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Chapter 1

Principles of the Abstract Machine:
Xcerpt 2.0

1.1 Introduction

Efficient evaluation of Web query languages such as XQuery, XSLT, or SPARQL has received consider-
able attention from both academia and industry over recent years. Xcerpt is a novel breed of Web query
language that aims to overcome the split between traditional Web formats such as XML and Semantic
Web data formats such as RDF and Topic Maps. Thus it avoids the impedance mismatch of using dif-
ferent languages to develop applications that enrich conventional Web applications with semantics and
reasoning based on RDF, Topic Maps, or similar emerging formats.

However, so far Xcerpt lacks a scalable, efficient and easily deployable implementation. In this
article, we propose principles and architecture of such an implementation. The proposed implementation
deviates quite notably from conventional wisdom on the implementation of query languages: it is based
on an abstract (or virtual1) machine that executes (interprets) low-level code generated from high-level
query programs specified in Xcerpt.

The choice of an abstract machine for implementing a query language might at the first glance seem
puzzling. And indeed abstract machines have only very seldom been considered in the past for the im-
plementation of query languages (the most notable exception being [28]). This is partially due to the
perceived performance overhead introduced by the abstraction/virtualization layer. However, traditional
query processors already separate between query compilation, where a high-level query is translated
into a low-level physical query plan, and query execution, where the query is evaluated according to
that query plan. From this point on the leap to an abstract machine that fully separates compilation and
execution seems small. In traditional DBMS settings it has, however, never occurred due to the way
query compilation is linked with query execution: cost-based optimizers consider extensively (statisti-
cal) information about the data instances, e.g., for selectivity estimates, and about actual access paths to
these data instances. This information is available as the DBMS has full, central control over the data
including its storage.

1Little substantial difference is made in the literature between “abstract” and “virtual” machines. Some authors define virtual
machines as abstract machines with interpreters in contrast to abstract machines such as Turing machines that are purely theoreti-
cal thought models. However this distinction is not widely adopted. In recent years, the term “virtual” machine seems to dominate
outside of logic programming literature.
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When implementing a Web query language such as Xcerpt, one is however faced with a quite dif-
ferent setting: In memory processing of queries against XML, RDF, or other Web data that may be
local and persistent (e.g., an XML database or local XML documents), but just as well may have to be
accessed remotely (e.g., a remote XML document) or may be volatile (e.g., in case of SOAP messages
or Web Service access). In other words, it is assumed that most of the queried data is not under (central)
control of a query execution environment like in a traditional DBMS setting, but rather that the queried
data is often distributed or volatile. This, naturally, hinders the application of conventional indexing
and predictive optimization techniques, that rely on local management of data and statistic knowledge
about that managed data. But, it also makes separate compilation and execution possible as the query
compilation is already mostly independent of data storage and instances as information about these is
not available at compilation and execution time but only becomes available at query execution.

To some extent, this setting is comparable to data stream processing where also little is known
about the actual data instances that are to be encountered during query evaluation. The efficient data
stream systems (such as [3,1,6]) compile therefore queries into some form of (finite state or push-down)
automata that is used to continuously evaluate the query against the incoming data.

AMAχOS, the abstract machine for Xcerpt on semi-structured data, can be seen as an amalgamation
of techniques from these three areas: query optimization and execution from traditional databases and
data stream systems, and compilation and execution of general programs based on abstract or virtual
machines.

AMAχOS is designed around a small number of core principles:

1. “Compile once”—compilation and execution is separated in AMAχOS thus allowing (a) different
levels of optimization for different purposes and settings and (b) the distribution of compiled
query programs among query nodes making light-weight query nodes possible. For details see
Section 1.4.2.

2. “Execute anywhere”—once compiled, AMAχOS code can be evaluated by any AMAχOS query
node. It is not fixed to the compiling node. In particular, parts of a compiled program can be
distributed to different query nodes. For details see Section 1.4.1.

3. “Optimize all the time”—not only are queries optimized predictively during query compilation,
but also adaptively during execution. For details see Section 1.4.4.

As a corollary of these three principles AMAχOS employs a novel query evaluation framework for the
unified execution of path, tree, and graph queries against both tree- and graph-shaped semi-structured
data (details of this framework are discussed in Section 1.4.3 and [10]).

Following a brief look at the history of abstract and virtual machines for program and query execu-
tion (Section 1.2) and an introduction into Xcerpt (Section 1.3), the versatile Web query language that is
implemented by the AMAχOS abstract machine, we focus in the course of this article first (Section 1.4)
on a discussion of the principles of this abstract machine that also serves as a further motivation of the
setting. The second part (Section 1.5) of the paper discusses the proposed architecture of AMAχOS
and how this architecture realizes the principles discussed in the first part.

1.2 A Brief History of Abstract Machines

Abstract and virtual machines have been employed over the last few decades, aside from theoretical
abstract machines as thought models for computing, in mostly three areas:
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Hardware virtualization. Abstract machines in this class provide a layer of virtual hardware on top
of the actual hardware of a computer. This provides the programs directly operating on the virtual hard-
ware (mostly operating systems, device drivers, and performance intensive applications) with a seem-
ingly uniform view of the provided computing resources. Though this has been a focus of considerable
research as early as 1970, cf. [17] only recent years have seen commercially viable implementations
of virtual machines as hardware virtualization layers, most recently Apple’s Rosetta2 technology that
provides an adaptive, just-in-time compiled virtualization layer for PowerPC applications on Intel pro-
cessors. Currently, research in this area focuses on providing scalability, fault tolerance [11] and trusted
computing [16] by employing virtual machines, as well as on on-chip support for virtualization.

Operating system-level virtualization A slightly higher level of abstraction or virtualization is pro-
vided by operating system-level virtual machines that virtualize operating system functions. Again, this
technology has just recently become viable in the form of, e.g., Wine3, a Windows virtualization layer
for Unix operating systems.

High-level language virtual machines From the perspective of AMAχOS the most relevant research
has been on virtual machines for the implementation of high-level languages. Again first research dates
back to the 1970s [31], but wider interest in abstract machines for high-level languages has been focused
on two waves: First, in the 1980s a number of abstract machines for Pascal (p-Machine, [32]), Ada [19],
Prolog [42], and functional programming languages (G-machine, [21]) have been proposed that focused
on providing platform neutrality and portability as well as precise specifications of the operational
semantics of the languages. Early abstract machines for imperative and object-oriented programming
languages have not been highly successful, mostly due to the perceived performance penalty. However,
research on abstract machines for logic and functional programming languages has continued mostly
uninterrupted up to recent developments such as the tabling abstract machine [36] for XSB Prolog.

Recently, the field has seen a reinvigoration, cf. [35], triggered both by advances in hardware vir-
tualization and a second wave of abstract machines for high-level programming languages focused this
time on imperative, object-oriented programming languages like Java and C]. Here, isolation and se-
curity are added to the core arguments for the use of an abstract machine: Each instance of an abstract
machine is isolated from others and from other programs on the host system. Furthermore analysis of
the abstract machine byte code to ensure, e.g., safety or security properties proves easier than analysis
of native machine code.

The most prominent examples of this latest wave are, of course, Sun’s Java virtual machine [24]
and Microsoft’s common language infrastructure [20] (CLI). The latter is adding the claim of “language
independence” to the arguments for the deployment of an abstract machine. And indeed quite a number
of object-oriented and functional languages have been compiled to CLI code. With this second wave,
design and principles of abstract machines are starting to be investigated more rigorously, e.g., in [13]
and [40] that compare stack- with register-based virtual machines.

Closest in spirit and aim to the work presented in this paper and to the best knowledge of the authors’
the only other work on abstract machines for Web query languages is [28] that presents a virtual machine
for XSLT part of recent versions of the Oracle database. However, this virtual machine is focused on a
centralized query processing scenario where a single query engine has control over all data and thus can
employ knowledge about data instances and access paths for optimization and execution.

2http://www.apple.com/rosetta/
3http://www.winehq.com/
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1.3 Xcerpt: A Versatile Web Query Language

Xcerpt is a query language designed after principles given in [7] for querying both data on the stan-
dard Web and data on the Semantic Web. More information, including a prototype implementation, is
available at http://xcerpt.org.

1.3.1 Data as Terms

Xcerpt uses terms to represent semi-structured data. Data terms represent XML documents, RDF
graphs, and other semi-structured data items. Notice that subterms (corresponding to, e.g., child ele-
ments) may either be “ordered” (as in an XHTML document or in RDF sequence containers), i.e., the
order of occurrence is relevant, or “unordered”, i.e., the order of occurrence is irrelevant and may be
ignored (as in the case of RDF statements).

1.3.2 Queries as Enriched Terms

Following the “Query-by-Example” paradigm, queries are merely examples or patterns of the queried
data and thus also terms, annotated with additional language constructs. Xcerpt separates querying and
construction strictly.

Query terms are (possibly incomplete) patterns matched against Web resources represented by data
terms. In many ways, they are like forms or examples for the queried data, but also may be incomplete
in breadth, i.e., contain ‘partial’ as well as ‘total’ term specifications. Query terms may further be
augmented by variables for selecting data items.

Construct terms serve to reassemble variables (the bindings of which are gained from the evaluation
of query terms) so as to construct new data terms. Again, they are similar to the latter, but augmented
by variables (acting as place holders for data selected in a query) and grouping constructs (which serve
to collect all or some instances that result from different variable bindings).

1.3.3 Programs as Sets of Rules

Query and construct terms are related in rules which themselves are part of Xcerpt programs. Rules
have the form:

CONSTRUCT construct-term
FROM and { query-term or { query-term ... } ... } END

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the construct
term by evaluating the query against Web resources (e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form complex query programs,
i.e., rules may query the results of other rules. More details on the Xcerpt language and its syntax can
be found in [37, 38].

1.4 Architecture: Principles

The abstract machine for Xcerpt, in the following always referred to as AMAχOS, and its architecture
are organized around five guiding principles:

4

http://xcerpt.org


1.4.1 “Execute Anywhere”—Unified Query Execution Environment

As discussed above, possibly the strongest reason to develop virtual machines for high-level languages
is the provision of a unified execution environment for programs in that high-level language. In the
case of Xcerpt, AMAχOS aims to provide such a unified execution environment. In our case, a unified
execution environment brings a number of unique advantages: (1) The distributed execution of queries
and query programs requires that the language implementations are highly interoperable down to the
level of answer representation and execution strategies. A high degree of interoperability allows, e.g., the
distribution of partial queries among query nodes (see below). An abstract machine is an exceptionally
well suited mechanism to ensure implementation interoperability as its operations are fairly fine granular
and well-specified allowing the controlling query node fine granular control over the query execution
at other (“slave”) nodes. (2) A rigid definition of the operational semantics as provided by an abstract
machine allows not only a better understanding and communication of the evaluation algorithms, it also
makes query execution more predictable, i.e., once compiled a query should behave in a predictable
behavior on all implementations. This is an increasingly important property as it eases query authoring
and allows better error handling for distributed query evaluation. (3) Finally, a unified query execution
environment makes the transmission and distribution of compiled queries and even parts of compiled
queries among query nodes feasible, enabling easy adaptation to changes in the network of available
query nodes, cf. Section 1.4.5.

1.4.2 “Compile Once”—Separation of Compilation and Execution

In the introduction, the setting for the AMAχOS abstract machine has been illustrated and motivated:
In memory processing of queries against XML, RDF, or other Web data that may be local and persistent
(e.g., an XML database or local XML documents), but just as well may have to be accessed remotely
(e.g., a remote XML document) or may be volatile (e.g., in case of SOAP messages or Web Service
access). In other words, it is assumed that most of the queried data is not under (central) control of
a query execution environment like in a traditional database setting, but rather that the queried data is
often distributed or volatile. This, naturally, limits the application of traditional indexing and predic-
tive optimization techniques, that rely on local management of data and statistic knowledge about that
managed data.

Nevertheless algebraic optimization techniques (that rely solely on knowledge about the query and
possible the schema of the data, but not on knowledge about the actual instance of data to be queried)
and ad-hoc indices that are created during execution time still have their place under this circumstances.

In particular, such a setting allows for a clean separation of compilation and execution: The high-
level Xcerpt program is translated into AMAχOS code separately from its execution. The translation
may be separated by time (at another time) and space (at another query node) from the actual execution
of the query. This is essential to enable the distribution of pre-compiled, globally optimized AMAχOS
programs evaluating (parts of) queries over distributed query nodes.

1.4.2.1 Extensive static optimization.

This separation also makes more extensive static optimization feasible than traditionally applied in an
in-memory setting (e.g., in XSLT processors such as Saxon4 or Xalan5). Section 1.5.2 and Figure 1.5
present a more detailed view of the query compiler and optimizer employed in the AMAχOS virtual

4http://www.saxonica.com/
5http://xml.apache.org/xalan-j/
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Figure 1.1: Sample Query and Memoization Matrix

machine. To be applicable to different scenarios, a control API for the query compilation stage allows
the configuration of strategy and extent used for optimizing a query during the compilation from high-
level Xcerpt programs to low-level AMAχOS code.

