

2http://www.nlm.nih.gov/mesh/meshhome.html
3http://www.geneontology.org
4see [5] andhttp://www.gopubmed.org
5see [7], [8], andhttp://www.ifi.unizh.ch/attempto/

4



restricted grammar. There are no limitations on the vocabulary, apart from some function words with
predefined meanings (e.g. ‘every’, ‘of’). ACE looks like English, but it is in fact a formal language,
which means that texts can be translated unambiguously intofirst-order logic. Some ACE sentences
would be ambiguous in natural English, but ACE provides interpretation rules that allow in each case
only one reading. The report [13] contains a comprehensive description of the syntax of ACE.

In order to be able to write ACE texts, one has to learn the restrictions on the grammar. Thus, like
every formal language, ACE has to be learned. However, sinceit looks like natural English, everyone
is able to understand ACE texts with almost no training. Thisis a big advantage over other formal
languages.

The Attempto parser APE6 translates ACE texts into Discourse Representation Structures [6]. Such
structures are equivalent to expressions in first-order logic, and thus every ACE sentence has a logical
representation. Furthermore, APE creates a paraphrase that shows the interpretation of an ACE text.
If a writer is not familiar with the ACE interpretation rules, then he can check the paraphrase for the
validation of his ACE text.

2.3.3 Comparison of Knowledge Representation Languages

In order to show the benefits of ACE, we compare it with four other knowledge representation languages:
first-order logic [9], Description Logics (DL) [15], Web Ontology Language (OWL) with its RDF/XML-
syntax [14], and Unified Modeling Language (UML) [2].

We have to state that these four languages are not independent. DL and ACE build upon first-order
logic, and DL are the basis for OWL. While first-order logic and DL focus on the theoretical concepts
of knowledge, OWL, UML, and ACE concentrate on the implementation and application of knowledge
representation. Nevertheless we dare to give a direct comparison between these five languages.

Figure 1 shows how the fact ‘everything that is a protein has aterminus’ is expressed in the five
different languages. The OWL representation (using the RDF/XML syntax) is the most verbose and –
from the human perspective – the least readable one. The representations in first-order logic and DL are
more concise, but they are still not understandable for people who are not familiar with formal notations.
The graphical notation of UML looks nice, but for a non-specialist it is hard to guess the meaning of all
the shapes and arrows. The ACE representation, in contrast,should be immediately understandable for
any English speaking person. It looks perfectly like natural English and thus the reader might not even
recognize that it is a formal language.

We can state that controlled natural languages like ACE minimize the gap between machines and
humans. A reader is able to understand such languages with almost no training. Furthermore, writing
sentences in a controlled natural language is possible withonly little effort, especially if the writer is
supported by an authoring tool (see Sect. 2.5.3).

2.4 Ontology for Protein Interactions in ACE

In order to have a clear basis for the formal representation of scientific knowledge, we defined an on-
tology for proteins and their interactions. This section shows how ACE can be used as an ontology
language, and introduces our ontology for protein interactions.

6http://www.ifi.unizh.ch/attempto/tools/

5



first-order logic ∀X(protein(X) → ∃Y (terminus(Y ) ∧ has(X, Y )))

DL Protein ⊑ ∃has.T erminus

OWL (RDF/XML)

<owl:Class rdf:ID="Protein">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#Terminus"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

UML Protein Terminus

1..*

ACE Every protein has a terminus.

Figure 1: Comparison of first-order logic, DL, OWL, UML, and ACE

2.4.1 Ontologies

The main goal of an ontology is to provide ashared understandingof a certain domain. This shared un-
derstanding can serve as basis for the communication between people, for the interoperability between
systems, for the improvement of reusability and reliability of software systems, and for the specifica-
tion of software [20]. Furthermore ontologies are an excellent basis for the formal representation of
knowledge [11].

Ontologies are not yet broadly established in science, but they are expected to gain a very important
role in the future, especially in life sciences. TheGene Ontologyis the most famous example, although
it is actually more a controlled vocabulary than a real ontology.

2.4.2 Ontology Elements

In order to provide basic structures for ontologies in ACE, we adopt the elements of DL – individuals,
concepts, and roles – and we call themontology elements. Furthermore we introduce an additional
structure: context information.

Individuals. Individuals stand for single objects of the domain. They arerepresented in ACE asproper
nameslike ‘Bub1’ (that stands for a protein) or ‘Alzheimer’ (thatstands for a disease).

Concepts. Concepts stand for sets of objects, and there are two possibilities to express them in ACE.
Common nounsare the most straight-forward way. The noun ‘protein’, for example, can stand for
the concept of all proteins. As a second possibility we can useadjectives(in their positive form).
The adjective ‘organic’, for example, can be used for the concept of all organic substances.

Roles. Roles stand for binary relations between objects, and they can be expressed in four different
ways. First of all, we can usetransitive verbsfor expressing roles. For example, we can use
‘interacts-with’ to express a relationship between proteins. Next, we can combine transitive verbs
with adverbs. For example, we can use the adverb ‘directly’ together withthe transitive verb
‘interacts-with’ to express the role ‘directly interacts-with’. As a third possibility we can useof-
constructslike ‘is a part of’. Due to the syntax of ACE, ‘of’ is the only allowed preposition for

6



���������	
���������� ���������	
���������������	���

���������	
���������������
�����	���������
�������
�������

��

�����	
������

��

��

��

��

�����	
������

�����	
������

��	��

��
�����	����

�������
������

��
���

Figure 2: Context information

nouns. Finally, we can useconstructs with comparative forms of adjectiveslike ‘is larger than’.
Such constructs typically represent transitive relationships.

Context Information. The examination of the results of scientific papers on protein interactions showed
that normal roles are often not sufficient to express the needed information. We can express
simple statements like ‘P1 interacts-with P2’, but we cannot express statements with contextual
information like ‘P1 interacts-with P2 in Yeast’ or ‘P1 interacts-with P2 in Microfilament for
Motor-Activity’. In order to be able to express such results, we want to allow roles to have such
additional information. In natural English we usually express such information with prepositional
phrases, and this is exactly the way we will do it in ACE. Figure 2 illustrates the examples without
and with context information.

Using these ontology elements, we can state for example

P1 is a protein and directly interacts-with P2 in Yeast.

where ‘P1’, ‘ P2’, and ‘Yeast’ are individuals, ‘protein’ stands for a concept, and ‘directly interacts-
with’ stands for a role. The phrase ‘is a’ is used to assign the individual ‘P1’ to the concept ‘protein’.
The conjunction ‘and’ connects the statements flanking left and right. The preposition ‘ in’, finally,
connects to the context ‘Yeast’.

2.4.3 Ontology for Protein Interactions

Since we found no existing ontology that fits our needs, we hadto create our own ontology for protein
interactions. First, we defined concepts that allow us to make statements about the structure of proteins
and protein-complexes. For the sake of a clear structure, weintroduced the conceptprotein-unit, which
is either a protein or a protein-complex, andprotein-component, which is either a protein-unit or a
region of a protein. In order to describe the structure of such regions, we defined concepts like ‘residue’,
‘secondary-structure’, and ‘domain’.

Next, we defined the roles for the description of interactions between proteins like ‘interacts-with’
or ‘binds’. We can also express more complicated interactions like ‘increases the phosphorylation of’.

7



Furthermore, we defined some concepts for expressing additional information about proteins, like
the localization to a certain cellular component or the participation in a certain process. The big picture
of this ontology is shown in Fig. 3.

2.5 ACE Summaries

Our goal is to show how scientists could write formal summaries of their results. There are some
questions that naturally arise: What are these results about? How complex is it to formulate them in a
formal language? In the following we present an empirical study of the feasibility of our approach.

2.5.1 ACE Summaries for 89 Selected Articles

Since we want to show how results of papers about protein interactions could have been written in ACE
in the first place, we picked 89Elsevier-articles that concern protein interactions. Such articles mostly
have a section called “Results” which is subdivided into subsections. The headings of these subsections
are short descriptions of the corresponding results. It turned out that these headings are highly suitable
for a manual translation into ACE. Please note that the intended methodology isnot to express the
results first in natural language and then to translate them into ACE. We do this just to demonstrate the
feasibility of our approach.

The 89 articles contain 457 such headings. 184 of them are ignored, because they are not formulated
as facts (e.g. “Functional characterization of Pellino2”7) or because they contain information that is not
about protein interactions.

total: 457 (100%)
ignored: (not a fact) 87 (19%)

(off-topic) 97 (21%)
used: 273 (60%)

We then tried to translate the 273 remaining headings into ACE. For 154 of them there is a perfect
match, which means that the complete information can be expressed in ACE; e.g. the heading “Interac-
tion of Act1 with TRAF6”8 can be rephrased perfectly as “Act1 interacts-with TRAF6”.For another 62
headings only a part of the information is expressed; e.g. the heading “The mtFabD protein is part of
the core of the FAS-II complex”9 can only partially be rephrased as “MtFabD is a subunit of FAS-II”.
For the remaining 57 headings there is no translation at all.

used: 273 (100%)
matched: (perfect)154 (56%)

(partial) 62 (23%)
unmatched: 57 (21%)

Let us take a closer look at the reason, why 119 headings cannot be rephrased in ACE at all, or
only partially. 56 of them could not be rephrased because their content is not covered by our model, but
they could be expressed with an extended model. Another 21 headings describe relations of relations,
like the heading “Kal-GEF1 activation of Pak does not require GEF activity”10. In this case, there is
a relation between two objects (“Pak activates Kal-GEF1”) and this relation itself stands in another
relation (“... does-not-require GEF-activity”). At the moment, we cannot express such structures in

7see articlePMID 12860405
8see articlePMID 12459498
9see articlePMID 16213523

10see articlePMID 15950621

8



����������

��������	
�
�������

��������	
�
�������

������� ��
����������������

�����	�������������������� �����	
������

���������� ���������� 	
��	���
�� ���	������

��	��

��	�
�����
���	������

continuant������

��������������

�����

�����������

������ ����������
��

�����
 ��

����
����

�������	�������

�	������
����
�������
��������

�
���	�����

�	��������������������

�
	����������	��������
�
���������������

����	�������
 ����	�������
 ��	��������

	���	����������

�
���
	���������

��
���	
�������

��

�
	���������

��	�������
��������������������

�������

���
����
����������

Figure 3: The structure of the ontology for protein interactions

9



ACE in a satisfying way. But there are attempts to extend the language ACE, and we hope that we
will be able to express such statements in the future. Furthermore there are 11 headings with fuzzy
statements (e.g. “ANKRD contains potential CASQ2 binding sequences ...”11) and 31 headings that we
could not understand without reading the whole article.

not perfectly matched: 119 (100%)
not covered by our model: 56 (47%)
relations of relations: 21 (18%)
fuzzy: 11 (9%)
not understood: 31 (26%)

Thus, altogether we could rephrase 79% of the relevant headings, either partially or perfectly. This
makes us confident that our approach is feasible for practical use. The reason, why 119 headings are
not rephrased perfectly, is mostly our simple model and our lack of understanding. If we used a more
detailed model, and if we let the scientists themselves express their own results in ACE, then we expect
to be able to express much more than 79% of the results.

2.5.2 ACE Summary as an Integral Part of an Article

Since ACE looks like natural English, every reader of a scientific article is able to understand ACE
texts. Thus the ACE summary of the results could be an integral part of the article. Figure 4 shows
how an article with an ACE summary could look like12. Figure 5 shows the corresponding logical
representation as a Discourse Representation Structure (consult [6] for details). As we see, the natural
looking ACE summary can be translated automatically into a formal representation which is processable
by computers.

Together with the abstract and a keyword list, the ACE summary gives a concise insight into the
content. In contrast to the abstract, the ACE summary is readable by both, humans and machines;
and in contrast to the keyword list, the ACE summary does not only mention the objects of interest, but
describes the relations among them. Thus, every published article could be a contribution to a constantly
growing knowledge base.

