
I2-D10

Negotiation Analysis and Design: Reasoning on

Policies for Verifying Properties

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Turin/I2-D10/D/PU/a1
Responsible editors: Alberto Martelli
Reviewers: Daniel Olmedilla and Bernhard Lorenz
Contributing participants: Torino, Napoli
Contributing workpackages: I2, A3
Contractual date of deliverable: 3 September 2006
Actual submission date: 5 September 2005

Abstract
The present report continues the work of deliverable I2-D2 [Bonatti and Olmedilla, 2005b] by
presenting a series of reasoning techniques, that allow several kinds of verifications, such as
compliance at run-time, verification of properties, goal achievement, capability checking, and
interoperability. We will show how techniques, that are typically used in artificial intelligence,
can be usefully adapted so to deal with policies on the web, improving the skill of negotiating
of the involved entities. By reasoning on a policy before its adoption, an agent can customize
it, refuse it if it does not allow the achievement of its own purposes, modify it to make it more
profitable, avoid run-time errors.

Keyword List
semantic web, reasoning, policies, protocols, verification, conformance, temporal logics

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2006.

ii

Negotiation Analysis and Design: Reasoning on

Policies for Verifying Properties

Matteo Baldoni1, Cristina Baroglio1, Piero A. Bonatti2, Laura Giordano3,
Alberto Martelli1, Viviana Patti1, and Claudio Schifanella1

1 Dipartimento di Informatica, Università degli Studi di Torino
Email: {baldoni,baroglio,mrt,patti,schi}@di.unito.it

2 Dipartimento di Scienze Fisiche - Sezione di Informatica,
Università di Napoli “Federico II”

Email: bonatti@na.infn.it
3 Dipartimento di Informatica, Università del Piemonte Orientale

Email: laura@di.unipmn.it

5 September 2005

Abstract
The present report continues the work of deliverable I2-D2 [Bonatti and Olmedilla, 2005b] by
presenting a series of reasoning techniques, that allow several kinds of verifications, such as
compliance at run-time, verification of properties, goal achievement, capability checking, and
interoperability. We will show how techniques, that are typically used in artificial intelligence,
can be usefully adapted so to deal with policies on the web, improving the skill of negotiating
of the involved entities. By reasoning on a policy before its adoption, an agent can customize
it, refuse it if it does not allow the achievement of its own purposes, modify it to make it more
profitable, avoid run-time errors.

Keyword List
semantic web, reasoning, policies, protocols, verification, conformance, temporal logics

iv

Contents

1 Executive summary 1

2 Policies as conversations 1

3 Declarative representations of policies 3

4 Reasoning on policies for pursueing goals 5

5 Capabilities 8

6 Interoperability 10

7 Conclusion 13

A Appendix 17

v

vi

1 Executive summary

The work in working group I2 is focussed on the representation and reasoning about policies. In
a previous deliverable [Bonatti and Olmedilla, 2005b] (see also [Bonatti and Olmedilla, 2005a])
the syntax and semantics of the core of Protune, the policy language and metalanguage of
REWERSE, have been presented. The language can specify access control policies, privacy
policies, reputation-based policies, provisional policies, and a class of business rules.

This report continues the mentioned work by presenting a series of reasoning techniques, that
allow several kinds of verifications, such as compliance at run-time, verification of properties,
goal achievement, capability checking, and interoperability. We will show how techniques, that
are typically used in artificial intelligence, can be usefully adapted so to deal with policies on
the web, improving the skill of negotiating of the involved entities. By reasoning on a policy
before its adoption, an agent can customize it, refuse it if it does not allow the achievement of
its own purposes, modify it to make it more profitable, and avoid run-time errors.

In Section 2 we interpret policies as conversations by means of an example that has already
been used in previous deliverables and that will also be used throughout this document. In
Section 3, we sketch an alternative declarative representation of policies, based on Dynamic
Linear Time Temporal Logic, that enables the verification of run-time compliance and of the
properties of the interaction. In Section 4 we show how, by using representation and reasoning
techniques derived from logics for reasoning about actions and change, it is possible to perform
existential verifications on the possible policy execution traces. The aim is to check the reacha-
bility of goals of interest. In Section 5, we discuss the actual executability of an adopted policy,
introducing the concepts of “capability” and “capability requirement” in a policy description.
Last but not least, in Section 6 we consider the problem of policy interoperability, for verifying
that agents can actually interact by means of exchanged and possibly customized policies. Each
of these sections contains full references to the main papers, attached in the Appendix, where
details about approaches and techniques can be found. Some conclusions end the document.

The authors would like to thank for their kindness and support the reviewers of this document,
Bernhard Lorentz and Daniel Olmedilla.

2 Policies as conversations

Let us consider the example in [Bonatti and Olmedilla, 2005b]. alice requests a discount from
the online provider elearn. elearn has the following policies:

E1 : in order to get a discount, alice must prove that she is a European citizen and a student;

E2 : its membership to Better Business Bureau (BBB) can be disclosed to anybody.

alice has the following policies:

A1 : her citizenship can be disclosed to anybody;

A2 : she is willing to release her student id only to companies member of BBB.

We will model the interactions between alice and elearn, by means of communicative actions
such as:

1

Figure 1: The policy E1, represented by means of UML sequence diagrams.

ask(S,R,X), grant(S,R,X), ask(S,R,Cred), give(S,R,Cred)

where S is the sender, R is the receiver, X is a permission to be granted, and Cred is a
credential.

The above policies can be represented by a sequence of communicative actions exchanged
between alice and elearn. For instance, policy E1 can be described by the following sequence:

ask(alice, elearn, discount); ask(elearn, alice, citizen(A, eu)); give(alice, elearn, citizen(alice, eu));
ask(elearn, alice, stud(alice)); give(alice, elearn, stud(alice)); grant(elearn, alice, discount)

meaning that alice requests a discount to elearn, which, before granting it, asks to alice her
credentials about citizenship and gets them, and similarly asks her student ID and gets it from
her. Figure 1 describes the interaction as a UML sequence diagram.

This conversation can be interleaved with other conversations modeling other policies. For
instance, before giving her student ID, alice will ask elearn about its membership to BBB.

By combining all policies, we can obtain all allowed conversations between alice and elearn.
From this example it is possible to identify two alternative situations:

• elearn publically declares its policies;

• elearn discloses some of its policies only when necessary and, even in this case, only if the
disclosure is considered as favourable.

In the first situation, when alice tries to become one of its clients, elearn immediately sends
to it all the information about itself (therefore the fact that it is a member of BBB) as well
as its policies. In the second situation, instead, it will say that it is a member of BBB only

2

on demand (when the need arises). In the example elearn does not constrain the disclosure of
this information any further, but in general it could do it, for instance by constraining it to the
verification of other conditions, possibly related to further information obtained from alice. In
the latter case, the interaction between the two parts could be mediated by a negotiator, like
the one of Protune.

In both cases, seeing policies as sets of conversations, or more abstractly as “rules of con-
versation”, is useful because it enables the possibility of performing various interesting forms
of reasoning. The literature about systems of communicating agents comes to help in this per-
spective. In particular, given a set of policies it is possible to find out whether there are some
conversations that allow the agent to achieve a given goal. Such conversations will respect all
of the policies, therefore they will be by definition safe (or opportune or respectful of privacy
conditions or legal, depending on the meaning and the purpose of the policies at hand). To this
aim it is possible to consider communicative acts as atomic actions, policies as complex actions,
and apply planning techniques. These issues are discussed in Section 3 and in Section 4. In
the former, the properties of a set of policies by means of temporal logics and model checking
techniques are proposed. By these techniques it is, for instance, possible to verify if a set of
policies can run into a deadlock or if all the executions that allow reaching a goal of interest
show a certain property. In Section 4, procedural planning techniques are applied in a modal
action logic framework with the aim of pursueing goals.

An agent which adopts a policy should own a definition of all the actions that this includes.
Such definitions must use the same action names and the same number and order of parameters
as those expected by the policy. An alternative, as proposed in Protune, is to adopt a policy
plus all the action definitions (ontology sharing). This is, however, quite a strong assumption.
An interesting issue concerns reasoning on the adoption of the policy, possibly modifying it.
This issue is discussed in Section 5. Modifying a policy could compromise the ability of inter-
acting through the policy. For this reason, it is important to have techniques for checking the
interoperability of a set of policies or of a policy against some specification. We discuss this
issue in Section 6.

3 Declarative representations of policies

In this section we outline a general approach for modeling policies and reasoning about them.
The approach is based on the Dynamic Linear Time Temporal Logic (DLTL), which ex-

tends linear-time temporal logic by strengthening the until operator by indexing it with the
regular programs of dynamic logic. We adopt a social approach to agent communication, in
which communicative actions affect the “social state” of the system, rather than the internal
(mental) states of the agents. The social state records social facts, like the permissions and
the commitments of the agents. The dynamics of the system emerges from the interactions of
the agents, which must respect these permissions and commitments (if they are compliant with
the protocol). The social approach allows a high level specification of the protocol, and does
not require the rigid specification of the allowed action sequences. It is well suited for dealing
with “open” multiagent systems, where the history of communications is observable, but the
internal states of the single agents may not be observable.

The communicative actions are specified in an action theory, which, by means of DLTL,
describes effects and preconditions of the actions on a global (social) state. A state consists of a
set of fluent literals, where a fluent literal l is an atomic proposition f or its negation ¬f . In the

3

following we will make use of epistemic fluents of the form KA(l), to represent the knowledge
of agent A.

A domain description D is defined as a set of action laws, causal laws, and a set of constraints.
Action laws have the form: 2(α→ [a]β), where a is an action and α, β arbitrary formulas,

meaning that executing action a in a state where precondition α holds causes the effect β to
hold.

Causal laws have the form: 2((α ∧©β) → ©γ), meaning that if α holds in a state and β
holds in the next state, then γ also holds in the next state. Such laws are intended to expresses
“causal” dependencies among fluents.

Constraints are arbitrary temporal formulas of DLTL. In particular, the set of constraints
C contains all the temporal formulas which might be needed to constrain the behaviour of an
interaction protocol, including the value of fluents in the initial state. In particular, the set of
constraints C includes the precondition laws.

Precondition laws have the form: 2(α → [a]⊥), meaning that the execution of an action a
is not possible if α holds (i.e. there is no resulting state following the execution of a if α holds).
This formulation is required because we are using a linear-time logic. Preconditions determine
when an action can be executed by an agent: they describe permissions of agents.

For instance, in our example, we can express the fact that alice cannot give her student ID
if she does not know whether elearn is member of BBB by the precondition law:

2(¬Kalice(member(elearn,BBB))→ [give(alice, elearn, stud(alice))]⊥)

while the action law specifying the effect of the action will be

2[give(alice, elearn, stud(alice))]Kelearn(stud(alice))

that is, after execution of the action, the fact stud(alice) will be known in the social state, in
particular to elearn.

In the social semantics, the effects of an action can be commitments, which in our formulation
are special fluents. These fluents can represent base-level commitments and have the form
C(i, j, α), meaning that agent i is committed to agent j to bring about α, where α is an
arbitrary formula, or they can be conditional commitments of the form CC(i, j, β, α) (agent i
is committed to agent j to bring about α, if the condition β is brought about).

We will be interested in the executions of the protocol in which all commitments have been
fulfilled. We can express the condition that the commitment C(i, j, α) will be fulfilled by the
following constraint:

2(C(i, j, α)→ 3α)

For instance, we can introduce conditional commitments to express that alice will be com-
mitted to execute a give(alice, elearn,X) action whenever an ask(elearn, alice,X) is received,
and similarly for actions of elearn. Of course, give can be executed only after its preconditions
have been satisfied.

In the same way, we could extend the example by introducing actions for refusing to give
requested information.

In the following we assume a static formulation of the example, i.e. we assume all policies
to be known at the beginning. In this case, all policies can be described by a set of formulas as
outlined above, that we call domain description, which defines all possible interactions between
alice and elearn. More precisely we can say that, given the specification of the interactions

4

between two agents by a domain description D, the “runs” satisfying the specification are
exactly the models of D (remember that we are using a linear-time logic and thus each model
consist of a sequence of actions).

Once the interactions between two agents have been defined by specifying their policies,
several kinds of verifications can be performed, such as the verification of the compliance at
runtime of the agents with the specification, or the verification of properties of the interaction.
For instance, we may want to check if there is at least a run allowing alice to get the discount, or
if there is a run such that alice gets the discount without disclosing her student ID. The latter
case can be formulated as a satisfiability problem, by checking if there is a model satisfying the
constraint ¬3〈give(alice, elearn, stud(A))〉>.

In [Giordano et al., 2004] we show how in many cases verifications can be performed by
means of a model checking approach, by suitably adapting standard model checking techniques
to the DLTL. More details can be found in

Laura Giordano, Alberto Martelli, and Camilla Schwind. Verifying communicating
agents by model checking in a temporal action logic. In J. Alferes and J. Leite,
editors, 9th European Conference on Logics in Artificial Intelligence (JELIA’04),
volume 3229 of LNAI, pages 57-69, Lisbon, Portugal, Sept. 2004. Springer-Verlag.

attached in the Appendix.

4 Reasoning on policies for pursueing goals

In Section 2 we have seen, by means of an example, how a set of policies can be represented by
sequences of communicative acts. One of the most significant approaches to the representation
of communicative acts is to consider them as special actions, which have an effect only on
the state of the agents that exchange them. In this section we, first, outline an approach for
representing communicative acts as atomic actions and policies as complex actions, and, second,
we see a reasoning technique, that can be applied by agents to a set of exchanged policies for
deciding whether it is opportune to adopt them for interacting, before the interaction actually
takes place.

In our proposal each agent has a personal view of the world consisting of a private mental
state, which contains a consistent set of beliefs about the world and beliefs about the beliefs
of other agents. The modal operator Bagi models the beliefs of the agent agi. The modal
operator Magi is defined as the dual of Bagi (Magiϕ ≡ ¬Bagi¬ϕ); intuitively it represents the
fact that agent agi considers ϕ possible. A belief state provides, for each agent, a three-valued
interpretation of all the possible belief arguments L, that can either be true, false, or undefined
when both ¬BagiL and ¬Bagi¬L hold. UagiL expresses the ignorance of agi about L.

A communicative act can be represented as an atomic action of the form speech act(sender,
receiver, l) where sender and receiver are agents while l represents the content of the com-
munication. The way in which an agent’s beliefs are modified by the execution of a speech act
depend on whether it acts as the sender or the receiver. The specification is, therefore, twofold:
one definition holds when the agent is the sender, the other when it is the receiver. When agi is
the receiver, the action is supposed as being always executable (agi has no control over a com-
munication performed by another agent). With reference to our example, the communicative
act ask, that is used by elearn to ask alice if it is a student, could be represented as ask(elearn,
alice, student(alice)), where ask is a speech act defined as:

5

ask(Self,Other, l)
a) 2(USelf l ∧ ¬BSelfUOtherl ⊃ 〈ask(Self,Other, l)〉>)
b) 2(> ⊃ 〈ask(Other, Self, l)〉>)
c) 2([ask(Other, Self, l)]BSelfUOtherl)

By ask an agent queries another agent if it believes that l is true. The precondition to perform
a ask act is that Self is ignorant of l (in the example elearn must ignore if alice is a student)
and it must also believe that the receiver does not ignore l (elearn believes that alice knows if
it is a student or not), clause (a). The speech act has an effect also on the mental state of the
receiver, in fact after a ask act, the receiver will believe that the sender ignores l (by receiving
this request, agent alice will believe that elearn is ignorant about its being a student).

Another example of atomic action is give which is used in the example for sending a piece
of information:

give(Self,Other, l)
a) 2(BSelf l ∧BSelfUOtherl ∧BSelfpublic(l) ⊃ 〈give(Self,Other, l)〉>)
b) 2([give(Self,Other, l)]MSelfBOtherl)
c) 2(BSelfBOtherauthority(Self, l) ⊃ [give(Self,Other, l)]BSelfBOtherl)
d) 2(> ⊃ 〈give(Other, Self, l)〉>)
e) 2([give(Other, Self, l)]BSelfBOtherl)
f) 2(BSelfauthority(Other, l) ⊃ [give(Other, Self, l)]BSelf l)
g) 2(MSelfauthority(Other, l) ⊃ [give(Other, Self, l)]MSelf l)

Clause (a) specifies those mental conditions that make this action executable in a state. Intu-
itively, Self can execute a give act only if it believes l and it believes that the receiver (Other)
does not know l. In turn, l must be declared as public. According to clause (b), the agent
also considers possible that the receiver will adopt its belief, although it cannot be sure that
this will happen (autonomy assumption). Nevertheless, if agent Self thinks to be considered
by the receiver a trusted authority about l, it is also confident that Other will adopt its belief,
clause (c). Since executability preconditions can be tested only on the mental state of Self ,
when Self is the receiver the action is considered as always executable, clause (d). When Self
is the receiver, the effect of a give act is that Self will believe that l is believed by the sender
(Other), clause (e), but Self will adopt l as an own belief only if it thinks that Other is a
trusted authority, clause (f).

Policies require to specify patterns of communication. In [Baldoni et al., 2006c] patterns
of conversation are specified by the so called conversation protocols, which define the context
in which speech acts are executed [Mamdani and Pitt, 2000]. They are modelled by means of
procedure axioms, having the form:

〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pm〉ϕ (1)

where p0 is a procedure name, “;” is the sequencing operator of dynamic logic, and the pi’s,
i ∈ [1,m], are procedure names, atomic actions, or test actions. Procedure definitions may be
recursive and procedure clauses can be executed in a goal-directed way, similarly to standard
logic programs. Since agents have a subjective perception of the communication, each protocol
has as many procedural representations as the possible roles in the conversation. So, for in-
stance, policy E1 in the example would include two roles: one for alice, the discount requester
(role E1alice), and one for elearn (role E1elearn), which has to decide about it. Here is one
possible definition of the role E1alice of policy E1 (see Figure 1) in the outlined framework:

6

(a) 〈E1alice(Self,Other,Discount)〉ϕ ⊂
〈ask(Self,Other,Discount);
get ask(Self,Other, citizen(Self, eu)); give(Self,Other, citizen(Self, eu));
get ask(Self,Other, student(Self)); give(Self,Other, student(Self));
get answer(Self,Other,Discount)〉ϕ

(b) [get answer(Self,Other, F luent)]ϕ ≡
[give(Other, Self, F luent) ∪ give(Other, Self,¬Fluent) ∪
refuseInform(Other, Self, F luent)]ϕ

(c) [get ask(Self,Other, F luent)]ϕ ≡ [ask(Other, Self, F luent)]ϕ

In E1alice agent Self (alice in our case) performs a ask speech act then it waits for a request of
agent Other about its being a citizen of the EU. Afterwards, when it guarantees being an EU
citizen, it waits for a request of Other about its being a student. After certifying also this, Self
waits for the decision of Other. Such an answer can be positive, negative or refused, according
to the definition of get answer reported in (b). Notice that the preconditions of give impose
that the information can be sent only if it holds in Self mental state. If it does not hold, the
execution of the policy will fail.

In this context it is possible to formalize the temporal projection and the planning problems
by means of existential queries of form:

〈p1〉〈p2〉 . . . 〈pm〉Fs (2)

where each pk, k = 1, . . . ,m may be an (atomic or complex) action executed by agi or a speech
act, in which the agent plays the role of the receiver. Checking if a query of form (2) succeeds
corresponds to answering the question “Is there an execution trace of the sequence p1, . . . , pm
that leads to a state where the conjunction of belief fluents Fs holds for agent agi?”. In case
all the pk’s are atomic actions, it amounts to predicting if the condition of interest will be true
after their execution. In case complex actions are involved, the execution trace that is returned
in the end is a, possibly conditional, plan to bring about Fs. In this process, the actions used
for querying the interlocutor about something are treated as sensing actions, whose outcome
is not known at planning time – agents cannot know in advance the answers that they will
receive. Therefore, all of the possible alternatives are to be taken into account.

Reasoning techniques of this kind can be applied by an agent which has to decide whether
or not to adopt a policy that it has just received from some counterpart, which has disclosed it.
In our example, let us suppose, for instance, that alice has received from elearn policy E1alice.
It makes sense for alice to adopt it if it can be sure that there is a possibility for it to actually
get a discount by following it. In this case, it could apply the planning process to E1alice to
answer to the existential query:

〈E1alice〉BAdiscount

If we suppose that the information required by elearn (that alice is a student and a EU citizen)
are available and public, then alice will conclude that such a possibility exists, identifying the
linear plan:

ask(alice, elearn, discount) ;
ask(elearn, alice, citizen(alice, eu)) ;
give(alice, elearn, citizen(alice, eu)) ;

7

ask(elearn, alice, student(alice)) ;
give(alice, elearn, student(alice)) ;
give(elearn, alice, discount)

Instead, if the fact that it is a student is private, no plan will be found. Therefore, alice will
decide that it is useless to interact with elearn, keeping also the information about its citizenship
private. Besides finding out that it can actually achieve its goal, alice will also find out the
assumptions that it has to make in order to achieve it. In the plan above the final decision about
giving a discount is up to elearn, so alice cannot be sure that it will be received at execution
time.

Details about the approach can be found in

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. Reasoning
about interaction protocols for customizing web service selection and composition.
Journal of Logic and Algebraic Programming, special issue on Web Services and
Formal Methods, 2006. In press.

attached in the Appendix.

5 Capabilities

In the previous section, we have made the implicit assumption that when an agent adopts a
policy, that it has received, it already owns a definition for all the atomic actions (the specific
communicative acts) that are involved. Such definitions must use the same action names and
the same number and order of parameters as those expected by the policy. This is, however,
quite a strong assumption. As an example, consider action ask defined and used above. It is
quite easy to recognise by its definition that it corresponds to the FIPA queryIf speech act but
the use of a different name would not allow agents adopting the standard FIPA naming to use
policy E1. An easy way of solving this problem is to send not only the policy that should be
adopted but also a reference to the speech act ontology that should be used.

A more subtle problem concerns the ability of an agent of building the information that is
requested from it. In policy E1, elearn asks alice two things: if it is a student and if it is an EU
citizen. alice can execute the policy only if it can produce this information (see Figure 2). In
other words, we should consider an adopted policy as a skeleton but a problem arises: policies
only concern communication patterns, abstracting from all references to the internal state of
the player and from all actions/instructions that do not concern the interaction ruled by the
policy. Nevertheless, the policy is to be executed by the agent and, for permitting the execution,
it is necessary to express to some extent also this kind of actions. We will refer to such action
descriptions as capability requirements [Baldoni et al., 2006d].

The term “capability” has recently been used by [Padgham and Lambrix, 2000] (the work is
inspired by JACK and it is extended in [Padmanabhan et al., 2001]), in the BDI framework, for
identifying the “ability to react rationally towards achieving a particular goal”. More specif-
ically, an agent has the capability to achieve a goal if its plan library contains at least one
plan for reaching the goal. The authors incorporate this notion in the BDI framework so as to
constrain an agent’s goals and intentions to be compatible with its capabilities. This notion
of capability is orthogonal w.r.t. what proposed in [Baldoni et al., 2006d]. In this perspective,

8

Figure 2: The E1 policy, represented by means of UML sequence diagrams, and enriched with
capability specifications.

our notion of capability resembles more closely (sometimes unnamed) concepts, that emerge
in a more or less explicit way in various frameworks/languages, in which there is a need for
defining interfaces. One example is Jade [Jade, 2001], the well-known platform for developing
multi-agent systems. In this framework policies are supplied as partial implementations with
“holes” that the programmer must fill with code when creating agents. Such holes are repre-
sented by methods whose body is not defined. The task of the programmer is to implement
the specified methods, whose name and signature is, however, fixed in the partial policy. An-
other example is powerJava [Baldoni et al., 2006e, Baldoni et al., 2006f], an extension of the
Java language that accounts for roles and institutions. Without getting into the depths of the
language, a role in powerJava represents an interlocutor in the interaction schema. A role defi-
nition contains only the implementation of the interaction schema and leaves to the role-player
the task of implementing the internal actions. Such calls to the player’s internal actions are
named “requirements” and are represented as method prototypes.

Checking whether an agent has the capabilities required by a policy means to check whether
it is possible to tie the description of the policy to the execution environment defined by the
agent. In the example, alice should check if it has the capability of deciding if it is a student
and of finding out if it is an EU citizen. In [Baldoni et al., 2006d] it is considered as particu-
larly promising to adopt semantic matchmaking techniques based on ontologies of concepts. In
fact semantic matchmaking supports the matching of capabilities with different names, though
connected by an ontology, and with different numbers (and descriptions) of input/output param-
eters. Semantic matchmaking has been thoroughly studied and formalized also in the Semantic
Web community, in particular in the context of the DAML-S [Paolucci et al., 2002] and WSMO
initiatives [Keller et al., 2004].

More in general, a capability requirement could be associated, by the matching process, with

9

complex actions rather than with simple queries of the agent’s mental state. In our running
example, we can associate by the matching process the capability requirement CR1 in Figure 2
with policy A1, while CR2 will be associated with A2. In this way, we dynamically obtain a
composition of policy E1 (the one sent by elearn to be adopted by alice) with policies A1 and
A2 of alice. After this, it is possible to perform the analysis of the composed policy, for instance,
by means of the techniques presented in the other sections. The compositions are ruled by the
matching rules. So an agent might perform forms of hypothetical reasoning on the policy to
adopt and on its own capabilities by means of different matching rules with the aim of finding
the most convenient composition.

Reasoning on capabilities allows to indentify execution paths that involve capabilities that
the agent has or accepts to use. Let us take into account a policy and all the capabilities
required by it. Each execution trace corresponds to a branch in the policy. It is likely that only
a subset of the capabilities associated with a role will be used along a given branch. We could
consider only the execution traces concerning the specific call, that the service would like to
enact. This set will tell us which capabilities are actually necessary in our execution context
(i.e. given the specified input parameter values). In this perspective, it is not compulsory that
the service has all the capabilities associated to the policy but it will be sufficient that it has
those used in this set of execution traces.

Last but not least, the set of capabilities of a service could be not completely predefined
but depending on the context and on privacy or security policies defined by the user: I might
have a capability which I do not want to use in that circumstance. In this perspective, it would
be interesting to explore the use of the notion of opportunity proposed by Padmanabhan et al.
[Padmanabhan et al., 2001] in connection with the concept of capability (but with the meaning
proposed in [Padgham and Lambrix, 2000]).

More details can be found in

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Claudio
Schifanella. Interaction Protocols and Capabilities: A Preliminary Report. In J.
J. Alferes, J. Bailey, W. May, and U. Schwertel, editors, Post-Proc. of the Fourth
Workshop on Principles and Practice of Semantic Web Reasoning, PPSWR 2006,
volume 4187 of LNCS, pages 63-77. Springer, 2006.

attached in the Appendix.

6 Interoperability

In the previous sections we have implicitly assumed that the considered set of entities can
interact by using the policies owned by each of them. However, with reference to policy E1
(see Figure 1), what would happen if elearn executes an ask (e.g. ask(student(alice))) and alice
does not execute the corresponding get ask? In other words, what happens if a policy foresees
the act of sending a message but the interlocutor’s policy does not account for a corresponding
receive? In this case the interaction will enter a deadlock state and the transaction will not
be completed. This situation compromises the expectation that one has, when representing
policies on the base of message exchange, that the interaction will be completed, independently
from the outcome (alice will or will not get a discount). The policies have to be interoperable.
It is desirable to prove the interoperablity of a set of entities before their interaction begins.

10

The problem of verifying interoperability has been tackled, in the literature, using as a
reference a given schema of interaction (or interaction protocol). The idea is that the en-
tities will be interoperable if they are conformant to the specification of the various roles
in the protocol. In the literature, two kinds of conformance verifications have been stud-
ied: a priori conformance verification, and run-time conformance verification (or compliance)
[Endriss et al., 2003, Endriss et al., 2004, Guerin and Pitt, 2003]. If we call a conversation a
specific interaction between two agents, consisting only of communicative acts, the first kind of
conformance is a property of the implementation as a whole –intuitively it checks if an agent will
never produce conversations that violate the abstract interaction protocol specification– while
the latter is a property of the on-going conversation, aimed at verifying if that conversation is
legal. When an entity has to decide whether to adopt a policy, it should take a decision before
beginning the interaction. For this reason a priori conformance is more suitable.

The issue of a priori conformance is widely studied in the literature in different research fields,
like multi-agent systems (MAS) and service-oriented computing (SOA). In particular, in the
area of MAS, in [Baldoni et al., 2005a, Baldoni et al., 2006a] we have proposed two approaches,
the former, based on a trace semantics, consisting in an inclusion test, the latter, disregarding
the case of different branching structures. The second technique was also adapted to web
services [Baldoni et al., 2005b]. Both works were limited to protocols with only two roles,
extensions to protocols with an arbitrary finite number of roles are currently under investigation
[Baldoni et al., 2006b]. Inspired to this work is the proposal in [Alberti et al., 2006]: here an
abductive framework is used to verify the conformance of services to a choreography with any
number of roles. The limit is that it does not consider the cases in which policies and roles
have different branching structures. The first proposal of a formal notion of conformance in
a declarative setting is due to Endriss et al. [Endriss et al., 2004], the authors, however, do
not prove any relation between their definitions of conformance and interoperability. Moreover,
they consider protocols in which two partners strictly alternate in uttering messages.

In the SOA research field, conformance has been discussed by Foster et al. [Foster et al., 2006],
who defined a system that translates choreographies and orchestrations in labeled transition
systems so that it becomes possible to apply model checking techniques and verify properties
of theirs. In particular, the system can check if a service composition complies with the rules
of a choreography by equivalent interaction traces. Violations are highlighted back to the engi-
neer. Once again, as we discussed, basing on execution traces can be too much restrictive. In
[Busi et al., 2005], instead, “conformability bisimulation” is defined, a variant of the notion of
bisimulation. This is the only work that we have found in which different branching structures
are considered but, unfortunately, the test is too strong. A recent proposal, in this same line,
is [Zhao et al., 2006], which suffers of the same limitations.

The problem of adopting a priori conformance in the application framework that we are
considering is twofold. On the one hand, we do not have a protocol against which verifying
the conformance; on the other hand, policies are disclosed little by little. Indeed, in general
rather than a protocol the entities interact by means of a set of policies which often do not
refer to a same abstract schema of interaction. Our claim is that if the policies were public we
could adopt techniques that are analogous to some of those mentioned above or derived from
model checking. The question is: can we reasonably expect that such policies are public? Going
back to our example, elearn is a service aimed at selling e-learning courses. For this reason,
besides the selling criteria (e.g. sell only to EU citiziens who are students), it will have all the
interest of guaranteeing the interoperability with its clients. In this perspective, we can expect
that it will agree on making its interaction policy public, keeping its decisional policy private.

11

Approaches like [Baldoni et al., 2005a, Baldoni et al., 2006a, Baldoni et al., 2006b] work taking
into account the mere message exchange, disregarding (internal) decision criteria. In particular,
the technique described in

Matteo Baldoni, Cristina Baroglio, Alberto Martelli and Viviana Patti, Verifica-
tion of protocol conformance and agent interoperability, Post-Proc. of CLIMA VI,
Post-Proc. of Sixth International Workshop on Computational Logic in Multi-Agent
Systems, CLIMA VI, 2006, vol. 3900 of LNCS State-of-the-Art Survey, 265–283,
Springer.

and attached in the Appendix. could be used to compare the policies of two entities, pretending
that they are the two opposite roles of a same protocol.

The fact that entities disclose their policies little by little, when necessary, could be tackled
by adopting an alternating approach, in which first the entities analyse the policies disclosed
so far and, then, they execute them. The reasoning process is applied whenever an entity has
to decide whether to adopt a policy, in the line of what proposed in the previous sections.

A different perspective is that of the approach taken so far in I2. In Protune interoper-
ability is obtained by means of rule exchange, see [Bonatti and Olmedilla, 2005b]. An agent
interacts with another by means of the policy that it has received by it. If it attains to such
a policy, interoperability is guaranteed, of course provided that the policy itself is interopera-
ble. The policy is adopted “as is”. In other words, with reference to the previous section, in
Protune the problem of interoperability is solved by adopting both the policy and the defini-
tions of the requested capabilities, which must be included (ontology sharing). This solution is
analogous to the ones proposed in [Ancona and Mascardi, 2004, S. Costantini, 2005]. CooBDI
[Ancona and Mascardi, 2004] extends the BDI (Belief, Desire, Intention) model in such a way
that agents are enabled to cooperate through a mechanism, which allows them to exchange
plans and which is used whenever it is not possible to find a plan, for pursuing a goal of inter-
est, by just exploiting the local agent’s knowledge. The ideas behind the CooBDI theory have
been implemented by means of WS technologies, leading to CooWS agents [Bozzo et al., 2005].
Another recent work in this line of research is [S. Costantini, 2005]. Here, in the setting of
the DALI language, agents can cooperate by exchanging sets of rule that can either define a
procedure, or constitute a module for coping with some situation, or be just a segment of a
knowledge base. Moreover, agents have reasoning techniques that enable them to evaluate how
useful the new information is.

As shown in Section 5, it is often desirable for an agent to use its own definitions of capabil-
ities and/or also the actions that are explicitly included in the policy. In this case, the problem
of interoperability becomes a matching problem: we need to understand if the actions that the
agent would use are compatible with those intended by the interlocutor. We have already seen
that it is possible to exploit semantic matchmaking techniques to this aim.