Aside of traditional tasks such as dead (or tautological) branch elimination, detection of unsatisfiable
queries, operator order optimization and selection between different realizations for the same high-level
query constructs, the AMAχOS query compiler has another essential task: the classification of each
query in the query program by its features, e.g., whether a query is a path, tree, or graph query (cf.
[29, 10]) or which parts of the data are relevant for the query evaluation. This information is encoded
either directly in the AMAχOS code of the corresponding construct-query rule or in a special hint
section in the AMAχOS program. That hint section is later used by the query engine (the AMAχOS
core) to tune the evaluation algorithm.

1.4.3 “Compile, Classify, Execute”—Unified Evaluation Algorithm

A single evaluation algorithm is used in AMAχOS for evaluating a large set of diverse queries and data.
At the core of this algorithm stands the “memoization matrix,” a data structure first proposed in [37]
and refined to guarantee polynomial size in [10]), that allows an efficient representation of intermediary
results during the evaluation of an Xcerpt query (or more generally an n-ary conjunctive query over
graph data). A sample query and corresponding memoization matrix are shown in Figure 1.1: The
query selects the names of conferences with PC members together with their authors (i.e., it is a binary
query). The right hand of Figure 1.1 shows a possible configuration of the memoization matrix for
evaluating that query: d2 is some conference for which we have found multiple bindings for v4, i.e.,
the query node matching papers of the selected conference. The matrix also shows that sub-matrices
are shared if the same query node matches the same data node under different constellations of the
remaining query nodes. This sharing is possible both in tree and graph queries, but in the case of graph
queries the memoization matrix represents only a potential match in which only a spanning tree over
the relations in the query is enforced. The remaining relations must be checked on an unfolding of the
matrix. This last step induces exponential worst-case complexity (unsurprisingly as graph queries are
NP-complete already if evaluated against tree data as shown in [18]), but is in many practical cases of
little influence.

How to use the memoization matrix to obtain an evaluation algorithm for arbitrary n-ary conjunctive
queries over graphs (that form the core of Xcerpt query evaluation), is shown in [10]. It is shown that
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the resulting algorithms are competitive with the best known approaches that can handle only tree data
and that the introduction of graph data has little effect on complexity and practical performance.

The memoization matrix forms the core of the query evaluation in AMAχOS. As briefly outlined
in [10], the method can be parameterized with different algorithms for populating and consuming the
matrix. Thereby it is possible to adopt the algorithm both to different conditions for the query evaluation
(e.g., is an efficient label or keyword index for the data available or not) and to different requirements
(e.g., are just variable bindings needed or full transformation queries). The first aspect is automatically
adapted by the query engine (cf. Section 1.5.1), the second must be controlled by the execution control
API, cf. Section 1.5.

1.4.4 “Optimize All the Time”—Adaptive Code Optimization

As argued above in Section 1.4.2 a separation of compilation/optimization from execution is an essential
property of the AMAχOS virtual machine that allows it to be used for distributed query evaluation and
Web querying where control over the queried data is not centralized.

This separation can be achieved partially by providing a unified evaluation algorithm (Section 1.4.3)
that tunes itself, with the help of hints from the static optimization, to the available access methods and
answer requirements.

However, separate compilation precludes optimizations based on intricate knowledge about the ac-
tual instances of the data to be queried (e.g., statistical information about selectivity, precise access
paths, data clustering, etc.). This can, to some extent, be offset by adaptive code optimization. Adaptive
query optimization is a technique sometimes employed in continuous query systems, where also the
characteristic of the data instances to be queried is not known a priori, cf. [2].

In the AMAχOS virtual machine we go a step further: Not only can the physical query plan ex-
pressed in the AMAχOS code continuously be adapted, but the result of the adaptation can be stored
(and transmitted to other query nodes) as an AMAχOS program for further executions of the same
query. Obviously, such adaptive code optimization is not for free and will most likely be useful in cases
where the query is expected to be evaluated many times (e.g., when querying SOAP messages) or the
amount of data is large enough that some slow-down for observation and adaption in the first part of the
evaluation is offset by performance gains in later parts.

1.4.5 “Distribute Any Part”—Partial Query Evaluation

Once compilation and execution are separate, the possibility exists that one query node compiles the
high-level Xcerpt program to AMAχOS code using knowledge about the query and possibly the schema
of the data to optimize (globally) the query plan expressed in the AMAχOS code. The result of this
translation can than be distributed among several query nodes, e.g., if these nodes have more efficient
means to access the resources involved in the query.

Indeed, once at the level of AMAχOS code it is not only possible to distribute say entire rules or
sets of rules, but even parts of rules (e.g., query conjuncts) or even smaller units. Figure 1.2 illustrates
such a distributed query processing scenario with AMAχOS: Applications use one of the control APIs
(obtaining, e.g., entire XML documents or separate variable bindings) to execute a query at a given
Xcerpt node. This implementation of Xcerpt transforms the query into AMAχOS code and hands this
code over to its own AMAχOS engine. Depending on additional information about the data accessed
in the query, this AMAχOS node might decide to evaluate only some parts of the query locally (e.g.,
those operating exclusively on local data and those joining data from different sources) and send all
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Figure 1.2: Query Node Network

the remaining query parts to other AMAχOS nodes that are likely to have more efficient access to the
relevant data.

In contrast to distribution on the level of a high-level query language such as Xcerpt, distribution on
the level of AMAχOS has two main advantages: the distributed query parts can be of finer granularity
and the “controlling” node can have, by means of code transformation and hint sections, better control
of the “slave” nodes.

Notice, that AMAχOS enables such query distribution, but does not by itself provide the necessary
infrastructure (e.g., for registration and management of query nodes). It is assumed that this infrastruc-
ture is provided by outside means.

1.5 Architecture: Overview

The previous section illustrates the guiding principles in the development of AMAχOS. The remainder
of this article focuses on how these principles are realized in its architecture and discusses several design
choices regarding the architecture.

Notice, that only a small part of the full AMAχOS architecture as described here has been imple-
mented so far. We have concentrated in the implementation on the execution and optimization layer,
that are also described in more detail in Sections 1.5.1 and 1.5.2.

Figure 1.3 shows a high-level overview of AMAχOS and its components. The architecture separates
the components in three planes:

Control Plane. The control plane enables outside control of the compilation, execution, and answer
construction. Furthermore, it is responsible for observation and adaptive feedback during execution.

8



Compilation API
— simple observation and control API
— compilation strategies

Execution & Answer API

Data Access Layer

Parsing & Verification Layer Compilation Layer

Serialization LayerSchema Access Layer

Execution Layer (AMAχOS)

— control, observation, parameterization
— OO & Web Service API

— program parsing and veri!cation
— multi-parser, normalization, modules 

— unsatis!able, tautological parts
— extensive query optimization

— pattern matching engine
— rule dispatcher and engine

— provides access to schema of data
— type checking for compilation

— incremental data access
— storage and indexing engine

— incremental answer creation
— versatile Web format supportDa

ta
Pl

an
e

Pr
og

ra
m

Pl
an

e
Co

nt
ro

l
Pl

an
e

Figure 1.3: Overview of AMAχOS Components

Program Plane. The program plane contains the core components of the architecture: the compila-
tion and execution layer. It combines all processing that an Xcerpt program partakes when evaluated
by an AMAχOS virtual machine. The first step is, naturally, parsing, verification, normalization, mod-
ule expansion etc. These are realized as transformations on the layer of the Xcerpt language and the
resulting normalized, verified, and expanded Xcerpt program can be accessed via the compilation API.
However, usually the result becomes input for the compilation layer where the actual transformation
into AMAχOS code takes place. The details of this layer are discussed below in Section 1.5.2. In
the architecture overview, we chose to draw the compilation and execution layer as directly connected.
However, it is also possible to access the resulting program (again via the compilation API) and execute
it at a later time and even at a later place. Indeed, compilation and execution are properly separated with
only one interface between them: the AMAχOS program containing aside of the expressions realizing
individual rules in the Xcerpt program also supporting code segments that provide hints for the program
execution and dependency information used in the rule dispatcher, cf. Section 1.5.1.

Data Plane. The architecture is completed by the data plane, wherein all access to data and schema
of the data is encapsulated. During compilation, if at all, only the schema of the data is assumed to be
available.

It is used for typical schema-based optimization such as the elimination of tautological (always
true) query parts, the detection of erroneous (always false) queries, the unfolding of arbitrary length
path traversals if the length of the paths is known from the schema and small, etc. Furthermore, it
is essential for the dependency analysis later used in the execution layer, that gives information about
which conjuncts in rule bodies are compatible with which rule heads. In the data access layer the actual
access to queried data takes place at execution time. Where possible, data is accessed incrementally and
only those portions of the data are delivered from the data access layer to the execution layer that may
actually affect the query outcome (similar to document projection in [27]). The AMAχOS program
can contain execution hints that advise the employment or ad-hoc creation of indices, e.g., to accelerate
certain often used constructs or sub-queries. Finally the serialization layer is responsible for creating
a sequential representation of the result of a query. For XML it follows closely [22], for other Web
formats appropriate serialization support is provided as well. Again the form of the serialization can be
parameterized both in the AMAχOS code and via the execution control API.
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T (Q), and a data graph D with nodes N , a memoization
matrix for the evaluation of Q against D is a recursive data
structure representing all possible bindings of query vari-
ables in Q to nodes from D. The memoization matrix is
a relation containing for each qs ∈ SourceVars(T (Q)) and
each possible binding n ∈ N for qs that satisfies all prop-
erty relations on qs one triple (qs, n, M ′) with M ′ a sub-
set of the memoization sub-matrix for Q\SourceVars(T (Q))
such that for each tuple (q′, n′, M ′′) ∈ M ′ and each atom
rel(qs, q

′) ∈ T (Q), it holds that (n, n′) ∈ !rel "D.

Intuitively, this definition requires that the bindings for
source variables in a sub-matrix M ′ are structurally com-
patible with the binding of the source variable in the corre-
sponding tuple of M .

Notice that only the spanning tree of Q, denoted by T (Q),
is considered in the memoization matrix. The memoization
matrix ensures only consistency in respect of relations within
T (Q). It does not ensure that the valuations are consistent
w.r.t. relations outside T (Q). Exploiting the tree shape
of T (Q), thus makes a local evaluation of relations possi-
ble: A full-match can be incrementally computed from local
matches that consider parent and child variables in the tree
query in isolation.

To avoid multiple computations of matches in the case
of queries where the same data node can be a match for a
variable under different constellations of the remaining vari-
ables, the memoization matrix shares tuples where possible:
Each tuple (q, n, M) exists only once and is referenced if
the same tuple may occur in different sub-matrices. Notice,
that sharing of tuples only occurs between sub-matrices at
the same level (i.e., sub-matrices of the same common super-
matrix). The following sections show how this property can
be ensured during the construction of the memoization ma-
trix. Notice once more that this property relies on the tree
structure of the relations checked in the memoization ma-
trix.

It is furthermore assumed that the matrix is clustered by
variables allowing linear access to all entries relating to a
variable.

Figure 3 shows the memoization matrix for the evaluation
of the query from Figure 4 against the sample data graph
from Figure 1.

The algorithms for matrix population discussed in the fol-
lowing section guarantee a population of the matrix for a
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Figure 4: Modified Sample Query

given n-ary conjunctive query Q against a data graph D
takes at most O(|Vars(Q)| · |N | · |E|) time, where |Vars(Q)|
denotes the number of variables in Q, |N | the number of
nodes, and |E| the number of edges in the data graph D.
Note that in the special case of tree-shaped data, |E| = |N |−
1, so that the worst case complexity becomes O(|Vars(Q)| ·
|N |2). The size of the memoization matrix is in O(Vars(Q) ·
|N |2) independently from the used algorithm, just by assum-
ing sharing of submatrices, as demonstrated in the following.

Lemma 1 (Size of Memoization Matrix). The size
of the memoization matrix M for a query Q and a data
graph D with nodes N is bounded by (2q − 1) · v2, where
q = |V ars(Q)|, and v = |N |.

Proof. By structural induction over T (Q).
Query leaves: It holds that q = 1, and obviously the number
of valuations for a single variable is bounded by v. The size
of the memoization matrix is q · v ≤ (2q − 1) · v2.
Inner query nodes: Let the inner query node i have c chil-
dren. It holds that the sum of nodes of all child queries is
equal to q − 1 =

Pc
j=1 qj (i). There are again at most v

valuations of i. As tuples are shared over parent matrices,
there is at most one tuple for each such valuation. The size
of the sub-matrix contained in the tuple itself is bounded by
c ·v, as each child has at most v assignments. The size of all
tuples for the inner node i (i.e. of the complete sub-matrix
of i) is hence c · v2. The overall matrix size is, using the
induction hypothesis,

cX

j=1

(2qi−1) ·v2 + c ·v2 (i)
= (2(q−1)− c+ c) ·v2 ≤ (2q−1) ·v2.