2.5.3 Authoring Tool

Now we sketch a tool that would help writing ACE texts. It would guide the user step by step and would
need almost no training. Similar systems are the look-aheadeditorECOLE[17, 18], the natural language
interfaceLingoLogic[19], and theGinseng-system [1]. Our tool would solve several problems:

• The tool would help the user to comply with the standard nomenclature. The user would only be
allowed to use the defined words. It would also prevent typingerrors.

• It would make sure that the created sentences comply with theACE syntax. At every stage, the
tool would allow to proceed only in a way that leads to a correct ACE sentence. Thus the user
would not need to know about the syntax of ACE.

• The tool would be aware of the structure of the ontology. In this way it would make sure, for
example, that the domains and ranges of roles are respected.

11see articlePMID 15698842
12articlePMID 12419313is used for this example

10



The β2-adaptin clathrin adaptor interacts

with the mitotic checkpoint kinase BubR1

Corinne Cayrol, Céline Cougoule, Michel Wright

Abstract

The adaptor AP2 is a heterotetrameric complex that associates
with clathrin and regulatory proteins to mediate rapid endocytosis
from the plasma membrane. Here, we report the identification of ...

Keywords: Protein interactions; Two-hybrid; Vesicular traffic; Adaptor

protein; Protein kinase; Mitotic checkpoint.

ACE Summary: Beta2-Adaptin binds BubR1 in Yeast-Two-Hybrid. A

trunk-domain of Beta2-Adaptin interacts-with BubR1. Bub1 interacts-with the

trunk-domain of Beta2-Adaptin. Bub1 interacts-with every beta-sheet of AP

and BubR1 interacts-with every beta-sheet of AP.

Figure 4: Article with ACE summary

A B C D E F G H I

object(A,atomic,namedentity,object,cardinality,countunit,eq,1), named(A,‘Beta2-Adaptin’)
object(B,atomic,namedentity,object,cardinality,countunit,eq,1), named(B,‘BubR1’)
object(C,atomic,namedentity,object,cardinality,countunit,eq,1), named(C,‘Yeast-Two-Hybrid’)
object(D,atomic,namedentity,object,cardinality,countunit,eq,1), named(D,‘Bub1’)
object(E,atomic,namedentity,object,cardinality,countunit,eq,1), named(E,‘AP’)
predicate(F,unspecified,bind,A,B), modifier(F,unspecified,in,C)
object(G,atomic,‘trunk-domain’,object,cardinality,count unit,eq,1)
relation(G,‘trunk-domain’,of,A)
predicate(H,unspecified,interactwith,G,B)
predicate(I,unspecified,interactwith,D,G)

J

object(J,atomic,‘beta-sheet’,object,
cardinality,countunit,eq,1)

relation(J,‘beta-sheet’,of,E)

⇒

K

predicate(K,unspecified,interactwith,D,J)

L

object(L,atomic,‘beta-sheet’,object,
cardinality,countunit,eq,1)

relation(L,‘beta-sheet’,of,E)

⇒

M

predicate(M,unspecified,interactwith,B,L)

Figure 5: DRS-representation of the ACE summary

11



We give now an example how this tool could be used. Suppose that an author of the article that is
shown in Fig. 4 wants to write down the fact that the proteinBub1interacts with the proteinβ2-Adaptin
via its trunk domain.

The sentences are created step by step by a simple menu. At thebeginning there is just an empty
sentence that might look like this:

���� �

The quotes indicate the beginning and the end of the sentenceand the box in the middle is used to
create the content. If the user clicks on it, then a menu is displayed that shows the different options for
beginning a sentence. Since we want to talk about the proteinBub1we first insert ‘Bub1’ as a proper
name. This looks as follows.

���� �

���������	� �

���

����	
�

����

���	�����

������������

���	����	
�

���
�����	�����


����������	�����


	������������
���

�����������������

�

�

�

�

�������������	����

���������

������

���
���

���
�����	����

�

�

� �������������

������

������

���

������

�� ��

������

Proper names are hierarchically structured and the menu allows to navigate through this hierarchy.
Alternatively, we can use the search option to find a certain term, or we can create a new proper name
on-the-fly. In the next step we get

������������������ �

���� �

	
��

	��������

	
����������
��� �

	�������
�����
���

	�����
�������

	����
�
������
��

������			

where the proper name ‘Bub1’ is now fixed as the beginning of the sentence, and we have a new menu
with different entries. We want to express the interaction with another protein, and thus we choose
the verb ‘interacts-with’. Like proper names, verbs are hierarchically structured and we can navigate
through this hierarchy. In the next step we get

�����������	
���
����
� �

���������	� �

��

�������

�	��

where we can define the second participant of the protein-interaction. Since we want to state that the
interaction goes via atrunk domainof the proteinβ2-Adaptin, we first have to add the article ‘a’. Then
we get

���������	
��	����	��� ������������ �

���� �

�������

���
	��


�

�

��
��������

���	��	����

�

����
�����

���

�����������

��
����
����

�

���

��
�	������������

���� �����������

�	���!�����������

���

12



where we can choose the ‘trunk-domain of’-relation. Like proper names, such of-relations are structured
in hierarchies through which we can navigate (the same holdsfor nouns and adjectives). After that we
get

���������	
��	����	����	�������������� ��� �

���������	� �

���

�
�
���

����

��
����������	����

��������

�������

���������	����

�

� ��
	�������	���

������

���

� ����

��	��

��!"��

where we can specify the second protein ‘Beta2-Adaptin’. Finally we get

���������	
��	����	����	����������������
	�������	�� ������������ �

����������	 �

����
��	�����	��	���

�����

����

where we could use prepositions to add context information,e.g. to specify the organism in which the
interaction takes place. In our example, we now finish the sentence with a full stop.

For the creation of this sentence we did not need any further knowledge about ACE. Every person
that is familiar with English and knows how to handle a simplemenu, is able to create ACE texts.
However, to make such a tool really user-friendly we will need a lot of usability testing, as it is done –
with promising results – for theGinseng-system [1].

2.6 The Benefits of our Approach

The preceding sections showed what needs to be done to express scientific results about protein interac-
tions in ACE. Now it is time to take a look at the benefits.

Today there are many databases that contain life science data, but they are mostly unsynchronized,
incomplete, and often not up-to-date. With our approach it would be much easier to provide complete
and consistent databases.

Imagine that all the scientific papers about protein interactions summarize their results in ACE. We
could use these formal summaries to build up a dynamically growing knowledge base about protein
interactions. Of course, we would also have to collect all the knowledge that is contained in old papers.
For these, we still need some form of classical text mining. But once we have such a knowledge base
that is continuously updated with the results of new papers,then we would be able to answer many
questions. We present now some examples.

Are some results consistent with an existing knowledge baseor with other papers? We can check,
whether an ACE summary is consistent with an existing knowledge base. If this knowledge base con-
tains common knowledge, then the results should be consistent, or otherwise it can be seen as an appeal
against the common knowledge.

Without formal declarations, it is impossible to check a paper for consistency. Probably there exist
scientific papers that contain results which are inconsistent with the common knowledge. But since this
can be very difficult to find out, neither the author nor the readers might realize the special status of the
results.

13



type Bub1
supertypes Kinase – Enzyme – Protein – Molecule

subtypes BubR1
interacts directly with Beta2-Adaptin, Cdc20, Mad3

interacts indirectly with Mad2, APC
associates with Cdc20, Mad3
phosphorylates Bub1, Bub3

localizes to Kinetochore, Chromosome
participates in Cell-Communication, Signal-Transduction

Figure 6: Overview over the object ‘Bub1’

In the same way we can check, whether there exist papers that contradict a certain paper. That would
mean that different researchers claim contradictory results. Being aware of such a contradiction might
lead to a dialogue between the corresponding scientists, which might entail better and consistent results.

Are some results (or parts of it) already known? With our formal approach we can check whether a
certain result, or a part of it, is already known. Results that are already considered common knowledge
are usually not worth to be described as results of scientificpapers (unless they contain more detailed
information or if additional evidence is given). Thus it is very valuable to be able to run a check, whether
a certain result is already contained in the knowledge base or not.

Furthermore a researcher might want to check, whether thereexists scientific literature that has
arrived at the same or similar results. Altogether our approach would help the researchers to save a lot
of time, since they would not need to search “manually” for the relevant literature.

Is there a known answer for a certain question? If someone – researcher or not – has a specific
question about the domain (e.g. protein interactions), then we would be able to give automatically an
answer.

Indeed, there exist already systems likeMEDIE13 that provide some sort of answer extraction using
natural language processing. But such systems have seriousshortcomings: There is always a trade-off
between precision and recall, and only very simple queries are allowed. Furthermore, we cannot find
answers that are spread over multiple articles.

What is known about a certain object of interest? In some cases we do not want to ask a specific
question, but we rather want to get an overview of a single object of interest (e.g. the proteinBub1). If
we ask for information about such an object then we might get something as shown in Fig. 6. Such an
overview could be used for a dynamic hypertext representation. This would allow us to navigate through
the whole knowledge base, e.g. with an ordinary web browser.New papers that are submitted can be
integratedautomaticallyand thus such a web interface would be always up-to-date.

How are some objects of interest related? Instead of focusing on one single object, we might want
to have an overview of the interrelations of a certain group of objects. We could extract, for example,
the interacts-with-relations of all proteins and use this data for further examination, like the detection

13http://www-tsujii.is.s.u-tokyo.ac.jp/medie/

14



of clusters or hot-spots. Such examinations are already common in the research on proteins (e.g. [10],
[16]), but only with restricted data. With our approach we could consider every interaction that has been
published.

2.7 Outlook

We suggest an approach of using controlled natural languagefor making the results of scientific papers
readable and – to some degree – understandable by computers.But in order to achieve this goal, there
is still a lot of work to do. For example, we need an authoring tool as sketched in Sect. 2.5.3, that would
support the authors of scientific papers in the creation of ACE summaries. A prototype of such a tool
does already exist. Furthermore, we need tools for the definition of ontologies and for the collection and
management of knowledge.

Besides all these technical requirements, there are also political ones. There must be a commitment
among the scientists of the corresponding field of research –or at least among a large part of them – that
scientific articles get summarized in ACE. If such a summary is optional then there is little hope that it
gets established.

This is the point where the publishers and editors have to come into play. The publishers would have
to make ACE summaries a mandatory part of the articles, and the editors would have to check whether
these summaries are correct and complete. The creation of a formal summary should be an additional
requirement to consider when writing a scientific article, besides all the requirements that already ex-
ist today (e.g. about the abstract, the keyword list, and thereference list). The formal summaries can
also be seen as a robust indicator for the value of a scientificpaper. Information that is already known
and redundant information could be ignored automatically,and wrong statements are likely to be de-
tected at some later point in time. Thus we could use the formal summaries to quantify and qualify the
contribution of a certain author, institute, or journal.

Due to the immense benefits such a system would bring along, webelieve in the great potential
of our approach. It could be a first step towards better communication and persistence of biomedical
knowledge.

