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Chapter 1

Outline of this Deliverable

Efficient evaluation of query languages has long been a core topic of database research. For Web
query languages such as Xcerpt, however, many of the questions studied previously for traditional,
centralized, relational databases and query languages have to be asked again and known answers
affirmed, adapted, or entirely new answers developed. This deliverable presents in two parts some
answers for efficient evaluation of Xcerpt, a novel rule-based, reasoning-aware query language for
semi-structured data such as XML and RDF. These answers are focused on (a) an efficient data
structures for Xcerpt’s simulation unification, (b) a preliminary algebra utilising this data structure,
and (c) algebraic construction of semi-structured query results.

The deliverable is divided in two parts: The first part discusses a proposal for a data structure,
near-optimal in memory and time, for storing intermediary results during evaluation of conjunctive
queries against semi-structured data. This part of the deliverable is based on a recent paper at the
ACM Int’l. Workshop on “Web Information and Data Management” (WIDM 2006). The second part
of the deliverable focuses on an algebra and abstract machine for Xcerpt’s simulation unification.
The discussed operators present a preliminary set of operators that utilize the memoization matrix
introduced in the first part for efficient evaluation.

Members of I4 are currently working on a further refinement of both the data structure (to optain
optimal memory and time over all cases of tree and graph data) and the algebra. In particular the
latter has been substantially revised. More detailed results will be published in further deliverables in
year 4 of REWERSE.
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Theory
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1.1 Introduction

Semi-structured data in the form of XML or RDF nowadays dominates data representation and
exchange on the Web. Accessing such Web data, often from multiple sources and in different formats,
is more and more an essential part of many applications, e.g., for bibliography or asset management,
news aggregation, and information classification. Web query languages such as XSLT, XQuery, SPARQL,
or Xcerpt [12] provide convenient means to access such data.

Efficient evaluation of queries over XML data has received considerable attention in recent years
[1, 6] including extensive studies of complexity of query evaluation for XPath [6], XQuery [9], and
general conjunctive queries over trees [7].

However, these techniques and results have considered XML data as tree-shaped. For many
applications, a graph view of XML is preferable, e.g., when links after XML’s ID/IDREF mechanism
are considered first class elements of the data model. Furthermore, other semi-structured Web data
formats such as RDF or Topic Maps are evidently graph shaped. Therefore, we propose in this article
a novel evaluation algorithm that exhibits on tree data the same worst-case complexity as the best
known approaches for tree data, but operates with similar complexity also on graph data.

We formalize queries over semi-structured data, tree- or graph-shaped, as n-ary conjunctive
queries over unary and binary relations. Conjunctive queries over tree data form a common formal
basis for the query core of a large set of XML query languages such as XPath [6], and thus XQuery;
conjunctive queries over graph data for RDF query languages such as SPARQL and general semi-struc-
tured query languages such as Lorel and Xcerpt [12].

Compared to full semi-structured query languages, the main restrictions of n-ary conjunctive
queries are twofold: (1) They disallow result construction: The result of an n-ary conjunctive query
is just a set of tuples of bindings for the n result variables, each tuple representing one match,
whereas full semi-structured query languages allow additional construction including grouping and
aggregation on these results. (2) They are composition-free in the sense of [9], i.e., the query can only
access the original input data, but no intermediary results can be constructed or queried, preventing
in particular the use of views, rules, or functions. The second restriction is less easy to overcome and
dropping it makes the query evaluation far more expensive, cf. [9].

An extension of our results that drops the first restriction is straightforward and covers composition-
free core XQuery without negation as defined in [9]. Indeed, the algorithms presented in this paper
reaffirm the complexity results from [9] on tree data and extend them to graph data.

For the evaluation of n-ary conjunctive queries, we present two algorithms both based on a
compact data structure, called “memoization matrix”, for memorizing intermediary results during
the evaluation of an n-ary query. The two algorithms differ only in the way the memoization matrix
is filled: The first algorithm uses a bottom-up strategy for filling matrix cells starting with variables
in leaf nodes of the query. The second algorithm performs a recursive descent over the query tree
populating the matrix top-down from root to leaf query nodes. More involved population strategies
are conceivable (e.g., a mix of the two presented algorithms or a path-wise population inspired
by [11]).

Both algorithms can be applied in the same manner to tree and graph data, only the computation
of the structural relations is affected by the type of data. Unsurprisingly, the shape of the query has a
more pronounced effect on the complexity and performance of the evaluation algorithms: Where
for path and tree queries the complexity of the evaluation algorithms is polynomial, graph queries
require exponential time for evaluation. This is in line with complexity results in [6, 7] that show that
evaluation of graph queries even over tree data is already NP-complete.

This article is organized along its contributions:

5



tree query graph query

tree data O(q · v2) O(v q )
graph data O(q · v ·e) O(v q )

Table 1.1: Overview of Combined Time Complexity (q : number of query variables; e, v number of
edges, vertices resp., in the data)

1: A memoization technique for the compact representation of intermediary and final results of an
n-ary conjunctive query is introduced in Section 1.3.
2: We introduce two algorithms for populating this matrix, one bottom-up in Section 1.4.1, one
top-down in Section 1.4.2, and compare these algorithms w.r.t. to complexity.
3: We introduce two algorithms for matrix consumption (Section 1.5), one for tree queries, and one for
graph queries that enforces the remaining non-hierarchical relations that have not been considered
during matrix population.
4: Careful complexity analysis of the algorithms in Sections 1.4 and Section 1.5 is complemented by
an introspective experimental evaluation (Section 1.7) that confirms the complexity results and shows
that the algorithms are competitive. This result applies over all three classes of queries considered, viz.
n-ary path, tree, and graph queries. A summary of the complexity results is given in Table 1.1.

1.2 Preliminaries

1.2.1 Graph Data Model

From the perspective of the used data model, many Web representation formats such as XML, RDF,
and Topic Maps have a lot of commonalities: the data is semi-structured, tree- or graph-shaped, and
sometimes ordered, sometimes not (XML elements vs. XML attributes, RDF sequence containers vs.
bag containers). In this article, we choose finite unranked labeled ordered simple directed graphs
as common data model for Web data. Precisely, a query is evaluated over a data graph D over a label
alphabet ΣL and a value alphabet ΣV . A data graph is represented as a 5-tuple

D = (N ,E ,R,L ,V ),

where N is the set of nodes, E ⊂ N ×N×N the set of edges, R ⊂ N the set of root vertices, L : N →ΣL

the labeling function, and V : N →ΣV the value assignment function.
D is an ordered graph. Since the order is relative to the parent and a single node can be child of

several parents, the order is associated with the edge rather than with the child node. Since the graphs
are also simple, each child has a unique position in the order of its siblings.

Two labeling functions are provided, viz. L and V . The first associates conventional node labels
with each node, the second “content” values. The difference is made to be able to distinguish the cost
of comparing two labels vs. two content values. Furthermore, L is assumed to be total, whereas V

may be undefined for some nodes in the graph. In Fig. 1.1, an exemplary data graph is shown. Labels
are denoted to the left of the node, “content” values in boxes under the nodes. A root node is indicated
by an incoming arrow.

The definition allows multiple root nodes, e.g., if there are several connected components in the
graph. In the following, we assume without loss of generality that a data graph has a single root and is
connected. This ensures that |E | ≥ |N |−1, and thus O(|E |+ |N |) =O(|E |).
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Figure 1.1: Data—Ordered Simple Directed Graph (order indicated by numbers on edges)

1.2.2 Conjunctive Queries

Conjunctive queries are a convenient and relevant formalization of the query core of many XML and
RDF query languages such as XSLT, XQuery, SPARQL, and Xcerpt.

Query syntax A conjunctive query consists of a query head and a query body. The query body is
a conjunction of atoms, and each atom is a relation over query variables. The domain of the query
variables are the nodes N of the data graph D the query is evaluated over. The query head is a list
of answer variables, bindings for which form an answer. All answer variables must occur also in the
body.

In this article, only binary and unary relations are considered in conjunctive queries (though
Section 1.6 briefly discusses an extension for handling order relations on graph data that uses ternary
relations).

Query Relations Three types of relations may occur in conjunctive queries: unary “property” rela-
tions that restrict bindings to nodes with a certain property, binary “structural” relations that require
pairs of nodes in the queried data graph to be in a certain structural relation, and binary “join” relations
that compare nodes.

The proposed algorithms and complexity considerations apply to arbitrary property, structural,
and join relations as long as for given nodes, each property relation can be checked in constant time,
each structural relation in O(|E |), and each join relation in at most O( j (|E |)) for some polynomial j .
Additionally, the enumeration of the structurally related nodes for a given node n must be possible in
O(|E |).

We use the property relation ROOT, which is satisfied only by the root nodes of the queried data
graph, as well as label relations LABELσ for all σ ∈ΣL (i.e., for all possible labels) that restrict to nodes
v where L (v) =σ.
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q(v1, . . . , vn) ← atom1, . . . ,atomm

�
D

= πv1,...,vn (�atom1 �q
D ∩ . . .∩�atomm �q

D )�
unary(x)

�q
D = {t ∈ N q : t [x] ∈ �

unary
�

D }�
binary(x, x ′)

�q
D= {t ∈ N q : (t [x], t [x ′]) ∈ �

binary
�

D }
�ROOT �D = R
�LABELσ �D = {n ∈ N : L (n) =σ}
�CHILD �D = {(n,n′) ∈ N 2 : ∃i ∈N : (n, i ,n′) ∈ E }�

CHILD+ �
D =

⋃
i>0(�CHILD �D )i�

CHILD∗ �
D =

⋃
i≥0(�CHILD �D )i

� IDENT �D = {(d ,d) ∈ N 2}
�VALEQUAL �D = {(d ,d ′) ∈ N 2 : V (d) = V (d ′)}

Table 1.2: Semantics of n-ary Conjunctive Queries

As structural relations only CHILD and its closures CHILD+ and CHILD∗ are considered. An ex-
tension to regular path expressions (or conditional axes [10]) is straightforward, as a regular path
expression can be checked with data complexity O(|E |) for two given nodes. In Section 1.6, an
extension with (ternary) sibling-order relations is briefly outlined.

The join relations used are IDENT and VALEQUAL. IDENT is the identity relation, VALEQUAL is
defined over the value labeling function V . Queries with structural relations that form a graph can be
rewritten to queries with structural relations in tree shape containing additional IDENT edges.

Fig. 1.2 shows the query graphs for two conjunctive queries. This representation of graphs is used
throughout this paper: Labels and values, as well as root nodes are represented as in data graphs, but
edges are annotated with structural or join relations. Answer variables are marked by the variable
name and a node filled with black.

Query semantics Let D be the data graph the query Q is evaluated over and q the number of
variables occurring in Q, then Table 1.2 gives the precise semantics of n-ary conjunctive queries over
graphs as used in this article. The semantics is defined based on sets of valuations for query variables.
A valuation t for n variables is an n-ary tuple with one column for each of the variables. We use t [v] to
denote the binding of variable v in the valuation t .

Query classes We distinguish graph, tree, and path queries. Tree queries are queries whose graphs
are tree shaped. Path queries are queries whose graphs are in fact single paths. We introduce the
class of structural tree queries, queries where the query restricted to unary and structural relations
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is a tree. There may be additional arbitrary join relations, so that the complete graph is no tree. The
query graphs from Fig. 1.2 are structural tree queries, but no tree queries in the strict sense due to the
non-tree join relations.

Graph-shaped conjunctive queries may have multiple root or source variables, i.e., variables
that occur only as source in structural relations, but not as sink. Let SoureVars(Q) be the set of such
variables in the query Q. As for data graphs, we assume in the following w.l.o.g. that there is exactly
one such variable in each query, i.e., that all query graphs are rooted. We use FreeVars(Q) to reference
the answer variables in Q. We write a ∈Q and Q\{a1, . . . , an} to test for the occurrence of an atom a in
Q, resp. to remove a set of atoms a1, . . . , an from Q. For brevity, we use if unambiguous in the context
also Q\{v1, . . . , vn} to indicate the conjunctive query Q ′ that contains all atoms from Q except those
involving variables v1, . . . , vn .

Note that (rooted) graph queries can be transformed into structural tree queries by replacing
non-tree structural relations with identity joins: First, compute a spanning tree, considering the
structural relation edges only. For each non-tree edge representing a structural relation REL between
variables x and y , take a fresh variable y ′. Replace the edge representing REL(x, y) by the tree edge
REL(x, y ′), and add IDENT(y, y ′) to the query Q. The size of the query increases by the number of
non-tree edges, which is linear in the size of Q and quadratic in the number of variables in the query.

Irrespective of the nature of a rooted query graph Q, we denote a spanning tree of Q with T (Q).

1.3 Memoization Matrix

At the core of the proposed evaluation technique stands the “memoization matrix”. It is a compact
data structure holding intermediary results of the evaluation of an n-ary conjunctive query, inspired
by a more limited and even on tree data exponential data structure from [13]. It assigns query nodes q
with nodes n ∈ N and one sub-matrix, containing for each child node q ′ of q the compatible bindings
n′ ∈ N under the binding n for q .

