
I1-D5

XML Code Generation Component for the I1

Rule Modeling Tool

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Cottbus/I1-D5/D/PU/b1
Responsible editors: Sergey Lukichev
Reviewers: Adrian Giurca (internal), Jakob Henriksson (exter-

nal)
Contributing participants: Cottbus
Contributing workpackages: I1
Contractual date of deliverable: September 3, 2006
Actual submission date: September 22, 2006

Abstract
In this technical report we describe the XML code generation component for the rule modeling
tool Strelka. The component implementation is based on the compositional mapping from the
URML metamodel into R2ML XML markup. We define a mapping function for derivation,
production and reaction rules.

Keyword List
Rules, URML, R2ML, Rule Markup Language, Semantic Web, Rule Interchange

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2006.



ii



XML Code Generation Component for the I1

Rule Modeling Tool

Sergey Lukichev1, Gerd Wagner1

1 Institute of Informatics, Brandenburg University of Technology at Cottbus, Email:
{G.Wagner, Lukichev}@tu-cottbus.de

September 22, 2006

Abstract
In this technical report we describe the XML code generation component for the rule modeling
tool Strelka. The component implementation is based on the compositional mapping from the
URML metamodel into R2ML XML markup. We define a mapping function for derivation,
production and reaction rules.

Keyword List
Rules, URML, R2ML, Rule Markup Language, Semantic Web, Rule Interchange



iv



Chapter 1

Introduction

The rule modeling tool Strelka ([3], [2]), developed in the REWERSE Working Group I1, sup-
ports modeling of derivation rules, production rules and reaction rules. The modeling approach
is based on the UML-based Rule Modeling Language (URML) [1]. In order to support rules
deployment into different rule engines, rules validation and rules interchange, we have imple-
mented a code generation component for Strelka. The component serializes URML models
into the REWERSE I1 Rule Markup Language (R2ML) [1]. R2ML is a general purpose rule
markup language, which has an XML concrete syntax and serves as an interchange format
between different rule languages.

The code generation is based on the compositional mapping, defined for URML metamodel
into R2ML XML markup.

1



2



Chapter 2

Compositional Mapping of
Derivation Rules

The general rules metamodel is depicted in Figure 2.1.

Let DR = DerivationRule(RuleID(id), Cond(c1), ..., Cond(cn), Concl(con)) be a URML
derivation rule with an identifier id, conditions c1, ..., cn and a conclusion con. We define a
mapping function M for URML derivation rules as follows:
M(DR) =

<r2ml:DerivationRule r2ml:ruleID=id>
<r2ml:conditions>

M(c1) ... M(cn)

<r2ml:conditions>
<r2ml:conclusion>

M(con)

</r2ml:conclusion>
</r2ml:DerivationRule>

Here and in the following definitions of M we insert values from the URML abstract syntax
into the R2ML XML. For instance, in the above definition, Rule(id) means that id is an identifier
(a value) and in the corresponding R2ML markup <r2ml:DerivationRule r2ml:ruleID=id>
it is inserted as a value of the r2ml:ruleID attribute.

2.1 Conditions

URML has three condition types (Figure 2.2):

• classification condition;

• association condition;

3



Rule

NamedElement

Namespace

namespace

0..1*

DerivationRule ProductionRule ReactionRule

1

1

RuleConclusion

RuleCondition

1

1..*

1

1..*
RuleAction

1

1

1

1

1

*

RuleEvent

1

1

PostCondition

1

0..1

1

0..1

Figure 2.1: General Rules Metamodel

RuleCondition
isNegative : Boolean

ClassificationCondition AssociationCondition
isInverse : Boolean

RoleCondition

Class

AssociationEnd

Association

1

rangevariable 1

domainvariable

1
1

*
1

*

1

*
1

OpaqueFilter

OCLFilter 1*

OpaqueExpression

Filter

ObjectVariable

Figure 2.2: Rule Condition Metamodel

4



• role condition.

Each URML condition refers to a condition classifier, which is either a UML class, UML
association end, or UML association, and consists of filter expressions. We defined a mapping
function M case-wise for each type of URML condition.