References

[1] Abraham Bernstein, Esther Kaufmann, Christian Kaiser.Querying the Semantic Web with Gin-
seng: A Guided Input Natural Language Search Engine. Department of Informatics, University of
Zurich, 2005

[2] Grady Booch, James Rumbaugh, Ivar Jacobson.The Unified Modeling Language User Guide, First
Edition. Addison Wesley, 1998

[3] Aaron M. Cohen, William R. Hersh.A survey of current work in biomedical text mining. In Brief-
ings in Bioinformatics, 6(1):57-71, 2004

[4] Nikolai Daraselia, Anton Yuryev, Sergei Egorov, Svetalana Novichkova, Alexander Nikitin, Ilya
Mazo. Extracting human protein interactions from MEDLINE using afull-sentence parser. In
Bioinformatics, 20(5):604-611, 2004

[5] Andreas Doms, Michael Schroeder.GoPubMed: exploring PubMed with the Gene Ontology. In
Nucleic Acids Research, 33:W783-W786, 2005

15



[6] Norbert E. Fuchs, Stefan Hoefler, Kaarel Kaljurand, Tobias Kuhn, Gerold Schneider, Uta Schw-
ertel.Discourse Representation Structures of ACE 4 Sentences, Technical Report ifi-2006.07. De-
partment of Informatics, University of Zurich, 2006,
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-2006/ifi-2006.07.pdf

[7] Norbert E. Fuchs, Kaarel Kaljurand, Gerold Schneider.Attempto Controlled English Meets the
Challenges of Knowledge Representation, Reasoning, Interoperability and User Interfaces. The
19th International FLAIRS Conference (FLAIRS’2006), 2006

[8] Norbert E. Fuchs, Uta Schwertel, Rolf Schwitter.Attempto Controlled English – Not Just Another
Logic Specification Language. In Logic-Based Program Synthesis and Transformation, Eighth In-
ternational Workshop LOPSTR’98, Lecture Notes in ComputerScience 1559, Springer, 1999,
http://www.ifi.unizh.ch/attempto/publications/papers/LOPSTR98.pdf

[9] Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Springer,
New York, 1996

[10] L. Giot, J. S. Bader, C. Brouwer, A. Chaudhuri, et al.A Protein Interaction Map of Drosophila
melanogaster. In Science, 302(5651):1727-1736, 2003

[11] Thomas R. Gruber.Toward Principles for the Design of Ontologies Used for Knowledge Sharing.
In International Journal of Human-Computer Studies, 43(5-6):907-928, 1995

[12] Lynette Hirschman, Jong C. Park, Junichi Tsujii, Limsoon Wong, Cathy H. Wu.Accomplishments
and challenges in literature data mining for biology. In Bioinformatics Review, 18(12):1553-1561,
2002

[13] Stefan Hoefler.The Syntax of Attempto Controlled English: An Abstract Grammar for ACE 4.0,
Technical Report ifi-2004.03. Department of Informatics, University of Zurich, 2004,
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-2004/ifi-2004.03.pdf

[14] Deborah L. McGuinness, Frank van Harmelen.OWL Web Ontology Language Overview. W3C
Recommendation, 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/

[15] Daniele Nardi, Ronald J. Brachman.An Introduction to Description Logics. In The Description
Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003

[16] Benno Schwikowski, Peter Uetz, Stanley Fields.A network of protein-protein interactions in yeast.
In Nature Biotechnology, 18:1257-1261, 2000

[17] Rolf Schwitter, Anna Ljungberg, David Hood.ECOLE: A Look-ahead Editor for a Controlled
Language. In Proceedings of EAMT-CLAW03, Controlled Language Translation, Dublin City Uni-
versity, 141-150, 2003

[18] Rolf Schwitter, Marc Tilbrook.Let’s Talk in Description Logic via Controlled Natural Language.
To be presented at: Logic and Engineering of Natural Language Semantics 2006 (LENLS2006),
Japan, 2006

[19] Craig W. Thompson, Paul Pazandak, Harry R. Tennant.Talk to Your Semantic Web. In IEEE Inter-
net Computing, 9(6):75-79, 2005

16



[20] Mike Uschold, Michael Gruninger.Ontologies: Principles, Methods and Applications. In Knowl-
edge Engineering Review, 11(2), 1996

[21] Alexander Yeh, Alexander Morgan, Marc Colosimo, Lynette Hirschman.BioCreAtIvE Task 1A:
gene mention finding evaluation. In BMC Bioinformatics, 6, 2005

17



3 Querying Semantic Web Contents:
A Case Study In Bioinformatics(A2/I4)

3.1 Abstract

Semantic web technologies promise to ease the pain of data and system integration in the life sciences.
The semantic web consists of standards such as XML for mark-up of contents, RDF for representation
of triplets, and OWL to define ontologies. We discuss three approaches for querying semantic web con-
tents and building integrated bioinformatics applications, which allows bioinformaticians to make an
informed choice for their data integration needs. Besides already established approach such as XQuery,
we compare two novel rule-based approaches, namely Xcerpt -a versatile XML and RDF query lan-
guage, and Prova - a language for rule-based Java scripting.We demonstrate the core features and
limitations of these three approaches through a case study,which comprises an ontology browser, which
supports retrieval of protein structure and sequence information for proteins annotated with terms from
the ontology.

3.2 Introduction

Bioinformatics is a rapidly growing field in which innovation and discoveries often arise by the cor-
relative analysis of massive amounts of data from widely different sources. The Semantic Web and
its promises of intelligent integration of services and of information through ’semantics’ can only be
fulfilled in the life sciences and beyond if its technologiessatisfy a minimum set of pragmatic require-
ments:

Ease of useA language must be as simple as possible. Users will go for a not so powerful but comfort-
able solution instead of a very rich language that is too complicated to use.

Platform independence Operating system idiosyncrasies are increasingly becoming a nuisance, the
internet is universal, and so must be a language for the semantic web.

Tool support Nowadays, it is not enough to provide language specifications and the corresponding
compilers and/or interpreters. Programmers require proper support tools like code-aware editors,
debuggers, query builders and validation tools.

Scalability The volume of information being manipulated in bioinformatics is increasing exponentially,
the runtime machinery of a language for integrating such data must be able to scale and cope with
the processing needs of today and tomorrow.

Modularity Modularity is a very fundamental idea in software engineering and should be part of any
modern programming language.

Extensibility Languages should be as user extensible as possible to accommodate unforeseen but useful
extensions that users might need and be able to implement.

DeclarativenessThe language should be high-level and support the specification of what needs to be
computed rather than how.

18



3.3 Data Integration in Bioinformatics

The amount of available data in the life sciences increases rapidly and so does the variety of data formats
used. Bioinformatics has a tradition for legacy text-baseddataformats and databases such as UniProt
[2] for protein sequences, PDB [3] for 3D structures of proteins, or PubMed [6] for scientific literature.

UniProt, PDB, PubMed Today, many databases, including the above are available inExtensible
Markup Language (XML)14.

Due to its hierarchical structure, XML is a flexible data format. It is a text-based format, is human-
readable, and its support for Unicode ensures portability throughout systems. Together with XML a
whole family of languages15 support querying and transformation (XPath,XQuery, and XSLT). Addi-
tionally APIs such as JDOM16, an implementation of the Document Object Model (DOM)17, and the
Simple API for XML (SAX)18 were developed in support of XML.

Beside the need of technologies for data handling, a major task in bioinformatics is the one of data
integration. The required mapping between entities from different data sources can be managed through
the use of an ontology.

Ontologies in Bioinformatics Currently there is no agreed vocabulary used in molecular biology. For
example, gene names are not used in a consistent way. EntrezGene [11] addresses this problem by
providing aliases. EntrezGene lists for example eight aliases for a gene that is responsible for breast
cancer (BRCAI; BRCC1; IRIS; PSCP; RNF53; breast cancer 1, early onset; breast and ovarian cancer
susceptibility protein 1; andbreast and ovarian cancer susceptibility protein variant).

At the time of writing, searching PubMed forPSCPreturns 2417 relevant articles. Searching for
papillary serous carcinoma of the peritoneum, returns 89 articles. However, searching for both terms
returns only 19 hits. In general, there is a pressing need in molecular biology to use common vocabular-
ies. This need has been addressed through the ongoing development of biomedical ontologies. Starting
with the GeneOntology19 [1], the Open Biomedical Ontologies effort20 currently hosts 59 biomedical
ontologies ranging from anatomy over chemical compounds toorganism specific ontologies.

Gene Ontology (GO) A core ontology is the Gene Ontology[1], which contains over20000 terms
describing biological processes, molecular functions, and cellular components for gene products. The
biological process ontology deals with biological objectives to which the gene or gene product con-
tributes. A process is accomplished via one or more ordered assemblies of molecular functions. The
molecular function ontology deals with the biochemical activities of a gene product. It describes what
is done without specifying where or when the event takes place. The cellular component ontology de-
scribes the places where a gene product can be active. The GO ontologies have become a de facto
standard and are used by many databases as annotation vocabulary and are available in various formats:
flat files, the Extensible Mark-up Language (XML), the resource description format (RDF), and as a
MySQL database.

14www.w3.org/XML/
15www.w3.org/TR
16www.jdom.org/
17www.w3.org/DOM/
18www.saxproject.org/
19www.geneontology.org
20obo.sourceforge.net

19

www.w3.org/XML/
www.w3.org/TR
www.jdom.org/
www.w3.org/DOM/
www.saxproject.org/
www.geneontology.org
obo.sourceforge.net


3.4 Case Study: ProteinBrowser

Biological databases are growing rapidly. Currently thereis much effort spent on annotating these
databases with terms from controlled, hierarchical vocabularies such as the Gene Ontology. It is often
useful to be able to retrieve all entries from a database, which are annotated with a given term from
the ontology. The ProteinBrowser use-case shows how typically one needs to join data from different
sources. The starting point is the Gene Ontology (GO), from which a hierarchy of terms is obtained.
Using the Gene Ontology Annotation (GOA) database, the usercan link GO terms to the UniProt iden-
tifiers of proteins that have been annotated with biologicalprocesses, molecular functions, and cellular
components. After choosing a specific protein, the user can,remotely, query additional information
from the UniProt database, for example the sequence of the protein. In turn, the PDB database can be
remotely queried for still additional information. Finally, using the PubMed identifier of the publication
in which the structure of the protein was published, one can query PubMed and obtain the title and
abstract of the publication.

As shown in Fig. 7, the ProteinBrowser example is specified bythe following workflow:

Gene Ontology Protein List

Q9BUV8

Q9CQT9

Q9UKG1

Q8NEU8

A6BTY0

RT7890

78GIOU

...

GO
A

UniProt

Identifier

Name

Length

Mass

Sequence

PDB id

PDB

Identifier

Length A

Length B

Length C

PubMed ID

PubMed

Identifier

Title

Abstract

Figure 7: ProteinBrowser Workflow: from GO to PubMed via GOA,UniProt and PDB

1. A term is chosen from the Gene Ontology tree. The Gene Ontology exists in various formats:
MySql database, XML, RDF.

2. All relevant proteins associated through the GOA21 database are listed.

3. A protein is chosen from the list

4. UniProt is queried for information about this protein. The protein’s name, its sequence length,
mass, sequence, and corresponding PDB identifier can be retrieved by querying the XML file
linked by the following parametrized URL:
http://www.ebi.uniprot.org/entry/〈UniprotId〉?format=xml&ascii

5. PDB is queried for additional information. The three lengthswidth, height anddepth and the
PubMed identifier of the publication in which the structure was described, can be obtained by

21http://www.ebi.ac.uk/GOA/

20

http://www.ebi.uniprot.org/entry/<UniprotId>? format=xml&ascii 
http://www.ebi.ac.uk/GOA/


querying the XML file linked by the following parametrized URL:
http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&structureId=〈PDBid〉

6. Retrieve PubMed abstract title and text where the structure was published. This uses the Pubmed
ID (if available) and queries the website of NCBI with the PubMed Id at this address:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&rettype=full&id=〈PubMe

As shown in Fig. 8, this workflow involves accessing local andremote databases, in the form of files,
possibly in XML format and of ’pragmatic’ web-services in the form of parametrized URLs linking to
XML files (also known as REST-style Web Services).

UniProt

PDB

PubMedLocal

GO and GOA

Local Client

Internet

Figure 8: ProteinBrowser: integrates data from GO, UniProt, PDB and PubMed

We will compare three approaches to implement this workflow.The first is based on a novel hybrid
object-oriented and declarative programing language, Prova. The second is based on standard XML
technologies such as XQuery and XPath. The third is based on anovel declarative query language for
XML documents: Xcerpt.