Definition 1 Memoization matrix.
Given a query Q with variables Vars(Q) and spanning tree T (Q), and a data graph D with nodes N , a
memoization matrix for the evaluation of Q over D is a recursive data structure representing all possible
bindings of query variables in Q to nodes from D. Let SourceVars(Q) be the variables in Q that are
only occurring as sources in structural relations in Q. Then the memoization matrix for Q over D is a
relation containing for each qs ∈ SourceVars(Q) and each possible binding n ∈ N for qs that satisfies
all property relations on qs one triple (qs ,n, M ′) with M ′ a subset of the memoization sub-matrix for
Q\SourceVars(Q) such that for each tuple (q ′,n′, M ′′) ∈ M ′ and each atom REL(qs , q ′) ∈ T (Q), it holds
that (n,n′) ∈ �REL �D .

Intuitively, the bindings for source variables in a sub-matrix M ′ must be structurally compatible
with the binding of the source variable in the corresponding tuple of M .

Notice that only relations in the spanning tree of Q, T (Q), are considered. This can lead to
assigning structural relations to non-tree edges, which is unfavorable if no index exists that guarantees
practical verification time. In such a case, a transformation from graph query to structural tree query
is performed as discussed above.

Though the memoization matrix ensures that related bindings for different variables are consistent
w.r.t. structural and property relations it does not ensure that related bindings are consistent w.r.t. join
relations. This is to exploit the tree property of structural relations that does obviously not hold for
join relations in structural tree queries: where join relations can relate arbitrary variables in the query,
structural relations over variables form a tree, thus making a local evaluation of structural relations
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Figure 1.3: Memoization Matrix (on Data of Fig. 1.1)

possible: A full-match can be computed from local matches that consider parent and child variables
in the structural tree query in isolation.

To avoid multiple computations of matches, the memoization matrix shares tuples where possible:
Each tuple (q,n, M) exists only once and is referenced if the same tuple may occur in different sub-
matrices. Notice, that sharing of tuples only occurs between sub-matrices at the same level (i.e.,
sub-matrices of the same common super-matrix). The following sections show how this property can
be ensured during the construction of the memoization matrix.

It is assumed that the matrix is clustered by variables allowing linear access to all entries relating
to a variable.

Fig. 1.3 shows the memoization matrix for the evaluation of query Q1 from Fig. 1.2 over the sample
data (Fig. 1.1).

The algorithms for matrix population discussed in the following section guarantee that populating
the matrix for a n-ary conjunctive query Q over a data graph D takes at most O(q ·v ·e) time, where
q = |Vars(Q)| denotes the number of variables in Q, v = |N | the number of nodes, and e = |E | the
number of edges in the data graph D. Note that in the special case of tree shaped data, e = v −1, so
that the complexity becomes O(q · v2). The size of the memoization matrix can be demonstrated as
O(q · v2) independently from the used algorithm, just by assuming sharing of sub-matrices.

Lemma 1 The size of the memoization matrix M for a query Q and a data graph D with nodes N is
bounded by (2q −1) · v2.

Proof 1 By structural induction over T (Q).
Query leaves: It holds that q = 1, and the number of bindings for a single variable is bounded by v . The
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size of the memoization matrix is q · v ≤ (2q −1) · v2.
Inner query nodes: Let the inner query node i have c children. It holds that the sum of nodes of all child
queries is equal to q −1 = ∑c

j=1 q j (*). There are again at most v bindings of i . As tuples are shared,
there is at most one tuple for each such binding. The size of the sub-matrix contained in the tuple itself
is bounded by c ·v , as each child has at most v bindings. The size of all tuples for the inner node i (i.e. of
the complete sub-matrix of i ) is hence c · v2. The overall matrix size is, using the induction hypothesis,∑c

j=1(2qi −1) · v2 + c · v2 (*)= (2(q −1)− c + c) · v2 ≤ (2q −1) · v2.

Based on the populated matrix, the algorithms discussed in Section 1.5 traverse the matrix, enforce
the remaining (non-hierarchical) relations, if there are any, and create the output according to the
query semantics introduced above.

1.4 Matrix Population

The compact memoization matrix introduced in the last section can be produced bottom-up (Match↑,
Section 1.4.1) or top-down (Match↓, Section 1.4.2), that is, starting with the root variable and the root
data node or with the leaf variables and all data nodes. While both algorithms have the same worst
case complexity, experimental evaluation in Section 1.7 shows that an in-memory implementation of
the bottom-up algorithm has an experimental runtime close to the worst case complexity, while the
top-down approach displays far better runtime behavior in realistic cases.

1.4.1 Bottom-Up Approach

The bottom-up approach (Match↑) is a bulk-processing approach often employed in secondary-storage
databases. It starts by matching the leaf variables of T (Q) with all nodes of D , and uses these results
to successively fill the domains of variables that have a common structural relation with these leaf
variables. This process is repeated iteratively until either a variable domain becomes empty, indicating
that the query has no matches, or the root variable of Q is reached, indicating that all matches of the
query are found.

The algorithm uses a helper data structure ρ to associate variables with sets of tuples representing
bindings for these variables. ρ is initially empty and populated step by step in the outer while loop:
Starting with the leaf nodes, the algorithm generates the set of tuples ρ(x) (l. 3 and 19) for each variable
x, until either no match is found for a variable and thus the query fails (returns an empty set) (l. 20–21)
or the root node has been processed (l. 3) and the memoization matrix for the root node is returned
(l. 22).

Notice, that the algorithm does not specify the details of row sharing between matrices at the
same level. It is assumed that in l. 14 and l. 18 pointers to M ′, resp. M are used instead of copies.

Theorem 1 (Complexity of Match↑) Let v = |N |, q = |vars(Q)|, and e = |E |. Then, Match↑ has O(q ·v ·e)
combined time and O(q · v2) combined space complexity.

Proof 2 There are q variables, so that the outer loop (l. 3) is bound by q . The loop over all nodes (l. 6) is
bound by v . The verification of the property relations takes constant time, as there is a fixed number
of such relations in the language and each test (such as a label test) is assumed to be constant (l. 7–8).
Since T (Q) is a spanning tree there are q −1 structural relations that need to be tested in the iteration
starting at l. 10. As each binary relation is visited only once (when the source variable of that relation
is processed), the loop (l. 11–17) is executed (q −1) · v times. Since there are at most v bindings for
each variable, the iteration in l. 12 is bound by v . As verifying (n,n′) ∈ �REL �D is in O(e) for structural
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Algorithm 1.1 Match↑(Q,D)

1: VQ ← vars(Q); N ← nodes(D) ; ρ←;
2: root ∈ SourceVars(Q)
3: while ρ(root) =; do
4: take x ∈VQ : ρ(x) =;∧

∀REL(x, x ′) ∈ T (Q) : ρ(x ′) 6= ;
5: M ←;
6: for all n ∈ N do
7: if ∃REL(x) ∈Q : n 6∈ �REL �D then
8: continue n
9: MS ←;

10: for all REL(x, x ′) ∈ T (Q) do
11: MR ←;
12: for all (x ′,n′, M ′) ∈ ρ(x ′) do
13: if (n,n′) ∈ �REL �D then
14: MR ← MR ∪ {(x ′,n′, M ′)}
15: if MR =; then
16: continue n
17: MS ← MS ∪MR

18: M ← M ∪ {(x,n, MS )}
19: ρ(x) ← M
20: if ρ(x) =; then
21: return ;
22: return ρ(root)

12



relations (cf. Section 1.2), the overall time complexity is in O(q · v2 ·e). However, we can assume that
the structural relations are precomputed in an index structure which provides constant verification
time for the structural relation at a space cost of O(v2) and time cost O(v · e) per structural relation.
This is an acceptable trade-off as there are usually only a small number of structural relations and
as the memoization matrix already requires space in O(q · v2). Under this assumption, the overall
combined time complexity becomes O(q · v ·e). The overall space complexity is dominated by the size of
the memoization matrix O(q ·v2), as the precomputed relations are in O(v2) and the size of ρ is in O(q).

Even though the bottom-up approach has a nice upper bound of computational complexity, it
needs further refinements to be usable in practice as the experimental evaluation in Section 1.7
demonstrates. To obtain a practically useful performance, bottom-up algorithms need efficient index
structures on structural relations occurring in the query. A further performance increase might be
obtained by evaluating groups of structural and property relations at once using holistic tree queries,
cf. [1]. The benefits of the latter approach are not clear for n-ary graph queries, where most query
variables are either answer variables or involved in non-structural joins, preventing large groups of
relations to be evaluated at once. Further investigation of the use of such holistic schemes for n-ary
conjunctive graph queries is required, but out of the scope of this paper.

1.4.2 Top-Down Approach

For an in-memory evaluation of n-ary conjunctive queries without indices, the top-down approach
matching the query from the root to the leafs and restricting the number of candidate nodes primarily
based on query structure presents a feasible and often superior alternative. Furthermore, the top-
down algorithm does not need any adjacency index to guarantee a runtime in O(q ·v ·e). However,
iteration over structural relations must be guaranteed in O(e) time (cf. l. 11). This assumption holds
for any structural relation occurring in XPath, XSLT, XQuery, SPARQL, or Xcerpt.

Like the bottom-up algorithm, the top-down algorithm needs an additional helper structure ρ.
However, in this case it associates tuples of query variable and data node to entire sub-matrices.
Constant access is assumed for this structure by basing it on a two-dimensional array. It is assumed
that ρ =; at the first call of the algorithm. Furthermore, an explicit “no match” indicator ⊥ is used
to mark combinations of nodes and variables that were checked and did not match. This must be
distinguished from the case where the combination has not yet been computed and the case where
there is no sub-matrix for the combination (i.e., the variable is a leaf in the query).

The top-down algorithm performs a recursive descent over the query structure. It has two param-
eters, a query x and a data node n, and computes the memoization matrix for these two nodes. For
each pair, a matching is computed at most once. If called with the root of the query Q and the root of
the data graph D , the result is the memoization matrix for the evaluation of Q over D .

Theorem 2 (Complexity of Match↓) Let v = |N |, q = |vars(Q)|, and e = |E |. Then, Match↓ is in O(q ·v ·
e) combined time complexity.

Proof 3 The use of matrix memoization (l.1–3, 14, 17) guarantees that Match↓ is executed at most once
for each combination of variable and data node (x,d). Testing unary predicates takes constant time. As
each of the q −1 relations is visited at most once, the loop over all binary relations (l. 9) is performed
at most (q − 1) · v times. Enumerating all values of any structural relation is in O(e), and thus set
initialization of the inner loop (l. 11) takes time in O(e). Since there are at most v elements in the range
of any structural relation and the loop body (l. 12) takes constant time (memoization in ρ amortizes the
recursive call), Match↓ is in O(q · v ·e) combined time complexity.
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Algorithm 1.2 Match↓(x,n)

1: if ρ(x,n) =⊥ then
2: return ;
3: if ρ(x,n) defined then
4: return {(x,n,ρ(x,n))}
5: if ∃REL(x) ∈Q : n 6∈ �REL �D then
6: ρ(x,n) ←⊥
7: return ;
8: MS ←;
9: for all REL(x, x ′) ∈ T (Q) do

10: MR ←;
11: for all n′ ∈ N : (n,n′) ∈ �REL �D do
12: MR ← MR ∪Match(x ′,n′)
13: if MR =; then
14: ρ(x,n) ←⊥
15: return ;
16: MS ← MS ∪MR

17: ρ(x,n) ← MS

18: return {(x,n, MS )}

As section 1.7 shows, the algorithm Match↓ is a competitive algorithm with linear time complexity
in many real world scenarios, even without any index structures. Streaming schemes [2] and similar
techniques could be used to refine the algorithm further and speedup the average runtime, but are
beyond the scope of this paper.

1.5 Matrix Consumption

The consumption of a memoization matrix for the evaluation of a query Q over a data graph D
creates the extensional representation of the result. That is to say, the compact in-memory result
representation in the memoization matrix is expanded to a set of valuations, i.e., a set of tuples
associating answer variables with matching data nodes. This is comparable to the transformation of a
non-first-normal-form relation into a flat relation, except for the fact that the nested matrices consists
of bindings for several relations and must be hence decomposed into partitions before the flattening
takes place, and that a sub-matrix tuple can be referenced by several matrices.

In contrast to matrix population, the algorithms for matrix consumption, though still agnostic
to the shape of the data, have to treat tree and graph queries differently. This is necessary, because
graph queries contain binary relations that are not verified by the matrix population algorithms.
Since there are no such remaining relations in tree queries, the matrix consumption algorithm is a
simple flattening of the nested memoization matrix to produce the output. Since the output size is
larger than every intermediate result when evaluating tree queries, the time and space complexity
of the consuming algorithm is bound by the result size. For graph shaped queries, however, this is
not the case: an intermediate result of exponential size can be created and only then be reduced
through remaining binary relations not in query spanning tree. Thus, the matrix consumption for
graph queries has exponential combined time complexity. To illustrate this, consider the queries
from Fig. 1.2: The memoization matrix only enforces the structural relations, but does not consider
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Figure 1.4: Join and Projection Specification

VALEQUAL and IDENT. These relations may reduce the result size considerably if they are applied.
As stated above, the consumption algorithm OutputT for tree queries is a simple flattening of the

(nested) memoization matrix to a set of tuples of variable bindings. During the flattening dynamic
programming is used to avoid duplicate construction, thus space and time complexity are bound by
the result size. For space reasons, the full algorithm is omitted and only complexity results are given.