Based on the populated matrix, the algorithms discussed
in Section 5 traverse the memoization matrix, enforce the
remaining (non-hierarchical) relations, if there are any, and
create the output according to the query semantics intro-
duced above.

4. MATRIX POPULATION
The compact memoization matrix introduced in the last

section can be produced bottom-up (Match↑, Section 4.1)
or top-down (Match↓, Section 4.2), that is, starting with
the root variable and the root data node or with the leaf
variables and all data nodes. While both algorithms have
the same worst case complexity, experimental evaluation in
Section 7 shows that an in-memory implementation of the
bottom-up algorithm has an experimental runtime close to
the worst case complexity, while the top-down approach dis-
plays far better runtime behavior in realistic cases.
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Figure 1.4: Architecture of Core Query Engine AMAχOS

1.5.1 AMAχOS Core

The core of the AMAχOS virtual machine is formed by the query execution layer, or AMAχOS proper.
Here, an AMAχOS program (generated separately in the compilation layer, cf. Section 1.5.2) is evalu-
ated against data provided by the runtime data access layer resulting in answers that are serialized by
the serialization API.

As shown in Figure 1.4, the query execution layer is divided in four main components: the rule
engine, the construction engine, the static function library, and the storage manager. Once a program
containing AMAχOS code is parsed information from the hint segment is used to parameterize storage
manager and rule engine. These parameters address, e.g., the classification of the contained queries
(tree vs. graph queries), the selection of access paths, filter expressions for document projection, the
choice of in-memory representation (e.g., fast traversal vs. small memory footprint), etc. The rule
dependency information is provided to the rule dispatcher who is responsible for combining the results
of different rules and matching query conjuncts with rule heads. Each rule has a separate segment in
the AMAχOS program containing code for pattern matching and for result construction. Intermediary
result construction is avoided as much as possible, partially by rule unfolding, partially by propagating
constraints on variables from rule heads into rule bodies. Only when aggregation or complex grouping
expressions are involved, full intermediary construction is performed by the construction engine. The
rule dispatcher uses the pattern matching engine for the actual evaluation of Xcerpt queries compiled
into AMAχOS code. The pattern matching engine uses variants of the algorithms described in [10] that
are based on the memoization matrix for storage and access to intermediary results. The rule engine also
detects calls to external functions or Web services and routes such calls to the static function library,
that provides a similar set of functions as [26] which are implemented directly in the host machine and
not as AMAχOS code.

For each goal rule in the AMAχOS programs the resulting substitution sets are handed over to the
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Figure 5: Exemplary Join and Projection Specifica-
tion

sub-matrices of a given level share the same structure, each
kind of cartesian product is performed several times for each
sub-matrix.

Of course, these additional selections should be applied
as soon as possible (i.e., pushed down) to keep intermedi-
ate results small. Since existentially quantified variables in-
volved in join conditions must be kept until these joins are
performed, it is furthermore necessary to infer the position
at which each existentially quantified join variable can be
projected away. Hence, a join and projection specification
!−Π−spec is associated with each variable. This specifica-
tion defines which joins and which projections can be per-
formed when outputting the results for x. It furthermore
determines the ordering of joins and projections.

Since join order optimization is out of the scope of this
paper, the output algorithm abstracts from these topics by
assuming the existence of a specification !−Π−spec for each
variable, and of a function that applies these join specifi-
cation to a set of valuation sets. Using a set of valuations
instead of a canonical cartesian product allows to use joins
instead of selections, increasing the performance of the out-
put algorithm considerably. The join and projection specifi-
cation is typically created by the query planner and can be
executed by a conventional relational query engine.

Figure 5 shows an example of a join and projection specifi-
cation. Recall, that JoinVars(Q) is the set of join variables,
i.e., the set of variables that are existentially quantified (no
answer variables) and occur in at least one binary relation
that is not part of T (Q).

Algorithm 4 OutputG(x, n, M)

1: if ρ(x, n) defined then
2: return ρ(M)
3: if x ∈ FreeVars(Q) ∪ JoinVars(Q) then
4: AS ← {{[x : n]}}
5: else
6: AS ← {{[]}}
7: for all x′ ∈ π1(M) do
8: Ax′ ← ∅
9: for all n′, M ′ : (x′, n′, M ′) ∈ M do

10: Ax′ ← Ax′ ∪ OutputT (x′, n′, M ′)
11: AS ← AS ∪ {Ax′}
12: A ←apply !−Π−spec(x) to AS

13: ρ(x, n) ← A
14: return A

The new algorithm however exhibits exponential worst

case runtime in that it may perform at worst q−3 cartesian
products without any selection based on non-tree edges (q
being again q = |V ars(Q)|). In this case, the size and time
complexity are both in O(|N |q), as the output algorithm
keeps the set of valuations in memory.

Furthermore, the cost of value-based joins that are as-
sessed with a cost function j(|N |) must be considered. The
worst case estimation is as follows: as every variable can
be involved in a join, there are at most q − 1 value-based
joins (as equality is transitive, a query with more than q−1
joins can be transformed into an equivalent query with q−1
joins). Furthermore, every tuple of an exponential sized in-
termediate result is joined with each value-based join. As
the application of a join reduces the result size by a factor at
least linear in |N |, the overall runtime can be aproximated
as O(

Pq
i=2 j(|N |) · |N |i) = O(j(|N |) · |N |q).

Proposition 2 (Complexity of OutputG). The al-
gorithm OutputG has O(j(|N |) · |N |q) time complexity and
O(|N |q) space complexity.

Creating a structural tree query from a graph query is
unfavorable for this worst case complexity, since it is ex-
ponential in the number of variables and the corresponding
structural tree query with value joins for a graph query has
up to twice the number of variables as the graph query.
For realistic cases however, this is a technique to transform
tree-relation join conditions that are not verifiable in con-
stant time into identity joins. Alternatively, it is possible in
the match algorithms to create (in the top-down approach
reasonably small) on-the-fly indexes for the non-tree struc-
tural relations, assuring a fast verification of these relations
in Output. The quadratic increase of the exponential factor
can hence be avoided.

5.3 Incremental Matrix Consumption for Trees
and Graphs

The previous two algorithms are tailored to provide an
in-memory representation of all answers of a query and are
thus both in time and space complexity bound by the out-
put size. An in-memory representation of the answers is
useful to perform further processing based on the answers,
e.g., for structural grouping, aggregation, or ordering. How-
ever, in many cases an incremental output of the answers
is preferable, in particular if further processing can also be
realized in an incremental manner. Incremental answer gen-
eration can be realized using the algorithm OutputNLJ , a
slightly modified incremental nested loop join over the me-
moization matrix. The algorithm uses the structure of the
matrix instead of join attributes, but is otherwise – leaving
aside partitioning issues – a standard nested loop join and
therefore omitted here for space reasons.

Proposition 3 (Complexity of OutputNLJ).
The algorithm OutputNLJ has time complexity O(|N |q) and
space complexity O(q · n2) on tree queries, on graph queries
time complexity O(j(|N |) · |N |q) and space complexity O(q ·
n2).

The advantage of OutputNLP is the low space complexity
that is essentially bound by the size of the memoization ma-
trix. However, this advantage is paid for by an exponential
time complexity in almost all cases. Furthermore, this expo-
nential time complexity is reached in many practical cases,
making this algorithm suitable only for cases where space
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Figure 1.5: Architecture of Query Compiler for AMAχOS

construction engine (possibly incremental) which applies any construction expressions that apply for
that goal and itself hands the result over to the serialization layer or to the answer API.

The most notable feature of the AMAχOS query engine is the separation in three core engines: the
construction, the pattern matching, and the rule engine. Where the rule engine essentially glues the
pattern matching and the construction engine together, these two are both very much separate. Indeed,
at least on the level of AMAχOS code even programs containing only queries (i.e., expressions handled
by the pattern matching engine) are allowed and can be executed by this architecture (the rule dispatcher
and construction engine, in this case, merely forwarding their input).

1.5.2 Query Compiler

Aside of the execution engine, the query compilation layer deserves a closer look. Here, an Xcerpt
program—represented by an abstract-syntax tree annotated with type information—is transformed into
AMAχOS code. It is assumed that the Xcerpt program is already verified, normalized, modules are
expanded, and type information is added in the prior parsing layer. The query compilation is essentially
divided in three steps: logical optimization, physical plan generation, and code generation.

Logical optimization is similar as in traditional database systems but additionally has to consider
rules and rule dependencies: Xcerpt programs get translated into a logical algebra based on n-ary con-
junctive queries over semi-structured graphs [10]. Expressions in this algebra are then optimized using
various rewriting rules, including dead and tautological query part elimination, join placement optimiza-
tion, and query compaction. Furthermore, where reasonable, rules are unfolded to avoid the construction
of intermediary results during execution.

In contrast, physical plan generation differs notably, as the role of indices and storage model is
inverted: In traditional databases these are given, whereas in the case of AMAχOS the query compiler
generates code in the hint section indicating to execution engine and storage manager which storage
model and indices (if any) to use. Essential for execution is also the classification of queries based
on shape of the query and (static) selectivity estimates. E.g., a query with highly selective leaves but
low selectivity in inner nodes is better evaluated in a bottom-up fashion, whereas a query with high
selectivity in inner nodes profits most likely from a top-down evaluation strategy. Operator selection is
rather basic, except that it is intended to implement also holistic operators for structural relations where
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entire paths or even sub-trees in the query are considered as parameter for a single holistic operator, cf.,
e.g., [5, 30].

An AMAχOS program can, in many respects, be considered a serialization of a physical query plan
for an Xcerpt program. Notice, however that it provides only local operator sequencing, as rules are kept
separate and only at run-time the sequencing of rule applications is performed by the rule dispatcher, cf.
Section 1.5.1.

Therefore, the code generator is rather simple, performing only basic serialization tasks and simple
code optimizations such as motion of invariant code [23].

To conclude, the query compilation layer employs a mixture of traditional database and program
compilation techniques to obtain an AMAχOS program from the Xcerpt input that implements the
Xcerpt program and is, given the limited knowledge about the actual data instances, likely to perform
well during execution. The compilation process is rather involved and expected to be time expensive if
all stages are considered. A control API is provided to control the extent of the optimization and guide
it, where possible. We belief that in many cases an extensive optimization is called for, as the query
program can be reused and, in particular if remote data is accessed, query execution dominates by far
query compilation.

1.6 Conclusion and Outlook

We present a brief overview over the principles and architecture of a novel kind of abstract or virtual
machine, the AMAχOS virtual machine, designed for the efficient, distributed evaluation of Xcerpt
query programs against Web data.

In particular, we show how the Web setting affects traditional assumptions about query compilation
and execution and forces a rethinking of the conclusions drawn from these assumptions. The proposed
principles and architecture reflect these changing assumptions

1. by emphasizing the importance of a coherent and clearly specified execution environment in form
of an abstract machine for distributed query evaluation,

2. by separating query compilation from query execution (as in general programming language exe-
cution),

3. by employing a unified query evaluation algorithm for path, tree, and graph queries against tree
and graph data, and

4. by emphasizing adaptive optimization as a means to ameliorate the loss of quality in predictive
optimization due to lack of knowledge about remote or volatile data instances.

Implementation of the proposed architecture is still underway, first results on the implementation
of the query engine have been reported in [10] and in [4], demonstrating the promise of the discussed
method and architecture.
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Chapter 2

Operational Semantics of Xcerpt 1.0

This chapter describes an algorithm for the evaluation of Xcerpt programs using a backward chaining
strategy. The algorithm is defined in terms of a simple constraint solver (described in Section 2.1).
Constraint solving is a method that allows a rather efficient evaluation by excluding irrelevant parts
of the solution space as early as possible, and has been applied to many practical problems (cf. [15]).
Constraint solving is advantageous because

• it uses declarative simplification rules that are easy to understand,

• it allows to reduce the search space by detecting inconsistencies early,

• it tries to avoid complex computations (like creating answer terms) as long as possible, and

• it allows to easily add user-defined theories specified in terms of additional simplification rules to
the evaluation engine.

This constraint solver differs from traditional constraint solvers in that it needs to treat disjunctions
between constraint formulas and negation, but the approach taken here is rather straightforward.

The evaluation algorithm is defined in two parts: first, an algorithm called simulation unification is
introduced. Simulation unification is a novel kind of (non-standard) unification that allows to treat the
particularities of Xcerpt terms properly and is based on the notions of ground query term simulation
and answers, cf. [37]. It has first been proposed in [8] and is further refined here. Based on simulation
unification, a backward chaining algorithm is then described that eventually determines answer terms
as defined in [37]. Salient aspects of this backward chaining algorithm are the treatment of the grouping
constructs all and some, and the unusually high level of branching in the proof trees that result from in-
complete term specifications. While evaluation rules for programs with negation and optional subterms
are given, these are not verified against the declarative semantics, as the fixpoint theory described in [37]
currently does not cover negation.