A third situation is when the agent that receives a policy would like to modify it, e.g. by
composing it with some policy of its own (see Section 5) or modify it in other ways. For instance,
the agent would like to conclude successfully an interaction, disclosing the minimal amount of
information that is possible, and to this aim it will modify the received policy. Other situations
are those in which the agent does not want to disclose certain information or in which it wants
to adopt some interaction/negotiation strategies that it considers as being more profitable for
itself. It is important in this context to have the possibility of verifying that by the modified
policy it is still possible to interact with the other agent. This verification is to be done by the
receiver of the policy itself, which is the only to know how the policy will be modified. The only

12

knowledge that our agent has about its counterpart, however, is the policy that it has received
from it, which, as we have seen, is supposed to guarantee the interoperability. If we had also the
policy that is executed by the interlocutor, we could apply a verification technique (e.g. using
SPIN) for performing the test again. In general this knowledge is not given, a fortiori in this
example where information is disclosed as little as possible. In general, the problem is then to
verify if what the agent will execute obeys the operational behavior described by the received
(original) policy. In this case the received policy represents a desired schema of interaction,
which guarantees the interoperability. Therefore, it rises to the role of protocol. In other words,
the interoperability problem becomes the problem of verifying that the policy that the agent
will execute conforms to the desired policy received by the interlocutor. In this direction it is
possible to apply the techniques described in [Baldoni et al., 2006a] and in

Matteo Baldoni, Cristina Baroglio, Alberto Martelli and Viviana Patti, Confor-
mance and Interoperability in Open Enviroments, Proc. of WOA 2006: Dagli oggetti
agli agenti, Catania, Italy, 2006.

attached in the Appendix. In this work we propose and approach, inspired by (bi)simulation,
in which a policy is compared to a role in a protocol, and we focus on those properties that are
essential to the verification the interoperability of a set of services. The approach is based on
message exchange and on finite state automata.

7 Conclusion

A very promising research direction that we mean to explore concerns the study of a coherent
framework for a meaningful combination among declarative approaches on policy representation
(like the one adopted in Protune) and formal techniques used for testing interoperability (e.g.
automata-based approaches) as presented in Section 6. Obviously different representations of
behaviors and protocols support different methods for modelling negotiation and for verifying
fundamental properties of the interaction like interoperability, conformance, optimal negotia-
tion, and so on. Which are the contexts where verification techniques based on an automata
representation of the interaction can be fruitfully applied (and vice versa)? We have started
to give some intuitions in the particular case of the application of conformance and interoper-
ability test, but the matter deserves a deeper and more systematic investigation. In order to
combine the advantages of both the approaches in a general framework the non-trivial problem
of switching from a certain kind of representation to another is to be faced (what does it mean
transforming a ruled-based declarative policy in a corresponding automaton?). Moreover, con-
sidering the increasing interest of modelling languages for describing the interaction, it would
be interesting to include also this aspect in a study of the cross-transformations between differ-
ent representation of the behavior of interactive peers. Notice that in the literature about web
service it, some studies on this matter already exist, in particular for translating representations
of WS-CDL choreophraphies in automata [Baldoni et al., 2005b, Foster et al., 2006].

Acknowledgement

This research has been co-funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE num-
ber 506779 (cf. http://rewerse.net).

13

http://rewerse.net

References

[Alberti et al., 2006] Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Mon-
tali, M. (2006). An abductive framework for a-priori verification of web services. In Principles
and Practice of Declarative Programming, PPDP’06). ACM Press.

[Ancona and Mascardi, 2004] Ancona, D. and Mascardi, V. (2004). Coo-BDI: Extending the
BDI Model with Cooperativity. In Leite, J. A., Omicini, A., Sterling, L., and Torroni, P.,
editors, Proceedings of the First Declarative Agent Languages and Technologies Workshop
(DALT’03), Revised Selected and Invited Papers, pages 109–134. Springer-Verlag. LNAI
2990.

[Baldoni et al., 2006a] Baldoni, M., Baroglio, C., Martelli, A., and Patti (2006a). Verification
of protocol conformance and agent interoperability. In Post-Proc. of CLIMA VI, volume
3900 of LNCS State-of-the-Art Survey, pages 265–283. Springer.

[Baldoni et al., 2006b] Baldoni, M., Baroglio, C., Martelli, A., and Patti, V. (2006b). Confor-
mance and interoperability in open enviroments. In De Paoli, F., Omicini, A., and Santoro,
C., editors, Proc. of WOA 2006: Dagli oggetti agli agenti, Catania, Italy.

[Baldoni et al., 2006c] Baldoni, M., Baroglio, C., Martelli, A., and Patti, V. (2006c). Reasoning
about interaction protocols for customizing web service selection and composition. J. of Logic
and Algebraic Programming, special issue on Web Services and Formal Methods. to appear.

[Baldoni et al., 2005a] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C.
(2005a). Verifying protocol conformance for logic-based communicating agents. In Proc. of
5th Int. Workshop on Computational Logic in Multi-Agent Systems, CLIMA V, number 3487
in LNCS, pages 192–212. Springer.

[Baldoni et al., 2006d] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C.
(2006d). Interaction protocols and capabilities: a preliminary report. In Post-Proc. of the
Fourth Workshop on Principles and Practice of Semantic Web Reasoning, PPSWR 2006,
LNCS. Springer.

[Baldoni et al., 2005b] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C.
(September, 2005b). Verifying the conformance of web services to global interaction protocols:
a first step. In Proc. of WS-FM 2005, volume 3670 of LNCS, pages 257–271. Springer.

[Baldoni et al., 2006e] Baldoni, M., Boella, G., and van der Torre, L. (2006e). Bridging Agent
Theory and Object Orientation: Importing Social Roles in Object Oriented Languages. In
Bordini, R. H., Dastani, M., Dix, J., and Seghrouchni, A., editors, Post-Proc. of the Inter-
national Workshop on Programming Multi-Agent Systems, ProMAS 2005, volume 3862 of
Lecture Notes in Computer Science (LNCS), pages 57–75. Springer.

[Baldoni et al., 2006f] Baldoni, M., Boella, G., and van der Torre, L. (2006f). powerjava: On-
tologically Founded Roles in Object Oriented Programming Languages. In Ancona, D. and
Viroli, M., editors, Proc. of 21st ACM Symposium on Applied Computing, SAC 2006, Spe-
cial Track on Object-Oriented Programming Languages and Systems (OOPS 2006), Dijon,
France. ACM.

14

[Bonatti and Olmedilla, 2005a] Bonatti, P. A. and Olmedilla, D. (2005a). Driving and moni-
toring provisional trust negotiation with metapolicies. In 6th IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY 2005), pages 14–23, Stockholm,
Sweden. IEEE Computer Society.

[Bonatti and Olmedilla, 2005b] Bonatti, P. A. and Olmedilla, D. (2005b). Policy language spec-
ification. Technical Report IST506779/Naples/I2-D2/D/PU/b1, Reasoning on the Web with
Rules and Semantics, REWERSE. Available at: http://rewerse.net/deliverables/m12/i2-
d2.pdf.

[Bozzo et al., 2005] Bozzo, L., Mascardi, V., Ancona, D., and Busetta, P. (2005). CooWS:
Adaptive BDI agents meet service-oriented computing. In Proceedings of the Int. Conference
on WWW/Internet, pages 205–209.

[Busi et al., 2005] Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., and Zavattaro, G. (2005).
Choreography and orchestration: a synergic approach for system design. In Proc. of 4th
International Conference on Service Oriented Computing (ICSOC 2005).

[Endriss et al., 2003] Endriss, U., Maudet, N., Sadri, F., and Toni, F. (2003). Protocol con-
formance for logic-based agents. In Gottlob, G. and Walsh, T., editors, Proc. of the 18th
International Joint Conference on Artificial Intelligence (IJCAI-2003), pages 679–684. Mor-
gan Kaufmann Publishers.

[Endriss et al., 2004] Endriss, U., Maudet, N., Sadri, F., and Toni, F. (2004). Logic-based agent
communication protocols. In Advances in agent communication languages, volume 2922 of
LNAI, pages 91–107. Springer-Verlag. invited contribution.

[Foster et al., 2006] Foster, H., Uchitel, S., Magee, J., and Kramer, J. (2006). Model-based
analysis of obligations in web service choreography. In Proc. of IEEE International Confer-
ence on Internet&Web Applications and Services 2006.

[Giordano et al., 2004] Giordano, L., Martelli, A., and Schwind, C. (2004). Verifying commu-
nicating agents by model checking in a temporal action logic. In Alferes, J. and Leite, J.,
editors, Proc. of the 9th European Conference on Logics in Artificial Intelligence (JELIA’04),
volume 3229 of Lecture Notes in Computer Science (LNCS), pages 57–69. Springer.

[Guerin and Pitt, 2003] Guerin, F. and Pitt, J. (2003). Verification and Compliance Testing.
In Huget, H., editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages
98–112. Springer.

[Jade, 2001] Jade (2001). http://jade.cselt.it/.

[Keller et al., 2004] Keller, U., Polleres, R. L. A., Toma, I., Kifer, M., and Fensel, D. (2004).
D5.1 v0.1 wsmo web service discovery. Technical report, WSML deliverable.

[Mamdani and Pitt, 2000] Mamdani, A. and Pitt, J. (2000). Communication protocols in multi-
agent systems: A development method and reference architecture. In Issues in Agent Com-
munication, volume 1916 of LNCS, pages 160–177. Springer.

[Padgham and Lambrix, 2000] Padgham, L. and Lambrix, P. (2000). Agent capabilities: Ex-
tending BDI theory. In AAAI/IAAI, pages 68–73.

15

[Padmanabhan et al., 2001] Padmanabhan, V., Governatori, G., and Sattar, A. (2001). Actions
made explicit in bdi. In Advances in Artificial Intelligence, number 2256 in LNCS, pages
390–401. Springer.

[Paolucci et al., 2002] Paolucci, M., Kawmura, T., Payne, T., and Sycara, K. (2002). Semantic
matching of web services capabilities. In First International Semantic Web Conference.

[S. Costantini, 2005] S. Costantini, A. T. (2005). Learning by knowledge exchange in logical
agents. In Corradini, F., De Paoli, F., Merelli, E., and Omicini, A., editors, Proc. of WOA
2005: Dagli oggetti agli agenti, simulazione e analisi formale di sistemi complessi, Camerino,
Italy. Pitagora Editrice Bologna.

[Zhao et al., 2006] Zhao, X., Yang, H., and Qui, Z. (2006). Towards the formal model and
verification of web service choreography description language. In Proc. of WS-FM 2006.

16

A Appendix

The appendix includes five papers. One paper is in press on an international journal, three
appeared or are in press in the series Lecture Notes on Computer Science, and one in a workshop:

1. Laura Giordano, Alberto Martelli, and Camilla Schwind. Verifying communicating agents
by model checking in a temporal action logic. In J. Alferes and J. Leite, editors, 9th
European Conference on Logics in Artificial Intelligence (JELIA’04), volume 3229 of
LNAI, pages 57-69, Lisbon, Portugal, Sept. 2004. Springer-Verlag.

2. Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. Reasoning about
interaction protocols for customizing web service selection and composition. Journal of
Logic and Algebraic Programming, special issue on Web Services and Formal Methods,
2006. In press.

3. Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Claudio Schi-
fanella. Interaction Protocols and Capabilities: A Preliminary Report. In J. J. Alferes, J.
Bailey, W. May, and U. Schwertel, editors, Post-Proc. of the Fourth Workshop on Prin-
ciples and Practice of Semantic Web Reasoning, PPSWR 2006, volume 4187 of LNCS,
pages 63-77. Springer, 2006.

4. Matteo Baldoni, Cristina Baroglio, Alberto Martelli and Viviana Patti, Verification of
protocol conformance and agent interoperability, Post-Proc. of CLIMA VI, Post-Proc. of
Sixth International Workshop on Computational Logic in Multi-Agent Systems, CLIMA
VI, 2006, vol. 3900 of LNCS State-of-the-Art Survey, 265–283, Springer.

5. Matteo Baldoni, Cristina Baroglio, Alberto Martelli and Viviana Patti, Conformance and
Interoperability in Open Enviroments, Proc. of WOA 2006: Dagli oggetti agli agenti,
Catania, Italy, 2006.

17

Verifying Communicating Agents

by Model Checking in a Temporal Action Logic ?

Laura Giordano1, Alberto Martelli2, Camilla Schwind3

1Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria
2Dipartimento di Informatica, Università di Torino, Torino

3MAP, CNRS, Marseille, France

Abstract. In this paper we address the problem of specifying and veri-
fying systems of communicating agents in a Dynamic Linear Time Tem-
poral Logic (DLTL). This logic provides a simple formalization of the
communicative actions in terms of their effects and preconditions. Fur-
thermore it allows to specify interaction protocols by means of temporal
constraints representing permissions and commitments. Agent programs,
when known, can be formulated in DLTL as complex actions (regular
programs). The paper addresses several kinds of verification problems
including the problem of compliance of agents to the protocol, and de-
scribes how they can be solved by model checking in DLTL using au-
tomata.

1 Introduction

The specification and the verification of the behavior of interacting agents is one
of the central issues in the area of multi-agent systems. In this paper we address
the problem of specifying and verifying systems of communicating agents in a
Dynamic Linear Time Temporal Logic (DLTL).

The extensive use of temporal logics in the specification and verification of
distributed systems has led to the development of many techniques and tools
for automating the verification task. Recently, temporal logics have gained at-
tention in the area of reasoning about actions and planning [2, 10, 12, 17, 5], and
they have also been used in the specification and in the verification of systems
of communicating agents. In particular, in [21] agents are written in MABLE,
an imperative programming language, and the formal claims about the system
are expressed using a quantified linear time temporal BDI logic and can be au-
tomatically verified by making use of the SPIN model checker. Guerin in [13]
defines an agent communication framework which gives agent communication a
grounded declarative semantics. In such a framework, temporal logic is used for
formalizing temporal properties of the system.

In this paper we present a theory for reasoning about communicative actions
in a multiagent system which is based on the Dynamic Linear Time Temporal

? This research has been partially supported by the project PRIN 2003 “Logic-based
development and verification of multi-agent systems”, and by the European Com-
mission within the 6th Framework Programme project REWERSE number 506779

Logic (DLTL) [15], which extends LTL by strengthening the until operator by
indexing it with the regular programs of dynamic logic. As a difference with
[21] we adopt a social approach to agent communication [1, 7, 19, 13], in which
communicative actions affect the “social state” of the system, rather than the
internal (mental) states of the agents. The social state records social facts, like
the permissions and the commitments of the agents. The dynamics of the system
emerges from the interactions of the agents, which must respect these permissions
and commitments (if they are compliant with the protocol). The social approach
allows a high level specification of the protocol, and does not require the rigid
specification of the allowed action sequences. It is well suited for dealing with
“open” multiagent systems, where the history of communications is observable,
but the internal states of the single agents may not be observable.

Our proposal relies on the theory for reasoning about action developed in
[10] which is based on DLTL and which allows reasoning with incomplete initial
states and dealing with postdiction, ramifications as well as with nondetermin-
istic actions. It allows a simple formalization of the communicative actions in
terms of their effects and preconditions as well as the specification of an inter-
action protocol to constrain the behaviors of autonomous agents.

In [11] we have presented a proposal for reasoning about communicating
agents in the Product Version of DLTL, which allows to describe the behavior
of a network of sequential agents which coordinate their activities by performing
common actions together. Here we focus on the non-product version of DLTL,
which appears to be a simpler choice and also a more reasonable choice when a
social approach is adopted. In fact, the Product Version of DLTL does not allow
to describe global properties of a system of agents, as it keeps the local states of
the agents separate. Instead, the ”social state” of the system is inherently global
and shared by all of the agents. Moreover, we will see that the verification tasks
described in [11] can be conveniently represented in DLTL without requiring the
product version. The verification of the compliance of an agent to the protocol,
the verification of protocol properties, the verification that an agent is (is not)
respecting its social facts (commitments and permissions) at runtime are all
examples of tasks which can be formalized either as validity or as satisfiability
problems in DLTL. Such verification tasks can be automated by making use
of Büchi automata. In particular, we make use of the tableau-based algorithm
presented in [9] for constructing a Büchi automaton from a DLTL formula. The
construction of the automata can be done on-the-fly, while checking for the
emptiness of the language accepted by the automaton. As for LTL, the number
of states of the automata is, in the worst case, exponential in the size of the
input formula.

2 Dynamic Linear Time Temporal Logic

In this section we shortly define the syntax and semantics of DLTL as introduced
in [15]. In such a linear time temporal logic the next state modality is indexed

by actions. Moreover, (and this is the extension to LTL) the until operator is
indexed by programs in Propositional Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let
Σ∗ and Σω be the set of finite and infinite words on Σ, where ω = {0, 1, 2, . . .}.
Let Σ∞ =Σ∗∪Σω. We denote by σ, σ′ the words over Σω and by τ, τ ′ the words
over Σ∗. Moreover, we denote by ≤ the usual prefix ordering over Σ∗ and, for
u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ) generated by Σ

as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite words is associated
with each program by the mapping [[]] : Prg(Σ) → 2Σ∗

, which is defined as
follows:

– [[a]] = {a};
– [[π1 + π2]] = [[π1]] ∪ [[π2]];
– [[π1;π2]] = {τ1τ2 | τ1 ∈ [[π1]] and τ2 ∈ [[π2]]};
– [[π∗]] =

⋃
[[πi]], where

• [[π0]] = {ε}
• [[πi+1]] = {τ1τ2 | τ1 ∈ [[π]] and τ2 ∈ [[πi]]}, for every i ∈ ω.

Let P = {p1, p2, . . .} be a countable set of atomic propositions. The set of
formulas of DLTL(Σ) is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and V : prf(σ) →

2P is a valuation function. Given a model M = (σ, V), a finite word τ ∈ prf(σ)
and a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α,
is defined as follows:

– M, τ |= p iff p ∈ V (τ);
– M, τ |= ¬α iff M, τ 6|= α;
– M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=

β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V) and a finite word
τ ∈ prf(σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behavior which is in the linear time behavior of the program π.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ >Uπα

and [π]α ≡ ¬〈π〉¬α.

1 We define τ ≤ τ
′ iff ∃τ ′′ such that ττ

′′ = τ
′. Moreover, τ < τ

′ iff τ ≤ τ
′ and τ 6= τ

′.

Furthermore, if we let Σ = {a1, . . . , an}, the U , O (next), 3 and 2 operators
of LTL can be defined as follows: Oα ≡

∨
a∈Σ〈a〉α, αUβ ≡ αUΣ∗

β, 3α ≡ >Uα,

2α ≡ ¬3¬α, where, in UΣ∗

, Σ is taken to be a shorthand for the program
a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments of DLTL(Σ). As
shown in [15], DLTL(Σ) is strictly more expressive than LTL(Σ). In fact, DLTL
has the full expressive power of the monadic second order theory of ω-sequences.

3 Action theories

In this section we recall the action theory developed in [10] that we use for
specifying the interaction between communicating agents.

Let P be a set of atomic propositions, the fluent names. A fluent literal l is
a fluent name f or its negation ¬f . Given a fluent literal l, such that l = f or
l = ¬f , we define |l| = f . We will denote by Lit the set of all fluent literals.

A domain description D is defined as a tuple (Π, C), where Π is a set of
action laws and causal laws, and C is a set of constraints.

Action laws in Π have the form: 2(α → [a]β), with a ∈ Σ and α, β arbitrary
formulas, meaning that executing action a in a state where precondition α holds
causes the effect β to hold.

Causal laws in Π have the form: 2((α∧©β) →©γ), meaning that if α holds
in a state and β holds in the next state, then γ also holds in the next state. Such
laws are intended to expresses “causal” dependencies among fluents.

Constraints in C are arbitrary temporal formulas of DLTL. In particular, the
set of constraints C contains all the temporal formulas which might be needed
to constrain the behaviour of a protocol, including the value of fluents in the
initial state. The set of constraints C also includes the precondition laws.

Precondition laws have the form: 2(α → [a]⊥), meaning that the execution
of an action a is not possible if α holds (i.e. there is no resulting state following
the execution of a if α holds). Observe that, when there is no precondition law
for an action, the action is executable in all states.

Action laws and causal laws describe the changes to the state. All other
fluents which are not changed by the actions are assumed to persist unaltered
to the next state. To cope with the frame problem, the laws in Π, describing
the (immediate and ramification) effects of actions, have to be distinguished
from the constraints in C and given a special treatment. In [10], to deal with
the frame problem, a completion construction is defined which, given a domain
description, introduces frame axioms for all the frame fluents in the style of the
successor state axioms introduced by Reiter [18] in the context of the situation
calculus. The completion construction is applied only to the action laws and
causal laws in Π and not to the constraints. In the following we call Comp(Π)
the completion of a set of laws Π and we refer to [10] for the details on the
completion construction.

Test actions allow the choice among different behaviours to be controlled.
As DLTL does not include test actions, we introduce them in the language as
atomic actions in the same way as done in [10]. More precisely, we introduce

an atomic action φ? for each proposition φ we want to test. The test action φ?
is executable in any state in which φ holds and it has no effect on the state.
Therefore, we introduce the following laws which rule the modality [φ?]:

2(¬φ → [φ?]⊥)
2(〈φ?〉> → (L ↔ [φ?]L)), for all fluent literals L.

The first law is a precondition law, saying that action φ? is only executable in
a state in which φ holds. The second law describes the effects of the action on
the state: the execution of the action φ? leaves the state unchanged. We assume
that, for all test actions occurring in a domain description, the corresponding
action laws are implicitly added.

As a difference from [10], in this paper we will use, besides boolean fluents,
functional fluents, i.e. fluents which take a value in a (finite) set. We use the
notation f = V to say that fluent f has value V . It is clear however, that func-
tional fluents can be easily represented by making use of multiple (and mutually
exclusive) boolean fluents.

4 Contract Net Protocol

In the social approach [7, 13, 19, 22] an interaction protocol is specified by de-
scribing the effects of communicative actions on the social state, and by speci-
fying the permissions and the commitments that arise as a result of the current
conversation state. In our action theory the effects of communicative actions
will be modelled by action laws. Permissions, which determine when an action
can be taken by each agent, can be modelled by precondition laws. Commitment
policies, which rule the dynamic of commitments, can be described by causal
laws which establish the causal dependencies among fluents. The specification
of a protocol can be further constrained through the addition of suitable tempo-
ral formulas, and also the agents’ programs can be modelled, by making use of
complex actions (regular programs).

As a running example we will use the Contract Net protocol [6].

Example 1. The Contract Net protocol begins with an agent (the manager)
broadcasting a task announcement (call for proposals) to other agents viewed as
potential contractors (the participants). Each participant can reply by sending
either a proposal or a refusal. The manager must send an accept or reject mes-
sage to all those who sent a proposal. When a contractor receives an acceptance
it is committed to perform the task. For lack of space we will leave out the final
step of the protocol.

Let us consider first the simplest case where we have only two agents: the
manager (M) and the participant (P). The two agents share all the communica-
tive actions, which are: cfp(T) (the manager issues a call for proposals for task
T), accept and reject whose sender is the manager, and refuse and propose whose
sender is the participant.

The social state will contain the following domain specific fluents: task (a
functional fluent whose value is the task which has been announced, or nil if
the task has not yet been announced), replied (the participant has replied),
proposal (the participant has sent a proposal) and acc rej (the manager has sent
an accept or reject message). Such fluents describe observable facts concerning
the execution of the protocol.

We also introduce special fluents to represent base-level commitments of the
form C(i, j, α), meaning that agent i is committed to agent j to bring about
α, where α is an arbitrary formula, or they can be conditional commitments of
the form CC(i, j, β, α) (agent i is committed to agent j to bring about α, if
the condition β is brought about)2. For modelling the Contract Net example we
introduce the following commitments

C(P,M, replied) and C(M,P, acc rej)

and conditional commitments

CC(P,M, task 6= nil, replied) and CC(M,P, proposal, acc rej).

Some reasoning rules have to be defined for cancelling commitments when
they have been fulfilled and for dealing with conditional commitments. We in-
troduce the following causal laws:

2(©α →©¬C(i, j, α))
2(©α →©¬CC(i, j, β, α))
2((CC(i, j, β, α) ∧©β) →©(C(i, j, α) ∧ ¬CC(i, j, β, α)))

A commitment (or a conditional commitment) to bring about α is cancelled
when α holds, and a conditional commitment CC(i, j, β, α) becomes a base-level
commitment C(i, j, α) when β has been brought about.

Let us now describe the effects of communicative actions by the following
action laws:

2[cfp(T)]task = T

2[cfp(T)]CC(M,P, proposal, acc rej)
2[accept]acc rej

2[reject]acc rej

2[refuse]replied

2[propose](replied ∧ proposal)

The laws for action cfp(T) add to the social state the information that a call
for proposal has been done for the task T , and that, if the manager receives a
proposal, it is committed to accept or reject it.

The permissions to execute communicative actions in each state are deter-
mined by social facts. We represent them by precondition laws. Preconditions
on the execution of action accept can be expressed as:

2 The two kinds of base-level and conditional commitments we allow are essentially
those introduced in [22]. Such choice is different from the one in [13] and in [11],
where agents are committed to execute an action rather than to achieve a condition.

2(¬proposal ∨ acc rej → [accept]⊥)

meaning that action accept cannot be executed only if a proposal has not been
done, or if the manager has already replied. Similarly we can give the precondition
laws for the other actions:

2(¬proposal ∨ acc rej → [reject]⊥)
2(task = nil ∨ replied → [refuse]⊥)
2(task = nil ∨ replied → [propose]⊥)
2(task 6= nil → [cfp(T)]⊥).

The precondition law for action propose (refuse) says that a proposal can only
be done if task 6= nil, that is, if a task has already been announced and the
participant has not already replied. The last law says that the manager cannot
issue a new call for proposal if task 6= nil, that is, if a task has already been
announced.

In the following we will denote Permi (permissions of agent i) the set of all
the precondition laws of the protocol pertaining to the actions of which agent i

is the sender.
Assume now that we want the participant to be committed to reply to the

task announcement. We can express it by adding the following conditional com-
mitment to the initial state of the protocol: CC(P,M, task 6= nil, replied). Fur-
thermore the manager is committed initially to issue a call for proposal for a
task. We can define the initial state Init of the protocol as follows:

{task = nil,¬replied,¬proposal, CC(P,M, task 6= nil, replied),
C(M,P, task 6= nil)}

In the following we will be interested in those execution of the protocol in
which all commitments have been fulfilled. We can express the condition that
the commitment C(i, j, α) will be fulfilled by the following constraint:

2(C(i, j, α) → 3α)

We will call Comi the set of constraints of this kind for all commitments of agent
i. Comi states that agent i will fulfill all the commitments of which he is the
debtor.

Given the above rules, the domain description D = (Π, C) of a protocol is
defined as follows: Π is the set of the action and causal laws given above, and
C = Init∧

∧
i(Permi ∧Comi) is the set containing the constraints on the initial

state, the permissions Permi and the commitments Comi of all the agents (the
agents P and M, in this example).

Given a domain description D, let the completed domain description Comp(D)
be the set of formulas (Comp(Π) ∧ Init ∧

∧
i(Permi ∧ Comi)). The runs of

the system according the protocol are the linear models of Comp(D). Observe
that in these protocol runs all permissions and commitments have been fulfilled.
However, if Comj is not included for some agent j, the runs may contain com-
mitments which have not been fulfilled by j.

5 Verification

Given the DLTL specification of a protocol by a domain description, we describe
the different kinds of verification problems which can be addressed.

First, given an execution history describing the interactions of the agents, we
want to verify the compliance of that execution to the protocol. This verification
is carried out at runtime. We are given a history τ = a1, . . . , an of the commu-
nicative actions executed by the agents, and we want to verify that the history
τ is the prefix of a run of the protocol, that is, it respects the permissions and
commitments of the protocol. This problem can be formalized by requiring that
the formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi))∧ < a1; a2; . . . ; an > >

(where i ranges on all the agents involved in the protocol) is satisfiable. In fact,
the above formula is satisfiable if it is possible to find a run of the protocol
starting with the action sequence a1, . . . , an.

A second problem is that of proving a property ϕ of a protocol. This can be
formulated as the validity of the formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi)) → ϕ. (1)

Observe that, to prove the property ϕ, all the agents are assumed to be compliant
with the protocol.

A further problem is to verify that an agent is compliant with the protocol,
given the program executed by the agent itself. In our formalism we can specify
the behavior of an agent by making use of complex actions (regular programs).
Consider for instance the following program πP for the participant:

[¬done?; ((cfp(T); eval task; (¬ok?; refuse; exit + ok?; propose)) +
(reject; exit) + (accept; do task; exit))]∗; done?

The participant cycles and reacts to the messages received by the manager:
for instance, if the manager has issued a call for proposal, the participant can
either refuse or make a proposal according to his evaluation of the task; if the
manager has accepted the proposal, the participant performs the task; and so
on.

The state of the agent is obtained by adding to the fluents of the protocol the
following local fluents: done, which is initially false and is made true by action
exit, and ok which says if the agent must make a bid or not. The local actions
are eval task, which evaluates the task and sets the fluent ok to true or false,
do task and exit. Furthermore, done? and ok? are test actions.

The program of the contractor can be specified by a domain description
ProgP = (ΠP , CP), where ΠP is a set of action laws describing the effects of the
private actions of the contractor, for instance:

2[exit]done

2(task = t1 → [eval task]ok)
2(task = t2 → [eval task]¬ok)

and, CP = {〈πP 〉>,¬done,¬ok} contains the constraints on the initial values of
fluents (¬done,¬ok) as well as the formula 〈πP 〉> stating that the program of
the participant is executable in the initial state.

We want now to prove that the participant is compliant with the protocol,
i.e. that all executions of program πP satisfy the specification of the protocol.
This property cannot be proved by considering only the program πP . In fact,
it is easy to see that the correctness of the property depends on the behavior
of the manager. For instance, if the manager begins with an accept action, the
participant will execute the sequence of actions accept; do task; exit and stop,
which is not a correct execution of the protocol. Thus we have to take into
account also the behavior of the manager. Since we don’t know its internal
behavior, we will assume that the manager respects its public behavior, i.e. that
it respects its permissions and commitments in the protocol specification.

The verification that the participant is compliant with the protocol can be
formalized as a validity check. Let D = (Π, C) be the domain description de-
scribing the protocol, as defined above. The formula

(Comp(Π) ∧ Init ∧ PermM ∧ ComM ∧ Comp(ΠP) ∧ CP) → (PermP ∧ ComP)

is valid if in all the behaviors of the system, in which the participant executes
its program πP and the manager (whose internal program is unknown) respects
the protocol specification (in particular, its permissions and commitments), the
permissions and commitment of the participant are also satisfied.

6 Contract Net with N participants

Let us assume now that we have N potential contractors. The above formulation
of the protocol can be extended by introducing a fluent replied(i), proposal(i)
and acc rej(i) for each participant i, and similarly for the commitments. Fur-
thermore we introduce the communicative actions refuse(i), and propose(i),
which are sent from participant i to the manager, and reject(i) and accept(i),
which are sent from the manager to participant i. We assume action cfp(T) to
be shared by all agents (broadcast by the manager).

The theory describing the new version of the protocol can be easily obtained
from the one given above. For instance the precondition laws for accept(i) and
reject(i) must be modified so that these actions will be executed only after all
participants have replied to the manager, i.e.:

2((¬proposal(i) ∨ acc rej(i) ∨
∨

j=1,N ¬replied(j)) → [accept(i)]⊥)

and the same for reject(i).
The verification problems mentioned before can be formulated using the same

approach. For instance, the verification that the protocol satisfies a given prop-
erty ϕ can be expressed as the validity of the formula (1) above, where i ranges

over the N participants and the manager. To prove compliance of a participant
with the protocol, we need to restrict the protocol to the actions and the fluents
shared between the manager and this participant (i.e. we need to take the pro-
jection of the protocol on agent i and the agents with whom i interacts). Then
the problem can be formulated as in the case of a single participant.

We have not considered here the formulation of the problem in which pro-
posals must be submitted within a given deadline. This would require adding to
the system a further agent clock.

7 Model checking

The above verification and satisfiability problems can be solved by extending the
standard approach for verification and model-checking of Linear Time Temporal
Logic, based on the use of Büchi automata. As described in [15], the satisfiability
problem for DLTL can be solved in deterministic exponential time, as for LTL,
by constructing for each formula α ∈ DLTL(Σ) a Büchi automaton Bα such
that the language of ω-words accepted by Bα is non-empty if and only if α

is satisfiable. Actually a stronger property holds, since there is a one to one
correspondence between models of the formula and infinite words accepted by
Bα. The size of the automaton can be exponential in the size of α, while emptiness
can be detected in a time linear in the size of the automaton.

The validity of a formula α can be verified by constructing the Büchi au-
tomaton B¬α for ¬α: if the language accepted by B¬α is empty, then α is valid,
whereas any infinite word accepted by B¬α provides a counterexample to the
validity of α.

For instance, let CN be the completed domain description of the Contract
Net protocol, that is CN = (Comp(Π) ∧ Init ∧

∧
i(Permi ∧ Comi)). Then

every infinite word accepted by BCN corresponds to a possible execution of the
protocol. To prove a property ϕ of the protocol, we can build the automaton
B¬ϕ and check that the language accepted by the product of BCN and B¬ϕ is
empty.