Proposition 1 (Complexity of OutputT ) The algorithm OutputT has O(|V ar s(Q)| · |N |2+|Q(D)|) time
complexity where |Q(D)| denotes the result size.

In the following section, we take a closer look at the matrix consumption algorithm for graph
queries outlining briefly the benefits and drawbacks of a nested loop join for secondary storage
processing (Section 1.5.2).

1.5.1 Matrix Consumption for Graph Queries

The matrix method applies to graph-shaped queries in the following way: First, a spanning tree T (Q)
over the structural relations of Q is computed offline. Second, Match↓ or Match↑ is applied to create
the memoization matrix of the query problem. Finally, this memoization matrix is consumed with a
new output algorithm, OutputG .

The new algorithm must verify whether the produced valuations satisfy all relations that are not
in the spanning tree T (Q). To put it another way, the non-tree relations impose additional selection
conditions on the produced valuations. These additional selection conditions can be distributed over
Cartesian products the consumption algorithm for tree queries performs and combined into joins—
with possibly non-atomic conditions, if more than one relation must be verified in one Cartesian
product.

Since join order optimization is out of the scope of this paper, the output algorithm abstracts
from these topics by assuming the existence of a join and projection specification for each variable,
and of a function that applies these join specification to a set of valuations. The join and projection
specification is created by a query planner; Fig. 1.4 shows an example of a join and projection
specification.

The new algorithm however exhibits exponential worst case runtime in that it may perform
at worst q − 3 Cartesian products without any selection based on non-tree edges (q being again
q = |V ar s(Q)|). In this case, the size and time complexity are both in O(|N |q ), as the output algorithm
keeps the set of valuations in memory.

Furthermore, the cost of value-based joins that are assessed with a cost function j (|N |) must be
considered. The worst case estimation is as follows: as every variable can be involved in a join, there
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are at most q −1 value-based joins (as equality is transitive, a query with more than q −1 joins can be
transformed into an equivalent query with q −1 joins). Furthermore, every tuple of an exponential
sized intermediate result is joined with each value-based join. As each join divides the result size by at
least |N |, the overall runtime can be approximated as O(

∑q
i=2 j (|N |) · |N |i ) =O( j (|N |) · |N |q ).

Proposition 2 (Complexity of OutputG ) The algorithm OutputG has O( j (|N |) · |N |q ) time complexity
and O(|N |q ) space complexity.

1.5.2 Incremental Matrix Consumption

The previous two algorithms are tailored to provide an in-memory representation of all answers of
a query and are thus both in time and space complexity bound by the output size. An in-memory
representation of the answers is useful to perform further processing based on the answers, e.g., for
structural grouping, aggregation, or ordering. However, in many cases an incremental output of the
answers is preferable, in particular if further processing can also be realized in an incremental manner.
Incremental answer generation can be realized using the algorithm OutputN LJ , a slightly modified
incremental nested loop join over the memoization matrix. The algorithm uses the structure of the
matrix instead of join attributes, but is otherwise – leaving aside partitioning issues – a standard
nested loop join and therefore omitted here for space reasons.
Proposition 3 (Complexity of OutputN LJ )
The algorithm OutputN LJ has time complexity O(|N |q ) and space complexity O(q ·n2) on tree queries,
and on graph queries O( j (|N |) · |N |q ) time and O(q ·n2) space complexity.

The advantage of OutputN LP is its low space complexity which is essentially bound by the size of
the memoization matrix. However, this advantage is paid for by an exponential time complexity in
almost all cases. Furthermore, it is reached in many practical cases

1.6 Order Relations on Graph Data

In the previous sections, graph shaped data is considered equivalent in querying aspects to tree
shaped data. Although the worst case complexity of the matrix population algorithms is the same in
both cases, the order of two sibling nodes is context dependant in graphs, cf. Section 1.2.1.

For the support of ordered queries in graph data, a ternary relation NEXT and its transitive, re-
flective closures NEXT+, NEXT∗ are introduced. The semantic of NEXT is defined as �NEXT �D = {(c,c ′) :
∃(p, i ,c), (p, i ′,c ′) ∈ E . i +1 = i ′} with the closure relations defined as usually. In fact, once the matrix
consuming algorithms support join conditions, the handling of the ternary order relations is simple:
it can be handled as additional join condition in the join and projection specification of each node.

Besides this very rudimentary exploit of order relations as join conditions in the output algorithm,
it is possible to take advantage of them in the matrix population algorithms, if the edge position
of the data model is accessible. Assuming that Next∗(x, y, y ′) must hold and that I is the set of
positions of all y bindings and I ′ of y ′ respectively, it must obviously hold that ∀i ∈ I . i ≤ max(I ′) and
∀i ′ ∈ I ′. mi n(I ) ≤ i ′. When populating the bindings of y ′, the minimum position of bindings of y is
known, so that the above condition can be imposed on all bindings of y ′.

1.7 Experimental Evaluation

The experimental evaluation is based on both synthetic and on real data. The set of structural relations
is extended by the additional relations ATTRIBUTE and VALUE in order to support attribute queries. The
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tests have been executed on an AMD Athlon 2400XP machine with 1GB main memory. The algorithms
are implemented in Java executed on JVM version 1.5. All tests show the processing time without data
parsing. Each measurement is averaged over 500 runs.

Synthetic data is used to confirm the complexity of the presented algorithms. The real data
scenarios stem from the University of Washington XMLData repository1, and demonstrate the com-
petitiveness of the algorithms.

The first experiment confirms on synthetic data how essential the memoization of intermediary
results is, not only for the complexity but also for the experimental query evaluation time. The
Match↓ algorithm without memoization of variable domains (i.e., the helper structure ρ) exhibits
an exponential growth of time consumption in the size of the query (cf. Fig. 1.5), because several
common sub-matrices are built repeatedly. In contrast, Fig. 1.6 depicts the effect of increasing arity
in a worst-case scenario, where the query is unrestrictive, i.e., a binding for one answer variable is
related to all bindings of another one.

Fig. 1.7 shows a comparison between the two approaches for matrix population discussed in this
article. A path query consisting of four variables and CHILD∗ (descendant) relations only, but without
label restrictions, is used. This query exhibits worst case complexity for the top-down algorithm
Match↓, as the match context is never restricted by a previous context. As expected, the plot shows a
quadratic runtime growth in the data size for the top-down algorithm and the bottom-up algorithm
with CHILD∗ index. Without this index, the bottom-up approach exhibits a cubic runtime.

At least the top-down algorithm performs quite well even in its basic form discussed here in real
query scenarios. Fig. 1.8 shows how the runtime of the top-down algorithm scales with the data size
for path, tree and graph shaped queries. These queries are executed over the MONDIAL2 database of
geographical information. The plot shows additionally that already for path queries the bottom-up
algorithm exhibits polynomial runtime; the naive bottom-up approach has an average runtime that
is very close to its worst-case. On the other hand, the Match↓ exhibits a linear runtime in all queries,
even in the graph query experiment.

The final test on increasing fragments of a large XML document, the Nasa dataset from the above
mentioned repository, shows that the runtime of Match↓ scales nicely with the data size and is very
competitive even in the basic form implemented for this experiment.

1.8 Extensions and Outlook

Though the experimental evaluation shows that even the basic form of the proposed algorithm
performs quite nicely, there are quite a number of extensions and further optimizations likely to give
interesting results: First of all, there are extensions of the top-down matching algorithm to a complete
unification algorithm, as needed in Xcerpt [12]. This algorithm must handle negated and optional
query parts as in general tree patterns [3].

Arc consistency, as used in constraint solving algorithms, can be used to reduce the size of the
matrix structure. First experiments have shown, however, that verification of arc consistency does not
always improve evaluation time.

Partial unnesting of matrices can be used to remove existentially quantified variables eagerly at
matrix population time: a link to and from an existentially quantified variable binding is replaced by
a direct link. By this, the space complexity of path queries can be reduced from O(|V ar s(Q)| · |N |2)
to O(n · |N |2), n being the arity of the query. Furthermore, it has been shown (e.g., [8] and [5]), that

1http://www.cs.washington.edu/research/xmldatasets/
2http://www.dbis.informatik.uni-goettingen.de/Mondial/
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queries over graph data remain tractable for the class of queries with bounded (hyper-) tree-width
rather than just over tree-shaped queries. How to extend the presented algorithms to that larger class,
remains an open issue. One step in this direction is the support of more expressive structural relations,
e.g., conditional axis [10] that allow collapsing entire paths both for population and consumption of
the matrix.

Finally, we plan to investigate a combination of bottom-up and top-down matching techniques, in
order to combine the benefits of both a sophisticated bottom-up approach, i.e., early pruning in the
case of selective query leaves, and the contextual narrowing of a top-down approach.

1.9 Related Work

As previously mentioned, the complexity of conjunctive queries and monadic queries over trees
is studied thoroughly in [7]. A restriction of the bottom-up algorithm discussed in this article to
conjunctive tree queries is similar to the evaluation algorithm of [11] and has the same complexity.

Matching conjunctive queries over trees and graphs can be seen as a constraint solving problem. It
is well established that tree shaped constraint problems (i.e., tree queries) can be solved in O(q ·v2) [4],
though this result assumes O(1) verification time for all relations. However, the implication from arc to
global constraint consistency used in this result, does not hold for graph-shaped constraint problems.

In [7] it is shown that there are special cases where arc consistency is at least sufficient to retrieve
one single consistent solution: if all binary constraints have the X-property (read: X-underbar) over
an order <, arc-consistency is sufficient to guarantee that the minimal solution (in terms of the same
ordering <) is consistent. It follows that the evaluation of n-ary graph queries with X-relations is only
exponential in the number of answer variables. It can further be derived that the general problem
is NP-complete and thus an algorithm as proposed here with worst case exponential runtime in the
number of variables is the best achievable.

Another field of important related work are structural indexing techniques [1, 2]. Indexes are an
orthogonal aspect to the matrix method that can be used to improve the runtime of the presented
algorithms. Considering entire paths or trees at once through physical operators such as twig joins [1]
is a promising and recently widely researched technique for tree data. On such data, their application
to the discussed algorithms is straightforward.

1.10 Conclusion

The memoization matrix is a compact recursive data structure that holds the solution sets to such
queries. In case of tree queries, it contains the exact solutions to the queries, whereas in case of graph
queries intermediary results: the solutions to the query represented by a spanning tree chosen for
the population of the matrix. Based on this data structure, we show (1) that the shape of the data has
little or no effect on the query complexity for the chosen relations; (2) that a unified algorithm for
both tree- and graph-shaped semi-structured queries is feasible and competitive, both in worst-case
complexity and in experimental performance.
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Chapter 2

Design and Implementation of an

Abstract Machine for Single-Rule

Xcerpt

2.1 Introduction

Xcerpt [13] is getting more and more attention these days. It is a powerful and impressive new
web query language with an easy to understand and declarative syntax. Xcerpt has now been in
development for more than 5 years. But to really gain momentum, a programming language needs to
get out of the research status and be used by real-world applications. For that to be possible, efficient
and easy to use and understand implementations need to exist. Without that, nobody will use a
language, no matter how beautiful it is.

Up to this point in time there is no abstract machine available for the Xcerpt language. The
only directly applicable research in this area is the predecessor of this chapter—a chapter which
develops the first steps towards an abstract machine that processes Xcerpt’s simulation unification.
This abstract machine is called “SUAM”, short for Simulation Unification Abstract Machine [3].

To work towards a complete abstract machine for Xcerpt, this diploma chapter presents an abstract
machine, which is designed to evaluate an Xcerpt single-rule program and is part of the AMAXOS
project (Abstract Machine for Xcerpt on Semi-structured Data). One of its goals is to be as simple and
easy to understand as possible.

For that reason, and although the AMAXOS is supposed to extend the SUAM, it is not designed
on quite the same low level on which the SUAM is designed. The SUAM defines instructions that
worked on the level of registers, bytes, the stack and the heap. In contrast to that, the AMAXOS does
not provide a strict definition of its own registers, heap, or stack management. It is implemented in
Java and C++, both of which are languages with good support to hide these low-level details.

The focus of this chapter is on the bigger picture of the supported machine operations. More
refined and low-level implementations, if needed, can be based on this research.

Another difference of the abstract machine in this chapter compared to the SUAM in the earlier
paper, is a further developed matrix model. During the research of the SUAM it became clear that
its matrix handling and storage is consuming more memory than strictly necessary. A first paper
regarding the new matrix has been published already [5], another one based partially on the results of
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this chapter will follow shortly.

