
A2-D6

Implementation of prototypes

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Dresden/A2-D6/D/PU/b
Responsible editors: Albert Burger, Gihan Dawelbait, François Fages,

Patrick Lambrix, Sylvain Soliman, Sebastian Will
Reviewers: Michael Schroeder
Contributing participants: Dresden, Edinbrugh, Freiburg, Linköping, Paris
Contributing workpackages: A2
Contractual date of deliverable: 28 February 2007
Actual submission date: 28 February 2007

Abstract
In this deliverable we present the first results and prototypes from the demonstrators previously
defined in deliverable A2-D4.

Keyword List
Prototypes, bioinformatics, ontologies, rules, reasoning, sequence alignment

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2007.

ii

Implementation of prototypes

Rolf BackofenFrei, Albert BurgerEdin, Anke BuschFrei, Gihan DawelbaitDre,
François FagesPar, Vaida JakonienLin, Patrick LambrixLin, Kenneth McLeodEdin,

Sylvain SolimanPar, He TanLin, Sebastian WillFrei,

Dre Technische Universität Dresden, Germany, Par INRIA Rocquencourt Paris, France, Lin

Linköping universitet, Sweden Frei Albert-Ludwigs-Universität, Freiburg, Germany Edin

Heriot-Watt University Edinburgh, Scotland

28 February 2007

Abstract
In this deliverable we present the first results and prototypes from the demonstrators previously
defined in deliverable A2-D4.

Keyword List
Prototypes, bioinformatics, ontologies, rules, reasoning, sequence alignment

iv

Contents

1 Type Inference in Systems Biology (Paris) 3
1.1 Introduction . 3
1.2 Preliminaries on Abstract Interpretation, Type Checking and Type Inference . . 4

1.2.1 Concrete Domain of Reaction Models . 4
1.2.2 Abstract Domains, Abstractions and Galois Connections 5
1.2.3 Type Checking and Type Inference by Abstract Interpretation 5

1.3 A Type System for Protein Functions . 6
1.3.1 Abstract Domain of Protein Functions . 6

1.4 Evaluation Results . 6
1.4.1 MAPK model. 6
1.4.2 Kohn’s Map. 7

1.5 A Type System for Activation and Inhibitory Influences 7
1.5.1 Abstract Domain of Influences . 7

1.6 Evaluation Results . 8
1.6.1 MAPK model. 8
1.6.2 p53-Mdm2 model. 8
1.6.3 Kohn’s Map. 9

1.7 A Type System for Location Topologies . 9
1.7.1 Abstract Domain of Location Topologies 9

1.8 Evaluation Results . 9
1.8.1 Models from biomodels.net . 9
1.8.2 P53/Mdm2. 10
1.8.3 Delta and Notch Model. 10

1.9 Conclusion . 11
1.10 Acknowledgement. 11

2 Ontology Alignment - SAMBO and KitAMO (Linköping) 19
2.1 Ontology alignment framework . 19
2.2 SAMBO - an ontology alignment tool . 19

2.2.1 KitAMO - a tool for evaluating ontology alignment strategies 23
2.3 Evaluating grouping algorithms - KitEGA . 24

3 Using argumentation in online distributed life science resources (Edinbrugh) 31
3.1 introduction . 31
3.2 Bioinformatics . 31
3.3 Argumentation . 32

3.3.1 Argumentation: suggested idea and usage 33
3.3.2 The creation of arguments . 33
3.3.3 Application of schemes . 34

3.4 Conclusion . 34

4 Constraint-based Sequence Alignment by Cluster Tree Elimination (Freiburg) 37
4.1 Introduction . 37
4.2 A Constraint Model for Sequence Alignment . 38
4.3 Efficient Solving by Cluster Tree Elimination . 39
4.4 Extension of the Sequence Alignment Model . 40

v

4.5 Conclusion . 44

vi

Introduction

The aim of this deliverable (A2-D6) is to show a detailed representation of the underlying theory
behind the prototypes of the tools partly presented in deliverable A2-D4. Further more, the
prototypes‘ results of concrete bioinforamtics applications are shown.

• The Paris group has developed the Biocham system and a type system for it.

Type checking and type inference are important concepts and methods of programming
languages and software engineering. Type checking is a way to ensure some level of con-
sistency, depending on the type system, in large programs and in complex assemblies of
software components. Type inference provides powerful static analyses of pre-existing
programs without types, and facilitates the use of type systems by freeing the user from
entering type information. they investigate the application of these concepts to systems
biology. More specifically, the paris group consider the Systems Biology Markup Lan-
guage SBML and the Biochemical Abstract Machine BIOCHAM with their repositories
of models of biochemical systems. They study three type systems: one for checking or
inferring the functions of proteins in a reaction model, one for checking or inferring the
activation and inhibition effects of proteins in a reaction model, and another one for check-
ing or inferring the topology of compartments or locations. Through some examples, they
show that the analysis of biochemical models by type inference provides accurate and
useful information. Interestingly, such a mathematical formalization of the abstractions
used in systems biology already provides some guidelines for the extensions of biochemical
reaction rule languages.

• The Linköping group developed an ontology alignment system (SAMBO) and a system
for evaluating alignment strategies (KitAMO).

In recent years many biomedical ontologies (e.g [3, 8]) have been developed. They are
a key technology for the Semantic Web [9, 4]. The benefits of using ontologies include
reuse, sharing and portability of knowledge across platforms, and improved documenta-
tion, maintenance, and reliability. Ontologies lead to a better understanding of a field and
to more effective and efficient handling of information in that field. Many of the currently
developed ontologies contain overlapping information. For instance, OBO lists 18 differ-
ent anatomy ontologies (February 2007), some of which are deprecated (e.g. Arabidopsis
anatomy and Cereal anatomy) and have been replaced by a larger ontology (e.g Plant
anatomy) when the large amount of overlap was realized.

Often we would want to be able to use multiple ontologies and this requires knowledge of
the relationships between the terms in the different ontologies. It has been realized that
this is a major issue and some organizations have started to deal with it. For instance,
in the area of anatomy SOFG (http://www.sofg.org/) has developed the SOFG Anatomy
Entry List and an NCBO anatomy workshop was organized to start development of the
Common Anatomy Reference Ontology (http://www.bioontology.org/wiki/index.php/-
CARO:Main Page). Also, systems for aligning ontologies, i.e. finding the inter-ontology
relationships are being built.

• The Edinbrugh group used argumentaion to developed schemes to model the reasoning
of an expert and use that reasoning to allow a system to evaluate the data presented to
users. This will allow non-expert users to critically assess the wide array of data before
further analysing it

1

• The Freiburg group developed a declarative approach that uses Dynamic programming
and they show how it can be extended by formulating additional knowledge as constraints
in the area of aligning DNA and protein sequences by using careful modeling and applying
proper solving strategies.

2

1 Type Inference in Systems Biology (Paris)

François Fages, Sylvain Soliman

Type checking and type inference are important concepts and methods of programming
languages and software engineering. Type checking is a way to ensure some level of consis-
tency, depending on the type system, in large programs and in complex assemblies of software
components. Type inference provides powerful static analyses of pre-existing programs without
types, and facilitates the use of type systems by freeing the user from entering type informa-
tion. In this paper, we investigate the application of these concepts to systems biology. More
specifically, we consider the Systems Biology Markup Language SBML and the Biochemical
Abstract Machine BIOCHAM with their repositories of models of biochemical systems. We
study three type systems: one for checking or inferring the functions of proteins in a reaction
model, one for checking or inferring the activation and inhibition effects of proteins in a reaction
model, and another one for checking or inferring the topology of compartments or locations.
We show that the framework of abstract interpretation elegantly applies to the formalization
of these abstractions and to the implementation of linear time type checking as well as type
inference algorithms. Through some examples, we show that the analysis of biochemical models
by type inference provides accurate and useful information. Interestingly, such a mathematical
formalization of the abstractions used in systems biology already provides some guidelines for
the extensions of biochemical reaction rule languages.

1.1 Introduction

Type checking and type inference are important concepts and methods of programming lan-
guages and software engineering [1]. Type checking is a way to ensure some level of consistency,
depending on the type system, in large programs and in complex assemblies of software compo-
nents. Type inference provides powerful static analyzes of pre-existing programs without types,
and facilitates the use of type systems by freeing the user from entering type information.

In this paper, we investigate the application of these concepts to systems biology. More
specifically, we consider the Systems Biology Markup Language SBML [2] and the Biochemical
Abstract Machine BIOCHAM [3].

In both of these languages, the biochemical models are described through a set of reaction
rules.

We study three type systems:

1. one for checking or inferring the protein functions in a reaction model,

2. one for checking or inferring the activation and inhibition effects in a reaction model,

3. and another one for checking or inferring the topology of compartments or locations in
reaction models with space considerations.

To this end, the formal framework of abstract interpretation will be used to provide type
systems with a precise mathematical definition. Abstract interpretation is a theory of abstrac-
tion introduced by Cousot and Cousot in [4] as a framework for reasoning about programs,
their semantics, and for designing static analysers, among which type inference systems [5].

3

Although not strictly necessary to the presentation of the type inference methods considered in
this paper, we believe that that formal framework is very relevant to systems biology, as a for-
malism for providing a mathematical sense to modeling issues concerning multiple abstraction
levels and their formal relationship.

We show that the framework of abstract interpretation elegantly applies to the formalization
of the three abstractions considered in this paper and to the implementation of linear time
type checking as well as type inference algorithms. Through examples of biochemical systems
coming from the biomodels.net and BIOCHAM repositories of models, we show that the static
analysis of reaction models by type inference provides both accurate and useful information.
Interestingly, we show that these considerations also provide some guidelines concerning the
extensions of biochemical reaction rule-based languages.