2.1.1 Classification Condition

Let CC = cond(Class(c), ObjV ar(v), F ilter(f), isNegative(b)) be a URML classification con-
dition with c as a UML class, v as an object variable of class c, f as a filter and b ∈ {true, false}.
M(CC) =

<r2ml:ObjectClassificationAtom r2ml:classID=c r2ml:isNegated=b>
<r2ml:ObjectVariable r2ml:name=v/>

</r2ml:ObjectClassificationAtom>

M(f)

2.1.2 Association Condition

Let AC = cond(Assoc(a, dc, rc), DomainV ar(dv), RangeV ar(rv), F ilter(f), isNegative(b)) be
a URML association condition with a as a UML association and dc, rc as domain and range
classes correspondingly, dv as a domain variable, rv as a range variable, f as a filter and
b ∈ {true, false}.
M(AC) =

<r2ml:AssociationAtom r2ml:associationPredicateID=a r2ml:isNegated=b>
<r2ml:objectArguments>
<r2ml:ObjectVariable r2ml:name=dv r2ml:classID=dc/>
<r2ml:ObjectVariable r2ml:name=rv r2ml:classID=rc/>
</r2ml:objectArguments>

</r2ml:AssociationAtom>

M(f)

2.1.3 Role Condition

Let RC = cond(Property(a), ObjV ar(v), F ilter(f), isNegative(b)) be a URML role condition
with a as a UML property, which denotes an association end, v as a property object variable
of the association end class, f as filters and b ∈ {true, false}.
Such URML condition is mapped into R2ML ReferencePropertyAtom. Since the subject vari-
able in such condition is existentially quantified and do not appear in the rule conclusion, it
is not specified in the URML role condition, but generated automatically by the code genera-
tor. We assume, that the variable ”sv” in the XML below is generated by the code generator.
M(RC) =

<r2ml:ReferencePropertyAtom r2ml:referencePropertyID=a r2ml:isNegated=b>
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name=sv/>
</r2ml:subject>

5



OCLFilter

DisjunctiveFilter

2..*

ConjunctiveFilter

2..*

ObjectInequalityAtom

ObjectEqualityAtom

DatatypePredicate

DatatypePredicateAtom

1

*

ObjectTerm

*

2 *
2

DataTerm

dataArguments *

*

Figure 2.3: Filters Metamodel

DataTerm

TypedLiteral DatatypeFunctionTerm AttributeFunctionTermDataOperationTerm

Figure 2.4: Data terms, supported in URML

<r2ml:object>
<r2ml:ObjectVariable r2ml:name=v/>
</r2ml:object>

</r2ml:ReferencePropertyAtom>

M(f)

2.2 Filters

URML filters are used in rule conditions in order to filter instances of a condition classifier. The
filters metamodel is depicted in Figure 2.3 This metamodel uses some term and atom concepts,
which are presented in the R2ML as well. URML uses OCL-like syntax in order to express
filters, which may contain terms and atoms, while R2ML uses XML syntax to represent these
terms and atoms. In this section we describe terms and atoms, which can be used in URML
filters. The definitions of terms and atoms by means of MOF/UML are provided in [1].

2.2.1 Data Terms

The following terms are allowed in URML filter expressions: TypedLiteral, DatatypeFunction-
Term, AttributeFunctionTerm, DataOperationTerm (Figure 2.4).

6



2.2.1.1 TypedLiteral

URML TypedLiteral (integer, string, boolean, float) are mapped into R2ML TypedLiteral. Let
C = TypedLiteral(DataType(d), LexV al(v)) be a typed literal with data type d and lexical
value v.
M(C) =

<r2ml:TypedLiteral r2ml:datatypeID=d r2ml:lexicalValue=v />

2.2.1.2 DatatypeFunctionTerm

The list of currently supported URML datatype functions is ”+”, ”-”, ”*”, ”/”. Let DTF =
DatatypeFunctionTerm(Func(p), Arg(a1), ..., Arg(an)) be a URML datatype function term
with p as an datatype function and data terms a1, ..., an as arguments.
M(DTF ) =

<r2ml:DatatypeFunctionTerm r2ml:datatypeFunctionID=p>
<r2ml:dataArguments>

M(a1) ... M(an)

</r2ml:dataArguments>
</r2ml:DatatypeFunctionTerm>

2.2.1.3 AttributeFunctionTerm

Let AFT = AttributeFunctionTerm(Attr(a), ContextV ar(v), ContextClass(c)) be an attribute
function term a with v as a context variable and c as a context class.
M(AFT ) =