The construction given in [15] is highly inefficient since it requires to build
an automaton with an exponential number of states, most of which will not be
reachable from the initial state. A more efficient approach for constructing a
Büchi automaton from a DLTL formula makes use of a tableau-based algorithm
[9]. The construction of the states of the automaton is similar to the standard
construction for LTL [8], but the possibility of indexing until formulas with
regular programs puts stronger constraints on the fulfillment of until formulas
than in LTL, requiring more complex acceptance conditions. The construction
of the automaton can be done on-the-fly, while checking for the emptiness of the
language accepted by the automaton. Given a formula ϕ, the algorithm builds a
graph G(ϕ) whose nodes are labelled by sets of formulas. States and transitions
of the Büchi automaton correspond to nodes and arcs of the graph. The algo-
rithm makes use of an auxiliary tableau-based function which expands the set
of formulas at each node. As for LTL, the number of states of the automaton is,

in the worst case, exponential in the size if the input formula, but in practice it
is much smaller. For instance, the automaton obtained from the Contract Net
protocol has about 20 states.

LTL is widely used to prove properties of (possibly concurrent) programs
by means of model checking techniques. The property is represented as an LTL
formula ϕ, whereas the program generates a Kripke structure (the model), which
directly corresponds to a Büchi automaton where all the states are accepting,
and which describes all possible computations of the program. The property can
be proved as before by taking the product of the model and of the automaton
derived from ¬ϕ, and by checking for emptiness of the accepted language.

In principle, with DLTL we do not need to use model checking, because pro-
grams and domain descriptions can be represented in the logic itself, as we have
shown in the previous section. However representing everything as a logical for-
mula can be rather inefficient from a computational point of view. In particular
all formulas of the domain description are universally quantified, and this means
that our algorithm will have to propagate them from each state to the next one,
and to expand them with the tableau procedure at each step.

Therefore we have adapted model checking to the proof of the formulas given
in the previous section, as follows. Let us assume that the negation of a formula
to be proved can be represented as F ∧ ϕ, where F = Comp(Π)∧ Init contains
the completion of the action and causal laws in the domain description and the
initial state, and ϕ the rest of the formula. For instance, in the verification of
the compliance of the participant, the negation of the formula to be proved is
(Comp(Π) ∧ Init ∧ PermM ∧ ComM ∧ Comp(ΠP) ∧ ¬(PermP ∧ ComP)) and
thus ϕ = (PermM ∧ComM ∧Comp(ΠP)∧¬(PermP ∧ComP)). We can derive
from F an automaton describing all possible computations, whose states are sets
of fluents, which we consider as the model. In particular, we can obtain from
the domain description a function transa(S), for each action a, for transforming
a state in the next one, and then build this automaton by repeatedly applying
these functions starting from the initial state. We can then proceed by taking
the product of the model and of the automaton derived from ϕ, and by checking
for emptiness of the accepted language.

Note that, although this automaton has an exponential number of states, we
can build it step by step by following the construction of the algorithm on-the-
fly. The state of the product automaton will consist of two parts < S1, S2 >,
where S1 is a set of fluents representing a state of the model, and S2 is a set of
formulas. The initial state will be < I, ϕ >, where I is the initial set of fluents.
A successor state through a transition a will be obtained as < transa(S1), S

′
2 >

where S′2 is derived from S2 by the on-the-fly algorithm. If the two parts of a
state are inconsistent, the state is discarded.

8 Conclusions

We have shown that DLTL is a suitable formalism for specifying and verifying a
system of communicating agents. Our approach provides a unified framework for

describing different aspects of multi-agent systems. Programs are expressed as
regular expressions, (communicative) actions can be specified by means of action
and precondition laws, properties of social facts can be specified by means of
causal laws and constraints, and temporal properties can be expressed by means
of the until operator. We have addressed several kinds of verification problems,
including the problem of compliance of agents to the protocol, and described how
they can be solved by developing automata-based model checking techniques for
DLTL. A preliminary implementation of a model checker based on the algorithm
in [9] is being tested in the verification of the properties of various protocols.

The issue of developing semantics for agent communication languages has
been examined in [20], by considering in particular the problem of giving a veri-
fiable semantics, i.e. a semantics grounded on the computational models. Guerin
and Pitt [13, 14] define an agent communication framework which gives agent
communication a grounded declarative semantics. The framework introduces dif-
ferent languages: a language for agent programming, a language for specifying
agent communication and social facts, and a language for expressing temporal
properties. Our approach instead provides a unified framework for describing
multiagent systems using DLTL.

While in this paper we follow a social approach to the specification and veri-
fication of systems of communicating agents, [4, 3, 16, 21] have adopted a mental-
istic approach. The goal of [3] is to extend model checking to make it applicable
to multi-agent systems, where agents have BDI attitudes. This is achieved by us-
ing a new logic which is the composition of two logics, one formalizing temporal
evolution and the other formalizing BDI attitudes. In [16, 21] agents are writ-
ten in MABLE, an imperative programming language, and have a mental state.
MABLE systems may be augmented by the addition of formal claims about the
system, expressed using a quantified, linear time temporal BDI logic. Instead
[4] deals with programs written in AgentSpeak(F), a variation of the BDI logic
programming language AgentSpeak(L). Properties of MABLE or AgentSpeak
programs can be verified by means of the SPIN model checker. These papers do
not deal with the problem of proving properties of protocols.

Yolum and Singh [22] developed a social approach to protocol specification
and execution. In this approach, commitments are formalized in a variant of
event calculus. By using an event calculus planner it is possible to determine
execution paths that respect the protocol specification. Alberti et al. address
a similar problem, by expressing protocols in a logic-based formalism based on
Social Integrity Constraints. In [1] they present a system that, during the evo-
lution of a society of agents, verifies the compliance of the agents’ behavior to
the protocol.

References

1. M. Alberti, D. Daolio and P. Torroni. Specification and Verification of Agent Inter-
action Protocols in a Logic-based System. SAC’04, March 2004.

2. F. Bacchus and F. Kabanza. Planning for temporally extended goals. in Annals of
Mathematics and AI, 22:5–27, 1998.

3. M. Benerecetti, F. Giunchiglia and L. Serafini. Model Checking Multiagent Systems.
Journal of Logic and Computation. Special Issue on Computational Aspects of Multi-
Agent Systems, 8(3):401-423. 1998.

4. R. Bordini, M. Fisher, C. Pardavila and M. Wooldridge. Model Checking AgentS-
peak. AAMAS 2003, pp. 409–416, 2003.

5. D. Calvanese, G. De Giacomo and M.Y.Vardi. Reasoning about Actions and Plan-
ning in LTL Action Theories. In Proc. KR’02, 2002.

6. FIPA Contract Net Interaction Protocol Specification, 2002. Available at
http://www.fipa.org.

7. N. Fornara and M. Colombetti. Defining Interaction Protocols using a Commitment-
based Agent Communication Language. Proc. AAMAS’03, Melbourne, pp. 520–527,
2003.

8. R. Gerth, D. Peled, M.Y.Vardi and P. Wolper. Simple On-the-fly Automatic verifi-
cation of Linear Temporal Logic. In Proc. 15th Work. Protocol Specification, Testing
and Verification, Warsaw, June 1995, North Holland.

9. L. Giordano and A. Martelli. On-the-fly Automata Construction for Dynamic Linear
Time Temporal Logic. TIME 04, June 2004.

10. L. Giordano, A. Martelli, and C. Schwind. Reasoning About Actions in Dynamic
Linear Time Temporal Logic. In FAPR’00 - Int. Conf. on Pure and Applied Practical
Reasoning, London, September 2000. Also in The Logic Journal of the IGPL, Vol. 9,
No. 2, pp. 289-303, March 2001.

11. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Systems of
Communicating Agents in a Temporal Action Logic. In Proc. AI*IA’03, Pisa, pp.
262–274, Springer LNAI 2829, September 2003.

12. F. Giunchiglia and P. Traverso. Planning as Model Checking. In Proc. The 5th
European Conf. on Planning (ECP’99), pp.1–20, Durham (UK), 1999.

13. F. Guerin. Specifying Agent Communication Languages. PhD Thesis, Imperial
College, London, April 2002.

14. F. Guerin and J. Pitt. Verification and Compliance Testing. Communications in
Multiagent Systems, Springer LNAI 2650, pp. 98–112, 2003.

15. J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic. in
Annals of Pure and Applied logic, vol.96, n.1-3, pp.187–207, 1999

16. M.P. Huget and M. Wooldridge. Model Checking for ACL Compliance Verification.
ACL 2003, Springer LNCS 2922, pp. 75–90, 2003.

17. M.Pistore and P.Traverso. Planning as Model Checking for Extended Goals in
Non-deterministic Domains. Proc. IJCAI’01, Seattle, pp.479-484, 2001.

18. R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, V. Lifs-
chitz, ed.,pages 359–380, Academic Press, 1991.

19. M. P. Singh. A social semantics for Agent Communication Languages. In IJCAI-98
Workshop on Agent Communication Languages, Springer, Berlin, 2000.

20. M. Wooldridge. Semantic Issues in the Verification of Agent Communication Lan-
guages. Autonomous Agents and Multi-Agent Systems, vol. 3, pp. 9-31, 2000.

21. M. Wooldridge, M. Fisher, M.P. Huget and S. Parsons. Model Checking Multi-
Agent Systems with MABLE. In AAMAS’02, pp. 952–959, Bologna, Italy, 2002.

22. P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. In AAMAS’02, pp. 527–534, Bologna,
Italy, 2002.

Reasoning about interaction protocols for
customizing web service selection and composition1

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino,
corso Svizzera 185, 10149, Torino, Italy

E-mail: {baldoni,baroglio,mrt,patti}@di.unito.it

Abstract

This work faces the problem of automatic selection and composition of web services, dis-
cussing the advantages that derive from the inclusion, in a web service declarative descrip-
tion, of the high-level communication protocol, that is used by the service for interacting
with its partners, allowing a rational inspection of it. The approach we propose is set in the
Semantic Web field of research and inherits from research in the field of multi-agent sys-
tems. Web services are viewed as software agents, communicating by predefined sharable
interaction protocols. A logic programming framework based on modal logic is proposed,
where the protocol-based interactions of web services are formalized and the use of reason-
ing about actions and change techniques (planning) for performing the tasks of selection
and composition of web services in a way that is personalized w.r.t. the user request is
enabled. We claim that applying reasoning techniques on a declarative specification of the
service interactions allows to gain flexibility in fulfilling the user preference in the context
of a web service matchmaking process.

Key words: Semantic web-services, reasoning about actions, interaction protocols,
personalization, agent logic programming

1 Introduction

Web services are an emergent paradigm for implementing business collaborations,
across and within corporation boundaries [1]. Workflow research and technology

1 This research has partially been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net), and it has also been supported by
MIUR PRIN 2005 “Specification and Verification of Agent Interaction Protocols” national
project.

Preprint submitted to Elsevier Science 20 January 2006

have found in web services a natural field of application which opens interesting
and challenging perspectives. Web services, however, also raised the attention of
other research communities, in particular the two respectively studying the Seman-
tic Web and multi-agent systems (MAS for short). The work presented in this pa-
per is set transversely across these three fields. The aim is, basically, to show with
a practical example the possibility and the benefits of cross-fertilization of these
three areas, which indeed show interesting convergence points.

Concerning web services, this paper focuses on a central issue: studying declara-
tive descriptions aimed at allowing forms of automated interoperation that include,
on the one hand, the automation of tasks like matchmaking and execution of web
services, on the other, the automation of serviceselection and compositionin a way
that is customized w.r.t. theuser’s goalsandneeds, a task that can be considered as a
form of personalization[2]. Indeed, selection and composition not always are to be
performed on the sole basis of general properties of the services themselves and of
their interactive behavior, such as the category of the service or the functional com-
positionality of a set of services, but they should also take into account the user’s
intentions (and purposes) which both motivate and constrain the search or the com-
position. As a quick example, consider a web service that allows buying products,
alternatively paying cash or by credit card: a user might have preferences on the
form of payment to enact. In order to decide whether or not buying at this shop, it
is necessary to single out the specific course of interaction that allows buying cash.
This form of personalization can be obtained by applyingreasoning techniqueson
a description of the service process. Such a description must have a well-defined
meaning for all the parties involved. In this issue it is possible to distinguish three
necessary components: first, web services capabilities must be represented accord-
ing to some declarative formalism with a well-defined semantics, as also recently
observed by van der Aalst [1]; second, automated tools for reasoning about such
a description and performing tasks of interest must be developed; third in order to
gain flexibility in fulfilling the user’s request, reasoning tools should represent such
requests asabstract goals.

The approach that we propose is to exploit results achieved by the community
that studieslogic for agent systemsand, in particular,reasoning about actions and
change. Indeed, the availability of semantic information about web resources en-
ables the application of reasoning techniques, such as ontology reasoning constraint
reasoning, non-monotonic reasoning, and temporal reasoning [3], whose use would
allow the design of systems that, being able of autonomous decisions, can adapt to
different users and are open to interact with one another. In particular, we propose
to use techniques forreasoning about actionsfor performing the automatic selec-
tion and composition of web services, in a way that is customized w.r.t. the users’s
request, by reasoning on thecommunicative behaviorof the services. Communi-
cation can, in fact, be considered as the behavior resulting from the application of
a special kind of actions:communication actions. The reasoning problem that this
proposal faces can intuitively be described as looking for a an answer to the ques-

2

tion “Is it possible to make a deal with this service respecting the user’s goals?”.
Given a logic-based representation of the service policies and a representation of
the customer’s needs as abstract goals, expressed by a logic formula, logic pro-
gramming reasoning techniques are used for understanding if the constraints of the
customer fit in with the policy of the service.

This proposal inherits from the experience of the research community that studies
MAS and, in particular, logic-based formalizations of interaction aspects. Indeed,
communication has intensively been studied in the context of formal theories of
agency [4,5] and a great deal of attention has been devoted to the definition of
standard agent communication languages (ACL), e.g. FIPA [6] and KQML [7].
Recently, most of the efforts have been devoted to the definition of formal models
of interaction among agents, that useconversation protocols. The interest for pro-
tocols is due to the fact that they improve the interoperability of the various com-
ponents (often separately developed) and allow the verification of compliance to
the desired standards. Given the abstraction of web services as entities, that com-
municate by following predefined, public and sharable interaction protocols, we
have studied the possible benefits provided by adeclarative descriptionof their
communicative behavior, in terms of personalization of the service selection and
composition. The approach models the interaction protocols provided by web ser-
vices by a set of logic clauses, thus at high (not at network) level. A description
by policies is definitely richer than the list of input and output, precondition and
effect properties usually taken into account for the matchmaking (see Section 5).
Moreover having a logic specification of the protocol, it is possible to reason about
the effects of engaging specific conversations, and, on this basis, to perform many
tasks in an automatic way. Actually, the proposed approach can be considered as a
second stepin the matchmaking process, which narrows a set of already selected
services and performs acustomizationof the interaction with them.

For facing the problem of describing and reasoning about conversation protocols,
we have extended the agent languageDyLOG [8] by introducing a communica-
tion kit, that is presented in this article.DyLOG is an agent programming lan-
guage, based on a modal logic for reasoning about actions and beliefs, which has
already been used in the development of adaptive web applications [9]. It allows
the specification of the behavior of rational agents, and it supplies mechanisms for
reasoning about it. In Section 3 we presents anextensionfor dealing with commu-
nication. This extension is based on an agent theory, in which agents havelocal
beliefs about the world and about the mental states of the other agents, and where
communications are modelled as actions that operate on such beliefs. This account
of communication aims at coping with two main aspects: thechange in the state
that encodes an agent’s beliefs, caused by a communicative act, and thedecision
strategyused by an agent for answering to a received communication. To these
aims, the semantics of primitive speech acts is described in terms of effects on the
mental state, both in the case in which the agent is the sender and in the case in
which it is the recipient, and, in the line of [10], conversation protocols are used as

3

decision procedures. Each agent has asubjective perceptionof the on-going con-
versations and, guided by the protocol, it makes hypothetical assumptions on the
other agents’ answers. In the web service application context we exploit such a
feature by including in the knowledge base of an agent (the requester) a descrip-
tion of the potentially interesting services. This description is given by logic rules
expressing their communicative policies from the point of view of the requester.
The language provides a goal-directed proof procedure that supports reasoning on
communication and allows an agent to reason about the interaction that it is going
to enactbeforeit actually occurs, with the aim of proving properties of the possible
executions.

In Section 2 we will locate our proposal in the context of current research on web
services, while in Sections 2.1 and 4 we will show by means of examples how it is
possible to use the new tools offered by the language for representing and reasoning
on the conversation policies of the web services for personalizing the retrieval, the
composition of, and the interaction with services. In this perspective, this article
integrates and extends the work in [11,12].

2 Context and perspectives

In the last years distributed applications over the World-Wide Web have obtained
wide popularity and uniform mechanisms have been developed for handling com-
puting problems which involve a large number of heterogeneous components, that
are physically distributed and that interoperate. These developments have begun to
coalesce around the web service paradigm, where a service can be seen as a compo-
nent available over the web. Each service has an interface that is accessible through
standard protocols and that describes theinteraction capabilitiesof the service. It
is possible to develop new applications over the web bycombining and integrating
existing web services.

In this scenario, two needs have inspired recent research [13]: the first is the need
of developingprogramming languagesfor implementing the behavior of the single
participants involved in an interaction, the other is the need of developingmod-
elling languagesfor describing processes and theirinteraction protocols, abstract-
ing from details concerning the internal behavior of the single components. At the
moment of writing this article, the language BPEL4WS (BPEL for short [14]) has
emerged as the standard for specifying the business processes of single services
and it allows writing alocal view of the interaction that should take place, i.e. the
interaction from the point of view of the process. Its authors envisioned the use of
the language both as anexecution language, for specifying the actual behavior of
a participant in a business interaction, and as a modelling language, for specifying
the interaction at an abstract level, once again from the perspective of the service
being described. If, on a hand, BPEL as an execution language is extremely suc-

4

cessful, BPEL as a language for modelling abstract interactions substantially did
not succeed [1]. Its limit is that it does not allow to perform the analysis of the de-
scribed process, but the capability of performing this analysis is fundamental to the
real implementation of those sophisticate forms of flexibility and composition that
one expects in the context of the web. For achieving such a flexibility and enable
automatic devices to use a web resource, the latter must bear some public infor-
mation about itself, its structure, the way in which it is supposed to be used, and
so forth. This information should be represented according to some conventional
formalism which relies onwell-founded models, upon which it is possible to define
access and usage mechanisms. To meet these requirements, the attention of part of
the community has focussed on capturing the behavior of BPEL in a formal way,
and many translations of BPEL into models supporting analysis and verification
(process algebras, petri nets, finite state machines) are currently under investiga-
tion [15,16]. For what concerns thespecification of interaction protocols, instead,
there is a growing agreement on the fact that the local point of view is not sufficient
and that aglobal view of the interaction to occur should be expressed. This level
of representation is captured by the concept ofchoreography. Choreographies are
expressed by using specific languages, like the W3C proposal WS-CDL [17]. We
will discuss about choreographies further below in the section.

In parallel, the World-Wide Web Consortium (W3C), has given birth to theSeman-
tic Webinitiative [18] (see also [19,20]) which is centered on providing a common
framework, that allows resources to be shared and reused across application, enter-
prise, and community boundaries. In order to bemachine-processable, information
must be given a well-defined meaning; one underling assumption is that its repre-
sentation has adeclarative format. Research in the Semantic Web area is giving
very good results for what concerns the intelligent retrieval and use of documents,
nevertheless, research on semantic web services is still at its beginning. The cur-
rent W3C proposal for describing semantic web services is the language OWL-S.
Like BPEL, OWL-S allows the description of possibly composite processes from a
local perspective. Noticeably, the sets of operators that the two languages supply,
and by which the processes can be composed, though not fully identical, show a
consistent intersection. The main difference between the two languages seems to
be that BPEL is more focussed on themessage exchangebetween the service and
its parties, while OWL-S is more focussed on theprocess advertisementand the
process structure. Another similarity is that both languages allow the definition of
executable specifications. For the sake of completeness, OWL-S is but a proposal
and alternative initiatives are being conducted, like WSMO [21]. It is also interest-
ing to notice that in the Semantic Web context, there is currently no proposal of
a concept close to that of “choreography”, the questions of service effective exe-
cutability and interoperability are open, and the proposed matchmaking techniques
are still simple and quite far from fully exploiting the power of shareable semantics.

We have observed two interesting convergence points, one between the vision re-
ported in [13] and results of research in multi-agent systems, the other between

5

research in multi-agent systems and that in the Semantic Web. The former is that
also in the case of agent systems, research has identified in message exchange the
key to interoperation, even in the case in which agents are not rational. In partic-
ular, in an agent system it is possible to distinguish theglobal interaction schema
that the group of agents should realize, the interaction protocol (analogous to a
choreography), from a declarative representation of the interactivebehavior of the
single agents, their interaction policies (executable specifications). Protocols are
public and shared by the agents; policies can be made public. Similarly to what
postulated by the Semantic Web, both descriptions are supposed as being declara-
tive, with a well-defined meaning and a well-founded semantics. Moreover, agent
systems are commonly supposed as being open and constituted by heterogeneous
members. In this context, besides giving a global view of communication, protocols
can also be considered as a specification, in an interlanguage (koine), that can be
used –even run-time– for selecting agents that should interact in some task. Part-
ners which agree on using a global interaction protocol, can cooperate even if their
local interactive behaviors are implemented by using different programming lan-
guages. The respect of the global rules guarantees the interoperability of the parties
(i.e. their capability ofactuallyproducing an interaction), and that the interactions
will satisfy expected requirements. Of course in this context verifying that the local
implementations conform to the global specification becomes crucial.

On the other hand, having a declarative representation with a strong formal basis
makes it possible to applyreasoning techniquesfor achieving goals of interest or
prove properties of interest, the formalization basically depending on the reasoning
tasks to be tackled. In particular, in order to introduce that degree of flexibility
that is necessary for personalizing the selection and composition of web services
in an open environment, in such a way that the user’s goals and needs are satisfied,
it is necessary to reason on the interactive behavior that the service can enact by
using a declarative language that both supports theexplicit codingof interaction
policies, and that refers to a formal model for reasoning onknowledge attitudes
like goals and beliefs. As we will show in the following examples, this kind of
formalization allows the selection of specific courses of interaction among sets of
possible alternatives, based on the user’s likings and constraints, a selection process
that can be extended to the case of service composition. To our knowledge, none
of the most widely diffused languages for representing (semantic) web services has
all these characteristics, so for proposing these advanced forms of selection it is
necessary to borrow from the neighboring area of multi-agent systems. We have
chosen theDyLOG language for writing the abstract specifications of the service
behaviors because the language shows all these characteristics.

6

2.1 A scenario

Let us now introduce a simple scenario that will help us in showing how, by reason-
ing about the communicative behavior of web services, it is possible to personalize
their fruition. The scenario encompasses two kinds of web services for taking reser-
vation: services to book tables at restaurants and services to book seats at cinemas.
In this framework it is quite easy to invent queries of various complexity. Not all
of them can be answered by the basic keyword-based retrieval mechanisms (see
related works in Section 5) with sufficient precision. To the aims of this example
it is sufficient to suppose that there are only two restaurant booking services (we
will simply call them restaurant1and restaurant2) and two cinema booking ser-
vices (cinema1andcinema2). On a keyword basis, the two cinemas have the same
description as well as the two restaurants but all the services have a different in-
teractive behavior with their clients. Figure 1 and Figure 2 report their interaction
protocols, represented as AUML [22,23] sequence diagrams. In particular,restau-
rant1 takes part to a promotion campaign, by which each customer, who made a
reservation by the internet service, receives a free ticket for a movie (Figure 1 (i)).
Restaurant2does not take part to this initiative (Figure 1 (ii)). On the side of cine-
mas,cinema2accepts reservations to be paid cash but no free tickets (Figure 2 (iv)
whereascinema1accepts the promotional tickets and, as an alternative, it also takes
reservations by credit card (Figure 2 (iii)).

One of the simplest tasks that can be imagined is web service retrieval, in this case
the query is a description of the desired service (e.g. “cinema booking service”).
However, what to do when the user is not simply interested in a generic kind of
service but s/he would like to find services that besides being of that kind also
show other characteristics? For instance to find a cinema booking service that does
not require to confirm the reservation by sending a credit card number. While in
the former case a keyword-based description would have been sufficient, and the
answer would have included bothcinema1andcinema2, in the latter case more
information about the service is necessary. How to considercinema1that requires
either the credit card or a promotional free ticket? Even more interesting is the case
in which the answer to the user’s goal requires to combine the executions of two (or
more) independent web services. For instance, let us suppose that the user would
like to organize an evening out by, first, having dinner at some nice restaurant and,
then, watching a movie; moreover, s/he heard that in some restaurants it is possible
to gain a free ticket for a movie and s/he would like to profit of this possibility but
only if it is not necessary to use the credit card because s/he does not trust inter-
net connections very much. If, on one hand, searching for a cinema or a restaurant
reservation service is a task that can be accomplished by any matchmaking ap-
proach, the conditions “look for promotions” and “do not use my credit card” can
be verified only by a rational inspection of the communication with the services.
This verification should be done before the actual interaction. Obviously, the only
combination that satisfies all the user’s requests is to reserve a table atrestaurant1,

7

and then make a reservation atcinema1. This solution can be found only enacting
a reasoning mechanism that, based on the description of the interaction protocols,
selectsrestaurant1andcinema1and, in particular, it selects the course of action
that makes use of the free ticket.

In order to perform this kind of tasks, in this work we set the web service selec-
tion and composition problems in a multi-agent perspective. The idea is to interpret
web services as agents, each bearing a public communication protocol (described
in a declarative format), and to delegate the task of selection (or composition) to
a personalization agent. Such an agent receives a description of the user’s desires
and goals, interacts with other systems that perform a less informed retrieval of
services, and, in order to find a suitable solution to the user’s request, applies a rea-
soning mechanism to the communication protocols of the services. The protocols
of such services, that have been identified by the less informed retrieval systems,
are supposed to be represented in a specification language, such as AUML [22,23].
We assume that this representations are translated inDyLOG procedures that are
included in the knowledge base of the personalization agent. Given this representa-
tion, in order to accomplish the reasoning tasks that have been described, we pro-
pose the use of procedural planning techniques, in which the possible executions
of a sequence of protocols are evaluated, with the aim of deciding if they meet or
not the requirements or under which assumptions. In particular, we will exploit the
planning capabilities offered by theDyLOG agent programming language, which is
described in Section 3.

Of course, the agent cannot be sure that once the plan is executed it will not fail
because the planning process is performed before the interaction; so, for instance, it
cannot know if there will actually be a free table left at the restaurant. No currently
existing selection mechanism can guarantee this but it would be interesting to study
the relations between replanning techniques and the compensation techniques de-
veloped for long-time transactions (see the Conclusions for further discussion). The
advantage of the proposed approach is that it leaves out services, that would in no
case allow the achievement of the user’s goals respecting all the requirements, as
well as it allows the exact identification of those permitted courses of interaction
that satisfy them.

Present web service technology is quite primitive w.r.t. the framework we propose,
and the realization of the picture sketched above would require an integration, in
the current tools for web service representation and handling, of knowledge rep-
resentation languages –in the line of those developed in the Semantic Web area–
and of techniques for reasoning and dealing with communication, inspired by those
studied in the area of MAS. Even if a real integration is still far from being real for
the sake of concreteness, let us describe ourvisionof the steps to be taken toward
the realization.

In our view, public descriptions of interaction protocols in the scenario above (rep-

8

Customer Restaurant

queryIf(available(time))

refuseInform(available(time))

inform(~available(time))

inform(available(time))

inform(reservation(time))

alternative

inform(cinema_promo)

inform(ft_number)

Customer Restaurant

queryIf(available(time))

refuseInform(available(time))

inform(~available(time))

inform(available(time))

inform(reservation(time))

alternative

(i) (ii)

Fig. 1. The AUML sequence diagrams represent the interactions occurring between the
customer and each of the restaurant web services: (i) is followed byrestaurant1, (ii) by
restaurant2.

Customer Cinema

queryIf(available(movie))

refuseInform(available(movie))

inform(~available(movie))

inform(available(movie))

queryIf(cinema_promo)

refuseInform(cinema_promo)

inform(~cinema_promo)

alternative

alternative

inform(cinema_promo)

inform(ft_number)

inform(reservation(movie))

queryIf(pay_by(c_card))

refuseInform(pay_by(c_card))

inform(~pay_by(c_card))

inform(pay_by(c_card))

inform(cc_number)

inform(reservation(movie))

alternative

Customer Cinema

queryIf(available(movie))

refuseInform(available(movie))

inform(~available(movie))

inform(available(movie))

inform(pay_by(cash))

alternative

inform(reservation(movie))

(iii) (iv)

Fig. 2. In this case, the AUML sequence diagrams represent the possible interactions be-
tween the customer and each cinema web service: (iii) represents the protocol followed by
cinema1; (iv) is followed bycinema2.

resented by AUML diagrams) can be mapped in public descriptions of choreogra-
phies (e.g. WS-CDL-like descriptions). A choreography defines a global view of

9

the protocol followed by a certain service, e.g. thecinema service, for accomplish-
ing the cooperative task of booking a cinema ticket. Acostumerservice, that in
principle is interested to participate to the cooperation for booking a ticket for its
user,translatessuch a description in the declarative languageDyLOG 2 and uses
reasoning techniques, supported by the language, plus its local knowledge on the
user’s preferences for checking whether the contract, defined by the choreography,
satisfies its user. Such reasoningconditionsthe costumer’s decision of selecting the
cinema service as a partner in a real interaction for accomplishing a task. Of course
the outcome of the reasoning is meaningful under the following assumption: the
implementation of the cinema service behavior (that could be written in an execu-
tion language like BPEL) must beconformantw.r.t. the choreography specification
that is used as input of the reasoning. Verifying the conformance and the inter-
operability of web services to a global protocol definition (to be provided at the
choreography level) is definitely one of the hot topics at the moment. In [24] we
started to attack the problem by proposing a framework, based on the theory of
formal languages, where both the global protocol and the web service behavior are
expressed by using finite state automata. Instead in [25] choreography and orches-
tration are formalized by using two process algebras and conformance takes the
form of a bisimulation-like relation.

3 A declarative agent language for reasoning about communication

Logic-based, executable languages for agent specification have been deeply inves-
tigated in the last years [26–28,8,29]. In this section we introduce the main features
of DyLOG, our agent language for reasoning about actions and changes, and, in
particular, we present the extension for dealing with communication (theCKit, Sec-
tion 3.2), which will be explained with more details and with examples. Section 3.3
presents the semantics of theCKit based on a non-monotonic solution to deal with
the persistency problem, while Section 3.4 presents the reasoning mechanisms that
will be used in Section 4. The proof theory is reported in Appendix A.

DyLOG is a logic programming language for modeling rational agents, based on a
modal theory of actions and mental attitudes. In this languagemodalitiesare used
for representingactionswhile beliefsmodel the agent’s internal state. The language
refers to amentalisticapproach, which is also adopted by the standard FIPA-ACL
[6], where communicative actions affect the internal mental state of the agent. The
mental state of an agent is described in terms of a consistent set ofbelief formulas.
The modal operatorBagi models the beliefs of the agentagi. The modal operator
Magi is defined as the dual ofBagi (Magiϕ ≡ ¬Bagi¬ϕ); intuitively it represents
the fact that agentagi considersϕ possible. The language allows also dealing with
nested beliefs, which allow the representation of what an agent thinks about the

2 This process requires the selection of a proper ontology, see Section 5.

10

other agents’ beliefs, and make reasoning on how they can be affected by commu-
nicative actions possible.DyLOG accounts both foratomicandcomplex actions, or
procedures. Atomic actions are eitherworld actions, that is actions which affect the
world, ormentalactions, i.e. sensing or communicative actions which only modify
the agent’s beliefs. For each world action and for each agent the modalities[aagi]
and〈aagi〉 are defined:[aagi]ϕ denotes the fact that the formulaϕ holds afterevery
execution ofa performed by agentagi, while 〈aagi〉ϕ, represents thepossibilitythat
ϕ holds after the action has been executed by the agent. A modalityDone(aagi) is
also introduced for expressing thata (a communicative act or a world action) has
been executed. Last but not least, the modality2 (box) denotes formulas that hold
in all the possible agent mental states. The formalization ofcomplex actionsdraws
considerably from dynamic logic for the definition of action operators like sequence
(;), ruled by〈a; b〉ϕ ≡ 〈a〉ϕ, test (?), 〈ψ?〉ϕ ≡ ψ ∧ ϕ and non-deterministic choice
(∪), 〈a∪b〉ϕ ≡ 〈a〉ϕ∨〈b〉ϕ but, differently than [30],DyLOG refers to aProlog-like
paradigm and procedures are defined as recursive Prolog-like clauses. Analogously
to what done in the case of atomic actions, for each procedurep, the language
contains also theuniversalandexistential modalities[p] and〈p〉. All the modal-
ities of the language are normal;2 is reflexive and transitive and its interaction
with action modalities is ruled by the axiom2ϕ ⊃ [aagi]ϕ, that is, inagi’s men-
tal stateϕ will hold after every execution of any action performed by the agent.
The epistemic modalityBagi is serial, transitive and Euclidean. The interaction of
Done(aagi) with other modalities is ruled by the axiomsϕ ⊃ [aagi]Done(aagi)ϕ
andDone(aagj)ϕ ⊃ BagiDone(aagj)ϕ (awareness), with agi = agj whenaagi is
not a communicative action.