Prova http://www.prova.ws
XQuery/XPath http://www.w3.org
Xcerpt http://www.xcerpt.org

3.4.1 Prova

Prova [10] is a rule-based Java scripting language. The use of rules allows the declarative specification
of integration needs at a high-level, separately from implementation details. The transparent integration
of Java caters for easy access and integration of database access, web services, and many other Java
services. This way Prova combines the advantages of rule-based programming and object-oriented
programming. Prova satisfies the following design goals:

21

http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&structureId=<PDBid>
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=pubmed&retmode=xml&rettype=full&id=<PubMedId>
http://www.prova.ws
http://www.w3.org
http://www.xcerpt.org


• Combine the benefits of declarative and object-oriented programming;

• Merge the syntaxes and semantics of Prolog, as rule-based language, and Java as object-oriented
languages;

• Expose logic as rules;

• Access data sources via wrappers written in Java or command-line shells like Perl;

• Make all Java API from available packages directly accessible from rules;

• Run within the Java runtime environment;

• Be compatible with web- and agent-based software architectures;

• Provide functionality necessary for rapid application prototyping and low cost maintenance.

3.4.2 Workflow solved with Prova

The Prova code closely resembles a declarative logic program. Rules are written down in the form
conclusion :- premise where:- is read ’if’. Instead of relying on an internal knowledge
base, which needs to be loaded entirely into memory, Prova can access external knowledge wrapped
as predicates. Thus there is a clean separation between the details needed to access the external data
and the way this data is joined in the workflow. Prova applies so-called backward-chaining to evaluate
queries.

Wrapping the Gene Ontology and the Gene Ontology Annotation For the Prova implementation
of the ProteinBrowser we use the Gene Ontology and the protein annotations in their relational database
format. Accessing databases from Prova is very simple:

Listing 1: Wrapping the Gene Ontology database and the isa relationship.
1 % Imports some u t i l i t y f unc t i ons
2 :-eval(consult("utils.prova")).
3

4 % Define database l o c a t i o n
5 location(database,"GO","jdbc:mysql://server","guest","guest").
6

7 % T2 is−a T1 i f there i s a corresponding en t r y i n the term2term tab l e of the database
8 isaDB(T2,T1) :-
9 dbopen("GO",DB),

10 concat(["term1_id=",T1," and relationship_type_id=2"],WhereClause),
11 sql_select(DB,term2term,[term2_id,T2],[where, WhereClause]).
12

13 % A term T is−a T
14 isa(T,T).
15

16 % Recursive d e f i n i t i o n of i s−a : A term T2 i s a T1 i f T3 i s a T1 and T2 i s a T3
17 isa(T2,T1) :-
18 isaDB(T3,T1),
19 isa(T2,T3).

After importing some utility predicates for connecting to databases, thelocation predicate is used
to define a database location, thedbopen predicate is used to open a connection to the database, and
the sql select predicate provides a nice and practical declarative wrapping of the select statement of
relational databases. In order to obtain all sub-terms of a given term, we simply compute the transitive
closure of the subterm relationship defined by the recursivepredicateisa.

22



Finally, in order to retrieve the UniProt identifiers corresponding to a given gene ontology term, we
need the following predicate:

Listing 2: Wrapping the Gene Ontology Annotation database
1 name2UniProtId(Term,UniProtId) :-
2 dbopen("GO",DB),
3 concat(["uni.GOid = ", Term],Where),
4 concat(["go.term as term, goa.goa_human as uni"],From),
5 sql_select(DB,From,[’uni.DB_Object_ID’,UniProtId],[where,Where]).

Wrapping UniProt, PDB and Medline The three databases UniProt, PDB and Medline can be re-
motely accessed through a very simple web interface: a parametrized URL links to an XML file contain-
ing the relevant information for a given identifier. The following three predicates wrap the downloading
and parsing of the XML files in a few lines:

Listing 3: Wrapping UniProt, PDB and Medline
1

2 urlUniProtPrefix("http://www.ebi.uniprot.org/entry/")
3 urlUniProtPostfix("?format=xml&ascii")
4 urlPDB("http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&structureId=")
5 urlPubMed("http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed
6 &retmode=xml&rettype=full&id=")
7

8 % Query UniProt by g i v i ng a UniProt Id and g e t t i n g the length , mass , sequence , and PDB i d
9 queryUniProt(UniProtId,Name,Length,Mass,Sequence,PDBId):-

10 urlUniProtPrefix(URLpre),
11 urlUniProtPostfix(URLpost),
12 concat([URLpre,UniProtId,URLpost],URLString),
13 retrieveXML(URLString,Root),
14 children(Root,"entry",EntryNode),
15 children(EntryNode,"protein",ProteinNode),
16 descendantValue(ProteinNode,"name",Name),!,
17 descendant(EntryNode,"sequence",SequenceNode),
18 nodeAttributeByName(SequenceNode,"length", Length),
19 nodeAttributeByName(SequenceNode,"mass", Mass),
20 nodevalue(SequenceNode,Sequence).
21

22 % Query PDB by g i v i ng a PDB Id and g e t t i n g three lengths a , b , c and a PubMed i d of a p u b l i c a t i o n
23 queryPDB(PDBId,LA,LB,LC,PMID):-
24 urlPDB(URL),
25 concat([URL,PDBId],URLString),
26 retrieveXML(URLString,Root),
27 descendantValue(Root,"PDBx:length_a",LA),!,
28 descendantValue(Root,"PDBx:length_b",LB),!,
29 descendantValue(Root,"PDBx:length_c",LC),!,
30 descendantValue(Root,"PDBx:pdbx_database_id_PubMed",PMID).
31

32 % Query pubMed by g i v i ng a PubMed Id and g e t t i n g the t e x t o f the abs t rac t
33 queryPubMed(PMID,AbstractTitle, AbstractText):-
34 urlPubMed(URL),
35 concat([URL,PDBId],URLString),
36 retrieveXML(URLString,Root),
37 descendantValue(Root,"ArticleTitle",AbstractTitle),!,
38 descendantValue(Root,"AbstractText",AbstractText),!.

The previous predicates use the following utility predicates:

Listing 4: XML retrieval
1 retrieveXML(URLString,Root):-
2 URL = java.net.URL(URLString),
3 Stream = URL.openStream(),
4 ISR = java.io.InputStreamReader(Stream),

23



5 XMLResult = XML(ISR),
6 Root = XMLResult.getDocumentElement().

TheretrieveXML predicate downloads an XML file from a specified URL, and returns the root
DOM (Document Object Model) tree representation of the XML file.

In the following, a set of predicates provide functionalityto query nodes and values from the DOM
tree:

Listing 5: XML Querying
1

2 % Simulates an XPath t r a v e r s a l .
3 descendantsValue(Current,Name,Value):-
4 descendants(Current,Name,Node),
5 nodeValue(Node,Value),!.
6

7 % D e f i n i t i o n of a descendant ( any depth ) , s i m i l a r XPath : / /∗
8 descendants(Node,Node).
9 descendants(Element,S2):-

10 children(Element,S1),
11 descendants(S1,S2).
12

13 % D e f i n i t i o n of a descendant w i th given name , s i m i l a r XPath : / / Name
14 descendants(Node,Name,Descendant):-
15 descendants(Node,Descendant),
16 nodeName(Descendant,Name).
17

18 % D e f i n i t i o n f o r a d i r e c t ch i l d , s i m i l a r XPath : /∗
19 children(Element,Child):-
20 Childs = Element.getChildNodes(), % Java c a l l r e tu rn i ng d i r e c t ch i l d ren
21 Childs.nodes(Child).
22

23 % D e f i n i t i o n of a c h i l d w i th a given name, s i m i l a r XPath : /Name
24 children(Node,Name,Child):-
25 children(Node,Child),
26 nodeName(Child,Name).
27

28 nodeName(Node,Name):-
29 Name = Node.getNodeName().
30

31 nodeValue(Node,Value):-
32 Data = Node.getFirstChild(),
33 Raw = Data.getNodeValue(),
34 Value = Raw.trim().

Assembling the Workflow Now that we have wrapped the GO and GOA databases, as well as the
remote XML ressources for UniProt, PDB and PubMed. We can proceed with the assembly of the
ProteinBrowser workflow:

Listing 6: Workflow
1 workflowStep1(GoTermName,UniProtId):-
2 name2term(GoTermName,GoTerm),
3 isa(GoTerm,Descendant),
4 name2UniProtId(Descendant,UniProtId),
5 java.lang.System.out.println(UniProtId).
6

7 workflowStep2(UniProtId):-
8 queryUniProt(UniProtId,Name,Length,Mass,Sequence,PDBId),
9 java.lang.System.out.println(Name),

10 java.lang.System.out.println(Length),
11 java.lang.System.out.println(Mass),
12 java.lang.System.out.println(Sequence),
13 queryPDB(PDBId,LA,LB,LC,PMID),

24



14 java.lang.System.out.println(LA),
15 java.lang.System.out.println(LB),
16 java.lang.System.out.println(LC),
17 queryPubMed(PMID,AbstractTitle, AbstractText),
18 java.lang.System.out.println(AbstractTitle),
19 java.lang.System.out.println(AbstractText).
20

21 % Given the name N, get the term i d T
22 name2term(N,T) :-
23 dbopen("GO",DB),
24 concat(["name like ",N],WhereClause),
25 sql_select(DB,term,[id,T],[where, WhereClause]).

The first step is simply to enumerate all UniProt identifiersUniProtId annotated with terms and
subterms of a given Gene Ontology termGoTermName. The second step uses the chosen protein
UniProt identifier and starts a cascade of three remote queries to the UniProt, PDB and PubMed web
sites. All relevant information collected is printed out.

3.4.3 XQuery and XPath

XPath22 allows the user to address certain parts of an XML document. Beside many applications it is
used in XQuery, which is a declarative query- and transformation language for semi-structured data. It
is widely used to formulate queries on RDF and XML documents.These documents can be provided
as XML files, as XML views onto a XML database or created by a middleware. XQuery 1.0 is a W3C
Candidate Recommendation and is already supported by many software vendors23 (e.g. IBM DB2,
Oracle 10g Release 2, Tamino XML Server).

3.4.4 The Workflow Solved with XQuery

An XQuery implementation of the workflow works on XML data only and can be realized with all
program logic specified as XQuery. We note, that XQuery as described in the language standard, is
expressive enough to aggregate data from different data sources, locally or remotely.

Recursive traversal of the Gene Ontology With XQuery the recursive traversal of the GO has to be
programmed explicitely. In listing 7 the functionslocal:getDescendantsandlocal:getChildren
show how this simple recursion can be specified with XQuery. The locally available GO OWL file is
loaded using thedoc() function, which also works for remote resources of plain XMLcontent. It takes
approximately 45s to load the GO with GOA included and build the DOM tree. By using XQuery from
within Java it is possible to preserve the DOM tree, so that itonly has to be loaded once.

Listing 7: Recursive XQuery to create the transitive closure over the sub-class relations.
1

2 declare function local:getChildren( $term , $context)
3 {
4 for $my_term in $context//go:term
5 where $my_term/go:is_a/@rdf:resource = $term/@rdf:about
6 return
7 $my_term
8 };
9

10 declare function local:getDescendants( $term, $context)
11 {
12 for $my_term in local:getChildren($term, $context)

22http://www.w3.org/TR/xpath
23http://www.w3.org/XML/Query/#implementations

25



13 return
14 <descendants>
15 {
16 local:getDescendants($my_term , $context), $my_term
17 }
18 </descendants>
19 };

Assembling the Workflow Listing 8 shows the complete workflow as a batch process. Given a GO
accession number like ”GO:0000001” an XML document is created which contains all proteins asso-
ciated with the specified term or any of its child terms. For all these proteins additional information
is retrieved from UniProt. Further, database references tostructural data in PDB is used, if found in
UniProt. For the interactive browser these parts are separated and the functions are called once the GO
term or protein is selected in the GUI.

Listing 8: Recursive XQuery to aggregate proteins associated with a GO term or any of its children. The
result gets enriched with Uniprot and PDB data.