1.2 Preliminaries on Abstract Interpretation, Type Checking and
Type Inference

1.2.1 Concrete Domain of Reaction Models

Following SBML and BIOCHAM conventions, a model of a biochemical system is a set of
reaction rules of the form e for S => S′ where S is a set of molecules given with their stoichio-
metric coefficient, called a solution, S′ is the transformed solution, and e is a kinetic expression
involving the concentrations of molecules (which are not strictly required to appear in S). The
set of molecules is noted M. We will use the BIOCHAM operators + and * to denote solutions
as 2*A + B, as well as the syntax of catalyzed reactions e for S =[C]=> S’ as an abbreviation
for e for S+C => S’+C.

A set of reaction rules like {ei for Si => S′i}i=1,...,n over molecular concentration variables
{x1, ..., xm}, can be interpreted under different semantics. The traditional differential semantics
interpret the rules by the following system of Ordinary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp. left) member of
rule i. Thanks to its wide range of mathematical tools, this semantics is the most commonly
used, when the data is available and the system of a reasonable size. The stochastic seman-
tics interpret the kinetic expressions as transition probabilities (see for instance [6]), while the
boolean semantics forget the kinetic expressions and interpret the rules as a non-deterministic
(asynchronous) transition system over boolean states representing the absence or presence of
molecules. In BIOCHAM these three semantics are implemented [7], while in the SBML ex-
change format, no particular semantics are defined.

For the simple analyzes considered in this paper, the concrete domain of reaction models
will be the syntactic domain of formal reaction rules, with no other semantics than a data
structure. A reaction model is thus a set of reaction rules, and the domain of reaction models
is ordered by set inclusion, i.e. by the information ordering.

Definition The universe of reactions is the set of possible rules
R = {e for S => S′ | e is a kinetic expression,

and S and S′ are solutions }.

4

The concrete domain DR of reaction models is the power-set of reaction rules ordered by
inclusion DR = (P(R),⊆).

1.2.2 Abstract Domains, Abstractions and Galois Connections

In the general setting of abstract interpretation, an abstract domain is a lattice L(v,⊥,>,t,u)
defined by the set L and the partial order v, and where ⊥, >, t, u denote the least element,
the greatest element, the least upper bound and the greatest lower bound respectively.

As often the case in program analysis, the concrete domain and the abstract domains con-
sidered for analyzing biochemical models, are power-sets, that is set lattices P(S)(⊆, ∅,S,∪,∩)
ordered by inclusion, with the empty set as ⊥ element, and the base set S (such as the universe
of reaction rules here) as > element. An abstraction is formalized by a Galois connection as
follows [4]:

Definition A Galois connection C →α A between two lattices C and A is defined by abstrac-
tion and concretization functions α : C → A and γ : A → C that satisfy ∀c ∈ C,∀y ∈ A : x vC

γ(y) ⇔ α(x) vA y.

For any Galois connection, we have the following properties:

1. γ ◦ α is extensive (i.e. x vC γ ◦ α(x)) and represents the information lost by the abstrac-
tions;

2. α preserves t, and γ preserves u;

3. α is one-to-one iff γ is onto iff γ ◦ α is the identity.

If γ ◦ α is the identity, the abstraction α loses no information, and C and A are isomorphic
from the information standpoint (although γ may not be one-to-one).

We will consider three abstract domains: one for protein functions, where molecules are
abstracted into categories such as kinases and phosphatases, one for the influence graph, where
the biochemical reaction rules are abstracted in activation and inhibition binary relations be-
tween molecules, and one for location topologies, where the reaction (and transport) rules are
abstracted retaining only the neighborhood information between locations.

1.2.3 Type Checking and Type Inference by Abstract Interpretation

In this setting, a type system A for a concrete domain C is simply a Galois connection C →α

A. The type inference problem is, given a concrete element x ∈ C (e.g. a reaction model)
to compute α(x) (e.g. the protein functions that can be inferred from the reactions). The
type checking problem is, given a concrete element x ∈ C and a typing y ∈ A (e.g. a set of
protein functions), to determine whether x vC γ(y) (i.e. whether the reactions provide less and
compatible information on the protein functions) which is equivalent to α(x) vA y (i.e. whether
the typing contains the inferred types).

The simple type systems considered in this paper will be implemented with type checking
and type inference algorithms that basically browse the reactions, and check or collect the type
information for each rule independently and in linear time.

5

1.3 A Type System for Protein Functions

To investigate the use of type inference in the domain of protein functions we first restrict
ourselves to two simple functions: kinase and phosphatase. These correspond to the action of
adding (resp. removing) a phosphate group to (resp. from) a compound.

For the sake of simplicity, we do not consider other categories such as protease (in degrada-
tion rules), acetylase and deacetylase (in modification rules), etc. This choice is in accordance
with the BIOCHAM syntax which allows to mark the modified sites of a protein with the
operator ~, as in P~{p,q} without distinguishing however between a phosphorylation and an
acetylation for instance. We thus consider BIOCHAM models containing compounds with dif-
ferent levels of phosphorylation or acetylation, without distinguishing the different forms of
modification, and call them phosphorylation, by abuse of terminology.

The analysis of protein functions in a reaction model is interesting for several reasons. First,
the kind of information (kinase activity) collected on proteins can be checked using online
databases like GO, the Gene Ontology [8]. Second, in the context of the machine learning
techniques implemented in BIOCHAM for completing or revising a model w.r.t. a temporal logic
specification [7], the information that an enzyme acts as a kinase or as a phosphatase drastically
reduce the search space for reaction additions, and help find more biologically plausible model
revisions.

1.3.1 Abstract Domain of Protein Functions

Definition The abstract domain of protein functions DF is the domain of functions from
molecules M to pairs of booleans, representing “has kinase function” (true/false) and “has
phosphatase function” (true/false).

Definition α : DR → DF is defined for each molecule as the disjunction of α on each single
rule and each pair of rules:

α(A =[B]=> C) = where C is more phosphorylated than A (i.e. its set of active phosphory-
lation sites strictly includes that of A) is abstracted as B has kinase function.

α(A =[B]=> C) = where, on the contrary, A is more phosphorylated than C, we abstract
that B has phosphatase function.

α(A + B => A-B, A-B => C + B) = where C is more phosphorylated than A is abstracted
as B has kinase function.

α(A + B => A-B, A-B => C + B) = where, on the contrary, A is more phosphorylated than
C, we abstract that B has phosphatase function.

1.4 Evaluation Results

1.4.1 MAPK model.

On a simple example of the MAPK cascade extracted from the SBML repository and originally
based on [9], the type inference algorithm determines that RAFK, RAF~{p1} and MEK~{p1,p2}
have a kinase function; RAFPH, MEKPH and MAPKPH have a phosphatase function; and the other
compounds have no function inferred.

If we wanted to type-check such a model, we would correctly check all phosphatases but
would miss an example of the kinase function of MAPK~{p1,p2}, since its action is not visible
in the above model.

6

1.4.2 Kohn’s Map.

Kohn’s map of the mammalian cell cycle control [10] has been transcribed in BIOCHAM to
serve as a large benchmarking example of 500 species and 800 rules [11]. To check if this
abstraction scales up we tried it on this model, and indeed obtain the answer in less than one
second CPU time (on a PC 1,7GHz). Here is an excerpt of the output of the type inference:

cdk7-cycH is a kinase

Wee1 is a kinase

Myt1 is a kinase

cdc25C~{p1} is a phosphatase

cdc25C~{p1,p2} is a phosphatase

Chk1 is a kinase

C-TAK1 is a kinase

Raf1 is a kinase

cdc25A~{p1} is a phosphatase

cycA-cdk1~{p3} is a kinase

cycA-cdk2~{p2} is a kinase

cycE-cdk2~{p2} is a kinase

cdk2~{p2}-cycE~{p1} is a kinase

cycD-cdk46~{p3} is a kinase

cdk46~{p3}-cycD~{p1} is a kinase

cycA-cdk1~{p3} is a kinase

cycB-cdk1~{p3} is a kinase

cycA-cdk2~{p2} is a kinase

cycD-cdk46~{p3} is a kinase

cdk46~{p3}-cycD~{p1} is a kinase

Plk1 is a kinase

pCAF is a kinase

p300 is a kinase

HDAC1 is a phosphatase

It is worth noticing that in these results no compound is both a kinase and a phosphatase.
The cdc25 A and C are the only phosphatases found in the whole map with HDAC1). The
type inference also tells us that the cyclin-dependant kinases have a kinase function when in
complex with a cyclin. Finally the acetylases pCAF, p300 and the deacetylase HDAC1 are detected
but identified to kinases and phosphatases respectively, since the BIOCHAM syntax does not
distinguish between phosphorylation and acetylation.

1.5 A Type System for Activation and Inhibitory Influences

1.5.1 Abstract Domain of Influences

Influence networks for activation and inhibition have been introduced for the analysis of gene
expression in the setting of gene regulatory networks [12]. Such influence networks are in fact
an abstraction of complex reaction networks, and can be applied as such to protein interaction
networks. However the distinction between the influence network and the reaction network is
crucial to the application of Thomas’s conditions of multistationarity and oscillations [12, 13]
to protein interaction network, and there has been some confusion between the two kinds of
networks [14]. Here we precisely define influence networks as an abstraction of (or a type system
for) reaction networks.

7

Definition The abstract domain of influences is the powerset of the binary relations of acti-
vation and inhibition between compounds DI = P({A activates B | A,B ∈ M} ∪ {A inhibits
B | A,B ∈M}).

The influence abstraction α : DR → DI is the function
α(x) = {A inhibits B | ∃(ei for Si ⇒ S′i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}
∪{A activates B | ∃(eiforSi ⇒ S′i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}

In particular, we have the following influences for elementary reactions of complexation,
modification, synthesis and degradation:
α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}
α({A = [C] => B}) = { C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}

The inhibition loops on the reactants are justified by the negative sign in the Jacobian
matrix of the differential semantics of such reactions. It is worth noting however that they are
often omitted in the influence graphs considered in the literature, as well as with some other
influences, according to functionality, kinetic and non-linearity considerations.