3.1 The agent theory

DyLOG agents are considered as individuals, each with itssubjectiveview of a dy-
namic domain. The framework does not model the real world but only the internal
dynamics of each agent in relation to the changes caused by actions. An agent’s
behavioris specified by adomain descriptionthat includes:

(1) the agent’sbelief state;
(2) actionandprecondition lawsthat describe the effects and the preconditions of

atomic world actions on the executor’s mental state;
(3) sensing axiomsfor describing atomic sensing actions;
(4) procedure axiomsfor describing complex behaviors.

Let us denote by the termbelief fluentF , a belief formulaBagiL or its nega-
tion, whereL, the belief argument, is a fluent literal (f or ¬f), a done fluent
(Done(aagi)> or its negation), or a belief fluent ofrank 1 (Bl or ¬Bl). In this
latter case the symboll is anattitude-freefluent, that is a fluent literal or a done
fluent.

11

Intuitively, thebelief statecontains what an agent (dis)believes about the world and
about the other agents. It is a complete and consistent set ofrank 1 and 2 belief
fluents. A belief state provides, for each agent, a three-valued interpretation of all
the possible belief argumentsL, that can either betrue, false, or undefinedwhen
both¬BagiL and¬Bagi¬L hold.UagiL expresses the ignorance ofagi aboutL.

World actionsare described by their preconditions and effects on theactor’s mental
state; they trigger a revision process on the actor’s beliefs. Formally,action laws
describe the conditional effects onagi’s belief state of an atomic actiona, executed
by agi itself. They have the form:

2(BagiL1 ∧ . . . ∧BagiLn ⊃ [aagi]BagiL0) (1)
2(MagiL1 ∧ . . . ∧MagiLn ⊃ [aagi]MagiL0) (2)

Law (1) states that ifagi believes the preconditions to an actiona in a certain
epistemic state, aftera execution,agi will also believe the action’s effects. (2) states
that when the preconditions ofa are unknown toagi, after the execution ofa,
agi will consider unknown also its effects3 . Precondition laws, instead, specify
mental conditions that make an atomic action executable in a state. An agentagi can
executea when the precondition fluents ofa are in its belief state. More formally:

2(BagiL1 ∧ . . . ∧BagiLn ⊃ 〈aagi〉>) (3)

Sensing Actionsproduce knowledge about fluents; they are defined as non-deterministic
actions, with unpredictable outcome, formally modelled by a set ofsensing axioms.
Each sensing actions has associated a setdom(s) of literals (itsdomain). Whenagi
executess, it will know which of such literals is true.

[s]ϕ ≡ [
⋃

l∈dom(s)

sBagi l]ϕ (4)

∪ is the choice operator of dynamic logic andsBagi l, for eachl ∈ dom(s), is anad
hocprimitive action, that probes one of the possible outcomes of the sensing. Such
primitive actions are ruled by the simple action clauses:

2(Bagil1 ∧ . . . ∧Bagiln ⊃ 〈sBagi l〉>) (5)

2(> ⊃ [sBagi l]Bagil) (6)

2(> ⊃ [sBagi l]Bagi¬l′) (7)

for eachl′ ∈ dom(s), l 6= l′. Clause (5) means that after any sequence of world
actions, if the set of literalsBagil1 ∧ . . . ∧ Bagiln holds, then the actionsBagi l can

3 Laws of form (2) allow actions with non-deterministic effects, that may cause alossof
knowledge, to be specified.

12

be executed. The other ones describe the effects ofsBagi l: in any state, after the
execution ofsBagi l, l is believed (6), while all the other fluents belonging todom(s)
are believed to be false (7). Note that the binary sensing action on a fluentl, is a
special case of sensing where the associated finite set is{l,¬l}.

Complex actionsspecify complex behaviors by means ofprocedure definitions,
built upon other actions. Formally, a complex action is a collection ofinclusion
axiom schemaof the modal logic, of form:

〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pm〉ϕ (8)

p0 is a procedure name, “;” is the sequencing operatorof dynamic logic, and the
pi’s, i ∈ [1,m], are procedure names, atomic actions, or test actions. Procedure def-
initions may berecursiveand procedure clauses can be executed in agoal-directed
way, similarly to standard logic programs.

3.2 Communication

A communication theoryhas been integrated in the general agent theory by adding
further axioms and laws to the agents’ domain description. It consists ofspeech
acts, get-message actionsandconversation policies.

Speech actsare atomic actions of the formspeech act(sender, receiver, l) where
sender andreceiver are agents andl is either a fluent literal or a done fluent. Since
agents have a personal view of the world, the way in which an agent’s beliefs are
modified by the execution of a speech act depends on therole that it plays. For this
reason, speech act specification is twofold: one definition holds when the agent is
thesender, the other when it is thereceiver. Speech acts are modelled by general-
izing the action and precondition laws of world actions, so to enable the represen-
tation of the effects of communications that are performed by other agents. When
the agent is the sender, the precondition laws contain somesincerity conditionthat
must hold in the agent’s mental state. Whenagi is the receiver, the action is sup-
posed asalwaysexecutable (agi has no control over a communication performed
by another agent). This representation allows agents toreason aboutconversation
effects. Hereafter are a few examples of speech act, as defined inDyLOG: they
are the specification of theinform, queryIf, andrefuseInformFIPA-ACL primitive
speech acts.

inform(Self, Other, l)
a) 2(BSelf l ∧BSelfUOtherl ⊃ 〈inform(Self,Other, l)〉>)
b) 2([inform(Self,Other, l)]MSelfBOtherl)
c) 2(BSelfBOtherauthority(Self, l) ⊃ [inform(Self, Other, l)]BSelfBOtherl)
d) 2(> ⊃ 〈inform(Other, Self, l)〉>)

13

e) 2([inform(Other, Self, l)]BSelfBOtherl)
f) 2(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)
g) 2(MSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]MSelf l)

Clause (a) represents theexecutability preconditionsfor the actioninform(Self ,
Other, l): it specifies those mental conditions that make this action executable in
a state. Intuitively, it states thatSelf can execute an inform act only if it believesl
(BSelf models the beliefs of agentSelf) and it believes that the receiver (Other)
does not knowl. According to clause (b), the agent also considers possible that
the receiver will adopt its belief (the modal operatorMSelf is the dual ofBSelf

by definition), although it cannot be sure that this will happen by theautonomy
assumption. Nevertheless, if agentSelf thinks to be considered by the receiver
a trusted authorityabout l, it is also confident thatOther will adopt its belief,
clause (c). Since executability preconditions can be tested only on the mental state
of Self , whenSelf is the receiver the action of informing is considered asalways
executable, clause (d). WhenSelf is the receiver, the effect of an inform act is that
Self will believe thatl is believed by the sender (Other), clause (e), butSelf will
adoptl as an own belief only if it thinks thatOther is a trusted authority, clause (f).

queryIf(Self, Other, l)
a) 2(USelf l ∧ ¬BSelfUOtherl ⊃ 〈queryIf(Self, Other, l)〉>)
b) 2(> ⊃ 〈queryIf(Other, Self, l)〉>)
c) 2([queryIf(Other, Self, l)]BSelfUOtherl)

By queryIf an agent asks another agent if it believes thatl is true. To perform a
queryIf act,Self must ignorel and it must believe that the receiver does not ignore
l, clause (a). After aqueryIf act, the receiver will believe that the sender ignoresl.

refuseInform(Self, Other, l)
a) 2(USelf l ∧BSelfDone(queryIf(Other, Self, l))>

⊃ 〈refuseInform(Self, Other, l)〉>)
b) 2(> ⊃ 〈refuseInform(Other, Self, l)〉>)
c) 2([refuseInform(Other, Self, l)]BSelfUOtherl)

By refuseInform an agent refuses to give an information it was asked for. The re-
fusal can be executed only if the sender ignoresl and it believes that the receiver
previously queried it aboutl, clause (a). A refusal by some other agent is considered
as always possible, clause (b). After a refusal the receiver believes that the sender
ignoresl.

Get-message actionsare used forreceivingmessages from other agents. Since,
from the agent perspective, they correspond toqueriesfor an external input, they
are modeled as a special kind of sensing actions, whose outcome is unpredictable.
The main difference w.r.t. normal sensing actions is that they are defined by means
of speech acts performed by theinterlocutor. Formally, get message actions are

14

Querier Informer

queryIf(Fluent)

refuseInform(Fluent)

inform(~Fluent)

inform(Fluent)

alternative

Fig. 3. The AUML sequence diagram represents the communicative interactions occurring
between thequerierand theinformer in theyes no query protocol.

defined by axiom schemas of the form:

[get message(agi, agj, l)]ϕ ≡ [
⋃

speech act∈Cget message

speech act(agj, agi, l)]ϕ (9)

Cget message is a finite set of speech acts, which are all the possible communications
that agentagi expects from agentagj in the context of a given conversation. A
get message action does not have a domain of mental fluents associated to it, the
information is obtained by looking at the effects of such speech acts onagi’s mental
state.

Conversation protocolsspecify patterns of communication; they define the context
in which speech acts are executed [10] and are modelled by means ofprocedure
axiomshaving the form (8). Since agents have a subjective perception of the com-
munication, each protocol has as many procedural representations as the possible
rolesin the conversation. We will callpolicyeach such role-centric implementation.

Let us consider, for instance theyes no query protocol reported in Fig. 3, a sim-
plified version of the FIPA Query Interaction Protocol [31]. The protocol has two
complementary views, one to be followed for performing a query (yes no queryQ)
and one for responding (yes no queryI). Let us show how it would be possible to
implement it inDyLOG.

(a) 〈yes no queryQ(Self,Other, F luent)〉ϕ ⊂
〈queryIf(Self, Other, F luent); get answer(Self, Other, F luent)〉ϕ

(b) [get answer(Self, Other, F luent)]ϕ ≡
[inform(Other, Self, F luent) ∪ inform(Other, Self,¬Fluent) ∪
refuseInform(Other, Self, F luent)]ϕ

Trivially, in yes no queryQ agentSelf performs aqueryIf speech act then it waits
for the answer of agentOther. The definitions ofget answer and get start (the
latter is reported hereafter, axiom (f)) are instances of theget message axiom. In-
tuitively, the right hand side ofget answer represents all the possible answers ex-
pected by agentSelf from agentOther aboutFluent, in the context of a conver-
sation ruled by theyes no queryQ conversation policy.

15

(c) 〈yes no queryI(Self, Other, F luent)〉ϕ ⊂
〈get start(Self, Other, F luent);
BSelfFluent?; inform(Self, Other, F luent)〉ϕ

(d) 〈yes no queryI(Self, Other, F luent)〉ϕ ⊂
〈get start(Self, Other, F luent);
BSelf¬Fluent?; inform(Self,Other,¬Fluent)〉ϕ

(e) 〈yes no queryI(Self, Other, F luent)〉ϕ ⊂
〈get start(Self, Other, F luent);
USelfFluent?; refuseInform(Self,Other, F luent)〉ϕ

Theyes no queryI protocol specifies the behavior of the agentSelf , when it plays
the role of the informer, waiting for a query fromOther and, then, replying in
accordance to its beliefs on the query subject. Last but not least, rule (f) reports the
axiom by whichget start is defined:

(f) [get start(Self, Other, F luent)]ϕ ≡ [queryIf(Other, Self, F luent)]ϕ

It is a renaming ofqueryIf.

We are now in condition to define thecommunication kit, denoted byCKitagi, of an
agentagi as the triple(ΠC,ΠCP,ΠSget), whereΠC is the set of simple action laws
definingagi’s speech acts,ΠSget is the set of axioms that specifyagi’s get message
actions andΠCP is the set of procedure axioms specifying its conversation proto-
cols.

A Domain Descriptiondefining an agentagi is, then, a triple(Π,CKitagi , S0),
whereCKitagi is the agent’s communication kit,S0 is agi’s initial set of belief
fluents, andΠ is a specification of the agent’s non-communicative behavior. It is
a triple(ΠA, ΠS, ΠP), whereΠA is the set ofagi’s world action and precondition
laws, ΠS is the specification of a set of sensing action,ΠP a set of axioms that
define complex actions.

3.3 Dealing with persistency

In the DyLOG framework, a non-monotonic solution is adopted to deal with the
persistency problem. More precisely, an abductive semantics is proposed for the
language, in which abductive assumptions are used to model the persistency of
beliefs fluents, from a state to the following one, when an action is performed. The
solution is a generalization of [8], that allows one to deal also with nested beliefs
and communicative actions, and consists in maximizing persistency assumptions
about epistemic fluents after the execution of action sequences. In particular any
belief fluentF which holds in a given state is assumed to persist through an action,
unless it is inconsistent to assume so, i.e. unless¬F holds after the action execution.

16

Notice that belief states areinconsistentwhen they contain either a beliefBagil and
its negation, or the belief formulasBagjBagil andBagjBagi¬l, or the belief formu-
lasBagjBagil andBagj¬Bagil. However, from theseriality of theBagi operators,
the following general formula schema for therank 2 beliefs holds in the defined
logic for any two agentsagi andagj (actually, the general schema for any rank of
nesting holds):

BagiBagj¬ϕ ⊃ ¬BagiBagjϕ (10)

This property guarantees that when an inconsistency arises “locally” in the beliefs
ascribed fromagi to some other agent, the beliefs ofagi itself will be inconsistent.
Therefore, in case of a nested epistemic fluentBagiBagj l, the persistency iscor-
rectly blockedwhen a locally inconsistent fluentBagiBagj¬l becomes true after an
action execution, because¬BagiBagj l can be derived from (10).

Given these considerations, the semantics is defined according to the method used
by Eshghi and Kowalski in the definition of the abductive semantics for negation as
failure [32]. A new set of atomic propositions of the formM[a1] . . . [am]F are de-
fined asabducibles. 4 Their meaning is that the fluent expressionF can be assumed
to hold in the state obtained by the execution of the primitive actionsa1, . . . , am.
Each abducible can be assumed to hold, if it is consistent with the domain descrip-
tion (Π,CKitagi , S0) and with the other assumed abducibles. Then, we add to the
axiom system, that characterizes the logic defined by the domain description, the
persistency axiom schema:

[a1] . . . [am−1]F ∧M[a1] . . . [am−1][am]F ⊃ [a1] . . . [am−1][am]F

wherea1, . . . , am are primitive actions andF is a belief fluent. It means that ifF
holds aftera1, . . . , am−1, and it can be assumed to persist after actionam (i.e., it
is consistent to assumeM[a1] . . . [am]F), one can conclude thatF holds after the
sequence of actionsa1, . . . , am.

3.4 Reasoning about conversations

Given a domain description, we can reason about it and formalize thetemporal
projectionand theplanningproblem by means of existential queries of form:

〈p1〉〈p2〉 . . . 〈pm〉Fs (11)

where eachpk, k = 1, . . . ,mmay be an (atomic or complex) action executed byagi
or an external speech act, that belongs toCKitagi. By the wordexternalwe denote

4 Notice that hereM is not a modality.Mα denotes a new atomic proposition.Mα means
“α is consistent”, analogously to default logic.

17

a speech act in which our agent plays the role of the receiver. Checking if a query
of form (11) succeeds corresponds to answering the question “Is there an execution
trace of the sequencep1, . . . ,pm that leads to a state where the conjunction of belief
fluentsFs holds for agentagi?”. In case all thepk’s are atomic actions, it amounts to
predict if the condition of interest will be true after their execution. In case complex
actions are involved, the execution trace that is returned in the end is aplan to bring
aboutFs. The procedure definition constrains the search space.

A special case is when the procedure is aconversation protocol. In this case and
by applying these same reasoning techniques, the agent will be able to predict how
a conversation can affect its mental state and also to produce a conversation that
will allow it achieve a communicative goal of interest. In this processget message
actions are treated as sensing actions, whose outcome is not known at planning
time – agents cannot read each other’s mind, so they cannot know in advance the
answers that they will receive –. For this reason all of the possible alternatives are
to be taken into account. This can be done because of the existence of the protocol.
The extracted plan will, then, beconditional, in the sense that for eachget message
action and for each sensing action it will contain as many branches as possible
action outcomes. Each path in the resulting tree is alinear plan that brings about
the desired conditionFs. More formally:

(1) an action sequenceσ = a1; . . . ; am, withm ≥ 0, is a conditional plan;
(2) if a1; . . . ; am (m ≥ 0) is an action sequence,s ∈ S is a sensing action, and

σ1, . . ., σt are conditional plans, thenσ = a1; . . . ; am; s; ((Bagil1?);σ1 ∪ . . .∪
(Bagilt?);σt) wherel1, . . ., lt ∈ dom(s), is a conditional plan;

(3) if a1; . . . ; am (m ≥ 0) is an action sequence,g ∈ S is a get message action,
andσ1, . . .,σt are conditional plans, thenσ = a1; . . . ; ak; g; ((BagiDone(c1)>?);
σ1∪ . . .∪(BagiDone(ct)>?);σt) wherec1, . . . , ct ∈ Cg, is a conditional plan.

In some applications it is actually possible to extract a conditional plan, that leads
to the goalindependentlyfrom the answers of the interlocutor. This mechanism
will be used for web service selection in Section 4.2. An alternative is to look for
a linear plan that leads to the goal, given someassumptionson the received an-
swers. This approach does not guarantee that atexecution timethe services will
stick to the planned conversation, but it allows finding a feasible solution when a
conditional plan cannot be found. This is actually the case of web service compo-
sition (Section 4.3). If we composerestaurant1andcinema1, it is possible to find
a conversation after which the user’s desires about the credit card and about the
use of promotional tickets are satisfied. However, the success of the plan depends
on information that is known only at execution time (availability of seats) and that
we assumedduring planning. In fact, if no seat is available the goal of making
a reservation will fail. The advantage of reasoning about protocols, in this latter
situation, is that the information contained in the protocol is sufficient to exclude
a priori a number of compositions that will never satisfy the goal. For instance,
restaurant1plus cinema2does not permit to exploit a promotion independently

18

from the availability of seats. The proof procedure that allows to reason about con-
versation protocols is a natural evolution of [8] and is described in Appendix A; it
is goal-directed and based on negation as failure (NAF). NAF is used to deal with
the persistency problem for verifying that the complement of a mental fluent is not
true in the state resulting from an action execution, while in the modal theory we
adopted an abductive characterization. The proof procedure allows agents to find
linear plans for reaching a goal from an incompletely specified initial state. The
soundness can be proved under the assumption of e-consistency, i.e. for any action
the set of its effects is consistent [33]. The extracted plans always lead to a state in
which the goal conditionFs holds.

4 Reasoning about conversations for web service selection and composition

This section reports a few examples aimed at showing the utility of a declarative
representation of conversation protocols and policies in a Semantic Web frame-
work. The scenario we refer to is the one introduced in Section 2.1. The web ser-
vices that are involved can be classified in two categories, depending on their func-
tion: restaurant web services and cinema web services. The former allow a user
to book a table at a given restaurant, the latter to book a seat at a given cinema.
The interaction, however, is carried on in different ways. In particular, the services
accept different forms of payment and only part of them allow users to benefit of
promotions. The section is structured in the following way. First of all, we focus
on knowledge representation and present the protocols used by the web services
involved in the scenario. Afterwards, the two tasks of web service selection and
web service composition will be tackled, showing how personalization plays an
important role in both cases.

4.1 Representing conversation protocols inDyLOG

Let us begin with describing theprotocols, that are followed by the web services.
Such protocols allow the interaction of two agents (the service and the customer),
so each of them encompasses two complementary views: the view of the web ser-
vice and the view of the customer. Each view corresponds to an agent conversation
policy, which is represented as aDyLOG procedure but for the sake of brevity, we
report only the view of the customer. It is easy to see how the structures of the
procedure clauses correspond to the sequence of AUML operators in the sequence
diagrams. The subscripts next to the protocol names are a writing convention for
representing the role that the agent plays; so, for instance,Q stands forquerier, and
C for customer. The customer view of the restaurant protocols is the following:

(a) 〈reserv rest 1C(Self, Service, T ime)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Time)) ;

19

BSelfavailable(Time)? ;
get info(Self, Service, reservation(Time)) ;
get info(Self, Service, cinema promo) ;
get info(Self, Service, ft number)〉ϕ

(b) 〈reserv rest 2C(Self,WebS, T ime)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Time)) ;

BSelfavailable(Time)? ;
get info(Self,WebS, reservation(Time))〉ϕ

(c) [get info(Self, Service, F luent)]ϕ ⊂ [inform(Service, Self, F luent)]ϕ

Procedure (a) is the protocol procedure that describes the communicative behavior
of the first restaurant: the customer asks if a table is available at a certain time, if so,
the restaurant informs it that a reservation has been taken and that it gained a promo-
tional free ticket for a cinema (cinema promo), whose code number (ft number)
is returned. Theget message actionget info and the protocolyes no queryQ have
already been explained in Section 3. Procedure (b), instead, describes the commu-
nicative behavior of the second restaurant: the interaction is similar to the previous
case but the restaurant does not take part to the promotion so the customer does
not get any free ticket for the cinema. Clause (c) shows howget info can be im-
plemented as aninform act executed by the service and having as recipient the
customer. The question mark amounts to check the value of a fluent in the current
state; the semicolon is the sequencing operator of two actions. On the other hand,
the cinema protocols are as follows.

(c) 〈reserv cinema 1C(Self, Service,Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;
¬BSelfcinema promo? ;
yes no queryI(Self, Service, pay by(c card)) ;

BSelfpay by(c card)? ;
inform(Self, Service, cc number) ;
get info(Self, Service, reservation(Movie))〉ϕ

(d) 〈reserv cinema 1C(Self, Service,Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Service, Self, cinema promo) ;

BSelfcinema promo? ;
inform(Self, Service, ft number) ;
get info(Self, Service, reservation(Movie))〉ϕ

(e) 〈reserv cinema 2C(Self,WebS,Movie)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Movie)) ;

BSelfavailable(Movie)? ;
get info(Self,WebS, pay by(cash)) ;

20

get info(Self,WebS, reservation(Movie))〉ϕ

Supposing that the desired movie is available, the first cinema alternatively accepts
credit card payments, clause (c), or promotional tickets, clause (d). The second
cinema, instead, accepts only cash payments, clause (e).

In the following, the selection and composition tasks, that the personalization agent
pa can accomplish, are described. As explained in Section 2.1, these tasks are aimed
at refining a previous selection, performed by a retriever. In the example that we
are using, whenpa will start the personalization task the following list of candidate
services will already be available in theDyLOG knowledge base as well as the
protocols that they follow.

Bpaservice(restaurant, restaurant1, reserv rest 1C)
Bpaservice(restaurant, restaurant2, reserv rest 2C)
Bpaservice(cinema, cinema1, reserv cinema 1C)
Bpaservice(cinema, cinema2, reserv cinema 2C)

The agent will personalize the interaction with the services, according to the re-
quests of the user, dismissing services that do not fit. To this aim, it will reason
about the proceduresselect service or comp services, reported hereafter.

4.2 Web service selection by reasoning about interaction

Web service selection by means of reasoning about a service conversation policy,
amounts to answering to the query “Is there a possible conversation among those al-
lowed by the service protocol, after which a condition of interest holds?”. In the sce-
nario depicted in Section 2.1, an example is the desire of the user of avoiding credit
card payments over the web (for instance when booking a cinema ticket for the
movieakira). Let us suppose that a preliminary selection has identifiedcinema1
and cinema2, whose conversation policies are described in the previous section,
clauses (c), (d), and (e), as cinemas that showakira. A further selection based on
reasoningcan begin by reasoning about the (Prolog-like) procedureselect service:

〈select service(TypeService,Name,Data)〉ϕ ⊂
〈Bpaservice(TypeService,Name, Protocol)? ; Protocol(pa,Name,Data) 〉ϕ

Let us consider the query expressing the fact that the personalization agent wants
to select a cinema booking service, that allows a dialogue by which the credit card
number of the user is not communicated to the service, that is, the condition that
must hold inpa’s mental state after the procedure’s execution isBpa¬BCcc number.
This condition is a nested belief, that is, a belief about the knowledge of another
agent (the cinema service). This is the query:

〈select service(cinema,C, akira)〉Bpa¬BCcc number)

21

C is a variable that ranges over the set of cinema names in the knowledge base.
This query, as we will show, succeeds with answerC equal tocinema2.

Let us begin with consideringcinema1(Protocolwill be equal toreserv cinema 1C).
This service will be selected if it is possible to answer the query〈reserv cinema 1C(pa,
cinema1, akira)〉Bpa¬Bcinema1cc number. It is easy to see from the protocol
specification that such an interaction is possible, given that the user owns a free
ticket. However, let us suppose that this is not the case and that the initial men-
tal state of the agent contains the beliefs:Bpacc number i.e. the agent knows the
user’s credit card number which is not to be used,¬Bpacinema promo, the user
does not have a free ticket,¬Bpapay by(c card), the agent is an authority about
the method of payment. Moreover, suppose thatpa also has some hypothesis about
the knowledge of the cinema services, likeBpa¬BCcc number (with C varying on
{cinema1, cinema2}), the services do not already know the credit card number. Of
course, initially the agent will also believe that no ticket forakira has been booked
yet (Bpa¬booked(akira)).

When the agent reasons about the protocol execution, the testBpacinema promo?
fails as well as the subsequent testBpapay by(c card)? fails. As a result,cin-
ema1is not selected, andselect service considers the other option, i.e.cinema2.
In this case the analogous query succeeds and an execution trace of the protocol
reserv cinema 2C is returned as a result. It is the followingconditional dialogue
planbetweenpa and thecinema2:

queryIf(pa, cinema2, available(akira));
((BpaDone(inform(cinema2, pa, akira))>?);

get info(pa, cinema2, pay by(cash));
(BpaDone(inform(cinema2, pa, pay by(cash)))>?);
get info(pa, cinema2, reservation(akira));
(BpaDone(inform(cinema2, pa, reservation(akira)))>?) ∪

(BpaDone(inform(cinema2, pa,¬akira))>?) ∪
(BpaDone(refuseInform(cinema2, pa, akira))>?))

Notice that no communication involves the beliefBpa¬Bcinema2cc number, which
persists from the initial state; thus, at the end of each execution branch the user’s
desire of keeping the credit card number secret is satisfied.

4.3 Web service composition by reasoning about interaction

The other task of interest is web service composition. Again, suppose that a prelim-
inary selection has already been accomplished, resulting in the a set of candidate
services listed at the end of Section 4.1. In this case, the user wants to book a table
at a restaurant plus a cinema entrance profiting of the promotion. For accomplishing
this task the personalization agent reasons about the procedurecomp services (a
possible implementation is reported below), that sketches the general composition-

22

by-sequencing of a set of services, based on their interaction protocols.

〈comp services([])〉ϕ ⊂ true
〈comp services([[TypeService,Name,Data]|Services])〉ϕ ⊂
〈Bpaservice(TypeService,Name, Protocol)? ;
Protocol(pa,Name,Data) ; comp services(Services)〉ϕ

Intuitively, comp services builds a sequence of protocols so that it will be possible
to reason about them as a whole. Let us now consider the query:

〈comp services([[restaurant,R, dinner], [cinema,C, akira]])〉
(Bpacinema promo ∧Bpareservation(dinner)∧
Bpareservation(akira) ∧Bpa¬BCcc number ∧BpaBCft number)

that amounts to determine if it is possible to compose the interaction with a restau-
rant and a cinema web services, reserving a table for dinner (Bpareservation(din-
ner)) and booking a ticket for the movieakira (Bpareservation(akira)), exploit-
ing a promotion (Bpacinema promo). Credit card is not to be used (Bpa¬BCcc -
number), the free ticket is to be spent (BpaBCft number). The agent initial men-
tal state contains beliefs about the user’s credit card number (Bpacc number), the
desire to avoid using it (¬Bpapay by(credit card)), and the fact that the agent is
an authority about the form of payment. Further assumptions are that no reserva-
tion for dinner nor for the movie has been taken yet,Bpa¬reservation(dinner)
andBpa¬reservation(akira), thatpa does not have a free ticket for the cinema,
¬Bpacinema promo, and some hypothesis on the interlocutor’s mental state, e.g.
the belief fluentBpa¬BCcc number (with C in {cinema1, cinema2}), meaning
that the cinema booking services do not already know the credit card number. In
this context, the query succeeds with answerR equal torestaurant1andC equal
to cinema1, and the agent builds the following execution trace ofcomp services
([[restaurant, restaurant1, dinner], [cinema, cinema1, akira]]):

queryIf(pa, restaurant1, available(dinner)) ;

inform(restaurant1, pa, available(dinner)) ;

inform(restaurant1, pa, reservation(dinner)) ;
inform(restaurant1, pa, cinema promo) ;
inform(restaurant1, pa, ft number) ;
queryIf(pa, cinema1, available(akira)) ;

inform(cinema1, pa, available(akira)) ;

queryIf(cinema1, pa, cinema promo) ;
inform(pa, cinema1, cinema promo) ;
inform(pa, cinema1, ft number) ;
inform(cinema1, pa, reservation(akira))

This is a dialogue plan that is made of a conversation betweenpa andrestaurant1
followed by one betweenpa andcinema1, instances of the respective conversation
protocols, after which the desired condition holds. The linear plan, will, lead to the

23

desired goal given that someassumptions(above outlined with a box) about the
provider’s answers hold. For instance, that there is a free seat at the cinema, a fact
that can be known only at execution time. Assumptions occur when the interlocutor
can respond in different ways depending on its internal state. It is not possible
to know in this phase which the answer will be, but since the set of the possible
answers is given by the protocol, it is possible to identify the subset that leads to
the goal. In the example they are answers foreseen by ayes no query protocol.
Returning such assumptions to the designer is also very important to understand
the correctness of the implementation w.r.t. the chosen speech act ontology.

5 Conclusions and related works

The work presented in this article is set in the Semantic Web field of research
and faces some issues related to web service selection and composition. The basic
idea is to consider a service as a software agent and the problem of composing a
set of web services as the problem of making a set of software agents cooperate
within a multiagent system (or MAS). This interpretation is, actually, quite natu-
ral, although somewhat new to the web service community, with a few exceptions
[34,35]. In particular, we have studied the possible benefits provided by the intro-
duction of an explicit (and declarative) description of the communicative behavior
of the web services in terms ofpersonalizationof the service fruition and of the
compositionof a set of services. Indeed, a web service must follow some possibly
non-deterministic procedure aimed at getting/supplying all the necessary informa-
tion. So far, however, standard languages forsemanticweb service description do
not envision the possibility of separating the communicative behavior from the rest
of the description. On the contrary, communication plays a central role in languages
for describing workflows and business processes, like BPEL. Unfortunately, such
languages do not have a formalization that enables the automation, based on rea-
soning, of the tasks that are the focus of this work [36,37].

The idea of setting web service selection and composition in the Semantic Web
rather than in the WWW (that is of representing web services according to a for-
mal model that enables automated forms of reasoning), is motivated by a growing
agreement, in the web service research community, on the need of finding repre-
sentation models that abstract away from the specific languages (like BPEL) used
to specify business processes, and which allow the analysis of properties of the
interactions that are executed [16]. The introduction of choreographies as global
schemas of interaction (and of languages like WS-CDL [17]) as well as the distinc-
tion between this global view from the local perspective of the single services are
a first consequence of such needs. At the moment of writing, in the Semantic Web
area no concept equivalent (or at least close to) choreographies has been defined
yet, nevertheless, the languages proposed for web service representation share with
BPEL the characteristic of representing the local view of the interaction, that each

24

single process should have. The interesting point is that such languages have been
designed expressly with the aim of supplying abstract, formal representations. An-
other general agreement is on the principle that the richer the semantic information
that is used, the higher the precision of the answer to a query, whereprecisionis
the extent to which only the items “really of interest” are returned [38]. Depending
on the kind of resources and of tasks of interest it is necessary to identify the right
piece of information to use. In the approach that we have proposed the user’s goals
and needs have this role, and to be matched, they require the rational inspection of
the interactive behavior of the services, which consequently is to be represented in
an explicit way.