<r2ml:AttributeFunctionTerm r2ml:attributeID=a>
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name=v r2ml:classID=c/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>

2.2.1.4 DataOperationTerm

Let DOT = DataOperationTerm(Oper(o), ContextV ar(v), ContextClass(c), Arg(a1), ..., Arg(an))
be a data operation term o with v as a context variable, c as a context class and a1, ..., an as a
data and object term arguments.
M(AFT ) =

<r2ml:DataOperationTerm r2ml:operationID=o>
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name=v r2ml:classID=c>
</r2ml:contextArgument>
<r2ml:arguments>

M(a1)...M(an)

</r2ml:arguments>
</r2ml:DataOperationTerm>

7



2.2.2 Object Terms

URML supports three types of object terms: ObjectVariable, ReferencePropertyFunctionTerm
and ObjectOperationTerm. These terms are defined in [1].

2.2.2.1 ObjectVariable

Let OV = ObjectV ariable(Name(v), Class(c)) be an object variable with v as a name and c
as a class id.
M(OV ) =

<r2ml:ObjectVariable r2ml:name=v r2ml:classID=c/>

2.2.2.2 ReferencePropertyFunctionTerm

Let RPA = ReferencePropertyFunctionTerm(Prop(p), Context(o)) be a reference property
atom with p as a reference property and an object term o as a context argument.
M(RPA) =

<r2ml:ReferencePropertyFunctionTerm r2ml:referencePropertyID=p>
<r2ml:contextArgument>

M(o)

</r2ml:contextArgument>
</r2ml:ReferencePropertyFunctionTerm>

2.2.2.3 ObjectOperationTerm

Let OOT = ObjectOperationTerm(Oper(o), ContextV ar(v), ContextClass(c), Arg(a1), ..., Arg(an))
be an object operation term o with v as a context variable, c as a context class and a1, ..., an

as data and object term arguments.
M(OOT ) =

<r2ml:ObjectOperationTerm r2ml:operationID=o>
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name=v r2ml:classID=c>
</r2ml:contextArgument>
<r2ml:arguments>

M(a1)...M(an)

</r2ml:arguments>
</r2ml:ObjectOperationTerm>

2.2.3 Datatype Predicate Atom

The list of currently supported datatype predicates is ”<”, ”>”, ”<=”, ”=>”, ”<>”, ”=”.
Let BPA = DatatypePredicateAtom(Pred(p), Arg(a1), ..., Arg(an), isNegated(b)) be a URML
datatype predicate atom with p as a predicate, data terms a1, ..., an as arguments and b ∈
{true, false}. M(BPA) =

8



<r2ml:DatatypePredicateAtom r2ml:datatypePredicateID=p
r2ml:isNegated=b>

<r2ml:dataArguments>

M(a1)...M(an)

</r2ml:dataArguments>
</r2ml:DatatypePredicateAtom>

2.2.4 Object Equality and Inequality Atoms

URML supports equality and inequality atoms in order to compare object terms. Let OEA =
ObjectEqualityAtom(ObjTerm(a1), ObjTerm(a2)) be an object equality atom with two object
terms a1 and a2.
M(OEA) =

<r2ml:EqualityAtom>

M(a1) M(a2)

</r2ml:EqualityAtom>

Let OIA = ObjectInequalityAtom(ObjTerm(a1), ObjTerm(a2)) be an object inequality
atom with two object terms a1 and a2.
M(OIA) =

<r2ml:InequalityAtom>

M(a1) M(a2)

</r2ml:InequalityAtom>

2.2.5 Disjunctive Filter

Let DF = Filter(f1)or...orF ilter(fn) be a URML disjunctive filter.
M(DF ) =

<r2ml:qf.Disjunction>

M(f1)...M(fn)

</r2ml:qf.Disjunction>

2.2.6 Conjunctive Filter

Let CF = Filter(f1)and...andF ilter(fn) be a URML conjunctive filter.
M(CF ) =

<r2ml:qf.Conjunction>

M(f1)...M(fn)

</r2ml:qf.Conjunction>

9



ClassificationConclusion AssociationConclusion
isInverse : Boolean

AttributionConclusion

Class Association
1

rangevariable 1

domainvariable

1

value1
*

1

*

1

*

1

Property
RoleConclusion

1

AssociationEnd

*
1 DataTerm

RuleConclusion

1

ObjectVariable

Figure 2.5: Rule Conclusion Metamodel

2.3 Derivation Rule Conclusion

URML supports three conclusion types:

• classification conclusion;

• association conclusion.