This chapter is structured as follows: Section 2.1 introduces the constraint solver and data structures
used in this chapter, and defines the meaning of a constraint store in form of solution sets. Section
2.2 describes the simplification rules that constitute simulation unification algorithm and shows the cor-
rectness of this algorithm against an abstract formalisation of most general simulation unifiers. Finally,
Section 2.3 describes the rules for a backward chaining evaluation. A soundness and weak completeness
result for this algorithm is also given.
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2.1 A Simple Constraint Solver

The evaluation of Xcerpt programs is described in terms of a constraint solver that applies so-called
simplification rules to a constraint store consisting of conjunctions and disjunctions of constraints. The
purpose of the constraint solver is to determine variable bindings for variables occurring in query and
construct terms, which ultimately yield substitutions that can be used to create the answer terms of a
program. A simplification rule in this thesis has the following form:

C1
...

Cn
D

where C1, . . . ,Cn (n ≥ 1) are atomic constraints (the condition) and D is either an atomic constraint,
or a conjunction or disjunction of constraints (the consequence). If a simplification rule is applied,
then the conjunction C1 ∧ ·· · ∧Cn in the constraint store is replaced by the constraint D. Note that
these simplification rules are similar to the simplification rules in the language Constraint Handling
Rules [14], albeit with a different notation.

The constraint solver is non-deterministic to a high degree in that the order in which simplification
rules are applied is not significant. This approach might be advantageous, as it gives much freedom to
the evaluation engine to e.g. perform optimisations (cf. Section ??).

This constraint solver differs from common approaches in that the result of a rule may contain
disjunctions, whereas usually only conjunctions are admitted. Such constraint solvers have been studied
in constraint programming research, e.g. in [44]. The approach taken in this thesis is rather simplistic,
as it after each application of a simplification rule creates the disjunctive normal form (DNF) of the
constraint store. Simplification rules are independently applied to the different conjuncts of the DNF.
This approach is rather inefficient in implementations, and various optimisations can be considered. A
straightforward optimisation would be to not create the DNF after each simplification step, but instead
only if it is “necessary”, because no other simplification rules apply. However, such optimisations are
not further investigated in this thesis, as the focus is on Web query languages and not on constraint
programming.

Furthermore, the constraint solver needs to be able to treat negation. As both negation constructs
not and without describe negation as failure, the negation behaves differently to classic negation in
some cases (cf. Example 4). The treatment of negation is described in the formula simplification rules
in Section 2.1.3, and in the consistency verification rules 3, 4, and 5 in Section 2.1.4 below.

2.1.1 Data Structures and Functions

2.1.1.1 Constraints

The main data structure of the evaluation algorithm is the constraint store which may contain several
types of constraints, including other (sub-)constraint stores. For the purpose of this thesis, constraints
are defined by the following grammar (defined in a variant of Extended Backus-Naur Form):

<constraint> := <conjunction> | <disjunction>
| ’True’ | ’False’
| ’(’ <constraint> ’)’
| <sim-constraint>
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| <dep-constraint>
| <query-constraint> .
<conjunction> := <constraint> (’∧’ <constraint>)+ .
<disjunction> := <constraint> (’∨’ <constraint>)+ .
<negation> := ’¬’ <constraint> .
<sim-constraint> := <query-term> ’�u’ <construct-term> .
<dep-constraint> := ’(’ <constraint> ’|’ <constraint> ’)’ .
<query-constraint> := ’〈’ <query-term> ’〉’’{’ <data-term-list>? ’}’ .
<dbterm-list> := <data-term> (’,’ <data-term>)* .

It is easy to observe that a constraint store usually consists of arbitrary conjunctions, disjunctions,
and negations of constraints. As usual, conjunctions always take precedence over disjunctions unless
explicitly specified by parentheses. A brief description of the other kinds of constraints is given below:

Truth Values. The truth values “True” and “False” have their expected meaning in a constraint
store. Simplification of the constraint store can eliminate them in all cases except when they are the
only remaining constraint.

Simulation Constraint. A simulation constraint – written t1 �u t2 for some construct, data, or
query term t1 and some construct or data term t2 – is a binary constraint which requires that variables
are only bound to data terms such that there is a ground query term simulation between the ground
instances of t1 and t2. The term t1 is called the left hand side of the simulation constraint and t2 is
called the right hand side of the simulation constraint in subsequent sections. So as to distinguish the
simulation constraint from the ground query term simulation, but nonetheless emphasise the relationship
between the two, the symbol �u is used (with u for “to be unified”). Note that the right hand side of a
simulation constraint is always necessarily a construct or data term, because the simplification rules in
the simulation unification and backward chaining algorithms never put a query term to the right hand
side.

Most simulation constraints can be further reduced by applying the simulation unification algorithm
on them until at least one of the sides consists merely of a variable. If a simulation constraint is of
the form X �u t where X is a variable, t is also called an upper bound of X . Likewise, if a simulation
constraint is of the form t �u X , t is called an lower bound of X .

Query Constraint. A query constraint is a constraint consisting of a valid Xcerpt query (i.e. ei-
ther a query term, an and/or-connection of queries, a negated query, or an input resource specification
containing a query). Query constraints are used to represent queries that are not yet evaluated and are
unfolded during the evaluation (if necessary). For some query Q, the query constraint is denoted by 〈Q〉.

A query constraint may optionally have a set of associated data terms which results from resolving
and parsing an external resource (elimination of the in construct). If a query constraint 〈Q〉 is associated
with the data terms {t1, . . . , tn}, this is denoted by 〈Q〉{t1,...,tn}.

Dependency Constraint. A meta-constraint stating a dependency between two constraints. If C
and D are constraints, the dependency constraint (C | D) requires that C may only be evaluated if
the evaluation of D did not fail (otherwise, the complete constraint fails). Thus D usually needs to be
completely evaluated before C can be processed. The substitutions resulting from the evaluation of D
are applied to C if they exist (i.e. under the condition that D is neither False nor True).
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The justification for the dependency constraint are the requirements of the grouping constructs all
and some, which require to consider all alternative solutions for the query part of a rule. If all or some
appears in the head of a rule which is evaluated, the unification of a query with the head cannot be
completed before the rule is fully evaluated.

2.1.1.2 Functions

substitutions(CS): The ultimate step of the algorithm, after no more rules are applicable or neces-
sary, is always to generate a set of substitutions from the constraint store. In this step, CS is put in DNF,
all constraints of the form X �u t (where X is a variable and t is a construct term1) are replaced by X t
and for each conjunct of CS a separate substitution is generated from these replacements. Note that

• substitutions(True) is the set of all all-grounding substitutions

• substitutions(False) {}, i.e. there exists no substitution.

Thus, neither a result of True nor a result of False are desirable for a query containing variables. Fortu-
nately, the evaluation algorithm never yields True in case a variable occurs in a query, and only yields
False if the evaluation fails.

apply(Σ,t): Applying a set of substitutions Σ to a term is implemented recursively over the term
structure. The implementation of this function can be derived from Definitions in [37] a straightforward
manner.

retrieve(R): Given a resource description R, the function retrieve(R) returns a set of those terms
that are represented by this resource provided that the data can in some way be parsed into Xcerpt’s term
representation. A resource description may for example contain a URI for identifying the resource and
a format specification to indicate which parser to use. The current prototype provides support for XML,
HTML and Xcerpt syntax, but different formats are more or less straightforward to implement (e.g. Lisp
S-expressions, RDF statements or relational databases).

restrict(V,C): restricts the constraint store C to only such (non-negated) simulation constraints
where the lower bound is a variable occurring in V . This function is used for evaluating query negation
below.

deref(id): Dereferences the term reference identified by id and returns the subterm associated with
the identifier id.

vars(Q): Returns the set of all variables occurring non-negated in a query Q.

2.1.2 Solution Set of a Constraint Store

As the evaluation algorithm aims at determining an (all-grounding) substitution set for certain variables,
each constraint store conceptually represents a (all-grounding) substitution set in which each substitu-
tion provides assignments for all conceivable variable names. This set is called the solution set of the
constraint store, and represents the possible answers that the evaluation of the constraint store yields.

1due to the way rules are evaluated, the right hand side of a simulation constraint is always a construct term
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Depending on the constraint store, this solution set is restricted to substitutions fulfilling certain condi-
tions. For example, the constraint X �u f{a} requires that all substitutions in the solution set provide
an assignment for the variable X that is compatible (i.e. simulates) with f{a}. Likewise, the constraint
f{{}} �u X requires that the solution set only contains substitutions that provide an assignment t for X
such that f{{}} � t.

In the following, we will consider only the solution set of a fully solved constraint store. Such a
constraint store contains only simulation constraints where one side of the inequation is a variable, of
conjunctions or disjunctions of constraints, and of the boolean constraints True and False. This notion
of solution sets will be used in the formalisation of simulation unifiers later in this chapter. Recall that
all-grounding substitutions are substitutions that map every possible variable to a data term.

Definition 2.1 (Solution Set of a Constraint Store) Let CS be a completely solved constraint store, i.e.
consisting only of simulation constraints where one side is a variable, conjunctions, disjunctions, and
the boolean constraints True and False. The solution set Ω(CS) is a grounding substitution set recur-
sively defined as follows:

• Ω(True) is the set of all all-grounding substitutions (cf. [37])

• Ω(False) {}, i.e. the empty set

• Ω(X �u t) is the set of all all-grounding substitutions σ such that σ(X)∼ σ(t)

• Ω(t �u X) is the set of all all-grounding substitutions σ such that σ(t)� σ(X)

• Ω(C1∧C2) Ω(C1)∩Ω(C2)

• Ω(C1∨C2) Ω(C1)∪Ω(C2)

• Ω(¬C) Ω(True)\Ω(C)

The rationale behind using sets of all-grounding substitutions is that a constraint store in general
merely restricts the possible answers. Further constraints might add new variables that would have to be
considered. Using infinite substitutions also simplifies working with the solution set, because it suffices
to use simple set operations instead of introducing a new “substitution theory”. For example, merging
of two all-grounding substitution sets merely requires the intersection of both.

Note that the solution set of a constraint store CS is in general always infinite, because each sub-
stitution contains assignments for an infinite number of variables. However, restricting this set to only
finitely many variables V (i.e. those variables occurring in CS), yields a finite set in case every such
variable occurs in each conjunct of the disjunctive normal form of CS on the right side of a simulation
constraint.

The following result is important because it relates the abstract notion of solution set to the actually
computed substitutions. It follows trivially from the definition of solution sets and the definition of the
function substitutions(·). Recall that Σ|V is the substitution set Σ restricted to the variables in V .

Corollary 1 Let CS C1 ∨ ·· · ∨Cn be a constraint store in disjunctive normal form, and V the set of
variables occurring in CS. If in every conjunct Ci, each variable X ∈V occurs in a simulation constraint
of the form X �u t where t is a data term, then substitutions(CS) Ω(CS)|V .

Note that as Xcerpt programs are range restricted, this corollary holds for every full evaluation of an
Xcerpt program.
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2.1.3 Constraint Simplification

The usual simplification rules for formulas apply, for example:

• False∧C reduces to False for any constraint C, False∨C reduces to C for any constraint C

• True∧C reduces to C for any constraint C, True∨C reduces to True for any constraint C

• ¬(C∧D) simplifies to ¬C∨¬D, ¬(C∨D) simplifies to ¬C∧¬D

• ¬¬¬C simplifies to ¬C

• ¬False True and ¬True False

Note, however, that constraints of the form ¬¬C (where C is not of the form ¬C′) may not be
simplified to C, because the range restrictedness disallows variable bindings also for variables that are
negated twice or more times.

2.1.4 Consistency Verification Rules

Before a variable can be bound to a term, it is necessary that the constraints for this variable are consis-
tent. There are two kinds of consistency verification rules, consistency and transitivity, divided into four
rules to distinguish the cases with and without negation. The fifth rule described here reduces certain
kinds of negated simulation constraints.

All consistency verification rules are considered to be part of the constraint solver and are needed
both for the simulation unification and the backward chaining algorithm. It is assumed that they are
always applied if possible and that the constraint store can always be treated as consistent.

2.1.4.1 Rule 1: Consistency

The consistency rule guarantees that upper bounds for a variable are consistent. This verification rule
implements the solution set definition of Ω(C∧D) Ω(C)∩Ω(D) and ensures that a conjunct does not
induce two assignments for a variable that are not simulation equivalent.

X �u t1
X �u t2
X �u t1∧ t1 �u t2∧ t2 �u t1

Note that both t1 and t2 are necessarily construct or data terms. Thus, the constraint�u is applicable,
which requires a construct or data term on the right hand side.