The approach, proposed in this paper for performing the inspection, is based on
techniques for reasoning about actions and change, in which the communicative
behavior of the services is modelled as a complex action (a procedure) based on
speech acts. In this framework the selection and composition tasks can be inter-
preted as the process of answering the questions “Is it possible to interact with this
service in such a way that this condition will hold afterwards?” and “Is it possible
to execute these services in sequence in such a way that this condition will hold
afterwards?”. Of course the effective achievement of the goal might depend on
conditions, that are necessary to the completion of the interaction but that will be
known only at execution time. For instance, in order to book a table at a restaurant
it is necessary that there is at least one free table. We have not tackled this prob-
lem yet, although it would be very interesting to integrate in the approach that we
have proposed a mechanism for dealing withfailure (at execution time) andreplan-
ning. This form of reasoning is necessary to arrive to real applications and it could
take into account also degrees of preference explicitly expressed by the user. Such
criteria could be used to achieve a greater flexibility, by relaxing some of the con-
straints in case no plan can be found or when a plan execution fails. In particular,
in our opinion it would be extremely interesting to studyintegrationsof replanning
techniques withcompensation techniques. Indeed, in the research community that
studies planning the interest is mainly posed on the efficiency of the planner and re-
planning, if any, does not exploit any explicit representation of actions for undoing
things, with a few exceptions [39]. Given the current state, whatever it is, forward
actions are searched for reaching the goal. The process might have, as a side effect,
the undoing of some partial achievement but this will be an occasional outcome.
The main achievement of the proposed approach, however, is that the presence of
public protocol/policy specifications gives the agent the possibility toset upplans.
Even though this plan might be subject to assumptions (e.g. that a table will be
available), the agent willknow in advanceif it is worthwhile to interact with that
partner. In a way, the approach that has been proposed can be seen as a sieve that
allows agents to brush off a number of partners before the interaction. Nevertheless,
it is something more than a sieve because it also allows the identification ofcourses
of interactionthat the agent is willing to perform. In this perspective, it is actually
a valuable tool for personalizing the interaction with web services according to the
goals of the user.

25

Our proposal can be considered as an approach based on the process ontology, a
white boxapproach in which part of the behavior of the services is available for a
rational inspection. In this case, the deductive process exploits more semantic in-
formation: in fact, it does not only take into account the pre- and post-conditions,
as above, it also takes into account the complex behavior (the communicative be-
havior) of the service. The idea of focussing on abstract descriptions of the com-
municative behavior is, actually, a novelty also with respect to other proposals that
are closer to the agent research community and more properly set in the Seman-
tic Web research field. The work that is surely the closest to ours is the one by
the DAML-S (now OWL-S) coalition, that designed the language OWL-S [40].
An OWL-S service description has three conceptual levels: the profile, used for
advertising and discovery, where inputs, outputs, preconditions and effects are enu-
merated, the process model, a declarative description of the structure of a service,
and the grounding, that describes how an agent can access the service by means
of low-level (SOAP) messages. To our aims, the most interesting component of
an OWL-S web service description is the process model, which describes a ser-
vice as atomic, simple (viewed as atomic) or composite, in a way inspired by the
language GOLOG and its extensions [30,28,41,40]. However, to our knowledge,
no approach for reasoning about the process model has been proposed yet. In the
works by McIlraith et al. (e.g. [42]), indeed the most relevant for us, the idea is al-
ways to compose services that are viewed asatomic, and the composition is merely
based on their preconditions and effects, exploiting techniques derived from the
Situation Calculus. In particular, the precondition and effect, input and output lists
are flat; no relation among them can be expressed, so it is impossible to understand
if a service can follow alternative courses of interaction, among which one could
choose. Indeed, the advantage of working at the protocols level is that by reasoning
about protocols agents can personalize the interaction by selecting a course that
satisfies user- (or service-) given requirements. This process can be started before
the actual interaction takes place.

Of course, other approaches to matchmaking have been proposed and are being
investigated. For instance, the frame-based approaches, like the UDDI registry ser-
vice for WSDL web services [13]. In this case two sets of textual property values
are compared, a service description and a query (i.e. the description of a desired
service); both descriptions are based on partially pre-enumerated vocabularies of
service types and properties. Close to frame-based approaches is the set-based mod-
elling approach proposed in the WSMO service discovery. In this case the sets of
objects to be compared are the set of user’s goals (intended as the information that
the user wants to receive as output) and the set of objects delivered after a web
service execution. The two sets might be inter-related in some way by ontologies,
which are considered as domain models. Actually, four different degrees of match
are formalized, depending on additional properties that should hold and a complete
formalization based on description logics is explained [43]. A refinement of this
proposal, in which more elaborated descriptions are taken into account, is proposed
as a second step. At this higher level of formalization, services are considered as

26

relations on an abstract state-space and are described in terms of inputs, outputs,
preconditions, effects, assumptions, and post-conditions; in this extension exploits
of interest are identified by applying transaction logics. Another category is that
of deductive retrieval (also known as “reuse by contract”), well described in [44].
Here web services, interpreted as software components, are seen as black-boxes,
whose description relies on the concept of Abstract Data Type (or ADT). The se-
mantics of an ADT is given by a set of logic axioms. Part of the approaches in
this family (the “plug in match” approaches [45]) use these logic axioms to iden-
tify the pre- and post-conditions to the execution of the web service. In this case
also queries are represented by a set of pre- and post-conditions. The decision of
whether a service matches a given query depends on the truth value of the for-
mula (preQ ⊃ preWS) ∩ (postQ ⊃ postWS), wherepreQ andpostQ are the pre-
and post-conditions of the query andpreWS and postWS are the pre- and post-
conditions of the service. Many works should be cited in this line of research, like
NORA/HAMRR [46], feature-based classification [47], LARKS [48], SWS match-
maker [49], up to PDDL-based languages (PDDL stands for “Planning Domain
Definition Framework” [50]) like the proposal in [51]. To our knowledge none of
these works is based on reasoning on an explicit representation of the interactive
behavior of the services, even in the case in which PDDL is used, the idea is to
consider web services as atomic actions.

References

[1] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, H. M. W.
Verbeek, P. Wohed, Life after BPEL?, in: Proc. of WS-FM’05, Vol. 3670 of LNCS,
Springer, 2005, pp. 35–50, invited speaker.

[2] M. Baldoni, C. Baroglio, N. Henze, Personalization for the Semantic Web, in:
Reasoning Web, Vol. 3564 of LNCS Tutorial, Springer, 2005, pp. 173–212.

[3] G. Antoniou, M. Baldoni, C. Baroglio, R. Baungartner, F. Bry, T. Eiter, N. Henze,
M. Herzog, W. May, V. Patti, S. Schaffert, R. Schidlauer, H. Tompits, Reasoning
methods for personalization on the semantic web, Annals of Mathematics, Computing
and Teleinformatics (AMCT) 2 (1) (2004) 1–24.

[4] F. Dignum, M. Greaves, Issues in agent communication, in: Issues in Agent
Communication, Vol. 1916 of LNCS, Springer, 2000, pp. 1–16.

[5] F. Dignum (Ed.), Advances in agent communication languages, Vol. 2922 of LNAI,
Springer-Verlag, 2004.

[6] FIPA, Communicative act library specification, Tech. rep., FIPA (Foundation for
Intelligent Physical Agents) (2002).

[7] T. Finin, Y. Labrou, J. Mayfield, KQML as an Agent Communication Language, in:
J. Bradshaw (Ed.), Software Agents, MIT Press, 1995.

27

[8] M. Baldoni, L. Giordano, A. Martelli, V. Patti, Programming Rational Agents in a
Modal Action Logic, Annals of Mathematics and Artificial Intelligence, Special issue
on Logic-Based Agent Implementation 41 (2–4) (2004) 207–257.

[9] M. Baldoni, C. Baroglio, V. Patti, Web-based adaptive tutoring: an approach based on
logic agents and reasoning about actions, Artificial Intelligence Review 22 (1) (2004)
3–39.

[10] A. Mamdani, J. Pitt, Communication protocols in multi-agent systems: A development
method and reference architecture, in: Issues in Agent Communication, Vol. 1916 of
LNCS, Springer, 2000, pp. 160–177.

[11] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, Reasoning about self and others:
communicating agents in a modal action logic, in: Proc. of ICTCS’2003, Vol. 2841
of LNCS, Springer, 2003, pp. 228–241.

[12] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, Reasoning about interaction protocols
for web service composition, in: Bravetti and Zavattaro [15], pp. 21–36, vol. 105 of
Electronic Notes in Theoretical Computer Science.

[13] A. Barros, M. Dumas, P. Oaks, A critical overview of the web services choreography
description language(ws-cdl), Business Process TrendsHttp://www.bptrends.com.

[14] BPEL4WS, http://www-106.ibm.com/developerworks/library/ws-bpel (2003).

[15] M. Bravetti, G. Zavattaro (Eds.), Proc. of the 1st Int. Workshop on Web Services and
Formal Methods (WS-FM 2004), Elsevier Science Direct, 2004, vol. 105 of Electronic
Notes in Theoretical Computer Science.

[16] M. Bravetti, L. Kloul, G. Zavattaro (Eds.), Proc. of the 2nd International Workshop
on Web Services and Formal Methods (WS-FM 2005), no. 3670 in LNCS, Springer,
2005.

[17] WS-CDL, http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/ (2004).

[18] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American.

[19] R. N. of Excellence, http://www.rewerse.org (2004).

[20] G. Antoniou, F. van Harmelen, A semantic web primer, MIT Press, 2004.

[21] WSMO, http://www.wsmo.org/ (2005).

[22] J. H. Odell, H. Van Dyke Parunak, B. Bauer, Representing agent interaction protocols
in UML, in: Agent-Oriented Software Engineering, Springer, 2001, pp. 121–140,
http://www.fipa.org/docs/input/f-in-00077/.

[23] F. for InteroPerable Agents, Fipa modeling: Interaction diagrams, Tech. rep., working
Draft Version 2003-07-02 (2003).

[24] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schifanella, Verifying the
conformance of web services to global interaction protocols: a first step, in: Proc.
of 2nd Int. Workshop on Web Services and Formal Methods, WS-FM 2005, no. 3670
in LNCS, 2005, pp. 257–271.

28

[25] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, Choreography and
Orchestration: a synergic approach for system design, in: Proc. the 3rd Int. Conf. on
Service Oriented Computing, 2005.

[26] K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, V. Subrahmanian, IMPACT: a platform
for collaborating agents, IEEE Intelligent Systems 14 (2) (1999) 64–72.

[27] M. Fisher, A survey of concurrent METATEM - the language and its applications, in:
D. Gabbay, H. Ohlbach (Eds.), Proc. of the 1st Int. Conf. on Temporal Logic, ICTL
’94, Vol. 827 of LNAI, Springer-Verlag, 1994, pp. 480–505.

[28] G. D. Giacomo, Y. Lesperance, H. Levesque, Congolog, a concurrent programming
language based on the situation calculus, Artificial Intelligence 121 (2000) 109–169.

[29] J. Leite, A. Omicini, P. Torroni, P. Yolum (Eds.), Int. Workshop
on Declarative Agent Languages and Technology, New York City, NY, USA, 2004,
http://centria.di.fct.unl.pt/˜jleite/dalt04.

[30] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. B. Scherl, GOLOG: A Logic
Programming Language for Dynamic Domains, J. of Logic Programming 31 (1997)
59–83.

[31] FIPA, Fipa 2000, fipa Query Interaction Protocol Specification, Tech. rep., FIPA
(Foundation for Intelligent Physical Agents) (November 2000).

[32] K. Eshghi, R. Kowalski, Abduction compared with Negation by Failure, in: Proc. of
ICLP ’89, The MIT Press, Lisbon, 1989.

[33] M. Denecker, D. De Schreye, Representing Incomplete Knowledge in Abduction
Logic Programming, in: Proc. of ILPS ’93, The MIT Press, Vancouver, 1993.

[34] J. Bryson, D. Martin, S. McIlraith, L. A. Stein, Agent-based composite services in
DAML-S: The behavior-oriented design of an intelligent semantic web (2002).
URL citeseer.nj.nec.com/bryson02agentbased.html

[35] K. Sycara, Brokering and matchmaking for coordination of agent societies: A survey,
in: A. O. et al. (Ed.), Coordination of Internet Agents, Springer, 2001.

[36] D. J. Mandell, S. A. McIlraith, Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation, in: Proc. of the 2nd Int. Semantic
Web Conference (ISWC2003), Sanibel Island, Florida, 2003.

[37] J. Koehler, B. Srivastava, Web service composition: Current solutions and open
problems, in: ICAPS 2003 Workshop on Planning for Web Services, 2003, pp. 28–
35.

[38] M. Klein, A. Bernstein, Searching for services on the semantic web using process
ontologies, in: Proc. of the Int. Semantic Web Working Symposium (SWWS), Stanford
University, California (USA), 2001.

[39] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso, Planning and monitoring
web service composition, in: Proc. of Planning and Monitoring Web Service
Composition Artificial Intelligence: Methodology, Systems, Application (AIMSA)
2004, 2004.

29

[40] OWL-S, http://www.daml.org/services/owl-s/1.1/ (2004).

[41] S. McIlraith, T. Son, Adapting Golog for Programmin the Semantic Web, in: 5th Int.
Symp. on Logical Formalization of Commonsense Reasoning, 2001, pp. 195–202.

[42] S. Narayanan, S. A. McIlraith, Simulation, verification and automated composition of
web services, Honolulu, Hawaii (USA), 2002, pp. 77–88.

[43] U. Keller, R. L. A. Polleres, I. Toma, M. Kifer, D. Fensel, D5.1 v0.1 wsmo web service
discovery, Tech. rep., WSML deliverable (2004).

[44] J. Peer, Towards automatic web service composition using ai planning techniques,
http://www.mcm.unisg.ch/org/mcm/web.nsf/staff/jpeer (2003).

[45] A. M. Zamreski, J. M. Wing, Specification matching of software components, in: Proc.
of the 3rd ACM SIGSOFT Symp. on the Foundations of Software Eng., 1995.

[46] B. Fischer, J. Schumann, NORA/HAMRR: Making deduction-based software
component retrieval practical, in: Proc. of CADE-14 Workshop on Automated
Theorem Proving in Software Engineering, 1997.

[47] J. Penix, P. Alexander, Efficient specification-based component retrieval, Automated
Software Engineering.

[48] K. Sykara, S. Widoff, M. Klusch, J. Lu, LARKS: dynamic matchmaking among
heterogeneous software agents in cyberspace, Autonomous Agents and Multi-Agent
Systems.

[49] R. M. V. Haarslev, Description of the racer system and its applications, Stanford,
California (USA), 2001.

[50] D. MacDermott, AI planning systems competition, AI Magazine 21 (2) (2000) 35–55.

[51] J. Peer, M. Vokovic, A proposal for a semantic web service description format, in:
Proc. of the European Conf. on Web Services (ECOWS’04), Springer-Verlag, 2004.

[52] V. Patti, Programming Rational Agents: a Modal Approach in a Logic Programming
Setting, Ph.D. thesis, Dipartimento di Informatica, Università degli Studi di Torino,
Torino, Italy, available athttp://www.di.unito.it/˜patti/ (2002).

A Goal directed proof procedure for DyLOG

This appendix presents the proof procedure used to build linear plans, making as-
sumptions on sensing actions and on external communicative actions. Then, a vari-
ant that builds conditional plans is introduced, where all the possible values re-
turned by sensing and by incoming communications are taken into account. For
the sake of brevity, we do not report in this paper the demonstrations. Actually,
these are very similar to those forDyLOG without communication kit, see [8,52]
for details.

30

1)

a1···m ` 〈p′1; . . . ; p′
n′ ; p2···n〉Fs w. a.σ

a1···m ` 〈p; p2···n〉Fs w. a.σ
wherep ∈ P and

〈p〉ϕ ⊂ 〈p′1; . . . ; p′
n′ 〉ϕ ∈ ΠP ∪ΠCP

2)

a1···m ` Fs′ a1···m ` 〈p2···n〉Fs w. a.σ

a1···m ` 〈(Fs′)?; p2···n〉Fs w. a.σ

3)

a1···m ` Fs′ a1···m, a ` 〈p2···n〉Fs w. a.σ

a1···m ` 〈a; p2···n〉Fs w. a.σ
wherea ∈ A ∪C, and

2(Fs′ ⊃ 〈a〉>) ∈ ΠA ∪ΠC

4)

a1···m ` 〈sBagi l; p2···n〉Fs w. a.σ

a1···m ` 〈s; p2···n〉Fs w. a.σ
wheres ∈ S and
l ∈ dom(s)

5)

a1···m ` 〈c; p2···n〉Fs w. a.σ

a1···m ` 〈g; p2···n〉Fs w. a.σ
whereg ∈ Sget and
[g]ϕ ≡ [

⋃
c∈Cg

c]ϕ

6)

a1···m ` Fs
a1···m ` 〈ε〉Fs w. a.σ whereσ = a1; . . . ; am

Fig. A.1. Rules (1-6) of the goal directed proof procedure forDyLOG. a1···m andp2···n
stands fora1, . . . , am andp2, . . . , pn, respectively.l denotes a fluent literal or a done fluent
whileL denotesl or a belief fluent of rank 1.

A.1 Linear plan extraction

A query (see Section 3.4) of the form〈p1; p2; . . . ; pn〉Fs succeeds if it is possible
to execute in the given orderp1, p2, . . ., pn, starting from the current state, in such
a way thatFs holds in the resulting belief state. Since a state can be represented by
the sequence of atomic actions performed for reaching it, in general, we write:

a1, . . . , am ` 〈p1; p2; . . . ; pn〉Fs with answer (w.a.)σ

wherea1, . . . , am represents the current state, to mean that the query can be proved
with answerσ in the current state and from the domain description(Π, CKitagi, S0).
The answerσ is an execution traceam, . . . am+k of p1, . . . , pn in the current state.
We denote byε the initial mental state.

The first part of the proof procedure, rules (1–6) in Fig. A.1, deals with the exe-
cution of complex actions, sensing actions, primitive actions and test actions. The
proof procedure reduces the complex actions in the query to a sequence of prim-
itive actions and test actions, then it verifies if the execution of primitive actions
is possible and if test actions are successful. To do this, it reasons about the exe-
cution of a sequence of primitive actions from the initial state and computes the
values of fluents at different states. During a computation, a state is represented by
a sequence of primitive actionsa1, . . . , am. The value of fluents at a state is not
explicitly recorded but it is computed when needed. The second part of the proce-
dure, rules (7–14), allows the values of mental fluents in an agentagi state to be
determined.

31

6)

a1···m ` Fs
a1···m ` 〈ε〉Fs w. a.σ whereσ = a1; . . . ; am

7) a1···m ` >

8a)

a1···m−1 ` Fs′
a1···m ` F

wherem > 0 and
2(Fs′ ⊃ [am]F) ∈ ΠA

8b) a1···m ` F if am = sF

8c)

not a1···m ` ¬F a1···m−1 ` F
a1···m ` F wherem > 0

8d) ε ` F if F ∈ S0

9)

a1···m ` Fs′ a1···m ` Fs′′
a1···m ` Fs′ ∧ Fs′′

10)
a1···m ` BagiL

a1···m `MagiL

11)
a1···m ` Bagi l

a1···m ` BagiBagi l 11’)
a1···m `MagiMagi l

a1···m `Magi l

12)
a1···m `Magi l

a1···m ` BagiMagi l 12’)
a1···m `MagiBagi l

a1···m ` Bagi l

13)

a1···m ` Done(a)>
a1···m ` BagiDone(a)> 14) a1···m ` Done(am)>

Fig. A.2. Rules (7-14) of the goal directed proof procedure forDyLOG. a1···m andp2···n
stands fora1, . . . , am andp2, . . . , pn, respectively.l denotes a fluent literal or a done fluent
whileL denotesl or a belief fluent of rank 1.

Let us briefly comments the rules. To execute acomplex actionp the modality〈p〉
is non-deterministically replaced with the modality in the antecedent of a suitable
axiom, rule (1). To execute atest action(Fs)?, the value ofFs is checked in the
current state; ifFs holds, the test action is eliminated otherwise the computation
fails, rule (2). To execute aprimitive actiona, first precondition laws are checked
to verify if the action is possible. If they hold, the computation moves to a new
state in which the action has been performed, rule (3). To execute asensing action
s, rule (4), we non-deterministically replace it with one of the primitive actions
which define it, that, when it is executable, will causeBagil andBagi¬l′, for each
l′ ∈ dom(s), with l 6= l′. Rule (5) deals withget message actions: aget message
actiong is non-deterministically replaced with one of the external communicative
actions which define it.

Rule (6) deals with the case when no more actions are to be executed. The desired
sequence of primitive actions has already been determined so, to check ifFs is true
after it, rules (7-14) in Fig. A.2 are used. Anepistemic fluentF holds at a state
a1, . . . , am if either F is an immediate effect of actionam (rule 8a); or actionam
is a primitive actionsF (introduced to model the sensing actions), whose effect is
to addF to the state (rule 8b); orF holds in the previous statea1, . . . , am−1 and

32

4-bis)

∀lk ∈ F, a1···m ` 〈sBagi l; p2···n〉Fs w. a.a1; . . . ; am; sB
agi l;σ′k

a1···m ` 〈s; p2···n〉Fs w. a.a1; . . . ; am; s; (
⋃
k=1...t

(Bagi lk?);σ′k)

5-bis)

∀ck ∈ Cg , a1···m ` 〈ck; p2···n〉Fsi w. a.a1; . . . ; am; ck;σ′k
a1···m ` 〈g; p2···n〉Fsi w. a.a1; . . . ; am; g; (

⋃
k=1...t

(BagiDone(ck)>?);σ′k)

Fig. A.3. A variant of the proof procedure for extracting conditional plans. In (4-bis)s ∈ S
andF = {l1, . . . , lt} = dom(s); in (5-bis)g ∈ S and{c1, . . . , ct}= Cg.

it persists afteram, rule (8c); ora1, a2, . . . , am is the initial state andF already
holds in it, rule (8d). Notice that rule (8c) allows to deal with theframe problem: F
persists from a state to the next one unless the executed actionam makes¬F true,
i.e. it persists if¬F fails froma1, a2, . . . , am. In this rule not representsnegation
as failure. Rule (9) deals withconjunction. Rule (10) allowsMagil to be concluded
from Bagil, this is justified by the property of seriality of the belief modality. Rules
(11) and (11’) have been introduced for coping withtransitivity of beliefs. Rules
(12) and (12’) tackle theireuclideaness. Rules (13) and (14) have been introduced
to provideawarenessof the action execution.

Under the assumption ofe-consistency, i.e. for every set of action laws for a given
action which may be applied in the same state, the set of their effects is consis-
tent [33], of the domain description and of consistency of the initial situation, the
proof procedure issoundw.r.t. the non-monotonic semantics. First, it is necessary
to show that the proof procedure is sound and complete w.r.t. the monotonic Kripke
semantics; then, it is possible to show the soundness of the non-monotonic part.

Finally, let〈p1; . . . ; pn〉Fs be an existential query andσ the answer returned by one
of its successful derivations. It is possible to show thatσ is effectively an execution
trace ofp1; . . . ; pn, that is, given a domain description,〈σ〉Fs ⊃ 〈p1; . . . ; pn〉Fs.
Moreover,σ is a legal sequence of atomic actions, it can actually be executed, and
it always leads to a state in whichFs holds, i.e. the〈σ〉> and[σ]Fs hold.

A.2 Building conditional plans

Let us now introduce a variant of the proof procedure presented above which, given
a query〈p1; p2; . . . ; pn〉Fs, computes aconditional planσ. All the executions inσ
are possible behaviors of the sequencep1; p2; . . . ; pn. The new proof procedure is
obtained by replacing rules (4) and (5) in Fig. A.1 (to handle sensing actions and
get message actions, respectively) with rules (4-bis) and (5-bis) in Fig. A.3. As a
difference with the previous case, when a sensing action is executed, the procedure
now considers all the possible outcomes of the action, so that the computation splits
in more branches. The resulting plan will contain a branch for each value that leads
to success. The same holds for theget message actions, which indeed are treated
as a special case of sensing.

33

Interaction Protocols and Capabilities:
A Preliminary Report�

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino, Italy

{baldoni, baroglio, mrt, patti, schi}@di.unito.it

Abstract. A typical problem of the research area on Service-Oriented
Architectures is the composition of a set of existing services with the
aim of executing a complex task. The selection and composition of the
services are based on a description of the services themselves and can ex-
ploit an abstract description of their interactions. Interaction protocols
(or choreographies) capture the interaction as a whole, defining the rules
that entities should respect in order to guarantee the interoperability;
they do not refer to specific services but they specify the roles and the
communication among the roles. Policies (behavioral interfaces in web
service terminology), instead, focus on communication from the point
of view of the individual services. In this paper we present a prelimi-
nary study aimed to allow the use of public choreography specifications
for generating executable interaction policies for peers that would like
to take part in an interaction. Usually the specifications capture only
the interactive behavior of the system as a whole. We propose to enrich
the choreography by a set of requirements of capabilities that the parties
should exhibit, where by the term “capability” we mean the skill of doing
something or of making some condition become true. Such capabilities
have the twofold aim of connecting the interactive behavior to be shown
by the role-player to its internal state and of making the policy exe-
cutable. A possible extension of WS-CDL with capability requirements
is proposed.

1 Introduction

In various application contexts there is a growing need of being able to compose
a set of heterogeneous and independent entities with the general aim of executing
a task, which cannot be executed by a single component alone. In an application
framework in which components are developed individually and can be based on

� This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net), and it has also been
supported by MIUR PRIN 2005 “Specification and verification of agent interaction
protocols” national project.

J.J. Alferes et al. (Eds.): PPSWR 2006, LNCS 4187, pp. 63–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 M. Baldoni et al.

various technologies, it is mandatory to find a flexible way for glueing compo-
nents. The solution explored in some in some research areas, like web services
(WS) and multi-agent systems (MAS), is to compose entities based on dialogue.
In web services the language WS-BPEL [20] has become the de facto standard
for building executable composite services on top of already existing services by
describing the flow of information in terms of exchanged messages. On the other
hand, the problem of aggregating communicating agents into (open) societies is
well-known in the research area about MASs, where a lot of attention has been
devoted to the issues of defining interaction policies, verifying the interoperabil-
ity of agents based on dialogue, and checking the conformance of policies w.r.t.
global communication protocols [28,17,11].

As observed in [27,5], the MAS and WS research areas show convergences
in the approach by which systems of agents, on a side, and composite services,
on the other, are designed, implemented and verified. In both cases it is in fact
possible to distinguish two levels. On the one hand we have a global view of
the system as a whole, which is independent from the specific agents/services
which will take part to the interaction (the design of the system). In the case
of MASs [14] the design level often corresponds to a shared interaction protocol
(e.g. represented in AUML [21]). In the case of web services this level corresponds
to a choreography of the system (e.g. expressed in WS-CDL). In general, at this
level a set of roles, which will be played by some peers, are defined. On the
other hand we have the level concerning the implementation of the policies of
the entities that will play the roles. These interactive behaviors must be given
in some executable language, e.g. WS-BPEL in the case of web services.

In this proposal, we consider choreographies as shared knowledge among the
parties. We will, then, refer to them as to public and non-executable specifi-
cations. The same assumption cannot be made about the interactive behavior
of specific parties (be they services or agents). The behavior of a peer will be
considered as being private, i.e. non-transparent from outside. Nevertheless, if
we are interested in coordinating the interaction of a set of parties as specified
by a given choreography, we need to associate parties to roles. Suppose that a
service publishes the fact that it acts according to the role “seller” of a public
choreography. In order to interact with that service it will be necessary to play
another role, e.g. “customer”, of the specified choreography, but for playing it,
the service interactive behavior must conform to the specification given by the
role [1,13,3]. Checking the conformance is a way for guaranteeing that the service
can interact with services playing the other roles in the choreography [3].

Let us, now, suppose that a peer does not have a conformant policy for play-
ing a certain role, but that is needs to take part to the interaction ruled by the
choreography anyway. A possible solution is to define a method for generating,
in an automatic way, a conformant policy from the role specification. The role
specification, in fact, contains all the necessary information about what send-
ing/receiving to/from which peer at which moment. As a first approximation, we
can, then, think of translating the role as expressed in the specification language
in a policy (at least into a policy skeleton) given in an executable language.

Interaction Protocols and Capabilities: A Preliminary Report 65

This is, however, not sufficient. In fact, it is necessary to bind the interactive
(observable) behavior that is encoded by the role specification with the internal
(unobservable) behavior that the peer must anyway have and with its internal
state. For instance, the peer must have some means for retrieving or building the
information that it sends. This might be done in several ways, e.g. by querying a
local data base or by querying another service. The way in which this operation
is performed is not relevant, the important point is to be sure that in princi-
ple the peer can execute it. For completing the construction of the policy, it is
necessary to have a means for checking whether the peer can actually play the
policy, in other words, if it has the required capabilities. This can only be done
if we have a specification of which capabilities are required in the choreography
itself. The capability verification can be accomplished role by role by the specific
party willing to take part to the interaction.

This paper presents a work aimed to introduce the concept of capability in the
global/local system/entity specifications, in such a way that capabilities can be
accounted for during the processes that are applied for dynamically building and
possibly customizing policies. Section 2 defines the setting of the work. Moreover,
a first example of protocol (the well-known FIPA Contract Net protocol), that
is enriched with capabilities, is reported. Section 3 introduces our notion of
capability test, making a comparison with systems in which this notion is implicit.
The use of reasoning techniques that can be associated with the capability test
for performing a customization of the policy being constructed is also discussed.
In Section 4 a possible extension of WS-CDL [29] with capability capability
requirements is sketched. Conclusions follow.

2 Interaction Protocols and Capabilities

The concept of “interaction protocol” derives from the area of MASs. MASs often
comprise heterogeneous agents, that differ in the way they represent knowledge
about the world and about other agents, as well as in the mechanisms used for
reasoning about it. In general, every agent in a MAS is characterized by a set
of actions and/or a set of behaviors that it uses to achieve a specific goal. In
order to interact with the others, an agent specification must describe also the
communicative behavior.

When a peer needs to play a role in some interaction ruled by a protocol but it
does not own a conformant policy, it is necessary that it adopts a new interaction
policy. In an agent-framework, one might think of enriching the set of behaviors
of the agent, which failed the conformance test, by asking other agents to supply
a correct interaction policy. This solution has been proposed from time to time
in the literature; recently it was adopted in Coo-BDI architectures [2]. CooBDI
extends the BDI (Belief, Desire, Intention) model so that agents are enabled
to cooperate through a mechanism of plan exchange. Such a mechanism is used
whenever it is not possible to find a plan for pursuing a goal of interest by just
exploiting the current agent’s knowledge. The ideas behind the CooBDI theory
have been implemented by means of WS technologies, leading to CooWS agents

66 M. Baldoni et al.

[8]. Another recent work in this line of research is [26]: in the setting of the DALI
language, agents can cooperate by exchanging sets of rule that either define a
procedure, or constitute a module for coping with some situation, or are just a
segment of a knowledge base. Moreover, agents have reasoning techniques that
enable them to evaluate how useful the new information is. These techniques,
however, cannot be directly imported in the context of Service-oriented Com-
puting. The reason is that, while in agent systems it is not a problem to find
out during the interaction that an agent does not own all the necessary actions,
when we compose web services it is fundamental that the analogous knowledge
is available before the interaction takes place.

A viable alternative is to use the protocol definition for supplying the service
with a new policy that is obtained directly from the definition of the role, that
the peer would like to play. A policy skeleton could be directly synthesized in a
semi-automatic way from the protocol description. A similar approach has been
adopted, in the past, for synthesizing agent behaviors from UML specifications in
[18]. However, a problem arises: protocols only concern communication patterns,
i.e. the interactions of a peer with others, abstracting from all references to the
internal state of the player and from all actions/instructions that do not concern
observable communication. Nevertheless, in our framework we are interested in a
policy that the peer will execute and, for permitting the execution, it is necessary
to express to some extent also this kind of information. The conclusion is that if
we wish to use protocols for synthesizing policy skeletons, we need to specify some
more information, i.e. actions that allow us the access to the peer’s internal state.
Throughout this work we will refer to such actions as capability requirements.

The term “capability” has recently been used by Padgham et al. [22] (the work
is inspired by JACK [9] and it is extended in [23]), in the BDI framework, for
identifying the “ability to react rationally towards achieving a particular goal”.
More specifically, an agent has the capability to achieve a goal if its plan library
contains at least one plan for reaching the goal. The authors incorporate this
notion in the BDI framework so as to constrain an agent’s goals and intentions to
be compatible with its capabilities. This notion of capability is orthogonal w.r.t.
what is proposed in our work. In fact, we propose to associate to a choreography
(or protocol) specification, aimed at representing an interaction schema among
a set of yet unspecified peers, a set of requirements of capabilities. Such require-
ments specify “actions” that peers, willing to play specific roles in the interaction
schema, should exhibit. In order for a peer to play a role, some verification must
be performed for deciding if it matches the requirements.

In this perspective, our notion of capability resembles more closely (some-
times unnamed) concepts, that emerge in a more or less explicit way in various
frameworks/languages, in which there is a need for defining interfaces. One ex-
ample is Jade [15], the well-known platform for developing multi-agent systems.
In this framework policies are supplied as partial implementations with “holes”
that the programmer must fill with code when creating agents. Such holes are
represented by methods whose body is not defined. The task of the programmer
is to implement the specified methods, whose name and signature is, however,

Interaction Protocols and Capabilities: A Preliminary Report 67

fixed in the partial policy. Another example is powerJava [6,7], an extension
of the Java language that accounts for roles and institutions. Without getting
into the depths of the language, a role in powerJava represents an interlocutor
in the interaction schema. A role definition contains only the implementation
of the interaction schema and leaves to the role-player the task of implement-
ing the internal actions. Such calls to the player’s internal actions are named
“requirements” and are represented as method prototypes.

Checking whether a peer has the capability corresponding to a requirement
is, in a way, a complementary test w.r.t. checking conformance. With a rough
approximation, when I check conformance I abstract away from the behavior
that does not concern the communication described by the protocol of interest,
focussing on the interaction with a set of other peers that are involved, whereas
checking capabilities means to check whether it is possible to tie the description
of a policy to the execution environment defined by the peer.