2.1.1 Overview

The remainder of this chapter is divided into three distinct parts. The first part sets forth the theoretical
foundation of Xcerpt, the AMAXOS, and the evaluation models of the AMAXOS. The second part deals
with the set-based evaluation model as implemented for this chapter a little more in-depth and the
third part is concerned with the implementation details of the Java and C++ implementations of the
AMAXOS.

Of the first part, Section 2.2 is an introduction to Xcerpt, Section 2.2.1 shows Xcerpt’s features
relevant to this work, and Section 2.3 briefly describes the design principles of the AMAXOS, like the
memory model, the data model, the matrix model, and the evaluation models.

Of the second part, Section 2.4 is a detailed description of the operators that the AMAXOS under-
stands and which make up the AMAXOS machine code, and Section 2.5 walks though the process of
translating an Xcerpt query rule into AMAXOS machine code.

Finally, of the last part, Section 2.6.1 shows the design of the implementations, including the class
hierarchy, some comments about certain design decisions, and some problems and their solutions.
Section 2.7 gives a few comments regarding the Java implementation, Section 2.8 mainly concerns
itself with the C++ implementation and the memory management, and Section 2.9 describes the
performance of both implementations.

Since there is still a lot to be researched and improved, Section 2.10 gives a short outline of what
can be done in the future regarding the AMAXOS and last, Section 2.11 summarizes a few of the most
important points of this chapter.

2.2 An Introduction to Xcerpt

Xcerpt [13] is a declarative rule-based query language for both data on the standard Web and data on
the Semantic Web. The data format is not important, Xcerpt can query and generate data in many
different formats and is capable of further processing its own output, a feature known as chaining.
Xcerpt is even “strongly answer-closed”, as any answer to a query can itself be a query.

Xcerpt’s queries are pattern-based instead of being path-based like in XQuery [2] and XSLT [9].
This provides for incomplete query declarations and makes it possible to specify only parts of the data
to be found. This may be done in three non-exclusive ways:

• by specifying only a subset of the children of an element,

• by querying elements at arbitrary depths, then also called descendants,

• by declaring some parts of the query to be optional.

Xcerpt queries also provide the possibility to specify unordered queries. Those are queries where the
order of the given elements need not match the order of the elements in the source document. To be
able to process incomplete as well as unordered queries, Xcerpt utilizes a newly developed unification
algorithm, called “Simulation Unification”.

Xcerpt can process and generate documents that form graphs, that is, an element may have more
than one parent node. To handle graphs correctly is also the task of the Simulation Unification.

Xcerpt is based on logic programming. An Xcerpt program consists of one or more goals and zero
or more rules. This is to say that Xcerpt is a rule-based language. Goals are special rules in that a goal
contains the answer construction of a multi-rule program.
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A single rule can be regarded as a part of the whole query that the complete Xcerpt program
represents. A rule in itself is a query already. As mentioned above, rules can be chained to make one
rule process the output of another rule. However, this chapter focuses on single rule Xcerpt programs
only and does not implement chaining yet.

Each Xcerpt rule contains a query part and a construction part, it is thus sometimes also called
construct-query rule. Rules separate query and construction to enhance readability, consistency, and
ease of use. The query part specifies the pattern of the data to be retrieved and the construction part
builds the output document by reassembling the pieces from the query part using the document
structure also specified in the construction part.

Last but not least, the Xcerpt construction part allows to group (some of) the results of a query
part using the keywords all and some. Grouping constructs may be nested.

2.2.1 A Bird’s Eye View on Xcerpt

The most central part of the evaluation of an Xcerpt rule is the Simulation Unification [14]. To make
this new kind of unification efficient, intermediate solutions have to be saved—cached—for later
reuse, and to make it space efficient those solutions have to be compressed as much as possible. To
this end, the memoization matrix was invented. It stores an exponential number of solutions in a
polynomial number of memory cells by storing equal parts of several solutions only once.

This chapter deals mainly with the somewhat low-level parts of Xcerpt, like the matrix. Neverthe-
less, the general Xcerpt syntax is important for the parser and the understanding of the operators. So
the next section describes the supported Xcerpt syntax before the following two sections introduce
the original and the revised matrix theory.

2.2.2 Syntax

The current AMAXOS only deals with single construct-query rules and defers the implementation of
the chaining to a later point in time. A single rule in Xcerpt looks as follows:

GOAL

2<query term>

FROM

4<construct term>

END.

Query terms are enhanced data terms. They may contain additional variable declarations such as
var X, variable restrictions such as var X as f{}, and descendant specifications such as desc f{}.

Construct terms are data terms that may contain the variables specified in the query term and the
all keyword, which retrieves every single available binding for the specified variables.

2.2.2.1 Examples

The following examples have been taken from the description of the SUAM [3]. They are slightly
modified to suit this chapter.

The first example is a real-world example that can be easily understood and that shows a fair few
of Xcerpt’s features: It is an XML document containing an address book. The corresponding data term
will be:
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<addressbook>

2<entry>

<name>Robert Bart</name>

4<phone>

<home>03529/3170</home>

6<mobile>0162/4576214</mobile>

<work>03528/723712</work>

8</phone>

<address>

1023 George Str, Village 3120

</address>

12</entry>

<entry>

14<name>Julia Flower</name>

<mobile>0034-1252-6829</mobile>

16<email>flower@work.com</email>

</entry>

18<entry>

<name>Neil Fisher</name>

20<phone>

<mobile>0174/3421390</mobile>

22<home>01282/709</home>

</phone>

24<address>

<street>45 Shorthorn Street</street>

26<postalcode>40307</postalcode>

</address>

28</entry>

</addressbook>
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In Xcerpt syntax the first part of the example would look as follows.

1addressbook [

entry [

3name [

Robert Bart

5]

phone [

7home [

03529/3170

9]

mobile [

110162/4576214

]

13work [

03528/723712

15]

]

17address [

"23 George Str, Village 3120"

19]

]

21...

]

Suppose the intention is to extract the mobile phone numbers. Then the query term could look like
this one:

addressbook {{

2entry {{

desc mobile [ var Mobile ]

4}}

}}

The query is partial and unordered ({{ }}) because only one element out of an unspecified number
are known and required and the order of properties in an address book entry usually does not matter.
The mobile phone number is a descendant of the <entry> element, that is, it needs not to be a direct
child of <entry>.

To create a new document with all available mobile phone numbers and email addresses, the
below construct term can be used, which specifies how to create the new document:

result [

2mobiles [ all var Mobile ]

]

If this is put into a complete construct-query rule it constitutes the first working Xcerpt program:

1GOAL

result [

3mobiles [

all var Mobile
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5]

]

7FROM

addressbook {{

9entry {{

desc mobile [ var Mobile ]

11}}

}}

13END

The result of this query is the anticipated document:

1result [

mobiles [

3"0162/4576214",

"0034−1252−6829",
5"0174/3421390"

]

7]

The next example uses artificial labels for brevity. Note that the data term has two children with
identical structure and labels:

1f [

g [ a, b ],

3g [ a, b ],

h [ c, d ]

5]

The query term shall use the unordered specification, the descendant construct, and a variable. Put
into a construct-query rule using a very simple construct term, this yields:

1GOAL

result [

3third_term [

var X

5]

]

7FROM

f {

9g { a, b },

desc b,

11var X

}

13END

The result of this program would be

1result [

third_term [
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3h [ c, d ]

]

5]

2.2.3 Matrix Theory

The original matrix—as defined in [13] and implemented by the project chapter [3] and the Xcerpt
prototype [7]—has exponential complexity. Submatrices are not shared even where possible and for
each level of the matrix an array is allocated with q ·d entries. For instance, one of the observations is
that most matrices have only a few cells filled with content, the rest of them contain just false. Those
unnecessary false-cells are increasing the complexity and wasting space.

Two improvements discussed in the following section are sharing of submatrices if possible (which
turns the matrix tree into a graph of matrices) and keeping only the non-false submatrices by using a
list in the parent matrix instead of using an array.

2.2.4 Improved Matrix Theory

The more efficient matrix as shown in [5] and implemented in this chapter has a worst-case space
complexity of O(q ·d 2), q being the number of nodes in the query term and d the number of nodes in
the data term.

Briefly, this version of the matrix shares submatrices on the same level if possible. Sharing is
possible if the query node and the data node of one matrix match those of another. In this case the
matrix for the unification of this query term/data term pair is only created once and pointed to by all
other sources.

Furthermore, the use of the fixed-sized arrays is abandoned and replaced by a list of submatrices.
Now a matrix only stores those submatrices in the list that are not false and it is easy to delete
matrices that become false in the process of the matrix population. This improvement does not
reduce the overall worst-case complexity but results in a reduced time and space usage of the average
case.

For a more in-depth explanation, please see [5]. A further refinement of the memoization matrix
discussed in [5] is currently under development. Partially based on the results of this chapter, it
integrates the algebraic perspective of this chapter with an improved version of the memoization
matrix. Details will be available at [1].

2.3 Design Principles of the Single-Rule Xcerpt Abstract Ma-

chine

This section briefly lays out the big picture of the inner workings of the single-rule Xcerpt abstract
machine.

2.3.1 The Abstract Machine Core

The control loop of the abstract machine is quite simple: the abstract machine fetches one opera-
tor after another from the code segment and executes it. The operators access the data term and
incrementally build the matrix and finally the result document.
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Right now it is assumed that the data term is already on the heap. There are no operators that
create an in-memory data term structure and there never will be. The connection of the parser to
the abstract machine, which is supposed to create such an in-memory representation, is beyond the
scope of this work but is currently under development.

Just like the SUAM, the abstract machine keeps one special feature. It not only allows for several
data terms to be queried with one query term translation but also the other way round: It is possible
to read and store one data term and then execute several queries on it without having to reparse the
data term—none of the operators of the abstract machine modify the in-memory representation of
the data term.

2.3.2 Memory Model

The abstract machine abstract machine utilizes two distinct and standard memory areas, a stack and
a heap. The data term, the matrix, and the result document are all stored on the heap. The stack stores
most of the temporary intermediate results that appear during the evaluation. The code segement is
located at the beginning of the stack and is read-only.

2.3.3 Data Model

With the term “data model” this paper refers to the internal data structures and algorithms to represent
and handle Xcerpt terms. For the most part, Xcerpt terms can be considered like XML [4] data. There
are many XML data models available already today, but none of them is perfect for what the abstract
machine needs. It was therefore necessary to implement a data model that fits the needs of this
abstract machine.

Nevertheless, a few data models were examined and the design and implementation of the abstract
machine data model was finally based on XOM. The following sections give a quick overview of some
of the considered data and object models.

Keep in mind over the course of the following discussion that a refined data model has not been
the focus of this chapter, but rather the design and implementation of the abstract machine operators.
It is expected that a more carefully optimized data model for the abstract machine is going to be
investigated in the future.

2.3.3.1 DOM

DOM [10] is a tree-based API. The W3C document object model (DOM) is an API that defines the logical
structure of XML documents and the way a document is accessed and manipulated. Essentially, each
part of the document like elements and attributes are represented by objects in memory. The objects
are linked together using pointers. This is not specified by the W3C but most if not all implementations
work that way.

Due to the huge memory requirements of DOM (about 8-20 times more memory than the raw XML
document itself [15]), this memory model was out of question right from the beginning. Furthermore,
to the best of my knowledge, DOM does not support graphs, it is limited to trees.

2.3.3.2 JDOM and DOM4J

JDOM [11] and DOM4J [12] were both better suited than DOM, but still provided too much functional-
ity. For instance, the abstract machine does not need to modify an XML document at all. Since the
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XOM code is easy to understand and contained only a minimal set of functionality, it was preferred to
JDOM or DOM4J.

2.3.3.3 XOM

XOM seemed to be the most suited document object model. It is lightweight, easy to understand, and
small, it just does not support graphs. So in the beginning the data model of the abstract machine is
derived from XOM by stripping the superfluous code and adding support for graphs.

Up to now the code has evolved further so that the similarities with XOM shrunk. There is a lot of
room for improvement, so in the future the code will most probably deviate even further from XOM.
One of those extensions that need to be implemented is an efficient way to quickly retrieve all or a
specific set of descendants of an element. There are a few interesting techniques that could be used,
such as 2-hop labels [8], for instance.

2.3.3.4 C++ Data Models

Due to the relatively late decision to also implement the abstract machine in C++, the Java data model
was ported to C++ without any significant changes. In contrast to the Java case, there is little consent
on a proper XML data model in the C++ area.

2.3.4 Evaluation Models

This section will give an overview of the possible evaluation models for Xcerpt. It implements the
first of the three specified evaluation models. Due to time constraints it has not been possible to
implement the other two models yet, but this chapter serves as proof of concept and basis for further
work on the remaining evaluation models.

All three evaluation models consist of three main evaluation phases: The first phase is the matrix
population phase where the matrix is constructed as a compact representation of all possible solutions.

The second phase is the solution generation phase where the matrix is unfolded to yield the full set
of solutions. Then arbitrary joins are executed and only those solutions are selected that are needed
to construct the result document in the third phase.

And thus, the third phase is the document construction phase where the solutions are embedded
into the given result document structure.

The difference between the evaluation models is mostly the way those three phases interact.