Example 1 (Consistency Rule) 1. consider the two simulation constraints X �u f{var Y} and
X �u f{a}; applying the consistency rule yields X �u f{var Y}∧ a �u Y ∧Y �u a (after mu-
tual unification), which limits the bindings for Y to a.

2. consider the two simulation constraints X �u f{a} and X �u f{b}; applying the consistency rule
determines that they are inconsistent, because f{a} and f{b} do not simulate.
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2.1.4.2 Rule 2: Transitivity

The transitivity rule replaces variable occurrences of a variable X in the upper bounds of a variable by
the upper bound of X . This rule is justified by the simulation pre-order defined in [37] and is needed to
ultimately create ground terms as bindings for all variables. In the following, the notation t[t ′/X ] denotes
“replace all occurrences of X in t by t ′”.

t1 �u t ′1 such that t ′1 contains the variable X
X �u t2
X �u t2 ∧ t1 �u t ′1[t2/X ]

Note that the first constraint is consumed by this rule. This might appear somewhat unusual, as
further applications of the transitivity rule might yield new constraints. However, if some constraint of
the form X �u t ′2 is added, it needs to be compatible with the constraint X �u t2 (which is still in the
conjunction) and would thus not yield differing information.

Example 2 (Transitivity Rule) 1. consider the simulation constraints X �u Y and Y �u a; applying
the transitivity rule yields the additional constraint X �u a and removes X �u Y .

2. consider the simulation constraints X �u f{var Y} and Y �u a; applying the transitivity rule
yields the additional constraint X �u f{a} and removes X �u f{var Y}.

It would be possible to define a similar transitivity rule for the lower bounds in a simulation con-
straints. This is, however, not necessary, as the lower bounds do not yield variable bindings and thus
need not be ground.

2.1.5 Constraint Negation

Negated constraints represent exclusion of certain variable bindings, and may result from the evaluation
of the constructs without (subterm negation), optional (optional subterms), and not (query negation).
For example, the constraint ¬(X � f{a,b}) disallows bindings for X that are simulation equivalent with
f{a,b}. Note that, although these constructs implement negation as failure, constraint negation is the
ordinary negation of classical logic. The usual transformation rules apply, namely ¬(C∧D) ¬C∨¬D,
¬(C∨D) ¬C∧¬D, ¬True False, and ¬False True. Note, however, that ¬¬C 6 C, because C is not
allowed to define variable bindings.

The following three additional consistency verification rules are used in the constraint solver to treat
constraint negation. All three rules assume that the negation appears immediately in front of an atomic
constraint. This assumption is safe when the constraint store is in disjunctive normal form. The rules
continue the numbering scheme of the previous consistency verification rules. Therefore, the first rule
has number 3.

2.1.5.1 Rule 3: Consistency with Negation

To detect inconsistencies between a non-negated and a negated simulation constraints, the consistency
rule needs to be modified to yield inconsistency in case a non-negated constraint for a variable is con-
sistent with a negated constraint for the same variable. The following rule means that if a simulation
constraint provides an upper bound for a variable (which represents a candidate binding for the variable),
then there must not be a negated simulation constraint that excludes this upper bound:
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X �u t1
¬(X �u t2)
X �u t1∧¬(t1 �u t2∧ t2 �u t1)

Example 3 (Consistency Rule with Negation) Consider the constraint store

X �u f{a,b}∧¬(X �u f{b,a})∧¬(X �u g{a})

Applying the consistency rule with negation yields

X �u f{a,b}∧¬( f{a,b} �u f{b,a}∧ f{b,a} �u f{a,b})∧¬(X �u g{a})

the DNF of which is

X �u f{a,b}∧¬( f{a,b} �u f{b,a})∧¬(X �u g{a})∨
X �u f{a,b}∧¬( f{b,a} �u f{a,b})∧¬(X �u g{a})

and after further decomposition steps

X �u f{a,b}∧¬(True)∧¬(X �u g{a})∨
X �u f{a,b}∧¬(True)∧¬(X �u g{a})

which ultimately yields False, i.e. no valid bindings.

Note that although subterm and query negation can never yield variable bindings themselves, there
might be variables that only appear in negated simulation constraints but nowhere else in a non-negated
simulation constraint, e.g. as the result of decomposition with without or optional. These are treated
by Rule 5 below.

2.1.5.2 Rule 4: Transitivity with Negation

Like the consistency rule, the transitivity rule needs to be adapted to cover negation properly. The
following rule specifies that if there is a negated simulation constraint where the upper bound t ′1 contains
a variable, and this variable is bounded in a non-negated simulation constraint, then substituting the
upper bound for the variable in the first constraint must not yield a simulation.

¬(t1 �u t ′1) such that t ′1 contains the variable X
X �u t2
¬(t1 �u t ′1) ∧ X �u t2 ∧ ¬(t1 �u t ′1[t2/X ])

Likewise, if there is a non-negated simulation constraint where the upper bound contains a variable
occurring in a negated simulation constraint, then substituting the upper bound for the variable in the
first constraint must not yield a simulation.

t1 �u t ′1 such that t ′1 contains the variable X
¬(X �u t2)
t1 �u t ′1 ∧ ¬(X �u t2) ∧ ¬(t1 �u t ′1[t2/X ])

Note that unlike rule 2, transitivity with negation may not remove any of the original constraints,
because information would be lost.
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2.1.5.3 Rule 5: Negation as Failure

The last rule is necessary for cases where a variable only appears in a negated simulation constraint, but
nowhere else in a non-negated simulation constraint of the constraint store. Due to the range restricted-
ness of Xcerpt rules, such constraints can never be produced directly in the treatment of not or without
(range restrictedness enforces that each variable occurring in a negated part also appears elsewhere in a
non-negated part). They may, however, be the consequence of applications of rules 3 and 4, and might
be produced when decomposing a query term containing the construct optional (see Section 2.2.2
below).

Such constraints are reduced to False. The rationale behind this is that, in case the variable does not
occur elsewhere outside a negation, the simulation constraint inside the negation represents a solution
for a negated query or subterm, and therefore the negated constraint must fail. In case the variable does
also appear elsewhere outside a negation rules 3 and 4 are applicable (which again might yield negated
simulation constraints).

¬(X �u t) such that X does not appear in a non-negated simulation constraint
False

Constraints of the form ¬True and ¬False are treated by the formula simplification described above.
An interesting application of this rule involves double negation:

Example 4 (Negation as Failure Rule) Consider the simulation constraint ¬¬(X �u t) such that X
does not occur elsewhere in a non-negated simulation constraint. Applying Rule 5 to this constraint
yields ¬False True (and not X �u t as one might expect). The rationale for this is that the negation
used is negation as failure and not classical negation, and variables within a simulation constraint that
are negated twice do not define variable bindings.

2.1.6 Program Evaluation

Program evaluation starts at the program goals, and tries to determine answer terms by evaluating the
query parts for each goal in a backward chaining fashion. Given a program P, the general scheme of
program evaluation is as follows (the backward chaining algorithm itself is described in Section 2.3
below):

Algorithm 2.1
procedure main():

foreach goal t← Q ∈ P do:
let Subst := solve(〈Q〉 /0)
print apply(t,Subst)

Of course, printing the result in the scheme above has to respect a possible output resource associated
with the head of a goal. The backward chaining algorithm itself is called with the function solve(C)
(where C is a constraint) which returns a list of substitutions that result from solving the constraint given
as parameter. The general scheme of the function solve is as follows (cf. the function substitutions(·)
above):

Algorithm 2.2
function solve(Constraint C):

while a rule can be applied to C do:
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select some constraint D in C and some rule R applicable to D
let D’ := apply rule R to D
replace D by D’ in C
put C in disjunctive normal form and verify consistency

return substitutions(C)

Note that “rule” in the algorithm above denotes a simplification rule of the constraint solver and not
an Xcerpt rule. Rules from all three parts may be interleaved and the decision on the selection of rule ap-
plications is deliberately left open (i.e. the algorithm described here is non-deterministic), as long as the
selection is “fair” (i.e. each possible rule is applied within finitely many steps). This non-determinism
allows for interesting considerations about selection strategies that have not been investigated much in
logic programming.

2.2 Simulation Unification

Simulation Unification, as previously described in [8], is an algorithm that, given two terms t1 and t2,
determines variable substitutions such that the ground instances of t1 and t2 simulate. Like standard
unification (cf. [34]), simulation unification is symmetric in the sense that it can determine (partial)
bindings for variables in both terms. Unlike standard unification, it is however asymmetric in the sense
that it does not make the two terms equal, but instead ensures a ground query term simulation, which
is directed and asymmetric. The outcome of Simulation Unification is a set of substitutions called
simulation unifier.

Simulation Unification consists mainly of decomposition rules that operate recursively and in paral-
lel on the two unified terms (Section 2.2.2). When all terms are completely decomposed, the result is a
constraint store containing conjunctions and disjunctions of simulation constraints where the left or the
right side is a variable. These yield variable bindings by replacing simulation constraints of the form
X �u t by X t. The consistency verification rules described above ensure that all simulation constraints
are consistent and can be interleaved at any point.

2.2.1 Simulation Unifiers

In Classical Logic, a unifier is a substitution for two terms t1 and t2 that, applied to t1 and t2, makes the
two terms identical. The simulation unifiers introduced here follow this basic scheme, with two exten-
sions: instead of equality, simulation unifiers are based on the (asymmetric) simulation relation of [37]
and instead of a single substitution, substitution sets as in [37] are considered. Both extensions are nec-
essary, as they recognise the special Xcerpt constructs all and some and incomplete term specifications.

Informally, a simulation unifier for a query term tq and a construct term tc is a set of substitutions
Σ, such that each ground instance tq′ of tq in Σ simulates into a ground instance tc′ of tc in Σ. This
restriction is too weak for fully describing the semantics of the evaluation algorithm. For example,
consider a substitution set Σ {{X 7→ a,Y 7→ b},{X 7→ b,Y 7→ a}, a query term tq f{var X} and a
construct term tc f{var Y}. With the informal description above, Σ would be a simulation unifier of tq

in tc, but this is not reasonable. We therefore also require that the substitution σ ∈ Σ that yields tq′ also
is “used” by tc′ . This can be expressed by grouping the substitutions according to the free variables in
tc.

Definition 2.2 (Simulation Unifier) Let tq be a query term, let tc be a construct term with the set of
free variables FV (tc), and let Σ be an all-grounding substitution set. Σ is called a simulation unifier of
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tq in tc, if for each JσK ∈ Σ/'FV (tc) holds that

∀tq′ ∈ JσK(tq) tq′ � JσK(tc)

Recall from [37] that all substitutions in an all-grounding substitution set assign data terms to each
variable. Intuitively, it is sufficient to only consider grounding substitutions for tq and tc. However,
all-grounding substitution sets simplify the formalisation of most general simulation unifiers below.

Example 5 (Simulation Unifiers) 1. Let tq f{{var X ,b}} and let tc f{a,var Y,c}. A simulation
unifier of tq in tc is the (all-grounding) substitution set

Σ1 {{X 7→ a,Y 7→ b},{X 7→ c,Y 7→ b}}

2. Let tq f{{var X}} and let tc f{all var Y}. A simulation unifier of tq in tc is the (all-grounding)
substitution set

Σ2 {{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ a}}

Assignments for variables not occurring in the terms tq and tc are not given in the substitutions
above.

Simulation unifiers are required to be grounding substitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding substitution sets can be applied to construct terms
containing grouping constructs, because a grouping is not possible otherwise. This restriction is less
significant than it might appear: as rules in Xcerpt are range restricted, the evaluation algorithm always
determines bindings for the variables in tc, so that it is always possible to extend the solutions determined
by the simulation unification algorithm to a grounding substitution set by merging with these bindings.

Usually, there are infinitely many unifiers for a query term and a construct term. Traditional logic
programming therefore considers the most general unifier (mgu), i.e. the unifier that subsumes all other
unifiers. Since simulation unifiers are always grounding substitution sets, such a definition is not possi-
ble for simulation unifiers. Instead, we define the most general simulation unifier (mgsu) as the small-
est superset of all other simulation unifiers. Note that the notion most general simulation unifier is
– although different in presentation – indeed similar to the traditional notion of most general unifiers,
because a most general simulation unifier subsumes all other simulation unifiers.

Definition 2.3 (Most General Simulation Unifier) Let tq be a query term and let tc be a construct
term without grouping constructs such that there exists at least one simulation unifier of tq in tc. The
most general simulation unifier (mgsu) of tq in tc is defined as the union of all simulation unifiers of tq

in tc.