1.6 Evaluation Results

1.6.1 MAPK model.

Let us first consider the MAPK signalling model of [9]. Fig. 1 depicts the reaction graph
as a bipartite graph with round boxes for molecules and rectangular boxes for rules. Fig. 2
depicts the inferred influence graph, where activation (resp. inhibition) is materialized by plain
(resp. dashed) arrows. The graph layouts of the figures have been computed in BIOCHAM by
the Graphviz suite1.

1.6.2 p53-Mdm2 model.

In the p53-Mdm2 model of [15], the protein Mdm2 is localized explicitly in two possible loca-
tions: the nucleus and in the cytoplasm, and transport rules are considered. Fig. 4 depicts the
reaction graph of the model.

Fig. 3 depicts the inferred influence graph. Note that Mdm2 in the nucleus has both an
activation and an inhibitory effect on p53 u. This corresponds to different influences in different
regions of the phase space.

Fig. 5 depicts the core influence graph considered for the logical analysis of this model
[16]. In the core influence graph, some influence are neglected, as expected, however some
inhibitions, such the inhibitory effect of p53 on Mdm2 in the nucleus, are considered while they
do not appear in the inferred influence graph. The reason for these omissions is the way the
reaction model is written. Some inhibitory effects are indeed expressed in the kinetic expression
by subtraction of, or division by, the molecular concentration of some compounds that do not
appear in the rule itself. Those inhibitions are thus missed by the type inference algorithm. An
example of such a rule is the following one for the inhibition of Mdm2 by p53:

1http://www.graphviz.org/

8

macro(p53tot,[p53]+[p53~{u}]+[p53~{uu}]).
(kph*[Mdm2::c]/(Jph+p53tot),MA(kdeph)) for Mdm2::c <=> Mdm2~{p}::c.

Obviously, we cannot expect to infer such inhibitory effects from the kinetic expressions
with all generality, however the model being written that way without fully decomposing all
influences by reaction rules, a refinement of the abstraction function taking into account the
kinetic expression is worth investigating. As an alternative, one could extend the syntax of
reaction rules in order to indicate the inhibitors of the reaction, in a somewhat symmetric
fashion to catalysts.

1.6.3 Kohn’s Map.

On Kohn’s map, the type inference of activation and inhibition influences takes less than one
second CPU time (on a PC 1,7GHz) for the complete model, showing again the efficiency of
the type inference algorithm.

1.7 A Type System for Location Topologies

To date, models of biochemical systems generally abstract from space considerations. Models
taking into account cell compartments and transport phenomena are thus much less common.
Nevertheless, with the advent of systems biology computational tools, more and more models
are refined with space considerations and transport delays, e.g. [15]. In SBML [2] level 1 version
1, locations have been introduced as purely symbolic compartments without topology. We show
in this section how the topology can be inferred from the reaction rules, and checked in different
models.

1.7.1 Abstract Domain of Location Topologies

Definition Abstract domain of neighborhood relation DN is a relation on pairs of molecules
M×M.

Definition α : DR → DN is defined by the union of its definition on single rules:
α(E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai and all Bj are pairwise neighbors, and for

all Ck such that [Ck] appears in E, Ck is a neighbor of all Ai and all Bj .

1.8 Evaluation Results

1.8.1 Models from biomodels.net

We have taken models from the literature through the biomodels.net database. Of the 50
models in the current version (dated January 2006) only 13 have more than one compartment,
and only 7 of those use the outside attribute of SBML to provide more topological insight.

The neighboring relation is inferred in these models imported in BIOCHAM, and then
checked consistent with the provided outside relation.

For instance for calcium oscillations, we tried both the Marhl et al. model of [17] and the
Borghans et al. model of [18].

In the first case (model BIOMD0000000039.xml), three locations are defined: the cytosol,
the endoplasmic reticulum and a mitochondria, from the reactions the inferred topology is that
the cytosol is neighbor of the two other locations. This correspond exactly to the information

9

obtained from the outside annotations (the cytosol being marked as the outside of the two other
locations).

In the second case (models BIOMD0000000043.xml to BIOMD0000000045.xml) we focused
on the last model (two-pool) since it is the only one with 4 different locations: the extracellular
space, the cytosol and two internal vesiculae. The location inference produces a topology where
the cytosol is neighbor of all other locations. Once again this is correct w.r.t. the outside
information provided in the SBML file: both vesiculae have the cytosol as outside location and
the cytosol itself has the extracellular space as outside location.

These considerations show that there is some mismatch between the SBML reaction models
and the choice of expressing outside vs neighborhood properties of locations. In the perspective
of type checking and type inference, neighborhood relations should be preferred as they can
be checked, or inferred from the reaction model, whereas the outside relation contain more
information that, while helpful for the modeler as meta-data, cannot be handled automatically
without abstracting it first in neighbors properties.

1.8.2 P53/Mdm2.

The first example comes from [15]: a model of the p53/Mdm2 interaction with two locations
where the transport between cytoplasm and nucleus is necessary to explain some time delays
observed in the mutual repression of these proteins.

biocham: load_biocham(’EXAMPLES/locations/p53Mdm2.bc’).

...

biocham: show_neighborhood.

c and n are neighbors

In this precise case, the model as published does not systematically use the volume ratio
in the kinetics. The transcription and type-checking of the model showed that if one wanted
to keep the background degradation rate of Mdm2 (without DNA damage) independent of the
location, one obtains different kinetics than those of the published model. In this case a formal
transcription in BIOCHAM (or SBML) provided a supplementary model-validation step.

1.8.3 Delta and Notch Model.

The next example is adapted from [19]. The Delta and Notch proteins are crucial to the cell
fate in several different organisms. A population of neighboring cells (here we chose a square
grid) is represented through locations and the model allows to observe the salt-and-pepper
coloring (corresponding to high Delta-low Notch/low Delta-high Notch) typical of the Delta-
Notch lateral inhibition based differentiation. The signaling pathways are simplified to the
extreme to take into account only the direct effect of Delta and Notch expression on the local
and neighboring cells. This example would thus not provide a good basis for the abstraction of
section 1.5.

Depending on the abstraction chosen we obtain figure 6 and 7. In the first case the abstrac-
tion used is not the one given in section 1.7.1 but

Definition α : DR → DN is defined by the union of its definition on single rules:
α(E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai, all Bj , and all Ck such that [Ck] appears

in E, are pairwise neighbors.

10

This was indeed a reasonable candidate for an abstraction, but proved too coarse on some
examples since co-modifiers are often put in the kinetic expression of a single rule for simplifi-
cation purposes.

1.9 Conclusion

We have shown that the framework of abstract interpretation applies to the formalization of
some abstractions commonly used in systems biology, and to the implementation of linear-time
type checking as well as type inference algorithms.

In the three type systems studied in this paper, for protein functions, activation and in-
hibitory influences, and location topologies respectively, the analyses are based on static in-
formation gained directly from the syntax of reaction rules, without considering their formal
semantics, nor their precise dynamics. It is worth noting that this situation also occurs in pro-
gram analysis where the syntax of programs may capture a sufficient part of the semantics for
many analyses. Here, it is remarkable that such simple analyses already provide useful infor-
mation on biological models, independently from their dynamics for which different definitions
are considered (discrete, continuous, stochastic, etc.) [7].

The formal definition of the influence graph as an abstraction of the reaction model elimi-
nates some confusion that exists in the use of Thomas’s conditions [12, 13] for the analysis of
reaction models [14]. Such a formalization shows also that the influence graphs usually consid-
ered in the literature are further abstractions obtained by forgetting some influences, based on
non-linearity considerations [20]. Some inhibitions may also be missing in the inferred influences
when they are hidden in the kinetic expressions of the reactions and do not appear explicitly in
the reactants. This suggests either to refine the abstraction function to take into account the
kinetic expression when possible, or to extend the syntax of reactions in order to make explicit
such inhibitory effects, in a symmetric fashion to catalysts for activations. In SBML there is
actually an unique symmetrical notion of Modifiers which is not sufficient to infer the influence
graph.

Similarly, the inference of protein functions and of location neighborhood have shown that
the static analysis of reaction models by type inference provides both accurate and useful
information. They also provide some guidelines for the extensions of biochemical reaction
languages, like for instance in SBML considering neighborhood rather than outside properties,
and introducing a syntax for the modification of compounds, and in BIOCHAM differentiating
phosphorylation from other forms of modifications like acetylation.

1.10 Acknowledgement.

This work benefited from partial support of the Network of Excellence REWERSE of the
European Union.

References

[1] Cardelli, L.: Typeful programming. In Neuhold, E.J., Paul, M., eds.: Formal Description
of Programming Concepts. Springer-Verlag, Berlin (1991) 431–507

[2] Hucka, M., et al.: The systems biology markup language (SBML): A medium for repre-
sentation and exchange of biochemical network models. Bioinformatics 19 (2003) 524–531

11

[3] Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in
the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry
4 (2004) 64–73

[4] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: POPL’77: Proceedings
of the 6th ACM Symposium on Principles of Programming Languages, New York, ACM
Press (1977) 238–252 Los Angeles.

[5] Cousot, P.: Types as abstract interpretation (invited paper). In: POPL’97: Proceedings
of the 24th ACM Symposium on Principles of Programming Languages, New York, ACM
Press (1997) 316–331 Paris.

[6] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry 81 (1977) 2340–2361

[7] Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical
networks from temporal logic properties. Transactions on Computational Systems Biology
(2006) CMSB’05 Special Issue (to appear).