2.3.4.1 Set-based Evaluation

The set-based evaluation is the simplest of the three evaluation models. All three evaluation phases
are separate from each other, only when the previous phase is completely evaluated the next phase is
started.

It immediately follows that this is the evaluation model that needs the most memory since the
first phase cannot know which solutions are needed by the second phase and which solutions are not.
The same holds for the second phase regarding the third phase.

2.3.4.2 Mixed Evaluation Model

The goal of this evaluation model is to have a transitional solution from the set-based evaluation to
the lazy evaluation model. The fundamental idea is to make the solution generation phase implicit
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but to keep the matrix population and the document creation phases separate. After the matrix has
been created, the document creation phase queries the matrix only for those solutions that it explicitly
needs. During this process joins are executed to verify solutions and those solutions are stored in the
solution table. Thus, the solution table is incrementally and implicitly generated.

This evaluation model is not as complex as the lazy evaluation (see below), but it remedies the
problem of having to unfold the whole matrix, thus reducing the impact of the existential query
variables on the complexity of the query evaluation, cf. [5].

2.3.4.3 Lazy Evaluation

The lazy evaluation model integrates and merges all three phases, and, to some extent, reverses them.
The reason is that only once the third phase—the document construction phase—requires a binding
for an output variable it asks the second phase, which in turn queries the matrix (the first phase),
which then goes on to generate any missing parts of the matrix. The result is sent back to the third
phase.

The advantage of lazy evaluation is therefore quite obvious, in the best case no memory is wasted
and no unnecessary computations are needed. Nothing is evaluated unless it is specifically needed.
Theoretically, this evaluation model should yield the least amount of memory usage and the fastest
execution. However, in fringe cases the additional overhead for managing and communicating partial
evaluations may actually lead to an increase in processing time.

2.4 Operator Semantics under Set-based Evaluation Model

In the next few sections each of the operators that are understood by the abstract machine is defined
and described. The following chapter ties these operators to the Xcerpt language as discussed in
Section 2.2.1 on page 29 by illustrating the application of those operators for the translation of an
Xcerpt query rule.

2.4.1 Overview

Each of the operators is first described more or less informally to give an idea of what the operator
does, then the syntax of the operator is defined, and finally a more detailed semantics is given.

There is the query Q with the set of query variables V ar s(Q) and the data graph D with the set of
nodes N . A single query variable is called v , a data term is called d , and strings are put in quotes like
this "string".

A matrix is a triple (q,d , M ′), where M ′ is the set of submatrices. The matrix that the abstract
machine creates is called MG .

2.4.2 Matrix Population

All matrix population operators have access to the one global matrix MG that is created by them and
to the cache σ that is used for fast access to all submatrices. Without σ the matrix would have to
be traversed from its root for every access to some submatrix. σ provides constant access to any
submatrix (q,d , M ′) that binds the query variable q to the data term d :

σ(q,d) = (q,d , M ′)
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It is also possible to retrieve the set of matrices Mq that bind a data term to the query variable q :

Mq =σ(q) = {(q,d , M ′) ∈σ(q,d)|d ∈ N }

This operation also has constant complexity.
Part of the matrix population operators are a few operators that seem redundant. Those include

the “Labeled” version of the operators. Indeed, these operators are redundant in that they can be
replaced by two or more other operators. However, they are not redundant in terms of performance.
The “Labeled” versions are often preferable because they produce less submatrices (i.e., intermediary
results), if the label is selective at all; see also Section 2.5.3.7 on page 52.

RootOperator

Syntax:

RootOperator $v_r$ $d_r$

Semantics:

The root operator creates the global root matrix MG = (vr ,dr ,;). Any previous matrix or cache is
discarded. The root matrix maps the query root variable vr to the root data term dr . Then the new
matrix MG is stored in the cache, using the query variable and the data term as keys for fast lookups:

σ(vr ,dr ) = MG

The RootOperator always has to be the first operator to be executed since operators cannot be freely
reordered yet. See 2.5.3.8 on page 52 for more information on that.

ChildOperator

This operator is used to take all children of the data terms that are bound to the query variable vp and
bind them to the query variable vc by creating a new matrix for each one of those children.

Syntax:

ChildOperator $v_p$ $v_c$

Semantics:

First, the child operator retrieves the set of matrices Mvp from the cache σ that match the query
variable vp :

Mvp =σ(vp )

Each of those matrices has an associated data term the children of which are used to create a new
matrix by binding vc to each one of those children. The new matrices are stored as submatrices in the
respective parent matrix that was responsible for those children.

LabeledChildOperator

The LabeledChildOperator is a specialized version of the ChildOperator. It is used to take only the
children that are elements with label "label" of the data terms that are bound to the query variable vp

and then bind them to the new query variable vc .
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Syntax:

LabeledChildOperator $v_p$ "label"$v_c$

Semantics:

Just like the ChildOperator, the LabeledChildOperator retrieves all matrices from the cache that
match the query variable vp :

Mvp =σ(vp )

Only those of the associated data terms’ children that are elements and match the given label are
taken to create a new matrix by binding each of those children to vc . The new matrices are stored as
submatrices in the respective parent matrix that was responsible for those children.

RangedChildOperator

Together with the NonRelationVerificationOperator, this operator is used to translate a part of the
negation in ordered queries.

Informally, this operator gathers for each data term d that is associated to one of the matricesσ(vp )
the children of d that are between the data terms associated to the query variable vst ar t and vend .
Those data terms are bound to the query variable vc with a new matrix.

Syntax:

RangedChildOperator $v_p$ $v_{start}$ $v_{end}$ $v_c$

Semantics:

This operator walks through all matrices σ(vp ) and looks for submatrices that match vst ar t . Those
submatrices need to have a further submatrix that matches vend . All children between the data term
of the former submatrices and the latter ones are stored in new submatrices of vend .

The prerequisite for this operator to work is that the query node vpar ent is ordered and that the ma-
trix of vst ar t is a parent of the matrix for vend —just like it is created by the FollowingSiblingOperators.
This is to ensure that there really is a data term, referenced by the matrix vst ar t , that is a predecessor
for the data term referenced by the matrix vend . This prerequisite is guaranteed by the translator. If
the prerequisite is not met, then this operator will do nothing.

In the same way the result is stored: every child that is found between vst ar t and vend will be
stored in a submatrix of the matrix vend to record the relation.

LabeledRangedChildOperator

This operator is a specialized version of the RangedChildOperator. It only operates on those children
that are elements and match the given label "label".

Syntax:

LabeledRangedChildOperator $v_p$ $v_{start}$ $v_{end}$ "label"$v_c$
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Semantics:

For further details, see the RangedChildOperator above, apart from the additional restriction of the
children, this operator has exactly the same semantics.

FollowingSiblingOperator

This operator is used to take those children of the data terms bound to the query variable vp that
follow the reference data term identified by vr e f and bind them to the query variable vs by creating a
new matrix for each one of those children.

Syntax:

FollowingSiblingOperator $v_p$ $v_{ref}$ $v_s$

Semantics:

This operator walks through all matrices in σ(vp ) and looks for submatrices M ′ that match vr e f . Then
all children of the current matrix of σ(vp ) that are following siblings of the data term corresponding
to M ′ are collected, bound to vs , and stored under M ′ as further submatrices.

LabeledFollowingSiblingOperator

The LabeledFollowingSiblingOperator is a specialized version of the FollowingSiblingOperator

above. It only takes those siblings that are elements with label "label".

Syntax:

LabeledFollowingSiblingOperator $v_p$ $v_{ref}$ "label"$v_s$

Semantics:

For further details, see the FollowingSiblingOperator above. This operator restricts the siblings to
elements with the given label.

DescendantOperator

The DescendantOperator is used to retrieve all descendants of the data terms bound to the query
variable vp and to bind them to the query variable vdesc .

Syntax:

DescendantOperator $v_p$ $v_{desc}$
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Semantics:

{(vp ,d , M ′∪M ′′) : (vp ,d , M ′) ∈σ(vp )∧M ′′ = {(vdesc ,n,;) : n ∈ desc(d)}}

First, the DescendantOperator retrieves all matrices Mvp from the cache σ that match the query
variable vp :

Mvp =σ(vp )

Each of those matrices has an associated data term d . This operator takes all the descendants of the
data terms d and binds them to the query variable vdesc by creating a new matrix M ′ = (vdesc ,d ,;).
Those matrices are added as submatrices to that matrix of Mvp the data term of which they belong to.

DescendantOrSelfOperator

The DescendantOrSelfOperator is a specialized version of the DescendantOperator. It not only re-
trieves all descendants of a given parent data term, but also includes the parent data term itself.

Syntax:

DescendantOrSelfOperator $v_p$ $v_{desc}$

Semantics:

{(vp ,d , M ′∪M ′′) : (vp ,d , M ′) ∈σ(vp )∧M ′′ = {(vdesc ,n,;) : n ∈ (desc(d)∪d)}}

LabeledDescendantOperator

The LabeledDescendantOperator is a specialized version of the DescendantOperator. It only retrieves
those descendants of a given parent data term that are elements that match a given label.

Syntax:

LabeledDescendantOperator $v_p$ "label"$v_{desc}$

Semantics:

{(vp ,d , M ′∪M ′′) : (vp ,d , M ′) ∈σ(vp )∧M ′′ = {(vdesc ,n,;) : n ∈ desc(d)∧ l abel (n) = "l abel"}}

LabeledDescendantOrSelfOperator

The LabeledDescendantOrSelfOperator is a specialized version of the DescendantOrSelfOperator.
It only retrieves those descendants of a given parent data term, including the parent data term itself,
that are elements that match a given label.

Syntax:

LabeledDescendantOrSelfOperator $v_p$ "label"$v_{desc}$
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Semantics:

{(vp ,d , M ′∪M ′′) : (vp ,d , M ′) ∈σ(vp )∧
M ′′ = {(vdesc ,n,;) : (n ∈ desc(d)∪d)∧ l abel (n) = "l abel"}}

Note that not only the true descendants have to match the given label, but also the parent node d is
only bound to vdesc if it matches the label "label".

Verification Operators

All operators in the remainder of this section are part of the matrix population operators, but serve a
special need: they verify if the created matrix associated with a particular query variable meets certain
requirements. If this is the case, nothing else is done, if this is not the case, then the affected matrix is
set to false.

TypeVerificationOperator

The TypeVerificationOperator verifies that the data terms bound to the given query variable are of
a given type.

Syntax:

TypeVerificationOperator $v$ $type$

Semantics:

Upon execution this operator retrieves the data terms associated with the matrices σ(v) and verifies
that their type matches the given type t y pe.

The type t y pe can be either one of the following:

• Node

• Document

• Element

• Text

• Comment

• ProcessingInstruction

• DocType

If the verification of any of those data terms fails, the corresponding matrix is set to false.

LabelVerificationOperator

The LabelVerificationOperator verifies that the data terms bound to the given query variable match
a given label.
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Syntax:

LabelVerificationOperator $v$ "label"

Semantics:

Upon execution this operator retrieves the data terms associated with the matrices σ(v) and verifies
that they are elements with label "label".

If the verification of any of those data terms fails, the corresponding matrix is set to false.

ContentVerificationOperator

The ContentVerificationOperator verifies that the data terms bound to the given query variable are
text nodes with a specific content.

Syntax:

ContentVerificationOperator $v$ "content"

Semantics:

Upon execution this operator retrieves the data terms associated with the matrices σ(v) and verifies
that they are text nodes with content matching the string "content".

If the verification of any of those data terms fails, the corresponding matrix is set to false.

ArityVerificationOperator

The ArityVerificationOperator verifies that the data terms bound to the given query variable have
a fixed number of children.

Syntax:

ArityVerificationOperator $v$ $arity$

Semantics:

Upon execution this operator retrieves the data terms associated with the matrices σ(v) and verifies
that they are elements with exactly ar i t y number of children. ar i t y may be any positive integer,
including 0.

If the verification of any of those data terms fails, the corresponding matrix is set to false.

OrderVerificationOperator

The OrderVerificationOperator verifies that the data terms bound to the given query variable have
their children ordered or unordered.

Syntax:

OrderVerificationOperator $v$ $ordered$
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Semantics:

Upon execution this operator retrieves the data terms associated with the matrices σ(v) and verifies
that they are elements the children of which are either an ordered or unordered sequence. or der ed
may be either true or false.

If the verification of any of those data terms fails, the corresponding matrix is set to false.

NamespaceVerificationOperator

The NamespaceVerificationOperator verifies that the data terms bound to the given query variable
match the given namespace declaration.

Syntax:

NamespaceVerificationOperator $v$ $URI$ $prefix$

Semantics:

Upon execution this operator retrieves the data terms associated with the matrices σ(v) and verifies
that the namespace of those nodes matches the given namespace definition: the namespace name or
prefix must be equal to pr e f i x and the associated URI must be equal to U RI .

If the verification of any of those data terms fails, the corresponding matrix is set to false.

RelationVerificationOperator

The RelationVerificationOperator sets itself a little apart from the other verification operators: it
verifies that all matrices identified by a given query variable have at least one submatrix for each
further given query variable vr .