In Section 2.2.3, we shall see that the simulation unification algorithm described here computes
the most general simulation unifier. Note that the most general simulation unifier is indeed always a
simulation unifier if tc does not contain grouping constructs. This is easy to see because the union of
two simulation unifiers simply adds ground instances of tq and tc where for every ground instance tq′ of
tq there exists a ground instance tc′ of tc such that tq′ � tc′ . This does in general not hold for construct
terms with grouping, but as grouping is not treated inside the unification algorithm, the definition above
suffices for the purpose of formalising the results of this algorithm.
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2.2.2 Decomposition Rules

Decomposition rules take a single simulation constraint and try to recursively decompose the two terms
in parallel until no further rules are applicable. Each decomposition step yields one or more subsequent
constraints, often even a large disjunction containing alternatives. This reflects the many different alter-
native ground query term simulations that need to be considered in case of partial term specifications.

All decomposition rules are first given without examples, because the examples tend to be very
extensive, and mutually depend on other decomposition rules.

2.2.2.1 Preliminaries

In the following, let l (with or without indices) denote a label, and let t1 denote query terms and t2

construct terms (both with or without indices). Furthermore, let ⊥ be a special term (not occurring as
subterm in any actual term) with the property that for all t 6 ⊥ holds that t �u ⊥ False, i.e. no term
unifies with ⊥. In the following sections, it is furthermore assumed that t2 contains neither grouping
constructs, functions, aggregations, nor optional subterms. In practice, this restriction is insignificant,
because construct terms containing one of these constructs are always made ground before computing
the simulation unification (see Dependency Constraint below).

Definition 2.4 Given two terms t1 l{t1
1 , . . . , t1

n} and t2 l{t2
1 , . . . , t2

m}, the following sets of functions
ΠX : 〈t1

1 , . . . , t1
n 〉 → 〈t2

1 , . . . , t2
m〉 are defined:

• SubT ⊆ 〈t1
1 , . . . , t1

n 〉 is the sequence of all non-negated subterms of t1 and SubT− ⊆ 〈t1
1 , . . . , t1

n 〉 is
the sequence of all negated subterms of t1

• SubT ! ⊆ 〈t1
1 , . . . , t1

n 〉 is the sequence of all non-optional subterms of t1 and SubT ? ⊆ 〈t1
1 , . . . , t1

n 〉 is
the sequence of all optional subterms of t1

• Π is the set of partial, index injective functions π from 〈t1
1 , . . . , t1

n 〉 to 〈t2
1 , . . . , t2

m〉 that are total on
SubT and on SubT !, each completed by t 7→ ⊥ for all t on which π is not defined

• Πmon is the set Π restricted to all index monotonic functions

• Πbi j is the set Π restricted to all index bijective functions

• Πpp is the set of all position preserving functions

• Πpr is the set of all position respecting functions

• Πm−pr Πmon∩Πpr, Πb−pr Πbi j ∩Πpr, Πb−pp Πbi j ∩Πpp, and Πm−b Πbi j ∩Πmon

To simplify the rules below, all partial mappings in Π are assumed to be completed by mapping all
values on which the mappings are undefined to the special term ⊥. In this manner, every mapping in Π
can be considered to be total in case the distinction is not necessary, whereas in the cases where partial
mappings are considered (optional and without), the distinction is made explicitly.

Example 6 Consider the terms t1 f [[a,without b]] and t2 f [a,b,c]. The set of index monotonic map-
pings of the set of subterms of t1 into the set of subterms of t2 (Πmon) is as follows (without b abbre-
viated as ¬b):

{a 7→ a,¬b 7→ ⊥} {a 7→ b,¬b 7→ ⊥} {a 7→ c,¬b 7→ ⊥}
{a 7→ a,¬b 7→ b} {a 7→ b,¬b 7→ c}
{a 7→ a,¬b 7→ c}
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Note that all these mappings can be generated in a rather straightforward manner by creating a table
with the terms t1

1 · · · t1
n arranged top-down and the terms t2

1 · · · t2
m arranged left-right and then determin-

ing paths from the first line to the nth line that fulfil certain properties. This technique is called the
memoisation matrix.

2.2.2.2 Root Elimination

Root elimination rules compare the roots of the two terms and distribute the unification to the subterms.

Brace Incompatibility The first set of rules treat incompatibility between braces and thus all of these
rules reduce the simulation constraint to False. For instance, an ordered simulation into an unordered
term is not reasonable, as the order cannot be guaranteed.
Decomposition Rule decomp.1:

l[t1
1 , . . . , t1

n ] �u l{t2
1 , . . . , t2

m} l[[t1
1 , . . . , t1

n ]] �u l{t2
1 , . . . , t2

m}
False False

Left Term without Subterms This set of rules consider all such cases where the left term does not
contain subterms. These cases have to be treated separately from the general decomposition rules below,
since using the latter would yield the wrong result in such cases. For instance, an empty or is equvialent
to False but the result should always be True in case the left term is only a partial specification. In the
following, let m≥ 0 and k ≥ 1:
Decomposition Rule decomp.2:

l{{ }} �u l{t2
1 , . . . , t2

m} l{{ }} �u l[t2
1 , . . . , t2

m] l[[ ]] �u l[t2
1 , . . . , t2

m]
True True True

l{ } �u l{t2
1 , . . . , t2

k } l{ } �u l[t2
1 , . . . , t2

k ] l[ ] �u l[t2
1 , . . . , t2

k ]
False False False

l{ } �u l{ } l{ } �u l[ ] l[ ] �u l[ ]
True True True

As specified by these rules, a term without subterms but a partial specification (double braces)
matches with any term which has the same label. If the term specification is total, it matches only
with such terms that also do not have subterms.

Decomposition without all, some, without, and optional The general decomposition rules
eliminate the two root nodes in parallel and distributes the unification to the various combinations of
subterms that result from ordered/unordered specification and from total/partial term specifications. If
there exists no such combination, then the result is an empty or, which is equivalent to False. These
term specifications are represented by the different sets of mappings Π, Πbi j, Πmon, Πpr, and Πpp. In the
following, let n,m≥ 1.
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Decomposition Rule decomp.3:

l{{t1
1 , . . . , t1

n}} �u l{t2
1 , . . . , t2

m} l{{t1
1 , . . . , t1

n}} �u l[t2
1 , . . . , t2

m]∨
π∈Πpp

∧
1≤i≤n t1

i �u π(t1
i )

∨
π∈Πpr

∧
1≤i≤n t1

i �u π(t1
i )

l{t1
1 , . . . , t1

n} �u l{t2
1 , . . . , t2

m} l{t1
1 , . . . , t1

n} �u l[t2
1 , . . . , t2

m]∨
π∈Πbi j∩Πpp

∧
1≤i≤n t1

i �u π(t1
i )

∨
π∈Πbi j∩Πpr

∧
1≤i≤n t1

i �u π(t1
i )

l[[t1
1 , . . . , t1

n ]] �u l[t2
1 , . . . , t2

m] l[t1
1 , . . . , t1

n ] �u l[t2
1 , . . . , t2

m]∨
π∈Πmon∩Πpr

∧
1≤i≤n t1

i �u π(t1
i )

∨
π∈Πmon∩Πbi j

∧
1≤i≤n t1

i �u π(t1
i )

For instance, if the left term has a partial, unordered specification for the subterms, the simulation
unification has to consider as alternatives all combinations of subterms of the left term with subterms of
the right term, provided that each child on the left gets a matching partner on the right.

Label Mismatch In case of a label mismatch, the unification fails. In the following, let l1 6 l2.
Decomposition Rule decomp.4:

l1{{t1
1 , . . . , t1

n}} �u l2{t2
1 , . . . , t2

m} l1{t1
1 , . . . , t1

n} �u l2{t2
1 , . . . , t2

m}
False False

l1{{t1
1 , . . . , t1

n}} �u l2[t2
1 , . . . , t2

m] l1{t1
1 , . . . , t1

n} �u l2[t2
1 , . . . , t2

m]
False False

l1[[t1
1 , . . . , t1

n ]] �u l2[t2
1 , . . . , t2

m] l1[t1
1 , . . . , t1

n ] �u l2[t2
1 , . . . , t2

m]
False False

2.2.2.3 ; Elimination

Pattern restrictions of the form X ; t1 �u t2 are decomposed by adding t2 as upper bound for the
variable X (as usual), adding the pattern restriction as lower bound for X (to ensure that there exists no
upper bound that is incompatible with the pattern restriction), and immediately trying to unify t1 and t2.
The latter step is not strictly necessary, as it would also be performed by consistency rule 2 (transitivity).
However, immediate evaluation is advantageous as it excludes incompatible upper bounds immediately.
Decomposition Rule var:

X ; t1 �u t2

t1 �u t2 ∧ t1 �u X ∧ X �u t2

2.2.2.4 Descendant Elimination

The descendant construct in terms of the form desc t is decomposed by first trying to unify t with the
other term, and then trying to unify desc t with each of the subterms of the other term in turn. In this
manner, unifying subterms at all depths can be determined. Let m≥ 0.
Decomposition Rule desc:

desc t1 �u l{t2
1 , . . . , t2

m} desc t1 �u l[t2
1 , . . . , t2

m]
t1 �u l{t2

1 , . . . , t2
m} ∨

∨
1≤i≤m desc t1 �u t2

i t1 �u l[t2
1 , . . . , t2

m] ∨
∨

1≤i≤m desc t1 �u t2
i
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2.2.2.5 Decomposition with without

The declarative specification of without in the ground query term simulation of [37] requires that a
partial function (of the set of non-negated subterms into the set of subterms of the second term) is not
completable to a (partial or total) function such that one of the negated subterm is mapped to a subterm
in which it simulates. Since the term on the right hand side of a simulation constraint is always a data
or construct term, it is sufficient to consider the case where the right term does not contain negated
subterms. For a simulation constraint t1 �u t2, the decomposition rules for the case without negated
subterms is intuitively described as follows:

• A mapping π is first restricted to the non-negated subterms of t1, i.e. the subterms of the left term
that are not of the form without t, on which the decomposition is performed in the same way as
for decomposition without without. Note that there might be several different mappings that are
identical with π for all the non-negated subterms and only differ on the negated subterms.

• It is then necessary to verify whether there exists a mapping π ′ that maps the non-negated subterms
of t1 to the same subterms of t2 as π (in particular, π ′ might be π itself), and permits to map at
least one negated subterm without s1 of t1 to a subterm s2 of t2 such that s1 � s2. In this case,
the mapping restricted to the positive subterms of t1 is considered to be invalid, because it is
completable to a mapping that allows to map a negated subterm of t1 to a matching non-negated
subterm of t2. Thus, all mappings that map the positive subterms of t1 to the same subterms of t2

have to be ruled out.

It is important to note that the set of mappings Π is defined (in the Preliminaries above) as the set of all
partial functions that are total on the set of positive subformulas. Recall furthermore, that the mappings
in Π are completed by mapping all undefined values to ⊥.

In the following, let SubT ⊆ 〈t1
1 , . . . , t1

n 〉 be the sequence of all subterms not of the form without t,
and let SubT− ⊆ 〈t1

1 , . . . , t1
n 〉 be the sequence of all subterms of the form without t. Also, two functions

π and π ′ are considered to be equal on the positive part, denoted π(SubT ) π ′(SubT ), if for all t ∈ SubT
holds that π(t) π ′(t). Furthermore, let p(·) be a function that removes the without construct in front
of a negated subterm, i.e. p(without t) t.
Decomposition Rule without:

l{{t1
1 , . . . , t1

n}} �u l{t2
1 , . . . , t2

m}∨
π∈Πpp (

∧
t∈SubT t �u π(t )∧¬(

∨
π ′∈Πpp with π(SubT )π ′(SubT )

∨
t−∈SubT− p(t−)�u π ′(t−)))

l[[t1
1 , . . . , t1

n ]] �u l[t2
1 , . . . , t2

m]∨
π∈Πm-pr (

∧
t∈SubT t �u π(t)∧¬(

∨
π ′∈Πm-pr with π(SubT )π ′(SubT )

∨
t−∈SubT− p(t−)�u π ′(t−)))

l{{t1
1 , . . . , t1

n}} �u l[t2
1 , . . . , t2

m]∨
π∈Πpr (

∧
t∈SubT t �u π(t )∧¬(

∨
π ′∈Πpr with π(SubT )π ′(SubT )

∨
t−∈SubT− p(t−)�u π ′(t−)))

Note that decomposition with without is currently not covered in the completeness and correctness
proofs of Section 2.2.3.