2.1 An Example: The Contract Net Protocol

For better explaining our ideas, in this section we consider as a choreography
the well-known FIPA ContractNet Protocol [12], pinpointing the capabilities
that are required to a peer which would like to play the role of Participant.
ContractNet is used in electronic commerce and in robotics for allowing enti-
ties, which are unable to do some task, to have it done. The protocol captures
a pattern of interaction, in which the initiator sends a call-for-proposal to a
set of participants. Each participant can either accept (and send a proposal) or
refuse. The initiator collects all the proposals and selects one of them. Figure 1
describes the interactions between the Initiator and one of the Participants in
a UML notation, that is enriched with dotted rectangles representing capability
requirements. The capability requirements act as connecting points between the
external, communicative behavior of the candidate role player and its internal
behavior. In the example, three different capabilities can be detected, one for
the role of Initiator and two for the Participant. Starting from an instance of
the concept Task, the Participant must be able to evaluate it by performing the
evaluateTask capability, returning an instance of the concept Proposal. More-
over, if its proposal is accepted by the Initiator, it must be able to execute the
task by using the capability executeTask, returning an instance of concept Re-
sult. On the other side, the Initiator must have the capability evaluateProposal
that chooses a proposal among those received from the participants.

In order to play the role of Participant a peer will, then, need to have the ca-
pabilities evaluateTask and executeTask, whereas it needs to have the capability
evaluateProposal if it means to play the role of Initiator. As it emerges from the
example, a capability identifies an action (in a broad sense) that might require
some inputs and might return a result. This is analogous to defining a method
or a function or a web service. So, for us, a capability will be specified by its
name, a description of its inputs and a description of its outputs. This is not
the only possible representation, for instance if we interpret them as actions, it
would make sense to represent also their preconditions and effects.

68 M. Baldoni et al.

Fig. 1. The FIPA ContractNet Protocol, represented by means of UML sequence dia-
grams, and enriched with capability specifications

3 Checking Capabilities
In this section we discuss about possible implementations of the capability test,
intended as the verification that a service satisfies the capability requirements
given by a role. The capability test obviously depends on the way in which
the policy is developed and therefore it depends on the adopted language. In
Jade [15] there is no real capability test because policies already supply empty
methods corresponding to the capabilities, the programmer can just redefine
them. In powerJava the check is performed by the compiler, which verifies the
implementation of a given interface representing the requirements. For further
details see [6], in which the same example concerning the ContractNet protocol
is described. In the scenario outlined in the previous section, the capability test
is done a priori w.r.t. all the capabilities required by the role specification but
the way in which the test is implemented is not predefined and can be executed
by means of different matching techniques. We could use a simple signature
matching, like in classical programming languages and in powerJava, as well
more flexible forms of matching.

We consider particularly promising to adopt semantic matchmaking tech-
niques proposed for matching web service descriptions with queries, based on
ontologies of concepts. In fact semantic matchmaking supports the matching of
capabilities with different names, though connected by an ontology, and with
different numbers (and descriptions) of input/output parameters. For instance,
let us consider the evaluateProposal capability associated to the role Initiator of
the ContractNet protocol (see Figure 1). This capability has an input parameter
(a proposal) and is supposed to return a boolean value, stating whether the pro-
posal has been accepted or refused. A first example of flexible, semantics-based
matchmaking consists in allowing a service to play the part of Initiator even
though it does not have a capability of name evaluateProposal. Let us suppose
that evaluateProposal is a concept in a shared ontology. Then, if the service has

Interaction Protocols and Capabilities: A Preliminary Report 69

a capability evaluate, with same signature of evaluateProposal, and evaluate is
a concept in the shared ontology, that is more general than evaluateProposal,
we might be eager to consider the capability as matching with the description
associated to the role specification.

Semantic matchmaking has been thoroughly studied and formalized also in the
Semantic Web community, in particular in the context of the DAML-S [24] and
WSMO initiatives [16]. In [24] a form of semantic matchmaking concerning the
input and output parameters is proposed. The ontological reasoning is applied
to the parameters of a semantic web service, which are compared to a query. The
limit of this technique is that it is not possible to perform the search on the basis
of a goal to achieve. A different approach is taken in the WSMO initiative [16],
where services are described based on their preconditions, assumptions, effects
and postconditions. Preconditions concern the structure of the request, assump-
tions are properties that must hold in the current state, as well as effects will
hold in the final state, while postconditions concern the structure of the answer.
These four sets of elements are part of the “capability” construct used in WSMO
for representing a web service. Moreover, each service has its own choreography
and orchestration, although these terms are used in a different way w.r.t. our
work. In fact, both refer to subjective views, the former recalls a state chart
while the latter is a sequence of if-then rules specifying the interaction with
other services. On the other hand, users can express goals as desired postcondi-
tions. Various matching techniques are formalized, which enable the search for
a service that can satisfy a given goal; all of them presuppose that the goal and
the service descriptions are ontology-based and that such ontologies, if different,
can be aligned by an ontology mediator. Going back to our focus concerning
capability matching, in the WSMO framework it would be possible to represent
a “capability requirement”, associated with a choreography, as a WSMO goal, to
implement the “capabilities” of the specific services as WSMO capabilities, and
then apply the existing matching techniques for deciding whether a requirement
is satisfied by at least one of the capabilities of a service.

In order to ground our proposal to the reality of web services, in Section4, we
will discuss a first possible extension of WS-CDL with capability requirements
expressed as input and output parameters. For performing the capability test
on this extension, it will be possible to exploit some technique for the semantic
matchmaking based on input and output parameters, e.g. the one in [24].

3.1 Reasoning on Capabilities

In the previous sections we discussed the simple case when the capability test
is performed w.r.t all the capabilities required by the role specification. In this
case, based on some description of the required capabilities for a playing the role,
we perform the matching among all required and actual service capabilities, thus
we can say that the test allows to implement policies that perfectly fit the role,
by envisioning all the execution paths foreseen by the role. This is, however, just
a starting point. Further customization of the capability test w.r.t. some charac-
teristic or goal of the service that intend to play a given role can be achieved by

70 M. Baldoni et al.

combining the test with a reasoning phase on capabilities. For instance, by rea-
soning on capabilities from the point of view of the service candidate for playing
the role, it would be possible to find out policies that implement the role but
do not envision all the execution paths and thus do not require the entire list of
capabilities associated to the role to be implemented.

Let us take the abstraction of a policy implementing a role w.r.t. all the capa-
bilities required as a procedure with different execution traces. Each execution
trace corresponds to a branch in the policy. It is likely that only a subset of
the capabilities associated to a role will be used along a given branch. As an
example, Figure 2 shows three alternative execution traces for a given policy,
which contain references to different capabilities: one trace exploits capabilities
C1 and C3, the second one exploits C1 and C4, the third one contains only C2.

We can think of a variant of the capability test in which only the execu-
tion traces concerning the specific call, that the service would like to enact, are
considered. This set will tell us which capabilities are actually necessary in our
execution context (i.e. given the specified input parameter values). In this per-
spective, it is not compulsory that the service has all the capabilities associated
to the role but it will be sufficient that it has those used in this set of execution
traces. Consider Figure 2 and suppose that for some given input values, only the
first execution trace (starting from left) might become actually executable. This
trace relies on capabilities C1 and C3 only: it will be sufficient that the service
owns such capabilities for making the policy call executable.

Such kind of reasoning could be done by describing the ideal complete policy
for a service aiming at implementing a given role in a declarative language that
supports a-priori reasoning on the policy executions. In fact, if a declarative rep-
resentation of the complete policy were given, e.g. see [4], it would be possible to
perform a rational inspection of the policy, in which the execution is simulated.
By reasoning we could select the execution traces that allow the service to com-
plete the interaction for the inputs of the given call. Finally we could collect the
capabilities used in these traces only (C1, C3, and C4 but not C2) and restrict
the capability test to that subset of capabilities.

Another possible customization task consists on reasoning about those exe-
cution traces that, after the execution, make a certain condition become true in

Goal1 Goal1

C4C3

C1

No Goal1

C1
C2

Fig. 2. Execution traces for a policy: two traces allow to reach a final state in which
goal1 is true but exploiting different capabilities

Interaction Protocols and Capabilities: A Preliminary Report 71

the service internal state. For instance, with reference to Figure 2, two out of
the three possible executions lead to a final situation in which goal1 holds. As
a simple example of this case, let us suppose that a peer that wishes to play
the role of “customer” with the general goal of purchasing an item of interest
from a seller of interest, has a second goal, i.e. to avoid the use of credit cards.
This goal can actually be seen as a constraint on the possible interactions. If the
policy implementing the complete role allows three alternatives forms of pay-
ment (by credit card, by bank transfer and by check), the candidate customer
is likely to desire to continue the interaction because some of the alternatives
allow reaching the goal of purchasing the item of interest without using credit
cards. It can, then, customize the policy by deleting the undesired path. If some
of the capabilities are to be used only along the discarded execution path, it is
not necessary for the candidate customer to have it.

Nevertheless a natural question arises: if I remove some of the possible execu-
tion paths of a policy, will it still be conformant to the specification? To answer
to this question we can rely on our conformance test. In the specific case of the
example, the answer would be positive. It would not be positive if we had a
candidate seller that, besides having the general goal of selling items, has the
second requirement of not allowing a specific form of payment (e.g. by bank
transfer) and deletes the undesired path from the policy. Indeed, a customer
that conforms to the shared choreography might require this form of payment,
which is foreseen by the specification, but the candidate seller would not be able
to handle this case leading to a deadlock.

It is also possible to generalize this approach and selecting the set of the
execution traces that can possibly be engaged by a given service by using the
information about the actual capabilities of the services. In fact, having the
possibility of inspecting the possible evolutions of an ideal policy implementing
the complete role, one could single out those execution traces that require the
subset of capabilities that the service actually can execute. In this way, the
policy can be customized w.r.t. the characteristic of the service, guaranteeing
the success under determined circumstances.

Last but not least, the set of capabilities of a service could be not completely
predefined but depending on the context and on privacy or security policies
defined by the user: I might have a capability which I do not want to use in that
circumstance. Also this kind of reasoning can be integrated in the capability test.
In this perspective, it would be interesting to explore the use of the notion of
opportunity proposed by Padmanabhan et al. [23] in connection with the concept
of capability (but with the meaning proposed in [22], see Section 1).

4 A Case Study: Introducing Capability Requirements in
WS-CDL

The most important formalism used to represent interaction protocols is WS-
CDL (Web Services Choreography Description Language) [29]: an XML-based
language that describes peer-to-peer collaborations of heterogeneous entities

72 M. Baldoni et al.

from a global point of view. In this section, we propose a first proposal of exten-
sion of the WS-CDL definition where capability requirements are added in order
to enable the automatic synthesis of policies described in the previous sections.
Capability requirements are expressed as input and output parameters, then se-
mantic matchmaking based on input and output parameters could be exploited
as technique for performing the capability checking. The schema that defines this
extension can be found at http://www.di.unito.it/~ alice/WSCDL Cap v1/.

1 <silentAction roleType="Participant">
2 <capability name="evaluateTask">
3 <input>
4 <parameter variable="cdl:getVariable(’tns:t’,’’,’’)"/>
5 </input>
6 <output>
7 <parameter variable="cdl:getVariable(’tns:p’,’’,’’)"/>
8 </output>
9 </capability>
10 </silentAction>

Fig. 3. Representing a capability in the extended WS-CDL. The tag input is used to
define one of the input parameters, while output is used to define one of the output
parameters.

In this scenario an operation executed by a peer often corresponds to an
invocation of a web service, in a way that is analogous to a procedure call.
Coherently, we can think of representing the concept of capability in the WS-
CDL extension as a new tag element, the tag capability (see for instance Figure 3),
which is characterized by its name, and its input and output parameters. Each
parameter refers to a variable defined inside the choreography document. The
notation variable="cdl:getVariable(’tns:t’,’’,’’)" used in Figure 3 is a
reference to a variable, according to the definition of WS-CDL. In this manner
inputs and outputs can be used in the whole WS-CDL document in standard
ways (like Interaction, Workunit and Assign activities). In particular parameters
can be used in guard conditions of Workunits inside a Choice activities in order
to choose alternative paths (see below for an example). Notice that each variable
refers also to a concept in a defined ontology.

A capability represents an operation (a call not a declaration) that must be
performed by a role and which is non-observable by the other roles; this kind of
activity is described in WS-CDL by SilentAction elements. The presence of silent
actions is due to the fact that WS-CDL derives from the well-known pi-calculus
by Milner et al. [19], in which silent actions represent the non-observable (or
private) behavior of a process. We can, therefore, think of modifying the WS-
CDL definition by adding capabilities as child elements of this kind of activity 1.
1 Since in WS-CDL there is not the concept of observable action, capability require-

ments can describe only silent actions.

Interaction Protocols and Capabilities: A Preliminary Report 73

Returning to Figure 3, as an instance, it defines the capability evaluateTask for
the role Participant of the Contract Net protocol. More precisely, evaluateTask
is defined within a silent action and its definition comprises its name plus a list
of inputs and outputs. The tags capability, input, and output are defined in our
extension of WS-CDL. It is relevant to observe that each parameter refers to a
variable that has been defined in the choreography.

1 <choice>
2 <workunit name="informResultWorkUnit"
3 guard="cdl:getVariable(’tns:rst’, ’’, ’’, ’tns:Participant’) !=

’failure’ ">
4 <interaction name="informResultInteraction">
5 ...
6 </interaction>
7 </workunit>
8 <interaction name="failureExecuteInteraction">
9 ...
10 </interaction>
11 </choice>

Fig. 4. Example of how output parameters can be used in a choice operator of a
choreography

Choreographies not only list the set of capabilities that a service should have
but they also identify the points of the interaction at which such capabilities
are to be used. In particular, the values returned by a call to a capability (as a
value of an output parameter) can be used for controlling the execution of the
interaction. Figure 4 shows, for example, a piece of a choreography code for the
role Participant, containing a choice operator. The choice operator allows two
alternative executions: one leading to an inform speech act, the other leading
to a failure speech act. The selection of which message will actually be sent is
done on the basis of the outcome, previously associated to the variable rst, of the
capability executeTask. Only when such variable has a non-null value the inform
will be sent. The guard condition at line 3 in Figure 4 amounts to determine
whether the task that the Participant has executed has failed.

To complete the example we sketch in Figure 5 a part of the ContractNet
protocol as it is represented in our proposal of extension for WS-CDL. In this
example we can detect three different capabilities, one for the role of Initiator
and two for the role Participant. Starting from an instance of the type Task, the
Participant must be able to evaluate it by performing the evaluateTask capability
(lines 4-9), returning an instance of type Proposal. Moreover, it must be able to
execute the received task (if its proposal is accepted by the Initiator) by using
the capability executeTask (lines 26-31), returning an instance of type Result.
On the other side, the Initiator must have the capability evaluateProposal, for
choosing a proposal out of those sent by the participants (lines 15-20).

74 M. Baldoni et al.

1 <sequence>

2 <interaction name="callForProposalInteraction"> ...

3 </interaction>

4 <silentAction roleType="Participant">

5 <capability name="evaluateTask">

6 <input> ... </input>

7 <output> ... </output>

8 </capability>

9 </silentAction>

10 <choice>

11 <workunit name="proposeWorkUnit" guard=... >

12 <sequence>

13 <interaction name="proposeInteraction">

14 </interaction>

15 <silentAction roleType="Initiator">

16 <capability name="evaluateProposal">

17 <input> ... </input>

18 <output> ... </output>

19 </capability>

20 </silentAction>

21 <choice>

22 <workunit name="acceptProposalWorkUnit" guard=... >

23 <sequence>

24 <interaction name="proposeInteraction">

25 </interaction>

26 <silentAction roleType="Participant">

27 <capability name="executeTask">

28 <input> ... </input>

29 <output> ... </output>

30 </capability>

31 </silentAction>

32 <choice>

33 <workunit name="informResultWorkUnit"

34 guard=... >

35 <interaction name="informResultInteraction">

36 </interaction>

37 </workunit>

38 <interaction name="failureExecuteInteraction">

39 </interaction>

40 </choice>

41 </sequence>

42 </workunit>

43 <interaction name="rejectProposalInteraction">

44 </interaction>

45 </choice>

46 </sequence>

47 </workunit>

48 <interaction name="evaluateTaskRefuseInteraction">

49 </interaction>

50 </choice>

51 </sequence>

Fig. 5. A representation of the FIPA ContractNet Protocol in the extended WS-CDL

Interaction Protocols and Capabilities: A Preliminary Report 75

As we have seen in the previous sections, it is possible to start from a repre-
sentation of this kind for performing the capability test and check if a service
can play a given role (e.g. Initiator). Moreover, given a similar description it is
also possible to synthesize the skeleton of a policy, possibly customized w.r.t.
the capabilities and the goals of the service that is going to play the role. To this
aim, it is necessary to have a translation algorithm for turning the XML-based
specification into an equivalent schema expressed in the execution language of
interest.

5 Conclusions

This work presents a preliminary study aimed to allow the use of public choreog-
raphy specifications for automatically synthesizing executable interaction poli-
cies for peers that would like to take part in an interaction but that do not own
an appropriate policy themselves. To this purpose it is necessary to link the ab-
stract, communicative behavior, expressed at the protocol level, with the internal
state of the role player by means of actions that might be non-communicative
in nature (capabilities). It is important, in an open framework like the web, to
be able to take a decision about the possibility of taking part to a choreography
before the interaction begins. This is the reason why we have proposed the intro-
duction of the notion of capability at the level of choreography specification. A
capability is the specification of an action in terms of its name, and of its input
and output parameters. Given such a description it is possible to apply matching
techniques in order to decide whether a service has the capabilities required for
playing a role of interest. In particular, we have discussed the use of semantic
matchmaking techniques, such as those developed in the WSMO and DAML-S
initiatives [24], for matching web service descriptions to queries.

We have shown how, given a (possibly) declarative representation of the policy
skeletons, obtained from the automatic synthesis process, it is possible to apply
further reasoning techniques for customizing the implemented policy to the spe-
cific characteristic of the service that will act as a player. Reasoning techniques
for accomplishing this customization task are under investigation. In particular,
the techniques that we have already used in previous work concerning the per-
sonalization of the interaction with a web service [4] seem promising. In that
work, in fact, we exploited a kind of reasoning known as procedural planning,
relying on a logic framework. Procedural planning explores the space of the pos-
sible execution traces of a procedure, extracting those paths at whose end a goal
condition of interest holds. It is noticeable that in presence of a sensing action,
i.e. an action that queries for external input, all of the possible answers are to be
kept (they must all lead to the goal) and none can be cut off. In other words, it
is possible to cut only paths that correspond to some action that are under the
responsibility of the agent playing the policy. The waiting for an incoming mes-
sage is exactly a query for an external input, as such the case of the candidate
seller that does not allow a legal form of payment cannot occur.

76 M. Baldoni et al.

Our work is close in spirit to [25], where the idea of keeping separate proce-
dural and ontological descriptions of services and to link them through semantic
annotations is introduced. In fact our WS-CDL extension can be seen as pro-
cedural description of the interaction enriched with capabilities requirements,
while semantic annotations of capability requirements enable the use of ontolog-
ical reasoning for the capability test phase. Presently, we are working at more
thorough formalization of the proposal that will be followed by the implemen-
tation of a system that turns a role represented in the proposed extension of
WS-CDL into an executable composite service, for instance represented in WS-
BPEL. WS-BPEL is just a possibility, actually any programming language by
means of which it is possible to develop web services could be used.

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. In Proc. of the
Workshop on Logic and Communication in Multi-Agent Systems, LCMAS 2003,
volume 85(2) of ENTCS, 2003. Elsevier.

2. D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI Model with Cooper-
ativity. In Proceedings of the 1st Declarative Agent Languages and Technologies
Workshop (DALT’03), pages 109–134. Springer-Verlag, 2004. LNAI 2990.

3. M. Baldoni, C. Baroglio, A. Martelli, and Patti. Verification of protocol confor-
mance and agent interoperability. In Post-Proc. of CLIMA VI, volume 3900 of
LNCS State-of-the-Art Survey, pages 265–283. Springer, 2006.

4. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction
protocols for customizing web service selection and composition. J. of Logic and
Algebraic Programming, special issue on WS and Formal Methods, 2006. To appear.

5. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the
conformance of web services to global interaction protocols: a first step. In Proc. of
2nd Int. Workshop on Web Services and Formal Methods, WS-FM 2005, volume
3670 of LNCS, pages 257–271. Springer, September, 2005.

6. M. Baldoni, G. Boella, and L. van der Torre. Bridging Agent Theory and Object
Orientation: Importing Social Roles in Object Oriented Languages. In Post-Proc.
of the Int. Workshop on Programming Multi-Agent Systems, ProMAS 2005, volume
3862 of LNCS, pages 57–75. Springer, 2006.

7. M. Baldoni, G. Boella, and L. van der Torre. powerjava: Ontologically Founded
Roles in Object Oriented Programming Languages. In Proc. of 21st SAC 2006, Spe-
cial Track on Object-Oriented Programming Languages and Systems, 2006. ACM.

8. L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. CooWS: Adaptive BDI
agents meet service-oriented computing. In Proc. of the Int. Conference on
WWW/Internet, pages 205–209, 2005.

9. P. Busetta, N. Howden, R. Ronquist, and A. Hodgson. Structuring BDI agents in
functional clusters. In Proc. of the 6th Int. Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL99), 1999.

10. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration: a synergic approach for system design. In Proc. of 4th International
Conference on Service Oriented Computing (ICSOC 2005), 2005.

11. F. Dignum, editor. Advances in agent communication languages, volume 2922 of
LNAI. Springer-Verlag, 2004.

Interaction Protocols and Capabilities: A Preliminary Report 77

12. Foundation for Intelligent Physical Agents. http://www.fipa.org.
13. F. Guerin and J. Pitt. Verification and Compliance Testing. In Communication

in Multiagent Systems, volume 2650 of LNAI, pages 98–112. Springer, 2003.
14. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In Communication

in Multiagent Systems, volume 2650 of LNAI, pages 179–193. Springer, 2003.
15. Jade. http://jade.cselt.it/.
16. U. Keller, R. Laraand A. Polleres, I. Toma, M. Kifer, and D. Fensel. D5.1 v0.1

wsmo web service discovery. Technical report, WSML deliverable, 2004.
17. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-

velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.

18. M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO
and rule-based languages to specify, implement and execute agents. In Proc. of the
8th APPIA-GULP-PRODE Joint Conf. on Declarative Programming (AGP’03),
pages 275–286, 2003.

19. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

20. OASIS. Business process execution language for web services.
21. J. H. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interac-

tion protocols in UML. In Agent-Oriented Software Engineering, pages 121–140.
Springer, 2001. http://www.fipa.org/docs/input/f-in-00077/.

22. L. Padgham and P. Lambrix. Agent capabilities: Extending BDI theory. In
AAAI/IAAI, pages 68–73, 2000.

23. V. Padmanabhan, G. Governatori, and A. Sattar. Actions made explicit in BDI.
In Advances in AI, number 2256 in LNCS, pages 390–401. Springer, 2001.

24. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First International Semantic Web Conference, 2002.

25. M. Pistore, L. Spalazzi, and P. Traverso. A minimalist approach to semantic
annotations for web processes compositions. In ESWC, pages 620–634, 2006.

26. Arianna Tocchio and S. Costantini. Learning by knowledge exchange in logical
agents. In Proc. of WOA 2005: Dagli oggetti agli agenti, simulazione e analisi
formale di sistemi complessi, november 2005. Pitagora Editrice Bologna.

27. W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, H. M. W.
Verbeek, and P. Wohed. Life after BPEL? In Proc. of WS-FM’05, volume 3670 of
LNCS, pages 35–50. Springer, 2005. Invited speaker.

28. Michael Wooldridge and Simon Parsons. Issues in the design of negotiation proto-
cols for logic-based agent communication languages. In Agent-Mediated Electronic
Commerce III, Current Issues in Agent-Based Electronic Commerce Systems, vol-
ume 2003 of LNCS. Springer, 2001.

29. WS-CDL. http://www.w3.org/tr/ws-cdl-10/.

Verification of Protocol Conformance and Agent
Interoperability�

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti

Dipartimento di Informatica, Università degli Studi di Torino,
C.so Svizzera, 185, I-10149 Torino, Italy

{baldoni, baroglio, mrt, patti}@di.unito.it

Abstract. In open multi-agent systems agent interaction is usually ruled
by public protocols defining the rules the agents should respect in message
exchanging. The respect of such rules guarantees interoperability. Given
two agents that agree on using a certain protocol for their interaction, a
crucial issue (known as “a priori conformance test”) is verifying if their
interaction policies, i.e. the programs that encode their communicative
behavior, will actually produce interactions which are conformant to the
agreed protocol. An issue that is not always made clear in the existing
proposals for conformance tests is whether the test preserves agents’ ca-
pability of interacting, besides certifying the legality of their possible con-
versations. This work proposes an approach to the verification of a pri-
ori conformance, of an agent’s conversation policy to a protocol, which is
based on the theory of formal languages. The conformance test is based
on the acceptance of both the policy and the protocol by a special finite
state automaton and it guarantees the interoperability of agents that are
individually proved conformant. Many protocols used in multi-agent sys-
tems can be expressed as finite state automata, so this approach can be
applied to a wide variety of cases with the proviso that both the protocol
specification and the protocol implementation can be translated into finite
state automata. In this sense the approach is general. Easy applicability
to the case when a logic-based language is used to implement the policies
is shown by means of a concrete example, in which the language DyLOG,
based on computational logic, is used.

1 Introduction

Multi-agent systems (MASs) often comprise heterogeneous components, that
differ in the way they represent knowledge about the world and about other
agents, as well as in the mechanisms used for reasoning about it. Protocols rule
the agents’ interaction. Therefore, they can be used to check if a given agent can,

� This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net), and it has also been
supported by MIUR PRIN 2005 “Specification and verification of agent interaction
protocols” national project.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 265–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

266 M. Baldoni et al.

or cannot, take part in the system. In general, based on this abstraction, open
systems can be realized, in which new agents can dynamically join the system.
The insertion of a new agent in an execution context is determined according
to some form of reasoning about its behaviour: it will be added provided that it
satisfies the body of the rules within the system, intended as a society.

In a protocol-ruled system of this kind, it is, however, not necessary to check
the interoperability (i.e. the capability of actually producing a conversation) of
the newly entered agent with the other agents in the system if, as long as the
rules are satisfied, the property is guaranteed. The problem which amounts to
verifying if a given implementation (an agent interaction policy) respects a given
abstract protocol definition is known as conformance testing. A conformance
test can, then, be considered as a tool that, by verifying that agents respect a
protocol, should certify their interoperability. In this perspective, we expect that
two agents which conform to a protocol will produce a conversation, that is legal
(i.e. correct w.r.t. the protocol), when interacting with one another.

The design and implementation of interaction protocols are crucial steps in
the development of a MAS [24, 25]. Following [23], two tests must be executed
in the process of interaction protocol engineering. One is the already mentioned
conformance test, the other is the validation test, which verifies the consistency of
an abstract protocol definition w.r.t. the requirements, derived from the analysis
phase, that it should embody. In the literature validation has often been tackled
by means of model checking techniques [10, 9, 29], and two kinds of conformance
verifications have been studied: a priori conformance verification, and run-time
conformance verification (or compliance) [14, 15, 21]. If we call a conversation a
specific interaction between two agents, consisting only of communicative acts,
the first kind of conformance is a property of the implementation as a whole
–intuitively it checks if an agent will never produce conversations that violate
the abstract interaction protocol specification– while the latter is a property of
the on-going conversation, aimed at verifying if that conversation is legal.

In this work we focus on a priori conformance verification, defining a confor-
mance test, based on the acceptance, of both the agent’s policy and the public
protocol, by a special finite state automaton. Many protocols used in multi-
agent systems can be expressed as finite state automata, so this approach can
be applied to a wide variety of cases with the proviso that both the protocol
specification and the protocol implementation (policy) can be translated into
finite state automata. In this sense the approach is general.

The application of our approach is particularly easy in case a logic-based declar-
ative language is used to implement the policies. In logic languages indeed policies
are usually expressed by Prolog-like rules, which can be easily converted in a for-
mal language representation. In Section 4 we show this by means of a concrete
example where the language DyLOG [7], based on computational logic, is used for
implementing the agents’ policies. On the side of the protocol specification lan-
guages, currently there is a great interest in using informal, graphical languages
(e.g. UML-based) for specifying protocols and in the translation of such languages
in formal languages [13, 16]. By this translation it is, in fact, possible to prove

Verification of Protocol Conformance and Agent Interoperability 267

properties that the original representation does not allow. In this context, in [5]
we have shown an easy algorithm for translating AUML sequence diagrams to fi-
nite state automata thus enabling the verification of conformance.

In [5] we already faced the problem of a priori conformance verification as a
verification of properties of formal languages, but proposing a different approach
with some limitations due to focussing on the legality issue. In fact, interpreting
(as we did) the conformance test as the verification that all the conversations,
allowed by an agent’s policy, are also possible according to the protocol speci-
fication, does not entail interoperability. The next section is devoted to explain
the expected relations among conformance and the crucial interoperability issue.

2 Conformant and Interoperable Agents

A conversation policy is a program that defines the communicative behavior of
a specific agent, implemented in some programming language. A conversation
protocol specifies the desired communicative behavior of a set of agents and it
can be specified by means of many formal tools, such as (but not limited to)
Petri nets, AUML sequence diagrams, automata.

More specifically, a conversation protocol specifies the sequences of speech acts
that can possibly be exchanged by the involved agents, and that we consider as
legal. In agent languages that account for communication, speech acts often
have the form m(ags, agr, l), where m is the performative, ags (sender) and agr

(receiver) are two agents and l is the message content. It is not restrictive to
assume that speech acts have this form and to assume that conversations are
sequences of speech acts of this form. Notice that depending on the semantics of
the speech acts, the conversation will take place in a framework based either on
the mentalistic or on the social state approach [17, 28, 20]. However, the speech
acts semantics does not play a role in our proposal, which concerns an orthogonal
aspect of the interaction in Multi Agent Systems.

In the following analysis it is important to distinguish the incoming messages,
w.r.t. a specific agent ag of the MAS, from the messages uttered by it. We re-
spectively denote the former, where ag plays the role of the receiver, by m(←−ag),
and the latter, where ag is the sender, by m(−→ag). We will also simply write ←−m
(incoming message) and −→m (outgoing message) when the agent that receives or
utters the message is clear from the context. Notice that these are just short-
hands, that underline the role of a given agent from the individual perspective of
that agent. So, for instance, m(ags, agr, l) is written as m(←−agr) from the point
of view of agr, and m(−→ags) from the point of view of the sender but the three
notions denote the same object.

A conversation, denoted by σ, is a sequence of speech acts that represents a
dialogue of a set of agents.

Definition 1 (Conversation). A conversation is a sequence σ of messages
taken from a given set SA of speech acts.

In this work we face the problem of conformance verification and interpret a
priori conformance as a property that relates two formal languages [22], the

268 M. Baldoni et al.

language of the conversations allowed by the conversation policy of an agent, and
the language of the conversations allowed by the specification of a communication
protocol. Each of these languages represents a set of conversations. In the case
of the protocol specification, it is intuitive that it will be the set of all the
possible conversations allowed by the protocol among the partners. In the case
of the single agent’s policy, it will be the set of the possible conversations that
the agent can carry on according to the policy. Of course, at execution time,
depending on the interlocutor and on the circumstances, only one conversation
at a time is actually expressed, however, for verifying conformance a priori we
need to consider them all as a set.

Definition 2 (Policy language). Given a policy pag
lang, where p is the policy

name, lang is the language in which this is implemented, and ag is the agent
that uses it, we denote by L(pag

lang) the set of conversations that ag can carry on
according to p.

Definition 3 (Protocol language). Given a conversation protocol pspec, where
p is the protocol name, and spec is the language in which it is represented, we denote
by L(pspec) the set of conversations that a set of agents, that interact according to
p, can carry on.

The assumption that we make throughout this paper is that the two languages
L(pag

lang) and L(pspec) are regular. This choice restricts the kinds of protocols
to which our proposal can be applied, because finite state automata cannot
represent concurrent operations, however, it is still significant because a wide
family of protocols (and policies) of practical use can be expressed in a way that
can be mapped onto such automata. Moreover, the use of regular sets ensures
decidability. Another assumption is that the conversation protocol encompasses
only two agents. The extension to a greater number of agents will be tackled as
future work. Notice that when the MAS is heterogeneous, the agents might be
implemented in different languages.

We say that a conversation is legal w.r.t. a protocol specification if it respects
the specifications given by the protocol. Since L(pspec) is the set of all the legal
conversations according to p, the definition is as follows.

Definition 4 (Legal conversation). We say that a conversation σ is legal
w.r.t. a protocol specification pspec when σ ∈ L(pspec).

We are now in position to explain, with the help of a few simple examples, the
intuition behind the terms “conformance” and “interoperability”, that we will,
then, formalize.

Definition 5 (Interoperability). Interoperability is the capability of a set of
agents of actually producing a conversation when interacting with one another.