[8] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.:
Gene ontology: tool for the unification of biology. Nature Genetics 25 (2000) 25–29

[9] Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins may biphasically affect the
levels of mitogen-activated protein kinase signaling and reduce its threshold properties.
PNAS 97 (2000) 5818–5823

[10] Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA
repair systems. Molecular Biology of the Cell 10 (1999) 2703–2734

[11] Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and
querying biochemical interaction networks. Theoretical Computer Science 325 (2004) 25–
44

[12] Thomas, R., Gathoye, A.M., Lambert, L.: A complex control circuit : regulation of
immunity in temperate bacteriophages. European Journal of Biochemistry 71 (1976) 211–
227

[13] Soulé, C.: Graphic requirements for multistationarity. ComplexUs 1 (2003) 123–133

[14] Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising
from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology 164
(2005) 353–359

[15] Ciliberto, A., Novák, B., Tyson, J.J.: Steady states and oscillations in the p53/mdm2
network. Cell Cycle 4 (2005) 488–493

[16] Kaufman, M.: Private communication. (2006)

12

[17] Marhl, M., Haberichter, T., Brumen, M., Heinrich, R.: Complex calcium oscillations and
the role of mitochondria and cytosolic proteins. BioSystems 57 (2000) 75–86

[18] Borghans, J., Dupont, G., Goldbeter, A.: Complex intracellular calcium oscillations: a
theoretical exploration of possible mechanisms. Biophysical Chemistry 66 (1997) 25–41

[19] Ghosh, R., Tomlin, C.: Lateral inhibition through delta-notch signaling: A piecewise affine
hybrid model. In Springer-Verlag, ed.: Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control, HSCC’01. Volume 2034 of Lecture Notes in
Computer Science., Rome, Italy (2001) 232–246

[20] Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory.
Chaos 11 (2001) 170–195

13

Figure 1: Reaction graph of the MAPK model

14

Figure 2: Inferred influence graph of the MAPK model

15

Figure 3: Inferred influence graph of the p53-Mdm2 model

Figure 4: Original reaction graph considered in [15] for the p53-Mdm2 model.

16

Figure 5: Core influence graph.

Figure 6: Delta-Notch square cell grid inferred in a 6x6 model, with modifiers, reactants and
products as pairwise neighbors

17

Figure 7: Delta-Notch square cell grid inferred in a 6x6 model, without modifier-modifier
neighborhood

18

2 Ontology Alignment - SAMBO and KitAMO
(Linköping)

Patrick Lambrix, He Tan, Vaida Jakonienė

In recent years many biomedical ontologies (e.g [3, 8]) have been developed. They are a key
technology for the Semantic Web [9, 4]. The benefits of using ontologies include reuse, sharing
and portability of knowledge across platforms, and improved documentation, maintenance, and
reliability. Ontologies lead to a better understanding of a field and to more effective and efficient
handling of information in that field. Many of the currently developed ontologies contain
overlapping information. For instance, OBO lists 18 different anatomy ontologies (February
2007), some of which are deprecated (e.g. Arabidopsis anatomy and Cereal anatomy) and have
been replaced by a larger ontology (e.g Plant anatomy) when the large amount of overlap was
realized.

Often we would want to be able to use multiple ontologies and this requires knowledge of
the relationships between the terms in the different ontologies.

In this section we briefly describe an ontology alignment system (SAMBO) and a system
for evaluating alignment strategies (KitAMO) developed at Linköpings universitet. For more
information we refer to [5, 6, 7].

2.1 Ontology alignment framework

Many of the current systems are based on the computation of similarity values between terms
in the source ontologies, and can be seen as instantiations of the framework defined in [5].
This framework is shown in figure 8. It consists of two parts. The first part (I in figure 8)
computes alignment suggestions. The second part (II) interacts with the user to decide on the
final alignments. Some systems may not have the second part. An alignment algorithm receives
as input two source ontologies. The algorithm can include several matchers. The matchers can
implement strategies based on linguistic matching, structure-based strategies, constraint-based
approaches, instance-based strategies, strategies that use auxiliary information or a combination
of these. Each matcher utilizes knowledge from one or multiple sources. The matchers calculate
similarities between the terms from the different source ontologies. Alignment suggestions are
then determined by combining and filtering the results generated by one or more matchers.
By using different matchers and combining and filtering the results in different ways we obtain
different alignment strategies. The suggestions are then presented to the user who accepts or
rejects them. The acceptance and rejection of a suggestion may influence further suggestions.
Further, a conflict checker is used to avoid conflicts introduced by the alignment relationships.
The output of the alignment algorithm is a set of alignment relationships between terms from
the source ontologies.

2.2 SAMBO - an ontology alignment tool

SAMBO2 [5, 7] is developed according to the framework described above. The current im-
plementation supports ontologies in OWL format and deals with alignment of relations and

2http://www.ida.liu.se/∼iislab/projects/SAMBO/

19

Figure 8: A general alignment strategy [5].

20

concepts. In the suggestion mode several kinds of matchers can be used and combined. The
implemented matchers are a terminological matcher (TermBasic), the terminological matcher
using WordNet (TermWN), a structure-based matcher (Hierarchy), a matcher (UMLSKSearch)
using domain knowledge in the form of the Unified Medical Language System and an instance-
based matcher (BayesLearning).

Figure 9 shows how different matchers can be chosen and weights can be assigned to these
matchers. Filtering is performed using a threshold value. The pairs of terms with a similar-
ity value equal to or above this value are shown to the user as alignment suggestions. An
example alignment suggestion is given in figure 10. The system displays information (defini-
tion/identifier, synonyms, relations) about the source ontology terms in the suggestion. For
each alignment suggestion the user can decide whether the terms are equivalent, whether there
is an is-a relation between the terms, or whether the suggestion should be rejected. If the user
decides that the terms are equivalent, a new name for the term can be given as well. Upon an
action of the user, the suggestion list is updated. If the user rejects a suggestion where two
different terms have the same name, she is required to rename at least one of the terms. At
each point in time during the alignment process the user can view the ontologies represented in
trees with the information on which actions have been performed, and she can check how many
suggestions still need to be processed. Figure 11 shows the remaining suggestions for a particu-
lar alignment process. A similar list can be obtained to view the previously accepted alignment
suggestions. In addition to the suggestion mode, the system also has a manual mode in which
the user can view the ontologies and manually align terms (figure 12). The source ontologies are
illustrated using is-a and part-of hierarchies (i and p icons, respectively). The user can choose
terms from the ontologies and then specify an alignment operation. Previously aligned terms
are identified by different icons. For instance, the M icons in front of ’nasal cavity’ in the two
ontologies in figure 12 show that these were aligned using an equivalence relationship. There is
also a search functionality to find specific terms more easily in the hierarchy. The suggestion
and manual modes can be interleaved. The suggestion mode can also be repeated several times,
and take into account the previously performed operations.

Figure 9: SAMBO - Combination and filtering [5].

After the user accomplishes the alignment process, the system receives the final alignment
list and can be asked to create a new ontology. The system merges the terms in the alignment
list, computes the consequences, makes the additional changes that follow from the operations,
and finally copies the other terms to the new ontology. Furthermore, SAMBO uses a DIG

21

Figure 10: SAMBO - Alignment suggestion [5].

Figure 11: SAMBO - Information about the remaining suggestions [5].

Figure 12: SAMBO - Manual mode [5].

22

description logic reasoner to provide a number of reasoning services. The user can ask the
system whether the new ontology is consistent and can ask for information about unsatisfiable
concepts and cycles in the ontology.

2.2.1 KitAMO - a tool for evaluating ontology alignment strategies

Currently, we do not have much knowledge about how well the different alignment strategies
perform for different kinds of ontologies. Comparative evaluations of ontology alignment sys-
tems and algorithms have been performed by only some groups. It is realized that the study
of the properties, and the evaluation and comparison of the alignment strategies and their
combinations, would give us valuable insight in how the strategies could be used in the best
way. We describe here a tool that allows us to do this. KitAMO3 [6, 7] is a tool that provides
an integrated system for comparative evaluation and analysis of alignment strategies and their
combinations.

The current implementation of KitAMO focuses on the evaluation of matchers and imple-
ments a weighted sum as combination strategy and filtering based on a threshold value. The
matchers are added to KitAMO as plug-ins.

Figure 13: KitAMO - The weights and thresholds assignment [6].

The user starts the evaluation process by choosing an evaluation case. Then the user decides
which matchers should be used in the evaluation from the list of matcher plug-ins configured
in KitAMO. The selected matchers calculate similarity values between the terms in the chosen
evaluation case, and the results are written to a database. For the combination each matcher can
be assigned a weight (weight in figure 13). The similarity values generated by the combination,
i.e. the weighted sum, can also be saved to the database by the user. For the filter the user can
assign threshold values for individual matchers and the combination (threshold in figure 13).

Assuming we have chosen the ear case (a predefined test case using MeSH and the Adult
Mouse Anatomical Dictionary) and the matchers TermWN and UMLSKSearch, we receive the
results as in figure 14. It shows the number of expected alignments (ES), the thresholds (Th),
the number of correct suggestions (C), the number of wrong suggestions (W) and the number
of redundant (or inferred) suggestions (I). We can save the analysis results and then experiment
with other combinations and thresholds. For instance, after experimenting with thresholds 0.4,
0.5, 0.6, 0.7 and 0.8 for the two individual matchers, and different weights for the combination
for the threshold 0.5, we get the results shown in figure 15. The results can be sorted according

3http://www.ida.liu.se/∼iislab/projects/KitAMO/

23

to the different colums. This allows us to analyze and compare the different matchers and their
combinations. To examine the matchers in more detail we can use the similarity table as in
figure 16. Also the performance can be compared (figure 17).

For a practical example of the use of KitAMO and the kinds of analysis that can be per-
formed, we refer to [6].

Figure 14: KitAMO - The analysis result [6].