2.2.2.6 Decomposition with optional in the query term

Intuitively, decomposition with optional in the query term should “enable” the maximal number of
optional subterms such that they can participate in the simulation. In the following, this is expressed as
follows:
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• for all required subterms (i.e. not of the form optional t), the treatment is as before (since all
negated subterms are required, they must be treated here as well, but this is omitted in the rules
below to enhance readability)

• for all optional subterms, a certain number is “enabled” by adding appropriate simulation con-
straints, and all others are “disabled” by adding appropriate negated simulation constraints

In the following, these requirements are expressed as follows: given a partial mapping π ∈ Π (by def-
inition π must be total on the set of non-optional subterms, but may be partial on the set of optional
subterms), it is first verified whether π yields a simulation by unifying all terms on which π is defined
with their mapping (in the same manner as before). In the second part of the formula, it is then necessary
to ensure that π is also the maximal mapping with this property, i.e. π is not completable to a mapping
π ′ such that this would also yield a simulation. This is ensured by adding a negated disjunction testing
for all mappings that are identical with π on the subterms for which π is defined, but differ on the other
subterms, whether there exists an additional subterm that would unify with the subterm it is mapped to
in π ′. If yes, π is not maximal and completable to π ′. If no, π is maximal.

For a given mapping π , let SubTπ ⊆ SubT be the sequence on which π is defined and not mapped to
⊥, i.e. for all t ∈ SubTπ holds that π(t) 6 ⊥, and let SubTπ SubT \SubTπ . Also, two functions π and π ′

are considered to be equal on a set of subterms X ⊆ SubT , denoted π(X) π ′(X), if for all t ∈ X holds
that π(t) π ′(t). Furthermore, let p(·) be a function that removes the optional construct in front of an
optional subterm, i.e. p(optional t) t.
Decomposition Rule optional:

l{t1
1 , . . . , t1

n} �u l{t2
1 , . . . , t2

m}∨
π∈Πb−pp

(
∧

t∈SubTπ
t �u π(t)∧¬(

∨
π ′∈Πb−pp with π(SubTπ )π ′(SubTπ )

∨
t ′∈SubTπ

p(t ′)�u π ′(t ′)))

l{{t1
1 , . . . , t1

n}} �u l{t2
1 , . . . , t2

m}∨
π∈Πpp (

∧
t∈SubTπ

t �u π(t)∧¬(
∨

π ′∈Πpp with π(SubTπ )π ′(SubTπ )
∨

t ′∈SubTπ
p(t ′)�u π ′(t ′)))

l[t1
1 , . . . , t1

n ] �u l[t2
1 , . . . , t2

m]∨
π∈Πm−b

(
∧

t∈SubTπ
t �u π(t)∧¬(

∨
π ′∈Πm−b with π(SubTπ )π ′(SubTπ )

∨
t ′∈SubTπ

p(t ′)�u π ′(t ′)))

l[[t1
1 , . . . , t1

n ]] �u l[t2
1 , . . . , t2

m]∨
π∈Πm−pr (

∧
t∈SubTπ

t �u π(t)∧¬(
∨

π ′∈Πm−pr with π(SubTπ )π ′(SubTπ )
∨

t ′∈SubTπ
p(t ′)�u π ′(t ′)))

l{t1
1 , . . . , t1

n} �u l[t2
1 , . . . , t2

m]∨
π∈Πb−pr

(
∧

t∈SubTπ
t �u π(t)∧¬(

∨
π ′∈Πb−pr with π(SubTπ )π ′(SubTπ )

∨
t ′∈SubTπ

p(t ′)�u π ′(t ′)))

l{{t1
1 , . . . , t1

n}} �u l[t2
1 , . . . , t2

m]∨
π∈Πpr (

∧
t∈SubTπ

t �u π(t)∧¬(
∨

π ′∈Πpr with π(SubTπ )π ′(SubTπ )
∨

t ′∈SubTπ
p(t ′)�u π ′(t ′)))

Note the close similarity to the decomposition rules for terms containing without. Intuitively, this
similarity means that decomposition with optional corresponds to creating all different alternatives
where zero or more optional subterms are “turned on” by omitting the optional and the others are
“turned off” by replacing optional by without, and evaluating all resulting terms as alternatives. Con-
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sider for example the term

f{{var X → a,optional var Y → b,optional var Z→ c}}

The substitution resulting from the evaluation of this query term is equivalent to the union of the results
of the four terms

f{{var X → a,var Y → b,var Z→ c}}
f{{var X → a,var Y → b,without var Z→ c}}
f{{var X → a,without var Y → b,var Z→ c}}
f{{var X → a,without var Y → b,without var Z→ c}}

Note that this representation might be surprising on a first glance, because the intuitive understanding
of optional would be to simply leave out the optional subterms instead of replacing them by negated
subterms, as in:

f{{var X → a,var Y → b,var Z→ c}}
f{{var X → a,var Y → b}}
f{{var X → a,var Z→ c}}
f{{var X → a}}

However, this term representation does not reflect that an optional subterm is required to match, if it is
possible to match. Consider for example a unification with the term f{a,c}. The correct solution would
be the substitution set

Σ {{X 7→ a,Z 7→ c}}

whereas the evaluation of the second set of terms would yield

Σ {{X 7→ a,Z 7→ c},{X 7→ a}}

Note that decomposition with optional is currently not covered in the completeness and correctness
proofs of Section 2.2.3.

2.2.2.7 Incomplete Decomposition with grouping constructs, functions, aggregations, and op-
tional subterms in construct terms

A unification with a term containing grouping constructs, functions, or aggregations is in general incom-
plete because a complete decomposition requires to handle meta-constraints over the constraint store
itself, which is very inconvenient. Consider for instance a unification f{a,b,c} �u f [all X ]. To provide
the full information stated in this constraint, it would be necessary to add a meta-constraint stating that
there must be exactly three alternative bindings for X , and of those, one must be a, another b and the
third c. Evaluation of a query containing X would thus become very complex.

Although a complete decomposition is preferable, it is (fortunately) not necessary for evaluating
Xcerpt programs, as grouping constructs always depend on the bindings of the variables in the query
part of a rule. Rules containing grouping constructs are treated by the dependency constraint (cf. Section
2.3.1), which performs an auxiliary computation for solving the query part of a rule and then substitutes
the results in the rule head. Thus, in this case it is sufficient to treat the unification of a query term with
a data term, which does not contain grouping constructs (and obviously also no variables).

However, it is still desirable to unify a term containing grouping constructs as far as possible in order
to exclude irrelevant evaluations of query parts in the dependency constraint as early as possible. For
example, the terms f{a,b} and g{all var X} will never yield terms that unify, regardless of the bindings
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for X . Likewise, the terms f{g{a},g{b}} and f{all h{var X}}will never yield terms that unify, because
neither g{a} nor g{b} can be successfully unified with any of the ground instances of h{var X}.

Therefore, the algorithm described here takes a different approach, in which a unification with all
only yields a necessary set of constraints, not a sufficient set. The algorithm is thus incomplete (or
“partial”) in this respect.

The following decomposition rule is used, where the return value is either simply True or False, with
the informal meaning “there might be a result” or “a result is precluded”.
Decomposition Rule grouping:

t1 �u all t2

(t1 �u t2) 6 False

In the case where the constraint is reduced to True, it is possible that there is a result, but it is also
possible that there is none, depending on the further evaluation of the variables in t2.

2.2.2.8 Term References: Memoing of Previous Computations

Resolving References. References occurring in either term of a simulation constraint are dereferenced
in a straightforward manner using the dere f (·) function described above:
Decomposition Rule deref :

↑ id �u t2

t1 �u t2 t1 dere f (id)
t1 �u ↑ id

t1 �u t2 t2 dere f (id)

Memoing. Dereferencing alone is not sufficient for treating references, because the simulation uni-
fication would not terminate in case both terms contain cyclic references. The technique used by the
algorithm to avoid this problem is memoing (also known as tabling). In general, memoing is used to
avoid redundant computations by storing the result of all previous computations in memory (e.g. in a ta-
ble). If a computation has already been performed previously, it is not necessary to repeat it as the result
can simply be retrieved from memory. This technique is among others used in certain implementations
of Prolog [43, 12].

Consider for example the following (naïve) implementation of the Fibonacci numbers in Haskell:

fib :: Int →Int
2fib 0 = 1

fib 1 = 1
4fib n = fib (n-1) + fib (n-2)

Without memoing, this implementation performs many redundant computations.2 For example, for the
computation of f ib(n) it is necessary to compute f ib(n−1) and f ib(n−2), and for the computation of
f ib(n−1) it is necessary to compute f ib(n−2) and f ib(n−3). Thus, f ib(n−2) needs to be computed
twice. With memoing, the second computation could instead refer to the previous computation.

In Xcerpt, memoing for unification with references can be implemented by keeping for each conjunct
in the disjunctive normal form a history of all previous applications of simplification rules (without their
results) that were used for the creation of the conjunct. In every decomposition step it is then first
verified whether the considered constraints have already been evaluated in a previous application of this
simplification rule. If yes, the constraint reduces to True; if no, the computation is continued as usual.

2Note that Haskell’s lazy evaluation performs a technique similar to memoing
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In the following rule, let H be a set of constraints that have been considered in previous applications
of simplification rules in the current conjunct of the disjunctive normal form (history). Furthermore, t1

is considered to be not of the form desc t.
Decomposition Rule memoing:

desc t1 �u t2 such that desc t1 �u t2 ∈H t1 �u t2 such that t1 �u t2 ∈H

False True

It might be somewhat surprising that the constraint is reduced to True/False instead of inserting the
result of a previous computation. The rationale behind this is that the result of the previous computation
is already part of the current conjunct in the disjunctive normal form. True and False are the neutral
elements of conjunction and disjunction, and thus terminate the unification while keeping results of
previous computations.

2.2.3 Soundness and Completeness

The following theorem shows soundness and completeness for the simulation unification algorithm
applied to a simulation constraint of the form tq �u tc. tq is assumed to not contain subterm negation
or optional subterms. Also, as rules with grouping constructs are always evaluated in an auxiliary
computation using the dependency constraint, it is assumed that tc does not contain grouping constructs.
Furthermore, tc is assumed not to contain functions, aggregations or optional subterms.

Theorem 2.5 (Soundness and Completeness of Simulation Unification) Let tq be a query term with-
out subterm negation and optional subterms and let tc be a construct term without grouping constructs,
functions/aggregations, and optional subterms. A substitution set Σ is a most general simulation unifier
of tq and tc if and only if the simulation unification of tq �u tc terminates with a constraint store CS such
that Σ Ω(CS).

2.3 Backward Chaining

The backward chaining algorithm presented here is inspired by the SLD resolution calculus used in logic
programming [25]. However, traditional approaches like SLD resolution do not account well for Xcerpt
constructs like partial term specification or grouping constructs. Both kinds of constructs seriously
influence the resolution calculus:
High Branching Rate. In traditional logic programming, there are two elements of nondeterminism that
lead to branching in the proof tree: selection of the predicate to unfold in the evaluation of a rule body,
and the selection of the program rule used for further chaining. Xcerpt’s usage of partial patterns adds a
third element: When using partial patterns, there is in general no single way to match two terms. Instead,
all possible alternative matchings have to be considered, which leads to a significantly higher branching
rate.
Grouping Constructs all and some. Unlike Prolog’s setof and bagof predicates, the grouping constructs
all and some are an integral part of the language. It is hence desirable to support such higher order
constructs in the proof calculus itself rather than treating them as external predicates.

In the following, a backward chaining algorithm based on constraint solving is introduced. It makes
use of the simple constraint solver of Section 2.1 and the simulation unification algorithm of Section 2.2.
In this algorithm, it is assumed that Xcerpt programs are range restricted, stratified, and separated apart.
Evaluation always begins with a single, folded query constraint, i.e. a single constraint of the form 〈Q〉
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for some goal tc←g Q, and terminates when the constraint store either fails or is sufficiently solved to
produce the answer term for the goal.3 “Sufficiently” currently means that the constraint store is solved
completely, but it might be desirable to investigate optimisations based on the construct term tc of the
goal that solve only relevant parts of the constraint store.

Instead of using backtracking to evaluate rule chaining, the backward chaining algorithm for Xcerpt
uses disjunctions in the constraint store to represent alternatives. In this manner, it is possible to use
other selection strategies than depth-first search for the selection of paths to evaluate. This is desirable
as the all construct requires to find all solutions to a query anyway.

Note that the algorithm does not necessarily terminate for any input, as programs may contain recur-
sive rules that produce infinite chains. As it is desirable to have this expressive power in Xcerpt, it is the
duty of programmers to ensure that programs terminate. Non-termination might also be desirable, e.g.
to produce continuous streams of data (together with the all construct), but such applications have not
yet been investigated in detail.

The following Sections first introduce the dependency constraint as a means to treating the grouping
constructs all and some, functions, and aggregations by performing an auxiliary computation. After-
wards, simplification rules for unfolding folded queries are discussed, which also implement the main
part of the algorithm Different approaches to backward chaining in Xcerpt have been considered in the
course of this thesis [9, 39]. The approach presented here is a further refinement of the “all at once”
approach presented in [9].