• role conclusion;

• attribution conclusion;

Each URML conclusion refers to a conclusion classifier, which is either a UML class, UML
association end, UML association, or UML property (Figure 2.5). We define a mapping function
M case-wise for each type of URML conclusion.

2.3.1 Classification Conclusion

Let CC = concl(Class(c), V ar(v)) be a URML classification conclusion with c as a UML class
and v as an object variable.
M(CC) =

<r2ml:ObjectClassificationAtom r2ml:classID=c>
<r2ml:ObjectVariable r2ml:name=v/>

</r2ml:ObjectClassificationAtom>

2.3.2 Association Conclusion

Let AC = concl(Assoc(a, dc, rc), DomainV ar(dv), RangeV ar(rv)) be a URML association con-
clusion with a as a UML association and dc, rc as domain and range classes correspondingly,

10



dv as a domain variable, rv as a range variable.
M(AC) =

<r2ml:AssociationAtom r2ml:associationPredicateID=a>
<r2ml:objectArguments>
<r2ml:ObjectVariable r2ml:name=dv r2ml:classID=dc/>
<r2ml:ObjectVariable r2ml:name=rv r2ml:classID=rc/>
</r2ml:objectArguments>

</r2ml:AssociationAtom>

2.3.3 Role Conclusion

Let RC = concl(Property(a), SubjV ar(sv), ObjV ar(ov)) be a URML role conclusion with a
as a UML property, sv as a subject variable and ov as an object variable.
M(RC) =

<r2ml:ReferencePropertyAtom r2ml:referencePropertyID=a>
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name=sv/>
</r2ml:subject>
<r2ml:object>
<r2ml:ObjectVariable r2ml:name=ov/>
</r2ml:object>

</r2ml:ReferencePropertyAtom>

2.3.4 Attribution Conclusion

Let AttrC = concl(Prop(p), V ar(v), V alue(u)) be a URML attribution conclusion with p as a
UML property, object term v as a subject and data term u as a property value.
M(AttrC) =

<r2ml:AttributionAtom r2ml:attributeID=p>
<r2ml:subject>

M(v)

</r2ml:subject>
<r2ml:dataValue>

M(u)

</r2ml:dataValue>
</r2ml:ReferencePropertyAtom>

The mapping functions M(v) and M(u) for the property value data term is defined in Section
2.2.1.

11



12



Chapter 3

Production Rules

Let PR = ProductionRule(RuleID(id), Cond(c1), ..., Cond(cn), Action(a), Postcond(pcond))
be a URML production rule with an identifier id, conditions c1, ..., cn, a produced action a and
postcondition pcond. We define a mapping function M for URML production rules as follows:
M(PR) =

<r2ml:ProductionRule r2ml:ruleID=id>
<r2ml:conditions>

M(c1) ... M(cn)

<r2ml:conditions>
<r2ml:producedAction>

M(a)

</r2ml:producedAction>
<r2ml:postCondition>

M(pcond)

<r2ml:postCondition>
</r2ml:ProductionRule>

Mapping function for conditions is defined in Section 2.1. The mapping function for a postcon-
dition is similar to the mapping function for a condition.

3.1 Production Rule Actions

URML supports four action types: assign action, create action, delete action, and invoke action.
The action metamodel is depicted in Figure 3.1.

We define a mapping function M case-wise for all action types.

13



RuleAction

InvokeAction Actions::AssignAction CreateAction DeleteAction

Term

1

arguments
*

{ordered}
Property

DataTerm Class

ObjectVariable

*

1

1

*

*

1
ObjectTerm DataTerm

1*
1

Operation

*
1 *

parameter*

Slot

Figure 3.1: Actions Metamodel

3.1.1 Assign Action

Let AA = AssignAction(Prop(p, o), V alue(v)) be an assign action with p as a property of
object o and data term v as a property value.
M(AA) =

<r2ml:AssignActionExpression r2ml:propertyID=p>
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name=o/>
</r2ml:contextArgument>

M(v)

</r2ml:AssignActionExpression>

The mapping M(v) is the same as for attribution conclusion of derivation rules and is defined
in Section 2.2.1.