2.3 Evaluating grouping algorithms - KitEGA

During the last decade an enormous amount of biological data has been generated and tech-
niques and tools to analyze this data have been developed. Many of these tools use some
form of grouping and are used in, for instance, data integration, data cleaning, prediction of
protein functionality, and correlation of genes based on microarray data. A number of aspects
influence the quality of the grouping results: the data sources, the grouping attributes and the
algorithms implementing the grouping procedure. Many methods exist, but it is often not clear
which methods perform best for which grouping tasks. The study of the properties, and the
evaluation and the comparison of the different aspects that influence the quality of the grouping
results, would give us valuable insight in how the grouping procedures could be used in the best
way. It would also lead to recommendations on how to improve the current procedures and
develop new procedures. To be able to perform such studies and evaluations we need environ-
ments that support us in comparing and evaluating different grouping strategies for different
grouping tasks on different data sets. In this section we present such an environment developed
at Linköpings universitet, KitEGA4. It is based on the method described in [2].

KitEGA receives as an input a set of components (plug-ins) that define the grouping proce-
dures that we want to evaluate. The user starts the evaluation process by choosing a number of
parameters specifying a test case (figure 18). In the current implementation she selects a data
source, a grouping rule (defining when two entities are similar), a grouping method (defining
how to group entities into groups), evaluation methods and a classification source (defining the
given classes of entities). The content of the user interface in figure 18 is generated dynamically
based on the configuration file specifying the plug-ins that were made available to the system.
Further, the user specifies attributes and the maximum size of the data values for the attributes
which should be presented in the results (figure 19).

KitEGA will then run the test case and present the results to the user. Figure 20 shows the
main form presenting grouping and evaluation results for a selected test case. The form shows
the data entries included in each group together with information about the class they belong to

4http://www.ida.liu.se/∼iislab/projects/KitEGA/

24

Figure 15: KitAMO - The analysis results for the ear case [6].

Figure 16: KitAMO - The similarity table [6].

25

Figure 17: KitAMO - The performance table [6].

Figure 18: KitEGA - Specification of a test case.

26

Figure 19: KitEGA - Customization of result representation for a test case.

according to the previously selected classification. Further, the form presents the values of the
computed evaluation measures together with some additional information about the test case,
e.g. the total number of data entries in the data source and the total number of classes in the
classification. The form provides support for starting new test cases, for saving test cases and
their results and for loading previously saved test cases. In addition to the basic grouping result,
the current KitEGA implementation supports several other forms giving different views on the
data. To give a deeper insight into the grouping results, for a selected test case, KitEGA shows
how the data entries in the generated groups are distributed among the classes in the selected
classification (figure 21). In the figure a row represents a group while a column represents a
class. The numbers in parentheses represent the total number of data entries in a group or
a class, respectively. A cell stores data on the number of data entries that are true positives
(they belong to the group and the class), false positives (they belong to the group, but not
to the class) and false negatives (they belong to the class, but not to the group), respectively.
Further, the system allows for a given group and class to view detailed information on the true
positives, false positives and false negatives (e.g. figure 22). True positives are color-coded. To
support comparative analysis of grouping procedures, the system also presents a form gathering
evaluation results from different saved test cases (figure 23).

As a feasibility study we have used the test cases proposed in [2] and re-evaluated these
using KitEGA [1]. We compared procedures for grouping different data sources by function
or isozymes and discussed how to find the best procedure. The grouping procedures were
also further analyzed to find the influence of different data sources, thresholds and grouping
approaches.

References

[1] Jakonienė V, Lambrix P, ‘A tool for similarity-based grouping of biological data’, forth-
coming.

[2] Jakonienė V, Rundqvist D, Lambrix P, ‘A method for similarity-based grouping of biolog-
ical data’, Proceedings of the 3rd International Workshop on Data Integration in the Life
Sciences - DILS06, LNBI 4075, pp 136-151, 2006.

27

Figure 20: KitEGA - Grouping and evaluation results of a test case.

28

Figure 21: KitEGA - Detailed comparision of groups and classes. (Rows represent groups.
Columns represent classes. Numbers in parentheses represent the total number of data entries
in a group or a class. A cell stores data on true positives/false positives/false negatives.)

Figure 22: KitEGA - Details on true positives/false positives/false negatives for a given group
and class.

29

Figure 23: KitEGA - Evaluation result for the saved test cases.

[3] Lambrix P, ‘Ontologies in Bioinformatics and Systems Biology’, chapter 8 in Dubitzky,
Azuaje, (eds), Artificial Intelligence Methods and Tools for Systems Biology, pp 129-146,
Springer, 2004.

[4] Lambrix P, ‘Towards a Semantic Web for Bioinformatics using Ontology-based Annota-
tion’, Proceedings of the 14th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, pp 3-7, 2005. Invited talk.

[5] Lambrix P, Tan H, ‘SAMBO - A System for Aligning and Merging Biomedical Ontologies’,
Journal of Web Semantics, Special issue on Semantic Web for the Life Sciences, 4(3):196-
206, 2006.

[6] Lambrix P, Tan H, ‘A Tool for Evaluating Ontology Alignment Strategies’, Journal on
Data Semantics, LNCS 4380, VIII:182-202, 2007.

[7] Lambrix P, Tan H, ‘Ontology alignment and merging’, chapter in Burger, Davidson, Bal-
dock, (eds), Anatomy Ontologies for Bioinformatics: Principles and Practice, Springer,
2007. To appear.

[8] Lambrix P, Tan H, Jakonienė V, Strömbäck L, ‘Biological Ontologies’, chapter 4 in Baker,
Cheung, (eds), Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences,
pp 85-99, Springer, 2007.

[9] REWERSE, EU Network of Excellence on Reasoning on the Web with Rules and Seman-
tics, Deliverables of the A2 Working Group. http://www.rewerse.net/

30

3 Using argumentation to tackle inconsistency and
incompleteness in online distributed life science

resources (Edinbrugh)

Kenneth McLeod, Albert Burger

3.1 introduction

The bioinformatics community has access to distributed resources, which are increasing rapidly,
both in terms of quantity and size. Regardless of this growth, the data sets in these resources are
often necessarily incomplete. There will always exist some time gap between the introduction
of new experimental techniques and their exhaustive application, e.g. few gene expression
databases cover entire genomes. Inconsistency between the resources is a further problem that
must be overcome in order to make effective use of the data available. With these issues in
mind, we suggest that bioinformatics provides a suitable domain for the application of non-
monotonic reasoning, focusing in particular on argumentation. We propose the use of schemes
to model the reasoning of an expert and use that reasoning to allow a system to evaluate the
data presented to users. This will allow non-expert users to critically assess the wide array of
data before further analysing it. Section 2 discusses the nature of distributed online resources
available to life science researchers. Section 3 describes argumentation. Section 4 talks about
the work we have done so far, before concluding in Section 5.

3.2 Bioinformatics

The 2006 annual review of databases in the sub domain of molecular biology [1] showed that 90
new databases were created, and 68 existing databases were significantly changed in 2005. This
growth in online distributed databases illustrates the importance of such resources to the life
science community. In addition to publishing data, the Internet provides access to tools that
analyse that data, thus providing the mechanism to create new information. For example, GoP-
ubMed [4] annotates literature made available through PubMed (www.pubmedcentral.nih.gov)
with terms from the Gene Ontology (www.geneontology.org), an ontology published to provide
a controlled vocabulary for describing genes and gene products in any organism. It is likely
that the development of the semantic web and grid technologies will further encourage the
use of services that use data published through the Internet. Increasing numbers of tools and
repositories will have web/grid services alongside the more traditional data sharing techniques
like FTP or Perl programmatic interfaces. The web services will be used as part of automated
workflows. Projects like myGrid [5] have increased the ease of designing and running workflows,
and consequently, the frequency with which this is done. Regardless of whether the online data
resources are accessed by an html interface, web service, Perl or FTP, the user must take into
account that these resources are not perfect. They feature inconsistent and incomplete informa-
tion. For example, in the field of gene expression, which discovers the genes active (expressed)
in the anatomical structures of organisms, few databases hold information on every gene in
every structure of an organism. In order to reduce the gaps in knowledge, scientists continually
research new methods and technologies to help them work faster and more accurately. If the
latest technology is more sensitive than the previous one, it may detect genes in structures

31

where they were not known to exist. At this point, there will be a need to repeat some of the
experiments conducted with the old technology, and the gap in knowledge will have temporarily
increased. In addition to incomplete information the researchers must also consider conflicting
information. Two research groups may conduct similar experiments, but obtain different re-
sults and conclusions. This may be due to experimental error or simply a slight variation in
experimental conditions. Despite the variations, both results will be published and entered into
(possibly the same) online databases. Therefore the distributed online databases contradict
each other, and themselves. For example, in the context of gene expression databases, such as
GXD (www.informatics.jax.org), data is collected from various sources. The contributing stud-
ies may be based on different experimental setups, for example the use of different probes for
the identification of genes. Such variation can lead to conflicting information; a recent version
of GXD contains some 1300 instances of particular genes being reported as expressed and not
expressed in the same mouse embryo tissue. For example, a GXD query on which genes are not
expressed in the mouse brain will report, amongst others, a gene called Tenascin C, since one
experiment reported this to be the case. Unless the user also executes a query that asks which
genes are expressed in the brain, (s)he will not pick up that there are 14 experiments stored in
GXD that report Tenascin C to be expressed in the brain. Clearly, any workflow that is solely
based on the first query would be very suspect in its results. This is not an issue unique to
GXD - we simply used it to illustrate the point - but one that needs to be considered when
using other resources as well, including the mouse gene expression database EMAGE at the
MRC (genex.hgu.mrc.ac.uk). In fact, resources such as GXD and EMAGE that cover the same
biological domain (mouse gene expression in this case) provide a good basis for distributed
argumentation systems in bioinformatics. In conclusion, there are a large and growing number
of distributed resources available to the life science community, but there is a requirement to
evaluate the output from a life science resource before using it, and a need for appropriate help
to be given to the user when doing this evaluation.