Syntax:

RelationVerificationOperator $v$ $v_{r_1}, v_{r_2},\ldots$

Semantics:

Upon execution this operator checks that all matrices (v,d , M ′) ∈σ(v) contain submatrices that bind
the query variables vr1 , vr2 , . . .:

∀(v,d , M ′) ∈σ(v) ∀vr ∈ {vr1 , vr2 , . . .} ∃d ′ : (vr ,d ′, M ′′) ∈ M ′

If the verification of any of those matrices fails, the matrix is set to false.

NonRelationVerificationOperator

The NonRelationVerificationOperator is the opposite of the above RelationVerificationOperator.
It verifies that none of the matrices identified by a given query variable have a submatrix that binds
one of the given query variables vr .
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Syntax:

NonRelationVerificationOperator $v$ $v_{r_1}, v_{r_2},\ldots$

Semantics:

Upon execution this operator checks that none of the matrices (v,d , M ′) ∈σ(v) contains a submatrix
that binds one of the query variables vr1 , vr2 , . . .:

∀(v,d , M ′) ∈σ(v) ∀vr ∈ {vr1 , vr2 , . . .} 6 ∃d ′ : (vr ,d ′, M ′′) ∈ M ′

If the verification of any of those matrices fails, the matrix is set to false.

2.4.3 Relational Solution Evaluation

The pure relational solution evaluation is used by the set-based evaluation model. This section
describes the operators that create the relational solution table.

The operator that has always to be executed first in this evaluation phase is the CartesianProductOperator.
It creates the initial relational table on which the following operators perform their work.

CartesianProductOperator

The CartesianProductOperator flattens the matrix MG generated by the matrix population operators
and stores the results in the relational solution table.

Syntax:

CartesianProductOperator $v_i, v_j,\ldots$

Semantics:

Create the set of all possible solutions that the matrix represents. The list of variables vi , v j , . . .
determines which variables are supposed to be output variables, that is, which variables the caller is
interested in.

A single solution is a set of value assignments, one binding for each variable.
Each (sub)matrix represents a set of (partial) solutions. The matrix itself contains just the one

variable-node-binding that it was created for. But there are many other variable bindings that depend
on this very binding, and those are represented by the matrix’s submatrices and their combinations.

Those submatrices are grouped by their respective variables; each group represents one set of
alternative bindings for that variable and its corresponding subvariables (submatrices).

All of those binding alternatives that one submatrix represents have to be combined with all of the
alternatives of each one of the other variable groups. All those combinations together comprise the
possible solutions for the matrix and its submatrices.

It is therefore obvious that the final table of solutions needs exponential space compared to the
matrix from which it is created (and thus compared to the document size).

IdentitySelectionOperator

This operator is a purely relational operator. Its only input is the relational solution table and its only
output is the modified solution table.
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Syntax:

IdentitySelectionOperator $v_1$ $v_2$

Semantics:

This operator selects only those tuples of the result table that have identical bindings for the vari-
ables v1 and v2 and removes the other tuples from the table.

ValEqualSelectionOperator

Just like the IdentitySelectionOperator, this operator is a purely relational operator. Its only input
is the relational solution table and its output is the modified solution table.

Syntax:

ValEqualSelectionOperator $v_1$ $v_2$

Semantics:

This operator selects only those tuples of the result table that have value equal bindings, i.e. matching
terms, for the variables v1 and v2 and removes the other tuples from the solution table.

2.4.4 Document Construction

The document construction is the phase that takes the computed variable bindings and builds the
result document according to the construct operators. These operators work a little different than the
matrix population operators and the relational operators. The document construction operators are
nested, their work depends on the parent operator. The parent operator calls its child operators with
the appropriate element par ent that needs to be extended.

Thus, the document construction operators form a tree. The root of that tree is the operator that
creates the root element of the result document.

The document construction operators keep a global reference to the current tuple c in the solution
table. It is only changed by the AllIterationOperator and read by the VariableOperator so that the
VariableOperator can access a(nother) binding for its query variable.

The implemented document construction is solely based on the relational solution table and
requires the matrix to be completely unfolded by the CartesianProductOperator.

ElementOperator

The ElementOperator creates a new element in the context of its parent operator.

Syntax:

ElementOperator "label"$ $ $ordered$ ( $[DCOP_1$ $DCOP_2$ $\ldots]$ )
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Semantics:

This operator creates a new and empty element with the label "label". The new element is appended
to the list of children of the element par ent , implicitly given by the parent operator. The new element
serves as parent element for the suboperators DCOPi . The argument or der ed can be true or false
and specifies if the order of the children matters, that is, if the children are ordered or not.

AttributeOperator

The AttributeOperator creates a new attribute for the element of its parent operator.

Syntax:

AttributeOperator $name$ $value$

Semantics:

This operator adds a new attribute with the identifier name and the content value to the element
par ent , which is given by the parent operator.

This operator cannot have any further suboperators.

VariableOperator

The VariableOperator reads the current binding for the given query variable and adds the referenced
data term to the list of children of the element given by the parent operator.

Syntax:

VariableOperator $v$

Semantics:

This operator takes the data term that is bound to the query variable v by the current tuple c and
appends it to the list of children of the element par ent , implicitly given by the parent operator.

A VariableOperator operator cannot have any further suboperators.

AllIterationOperator

This operator iterates through all distinct combinations of bindings of the given query variables in the
solution table and executes all its suboperators for each of those combinations.

Syntax:

AllIterationOperator $v_{i_1}, v_{i_2}, \ldots$ ( $[DCOP_1$ $DCOP_2$ $\ldots]$ )
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Semantics:

The AllIterationOperator (also called the all-iterator) executes its suboperators on all tuples of
the solution table that are unique in the bindings and their combination of the given set of vari-
ables {vi1 , vi2 , . . .}. Before executing the child operators on a selected tuple t , the all-iterator sets the
current tuple c to this selected tuple t .

In addition to that, the all-iterator operates in the context of its nearest ancestor all-iterator, if
there is such an operator. That means that if there is a parent AllIterationOperator that iterates
over some given variables, those variables constitute the context for the closest following child or
descendant all-iterator. This child all-iterator then operates only on those tuples of the solution
table that have the same bindings for the context variables as the current tuple c.

2.5 Translation of Xcerpt Single Rule Programs

This chapter is a more or less informal description of the translation of an Xcerpt single rule program.
It is not a mathematically precise definition of a translation function. However, this chapter should be
sufficient to understand the translation, to implement it, and to create the formal function.

First of all, recall that the abstract machine only handles Xcerpt single rule programs. In the
following, such a program is simply called rule.

A rule consists of a query term and a construct term. Currently, the abstract machine supports
only one query term in the rule since the constructs and and or, which can combine several query
terms, are not supported.

The translation process of a rule is three-fold. First, the spanning tree of the query term is trans-
lated, then the remaining graph relations are translated, and finally the construct term is translated.

The query term binds certain subterms of the data term to some variables and with the help of the
document structure given in the construct term, the construction part reassembles those data terms
into the result document.

2.5.1 Basics

Every query term can be represented by a graph, called query graph. Each node in such a graph is
assigned a so-called query variable. In the following, the query variables are called vi , with 0 < i <= n,
and n is the number of nodes in the query term.

Variables that appear in the query term are called output variables and since those output variables
correspond to a node as part of the query graph, they too are assigned a query variable.

Note, however, that even if one and the same output variable occurs more than once in the query
term, it is still assigned two different query variables. Query variables are unique and refer to one
particular node in the query graph. This also means that variables in the query term (the output
variables) are treated just like any other query node. All of the translation is based on this concept.

Also note that due to the different operation of the document construction operators, the nodes of
the construct term are not assigned any query variables. Rather, the generated machine code of the
construct term uses the query variables already assigned to the query nodes.

The remainder of this chapter is divided according to the three evaluation phases. They are
represented by the translation and the operators, and the following three sections correspond to the
matrix population phase, the solution generation phase, and the document construction phase.
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2.5.2 Scope and Naming

This section specifies which parts of the Xcerpt language are understood by the abstract machine and
can be translated, and some of the naming used in this chapter.

All simple query terms without special Xcerpt keywords are fully supported and can be translated,
including graphs, ordered and unordered child specifications, and complete and incomplete term
specifications.

Variables and variable restrictions can be used, and the “*”-wildcard for labels is supported.
Regarding Xcerpt keywords, the following subset is fully supported: desc, descendant, var, variable,

as, all. Only partially supported is the without keyword.
Generally, single Xcerpt rules with query part and construction part are supported. Chaining of

rules is not covered by this initial version of the abstract machine.
Currently, only element nodes, attribute nodes, and text or content nodes are supported. Com-

ments, document types, and processing instructions are not implemented, but are straightforward to
add using the existing code as a starting point.

Irrespective of the children of an element being specified completely or incompletely, the set of
children of an element is called a sequence. Depending on the order, the sequence is called unordered
sequence or ordered sequence.

2.5.3 Translation of the Query Part

The resulting machine code of the translation of the query part of an Xcerpt query rule constitutes
the first phase of the evaluation, the matrix population phase. The matrix population operators
are divided into two groups: operators that create and add new submatrices and operators that set
matrices to false and delete them if certain properties are not met. The first group of operators
includes the following operators:

• ChildOperator

• FollowingSiblingOperator

• RangedChildOperator

• DescendantOperator

together with their specialized operators. The second group of operators are all those operators the
names of which end with VerificationOperator.

2.5.3.1 Translation of the Query Root Node

The root node of the query term is always translated with the RootOperator and it is always translated
first. The arguments for the RootOperator are the query variable for the root node of the Xcerpt query
term v1 and the root node of the data term.

RootOperator $v_1$ <pointer_to_data_term>

2.5.3.2 Translation of a Node

There are a few different cases as to how a query node is translated. The translation mainly depends
on the type of the node.
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Text Nodes

Syntax: "content"
A text node (also called content node), which was assigned the query variable vc , is translated

with the following code:

ContentVerificationOperator $v_c$ "content"

content is a conceptual variable and is replaced by the actual string.

Elements

Syntax: id@nsprefix:label [sequence]

If the node is an element having the query variable ve assigned, and with a label, a namespace, an
ID, and possibly a sequence if it has children, then the translation is:

TypeVerificationOperator $v_e$ ElementType

2NamespaceVerificationOperator $v_e$ URI nsprefix

LabelVerificationOperator $v_e$ label

Note that the ID is not directly translated, the translator just stores the mapping from the ID to the
query variable of the query node and replaces this ID with the query variable when another term
references the ID. For the translation of the children of the element, see below.

2.5.3.3 Translation of the Children of an Element

Syntax: id@nsprefix:label [sequence]

The translation of the children of an element query node vp depends on if the children are ordered
or not. The children are contained in a sequence:

$v_p$ [ $c_1, c_2,\ldots, c_n$ ]

with n being the number of children in the sequence or the arity of the parent query term vp . As a
reminder, a sequence’s properties are specified using different brackets: ordered and total sequences
are denoted by [], ordered and partial sequences are denoted by [[]], unordered and total sequences
are denoted by {}, and unordered and partial sequences are denoted by {{}}.

Translation of Unordered Sequences

OrderVerificationOperator $v_e$ false

If the sequence is total, i.e., completely specified, then the following additional code is added:

1ArityVerificationOperator $v_e$ $n$

As an optimization, in case of an incomplete sequence specification a new operator could be
added that checks for an arity greater than or equal to the given arity n.

Now, assuming that no further Xcerpt keywords appear in the sequence, all children are translated
using the ChildOperator. Thus, for each child vc of the n children the following code is generated:

ChildOperator $v_p$ $v_c$

Following that is the code of the translation of the child term itself. If one or more of the children is
declared to be a descendant using the desc-keyword, then the code above is replaced by
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DescendantOperator $v_p$ $v_c$

Nothing else changes.

Translation of Ordered Sequences

1OrderVerificationOperator $v_e$ true

If the sequence is total, i.e., completely specified, then the following additional code is added:

1ArityVerificationOperator $v_e$ $n$

Again, assuming that no further Xcerpt keywords are used in the sequence of children, the resulting
code of the translation of the sequence is:

1ChildOperator $v_p$ $c_1$

FollowingSiblingOperator $v_p$ $c_1$ $c_2$

3FollowingSiblingOperator $v_p$ $c_2$ $c_3$

$\dots$

5FollowingSiblingOperator $v_p$ $c_{n-1}$ $c_n$

Of course, for each of the children the code for translating that child is inserted as well.
Since in the ordered and total case there is only exactly one matching possibility, instead of using

the FollowingSiblingOperators, a new kind of operator could be introduced, the ImmediatelyFollowingSiblingOperator.
This operator would only create new matrices for the immediately following sibling, not all following
siblings, like the FollowingSiblingOperator does.

And just like in the unordered case, an optimization for the incomplete or partial sequence
specification would be a new operator that checks for an arity greater than or equal to the given
arity n.

For the case of descendants in an ordered sequence, please refer to the next section.

2.5.3.4 Translation of the Descendant Construct

There are two cases in the translation of the desc keyword: the descendant construct can be part of an
unordered sequence or it can be part of an ordered sequence.