3.1.2 Create Action

Let CA = CreateAction(Class(c), Slot(s1), ..., Slot(sn) be a create action with c as a class of
the created object and s1, ..., sn is a list of slots as parameters.
M(CA)=

<r2ml:CreateActionExpression r2ml:classID=c>

M(s1)...M(sn)

</r2ml:CreateActionExpression>

Let S = Slot(Attr(a), V al(v)) be a slot with a as an attribute name and term v as a value for
the attribute a. The mapping function M(S) =

14



<r2ml:DataSlot r2ml:attributeID=a>
<r2ml:value>

M(v)

</r2ml:value>
</r2ml:DataSlot>

The mapping function M(v), where v is a term, is defined in Section 2.2.1.

3.1.3 Invoke Action

Let IA = InvokeAction(Oper(o, v), Arg(a1), ..., Arg(an)) be an invoke action with o as an
operation on object v and a1, ..., an a list of terms as operation arguments.
M(IA)=

<r2ml:InvokeActionExpression r2ml:operationID=o>
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name=v/>
</r2ml:contextArgument>
<r2ml:arguments>

M(a1)...M(an)

</r2ml:arguments>
</r2ml:InvokeActionExpression>

The mapping function M for arguments is defined in Section 2.2.1.

3.1.4 Delete Action

Let DA = DeleteAction(Class(c), V ar(v)) be a delete action with c as a class and v as a
variable, denoting the object to be deleted.
M(DA)=

<r2ml:DeleteActionExpression r2ml:classID=c>
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name=v/>
</r2ml:contextArgument>

</r2ml:DeleteActionExpression>

15



16



Chapter 4

Reaction Rules

Let RR = ReactionRule(RuleID(id), Event(e), Cond(c1), ..., Cond(cn), Action(a), P cond(p))
be a URML reaction rule with an identifier id, triggering event e, conditions c1, ..., cn, a produced
action a and a postcondition p. We define a mapping function M for a URML reaction rule as
follows:
M(RR) =

<r2ml:ReactionRule r2ml:ruleID=id>
<r2ml:triggeringEvent>

M(e)

</r2ml:triggeringEvent>
<r2ml:conditions>

M(c1) ... M(cn)

</r2ml:conditions>
<r2ml:producedAction>

M(a)

</r2ml:producedAction>
<r2ml:postCondition>

M(p)

</r2ml:postCondition>
</r2ml:ReactionRule>

The mapping function for URML events is not defined yet since the work on reaction rules meta-
model for URML and R2ML is still in progress. The mapping function M(p) for postcondition
is defined, as well as the mapping function for conditions, in Section 2.1.

17



18



Chapter 5

Mapping Example

Let’s consider a derivation rule, which URML model, depicted in Figure 5.1:

If the reservation date of the rental is five days before the start date of the rental
then give discount 10 on the rental.

This rule as an instance of rule metamodel is depicted in Figure 5.2.

5.1 Mapping Derivation Rule

Let’s use the mapping function M , defined in the previous chapters in order to obtain R2ML
XML. Metamodel diagram objects are denoted by their role names and we use these role names
in path expressions as parameters to the transformation M .
M(id1) =

<r2ml:DerivationRule r2ml:ruleID="id1">
<r2ml:condition>

M(id1.condition)

<r2ml:conditions>
<r2ml:conclusion>

rental
reservation date
start date
/discount

DR

startDate – reservationDate >= 5discount := 10

Id1

Figure 5.1: Sample Derivation Rule

19



id1 : DerivationRule

 : ClassificationCondition

rental : Kernel::Class

reservationDate : ::Property

startDate : ::Property

classifier

 : ::DatatypePredicateAtom

filter

> : ::DatatypePredicate

predicate
 : ::AttributeFunctionTerm

minus : ::DatatypeFunctionTerm

arg1

arg2
 : ::AttributeFunctionTerm

proeprty

property

5 : ::TypedLiteral

arg2

arg1

condition

 : AttributionConclusion

discount : ::Property

attribute

conclusion

10 : ::TypedLiteral

value
r1 : ObjectVariable

variable

r1 : ObjectVariable

variable

Figure 5.2: Rule Metamodel Instance

M(id1.conclusion)