3.3 Argumentation

We believe that an argumentation-based approach [3] could provide a solution to the problems
described in Section 2. Before we describe our proposed solution, let us first briefly discuss
argumentation. An argument [9] is a reason to believe something is true, it is used in dialogue
to support or attack a conclusion. Arguments can also attack and defeat each other. Once
defeated an argument can be reinstated if the argument that defeats it, is in turn defeated
itself. When presented with the arguments for/against a conclusion, the user can evaluate the
evidence and make a decision as to whether or not to believe it. As time passes, new information
becomes available, and so new arguments can be created. These new arguments may defeat ex-
isting arguments, thus reinstating other arguments. When presented to the user, these changes
may alter their perspective, and so alter their opinion of the conclusion. The reinstatement of
arguments is the technique used to handle non-monotonicity, or defeasibility. This is the idea
of assuming a conclusion is true until new evidence shows it is not. In computing terms, argu-
mentation is often used to make computers argue, or to help them assist humans when arguing.
By argue, we do not mean an uncontrolled dispute, but instead we are referring to controlled
styles of dialogue similar to those used in legal debates. Argumentation has been successfully
used in medical informatics, where it was tried as a method of overcoming the weaknesses of
traditional mathematical and logical decision-making techniques [6]. Argumentation is used
to help a doctor make a decision by providing a list of options and the arguments for and

32

against each option (e.g. [7]. Often a recommendation is made, but the practitioner makes the
final decision. Because it presents results in a manner humans find natural, argumentation has
additionally been used to explain decisions to patients that were made by other means [11].
The attributes that make argumentation suitable for use in medical informatics also make it
applicable to bioinformatics, where it has been employed to help a user evaluate the output of
a single resource [8]. Considering the nature of bioinformatics resources, as discussed above,
there is a clear intuitive argument to apply this technology not just to a single tool, but also
to a range of distributed online tools and databases.

3.3.1 Argumentation: suggested idea and usage

Our proposal is to create a system that can analyse the output of any online resource that it
has arguments for. Such a system can work with calls to a single resource, or calls to several
resources featured in a workflow. For each query, the system will follow the same reasoning as
a human expert in evaluating the resource’s output, asking the same questions, and looking at
similar metrics. The system will also compare data from different but related resources in order
to provide arguments for/against each possible answer to the query. The process of creating
arguments against a particular result would identify the most controversial results, allowing
them to be brought to the user’s attention. This would be of great assistance when looking for
possible errors.

3.3.2 The creation of arguments

Our arguments capture the reasoning of human experts. The form of documentation we chose
was argument schemes. On the one hand arguments are presented to users, but few in the
life sciences have a background in formal logic or mathematics, so something more natural is
required. On the other hand, our arguments have to be used in a real argumentation system,
most of which have a logical basis. Thus pure natural language is inappropriate as is an overly
theoretic solution. Argument schemes present the obvious compromise. A scheme is a natural
language template for an argument that consists of two parts. The first is an inference rule
comprising of a group of premises and a conclusion. The second part is a group of critical
questions that allow an argument (i.e. instance of the scheme) to be challenged. Our schemes
are based on the Expert Scheme created by [10]. This scheme models the reasoning that
takes place when an expert witness is called in a legal case. The natural language inference
suggests that when an expert voices an opinion, we should trust it because they are experts.
The critical questions document the most common lines of attack that the opposition would
use, for example asking the expert to provide evidence to support their opinion. For us, the
notion of an expert is replaced by the notion of an online resource, such as GXD. We keep
the basic presumption that the data held in the resource is accurate, and so we should believe
it. Interviewing biologists, and asking them to explain their reasoning processes created our
critical questions. As we produce more schemes, we insert them into a hierarchy. The top of
our hierarchy is a scheme applicable to any resource with general questions like: are you using
the latest data set for the resource? Underneath that we have schemes for groups of resources
like gene expression databases. The critical questions are now less general, for example: Does
the gene expression result have an associated image of the result? Schemes from that level are
then specialised to make them appropriate for individual resources in that field, so the EMAGE
mouse gene expression database has a scheme featuring the question: Did the EMAGE editor
feel confident enough in the result to award it 3 stars? This makes reference to the scoring

33

system that EMAGE editors use to indicate how confident they are in the result. This star
system is not used throughout the domain, so an alternative resource like GXD would not
have this question in their scheme. Sometimes resources have more than one scheme associated
with them, e.g. the NCBI’s BLAST (http://130.14.29.110/BLAST/index.shtml). BLAST is an
algorithm, implemented in a number of tools, which allow researchers to compare gene/protein
sequences to try and find similar genes/proteins, often in different organisms. The results
from BLAST do not actually state whether or not BLAST believes proteins to be similar, but
instead provides the user with a number of metrics they can use to make the decision. Most
researchers will group the results into one of three categories: similar proteins, no similarity
between proteins, and proteins that might be similar. One scheme can determine which group
each result is entered into. However, some researchers will wish to examine the results in the
third group to determine if similarity does exist. A second scheme is required for this. In
addition to extra schemes for a resource, there are links between schemes of different resources.
For example, the second BLAST scheme has a question that asks what the output of Pfam
(www.sanger.ac.uk/Software/Pfam) shows. Pfam is a separate online biological resource and
so has its own scheme. It is possible to turn the schemes into inference rules and thus use them
in most logic-based argumentation systems.

3.3.3 Application of schemes

As mentioned above in Section 4.1, schemes can be turned into inference rules for use in most
argumentation systems. One argumentation engine that makes such a requirement is the en-
gine produced by the ASPIC project. The Argumentation Services Platform with Integrated
Components (ASPIC - www.argumentation.org) is an E.U. funded project that set out to de-
velop re-usable components for argument-based interactions such as agent negotiation. So far,
amongst other things, this project has produced a prototype argumentation engine in Java,
based on theory created for and published by the project members [2]. This argumentation
engine performs the tasks of: creating arguments; deciding which arguments attack and defeat
each other; and then calculates the set of justified (correct) arguments.

In order for the argumentation engine to function, the user needs to supply a knowledgebase
containing inference rules and facts, and with a query. The query asks the engine to check if
something is true. It will be true, if an argument for it is justified. This means that the engine
must create the arguments for and against the user’s query, before balancing them out and
deciding if the query is justified. The user can alter a number of parameters to change the
behaviour of the engine, including changing the engine from skeptical to credulous. We are
currently experimenting with this argumentation engine and our schemes. By adding real data
from online resources such as GXD or EMAGE we can build arguments for and against each
experimental result contained in the resource. For example, Figure24 shows the development
of an argument for the gene Hoxa1 being expressed in the Mouse tissue EMAP:3222 (Mouse
Embryo Stage 19). The system also balances the arguments to determine that the gene is not
expressed in that particular tissue. The argumentation engine and its user interface are still in
the prototype phase, so a full evaluation of this system is still to be completed.

3.4 Conclusion

The online resources available to the life science community contain incomplete, inconsistent
and incorrect information. Therefore the data provided by these resources cannot be taken at

34

Figure 24: Screen shot of ASPIC Argumentation Engine

35

face value. This is important not just when the results are used directly, but also when they are
combined into an automated workflow, where the incorrect data from one resource may mean
that all subsequent resource queries are misleading. We have suggested that one form of non-
monotonic reasoning may provide a suitable solution to this problem. For each resource query,
argumentation could create arguments for/against every possible result, thus enabling the user
to make an informed decision as to which result is correct. Our initial experiments in this area,
using the ASPIC argumentation engine, suggest that this is potentially a hugely beneficial area
of research in bioinformatics. It also suggests that the use of so-called argumentation schemes
will be the most acceptable form of argumentation to biologists, as it not only provides a
reasonable logic-based foundation, but also is easily understood by scientists without a detailed
knowledge of logic theory. However, many questions remain to be investigated, such as a more
formal assessment of usability and issues of scalability in the context of worldwide resources on
the Internet.

References

[1] Bateman et al.: Editorial Nucleic Acids Research 34

[2] Caminada M. W. A., Amgoud L.: An Axiomatic Account of Formal Argumentation
Proceedings of the 20th National Conference on Artificial Intelligence,Pittsburgh, USA,
pp. 608-613

[3] Carbogim D. V. et al: Argument-based application to knowledge engineering Knowledge
Engineering Review 15 2002 119–149

[4] Doms A., Schroeder M.: GoPubMed: Exploring PubMed with the GeneOntology Nucleic
Acids Research,33 783–786

[5] Goble C. et al: The myGrid project: services, architecture and demonstrator Proceeding
of UK e-Science All Hands Meeting, Nottingham, UK, 959–603

[6] Glasspool D. W., Fox J.: Knowledge, argument and meta-cognition in routine decision-
making The routines of decision making, Lawrence Erlbaum, New Jersey, USA, 343–358

[7] Hurt C. et al Computerised advice on drug dosage decisions in childhood leukemia: a
method and a safety strategy Artificial Intelligence in Medicine, Protaras, Cyprus, 158–
162

[8] Jefferys B. R. et al: Capturing expert knowledge with argumentation: a case study in
bioinformatic Bioinformatics, 22 8 923–933

[9] Pollock J.: Defeasible reasoning with variable degrees of justification Artificial Intelligence,
13 1-2 233–282

[10] Walton D.: Appeal to expert opinion : arguments from authority

[11] Williams M. and Williamson J.: Combining argumentation and bayesian nets for breast
cancer prognosis Journal of Logic, Language and Information, 15 1-2 155–178

36

4 Efficient Constraint-based Sequence Alignment by
Cluster Tree Elimination(Freiburg)

Sebastian Will, Anke Busch and Rolf Backofen

Aligning DNA and protein sequences has become a standard method in molecular biology.
Often, it is desirable to include partial prior knowledge and conditions in an alignment. The
most common and successful technique for efficient alignment algorithms is dynamic program-
ming (DP). However, a weakness of DP is that one cannot include additional constraints without
specifically tailoring a new DP algorithm. Here, we discuss a declarative approach that is based
on constraint techniques and show how it can be extended by formulating additional knowledge
as constraints. We take special care to obtain the efficiency of DP for sequence alignment. This
is achieved by careful modeling and applying proper solving strategies.