2.3.1 Dependency Constraint

The dependency constraint is of the form (t1 �u t2 | D) for a simulation constraint t1 �u t2 and some
constraint D (usually a folded query) and expresses a temporal and functional dependency between
t1 �u t2 and D. A dependency constraint of the form above requires to completely evaluate the constraint
D in an auxiliary computation (also considering other constraints with which the dependency constraint
is in conjunction) before t1 �u t2, and applies the substitution resulting from the evaluation of D to t2
(application to t1 is not necessary as the terms t1 and t2 stem from different rules and are thus variable
disjoint). If the evaluation of D fails, then the dependency constraint also fails without evaluating t1�u t2.
The following simplification rule formalises this treatment:

( t1 �u t2 | D )∨
t ′2∈Σ(t2) t1 �u t ′2

Σ subst(solve(D))

Note that if Σ is empty (i.e. there is no solution for D), the set Σ(t2) is empty and thus the result of the
evaluation is the empty disjunction, which simplifies to False. In case the evaluation of D yields simply
True, the resulting substitution set Σ is not empty, but contains the empty substitution (identity).

The dependency constraint is necessary because the (incomplete) simulation unification with a con-
struct term containing the grouping constructs all or some, or functions and aggregations, usually does
not sufficiently characterise the possible bindings of the variables in the two terms.

In order to detect inconsistencies early (and avoid unnecessary recursion), it is reasonable to perform
a partial unification between the query term and the construct term and add that result to D in order to
exclude such cases for which no answer can exist. Consider for instance the simulation constraint
f{{g{var X}}} �u f{all h{var Y}}). A partial unification could determine that for all Y must hold that
g{·} �u Y , but not g{var X} �u Y as this would possibly yield inconsistent restrictions for the variable

3Recall that the result of a goal is always either failure or a single data term.

32



X . The following refinement of the rule above uses the incomplete decomposition of all and some to
add such information:

( t1 �u t2 | D )∨
t ′2∈Σ(t2) t1 �u t ′2

Σ subst(solve(D ∧ t1 �u t2))

2.3.2 Query Unfolding

The rules for query unfolding take a folded query constraint of the form 〈Q〉 and evaluate it by “unfold-
ing” it. For and/or connected queries, this simply means to distribute the evaluation to the subqueries and
connect the corresponding folded query constraints with the respective connectives. For query terms (i.e.
atomic queries), this means either to query the terms at the associated resource, or to query the construct
parts of program rules. In both cases, the algorithm reverts to simulation unification for determining the
solution. In case a query term queries the construct parts of program rules, it is furthermore necessary
to evaluate the respective query parts of the rules and to take care of grouping constructs that possibly
occur in the construct part of rules. The following query unfolding rules are used:

And/Or-Connection The connectives and and or are simply mapped to their counterparts in the con-
straint store. The rules for and and or are therefore straightforward:

〈and{Q1, . . . ,Qn}〉R 〈or{Q1, . . . ,Qn}〉R
〈Q1〉R∧·· ·∧ 〈Qn〉R 〈Q1〉R∨·· ·∨ 〈Qn〉R

Note that the resource specification R is distributed recursively, and that in particular, R may be empty
(i.e. R /0).

Query Negation Xcerpt query negation is negation as failure (NaF), and evaluated in an auxiliary
computation very much like the dependency constraint. The result of this auxiliary computation is a
constraint formula C specifying which variable bindings are disallowed for the variables occurring in
Q. It is thus first restricted to constraints containing variables that occur in Q and then added negated to
the original constraint store. The consistency verification rules 3–5 of the constraint solver ensure that
variables cannot be bound to values disallowed by C.

〈not Q〉R
¬C

V vars(Q),C restrict(V,solve(〈Q〉R))

Resource Specification In the case where the query is the specification of an input resource, this
resource needs to be retrieved. The function retrieve(RSpec) takes a resource specification of any form
(e.g. an URI together with a format specification of “xml” such that it can be parsed correctly) and
returns a set of data terms corresponding to this resource. Note that it is also possible that a resource
contains more than one term, e.g. when the resource is another Xcerpt program.

〈in{RSpec,Q}〉R′
〈Q〉R

R retrieve(RSpec)

Note that the old resource specification R′ is shadowed by the new resource specification R retrieve(RSpec)
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Query Term Two simplification rules process query terms. The first rule considers query terms with
associated resources. In this case, the query term is unfolded to a disjunction of simulation constraints,
one constraint for each resource. The intuitive meaning is “query any of the given resources”.

〈tq〉{t1,...,tn}
tq �u t1∨·· ·∨ tq �u tn

The second query term unfolding works on such query terms that have no resource associated. In such
a case, the query term is evaluated against all rules in the program. For each rule containing grouping
constructs, functions, or aggregations, a dependency constraint is added which evaluates the unification
between the query term and the head of the rule only, if the body of the rule can be evaluated successfully
and the result can be applied to the rule head. For each rule not containing a grouping construct, the
folded query is replaced by a simulation constraint between the query term and the construct term of the
rule together with the (folded) query part of the rule. Each rule evaluation is an alternative, hence the
result is a disjunction of constraints.

In the following, let Pgrouping ⊆ P be the set of program rules tc ← Q such that tc contains grouping
constructs, functions, aggregations, or optional subterms, and let Pnongrouping ⊆ P bet the set of program
rules tc ← Q such that tc does not contain grouping constructs, functions, aggregations, or optional
subterms. Note that goals are not considered in either case, as they do not participate in chaining.
Furthermore, n≥ 0 and m≥ 0.

〈tq〉 /0∨
tc←Q∈Pgrouping

(tq �u tc | 〈Q〉 /0) ∨
∨

tc←Q∈Pnongrouping
tq �u tc∧〈Q〉 /0 ∨

∨
td∈P tq �u td

2.3.3 Soundness and Completeness

In this section, it is shown that the backward chaining algorithm is sound with respect to the fixpoint
semantics described in [37], and that it is complete in all cases where the algorithm terminates. This
completeness result is weak, but appears to be inherent to backward chaining. As rules with grouping
constructs in the rule head require the body to be maximally satisfied, the proofs for soundness and
completeness are tightly interweaved. We therefore first show the following Lemma, which is at the core
of both soundness and (weak) completeness. Recall that Ω(CS) denotes the solution set of a constraint
store CS.

Lemma 2.6 Let P be a negation-free, grouping stratified Xcerpt program without goals, let MP be the
fixpoint of P, and let Q be a negation-free query (composed of one or more query terms). If the evaluation
of 〈Q〉 terminates with a constraint store CS, then Σ Ω(CS) is a maximal substitution set with MP |Σ(Q).

This Lemma contains almost all necessary “ingredients” for both soundness and completeness: it
states that the solution set of the resulting constraint store is a maximal (i.e. “complete”) substitution set
for the satisfaction (i.e. “soundness”) of the query part of a goal.

Recall for the remainder of this section that goals differ from rules in that the ground instances of the
goal heads cannot be queried by query terms. This difference is not reflected in the declarative semantics
described in [37], but can be achieved by ensuring that no query term simulates into a ground instance
of a goal head, e.g. by wrapping goal heads as subterms of a term with a label not used elsewhere in the
program.
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2.3.3.1 Soundness

Theorem 2.7 (Soundness of the Backward Chaining Algorithm) Let P be a negation-free, grouping
stratified Xcerpt program, and let G tc←g Q be a goal in P. If the evaluation of Q in P terminates with
a constraint store CS inducing a grounding substitution set Σ substitutions(CS), then Σ(tc) is a subset
of the fixpoint MP of P.

Proof. Let P be a negation-free, grouping stratified Xcerpt program, and let G tc←g Q be a goal in P. Assume
that P′ ⊆ P is P without the goals. According to Lemma 2.6, evaluation of 〈Q〉 in P′ terminates with a constraint
store CS D1∨·· ·∨Dn in disjunctive normal form such that the substitution set Ψ Ω(CS) is a maximal substitution
set with MP′ |Ψ(Q).

As the results of goals do not participate in rule chaining, adding the goals to P′ does not influence the other
rules in P′ and only adds new data terms to MP′ . Thus, also for MP holds that MP |Ψ(Q), and Ψ is maximal.
Ψ(tc) ⊆MP then follows from the definition of TP. Furthermore, because P is range restricted, it holds that every
variable X in tc appears in every conjunct Di in a simulation constraint of the form X �u t. Hence, with Corollary
1 follows that substitutions(CS) Ω(CS)|V , where V is the set of variables occurring in tc. Thus, substitutions(CS)
yields the same ground instances of tc as Ψ Ω(CS). The backward chaining algorithm is thus sound. .

2.3.3.2 Completeness

In general, backward chaining is incomplete with respect to the fixpoint semantics described in [37].
This is easy to see on a small example. Consider the program

f{a}← f{a}
f{a}

The fixpoint for this program obviously is simply { f{a}}. However, evaluation of e.g. f{var X} does
not terminate in the backward chaining evaluation, because the rule in the program above is applicable
infinitely often. This problem is not particular to Xcerpt: other logic programming languages like Prolog
terminate neither with such programs.

To solve this, SLD resolution [25] uses a fairness clause that states that every clause (i.e. rule or data
term) must be used eventually, which ensures that SLD resolution determines an answer after finitely
many steps, if an answer exists. Unfortunately, this fairness clause is not applicable in Xcerpt, because
the grouping constructs require to retrieve all solutions to a query, whereas fairness only guarantees to
find one solution after finitely many steps. Consider for example the program

g{all var X}← f{var X}
f{a}← f{a}
f{a}

This program is grouping stratifiable and the fixpoint of this program is obviously { f{a},g{a}}. Con-
struction of the result g{a} however requires to retrieve all solutions to f{var X}; a single solution does
not suffice because it violates the maximality requirement in the semantics of the all construct.

Hence, we restrict the statement of completeness to negation-free, grouping stratified Xcerpt pro-
grams for which the evaluation algorithm terminates. This result is obviously somewhat unsatisfactory,
because any non-terminating program would be complete under this assumption. We therefore also give
criteria and suggest enhancements that ensure that programs terminate (in case the fixpoint is finite).
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Theorem 2.8 (Weak Completeness of the Backward Chaining Algorithm) Let P be a negation-free,
grouping stratified Xcerpt program, with a stratification P P1]·· ·]Pm (m≥ 1), and let G tc←g Q be
a goal in P such that the evaluation of Q terminates. Assume that P has a fixpoint MP T ω

P (P). If the
evaluation of Q in P terminates with a constraint store CS, then CS induces a maximal substitution set
Σ with Σ(tc)⊆MP (i.e. there exist no other ground instances of tc in MP).

Proof. By Theorem 2.7, evaluation of Q in P yields a constraint store CS inducing a substitution set Σ with
Σ(tc)⊆MP. Hence, we only have to show that Σ is also maximal wrt. tc, i.e. there exists no Σ′ with Σ|V ⊆ Σ′|V for
the set of variables V occurring in tc.

From Lemma 2.6, we know that the evaluation of 〈Q〉 in P terminates with a constraint store CS such that Ψ
Ω(CS) is a maximal substitution with MP |Ψ(Q), and thusΨ(tc)⊆MP. Furthermore,Ψ is maximal wrt. to Q. As by
definition of goals, no ground instances of tc besides those produced by the goal may exist4,Ψ is thus also maximal
wrt.Ψ(tc)⊆MP. Also, we have already seen in the proof of Theorem 2.7 that Σ substitutions(CS) Ω(CS)|V where
Σ yields the same ground instances of tc as Ω(CS). Thus, Σ is also maximal wrt. Σ(tc)⊆MP. .

2.3.3.3 Criteria for Termination

No Recursion. Disallowing recursion is an obvious way to ensure termination. This restriction ap-
pears very strict on a first glance. However, due to the powerful grouping constructs all and some,
this restricted class still allows many useful programs that would require recursion in traditional logic
programming. For example, the program computing the sum of rows and columns in an HTML table
described in [37] didn’t use recursion despite the rather complex task. Likewise, many of the other
examples of [37] do not require recursion while still being useful programs.

Of course, as has been argued before, there are many applications that still require recursion. It is
therefore important to study refinements of this restriction that disallow only certain kinds of recursion.
A useful candidate are programs where only the ground instances of rules are non-recursive (so-called
locally hierarchical programs [33]).

Retrieving only Some Solutions. In many cases, it is actually not necessary to retrieve all solutions of
the constraint store, e.g. when the rules that depend on the recursion do not contain grouping constructs.
Also, a user might be satisfied with results that can be delivered in a certain time span. For both cases,
the change to the evaluation algorithm would only be minor: instead of iterating as long as a rule can be
applied to the constraint store, the function solve(·) (Section 2.1.6) would need to terminate as soon
as one of the conjuncts of the constraint store is completely solved. Also, a fair rule application strategy
would be necessary (e.g. breadth-first search or some other complete search strategy).

Tabling. Tabling [12] is a technique (used e.g. in XSB Prolog) where redundant and non-terminating
rule applications are avoided by caching the results of previous applications, and is known to terminate
more often than the SLD resolution used in standard Prolog [41]. In particular, it avoids the problem
described above.
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