</r2ml:conclusion>
</r2ml:DerivationRule>

5.1.1 Condition mapping

M(id1.condition) =

<r2ml:ObjectClassificationAtom r2ml:classID="rental"
r2ml:isNegated="false">

<r2ml:ObjectVariable r2ml:name="r1"/>
</r2ml:ObjectClassificationAtom>

M(id1.condition.filter)

5.1.1.1 Condition filter as a DatatypePredicateAtom

M(id1.condition.filter) =

<r2ml:DatatypePredicateAtom
r2ml:datatypePredicateID="swrlb:greaterThan"
r2ml:isNegated="false">

<r2ml:dataArguments>

M(id1.condition.filter.arg1) M(id1.condition.filter.arg2)

20



<r2ml:dataArguments>
</r2ml:DatatypePredicateAtom>

M(id1.condition.filter.arg2) =

<r2ml:TypedLiteral r2ml:datatypeID="xs:integer" r2ml:lexicalValue="5">

5.1.1.2 Mapping DatatypeFunctionTerm

The DatatypeFunctionTerm in this rule consists of two AttributeFunctionTerm’s.
M(id1.condition.filter.arg1) =

<r2ml:DatatypeFunctionTerm r2ml:datatypeFunctionID="swrlb:substract">
<r2ml:dataArguments>

M(id1.condition.filter.arg1.arg1) M(id1.condition.filter.arg1.arg2)

</r2ml:dataArguments>
</r2ml:DatatypeFunctionTerm>

M(id1.condition.filter.arg1.arg1) =

<r2ml:AttributeFunctionTerm r2ml:attributeID="startDate">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="r1"/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>

M(id1.condition.filter.arg1.arg2) =

<r2ml:AttributeFunctionTerm r2ml:attributeID="reservationDate">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="r1"/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>

5.1.2 Conclusion mapping example

M(id1.conclusion) =

<r2ml:AttributionAtom r2ml:attributeID="discount">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="r1"/>
</r2ml:subject>
<r2ml:dataValue>
<r2ml:TypedLiteral r2ml:datatypeID="xs:integer" r2ml:lexicalValue="5">
</r2ml:dataValue>

</r2ml:AttributionAtom>

21



5.2 Report Conclusion

In this technical report we have described a compositional mapping, which is used in the im-
plementation of the code generation component for the rule modeling tool Strelka. We have
demonstrated the mapping by means of an example. The further work on improvements is to-
wards serialization of reaction rules, modeled with URML. The work on metamodel specification
for the reaction rules in URML and R2ML is still in progress.

22



Bibliography

[1] Wagner, G., Giurca, A., Lukichev, S. REWERSE I1 Deliverable D8, Language Improve-
ments and Extentions, March 2006.

[2] Lukichev S., Wagner G.,(2006). UML-Bsed Rule Modeling with Fujaba. 4th Internation
Fujaba Days 2006, to appear.

[3] Lukichev S., Wagner G., (2006). REWERSE I1 Deliverable D5: Strelka - A Visual Rule
Modeling Tool.

[4] Milanovic M., Gasevic D., Giurca A., Wagner G., Devedzic V. (2006). On Interchang-
ing Between OWL/SWRL and UML/OCL. Accepted to the OCLApps 2006 workshop,
Dresden, Germany.

23


	Introduction
	Compositional Mapping of Derivation Rules
	Conditions
	Classification Condition
	Association Condition
	Role Condition

	Filters
	Data Terms
	TypedLiteral
	DatatypeFunctionTerm
	AttributeFunctionTerm
	DataOperationTerm

	Object Terms
	ObjectVariable
	ReferencePropertyFunctionTerm
	ObjectOperationTerm

	Datatype Predicate Atom
	Object Equality and Inequality Atoms
	Disjunctive Filter
	Conjunctive Filter

	Derivation Rule Conclusion
	Classification Conclusion
	Association Conclusion
	Role Conclusion
	Attribution Conclusion


	Production Rules
	Production Rule Actions
	Assign Action
	Create Action
	Invoke Action
	Delete Action


	Reaction Rules
	Mapping Example
	Mapping Derivation Rule
	Condition mapping
	Condition filter as a DatatypePredicateAtom
	Mapping DatatypeFunctionTerm

	Conclusion mapping example

	Report Conclusion