1 xquery version ” 1 . 0 ”;
2 declare namespace go = ” h t t p : / / www. ge ne on to logy . org / d t d s / go . d td # ”;
3 declare namespace rdf = ” h t t p : / / www. w3 . org /1999/02/22− rd f−syntax−ns #”;
4 declare namespace fn = ” h t t p : / / www. w3 . org / 2 0 0 5 / xpath−f u n c t i o n s ”;
5 declare namespace uniprot = ” h t t p : / / u n i p r o t . o rg / u n i p r o t ”;
6 declare namespace PDBx = ” h t t p : / / d e p o s i t . pdb . org / pdbML / pdbx . xsd ”;
7 declare namespace xsi=” h t t p : / / www. w3 . org / 2 0 0 1 /XMLSchema−i n s t a n c e ”;
8

9 declare variable $GO as xs:string external;
10

11 ( : f unc t i on from www. w3c . org : )
12 declare function local:distinct-nodes-stable ($arg as node()*) as node()*
13 {
14 for $a at $apos in $arg
15 let $before_a := fn:subsequence($arg, 1, $apos - 1)
16 where every $ba in $before_a satisfies not($ba is $a)
17 return $a
18 };
19

20 declare function local:getChildren( $term , $context) { ... };
21

22 declare function local:getDescendants( $term, $context) { ... };
23

24 declare function local:queryUniprot($uniprotID) { ... };
25

26 declare function local:queryPDB($pdbID) { ... };
27

28 ( : Const ruc t a r e s u l t se t f o r one GO term : )
29 <terms>
30 {
31 let $root :=doc(” / d a t a / go 200605−a s s oc db . rd f−xml ” )
32 for $term in $root//go:term
33 where $term/go:accession/text() = $GO
34 return
35 <result query_term_acc=” {$term / go : a c c e s s i o n / t e x t ( )}” >
36 {
37 let $terms := ($term, local:getDescendants($term,$root))
38 for $d_term in $terms
39 return
40 for $dbxref in $d_term//go:dbxref
41 where $dbxref/go:database_symbol/text()=” Un iP ro t ”
42 return
43 for $uniprot_id in local:distinct-nodes-stable($dbxref/go:reference)
44 return
45 local:queryUniprot($uniprot_id/text())
46 }
47 </result>

26



48 }
49 </terms>

Obtain additional information for proteins For all proteins identified, the UniProt database is queried
selecting data sets for a specific UniProt identifier (see listing 9). Additional information from the PDB
is retrieved as shown in listing 10.

Listing 9: Querying the Uniprot database with XQuery for information on the names, sequence, se-
quence length, sequence mass and structures of a protein

1 declare function local:queryUniprot($uniprotID)
2 {
3 let $url := concat(concat(” h t t p : / / www. e b i . u n i p r o t . o rg / e n t r y / ”, $uniprotID), ...

...” ? fo rma t=xml&amp ; a s c i i ”)
4 for $entry in doc($url)//uniprot:entry
5 let $sequence:= $entry/uniprot:sequence
6 return
7 <protein uniprot_id=” {$un ip ro t ID}” >
8 {
9 for $name in $entry/uniprot:protein//uniprot:name

10 return
11 <name>{$name/text()}</name>
12 }
13 <sequence_length>{$sequence/@length}</sequence_length>
14 <sequence_mass>{$sequence/@mass}</sequence_mass>
15 <sequence>{ $sequence/text() }</sequence>
16 {
17 for $pdbID in $entry//uniprot:dbReference[@type=”PDB” ]/@id
18 return
19 local:queryPDB($pdbID)
20 }
21 </protein>
22 };

Listing 10: Querying the PDB database with XQuery.
1 declare function local:queryPDB($pdbID)
2 {
3 let $url := concat(” h t t p : / / www. r c s b . org / pdb / down loa dF i l e . do ? . . .

. . . f i l e F o r m a t =xml&amp ; compress ion =NO&amp ; s t r u c t u r e Id =”,$pdbID)
4 for $item in doc($url)/PDBx:datablock/PDBx:cellCategory/PDBx:cell
5 return
6 <pdb_structure pdb_id=” {$pdbID}” >
7 <length_a>{$item/PDBx:length_a/text()}</length_a>
8 <length_b>{$item/PDBx:length_b/text()}</length_b>
9 <length_c>{$item/PDBx:length_c/text()}</length_c>

10 </pdb_structure>
11 };

3.4.5 Xcerpt

Xcerpt [12] is a declarative rule based query- and transformation language for semi-structured data in
general and for RDF and XML in particular. Xcerpt does not natively query relational data bases, but
relies on the XML, RDF or OWL serializations of the Gene Ontology and the Protein Databank. These
serializations in general being graph structured and highly heterogeneous, Xcerpt provides a comfortable
way to query possibly incomplete subpatterns of the data.

Xcerpt builds uponsimulation unificationand rule chaining for program evaluation. Xcerpt uses
three kinds of terms to carry out its computations:data terms, query termsandconstruct terms. Data

27



terms are semi-structured data serving as an abstraction from various tree- and graph shaped data-
formats such as RDF and XML. Dataterms can be used to represent any kind of semi-structured data,
while still taking care of XML specificities such as attributes, namespaces and references.

Query terms are data terms augmented by logical variables and enriched by constructs that allow the
specification of various forms of incompleteness, which areused to match highly heterogeneous data.
Incompleteness specifications include incompleteness in depth (the descendant construct and arbitrary
length traversal path expressions), incompleteness in breadth (there may be more subterms in the queried
data than which are specified by the query term) and optional subterms. Query terms are matched with
data terms via simulation unification to producesubstitution sets(sets of sets of variable bindings).
Substitution sets are then applied to construct terms by filling in the bindings for variable occurrences.

3.4.6 The Workflow solved with Xcerpt

In order to select all proteins produced by a certain term referenced in the Gene Ontology, the following
Xcerpt rules could be used. Since we are not only interested in the proteins produced by exactly the term
provided by the user, but also in those proteins which are produced by processes which are subterms of
the given term, and in additional information obtained fromUniProt, PDB and PubMed, the task is split
into several parts:

Extracting subterm relationships from the Gene Ontology Database In a first step (realized by
Listing 11), the direct subterm relationships are extracted from the database. They are retrieved from
the is a elements given in the Gene Ontology. In the specialattributes-element the form of
the rdf:resource-attribute of theis a-element is specified, demanding that it ends with a GO-
Term identifier. Note that since Xcerpt programs are evaluated in a backward chaining manner, the
binding of the logical variableTerm2 is passed on from the second and third rule below. Curly braces
in the query term indicate that the order in which the siblings occur within the data is not important.
This concept is calledIncompleteness with respect to order. Double curly braces are used to allow also
further siblings in the data besides those explicitly specified – this concept is known asincompleteness in
breadthin Xcerpt. Xcerpt’sdesc construct matches with descendants of the enclosing term that exhibit
the specified pattern (incompleteness in depth). Since there is no enclosing element for thego:term
element in the query term, it matches with all data nodes thathave at least ago:accession and a
go:is_a sub-element (of the specified form).

Listing 11: Extracting subterm relationships from the GeneOntology
1 CONSTRUCT
2 subterm { var Term1, var Term2 }
3 FROM
4 in {
5 resource {
6 ” h t t p : / / a r c h i v e . goda ta ba s e . org / f u l l /2006−05−01/
7 go 200605−assocdb . rdf−xml . gz ” },
8 desc go:term {{
9 go:accession { var Term1 },

10 go:is_a{{
11 attributes{{
12 rdf:resource {
13 ” h t t p : / / www. ge ne on to logy . org / go#”++ var Term2 }
14 }}
15 }}
16 }
17 END

28



Computing the transitive closure of the subterm relationship In a second rule (given in Listing 12),
the transitive closure of the subterm relationship is computed. Since all direct subterms are considered
as transitive subterms, the second disjunct of the body of this second rule matches with the head of the
first rule.

Listing 12: Computing the transitive closure of the subterm-relationship with an Xcerpt rule
1 CONSTRUCT
2 transitive_subterm { var Term1, var Term3 }
3 FROM
4 or {
5 and {
6 subterm { var Term1, var Term2 },
7 transitive_subterm { var Term2, var Term3 }
8 },
9 subterm { var Term1, var Term3 }

10 }
11 END

Finding all the proteins associated with a term of the Gene Ontology In the third rule (see List-
ing 13) for each of the subterms of the given termTerm, the associated proteins are looked up in
the GOA database and rendered as a list of links to their Uniprot entries in an HTML file. The bind-
ing for the variableTerm is provided by the user as a command line parameter (e.g.xcerpt -D
Term=GO:0051260, whereGO:0051260 is the identifier ofprotein homooligomerization).

The first conjunct of the body of this rule matches with the second rule above and passes theTerm-
variable on to the head of the second rule. In this way, all of its subterms are bound to the variable
SubTerm.

The second conjunct of the rule looks up all associated proteins for the subterm, which have a Gene
Ontology database symbol of typeUNIPROT. Each of these proteins is bound to the variablePROTEIN.

Note that also the second conjunct of the query term may matchmultiple times with the database for
a single binding of the variableSubTerm, thus producing a set of pairs of variable bindings in which
SubTerm is always bound to the same variable given in the query, andProtein is bound once for
each protein produced by the given concept.

In the construct part of the rule (framed by the keywordsGOAL andFROM) the proteins are grouped
by the subterms which they are associated with in the Gene Ontology. This is achieved by the grouping
constructall. The string-concatenation function “++” is used to construct the URL pointing at the
Uniprot entry. The construct term is a template of the HTML page rendered by the browser to form part
of the user-interface.

Listing 13: Constructing an HTML list of proteins for a GO term
1 GOAL
2 html [
3 head [ title [ ” P r o t e i n s produced by ”++ var Term ] ],
4 body [
5 all span [
6 h3 [ ” P r o t e i n s produced by the subte rm ”++ var SubTerm ],
7 ul [
8 all li [
9 attributes{ href {

10 ” h t t p : / / www. e b i . u n i p r o t . o rg / e n t r y / ”++ var Protein ++
11 ” ? fo rma t=xml&a s c i i ” } },
12 var Protein ]
13 ]
14 ]
15 ] ]
16 FROM

29



17 and {
18 transitive_subterm { var SubTerm, var Term },
19 in {
20 resource {
21 ” h t t p : / / a r c h i v e . goda ta ba s e . org / f u l l /2006−05−01/
22 go 200605−assocdb . rdf−xml . gz ” },
23 desc go:term{{
24 go:accession{ var SubTerm },
25 go:association{{
26 go:gene_product{{
27 desc go:database_symbol{ ”UNIPROT” },
28 desc go:reference{ var Protein }
29 }}
30 }}
31 }}
32 }
33 }
34 END

Extracting relevant information about Proteins from the Uniprot and PDB Files Xcerpt’s patterns
are well-suited to extract the name, length, mass and the sequence of amino acids for a given protein
from the UniProt database and to reassemble them within an HTML fragment as specified in Listing 14.
The second conjunct of the same rule is used to additionally extract information from the PDB database
about the physical dimensions of the crystals of the Proteinand PubMed identifiers of research papers
dealing with the given protein. This data is to be combined with the information from UniProt. Note
that thePDB ID is extracted from the UniProt database, which means that thefirst conjunct is evaluated
before the second one. The rule could be called via a system call from within a CGI script. Many
of the PDB files about proteins additionally supply PubMed identifiers of research articles treating the
protein, but this is not mandatory. Xcerpt’soptional-construct allows to select optional data that
does not have to be present for the query to succeed. Since their may be multiple references to PubMed
identifiers, these references are wrapped into an unordered+HTML+ list using the grouping construct
all. These references could be easily encoded as hyperlinks in asimilar way as in listing 13, which
has been omitted for brevity.