As mentioned already, the descendant translation in unordered sequences is straightforward.
Instead of the ChildOperator, the DescendantOperator is used.

However, the ordered case is a little bit trickier. It has to be made sure that the descendant term
that was found is a descendant of one of the nodes that come after the previously translated child (or
descendant) in the order of the sequence. One way to ensure that is to introduce an additional query
variable vt that is bound to the following siblings of the previously translated term. Then, the actual
query variable of the descendant construct to be translated is bound to the descendants of those
siblings, or the siblings themselves, which were bound to the additional query variable vt . Therefore,
the translation of the following sequence part:

$v_p$ [ $\ldots$, $v_x$, desc $v_y$, $\ldots$ ]

results in the following code:

1$\dots$

<translation of the child $v_x$>

3

FollowingSiblingOperator $v_p$ $v_x$ $v_t$
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5DescendantOrSelfOperator $v_t$ $v_y$

$\dots$

And then follows the translation of the descendant term itself, and after that the translation of the rest
of the sequence.

2.5.3.5 Back-Propagation of false Matrices

In the process of building the matrix, all operators of the ChildOperator-family, the DescendantOperator-
family, and the FollowingSiblingOperator-family do not create any new submatrices if the corre-
sponding data term does not fulfill the requirements of those operators.

Similarly, the operators of the VerificationOperator-family may set a submatrix to false.
At the end of the translation of the query part of the Xcerpt query rule, the generated matrices that

are false or the matrices that are invalid matrices because they should have but do not have certain
submatrices, need to be propagated back up in the matrix tree. Naturally, back-propagation needs
to be done in reverse order, that is, the leaves of the matrix tree need to be checked first, and false

matrices need to be propagated up until at last the root is reached.
For each ChildOperator, RangedChildOperator, DescendantOperator, and FollowingSiblingOperator

there has to be at least one RelationVerificationOperator, or NonRelationVerificationOperator
in case of the RangedChildOperator.

The RelationVerificationOperators have to be in reverse order of the order of their correspond-
ing child- or descendant-operators.

Therefore, as an example, if the query to be translated is

$v_1$ {{ $v_2$, $v_3$ {{ $v_4$ }} }}

then the resulting code is:

1ChildOperator $v_1$ $v_2$

ChildOperator $v_1$ $v_3$

3ChildOperator $v_3$ $v_4$

5RelationVerificationOperator $v_3$ $v_4$

RelationVerificationOperator $v_1$ $v_3$

7RelationVerificationOperator $v_1$ $v_2$

2.5.3.6 Translation of Negated Subqueries

Negated subterms are only partially supported. Only one special case has been implemented: negated
subterms must be part of a partial and ordered sequence and must not contain any output variables.

The without keyword is translated using the RangedChildOperator and the NonRelationVerificationOperator.
The following sequence

... $v_1$ [[ a, without b, var X as b ]]

is translated to

1ChildOperator $v_1$ $v_2$

LabelVerificationOperator $v_2$ "a"

3

FollowingSiblingOperator $v_1$ $v_2$ $v_4$
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5LabelVerificationOperator $v_4$ "b"

7RangedChildOperator $v_1$ $v_2$ $v_4$ $v_3$

LabelVerificationOperator $v_3$ "b"

9NonRelationVerificationOperator $v_4$ $v_3$

11RelationVerificationOperator $v_2$ $v_4$

RelationVerificationOperator $v_1$ $v_2$

Intuitively, the query means: “Get all those bs that immediately follow an a in the sequence of children
of v1 and bind them to the output variable X.”

The matrices for the query variable v4 (the second “b”) have to be created before v3 can be
computed because v3 depends on v4.

The NonRelationVerificationOperator ensures that no term is bound to v3 as a submatrix of v4.

2.5.3.7 Optional Optimizations During Translation

There are a few optimizations the translator can but need not perform. One optimization concerns
the label verification of children and descendants. Whenever code like this is generated as per the
above logic:

ChildOperator $v_p$ $v_c$

2LabelVerificationOperator $v_c$ label

i.e., whenever a ChildOperator is followed by a LabelVerificationOperator, the code can be re-
placed by

LabeledChildOperator $v_p$ label $v_c$

The same holds for the FollowingSiblingOperator, the DescendantOperator, the DescendantOrSelfOperator,
and the RangedChildOperator. This optimization can in some cases be quite drastic: instead of creat-
ing matrices for all children first and then discarding those matrices the children of which are not
elements or do not match the label, this optimization only creates matrices if the nodes are elements
that match the given label.

In the future, there may be more shortcuts like these. It should be noted though that the lazy
evaluation model will render those kinds of optimizations obsolete.

Another optimization is the increased use of the RelationVerificationOperator. Instead of only
verifying a relation at the end of the query term translation, the RelationVerificationOperator

can additionally be used right after any one of the matrix population operators that create new
submatrices. This pushes the selection further up in the operator tree and eliminates irrelevant tuples
earlier.

As it was mentioned in Section 2.5.1 on page 47, the abstract machine treats all variables the same.
It could be beneficial to treat query subterms without output variables existentially. That is, as soon
as one matching data term is found any further matrix creation is stopped for this subquery and the
corresponding matrix branch is set to true.

2.5.3.8 Limitations for the Translator

Currently, the translator does not perform all optimizations one could possibly think of. The most
prominent limitation is the free reordering of operators: with the current operator implementation it
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is not possible to execute the operators in an arbitrary order. An operator that needs a query variable
to compute its output, like the ChildOperator, for instance, cannot be moved in front of the operator
that creates the matrices for that query variable.

A further refinement of the operators and the matrix that makes it possible to freely reorder the
operators is currently under consideration.

2.5.4 Assigning the Output Variables

Translation of the output variables means creating the code that evaluates the graph relations of the
Xcerpt query term. All the code up to this point dealt with the spanning tree of the query term.

In the set-based evaluation model, this produces the code that represents the second phase of the
evaluation, which is the solution generation phase. It completely unfolds the matrix and stores the
resulting solutions in the relational solution table.

The first operator of the translation of the output variables is always the CartesianProductOperator
with the query variables for all output variables.

CartesianProductOperator $qOut$

Recall that each output variable is assigned a query variable. qOut are all those query variables that
stand for an output variable.

Only if there are joins to be computed further code is generated. Joins are the graph relations of
the query term and are identified by the same output variable occurring more than once in the query
term. Recall that two identical output variables are assigned two different query variables for two
different positions in the query graph. Those two corresponding query variables have to be “joined”,
that is, only those tuples of the relational solution table are selected that have the same binding for
the two query variables. The type of equality can be selected; available types are value equality and
true identity.

For value joins of two query variables, the translated code is

1ValEqualSelectionOperator $q_x$ $q_y$

and for identity joins it is

1IdentitySelectionOperator $q_x$ $q_y$

2.5.5 Translation of the Construct Part

The last part of the translation is marked by the translation of the construct part of the Xcerpt query
rule. This section deals with the creation of the result document, and the generated abstract machine
code constitutes the last phase of the abstract machine, the document construction phase of the
evaluation. The solutions of the previous phase are assembled into the result document using the
document structure given in the construct part of the query rule.

Compared to the translation of the other two parts the operators of the document construction
are nested and make up a hierarchy. This is required because the nodes of the construct term are not
assigned to query variables, nor is the construct term’s tree structure recorded anywhere.

Elements, attributes, and namespaces are translated into ElementOperator, AttributeOperator,
and NamespaceOperator, respectively:

f[ m[ a, b ] ]

is translated to:
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1ElementOperator "f" true (

ElementOperator "m" true (

3ElementOperator "a" true ()

ElementOperator "b" true ()

5)

)

Variables are translated into VariableOperator and the all is translated into AllIterationOperator.
The arguments to the AllIterationOperator are all those variables in the construct term that are a
descendant to the all and do not have a closer parent all. See the next section for some example
translations.

2.5.6 Example Translation

After all the theoretical translation knowledge, this section shows an example for the translation of
some of the supported features.

Query Rule

The Xcerpt query rule to be translated is:

GOAL

2f[ all m[ var X, all var Y ] ]

FROM

4f[[ a[[ var X as b ]], var Y as c, var X ]]

END.

abstract machine Code

1// first phase

RootOperator $v_1$ f

3LabelVerificationOperator $v_1$ "f"

OrderVerificationOperator $v_1$ true

5

LabeledChildOperator $v_1$ "a" $v_2$

7OrderVerificationOperator $v_2$ true

RelationVerificationOperator $v_1$ $v_2$

9

ChildOperator $v_2$ $v_3$

11LabelVerificationOperator $v_3$ "b"

13LabeledFollowingSiblingOperator $v_1$ $v_2$ "c" $v_4$

FollowingSiblingOperator $v_1$ $v_4$ $v_5$

15

RelationVerificationOperator $v_4$ $v_5$

17RelationVerificationOperator $v_2$ $v_3$ $v_4$

RelationVerificationOperator $v_1$ $v_2$

19
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21// second phase

CartesianProductOperator $v_3$ $v_4$

23ValEqualSelectionOperator $v_3$ $v_5$

25

// third phase

27ElementOperator "f" true (

AllIterationOperator $v_3$ (

29ElementOperator "m" true (

VariableOperator $v_3$ ()

31AllIterationOperator $v_4$ (

VariableOperator $v_4$ ()

33)

)

35)

)

2.6 Implementation

2.6.1 Object-oriented Design of the Implementations

The following sections show the common design of the two abstract machine implementations, the
Java and the C++ implementation.

2.6.2 Coding Conventions

Some coding conventions have been decided upon to make the code as readable as possible. Of those,
the following are worth mentioning.

Member variables are prefixed with “m_” and static variables are prefixed with “s_”. The rest of the
code uses camel case. Classes start with a capital letter, methods and variables with a small letter.

2.6.3 Abstract Machine Core Cycle

The abstract machine Core Cycle is at the heart of the abstract machine and therefore rather simple. It
executes one operator after another, which looks like this in Java:

for ( Operator op : query )

2{

op.execute();

4}

And query is a container with the sequence of operators to be executed by the abstract machine.

2.6.4 Class-Hierarchy

Besides the main program, the abstract machine consists of the data model, the matrix, and the
operators. The matrix and the operators together make up the conjunctive query pattern engine,
which solves Xcerpt queries.
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Figure 2.1: The Class Diagram of the abstract machine Data Model

The class graph of the main classes of the abstract machine is split in two: in Figure 2.1 can be
found the UML diagram of the data model, Figure 2.2 on the next page shows the design of the engine.

2.6.4.1 Data Model

The central class of the data model is the Node-class. Except for the Attributes, all other classes
inherit Node and, therefore, are Nodes.

To prevent endless casting of Node objects to Element or any of the other classes when calling, say,
Element methods, most methods are available in the base class Node already. The default implemen-
tation of most of those methods throws an UnsupportedOperationException and is overridden by
those classes where that particular method makes sense.

2.6.4.2 Engine

The engine is mainly based on four classes: Matrix, MatrixPopulationOperator, RelationalOperator,
and DocumentConstructionOperator. The latter three classes represent the three evaluation phases
and are derived from the interface Operator, since obviously those are all operators and a common
superclass allows for all operators to be stored in one Java or C++ container. The actual operators are
all derived from one of those three abstract operator classes.

2.6.5 Some Specific Operator Details

2.6.5.1 Document Construction Operators

The all-iterator (the AllIterationOperator) passes the current tuple via a class-global variable, a
static class member called s_currentTuple. This is necessary because all suboperators (that are
VariableOperators) of the AllIterationOperator at any depth need to be able to access it. Without
the static member the current tuple would have to be passed through all the other operators and
would make their API a bit ugly. The static class member is a cleaner solution.
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Figure 2.2: The Class Diagram of the abstract machine Engine
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2.6.6 Problems Encountered and their Solutions

First and foremost was a problem that arouse during the implementation of the matrix expansion in
the CartesianProductOperator. Recall that a solution is a list of variable bindings, which contains all
query variables. All solutions are gathered in the solution table, which is also a list.

Generating this list of all possible solutions took far too much memory to be acceptable. This has
first been observed in the Java implementation. The reason was that for every variable binding a new
list element was created and for every solution all variable bindings were created again. On top of
that, Java only provides a doubly-linked list, wasting memory with each and every variable binding
and solution. It is not required to be able to walk backwards in either of those lists.

The solution to that was to implement a singly linked list with the possibility to share list tails,
reducing heap memory allocation a lot. And it is possible to share the list tails because additional
variable bindings are only prepended at the beginning of a list of bindings. Furthermore, the solutions
do not have to be modified, making the list tails conceptually read-only.

This implementation improved the CartesianProductOperator dramatically, its speed increased
by a factor of 2-4 and the memory usage was cut in less than half.

2.7 Java Implementation

The Java implementation uses the standard Java libraries, but mainly the containers from the java.util
package.

The Java implementation has one special feature. It implements a singly linked list that supports
tail sharing. This linked list implementation could probably be re-used for other projects as well.

Apart from that, the Java implementation conforms to the above design description with no
deviations.