Often the introduction of a new agent in an execution context is determined ac-
cording to some form of reasoning about its behaviour: it will be added provided
that it satisfies a set of rules -the protocol- that characterize such execution

Verification of Protocol Conformance and Agent Interoperability 269

context; as long as the new agent satisfies the rules, the interoperability with
the other components of the system is guaranteed. Thus in protocol-based sys-
tems the interoperability of an agent with others can be proved by checking the
communicative behavior of the agent against the rules of the system, i.e. against
an interaction protocol. Such a proof is known as conformance test. Intuitively,
this test must guarantee the following definition of interoperability. This work
focuses on it.

Definition 6 (Interoperability w.r.t. an interaction protocol). Interop-
erability w.r.t. an interaction protocol P is the capability of a set of agents of
producing a conversation that is legal w.r.t. P .

Let us begin with considering the following case: suppose that the communicative
behavior of the agent ag is defined by a policy that accounts for two conversa-
tions {m1(−→ag)m2(←−ag), m1(−→ag)m3(←−ag)}. This means that after uttering a message
m1, the agent expects one of the two messages m2 or m3. Let us also suppose
that the protocol specification only allows the first conversation, i.e. that the
only possible incoming message is m2. Is the policy conformant? According to
Definition 4 the answer should be no, because the policy allows an illegal con-
versation. Nevertheless, when the agent will interact with another agent that
is conformant to the protocol, the message m3 will never be received because
the other agent will never utter it. So, in this case, we would like the a priori
conformance test to accept the policy as conformant to the specification.

Talking about incoming messages, let us now consider the symmetric case, in
which the protocol specification states that after the agent ag has uttered m1, the
other agent can alternatively answer m2 or m4 (agent ag’s policy, instead, is the
same as above). In this case, the expectation is that ag’s policy is not conformant
because, according to the protocol, there is a possible legal conversation (the one
with answer m4) that can be enacted by the interlocutor (which is not under the
control of ag), which, however, ag cannot handle. So it does not comply to the
specifications.

Expectation 1. As a first observation we expect the policy to be able
to handle any incoming message, foreseen by the protocol, and we ignore
those cases in which the policy foresees an incoming message that is not
supposed to be received at that point of the conversation, according to the
protocol specification.

Let us, now, suppose that agent ag’s policy can produce the following conversa-
tions {m1(←−ag)m2(−→ag), m1(←−ag)m3(−→ag)} and that the set of conversations allowed
by the protocol specification is {m1(←−ag)m2(−→ag)}. Trivially, this policy is not con-
formant to the protocol because ag can send a message (m3) that cannot be
handled by any interlocutor that is conformant to the protocol.

Expectation 2. The second observation is that we expect a policy to
never utter a message that, according to the specification, is not supposed
to be uttered at that point of the conversation.

270 M. Baldoni et al.

Instead, in the symmetric case in which the policy contains only the conversation
{m1(←−ag)m2(−→ag)} while the protocol states that ag can answer to m1 alternatively
by uttering m2 or m3, conformance holds. The reason is that at any point of its
conversations the agent will always utter legal messages. The restriction of the set
of possible alternatives (w.r.t. the protocol) depends on the agent implementor’s
own criteria. However, the agent must foresee at least one of such alternatives
otherwise the conversation will be interrupted. Trivially, the case in which the
policy contains only the conversation {m1(←−ag)} is not conformant.

Expectation 3. The third observation is that we expect that a policy
always allows an agent to utter one of the messages foreseen by the pro-
tocol at every point of the possible conversations. This means that it is
not necessary that a policy envisions all the possible alternative utter-
ances, but it is required to foresee at least one of them that allows the
agent to proceed with its conversations.

To summarize, at every point of a conversation, we expect that a conformant
policy never utters speech acts that are not expected, according to the protocol,
and we also expect it to be able to handle any message that can possibly be re-
ceived, once again according to the protocol. However, the policy is not obliged
to foresee (at every point of conversation) an outgoing message for every alter-
native included in the protocol but it must foresee at least one of them if this
is necessary to proceed with the conversation. Incoming and outgoing messages
are, therefore, not handled in the same way.

These expectations are motivated by the desire to define a minimal set of con-
ditions which guarantee the construction of a conformance test that guarantees
the interoperability of agents. Let us recall that one of the aims (often implicit)
of conformance is, indeed, interoperability, although sometimes research on this
topic restricts its focus to the legality issues. We claim –and we will show– that
two agents that respect this minimal set of conditions (w.r.t. an agreed protocol)
will actually be able to interact, respecting at the same time the protocol. The
relevant point is that this certification is a property that can be checked on the
single agents, rather than on the agent society. This is interesting in application
domains (e.g. web services) with a highly dynamic nature, in which agents are
searched for and composed at the moment in which specific needs arise.

3 Conformance Test

In order to decide if a policy is conformant to a protocol specification, it is not
sufficient to perform an inclusion test; instead, as we have intuitively shown by
means of the above examples, it is necessary to prove mutual properties of both
L(pag

lang) and L(pspec). The method that we propose for proving such properties
consists in verifying that both languages are recognized by a special finite state
automaton, whose construction we are now going to explain. Such an automaton
is based on the automaton that accepts the intersection of the two languages.
All the conversations that belong to the intersection are certainly legal. This,

Verification of Protocol Conformance and Agent Interoperability 271

however, is not sufficient, because there are further conditions to consider, for
instance there are conversations that we mean to allow but that do not belong to
the intersection. In other words, the “intersection automaton” does not capture
all the expectations reported in Section 2. We will extend this automaton in
such a way that it will accept the conversations in which the agent expects
messages that are not foreseen by the specification as well as those which include
outgoing messages that are not envisioned by the policy. On the other hand, the
automaton will not accept conversations that include incoming messages that are
not expected by the policy nor will it accept conversations that include outgoing
messages, that are not envisioned by the protocol (see Fig. 1).

3.1 The Automaton Mconf

If L(pag
lang) and L(pspec) are regular, they are accepted by two deterministic

finite automata, denoted by M(pag
lang) and M(pspec) respectively, that we can

assume as having the same alphabet (see [22]). An automaton is a five-tuple
(Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ is a transition
function mapping Q × Σ to Q. In a finite automaton we can always classify
states in two categories: alive states, that lie on a path from the initial state to
a final state, and dead states, the other ones. Intuitively, alive states accept the
language of the prefixes of the strings accepted by the automaton.

For reasons that will be made clear shortly, we request the two automata to
show the following property: the edges that lead to the same state must all be
labeled either by incoming messages or by outgoing messages w.r.t. ag.

Definition 7 (IO-automaton w.r.t. ag). Given an automaton M = (Q, Σ, δ,
q0, F), let Eq = {m | δ(p, m) = q} for p, q ∈ Q. We say that M is an IO-
automaton w.r.t. ag iff for every q ∈ Q, Eq alternatively consists only of incom-
ing or only of outgoing messages w.r.t. an agent ag.

Notice that an automaton that does not show this property can always be trans-
formed so as to satisfy it, in linear time w.r.t. the number of states, by splitting
those states that do not satisfy the property. We will denote a state q that is
reached only by incoming messages by the notation ←−q (we will call it an I-state),
and a state q that is reached only by outgoing messages by −→q (an O-state).

Finally, let us denote by M×(pag
lang, pspec) the deterministic finite automa-

ton that accepts the language L(pag
lang) ∩ L(pspec). It is defined as follows. Let

M(pag
lang) be the automaton (QP , Σ, δP , qP

0 , FP) and M(pspec) the automaton
(QS , Σ, δS, qS

0 , FS):

M×(pag
lang, pspec) = (QP × QS , Σ, δ, [qP

0 , qS
0], FP × FS)

where for all qP in QP , qS in QS , and m in Σ, δ([qP , qS], m) = [δP (qP , m), δS(qS ,
m)]. We will briefly denote this automaton by M×.

Notice that all the conversations that are accepted by M× are surely confor-
mant (Definition 4). For the so built automaton, it is easy to prove the following
property.

272 M. Baldoni et al.

−→m3

←−m4

[aP , aS]
←−m1

[qP
0 , qS

0] [fP , fS]

[
−→
aP ,

−→
dS] [

−→
dP ,

−→
aS]

[
←−
dP ,

←−
aS] [

←−
aP ,

←−
dS]

−→m2

Fig. 1. A general schema of the Mconf automaton. From bottom-right, clockwise, cases
(a), (b), (c), and (d).

Proposition 1. M×(pag
lang , pspec) is an IO-automaton w.r.t. ag if M(pag

lang) and
M(pspec) are two IO-automata w.r.t. ag.

The definition of IO-automata is used in the following for the construction of
the automaton Mconf .

Definition 8 (Automaton Mconf). The finite state automaton Mconf(pag
lang,

pspec) is built by applying the following steps to M×(pag
lang, pspec) until none is

applicable:

(a) if ←−q = [
←−
aP ,

←−
dS] in Q is an I-state, such that

←−
aP is an alive state and

←−
dS is

a dead state, we set δ(←−q , m) = ←−q for every m in Σ, and we put ←−q in F ;
(b) if ←−q = [

←−
dP ,

←−
aS] in Q is an I-state, such that

←−
dP is dead and

←−
aS is alive, we

set δ(←−q , m) = ←−q for every m in Σ, without modifying F ;
(c) if −→q = [

−→
aP ,

−→
dS] in Q is an O-state, such that

−→
aP is alive and

−→
dS is dead, we

set δ(−→q , m) = −→q for every m in Σ (without modifying F);
(d) if −→q = [

−→
dP ,

−→
aS] in Q is an O-state, such that

−→
dP is dead and

−→
aS is alive, we

set δ(−→q , m) = −→q for every m in Σ, and we put −→q in F .

These four transformation rules can, intuitively, be explained as follows.

Rule (a) handles the case in which, at a certain point of the conversation,
according to the policy it is possible to receive a message that, instead,
cannot be received according to the specification (it is the case of message
←−m1 in Fig. 1). Actually, if the agent will interact with another agent that
respects the protocol, this message can never be received, so we can ignore the
paths generated by the policy from the message at issue onwards. Since this
case does not compromise conformance, we want our automaton to accept
all these strings. For this reason we set the state as final.

Rule (b) handles the symmetric case (Fig. 1, message ←−m4), in which at a certain
point of the conversation it is possible, according to the specification, to
receive a message, that is not accounted for by the implementation. In this
case the state at issue is turned into a trap state (a state that is not final and
that has no transition to a different state); by doing so, all the conversations

Verification of Protocol Conformance and Agent Interoperability 273

that are foreseen by the specification from that point onwards will not be
accepted by Mconf .

Rule (c) handles the cases in which a message can possibly be uttered by the
agent, according to the policy, but it is not possible according to the spec-
ification (Fig. 1, message −→m3). In this case, the policy is not conformant,
so we transform the current state in a trap state. By doing so, part of the
conversations possibly generated by the policy will not be accepted by the
automaton.

Rule (d) is the symmetric case of (c) (Fig. 1, message −→m2), it does not prevent
conformance, in fact, an agent is free not to utter a message foreseen by the
protocol. However, the conversations that can be generated from that point
according to the specification are to be accepted as well. For this reason the
state is turned into an accepting looping state.

Finally, to guarantee Expectation 3, we add the following requirement. The
intuitive reason is that we would like an agent, which is supposed to utter a
message at a certain point of its conversation, to actually do it, thus making the
conversation, in which it is engaged, proceed.

Definition 9 (Complete automaton). Let us denote by Messout(q) the set:

Messout(q) = {m(−→ag) | δ(q, m(−→ag)) = p ∧ p is alive }

We say that the automaton Mconf is complete iff for all states of form [qP , qS]
of Mconf , such that Messout(qS) �= ∅, the following holds:

– Messout(qP) �= ∅;
– if we substitute Messout(qP) to Messout(qS) in Mspec, the state qS remains

alive.

One may wonder if the application of rules (b) and (c) could prevent the reach-
ability of states, that have been set as accepting states by the other two rules.
Notice that their application cannot prevent the reachability of alive-alive ac-
cepting states, i.e. those that accept the strings belonging to the intersection of
the two languages, because all the four rules only work on dead states. If a state
has been set as a trap state (either by rule (b) or (c)), whatever conversation is
possibly generated after it by the policy is illegal w.r.t. the specification. So it is
correct that the automaton is modified in such a way that the policy language
is not accepted by it and that the final state cannot be reached any more.

3.2 Conformance and Interoperability

We can now discuss how to check that an agent conforms to a given protocol.
The following is our definition of conformance test. It guarantees the expectations
that we have explained by examples in Section 2.

Definition 10 (Policy conformance test). A policy pag
lang is conformant to a

protocol specification pspec iff the automaton Mconf(pag
lang, pspec) is complete and

it accepts the union of the languages L(pag
lang) and L(pspec).

274 M. Baldoni et al.

We are now in position to state that a policy that passes the above test can
carry on any conformant conversation it is involved in.

Proposition 2. Given a policy pag
lang that is conformant to a protocol specifi-

cation pspec, according to Definition 10, for every prefix σ′ that is common to
the two languages L(pspec) and L(pag

lang), there is a conversation σ = σ′σ′′ such
that σ is in the intersection of L(pag

lang) and L(pspec), when L(pag
lang) �= ∅ and

L(pspec) �= ∅.

Proof. Since pag
lang is conformant, L(pag

lang) is accepted by Mconf . Then, by con-

struction Mconf does not contain any state [
−→
aP ,

−→
dS], where aP corresponds to an

alive state in M(pag
lang) and dS is a dead state in M(pspec), due to illegal messages

uttered by the agent. By construction it also does not contain any state [
←−
dP ,

←−
aS]

due to incoming messages that are not accounted for by the policy. Obviously,
no conversation σ accepted by states of the kind [

−→
dP ,

−→
aS] can belong to L(pag

lang)
because the agent cannot utter the messages required to reach such states. Fi-
nally, no conversation produced by the agent will be accepted by states of the
kind [

←−
aP ,

←−
dS] because by definition the protocol cannot utter illegal messages.

Now, σ′ is a common prefix, therefore it leads to a state of the automaton Mconf

of the kind [aP , aS] (i.e., both states are alive, see Figure 1). Due to policy con-
formance, all the incoming messages (w.r.t. the agent), that are labels of kind
m(←−ag) of outgoing edges, must be foreseen by the policy and in the case of out-
going messages (that is labels of kind m(−→ag) of outgoing edges), the policy must
foresee at least one of them in such a way that aS is kept alive (completeness
of Mconf). Therefore, either the above state [aP , aS] is already a final state of
Mconf and σ′′ = ε or from [aP , aS] it is possible to perform one more common
step, leading to a state of the same kind, i.e. composed of two alive states for the
reasons exposed before. This an actual step ahead towards a final state due to
conformance. In fact, for these properties there must be an edge outgoing from
aS , that leads to another alive state different from aS , and the same edge must
exist also in M(pag

lang); this edge will be one of the outgoing edges of aP . We
can choose to follow this edge also in the automaton Mconf . We can iteratively
repeat this reasoning and, since the number of nodes is finite, we will eventually
reach an accepting state, identifying a common conversation. q.e.d.

Notice that the intersection of L(pag
lang) and L(pspec) cannot be empty because

of policy conformance, and also that Proposition 2 does not entail that the
two languages coincide (i.e. the policy is not necessarily a full implementation
of the protocol). As a consequence, given that the conversation policies of two
agents ag1 and ag2, playing the different roles of an interaction protocol pspec,
are conformant to the specification according to Definition 10, and denoting by
I the intersection

I =
i=1,2⋂

agi

L(pagi

langi
)

Verification of Protocol Conformance and Agent Interoperability 275

we can prove ag1 and ag2 interoperability, that is they will produce a legal
conversation, when interacting with one another. The proof is similar to the
previous one. Roughly, it is immediate to prove that every prefix, that is common
to the two policies, also belongs to the protocol, then, by performing reasoning
steps that are analogous to the previous proof, it is possible to prove that a
common legal conversation must exist when both policies satisfy the conformance
test given by Definition 10.

Theorem 1 (Interoperability w.r.t. an interaction protocol). Given two
policies pag1

lang1
and pag2

lang2
that are conformant to a protocol specification pspec, ac-

cording to Definition 10, for every prefix σ′ that is common to the two languages
L(pag1

lang1
) and L(pag2

lang2
), there is a conversation σ = σ′σ′′ such that σ ∈ I.

Proof. First of all, it is trivial that σ′ is also a prefix of L(pspec). By the previous
property, we are sure that both ag1 and ag2 contain some legal conversations. We
need to prove that at least of these is common. Let us consider the automaton
that accepts the intersection of M(pag1

lang) and M(pag2
lang). Since σ′ is a common

prefix, there must be a path in such automaton, that leads to a state [qag1 , qag2].
Due to policy conformance, all the incoming messages w.r.t. ag1, foreseen by the
protocol specification, must be foreseen also by the policy. On the other side,
ag2 must utter at least one of them, due to its conformance (its Mconf must
be complete). Therefore, it is possible to continue the conversation at least one
more common step. In the case of messages that are outgoing w.r.t. ag1 the
policy must foresee at least one of them in such a way that qag1 is kept alive
(completeness of Mconf), while on the other side, ag2 must be able to handle all
the possible alternatives (conformance), therefore, also in this case it is possible
to continue the conversation. In both cases all the performed steps are legal w.r.t.
the protocol specification. Therefore, either the above state [qag1 , qag2] is a final
state and σ′′ = ε or from [qag1 , qag2] it is possible to perform one more common
step for the reasons exposed before. Proceeding in a way that is analogous to
what done in the proof of Prop. 2, due to conformance and considering each
agent as playing the role of the protocol specification w.r.t. to the other, this an
actual step ahead towards a final state. Therefore, we will eventually reach an
accepting state, that identifies a common conversation. q.e.d.

The third expectation is guarantedd by the completeness of Mconf . The role
plaied by completeness is, therefore, to guarantee that two agents, playing the
two roles of the same protocol, will be able to lead to an end their conversations.
Without this property we could only say that whenever the two agents will be
able to produce a conversation, this will be legal. We lose the certainty of the
capability of producing a conversation.

Starting from regular languages, all the steps that we have described that lead
to the construction of Mconf and allow the verification of policy conformance,
are decidable. A naive procedure for performing the test can be obtained directly
from Definitions 8 and 9 and from the well-known automata theory [22]. The
following theorem holds.

276 M. Baldoni et al.

Theorem 2. Policy conformance is decidable when L(pag
lang) and L(pspec) are

regular languages.

4 The DyLOG Language: A Case Study

In this section we show how the presented approach particularly fits logic lan-
guages, using as a case study the DyLOG language [7], previously developed in our
group. The choice is due to the fact that this language explicitly supplies the tools
for representing communication protocols and that we have already presented an
algorithm for turning a DyLOG program in a regular grammar (therefore, into a
finite state automaton) [5]. This is, however, just an example. The same approach
could be applied to other logic languages. In the following we will briefly recall
how interaction policies can be described in the language DyLOG. For examples
and for a thorough description of the core of the language see [7, 4].

DyLOG [7] is a logic programming language for modeling rational agents, based
upon a modal logic of actions and mental attitudes, in which modalities represent
actions as well as beliefs that are in the agent’s mental state. It accounts both for
atomic and complex actions, or procedures, for specifying the agent behavior.
DyLOG agents can be provided with a communication kit that specifies their
communicative behavior [3, 4]. In DyLOG conversation policies are represented
as procedures that compose speech acts (described in terms of their preconditions
and effects on the beliefs in the agent’s mental state). They specify the agent
communicative behavior and are expressed as Prolog-like procedures:

p0 is p1; p2; . . . ; pm

where p0 is a procedure name, the pi’s in the body are procedure names, atomic
actions, or test actions, and ‘;’ is the sequencing operator.

Besides speech acts, protocols can also contain get message actions, used to
read incoming communications. From the perspective of an agent, expecting a
message corresponds to a query for an external input, thus it is natural to in-
terpret this kind of actions as a special case of sensing actions. As such, their
outcome, though belonging to a predefined set of alternatives, cannot be pre-
dicted before the execution. A get message action is defined as:

get message(agi, agj , l) is
speech act1(agj , agi, l) or . . .or speech actk(agj, agi, l)

On the right hand side the finite set of alternative incoming messages that the
agent agi expects from the agent agj in the context of a given conversation. The
information that is actually received is obtained by looking at the effects that
occurred on agi’s mental state.

From the specifications of the interaction protocols and of the relevant speech
acts contained in the domain description, it is possible to trigger a planning
activity by executing existential queries of form Fs after p1; p2; . . . ; pm, that
intuitively amounts to determining if there is a possible execution of the enu-
merated actions after which the condition Fs holds. If the answer is positive, a

Verification of Protocol Conformance and Agent Interoperability 277

Fig. 2. AUML sequence diagram

conditional plan is returned. Queries of this kind can be given an answer by a
goal-directed proof procedure that is described in [3].

The example that we consider involves a reactive agent. The program of its
interlocutor is not given: we will suppose that it adheres to the public protocol
specification against which we will check our agent’s conformance. The example
rephrases one taken from the literature, that has been used in other proposals
(e.g. [19]) and, thus, allows a better comprehension as well as comparison. We just
set the example in a realistic context. The agent is a web service [2] that answers
queries about the movies that are played. Its interlocutor is the requester of infor-
mation (that we do not detail supposing that it respects the agreed protocol). This
protocol is described in Fig. 2 as an AUML sequence diagram [26]. The agent that
plays the role “cinema” waits for a request from another agent (if a certain movie
is played), then, it can alternatively send the requested information (yes or no) or
refuse to supply information; the protocol is ended by an acknowledgement mes-
sage from the customer to the cinema. Hereafter, we consider the implementation
of the web service of a specific cinema, written as a DyLOG communication policy.
This program has a different aim: it allows answering to a sequence of information
requests from the same customer and it never refuses an answer.

(a) get info movie(cine, customer) is
get request(cine, customer, available(Movie));
send answer(cine, customer, available(Movie));
get info movie(cine, customer)

(b) get info movie(cine, customer) is
get ack(cine, customer)

(c) send answer(cine, customer, available(Movie)) is
Bcinemaavailable(Movie)?;
inform(cine, customer, available(Movie))

(d) send answer(cine, customer, available(Movie)) is
¬Bcinemaavailable(Movie)?;
inform(cine, customer,¬available(Movie))

(e) get request(cine, customer, available(Movie)) is
request(customer, cine, available(Movie)

(f) get ack(cine, customer, ack) is
inform(customer, cine, ack)

278 M. Baldoni et al.

qS
0

qS
3

(b)

qS
1 qS

2

inform(←−−
cine)

inform(−−→cine)

refuse(−−→cine)

qP
0

qP
2

inform(−−→cine)

qP
1

(a)

inform(←−−
cine)

request(←−−
cine)request(←−−

cine)

(c)

[qP
1 , qS

1]

[dP , qS
2]

[qP
0 , qS

2] [qP
2 , qS

3]

inform(←−−
cine)inform(−−→cine)

[qP
0 , qS

0] refuse(−−→cine)

request(←−−
cine)

inform(←−−
cine)

request(←−−
cine)

[dP , qS
2]

[qP
2 , dS]

Fig. 3. (a) Policy of agent cine; (b) protocol specification; (c) Mconf automaton. Only
the part relevant to the discussion is shown.

The question that we try to answer is whether this policy is conformant to
the given protocol, and we will discuss whether another agent that plays as a
customer and that is proved conformant to the protocol will actually be able to
interoperate with this implementation of the cinema service. For what concerns
the AUML sequence diagram, we have proved in [5] that diagrams containing
only message, alternative, loop, exit, and reference to a subprotocol operators
can be represented as a right-linear grammar, that generates a regular language.
The automaton reported in Fig. 3(b) is obtained straightforwardly from this
grammar. For what concerns the implementation, by applying the results re-
ported in [5] it is possible to turn a DyLOG program in a context-free language.
This grammar captures the structure of the possible conversations disregarding
the semantics of the speech acts. When we have only right-recursion in the pro-
gram, then, the obtained grammar is right-linear. So also in this case a regular
language is obtained, hence the automaton in Fig. 3(a). Notice that all the three
automata are represented from the perspective of agent cine, so all the short no-
tation for the messages are to be interpreted as incoming or outgoing messages
w.r.t. this agent.

The protocol allows only two conversations between cine and customer (the
content of the message is not relevant in this example, so we skip it):

– request(cus-tomer, cine) inform(cine, customer) inform(customer, cine); and
– request(customer, cine) refuse(cine, customer) inform(customer, cine).

Let us denote this protocol by get info movieAUML (AUML is the specification
language).

Verification of Protocol Conformance and Agent Interoperability 279

Let us now consider an agent (cine), that is supposed to play as cinema.
This agent’s policy is described by the above DyLOG program. The agent has a
reactive behavior, that depends on the message that it receives, and its policy
allows an infinite number of conversations of any length. Let us denote this
policy by get info moviecine

DyLOG. In general, it allows all the conversations that
begin with a (possibly empty) series of exchanges of kind request(←−−

cine) followed
by inform(−−→cine), concluded by a message of kind inform(←−−

cine).
To verify its conformance to the protocol, and then state its interoperability

with other agents that respect such protocol, we need to build the Mconf au-
tomaton for the policy of cine and the protocol specification. For brevity, we
skip its construction steps and directly report Mconf in Fig. 3(c).

Let us now analyze Mconf for answering our queries. Trivially, the automaton
is complete and it accepts both languages (of the policy, L(get info moviecine

DyLOG),
and of the specification, L(get info movieAUML)), therefore, get info moviecine

DyLOG

is policy conformant to get info movieAUML. Moreover, when the agent interacts
with another agent customer whose policy is conformant to get info movieAUML,
the messages request(←−−

cine) and inform(←−−
cine) will not be received by cine in all

the possible states it expects them. The reason is simple: for receiving them it
is necessary that the interlocutor utters them, but by definition (it is confor-
mant) it will not. The fact that refuse(−−→cine) is never uttered by cine does not
compromise conformance.

5 Conclusions and Related Work

In this work we propose an approach to the verification of the conformance of
an agent’s conversation policy to a public conversation protocol, which is based
on the theory of formal languages. Differently than works like [1], where the
compliance of the agents’ communicative behavior to the protocol is verified at
run-time, we tackled the verification of a priori conformance, a property of the
policy as a whole and not of the on-going conversation only.

This problem has been studied by other researchers, the most relevant analy-
sis probably being the one by Endriss et al. and reported in [15]. Here, the
problem was faced in a logic framework; the authors introduce three degrees
of conformance, namely weak, exhaustive, and robust conformance. An agent is
weakly conformant to a protocol iff it never utters any dialogue move which is
not a legal continuation (w.r.t. the protocol) of any state of the dialogue the
agent might be in. It is exhaustively conformant to a protocol iff it is weakly
conformant to it and, for every received legal input, it will utter one of the
expected dialogue moves. It is robustly conformant iff it is exhaustively confor-
mant and for any illegal input move received it will utter a special dialogue move
(such as not-understood) indicating this violation. Under the assumption that
in their conversations the agents strictly alternate in uttering messages (ag1 tells
something to ag2 which answers to ag1 and so on), Endriss and colleagues show

280 M. Baldoni et al.

that by their approach it is possible to prove weak conformance in the case of
logic-based agents and shallow protocols1.

Our Policy conformance (Definition 10) guarantees that an agent, at any point
of its conversations, can only utter messages which are legal w.r.t. the protocol,
because of the Mconf construction step, given by rule (c). In this respect it
entails weak conformance [15], however, our notion of conformance differs from
it because it also guarantees that whatever incoming message the agent may
receive, in any conversation context, its policy will be able to handle it.

A crucial difference concerns interoperability. In our framework, given two
policies each of which is conformant to a protocol specification, their interop-
erability can be proved. Thus, we captured the expectation that conformance,
a property of the single policy w.r.t. the public protocol, should in some way
guarantee agents (legal) interoperability, while Endriss et al. do not discuss this
issue and do not formally prove that interoperability is entailed by (all or some
of) their three definitions of conformance. Moreover, we do not limit in any
way the structure of the conversations (in particular, we do not require a strict
alternation of the uttering agents).

This work is, actually, a deep revision of the work that the authors presented at
[5], where the verification of a priori conformance was faced only in the specific
case in which DyLOG [7] is used as the policy implementation language and
AUML [26] is used as the protocol specification language. Basically, in that work
the idea was to turn the problem into a problem of formal language inclusion.
The two considered languages are the set of all the possible conversations foreseen
by the protocol specification, let us denote it by L(pAUML), and the set of all
the possible conversations according to the policy of agent ag, let us denote it by
L(pag

dylog). The conformance property could then be expressed as the following
inclusion: L(pag

dylog) ⊆ L(pAUML). The current proposal is more general than
the one in [5], being independent from the implementation and specification
languages. Moreover, as we have explained in the introduction, the interpretation
of conformance as an inclusion test is too restrictive and not sufficient to express
all the desiderata connected to this term, which are, instead, well-captured by
our definitions of policy conformance.

The proposal that we have described in this paper is, actually, just a first
step of a broader research. As a first step, we needed to identify the core of the
problem, those key concepts and requirements which were necessary to capture
and express the intuition behind a priori conformance, in the perspective of
guaranteeing interoperability. Hence, the focus on interactions that involve two
partners and do not account for concurrent operations. Under such restrictions,
the choice of finite state automata fits very well and has the advantage of bearing
along decidability.

Finite state automata, despite some notational inadequacy [20], are commonly
used for representing protocols: for instance they have been used for representing
both KQML protocols [8] and FIPA protocols [17]. In [5] we have presented an

1 A protocol is shallow when the current state is sufficient to decide the next action
to perform. This is not a restriction.

Verification of Protocol Conformance and Agent Interoperability 281

algorithm for translating AUML protocol specifications in finite state automata,
focussing -on the side of sequence diagrams- on the operators used to specify
FIPA protocols, which are: message, alternative, loop, exit, and reference to
a sub-protocol. Some concrete example of application to the specification of
complex protocols are the English Auction [27] and the Contract Net Protocol
[18]. As a future work we mean to study an extension to policies (and protocols)
that involve many partners as well as an extension to policies (and protocols)
that use concurrent operators. For the latter problem in the literature there are
well studied formalisms such as process algebras that can be used for representing
protocols involving concurrency elements. It could be interesting to study how
to import on the new basis the lessons learnt in the current research.

Concerning works that address the problem of verifying the conformance in
systems of communicating agents by using model checking techniques (e.g. [19]),
to the best of our knowledge, the issue of interoperability is not tackled or, at
least, this does not clearly emerge. For instance, Giordano, Martelli and Schwind
[19] based their approach on the use of a dynamic linear time logic. Protocols
are specified, according to a social approach, by means of temporal constraints
representing permissions and commitments. Following [21] the paper shows how
to prove that an agent is compliant with a protocol, given the program executed
by the agent, by assuming that all other agents participating in the conversa-
tion are compliant with the protocol, i.e. they respect their permissions and
commitments. However, this approach does not guarantee interoperability.

Techniques for proving if the local agent’s policy conforms to the abstract
protocol specification can have an interesting and natural application in the web
service field. In fact a need of distinguishing a global and a local view of the
interaction is recently emerging in the area of Service Oriented Architectures.
In this case there is a distinction between the choreography of a set of peers, i.e.
a global specification of the way a group of peers interact, and the concept of
behavioral interface, seen as the specification of the interaction from the point
of view of an individual peer. The recent W3C proposal of the choreography
language WS-CDL [30] is emblematic. In fact the idea behind it is to introduce
specific choreography languages as languages for a high-level specification, cap-
tured from a global perspective, distinguishing this representation from the other
two, that will be based upon ad hoc languages (like BPEL or ebXML).

Taking this perspective, choreographies and agent interaction protocols un-
doubtedly share a common purpose. In fact, they both aim at expressing global
interaction protocols, i.e. rules that define the global behavior of a system of
cooperating parties. The respect of these rules guarantees the interoperability
of the parties (i.e. the capability of actually producing an interaction), and that
the interactions will satisfy given requirements. One problem that becomes cru-
cial is the development of formal methods for verifying if the behavior of a peer
respects a choreography [11, 12]. On this line, in [6] we moved the first steps
toward the application of the conformance test proposed in the present paper
for verifying at design time (a priori) that the internal processes of a web service
enable it to participate appropriately in the interaction.

282 M. Baldoni et al.

Acknowledgement. The authors would like to thank the anonimous reviewers
for their helpful suggestions and Francesca Toni for the discussion that we had
in London.

References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
ACM SAC 2004, pages 72–78. ACM, 2004.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and

others: communicating agents in a modal action logic. In ICTCS’2003, volume
2841 of LNCS, pages 228–241. Springer, October 2003.

4. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction
protocols for customizing web service selection and composition. Journal of Logic
and Algebraic Programming, Special issue on Web Services and Formal Methods,
2006. to appear.

5. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying proto-
col conformance for logic-based communicating agents. In Proc. of 5th Int. Work-
shop on Computational Logic in Multi-Agent Systems, CLIMA V, number 3487 in
LNCS, pages 192–212. Springer, 2005.

6. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the
conformance of web services to global interaction protocols: a first step. In Proc. of
2nd Int. Workshop on Web Services and Formal Methods, WS-FM 2005, number
3670 in LNCS, pages 257–271, 2005.

7. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

8. M. Barbuceanu and M. Fox. Cool: A language for describing coordination in mul-
tiagent systems. In Proceedings International Conference on Multi Agent Systems
(ICMAS’95), pages 17–24. MIT Press, Massachusetts, USA, 1995.