Listing 14: Combining information from the PDB and the UniProt database for the same Protein
1 CONSTRUCT
2 div [
3 h3 [ ’Information about protein’, span[ var Protein ] ],
4 p [ ”Name : ” ++ var Name ],
5 p [ ” Length : ” ++ var Length ],
6 p [ ” Mass : ” ++ var Mass ],
7 p [ ” Sequence : ” ++ var Sequence ],
8 p [ ” l e n g t h a : ” ++ var LengthA ],
9 p [ ” l e n g t h b : ” ++ var LengthB ],

10 p [ ” l e n g t h c : ” ++ var LengthC ],
11 optional p [ ’PubMed References’, ul [ all li[ var PubMedID ] ] ]
12 ]
13 FROM
14 and {
15 in {
16 resource {
17 ” h t t p : / / www. e b i . u n i p r o t . o rg / e n t r y / ”++ var SubTerm ++
18 ” ? fo rma t=xml&a s c i i ” },
19 entry {{
20 protein {{ name {{ var Name }} }},
21 sequence {{
22 attributes {{ length { var Length }, mass { var Mass } }},
23 var Sequence
24 }}
25 dbReference { attributes {{

30



26 type { ” pdb a c c e s i o n ” },
27 value { var PDB_ID }
28 }} }
29 }}
30 },
31 in {
32 resource {
33 ” h t t p : / / www. r c s b . org / pdb / down loa dF i l e . do ? f i l e F o r m a t=xml&
34 compress ion =NO&s t r u c t u r e I d =”++ var PDB_ID },
35 PDBx:datablock {{
36 desc PDBx:cell {{
37 PDBx:length_a{{ var LengthA }},
38 PDBx:length_b{{ var LengthB }},
39 PDBx:length_c{{ var LengthC }}
40 }},
41 optional PDBx:pdbx_database_id_PubMed { var PubMedID }
42 }
43 }
44 END

Retrieving the PubMed Abstract and Title The final step in the workflow of the Protein Browser
consists of retrieving the PubMed abstract and title for a given PubMed identifier retrieved by the rule in
Listing 14. The PubMed identifiers may either be queried directly from the pdb file of a given protein or
they may originate from the results of the previous rule. In Listing 15 the second alternative is presented.

Listing 15: Retrieval of Abstract and Titles of PubMed entries
1 CONSTRUCT
2 html [ head [ title [ ’Articles for Protein’ ++ var Protein ] ],
3 body [
4 all p [ h3 [ var Title ], div [ var Abstract ] ]
5 ]
6 ]
7 FROM
8 and (
9 div [[ h3 [[ span [ var Protein ] ]],

10 p [[ ul [[ li [ var PubMedId ] ]] ]]
11 ]],
12 in {
13 resource { ...

...’http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&rettype=full&id=’...

... ++ var PubMedId },
14 PubMedArticle {{
15 desc AbstractText { var Abstract },
16 desc ArticleTitle { var Title }
17 }}
18 }
19 END

The given rule finds all PubMed identifiers from the previously created HTML fragment, retrieves
the PubMed documents for these articles and assembles a new HTML page containing a list of article
titles and abstracts.

3.5 Comparison

In the following, we compare the three approaches accordingto several criteria. Some criteria are
subjective, for example how easy or difficult it is to learn and use the approach. Other criteria are of a
pragmatic nature and relate to the availability of supporting tools like editors and debuggers. From a
technical point of view, it is also important to evaluate thescalability, modularity, and extensibility of
an approach.

31



Learning curve Prova requires basic understanding of both Prolog and Java.This might make it
more complicated to understand than Java or Prolog separately. The Prova syntax integrates aspects
from both paradigms in a very elegant way. If one assumes basic knowledge in both Java and Prolog,
Prova is then a good way to profit from both worlds. XQuery adapts standard programming paradigms
like FOR loops or IF-THEN-ELSE statements and uses XPath to address nodes in the Document Object
Model (DOM) tree. Nevertheless the syntax and especially the usage of functions requires some time
to learn. Xcerpt can be used to query and transform any XML application, thus also XML serializations
of RDF and Topic Maps. Therefore it is very well-suited for data integration. Being a very declarative
pattern- and rule-based language, potential errors are kept to a minimum and authoring queries in Xcerpt
is straightforward. Xcerpt is especially easy to learn for users with experience in logic programming or
with pattern based query languages such as Query By Example or to a certain extent XPath.

Platform independence Prova is Java-based and as such is platform-independent. XQuery and XPath
standard implementations are available as libraries written in Java24 and can be used from any platform
which supports Java. Additionally many database systems come with XPath or XQuery build in. Xcerpt
is currently implemented in Haskell and compiled with the Glasgow Haskell Compiler, which is avail-
able for Linux, Solaris, Windows, FreeBSD and MacOS X. Thus Xcerpt can be used on any of these
platforms. Future versions of Xcerpt will be written in Javato further increase platform independence.

Availability Prova is a GNU Lesser General Public License (LGPL) open source project and thus can
be used in any context, it can be freely downloaded fromwww.prova.ws. XQuery, XPath and RQL
are available within commercial products or for free under the Berkeley Software Distribution (BSD)
license. Xcerpt is current at a prototype stage of development and is available atwww.xcerpt.org
under the terms of the GNU General Public License.

Tool support Prova, because of its relative youth, has almost no support for editing or debugging tools.
XPath is simple enough to be written with a plain text editor.However it is strongly recommended to
use specialized editors for XQuery. There exist mature tools for several software platforms which come
with editing support, validation and debugging functionalities. Xcerpt is accompanied by a visual query
authoring and execution tool calledvisXcerpt. It features a web-based graphical interface, running on
top of a web server such as the Apache HTTP server25 and allows to dynamically browse both XML
data and the Xcerpt rules. Support for debugging and code completion in Xcerpt is not available yet.

Scalability Prova is arguably at most as scalable as Java and its libraries. Java is itself a very mature
language in terms of performance. Starting with version 1.3, the Java Virtual Machine has been based on
HotSpot, a technology that allows dynamic compilation of performance bottlenecks at execution time.
For this reason Java itself cannot be thought as an interpreted language. So even though the rule engine
behind Prova is essentially interpreted, all the heavy dutywork can be delegated to Java classes and one
can thus expect near-compiled performance. On a machine powered by a Intel Xeon 3GHz, Saxon’s
XQuery engine needs approximately 50 seconds to prepare the300 MB large Gene Ontology RDF file
for XQuery execution. Xcerpt programs are currently being evaluated in memory. Thus it is not yet
possible to process large amounts of XML data. With 512 megabytes of random access memory, an
XML file of a size at most 40 megabytes can be effectively processed. Research geared toward more
efficient implementations is being carried out.

24e.g. http://saxon.sourceforge.net/
25http://www.apache.org/

32

www.prova.ws
www.xcerpt.org
http://www.apache.org/


Modularity Prova inherits the modularity of Java. XQuery allows for user-defined functions that can
be used to modularize the code and improve its maintainability. Xcerpt is being developed with a module
system.

Extensibility Prova is based on Java and can construct Java objects and callany of their methods.
Xcerpt being available under an open source license, it can be easily extended and adapted to ones own
needs.

3.6 Discussion and Conclusion

In this article we have shown how the combination and integration of biological data from different
resources on the Web may be realized with different technologies. XML is a suitable way for sharing
and exchanging data across different systems interconnected over the Internet. XML query languages
are an accepted means for extracting relevant information and for processing and transforming XML
data.

XML and best practices. Biological data is often stored in relational database engines and must be
serialized before it can be processed by XML query languages. Additionally, huge amounts of biological
data are already available and transferring entire databases over the network takes a significant amount
of time. As a result, XML queries should be processed close tothe data they operate on as far as possible,
taking advantage of relational database indexes. Several commercial database products already support
the local execution of XQuery programs. To minimize transfer and processing time, only the results
of locally executed queries should be transfered over the network as XML. In many cases, however,
queries cannot be executed locally in their entirety, because joins over entries located at different sites
are necessary.

As can be seen in the exemplary workflow described in section 3.4, several transformations of XML
data may be stringed together to achieve complex restructuring tasks. In such cases it is advisable to
minimize intermediate serializations of XML data independently of the query language being used. In
other words embedding several Xcerpt, XQuery or XSLT programs taking XML as input and producing
XML as output in a host language is inefficient when compared to joining these programs to a single
one, because processing time is lost for parsing and serializing XML data.

The advantages of using XML query languages for data integration versus the direct usage of rela-
tional databases increase with the amount of different datasources that must be integrated and with the
degree of heterogeneity of the encountered data. The more heterogeneous the data, the harder it is to
fit it into a relational database schema. Moreover, XML querylanguages (especially Xcerpt) provide a
rich set of language constructs to deal with various kinds ofheterogeneity of the data, which means that
several SQL queries operating on a relational database can be combined to form a single Xcerpt query
on XML data.

In picking the right XML technology for a bioinformatics project, maturity of the language is an
important issue. Xcerpt being a research prototype, is currently not recommended for use in large
projects. On the other hand XQuery is a W3C recommendation and several robust implementations are
already available.

Beyond XML ? It is not yet clear if XML will eventually become the universal format for data ex-
change. Relational databases, flat files, and other idiosyncratic formats might subsist and limit, in
practice, the applicability of pure XML query languages. Wehave shown how practical Prova is for

33



assembling workflows involving heterogeneous sources of data. Prova is also able to delegate XML
processing tasks to XQuery which has itself a Java implementation based on the Saxon library26.
Xcerpt will also be eventually reimplemented in Java, and thus it will also be possible in the future
to run Xcerpt queries from a Prova program. It can be argued that the need for a generic and possibly
declarative programming language will remain. Simply because from a pragmatic point of view, there
will always be some tasks that will be simply too cumbersome to deal with any specialized languages.
A user should always be able to fall-back to a standard programming approach.

Conclusion In all cases, it is clear that independently of the technologies used, the trend is toward
remote querying of data. Maintaining and synchronizing local databases is cumbersome and should
not be necessary. As we have seen, several databases like UniProt, PDB and PubMed offer their data
through URL links in XML format. Prova, Xquery/Xpath and Xcerpt are ready to process them.

Acknowledgements: We acknowledge the financial support of the EU projects Sealife (FP6-IST-
027269) and REWERSE (FP6-IST-506779).

References

[1] The Gene Ontology (GO) project in 2006.Nucleic Acids Research, 34(Database issue):D322–6,
12 2005.

[2] Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez
R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, and Yeh LS. The Universal
Protein Resource(UniProt).Nucleic Acids Res., 33:D154–159, 2005.

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and
P. E. Bourne. The protein data bank.Nucleic Acids Res, 28(1):235–242, 2000.

[4] F. Bry and P. Patranjan. Reactivity on the web: Paradigmsand applications of the language
xchange. InProceedings of 20th Annual ACM Symposium on Applied Computing (SAC’2005).
ACM, March 2005.

[5] J. Dietrich, A. Kozlenkov, M. Schroeder, and G. Wagner. Rule-based agents for the semantic web.
Journal on Electronic Commerce Research Applications, 2(4):323–38, 2003.

[6] Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, and Rapp
BA. Database resources of the National Center for Biotechnology Information. Nucleic Acids
Res., 28:10–4, 2000.

[7] Ernest Friedman-Hill.Jess in Action Java Rule-based Systems. Manning, 2003.

[8] GeneOntologyConsortium. The Gene Ontology (GO) database and informatics resource.Nucleic
Acids Res., 1(32):D258–61, 2004.

[9] A. Kozlenkov and M. Schroeder. PROVA: Rule-based Java-scripting for a bioinformatics semantic
web. In E. Rahm, editor,International Workshop on Data Integration in the Life Sciences DILS,
Leipzig, Germany, 2004. Springer.

26http://saxon.sourceforge.net/

34

http://saxon.sourceforge.net/


[10] Alexander Kozlenkov and Michael Schroeder. PROVA: Rule-based Java-Scripting for a Bioinfor-
matics Semantic Web. In E. Rahm, editor,International Workshop on Data Integration in the Life
Sciences DILS, Leipzig, Germany, 2004. Springer.

[11] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. Entrez Gene: gene-centered
information at NCBI.Nucleic Acids Res, 33(Database issue):D54–D58, 2005.