2.7.1 Drawbacks of the Java Implementation

Initially the first implementation of the abstract machine was done in Java only. However, it be-
came clear that the exhibited performance cannot be the summit of possibility. Furthermore, some
limitations of the Java language itself lead to the decision to port the implementation to C++ as well.

The main drawback of the Java implementation is its memory footprint and the execution speed.
For a comparison of the Java and the C++ implementation see Section 2.9 on page 61.

Related to that is Java’s limitation regarding objects: it is not possible to retrieve an object’s physical
address. If, say, we need a list of objects to be sorted so that equal objects are consecutive those objects
need to be comparable. In case of data terms this is not possible, so one has to add a new integer class
member to indicate the serial number and then sort according to the object’s serial number. This is a
little slower than the direct object addresses of C++ and needs more memory—the serial number is a
per-object cost that is to be paid.

Other than that, the container library is not quite as flexible and powerful as the C++ STL, but that
was no major problem to overcome.

2.8 C++ Implementation

The C++ implementation is based on the STL (Standard Template Library) and uses the stlport library,
version 5.0. The reason for not using the GCC STL is efficiency—for some reason the GCC STL needs
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dramatically more memory and is significantly slower. This concerns the GCC STL version 4.1.
The following section documents only those details that are peculiar to the C++ implementation.

2.8.1 A Singly-Linked List With Tail Sharing: sslist

The C++ implementation features a singly linked list implementation that supports tail sharing and is
compatible with the STL. That means it supports the STL allocators, it uses the STL iterators, and can
be used with many of the STL algorithms.

Care needs to be taken though when modifying an sslist’s structure. The sslist implementation
does not check if the modified list element is shared or not. In the worst case, another list can
unintentionally and implicitly be modified and a memory leak could be introduced.

Also, not all list operations specified by the ISO C++ standard have been implemented in the
sslist. To reduce the resulting binary size, only those operations that are needed by the abstract
machine are supported.

2.8.2 Memory Management

2.8.2.1 General Overview

In contrast to Java, C++ does not provide an automatic garbage collection. The advantage of that
is performance, both in terms of speed and memory usage, and the obvious disadvantage is the
additional work for the programmer with possible mistakes and resulting memory leaks. However,
the fact that the programmer can implement his own garbage collection is also an advantage.

Manual garbage collection needs less overall memory (in fact, it needs the minimum amount of
memory for that application) because the exact moment when an object can be deleted is known by
the programmer. Thus, the problem of using excess memory when creating many temporary objects
very fast cannot arise. Most of the time the execution speed of the program is also faster with manual
garbage collection since the objects that can be deleted do not have to be searched.

To get those benefits sometimes significant work designing the memory management has to be
spent. Mistakes are not excluded but tools like valgrind help a great deal verifying that the memory
management is correct.

2.8.2.2 Data Structures Stored on the Heap

In the abstract machine there are five main data structures that need to be memory managed:

• the data term made up of subclasses of Node

• the result document, also made up of subclasses of Node

• the matrix

• the cache of submatrices

• the solution table

The first two are part of the data model, the latter three are part of the engine. Both parts are described
in more detail in the following subsections.
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2.8.2.3 Memory Management in the Data Model

The Node class of the data model, and thus all its derived classes, inherit from the SharedData class,
the sole task of which is to do reference counting. When a node is added as a child to another node,
the child node’s refcount is increased by one and the parent node takes non-exclusive ownership.

When a parent node is deleted all of its children are deref()’ed. A node is only deleted when its
reference count reaches 0. This way it is guaranteed that no nodes can be deleted that are children of
some other, still existing, node. On the other hand, the top of the tree of nodes can be deleted even
if some subtree is still used by another part of the program since the dereferencing makes sure that
starting from the first still-in-use node nothing will be deleted.

This kind of reference counting also makes sure that nodes in data term graphs (and also shared
matrices, see below) are not double-deleted. Graphs cause a node not to have one single unambiguous
parent.

The abstract machine supports more than one query on the same data term. To prevent the rest of
the abstract machine deleting parts of the data term, the root of the data term is ref()’ed in the main
program.

2.8.2.4 Memory Management in the Engine

Just like the Node class, Matrix inherits SharedData, which takes care of the refcounting. A matrix is
most likely a graph of matrices and thus reference counting is the only possibility to avoid double-
deletions. Remember, one matrix can have two different parent matrices.

Since Matrix has a data term, it takes ownership of the data term by ref()ing it when the matrix
is constructed and deref()s it when it is deleted. The matrix also deref()s (and deletes if needed) all
its submatrices in the destructor.

The solution table is the reason for a little difference in the memory management of a matrix and
a data term: All entries in the solution table are in essence Matrix objects. Those objects are only
used to keep a reference of the variable binding to the data term, their submatrices are not needed
anymore. Also, not all of the submatrices of the root matrix are used or needed by the solution table.
Thus, it should be possible for the solution table to reference some matrices and delete all the others
immediately, not only at the end of the abstract machine execution.

This is why the Matrix class provides a derefRecursively() method that not only dereferences
and deletes its direct submatrices but walks all the way to the leaf matrices, dereferencing and deleting
them all from the bottom up. Be careful though, this method should only be called exactly once for any
matrix tree in conjunction with calling ref() on the root, since it works (and dereferences matrices)
recursively.

The Matrix::setFalse()-Case

A special case is setting a matrix to false. Since a false matrix cannot have any submatrices, all
submatrices are released and deref()’ed. In case no other object has a reference to one or more of
those submatrices, they are deleted. However, it is not always possible to take definite ownership for a
matrix although a reference to the matrix is needed.

An example is the cache used during the matrix population phase: The cache provides fast access
to any submatrix in the matrix tree without having to walk through all the parent matrices starting
from the root matrix. But the cache needs to be notified when a matrix is deleted so that it can discard
it, otherwise the cache could return pointers to already free’d memory. The problem is that the caller
of Matrix::setFalse() cannot know which submatrices will be deleted, if any.
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So the Matrix class provides a way to register a function that is called back for all the matrices that
are deleted by the setFalse() method and the RootOperator, which is a matrix population operator,
registers the removeFromCache() function to keep the cache up-to-date with regards to the matrix
tree.

In the Java version, this method is not strictly needed because as long as the cache refers to one
of the matrices, this matrix is not deleted by the automatic garbage collection. The cache could be
updated to provide for a faster execution though.

2.8.2.5 Freeing the Memory

MatrixPopulationOperator::reset() deref()s and may thus delete the matrix and it deletes the
matrix cache.

DocumentConstructionOperator::reset() dereferences and deletes the result document.
RelationalOperator::reset() deletes the variable table. The contents of the table are untouched,

the matrices are deleted by the MatrixPopulationOperator.
Instead of having to call those reset() methods, another design possibility would be to take the

main data structures like the matrix, the cache, the document, etc. out of the main operator classes
and put them into their own encapsulating class. This would centralize the memory management for
them.

2.9 Benchmarks

This chapter shows some benchmarks of the implementations with some artificial data terms and
query terms.

2.9.1 The Test Environment

All benchmarks were executed on a Toshiba Satellite Laptop with a Pentium IV CPU with 1800 MHz and
512 MB of memory. The operating system is a current Debian unstable distribution (August/Septem-
ber 2006) with Sun’s Java 1.5.0, GCC 4.1.2, libstlport 5.0.2, and the Linux kernel version 2.6.17 with
preemption enabled.

The data term used is an artificially created tree of nodes, it is a horizontal repetition of a core data
term with a depth of 4 with the root defined to be at depth 1. The core data term is

f[ x, a[b[1], h, b], c, c[i, j, k], g[ "cool", sth[k, b] ] ]

The set of children of f is repeatedly added a number of times r , yielding a data term with 16 · r nodes
(descendants).

The data term is built specifically this way to ensure that there is no trivial and small solution
possible.

There are two queries that are executed on this data term as part of the benchmarks. Query 1 is a
full Xcerpt query that creates an output using the query results, Query 2 is a pure query without result
document creation to stress-test the CartesianProductOperator.

• Query 1:

GOAL

2f[ all m[ var X, all var Y ] ]

FROM
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4f[[ a[[ var X as b ]], var Y as c ]] ]] ]]

END.

This query is a full Xcerpt query rule and is run on the data term with a factor of r = 185, which
means that the queried data term has 2 960 elements. The solution table has 68 820 entries after
the execution of the query. The result document contains 172 976 nodes.

• Query 2: f[[ c[[ var X ]], desc var Y ]] This query does not construct any documents, it
just produces the solution table. It is meant as a stress test for the CartesianProductOperator,
since that is probably the most complex and resource hungry operator of all.

This query is run on the data term with a factor of r = 300, which means the data term has 4 800
elements. The solution table has 2 157 300 entries after the execution of the query. There is no
result document created.

Also note that the translation of this query retains all 5 query variables in the solution table, in
an optimized translation only 2 would be needed.

2.9.2 The Java Implementation

Before presenting the benchmark results, it should be noted that the memory usage figures are not
those of the whole Java virtual machine, but the real memory usage of the running application. This
is done by reducing the maximum Java heap size using the -Xmx<size> option. However, this does
not take into account the Java stack size, but since most of the memory is allocated with new and thus
needed on the heap, it may not be a significant omission at all.

To measure the runtime, the Java system call System.currentTimeMillis() is used.

2.9.2.1 Test Results

• Query 1: The query term of the rule is evaluated in 0.5 seconds, the document creation takes
about 15 seconds with 10 MB of heap space.

• Query 2: The query term is evaluated in 16.98 seconds of which 16.3 seconds are needed to
generate the solution table. The maximum memory usage is about 248 MB.

2.9.3 The C++ Implementation

For the C++ implementation, the brilliant valgrind tool serves as profiler and memory analyzer. Timing
data is taken by the clock() system function.

2.9.3.1 Test Results

• Query 1: The query term of the rule is evaluated in 0.07 seconds of which 0.05 seconds are
needed to generate the solution table, the document creation takes 2.21 seconds, and the
maximum memory usage is a little over 7 MB.

• Query 2: The query term is evaluated in 2.88 seconds of which 2.81 seconds are needed to
generate the solution table. The maximum memory usage is about 170 MB.
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2.9.4 Comparison of the Java and the C++ Implementations

Unsurprisingly, it is obvious that the C++ abstract machine implementation is significantly faster
while using a lot less memory.

A probable reason for the additional space of the Java version is the Object class overhead and the
automatic garbage collection. The latter is primarily the case because the garbage collection does not
clean up objects immediately after they went out of use, so they take up needless space.

An observable reason for a significant loss of speed is the garbage collector in case the memory is
almost completely used up. The garbage collector starts to look for unused objects to discard, and this
takes the more time the more objects there are. The more memory is made available, the faster the
Java implementation becomes, again most probably because the garbage collection has not much to
do anymore compared to the case of a very limited memory.

Those facts make completely representative and objective statistics difficult. When measuring the
memory usage the heap size has to be decreased, when measuring the time, the heap memory has to
be increased to yield better results in the respective case. Where does one set the limit and trade-off?

2.10 Future Research Possibilities

This chapter is just the beginning of the development of the complete abstract machine. One of
the next important steps would be the integration of the parser. At the moment the parser is able
to parse the whole Xcerpt language, however, building the abstract syntax tree as specified in the
“Initial Draft of a Language Syntax”, cf. [6] is only marginally implemented, the transformation of the
abstract syntax tree into the abstract machine machine language is completely missing. But for testing
purposes it would be nice to have the possibility of querying any XML document without having to
write its in-memory representation by hand.

Another important area is the evaluation model: with this chapter, the proof of concept for the set-
based evaluation model is done, but for the mixed model and, most important, for the lazy evaluation
model it has yet to be shown.

2.11 Conclusion and Summary

This chapter constitutes a further development of the SUAM—the first attempt at an implementation
of an abstract machine for the simulation unification, cf. [3]—by expanding the scope to single-rule
Xcerpt programs and by integrating the extended matrix model of [5].

Three possible evaluation models are identified: the set-based evaluation model, the mixed
evaluation model, and the lazy evaluation model, of which the set-based evaluation model is examined
in-depth in this chapter.

For the set-based evaluation, a new set of rather high-level operators is defined. This set of
operators is able to represent an Xcerpt single rule program and constitutes an abstract machine
machine program.

A first version of the abstract machine has indeed been implemented in two well-known languages,
namely Java and C++. Due to time constraints only a part of the original vision could be completed,
which is the set-based evaluation model. The other two evaluation models have to be developed in
the future.

The set-based evaluation turned out to exhibit the theoretically expected drawback also in practice.
Because it computes all possible solutions in every step it needs an exponential amount of time and
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space with regards to the size of the query and the data. Nevertheless, it was possible to improve this
situation with a few optimizations, most notably the list tail sharing when storing the solutions in the
relational solution table.

Finally, it was shown experimentally that the C++ implementation is superior to the Java imple-
mentation both in terms of memory and execution time, although the algorithms and data structures
are almost identical. On top of that, the C++ language allows for further optimizations that emphasize
the advantages of the C++ implementation even more.

Generally, it is great to see that the basic design of the abstract machine works and is efficiently
implementable.
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