9. J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational
model for conversation policies for agent communication. In Pre-Proc. of CLIMA
V, number 3487 in LNCS, pages 178–195. Springer, 2004.

10. R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking AgentS-
peak. In Proc. of 2nd International Joint Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS 2003, 2003.

11. M. Bravetti, L. Kloul, and G. Zavattaro, editors. Proc. of the 2nd International
Workshop on Web Services and Formal Methods (WS-FM 2005), number 3670 in
LNCS. Springer, 2005.

12. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
Orchestration: a synergic approach for system design. In Proc. the 3rd Int. Conf.
on Service Oriented Computing, 2005.

13. L. Cabac and D. Moldt. Formal semantics for auml agent interaction protocol
diagrams. In Proc. of AOSE 2004, pages 47–61, 2004.

14. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In G. Gottlob and T. Walsh, editors, Proc. of IJCAI-2003, pages 679–684.
Morgan Kaufmann Publishers, August 2003.

Verification of Protocol Conformance and Agent Interoperability 283

15. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication
protocols. In Advances in agent communication languages, volume 2922 of LNAI,
pages 91–107. Springer-Verlag, 2004. invited contribution.

16. R. Eshuis and R. Wieringa. Tool support for verifying UML activity diagrams.
IEEE Trans. on Software Eng., 7(30), 2004.

17. FIPA. Fipa 97, specification part 2: Agent communication language. Technical
report, FIPA (Foundation for Intelligent Physical Agents), November 1997.

18. L. Giordano, A. Martelli, and C. Schwind. Specifying and verifying interaction
protocols in a temporal action logic. Journal of Applied Logic (Special issue on
Logic Based Agent Verification). Accepted for publication.

19. L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by
model checking in a temporal action logic. In JELIA’04, volume 3229 of LNAI,
pages 57–69, Lisbon, Portugal, 2004. Springer.

20. F. Guerin. Specifying Agent Communication Languages. PhD thesis, Imperial
College, London, April 2002.

21. F. Guerin and J. Pitt. Verification and Compliance Testing. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 98–
112. Springer, 2003.

22. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Company, 1979.

23. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 179–
193. Springer, 2003.

24. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-
velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.

25. N. Maudet and B. Chaib-draa. Commitment-based and dialogue-based protocols:
new trends in agent communication languages. Knowledge engineering review,
17(2), 2002.

26. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Proc. of
the Agent-Oriented Information System Workshop at AAAI’00. 2000.

27. J. Pitt, F. Guerin, and C. Stergiou. Protocols and intentional specifications of
multi-party agent conversations for brokerage and auctions. In Autonomous Agents
2000, pages 269–276, Barcelona, 2000. ACM Prtess.

28. M. P. Singh. A social semantics for agent communication languages. In Proc. of
IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.

29. C. Walton. Model checking agent dialogues. In J. Leite, A. Omicini, P. Torroni,
and P. Yolum, editors, Declarative agent languages and technologies II, DALT 2004,
number 3476 in LNCS, pages 132–147. Springer, 2005.

30. WS-CDL. http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/. 2004.

Conformance and Interoperability
in Open Enviroments

Matteo Baldoni, Cristina Baroglio,
Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

Email: {baldoni,baroglio,mrt,patti}@di.unito.it

Abstract— An important issue, in open environments like the
web, is guaranteeing the interoperability of a set of services.
When the interaction scheme that the services should follow is
given (e.g. as a choreography or as an interaction protocol), it
becomes possible to verify, before the interaction takes place,
if the interactive behavior of a service (e.g. a BPEL process
specification) respects it. This verification is known as “confor-
mance test”. Recently some attempts have been done for defining
conformance tests w.r.t. a protocol but these approaches fail
in capturing the very nature of interoperability, turning out
to be too restrictive. In this work we give a representation of
protocol, based on message exchange and on finite state automata,
and we focus on those properties that are essential to the
verification the interoperability of a set of services. In particular,
we define a conformance test that can guarantee, a priori, the
interoperability of a set of services by verifying properties of the
single service against the protocol. This is particularly relevant in
open environments, where services are identified and composed
on demand and dynamically, and the system as a whole cannot
be analyzed.

I. I NTRODUCTION

In this work we face the problem of verifying the in-
teroperability of a set of peers by exploiting an abstract
description of the desired interaction. On the one hand, we
will have an interaction protocol (possibly expressed by a
choreography), capturing the global interaction of a desired
system of services; on the other, we will have a set of service
implementations which should be used to assemble the system.
The protocol is a specification of the desired interaction,
as thus, it might be used for defining several systems of
services [3]. In particular, it contains a characterization of
the variousroles played by the services [6]. In our view, a
role specification is not the exact specification of a process
of interest, rather it identifies aset of possible processes, all
those whose evolutions respect the dictates given by the role.
In an open environment, the introduction of a new peer in an
execution context will be determined provided that it satisfies
the protocol that characterizes such an execution context; as
long as the new entity satisfies the rules, the interoperability
with the other components of the system is guaranteed.

The computational model to which web services are inspired
is that ofdistributed objects[10]. An object cannot refuse to
execute a method which is invoked on it and that is contained
in its public interface, in the very same way as a service cannot
refuse to execute over an invocation that respects its public

interface (although it can refuse the answer). This, however,
is not the only possible model of execution. In multi-agent
systems, for instance, an agent sending a request message to
another agent cannot be certain that it will ever be answered,
unless the interaction is ruled by a protocol. The protocol
plays, in a way, the role of the public interface: an agent
conforming to a protocol must necessarily answer and must be
able to handle messages sent by other agents in the context of
the protocol itself. The difference between the case of objects
and the case of protocols is that the protocol also defines an
“execution context” in which using messages. Therefore, the
set of messages that it is possible to use varies depending
on the point at which the execution has arrived. In a way,
the protocol is adynamic interfacethat defines messages
in the context of the occurring interaction, thus ruling this
interaction. On the other hand, the user of an object is not
obliged to use all of the methods offered in the public interface
and it can implement more methods. The same holds when
protocols are used to norm the interaction. Generally speaking,
only part of the protocol will be used in an entity’s interaction
with another and they can understand more messages than
the one forseen by the protocol. Moreover, we will assume
that the initiative is taken from the entity that plays as a
sender, which will commit to sending a specific message out
of its set of alternatives. The receiver will simply execute
the reception of the message. Of course, the senders should
send a message that its counterpart can understand. For all
these reasons, performing the conformance test is analogous
to verifying at compilation time (that is, a priori) if a class
implements an interface in a correct way and to execute a
static typechecking.

Sticking to a specification, on the other hand, does not
mean that the service must doall that the role specification
defines; indeed, a role specification is just a formal definition
of what is lawful to say or to expect at any given moment
of the interaction. Taking this observation into account we
need to define some means for verifying that a single service
implementation comforms to the specification of the role in the
protocol that it means to play [14]. The idea is that if a service
passes the conformance test it will be able to interact with a
set of other services, equally proved individually conformant
to the other roles in the protocol, in a way that respects the
rules defined in the protocol itself.

A typical approach to the verification that a service im-
plementation respects a role definition is to verify whether
the execution traces of the service belong to the protocol [1],
[12], [7]. This test, however, does not consider processes with
different branching structures. Another approach, that instead
takes this case into account, is to apply bisimulation and say
that the implementation is conformant if it is bisimilar to
its role or, more generally, that the composition of a set of
policies is bisimilar to the composition of a set of roles [9],
[18]. Bisimulation [16], however, does not take into account
the fact that the implementor’s decisions of cutting some
interaction path not necessarily compromise the interaction.
Many services that respect the intuitions given above will not
be bisimilar to the specification. Nevertheless, it would be very
restrictive to say that they are not conformant (see Section III-
A). Thus, in order to perform the conformance test we need
a softer test, a test that accepts all the processes contained in
a space defined by the role. In this work we provide such a
test (Section III). This proposal differs from previous work
that we have done on conformance [7], [8] in various aspects.
First of all, we can now tackle protocols that contain an
arbitrary (though finite) number of roles. Second, we account
also for the case of policies and roles which produce the same
interactions but have different branching structures. This case
could not be handled in the previous framework due to the
fact that we based it exclusively on a trace semantics.

II. PROTOCOLS, POLICIES, AND CONVERSATIONS

A conversation policyis a program that defines the com-
municative behavior of an interactive entity, e.g. a service,
implemented in some programming language [3]. A conversa-
tion protocol specifies the desired communicative behavior of
a set of interactive entities. More specifically, a conversation
protocol specifies the sequences of messages (also called
speech acts) that can possibly be exchanged by the involved
parties, and that we consider as lawful.

In languages that account for communication, speech acts
often have the formm(as, ar, l), wherem is the kind of
message, or performative,as (sender) andar (receiver) are
two interactive entities andl is the message content. In the
following analysis it is important to distinguish the incoming
messages from the outgoing messages w.r.t a role of a protocol
or a policy. We will write m? (incoming message) and m!
(outgoing message) when the receiver or the utterer and the
content of the message is clear from the context or they are
not relevant. So, for instance,m(as, ar, l) is written asm?
from the point of view ofar, andm! from the point of view
of the sender. By the termconversationwe will, then, denote
a sequence of speech acts that is a dialogue of a set of parties.

Both a protocol and a policy can be seen as sets of
conversations. In the case of the protocol, it is intuitive that
it will be the set of all the possible conversations allowed by
its specification among the partners. In the case of the single
policy, it will be the set of the possible conversations that the
entity can carry on according to its implementing program.
Although at execution time, depending on the interlocutor

and on the circumstances, only one conversation at a time
will actually be expressed, in order to verify conformancea
priori we need to consider them all as a set. It is important to
remark before proceeding that other proposal, e.g. [2], focus
on a different kind of conformance:run-time conformance,
in which only the ongoing conversation is checked against a
protocol.

Let us then introduce a formal representation of policies
and protocols. We will usefinite state automata(FSA). This
choice, though simple, is the same used by the well-known
verification system SPIN [15], whose notation we adopt.
FSA will be used for representing individual processes that
exchange messages with other processes. Therefore, FSA will
be used both for representing theroles of a protocol, i.e. the
abstract descriptions of the interacting parties, as well as for
representing the policies of specific entities involved in the
interaction. In this work we do not consider the translation
process necessary to turn a protocol (e.g. a WS-CDL choreog-
raphy) or an entity’s policy (e.g. a BPEL process) in a FSA;
our focus is, in fact, conformance and interoperability. It is
possible to find in the literature some works that do this kind
of translations. An example is [12].

Definition 2.1 (Finite State Automaton):A finite state au-
tomaton is a tuple(S, s0, L, T, F), whereS is a finite set of
states,s0 ∈ S is a distinguished initial state,L is a finite set
of labels,T ⊆ (S ×L× S) is a set of transitions,F ∈ S is a
set of final states.
Similarly to [15] we will denote by the “dot” notation the
components of a FSA, for example we useA.s to denote the
states that belongs to the automatonA. The definition of run
is taken from [15].

Definition 2.2 (Runs and strings):A run σ of a FSA
(S, s0, L, T, F) is an ordered, possibly infinite, set of transi-
tions (a sequence)(s0, l0, s1), (s1, l1, s2), (s2, l2, s3), . . . such
that ∀i ≥ 0, (si, li, si+1) ∈ T , while the sequencel0l1 . . . is
the corresponding stringσ.

Definition 2.3 (Acceptance):An accepting run of a finite
state automaton(S, s0, L, T, F) is a finite runσ in which the
final transition(sn−1, ln−1, sn) has the property thatsn ∈ F .
The corresponding stringσ is an accepted string.

Given a FSAA, we say that a stateA.s1 ∈ A.S is alive if
there exists a finite run(s1, l1, s2), . . . , (sn−1, ln−1, sn) and
sn ∈ A.F . Moreover, we will writeA1 ⊆ A2 iff every string
of A1 is also a string ofA2.

In order to represent compositions of policies or of individ-
ual protocol roles we need to introduce the notions offreeand
of synchronousproduct. These definitions are an adaptation
to the problem that we are tackling of the analogous ones
presented in [4] for Finite Transition Systems.

Definition 2.4 (Free product):Let Ai, i = 1, . . . , n, be n
FSA’s. The free productA1 × · · · × An is the FSAA =
(S, s0, L, T, F) defined by:

• S is the setA1.S × · · · ×An.S;
• s0 is the tuple(A1.s0, . . . , An.s0);
• L is the setA1.L× · · · ×An.L;

• T is the set of tuples
((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′
1, . . . , An.s

′
n))

such that(Ai.si, li, Ai.s′i) ∈ Ai.T , for i = 1, . . . , n; and
• F is the set of tuples(A1.s1, . . . , An.sn) ∈ A.S such

that si ∈ Ai.F , for i = 1, . . . , n.
We will assume, from now on, that every FSAA has an

emptytransition (s, ε, s) for every states ∈ A.S. When the
finite set of labelsL used in a FSA is a set ofspeech acts,
strings will representconversations.

Definition 2.5 (Synchronous product):Let Ai,
i = 1, . . . , n, be n FSA’s. The synchronous productof
the Ai’s, written A1 ⊗ · · · ⊗ An, is the FSA obtained as
the free product of theAi’s containing only the transitions
((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′
1, . . . , An.s

′
n)) such

that there existi and j, 1 ≤ i 6= j ≤ n, li = m!, lj = m?,
and for anyk not equal toi and j, lk = ε.
The synchronous product allows a system that exchanges mes-
sages to be represented. It is worth noting that a synchronous
product does not imply that messages will be exchanged in
a synchronous way; it simply represents a message exchange
without any assumption on how the exchange is carried on.

In order to represent a protocol, we use the synchronous
product of the set of such FSA’s associated with each role
(where each FSA represents the communicative behavior of
the role). Moreover, we will assume that the automata that
compound the synchronous product have some “good prop-
erties”, which meet the commonly shared intuitions behind
protocols. In particular, we assume that for the set of such
automata the following properties hold:

1) any message that can possibly be sent, at any point of
the execution, will be handled by one of its interlocutor;

2) whatever point of conversation has been reached, there
is a way to bring it to an end.

An arbitrary synchronous product ofn FSA’s might not meet
these requirements, which can, however, be verified by using
automated systems, like SPIN [15].

Note that protocol specification languages, like UML se-
quence (activity) diagrams and automata [17], naturally follow
these requirements: an arrow starts from the lifeline of a role,
ending into the lifeline of another role, and thus corresponds to
an outgoing or to an incoming message depending on the point
of view. Making an analogy with the computational model of
distributed objects, one could say that the only messages that
are sent are those which can be understood. Moreover, usually
protocols contain finite conversations.

We will say that a conversation islegal w.r.t. a protocolif
it respects the specifications given by the protocol, i.e. if it is
an accepted string of the protocol.

III. I NTEROPERABILITY AND CONFORMANCE TEST

We are now in position to explain, with the help of a few
simple examples, the intuition behind the terms “conformance”
and “interoperability”, that we will, then, formalize. Byin-
teroperability we mean the capability of a set of entities of
actually producing a conversation when interacting with one
another [5]. Interoperability is adesired propertyof a system

of interactive entities and its verification is fundamental in
order to understand whether the system works. Such a test
passes through the analysis of all the entities involved in the
interaction.

Fig. 1. Example of the summer school.

Figure 1 shows an intuitive example, in which a group of
persons wish to attend a summer school. Each of them can
speak and understand different languages. For instance, Jan
can speak English, Dutch, and French. The school registration
form requires the interested attendee to speak and understand
English, which is the official language of the school. This
requirement allows a person to decide if it will be in condition
to interact with the other participants before attending the
school. So, for instance, Matteo, who speaks Italian and could
therefore interact with Guido, will not be in condition to
understand the other participants. Jan and Leon could interact
by speaking Ducth, however, since they also know English,
they will be able to interact with all the other attendees and
so they will be in condition to participate. The fact that they
understand other languages besides the one required by the
“school protocol” does not compromise their interoperability
with the others. In fact, within the context of the school
everybody will speak English with them. Interoperability is
compromised when one does not understand (part of) the
protocol (e.g. Matteo) or when one decides to speak a language
that is not agreed (e.g. Leon when speaking Dutch).

In an open system, however, it is quite unlikely to have a
global view of the system either because it is not possible
to read part of the necessary information (e.g. some services
do not publish their behavior) or because the interactive
entities are identified at different moments, when necessary.
Protocols are adopted to solve such problems, in fact, having
an interaction schema allows thedistribution of the tests in
time, by checking a single entity at a time against the role
that it should play. The protocol, by its own nature guarantees
the interoperability of the roles that are part of it. One might
argue why we do not simply verify the system obtained by

substituting the policy instead of its role within the protocol
and, then, check whether any message that can be sent will be
handled by some of the interlocutor roles, bringing to an end
the conversations. Actually, this solution presents some flaws,
as the following counter-example proves. Let us consider a
protocol with three roles:A1 sendsm1 to A2, A2 waits
for m1 and then it waits form2, andA3 sendsm2 to A2.
Let us know substitute to roleA2 the policy which, first,
waits for m2 and then it waits form1. The three partners
will perfectly interoperate and successfully conclude their
conversations but the conversation that is produced is not legal
w.r.t. the protocol. In protocol-based systems, the proof of the
interoperability of an entity with others, obtained by checking
the communicative behavior of the entity against the rules of
the system (i.e. against aninteraction protocolitself), is known
as conformance test. Intuitively, this test must guarantee the
following definition of interoperability.

Definition 3.1 (Interoperability w.r.t. an interaction protocol):
Interoperability w.r.t. an interaction protocol is the capability
of a set of entities of producing a conversation that is legal
w.r.t. the protocol.
Let us now consider a given service that should play a role
in a protocol. In order to include it in the interaction we need
to understand if it will be able to interact with the possible
players of the other roles. If we assume that the other players
are conformant to their respective roles, we can represent
them by the roles themselves. Roles, by the definition of
protocol, are interoperable. Therefore, in order to prove the
interoperability of our service, it will be sufficient to prove
for it the “good properties” of its role. First of all, we should
prove that its policy does not send messages that the others
cannot understand, which means that it will not send messages
that are not accounted for by the role. Moreover, we should
prove that it can tackle every incoming message that the other
roles might send to it, which means that it must be able to
handle all the incoming messages handled by the role. Another
important property is that whatever point of conversation has
been reached, there is a way to bring it to an end. In practice,
if a role can bring to an end a conversation in which it has
been engaged, so must do the service. To summarize, in order
to check a service interoperability it will be sufficient to check
its conformance w.r.t. the desired roleand this check will
guarantee that the service will be able to interact with services
equally, and separately, proved conformant to the other roles.
This, nevertheless, does not mean that the policy of the service
must be a precise “copy” of the role.

A. Expectations for interoperability

Let us now discuss some typical cases in which a policy and
a role specification that differ in various ways are compared
in order to decide if the policy conforms to the role so as
to guarantee its interoperability with its future interlocutors
that will play the other roles in the protocol. With reference
to Figure 2, let us begin with considering the case reported
in row (a): here, the service can possibly utter a message
m3 that is not foreseen by the role specification. Trivially,

m2!

m3!

m1?

No!
m2!

m1?
Ok!

m2?

m3?

m1!

Ok!
m2?

m1!

m2!
m1?

m2!

m4!

m1?

m2?
m1!

m2?

m4?

m1!

(a)

(b)

(c)

(d)

6≤

≤

≤

6≤

Policy Protocol role

No! Missing edge

Fig. 2. A set of cases that exemplifies our expectations about a conformant
policy: cases (b) and (c) do not compromise interoperability, hence they should
pass the conformance test; cases (a) and (d) instead should not pass the
conformance test.

this policy is not conformantto the protocol because the
service might send a message that cannot be handled by any
interlocutor that conforms to the protocol. The symmetric case
in which the policy accounts for less outgoing messages than
the role specification (Figure 2, row (b)) is, instead, legal. The
reason is that at any point of its conversations the entity will
anyway always utter only messages that the entities playing
the other roles will surely understand. Hence, interoperability
is preserved. The restriction of the set of possible alternatives
(w.r.t. the protocol) depends on the implementor’s own criteria.

Let us now consider the case reported in Figure 2, row
(c). Here, the service policy accounts for two conversations in
which, after uttering a messagem1, the entity expects one
of the two messagesm2 or m3. Let us also suppose that
the protocol specification only allows the first conversation,
i.e. that the only possible incoming message ism2. When
the entity will interact with another that is conformant to the
protocol, the messagem3 will never be received because the
other entity will never utter it. So, in this case, we would
like the a priori conformance test to accept the policy as
conformantto the specification.

Talking about incoming messages, let us now consider the
symmetric case (Figure 2, row (d)), in which theprotocol
specificationstates that after an outgoing messagem1, an
answerm2 or m4 will be received, while the policy accounts
only for the incoming messagem2. In this case, the expec-
tation is that the policy isnot conformantbecause there is
a possible incoming message (the one with answerm4) that
can be enacted by theinterlocutor, which, however, cannot be
handled by the policy. This compromises interoperability.

To summarize, at every point of a conversation, we expect
that a conformant policy never utters speech acts that are not
expected, according to the protocol, and we also expect it to be
able to handle any message that can possibly be received, once

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

m3?

m2?
m1!

m3!

m2!
m1!

No!

m3!

m2!
m1!

m3?

m2?
m1!

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

(a)

(b)

(c)

(d)

Policy

≤

6≤

6≤

≤

Protocol role

No! Missing edge

No! Missing edge

Fig. 3. A set of cases that exemplifies our expectations about a conformant
policy: differently than in Figure 2, for every row, the policy and the role
produce the same conversations but the structure of their implementations
differ.

again according to the protocol. However, the policy is not
obliged to foresee (at every point of conversation) an outgoing
message for every alternative included in the protocol but it
must foresee at least one of them if this is necessary to proceed
with the conversation. Trivially, in the example of row (b),
a policy containing only the conversationm1? (not followed
either bym2! or by m4!) would not beconformant.

Let us now consider a completely different set of situations,
in which the “structure” of the policy implemented and the
structure of the role specification are taken into account. These
situations are taken from the literature on communicating
processes [13]. Figure 3 reports a set of cases in which the role
description and the policy allow thesame conversationsbut
their structure differs: in rows (a) and (c) the policy decides
which message to send (receive, respectively) afterm1 from
the very beginning, while in the protocol this decision is taken
afterm1 is sent. In row (b) and (d) the situation is inverted.

The case of row (a) does not compromise conformance in
the same way as the case reported at row (b) of Figure 2
does not: after a non-deterministic choice the set of alternative
outgoing messages is restricted but in both cases only legal
messages that can be handled by the interlocutor will be sent.
The analogous case reported in row (c), concerning incoming
messages, instead, compromises the conformance. In fact, after
the non-deterministic step the policy might receive a message
that it cannot handle, similarly to row (d) of Figure 2.

The case of row (b), Figure 3, compromises the confor-
mance because after the non-deterministic choice the role
specification allows a single outgoing message with no alterna-
tives. The policy, instead, might utter one out of two alternative
messages (similarly to row (a) of Figure 2). Finally, the case

of row (d) does not compromise the conformance, following
what reported in Figure 2, row (c).

B. Conformance and interoperability

In this section we define a test, for checking conformance,
that is derived from the observations above. A first consider-
ation is that a conformance testis not an inclusion testw.r.t.
the set of possible conversations that are produced. In fact,
for instance, in row (d) of Figure 2 the policy produces a
subset of the conversations produced by the role specification
but interoperability is not guaranteed. Instead, if we consider
row (c) in the same figure, the set of conversation traces,
produced by the policy, is a superset of the one produced
by the protocol; despite this, interoperability is guaranteed.
A second consideration is that a conformance test is not a
bisimulation test w.r.t. the role specification. Actually, the
(bi)simulation-based test defined in concurrency theory [16]
is too strict, and it imposes constraints, that would exclude
policies which instead would be able to interoperate, within
the context given by the protocol specification. In particular,
all the cases reported in Figure 3 would not be considered
as conformant because they are all pairs of processes with
different branching structures. Despite this, we would like our
test to recognize cases (a) and (d) as conformant because they
do not compromise interoperability.

The solution that we propose is inspired by (bi)simulation,
but it distinguishes the ways in which incoming and outgoing
messages are handled, when a policy is compared to a role1.
In the following, we will use “A1 ≤ A2” to denote the fact
thatA1 conforms toA2. This choice might seem contradictory
after the previous discussion, in fact, in generalA1 ≤ A2 does
not entailA1 ⊆ A2. However, with symbol “≤” we capture the
fact thatA1 will actually produce a subset of the conversations
forseen by the role,when interacting with entities that play
the other roles in the protocol(see Propositions 3.3 and 3.4).
This is what we expect from a conformant policy and from
our definition of interoperability. LetA an FSA, let us denote
by Succ(l, s) the set of states{s′ | (s, l, s′) ∈ A.T}.

Definition 3.2 (Conformant simulation):Given two FSA’s
A1 and A2, A1 is a conformant simulationof A2, written
A1 ≤ A2 iff there is a binary relationR betweenA1 andA2

such that

1) A1.s0RA2.s0;
2) if siRsj , wheresi ∈ A1.S andsj ∈ A2.S, then

a) for every (si,m!, si+1) ∈ A1.T , Succ(m!, sj) 6= ∅
andsi+1Rs′ for everys′ ∈ Succ(m!, sj);

b) for every(sj ,m?, sj+1) ∈ A2.T , Succ(m?, si) 6= ∅
andsj+1Rs′ for everys′ ∈ Succ(m?, si);

Particularly relevant is the case in whichA2 is a role in
a protocol andA1 is a policy implementation. Notice that,
in this case, conformance is defined only w.r.t. the role that
the single policy implements,independentlyfrom the rest of
the protocol. As anticipated above, Definition 3.2 does not

1All proofs are omitted for lack of space, they will be supplied on demand.

imply the fact that “A1 ≤ A2 entailsA1 ⊆ A2”. Instead, the
following proposition holds.

Proposition 3.3:LetA1⊗· · ·⊗Ai⊗· · ·⊗An be a protocol,
andA′i a policy such thatA′i ≤ Ai, thenA1⊗· · ·⊗A′i⊗· · ·⊗
An ⊆ A1 ⊗ · · · ⊗Ai ⊗ · · · ⊗An.
This proposition catches the intuition that a conformant policy
is able to produce a subset of the legal conversations defined
by the protocol but only when it is executed in the context
given by the protocol.

The above proposition can be generalized in the following
way. Here we consider a set of policies that have been individ-
ually proved as being conformant simulations of the various
roles in a protocol. The property states that the dialogues that
such policies can produce will be legalw.r.t. the protocol.

Proposition 3.4:Let A1 ⊗ · · · ⊗ An be a protocol and let
A′1, . . . , A

′
n ben policies such thatA′i ≤ Ai, for i = 1, . . . , n,

thenA′1 ⊗ · · · ⊗A′n ⊆ A1 ⊗ · · · ⊗An
In order to prove interoperability we need to prove that our
policies will actually produce a conversation when interacting,
while so far we have only proved that if a conversation will
be generated, it will be legal. By assumption, in a protocol
it is always possible to conclude a conversation whatever the
point at which the interaction arrived. We expect a similar
property to hold also for a set of policies that have been
proved conformant to the roles of a protocol. The relation≤
is too weak, so we need to introduce the notion ofcomplete
conformant simulation.

Definition 3.5 (Complete conformant simulation):Given
two FSA’s A1 and A2 we say thatA1 is a complete
conformant simulationof A2, writtenA1 £ A2, iff there is a
A1 is a conformant simulation ofA2 under a binary relation
R and

• for all si ∈ A1.F such thatsiRsj , thensj ∈ A2.F ;
• for all sj ∈ A2.S such thatsj is alive andsiRsj , si ∈
A1.S, thensi is alive.

Now, we are in the position to give the following fundamental
result.

Theorem 3.6 (Interoperability):Let A1 ⊗ · · · ⊗ An be a
protocol and letA′1, . . . , A

′
n ben policies such thatA′i £Ai,

for i = 1, . . . , n. For any common stringσ′ of A′1⊗ · · · ⊗A′n
andA1 ⊗ · · · ⊗ An there is a runσ′σ′′ such thatσ′σ′′ is an
accepted string ofA′1 ⊗ · · · ⊗A′n.
Intuitively, whenever two policies, that have independently
been proved conformant to the two roles of a protocol, start
an interaction, thanks to Proposition 3.4, they will be able
to conclude their interaction producing a legal accepted run.
Therefore, Theorem 3.6 implies Definition 3.1 (interoperabil-
ity).

IV. CONCLUSIONS AND RELATED WORKS

In this work we have given a definition of conformance
and of interoperability that is suitable to application in open
environments, like the web. Protocols have been formalized
in the simplest possible way (by means of FSA) to capture
the essence of interoperability and to define a fine-grain
conformance test.

The issue of conformance is widely studied in the literature
in different research fields, like multi-agent systems (MAS)
and service-oriented computing (SOA). In particular, in the
area of MAS, in [7], [5] we have proposed two preliminary
versions of the current proposal, the former, based on a
trace semantics, consisting in an inclusione test, the latter,
disregarding the case of different branching structures. The
second technique was also adapted to web services [8]. Both
works were limited to protocols with only two roles while,
by means of the framework presented in this paper we can
deal with protocols with an arbitrary finite number of roles.
Inspired to this work the proposal in [1]: here an abductive
framework is used to verify the conformance of services to
a choreography with any number of roles. The limit of this
work is that it does not consider the cases in which policies
and roles have different branching structures. The first proposal
of a formal notion of conformance in a declarative setting is
due to Endrisset al. [11], the authors, however, do not prove
any relation between their definitions of conformance and
interoperability. Moreover, they consider protocols in which
two partners strictly alternate in uttering messages.

In the SOA research field, conformance has been discussed
by Fosteret al. [12], who defined a system that translates
choreographies and orchestrations in labeled transition systems
so that it becomes possible to apply model checking techniques
and verify properties of theirs. In particular, the system can
check if a service composition complies with the rules of
a choreography by equivalent interaction traces. Violations
are highlighted back to the engineer. Once again, as we
discussed, basing on traces can be too much restrictive. In
[9], instead, “conformability bisimulation” is defined, a variant
of the notion of bisimulation. This is the only work that
we have found in which different branching structures are
considered but, unfortunately, the test is too strong. In fact,
with reference to Figure 2, it excludes the cases (b) and (c),
and it also excludes cases (a) and (d) from Figure 3, which
do not compromise interoperability. A recent proposal, in this
same line, is [18], which suffers of the same limitations.

1) Acknowledgements.:This research has partially been
funded by the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Frame-
work Programme project REWERSE number 506779 (cf.
http://rewerse.net), and it has also been supported by MIUR
PRIN 2005 “Specification and verification of agent interaction
protocols” national project.

REFERENCES

[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and M. Mon-
tali, “An abductive framework for a-priori verification of web services,”
in Principles and Practice of Declarative Programming, PPDP’06).
ACM Press, 2006.

[2] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello,
“Specification and verification of agent interaction protocols in a logic-
based system,” inACM SAC 2004. ACM, 2004, pp. 72–78.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services.
Springer, 2004.

[4] A. Arnold, Finite Transition Systems. Pearson Education, 1994.

[5] M. Baldoni, C. Baroglio, A. Martelli, and Patti, “Verification of protocol
conformance and agent interoperability,” inPost-Proc. of CLIMA VI, ser.
LNCS State-of-the-Art Survey, vol. 3900. Springer, 2006, pp. 265–283.

[6] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and compo-
sition,” J. of Logic and Alg. Progr., special issue on Web Services and
Formal Methods, 2006, to appear.

[7] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Ver-
ifying protocol conformance for logic-based communicating agents,” in
Proc. of CLIMA V, ser. LNCS, no. 3487. Springer, 2005, pp. 192–212.

[8] ——, “Verifying the conformance of web services to global interaction
protocols: a first step,” inProc. of WS-FM 2005, ser. LNCS. Springer,
September, 2005, vol. 3670, pp. 257–271.

[9] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and orchestration: a synergic approach for system design,” in
Proc. of 4th International Conference on Service Oriented Computing
(ICSOC 2005), 2005.

[10] B. Eckel,Thinking in Java. Prentice Hall, 2005.
[11] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “Logic-based agent com-

munication protocols,” inAdvances in agent communication languages,
ser. LNAI, vol. 2922. Springer-Verlag, 2004, pp. 91–107, invited
contribution.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis of
obligations in web service choreography,” inProc. of IEEE International
Conference on Internet&Web Applications and Services 2006, 2006.

[13] R. v. Glabbeek, “Bisimulation,” Encyclopedia of Distributed Com-
puting (J.E. Urban & P. Dasgupta, eds.), Kluwer, 2000, available at
http://Boole.stanford.edu/pub/DVI/bis.dvi.gzz .

[14] F. Guerin and J. Pitt, “Verification and Compliance Testing,” inCom-
munication in Multiagent Systems, ser. LNAI, H. Huget, Ed., vol. 2650.
Springer, 2003, pp. 98–112.

[15] G. J. Holzmann,The SPIN Model Checker : Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[16] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[17] OMG, “Unified modeling language: Superstructure,” 2005.
[18] X. Zhao, H. Yang, and Z. Qui, “Towards the formal model and

verification of web service choreography description language,” inProc.
of WS-FM 2006, 2006.

	Executive summary
	Policies as conversations
	Declarative representations of policies
	Reasoning on policies for pursueing goals
	Capabilities
	Interoperability
	Conclusion
	Appendix