4.1 Introduction

Modern molecular biology is not possible without tools for the comparison of the macromolecules
DNA, RNA, and proteins.

It is most desirable to be able to specify additional restrictions for such similarity search
whenever prior knowledge on the analyzed molecules is available. For example, consider the
case of a biologist, who knows that certain regions in her sequences share a common local
motif. Based on this knowledge, the rest of the sequences should be compared. Then, we
need to optimize similarity under the additional constraint that parts of such regions should
be matched to each other. Another striking example is the enhancement of RNA or protein
comparison by employing knowledge on the structure of the macromolecules [10, 3, 1, 5].

However in general, similarity searching tools on the web do not allow to take such prior
knowledge into account automatically. The reason for this deficiency is of algorithmic nature.
Only for certain special constraints, alignment algorithms have been discussed. In particular,
there are approaches that incorporate anchor constraints [7] and precedence constraints [8]. We
will later discuss how such constraints fit into our newly introduced framework as simple cases.
Aligning sequences and (to some extent) sequences with additional structural information is
commonly and most successfully performed by dynamic programming (DP) [9, 11, 3]. There
is no straightforward and general way to extend a DP algorithm in order to take additional
knowledge into account.

To overcome this, declarative formulations of the alignment problem have been proposed.
Due to their use of constraints, such approaches can be extended to incorporate prior knowl-
edge. For this aim, such knowledge is formulated as constraints and added to the model for
unconstrained alignment. One such previous approach [6] is based on integer linear program-
ming (ILP). Since in ILP one can only use boolean variables, the ILP model of [6] for aligning
two sequences of length n and m introduces O(nm) variables for modeling the alignment edges.
Due to the resulting complexity, one needs to introduce artificial restrictions on the possible
alignment edges for solving the problem in practice. Furthermore, the solving strategy for ILP
does not achieve the efficiency of DP for the unconstrained case. Another declarative approach
[12] is based on constraint programming. The approach introduces quadratically many vari-
ables and constraints and remodels the given DP algorithm. As a consequence, only a rather

37

restricted class of side constraints can be handled efficiently.
Here, we introduce a new constraint-based approach. The main challenge that we face with

our approach is to compete with the very good efficiency of DP in the standard case and allow
extension by introducing new constraints.

We achieve the desired efficiency and adaption to additional constraints by modeling the
alignment problem as a constraint optimization problem in the sense of [2, 4] and then applying
a special solution strategy, which is known as cluster tree elimination (CTE) [4].

4.2 A Constraint Model for Sequence Alignment

We develop a constraint model for sequence alignment of two sequences a = a1 . . . an and b =
b1 . . . bm that are both words of the alphabet Σ. To be more precise, we define an alignment A of
a and b as an ordered matching of positions in a and b, i.e. as a subset of {1, . . . , n}×{1, . . . ,m}
such that for all (i, j), (i′, j′) ∈ A:

1. i = i′ if and only if j = j′ and

2. i < i′ implies j < j′.

We call i and j matched by A if and only if (i, j) ∈ A.
The score of an alignment A, which we want to maximize, depends on the similarity function

on positions σ : {1, . . . , n} × {1, . . . ,m} → R and gap cost γ ∈ R. It is defined as

score(A) = (n + m− 2|A|)γ +
∑

(i,j)∈A

σ(i, j). (1)

The classical DP algorithm for sequence alignment is specified via the recursion equation
Di j = max{Di−1 j−1 + σ(i, j), Di−1 j + γ, Di j−1 + γ} with initialization D0 0 = 0, Di 0 = iγ,
and D0 j = jγ for 1 ≤ i ≤ n and 1 ≤ j ≤ m and solves the problem in O(nm) time.

Here, we model alignment as a constraint optimization problem in the framework that is
described in a more general form in [4]. There, one defines variables with finite domains and
functions on these variables. In our special case, the solution of the problem is a valuation
of the variables that maximizes the sum of the function values. Note that hard constraints
c can be encoded in this framework by functions that yield −∞ if the constraint is violated
and 0 otherwise. Tacitly, our arithmetic is extended canonically in order to handle sums and
maximizations involving infinity.

In our model, we represent alignments of a and b by finite domain variables Xi for 1 ≤ i ≤ n
with domains dom(Xi) = {0, . . . ,m}. Furthermore for technical reasons, we introduce the
fixed variables X0 = 0 and Xn+1 = m + 1 and extend σ by defining σ(n + 1,m + 1) = 0.
A given alignment A is uniquely encoded by a valuation (X0 = x0, . . . , Xn+1 = xn+1) of
variables X0, . . . , Xn+1 where 1.) xi = j if (i, j) ∈ A and 2.) xi = xi−1, for every i that is
not matched in A. Note that i and j are matched if and only if xi = j and xi > xi−1. For
example, the valuation ~x = (0, 1, 2, 5, 6, 6, 6, 7, 8) of X0, . . . , X8 corresponds to the alignment
{(1,1),(2,2),(3,5),(4,6),(7,7)}, which can be represented alternatively by

a1 a2 − − a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 − − b7
.

38

Figure 25: CTD of pure sequence alignment.

The only hard constraints on the variables Xi are Xi−1 ≤ Xi for 1 ≤ i ≤ n + 1. They are
modeled by functions

leqi : dom(Xi−1)× dom(Xi) → {−∞, 0}.

The scoring scheme is encoded via functions fi(Xi−1, Xi) for 1 ≤ i ≤ n + 1 that are defined by

fi(j′, j) =

{
σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise.

Note that we correctly model alignments and their scores. Firstly, a valuation
(X0 = x0, . . . , Xn+1 = xn+1) represents an alignment A of a and b if and only if∑

1≤i≤n+1 fi(xi−1, xi) + leqi(xi−1, xi) is not −∞. Secondly in this case,
∑

1≤i≤n+1 fi(xi−1, xi)
equals the score of A (see Eq. 1).

4.3 Efficient Solving by Cluster Tree Elimination

Here, we sketch CTE and show its application to the our model. We demonstrate how direct
application of CTE yields an O(nm2) algorithm. Then, by introducing modifications to the
standard CTE approach, we improve the complexity to O(nm) time.

For applying CTE, we first need a cluster tree decomposition (CTD) [4]. In such a decom-
position, we distribute variables and functions to vertices (clusters) of a tree, such that 1.) each
function occurs in exactly one cluster, 2.) if a function occurs in a cluster, then all variables
of the function are assigned to the cluster as well, and 3.) for each variable the set of clusters
that contain this variable induces a connected subtree.

Due to the definition, clusters that share variables are connected by edges. The shared
variables are called separator variables. Figure 25 shows a cluster tree decomposition of our
alignment model where edges are labeled by separator variables. We call the cluster consisting

39

of Xi−1, Xi, fi, and leqi the cluster i. Note that in this figure (and the following ones) we omit
the functions leqi in our presentation.

CTE solves a constraint optimization problem by repeatedly exchanging messages between
the clusters. The messages are functions that combine the functions of the cluster and marginal-
ize them to the separator variables. Each message becomes a new function of the receiving
cluster. From cluster i to cluster i + 1, CTE sends a function gi of the separator variable Xi.
Beginning with cluster 1 it proceeds until cluster n+1 receives its message gn. When sending a
message from cluster i, this cluster is already augmented by a function gi−1. Finally, it can be
shown that max1≤j≤m (gn(j) + fn+1(j,m + 1)), which is the marginalization of the functions
in cluster n + 1 to the empty set of variables, is the maximal alignment score.

It remains to show how the messages gi are computed. Due to the CTE algorithm, the
message gi is defined for 0 ≤ j ≤ m as

gi(j) = max
0≤j′≤m

(gi−1(j′) + fi(j′, j) + leqi(j′, j)) . (2)

Clearly, the standard approach takes O(m2) time for computing the function gi. Since O(n)
messages are sent until the final alignment score can be computed, this results in an O(nm2)
algorithm. Thereby, we have shown that the direct application of CTE to our constraint model
yields a polynomial algorithm for sequence alignment.

Improving complexity. The complexity can be improved further if we employ the internal
structure of the functions gi−1, fi, and leqi. For this reason, we rewrite Equation 2 by the
semantics of leqi and expand the definition of fi.

gi(j) = max
0≤j′≤j

(
gi−1(j′) +

{
σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise

)
.

Now, we can resolve the case distinction of fi and move the constant σ(i, j) out of the maxi-
mization. Then,

gi(j) = max

{
σ(i, j) + max

0≤j′<j
(gi−1(j′) + (j − j′ − 1)γ)

gi−1(j) + γ.

A helper function gm(j) = max0≤j′<j (gi−1(j′) + (j − j′ − 1)γ) can be defined recursively and
then computed in O(m) time by DP as

gm(0)=−∞, gm(1)=gi−1(0), and for j > 1 gm(j)=max

{
gm(j − 1) + γ

gi−1(j − 1).

In consequence, the total computation of gi is done in O(m). This results in an O(nm) time
algorithm for the computation of the alignment score.5

4.4 Extension of the Sequence Alignment Model

Recently discussed constrained alignment approaches handled constraints like anchor con-
straints and precedence constraints. Such constraints can be encoded in our model straight-
forwardly and are handled by restricting the domains of variables, which even increases the

5O(m) space can be achieved by further modifications to CTE.

40

Figure 26: CTD of an alignment with segment constraints.

efficiency of our algorithm. An anchor constraints, as discussed in [7], tells that position i in
the first sequence can only be aligned to position j in the second sequence and furthermore,
positions strictly left (resp. right) of i are aligned to positions strictly left (resp. right) of j.
These conditions are expressed in our model by the constraints

Xi−1 < j, Xi+1 > j, and Xi = j ∨Xi = Xi−1;

the latter implies Xi ≤ j. The constraints are directly propagated to the domains of Xi and
Xi−1 and do not increase the complexity of our constraint problem. Via the less than constraints
the new domain information is further propagated to the domains of all variables.