[12] Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Practical Introduction to
Xcerpt. InProceedings of Extreme Markup Languages 2004, Montreal, Quebec, Canada (2nd–6th
August 2004), 2004.

35



4 Prova: Rule-based Java Scripting for Distributed Web Applica-
tions:
A Case Study in Bioinformatics (A2/I5)

4.1 Abstract

Prova is a language for rule-based Java scripting to supportinformation integration and agent pro-
gramming on the web. Prova integrates Java with derivation and reaction rules supporting message
exchange with various comminication frameworks. Prova supports transparent access to databases, re-
trieval of URLs, access to web services, and querying of XML documents. We briefly illustrate Prova
and show how to implement a distributed bioinformatics application, which includes access to an on-
tology stored in a database and to XML data for protein structures. Finally, we compare Prova to other
event-condition-action rule systems.

4.2 Introduction

Prova is a language for rule based Java scripting for information integration, and agent programming
[9, 5]. Prova is suitable for use as a rule-based backbone fordistributed web applications in biomedical
data integration. It has been designed to meet the followinggoals:

• Combine the benefits of declarative and object-oriented programming;

• Combine the syntaxes of Prolog and Java to appeal to programmers in both worlds;

• Expose logic and agent behaviour as rules;

• Access data sources via wrappers written in Java or command-line shells like Perl;

• Make all Java APIs from available packages directly accessible from rules;

• Run within the Java runtime environment;

• Enable rapid prototyping of applications;

• Offer a rule-based platform for distributed agent programming with common messaging proto-
cols.

These design goals are especially important for integration tasks where location and format trans-
parency are important. The latter means that the language should support the work with databases, RDF,
HTML, XML, and flat file formats. Prova’s rule-based approachis particularly important for two ap-
plications: derivation rules to reason over ontologies andreaction rules to specify reactive behaviour of
possibly distributed agents.

Let us consider examples to illustrate these two types of rules. As a declarative language with
derivation rules Prova follows a Prolog-style syntax as thenext example shows:

Example 1 (Declarative programming)
Graph traversal is a typical example for declarative programming. A standard example is the same
generation problem, in which all nodes in a tree are returned, which belong to the same generation.
Two nodes are in the same generation if they are siblings or iftheir parents are in the same generation.
The corresponding Prova programme is identical to standardProlog, the execution semantics of Prova
follow the usual top-down, left to right resolution.

36



Listing 16: Prova example
1 parent(anna, gerda).
2 parent(anna, fritz).
3 parent(asif, anna).
4 parent(asif, yanju).
5 parent(yanju, anja).
6

7 sg(X,Y) :- parent(Z,X), parent(Z,Y).
8 sg(X,Y) :- parent(Z1,X), parent(Z2,Y), sg(Z1,Z2).

The query:- solve(sg(gerda,X)). will return X=gerda, X=fritz, andX=anja.

Thus, Prova follows classical Prolog closely by declaratively specifying relationships with facts and
rules. Now let us consider two examples, where access to Javamethods is directly integrated into rules.

Example 2 (Object-oriented programming)
The code below represents a rule whose body consists of threeJava method calls: the first to construct
a String object, the second to append something to the string, and the third to print the string to the
screen.

Listing 17: Prova example
1 hello(Name):-
2 S = java.lang.String("Hello "),
3 S.append(Name),
4 java.lang.System.out.println(S).

4.3 Prova and Reactivity

Prova’s reaction rules can comprise events, conditions, and actions in any order, as both events and
actions are raised by built-in predicates for receiving andsending messages. Both allow for various
communication frameworks such as the agent messaging language Jade, the Java messaging system JMS
27 or even Java events generated by Swing components. Due to thenatural integration of Prova with Java,
Prova’s reaction rules offer a syntactically economic and compact way of specifying agents behaviour
while allowing for efficient Java-based extensions to improve performance of critical operations. JMS
in general has the advantage of being a guaranteed delivery messaging platform. Intuitively it means
that when computerA sends a message to computerB the latter is not required to be operational. Once
B goes online the messages will be delivered.

4.3.1 Main features of Prova’s reaction rules

Prova provides three main constructs for enabling agent communication:

• sendMsg predicates, which can be used as actions anywhere inthe body of a derivation or reaction
rule,

• reaction rules, which have a blocking rcvMsg in the head and which fire upon receipt of a corre-
sponding event, and

• inline reactions, which are encoded by blocking receipt of messages using rcvMsg or rcvMult
anywhere in the body of derivation or reaction rules.

27java.sun.com/products/jms/

37

java.sun.com/products/jms/


Communication actions with sendMsg. The sendMsg predicate can be embedded into the body of
an arbitrary derivation or reaction rule. It can fail only ifthe parameters are incorrect and the message
could not be sent due to various other reasons including the dropped connection (note that in the JMS
case, the message may be sent anyway even if the network is down).

The format of the predicate is:

sendMsg(Protocol,Agent,Performative,[Predicate|Args]|Context)

or

sendMsg(Protocol,Agent,Performative,Predicate(Args)|Context)

where Protocol can currently be either jade, jms, self, or queue. Jade and JMS use the corresponding
communication layers, while self and queue send the messageto the agent itself or to another agent
running locally in the same process but in another thread. Agent denotes the target of the message. For
the self, jade, and jms methods, Agent is the name of the target agent. For the queue option, Agent
is the object representing the message queue of the target agent. For Jade messages, the agent name
takes the form agent@machine while for jms messages the agent locations are read from configuration
files and are not specified in the Agent parameter. Performative corresponds to the semantic instruction
the broad characterisation of the message. A standard nomenclature of performatives is FIPA Agents
Communication Language ACL (www.fipa.org).

[Predicate|Args] corresponds to the bracketed form and Predicate(Args) corresponds to functional
form of the message content sent in the message envelope. Thefirst form can be useful to match
any literal including arity-0 predicates (in which case, query() is the represented as [query]) or arity-1
predicates (in which case, query(arg1) is represented as [query,arg1]). The problem with the functional
form is that it is impossible to specify a general pattern accommodating predicates of arbitrary arity
while the bracketed version is compatible with any arity. Context includes an arbitrary length list of
comma-separated parameters that can be used to identify themessage or to distinguish the replies to this
particular message from other messages. In particular, it can be useful to include the protocol as part of
context for the recipient of the message to be able to reply byusing the same protocol.

The following code shows a complete rule that sends a code base (a fragment of Prova code) from
an external File to the agent Remote that will then assimilate the rules being sent. The rules are encapsu-
lated in a serializable Java StringBuffer object and sent with the literal for the built-in predicate consult.
The particular version of consult will then read on the Remote machine the Prova statements from a
StringBuffer (in contrast to the standard version of consult that reads statements from the specified file
provided as an input string).

Listing 18: sendMsg Example
1

2 % Upload a r u l e base read from F i l e to the host a t address Remote
3

4 upload_mobile_code(Remote,File) :-
5 % Opening a f i l e re tu rns an ins tance of java . i o . BufferedReader i n Reader
6 fopen(File,Reader),
7 Writer = java.io.StringWriter(),
8 copy(Reader,Writer),
9 Text = Writer.toString(),

10 % SB w i l l encapsulate the whole content o f F i l e
11 SB = StringBuffer(Text),
12 sendMsg(jade,Remote,eval,consult(SB)).

38



Reaction rules with rcvMsg. In Prova, reaction rules are implemented as rules whose headconsists
of a rcvMsg predicate, which has the same syntax as the sendMsg predicate:

rcvMsg(Protocol,To,Performative,[Predicate|Args]|Context)

The agent reacts to the message based on its pattern including the protocol, sender, performative,
message content, and context. The following code shows a general purpose but simplified reaction rule
for the FIPA queryref performative. The first rule triggers anon-deterministic derivation of the literal
[Pred|Args] sent as the message content. Based on the agent’s knowledge-base derive will instantiate
Pred|Args and send corresponding replies. The second rule sends aspecial endof transmission message
to inform the querying agent of the completion of the query. The Protocol parameter available as the
first parameter allows the recipient of queryref to know the protocol (jade, jms etc.) that should be used
for replies.

Listing 19: rcvMsg Example
1 % React ion r u l e to general queryre f
2 rcvMsg(Protocol,From,queryref,[Pred|Args]|Context) :-
3 derive([Pred|Args]),
4 sendMsg(Protocol,From,reply,[Pred|Args]|Context).
5 rcvMsg(Protocol,From,queryref,[Pred|Args],Protocol) :-
6 sendMsg(Protocol,From,end_of_transmission,[Pred|Args]|Context).

Now we will show how to deploy Prova’s derivation and reaction rules to implement a distributed
web-based bioinformatics application.

4.4 The GoProtein tool

Biological databases are growing rapidly. Currently thereis much effort spent on annotating these
databases with terms from controlled, hierarchical vocabularies such as the GeneOntology [8]. It is
often useful to be able to retrieve all entries from a database, which are annotated with a given term
from the ontology. We want to build such a query engine according to the scheme shown in Fig. 9. The
application consists of four agents, whose interaction is driven by reaction rules. The agents are a thin
client, which contains nothing but a GUI to interact with theuser, a server, which handles queries of the
client, a database server, which contains the ontology and the protein IDs annotated with the ontology
terms, and a protein database which contains detailed information on the protein in XML format. The
client’s GUI displays the ontology. If the user selects a term from the ontology, an event is fired, which
triggers a request being sent to the GoProtein server. The server in turn queries the GeneOntology
database server for protein IDs, which have been annotated with the ontology term. If the user selects a
specific protein on the GUI, a query is sent to the server, which reacts by retrieving an XML file from
the remote protein database and by extracting relevant information from the file and returning it to the
client.

For this specific implementation of the GoProtein workflow wewant to use the GeneOntology [8] as
annotation vocabulary and the Protein Databank PDB [3] as protein database. The Gene ontology (GO)
contains over 19.000 terms organised in three sub-ontologies relating to biological processes, molecular
functions, and cellular components. GeneOntology is available in XML, OWL, or database dump. Here
we use the database dump of the GeneOntology. The protein databank PDB is a database with over
25.000 3D protein structures. Entries contain protein names, species, literature references, and most
important the 3D coordinates of all the atoms of the protein.PDB is available as flat file format and
XML.

39



Figure 9: Sketch of the GoProtein tool workflow: The user interacts locally with a GUI on a client
machine. Queries for all proteins annotated with a given term from the ontology are sent to the server.
The server can access a database server to obtain protein IDs, which are annotated with the given term.
The remote protein database returns an entry for protein as XML file given the protein ID. The protein
database is used to display relevant information to the user.

4.5 Prova code for GoProtein

The client agent comprises the GUI and therefore makes heavyuse of Java’s Swing methods. For
example, the MutableTreeNode class is used to display the GeneOntology tree as shown on Fig. 10.

Listing 20: Client agent
1 gui() :-
2 println(["==========Window Loading=========="]),
3 % create the t ree and a placeholder f o r the IDs
4 Node1 = javax.swing.tree.DefaultMutableTreeNode("all"),
5 TreeModel = javax.swing.tree.DefaultTreeModel(Node1),
6 Tree = javax.swing.JTree(Node1),
7 Panel1 = javax.swing.JScrollPane(Tree),
8 IdList = javax.swing.JList(),
9 Panel2 = javax.swing.JScrollPane(IdList),

10 ...

For large knowledge bases such as the 19.000 GeneOntology terms it is important to keep data on
disc and load it into main memory only as needed. For this purpose, the code snippet below defines the
location of the database and uses built-in predicates such as dbopen to open a database connection and
sql select to issue database queries. The concat statements areused to assemble the query string.

Listing 21: The Server Agent
1

2 :- eval(consult("utils.prova")).
3

40



Figure 10: Screenshot of GoProtein: The left panel shows theontology including the term ”protein
kinase inhibitor” and on the right the PDB entries annotatedwith the term.