A precedence constraint, handled in [8], tells that in the alignment position i of the first
sequence is left (resp. right) of position j of the second sequence. In our model, corresponding
conditions are encoded as Xi ≥ j (resp. Xi ≤ j). A further example for a trivial extension
of the model is a condition like ”position k is aligned to l or l′” (constraints: Xk ∈ {l, l′} and
Xk−1 < Xk).

In this section, we discuss two more challenging extensions by example. Namely, the in-
corporation of prior knowledge on aligned segments and the extension to sequence structure
alignment.

Aligned Segments As example of constraining the alignment between segments in a and b,
we consider the constraint that at least x% of the positions {k, . . . , k′} in a have to be matched
with positions {l, . . . , l′} in b. For extending our model by this constraint, we add variables

41

Figure 27: Screen shot of the CTE Server

42

Ak−1, . . . , Ak′ and for each k ≤ i ≤ k′ the function ci(Ai−1, Ai, Xi−1, Xi) that encodes the hard
constraint

Ai = Ai−1 +

{
1 if Xi−1 < Xi and l ≤ Xi ≤ l′

0 otherwise.

We fix Ak−1 = 0. Since the variables Ai count the proper matches in the prefix seg-
ment {k,. . . ,i}, we can finally express the constraint by restricting the domains of Ai to
{max(0, d x

100 (k′ − k + 1)e − (k′ − i)), . . . , i− k + 1}.
Figure 26 shows the cut-out of the CTD that is affected by the extension of the model. CTE

works essentially as in the standard case. For k ≤ i ≤ k′, CTE sends messages gi depending
on the separator variables that each can be computed in O(mk̄) time where k̄ = k′ − k + 1.
Thus, the total complexity is O(m(n − k̄) + mk̄2). Note that, as assumed in this result, one
can transfer the complexity improvement of the previous section to this case of constrained
alignment. It suffices to look at the message gi from the cluster that contains a variable Ai

(and thus contains the variables Xi, Xi−1, and Ai−1 by construction). The message gi, which
depends on values for Xi and Ai, is given (already using the semantic of leqi and ci) as

gi(j, a) = max
0≤j≤j

{
gi−1(j′, a− 1) + fi(j′, j) if j′ < j and l ≤ j ≤ l′

gi−1(j′, a) + fi(j′, j) otherwise.

One transforms further to

gi(j, a) = max

{
σ(i, j) + gm(j, a)
γ + gi−1(j)

where we define
gm(j, a) = max

0≤j′<j
((j − j′ − 1)γ + gi−1(j′, a′))

where a′ = a if l ≤ j ≤ l′ and a′ = a− 1 otherwise. Finally, gm can be defined recursively as in
the previous section as

gm(0, a) = −∞, gm(1, a) = g(1, a′), and

for j > 1 gm(j, a) = max

{
gm(j − 1, a′′) + γ

gi−1(j − 1, a′′)

where a′ = a if l ≤ 1 ≤ l′ and a′ = a − 1 otherwise. Furthermore, a′′ = a if l ≤ j ≤ l′ and
a′′ = a− 1 otherwise.

We have demonstrated, that for this class of constraints the efficiency can be improved in
the same way as in the case of unconstrained alignment. Intuitively, the additional constraints
do not interfere with the nature of our score that enables the recursive decomposition.

Sequence Structure Alignment Here as additional input, we have two structures Pa ⊂
{1, . . . , n} × {1, . . . , n} and Pb ⊂ {1, . . . ,m} × {1, . . . ,m} and a function ω : {1, . . . , n} ×
{1, . . . , n} × {1, . . . ,m} × {1, . . . ,m} → R. A pair (il, ir) ∈ Pa (resp. (jl, jr) ∈ Pb) expresses a
dependency, e.g. base pairing in RNA, between the positions il and ir (resp. jl and jr). The
function ω yields a score for aligning pairs of dependent positions.

43

The score of an alignment A is now defined in extension of Eq. 1 as

score(A) +
∑

(il,ir)∈Pa,(jl,jr)∈Pb,
(il,jl)∈A,(ir,jr)∈A

w(il, ir; jl, jr).

Our alignment model can be extended by adding for each (il, ir) ∈ Pa functions
hilir (Xil−1, Xil

, Xir−1, Xir) that are defined as

hilir
(j′l , jl, j

′
r, jr) =

{
ω(il, ir; jl, jr) if j′l < jl, j′r < jr, and (jl, jr) ∈ Pb

0 otherwise.

Figure 28 provides an example for Pa = {(kl, kr), (ll, lr)} and arbitrary Pb, which demon-
strates the general construction principle of such a CTD. Due to the base pair (kl, kr) (and
analogously for (ll, lr)), the decomposition contains a node consisting of the variables Xkl

, Xkr

and their predecessors Xkl−1, Xkr−1, since these variables depend on each other via the function
hklkr . This node is parent of two sub-trees. In its left sub-tree, we handle the alignment for
positions between kl and kr and in the right sub-tree the alignment for the positions less than
kl. Due to the conditions for a CTD, the variable Xkl

has to be shared with nodes of the left
sub-tree, since it is constrained to variables in the leftmost leave.

In this tree structure, CTE begins with the leave vertices and proceeds to the root. From
each cluster, it sends a message to its parent cluster. The final alignment score is obtained from
the root node.

4.5 Conclusion

We present the first declarative approach to sequence alignment that is equally efficient as the
commonly used method of dynamic programming. However, due to the declarative nature of the
presented algorithm, it is extensible by additional constraints. This extensibility subsumes and
goes beyond earlier constrained alignment approaches. Especially, we have shown how certain
prior knowledge and structure information can be incorporated into the alignment model. By
applying cluster tree elimination to the resulting extended alignment problem, we solve it
efficiently. Finally, we have demonstrated for the alignment problem how CTE could profit
from intelligent reasoning on the constraint model. Thereby, we hint at possible improvements
of a current constraint solving strategy. A screen shot of the server is shown in 27.

References

[1] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA. Journal of
Bioinformatics and Computational Biology (JBCB), 2(4):681–698, 2004.

[2] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satis-
faction and optimization. Journal of the ACM, 44(2):201–236, 1997.

[3] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance between
RNA structures. Journal of Computational Biology, 9(2):371–88, 2002.

[4] Kalev Kask, Rina Dechter, Javier Larrosa, and Avi Dechter. Unifying cluster-tree decom-
positions for reasoning in graphical models. Artificial Intelligence, 2005. forthcoming.

44

Figure 28: Example sequence structure alignment CTD (see text for details).

[5] Giuseppe Lancia, Robert Carr, Brian Walenz, and Sorin Istrail. 101 optimal PDB structure
alignments: a branch-and-cut algorithm for the maximum contact map overlap problem. In
Proc. of the Fifth Annual International Conferences on Compututational Molecular Biology
(RECOMB01). ACM Press, 2001.

[6] Hans-Peter Lenhof, Knuth Reinert, and Martin Vingron. A polyhedral approach to rna
sequence structure alignment. In Proc. of the Second Annual International Conferences on
Compututational Molecular Biology (RECOMB98), volume 5, pages 517–30. ACM Press,
1998.

[7] Burkhard Morgenstern, Nadine Werner, Sonja J. Prohaska, Rasmus Steinkamp, Isabella
Schneider, Amarendran R. Subramanian, Peter F. Stadler, and Jan Weyer-Menkhoff.
Multiple sequence alignment with user-defined constraints at GOBICS. Bioinformatics,
21(7):1271–1273, 2005.

45

[8] Gene Myers, Sanford Selznick, Zheng Zhang, and Webb Miller. Progressive multiple align-
ment with constraints. In Proceedings of the first annual international conference on Com-
putational molecular biology (RECOMB 1997), pages 220–225, 1997.

[9] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–53,
1970.

[10] David Sankoff. Simultaneous solution of the RNA folding, alignment and protosequence
problems. SIAM J. Appl. Math., 45(5):810–825, 1985.

[11] T.F. Smith and M.S. Waterman. Comparison of biosequences. Adv. appl. Math., 2:482–489,
1981.

[12] Roland H. C. Yap. Parametric sequence alignment with constraints. Constraints,
6(2/3):157–172, 2001.

46

	Type Inference in Systems Biology (Paris)
	Introduction
	Preliminaries on Abstract Interpretation, Type Checking and Type Inference
	Concrete Domain of Reaction Models
	Abstract Domains, Abstractions and Galois Connections
	Type Checking and Type Inference by Abstract Interpretation

	A Type System for Protein Functions
	Abstract Domain of Protein Functions

	Evaluation Results
	MAPK model.
	Kohn's Map.

	A Type System for Activation and Inhibitory Influences
	Abstract Domain of Influences

	Evaluation Results
	MAPK model.
	p53-Mdm2 model.
	Kohn's Map.

	A Type System for Location Topologies
	Abstract Domain of Location Topologies

	Evaluation Results
	Models from biomodels.net
	P53/Mdm2.
	Delta and Notch Model.

	Conclusion
	Acknowledgement.

	Ontology Alignment - SAMBO and KitAMO (Linköping)
	Ontology alignment framework
	SAMBO - an ontology alignment tool
	KitAMO - a tool for evaluating ontology alignment strategies

	Evaluating grouping algorithms - KitEGA

	Using argumentation in online distributed life science resources (Edinbrugh)
	introduction
	Bioinformatics
	Argumentation
	Argumentation: suggested idea and usage
	The creation of arguments
	Application of schemes

	Conclusion

	Constraint-based Sequence Alignment by Cluster Tree Elimination (Freiburg)
	Introduction
	A Constraint Model for Sequence Alignment
	Efficient Solving by Cluster Tree Elimination
	Extension of the Sequence Alignment Model
	Conclusion