4 % Define database l o c a t i o n
5 location(database,"GO","jdbc:mysql://myserver","guest","guest").
6

7 % get d e s c r i p t i o n of term
8 desc(Term, Desc) :-
9 dbopen("GO",DB),

10 unescape("\’", Quote),
11 concat(["term_definition.term_id = term.id AND term.name =", Quote, Term, Quote],A),
12 concat(["term, term_definition"],From),
13 sql_select(DB,From,[’term_definition.term_definition’,Desc],[where,A]).

The user can also issue a request to extract specified fields from URLs of XML entries for a selected
term. The code below shows the ability of Prova to connect to different URLs, process their XML
contents and retrieve the requested fields using the built-in predicate descendantValue.

Listing 22: XML Handler
1

2 searchPDB("http://pdbbeta.rcsb.org/pdb/displayFile.do?structureId=").
3

4 % get the xml f i l e
5 searchPDB(Query,XML):-
6 print(["Query for ",Query," at PDB"]),
7 searchPDB(BaseURL),
8 concat([BaseURL,Query, "&fileFormat=xml"],URLString),
9 retrieveXML(URLString,XML),

10 println(["done"]).
11

12 % search f o r ” sequence length ” values i n the xml f i l e o f a PDB ID
13 doSearchPDB(Term, Lst):-

41



14 searchPDB(Term,XML),
15 PDB = "PDBx:",
16 concat([PDB,"length_a"],La),
17 descendantValue(XML,La,A),!,
18 concat([PDB,"length_b"],Lb),
19 descendantValue(XML,Lb,B),!,
20 concat([PDB,"length_c"],Lc),
21 descendantValue(XML,Lc,C),!,
22 Lst = [A,B,C].
23

24 %%%%%%%%%%%%%%%% UTILITIY pred icates %%%%%%%%%%%%%%%%%%%%%%
25

26 retrieveXML(URLString,Root):-
27 URL = java.net.URL(URLString),
28 print(["."]),
29 Stream = URL.openStream(),
30 print(["."]),
31 ISR = java.io.InputStreamReader(Stream),
32 XMLResult = XML(ISR),
33 Root = XMLResult.getDocumentElement(),
34 print(["."]).

The communication between the client and server agents is performed by using the Prova massaging
and reaction rules to specify behaviour of the two agents. The predicate remote in line 1 takes as an
argument the specification of the target machine we are communicating with. The reaction rule in line
5, 8, 10 are triggered by an event from the GUI’s Swing component, while the one on line 15 is triggered
by a message sent by the server. One of the actions triggered by the reaction rule in line 5 is a message
sent to the server (last line).

Listing 23: The Client Agent

1 remote("ils_assign_server@servername").
2

3 % message t r a n s f e r f o r the l i s t e n e r s :
4 % React ion to but ton ac t ions
5 rcvMsg(XID,Protocol,From,swing,[action,Cmd,Source|Extra]) :-
6 process_button(Source,Cmd).
7 % React ion to incoming swing mouse c l i c ked messages .
8 rcvMsg(XID,Protocol,From,swing,[mouse,clicked,Src|Extra]) :-
9 process_mouse(clicked,Src|Extra).

10 rcvMsg(XID,Protocol,From,swing,[mouse,entered,Src|Extra]) :-
11 process_mouse(entered,Src|Extra).
12

13 % message t r a n s f e r w i th the server
14 % act ions a f t e r rece i v i ng the r e s u l t s o f a query
15 rcvMsg(XID,Protocol,From,reply_qry,[IDs]|Context) :-
16 mainlist(List),
17 buildList(List, IDs).
18

19 % process executed when the ” Load Unipro t IDs ” but ton i s c l i cked
20 % i t f i n d s the se lec ted node , f i n d s a l l i t s associated Uniprot IDs , and loads them i n the L i s t
21 process_button(Button, "Load Uniprot IDs") :-
22 Tree = Button.getTree(),
23 Path = Tree.getSelectionPath(),
24 Node = Path.getLastPathComponent(),
25 Term = Node.toString(),
26 List = Button.getList(),
27 buildList(List, ["contacting server...","please wait"]),
28 % ask f o r the l i s t o f associated uniprod IDs
29 remote(Remote),
30 sendMsg(XID,jade,Remote,uniprot,[Term],"context").

42



4.6 Comparison and Conclusion

The World Wide Web is a rich heterogenous media following a pattern of growth that is uncentralized,
directed by trends, and resistant to initiatives to enforcestrong conformance to standards. A language
for reactivity on the Web should be simple, offer ‘out of the box’ ability to handle most current de
facto standards and offer specification robustness throughclear declarative semantics. The many recent
efforts that have been initiated to bring proper semantics to the Web - the Semantic Web - must also be
kept in mind, as they delineate what the Web could eventuallybecome. One can thus enumerate some
‘must have’ features for a Reactive Web Language:

• Ability to read and write XML, RDF, OWL, RSS and their variants;

• Possibility to interface to systems written in Java and/or embed java code;

• Connectivity to public/private databases, through different media (direct, web or web-services);

• Simple access to URL-based resources: Web page, XML file, RSSfeed;

• Reactivity through the listening, processing and sending of events and actions;

• Declarative semantics and Event-Condition-Action paradigm.

In the following, we briefly compare Prova with other languages to address the problem of reactivity
on the web: JESS, a java based rule engine, XChange based on the Xcerpt web query language, and
ruleCore, an XML-based active rule engine.

4.6.1 JESS

Jess is a forward-chaining rule engine based on the Rete algorithm for the Java platform [7]. Jess
supports the development of rule-based systems which can betightly coupled to code written in the
Java language. The syntax of the Jess language is Lisp-based. Java functions can be called from Jess,
and Jess can be extended by writing Java code. Jess rules can be embedded in Java applications. Jess
inherits from Java all the XML libraries to read, process andwrite XML data. However, it does not
provide rule-based wrappers that provide these facilitiesin a transparent manner. The same holds for
connectivity to databases: it is possible through Java libraries but not truly integrated in the system. This
is one of the main differences between Prova and Jess, Prova has specialized predicates that allow easy
and transparent access to databases, XML data, message exchange frameworks, and even events from
Swing components. The fact that Jess is essentially a rule engine, provides a very natural setup to write
Event-Condition-Action rules in the context of event propagation in the Web. Thus Business rules can
be stated in a declarative and transparent manner.

4.6.2 XChange

XChange is a declarative language built upon the declarative web query language Xcerpt [4]. It provides
Web-specific capabilities such as propagation of changes onthe Web and event-based communications
between Web sites. XChange is a research project and has a prototype implementation as proof-of-
concept implementation. Among the interesting characteristics of XChange is its use of explicit tempo-
ral constructs to describe sequences of events, their overlapping and composition. Reactivity is achieved
by having Event-Condition-Action rules at the core of the language. The main difference between Prova
and XChange is that Prova is a full featured programming language built-upon the robustness and rich-
ness of Java, whereas XChange is geared towards XML and HTML contents.

43



4.6.3 ruleCore

Of proved industrial strength, the ruleCore Engine (www.rulecore.com/) is a robust implementa-
tion of an active rule engine server. The ruleCore Engine implements Event-Condition-Action rules that
are organised in situation trees. The goal of ruleCore is to detect situations that arise as the temporal
and logical composition of events. The rule engine itself does not rely on a generic programming lan-
guage as in the case of Prova and Jess, but instead on the definition of situations as event detector trees.
Connectivity to other media and systems is achieved throughthe use of event and action wrappers, most
of which are provided ‘out of the box’ for databases and standard industrial messaging frameworks like
XML-RPC, Web Services, TIBCO Rendezvous, plain sockets or IBM WebSphere MQ. The main dif-
ference between Prova and the ruleCore engine is, as in the case of XChange, that Prova is a generic
rule language extending Java, whereas ruleCore is a language-independent rule engine.

Prova is the choice of a Java programmer with Prolog experience who aims to develop a system
which needs a possibly thin layer of rules for reasoning withbackward chaining and for defining busi-
ness rules and workflows with agent communication. Prova is available at www.prova.ws.

References

[1] The Gene Ontology (GO) project in 2006.Nucleic Acids Research, 34(Database issue):D322–6,
12 2005.

[2] Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez
R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, and Yeh LS. The Universal
Protein Resource(UniProt).Nucleic Acids Res., 33:D154–159, 2005.

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and
P. E. Bourne. The protein data bank.Nucleic Acids Res, 28(1):235–242, 2000.

[4] F. Bry and P. Patranjan. Reactivity on the web: Paradigmsand applications of the language
xchange. InProceedings of 20th Annual ACM Symposium on Applied Computing (SAC’2005).
ACM, March 2005.

[5] J. Dietrich, A. Kozlenkov, M. Schroeder, and G. Wagner. Rule-based agents for the semantic web.
Journal on Electronic Commerce Research Applications, 2(4):323–38, 2003.

[6] Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, and Rapp
BA. Database resources of the National Center for Biotechnology Information. Nucleic Acids
Res., 28:10–4, 2000.

[7] Ernest Friedman-Hill.Jess in Action Java Rule-based Systems. Manning, 2003.

[8] GeneOntologyConsortium. The Gene Ontology (GO) database and informatics resource.Nucleic
Acids Res., 1(32):D258–61, 2004.

[9] A. Kozlenkov and M. Schroeder. PROVA: Rule-based Java-scripting for a bioinformatics semantic
web. In E. Rahm, editor,International Workshop on Data Integration in the Life Sciences DILS,
Leipzig, Germany, 2004. Springer.

[10] Alexander Kozlenkov and Michael Schroeder. PROVA: Rule-based Java-Scripting for a Bioinfor-
matics Semantic Web. In E. Rahm, editor,International Workshop on Data Integration in the Life
Sciences DILS, Leipzig, Germany, 2004. Springer.

44

www.rulecore.com/


[11] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. Entrez Gene: gene-centered
information at NCBI.Nucleic Acids Res, 33(Database issue):D54–D58, 2005.

[12] Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Practical Introduction to
Xcerpt. InProceedings of Extreme Markup Languages 2004, Montreal, Quebec, Canada (2nd–6th
August 2004), 2004.

45



5 Conclusion

The previous chapters document some results of I-working groups that are applicable to the A2 bioinfor-
matics application. These are examples, where particularydeep integration has been achieved, but they
are not exclusive examples of A2-relevant I-research. However, a fundamental difficulty in applying I
results in A2 (in contrast to other applications) is that A2 requires deep understanding of the application
domain before any collaboration can start. The next deliverable will document the state of the bioinfor-
matics demonstrators and will have a specific focus on protein interaction networks. On the one hand,
it will show case how typing as investigated by I3 is used in the Biocham System and how consistency
checking for logic programmes as developed originally by the Lisbon group (I5) can be used to reason
over metabolic networks.

46


	Introduction
	Improving Text Mining with Controlled Natural Language: A Case Study for Protein Interactions (A2/I2)
	Abstract
	Introduction
	Motivation
	Formalization of Scientific Results
	Attempto Controlled English
	Comparison of Knowledge Representation Languages

	Ontology for Protein Interactions in ACE
	Ontologies
	Ontology Elements
	Ontology for Protein Interactions

	ACE Summaries
	ACE Summaries for 89 Selected Articles
	ACE Summary as an Integral Part of an Article
	Authoring Tool

	The Benefits of our Approach
	Outlook

	Querying Semantic Web Contents: A Case Study In Bioinformatics(A2/I4)
	Abstract
	Introduction
	Data Integration in Bioinformatics
	Case Study: ProteinBrowser
	Prova
	Workflow solved with Prova
	XQuery and XPath
	The Workflow Solved with XQuery
	Xcerpt
	The Workflow solved with Xcerpt

	Comparison
	Discussion and Conclusion

	Prova: Rule-based Java Scripting for Distributed Web Applications:A Case Study in Bioinformatics (A2/I5)
	Abstract
	Introduction
	Prova and Reactivity
	Main features of Prova's reaction rules

	The GoProtein tool
	Prova code for GoProtein
	Comparison and Conclusion
	JESS
	XChange
	ruleCore


	Conclusion

