
A3-D8

Testbeds: overview and state

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Turin/A3-D8/D/PU/a1
Responsible editors: Cristina Baroglio
Reviewers: Massimo Marchiori, Alberto Martelli
Contributing participants: Hannover, Malta, Turin
Contributing workpackages: A3
Contractual date of deliverable: 28 February 2007
Actual submission date: 27 February 2007

Abstract
This deliverable reports about the state of advancement of the testbeds, that have been devel-
oped within the working group A3. In particular, we will describe the most recent improvements
of the Personal Reader framework (joint effort of Hannover and Turin) and of the PreDiCtS
framework (Malta). A connection between the two frameworks is their relation to the emerging
technology of web services.

Keyword List
semantic web, reasoning, web services, automatic retrieval and composition, temporal logics,
recommendation, planning and verification

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2007.

ii

Testbeds: overview and state

Charlie Abela3 and Matteo Baldoni1 and Cristina Baroglio1 and Nicola Henze2

and Ingo Brunkhorst2 and Daniel Krause2 and Elisa Marengo1 and Viviana Patti1

1 Dipartimento di Informatica, Università degli Studi di Torino
Email: {baldoni,baroglio}@di.unito.it
2 L3S Research Lab, University of Hannover

Email: {brunkhorst,krause}@l3s.de
3 Department of Computer Science and Artificial Intelligence, University of Malta

Email: charlie.abela@um.edu.mt

27 February 2007

Abstract
This deliverable reports about the state of advancement of the testbeds, that have been devel-
oped within the working group A3. In particular, we will describe the most recent improvements
of the Personal Reader framework (joint effort of Hannover and Turin) and of the PreDiCtS
framework (Malta). A connection between the two frameworks is their relation to the emerging
technology of web services.

Keyword List
semantic web, reasoning, web services, automatic retrieval and composition, temporal logics,
recommendation, planning and verification

iv

Contents

1 Introduction 2

2 The Personal Reader 2
2.1 The curriculum planning service . 4
2.2 The validation service . 6

3 PreDiCtS 7
3.1 Integration of CCBROnto . 9
3.2 Case Creation and Retrieval . 10
3.3 PreDiCtS Planning and Execution . 11

4 Conclusion 12

v

vi

Executive summary

This deliverable reports about the most recent achievements on the issue of testbeds, carried
on within the working group A3, with a particular attention to application systems, which have
been or are being developed.

We will describe systems that are part of two frameworks:

1. Personal Reader: the Personal Reader framework itself is described in deliverable A3-
D9, so after a short introduction, here we will focus on two adaptive functionalities,
implemented as web services in the Personal Reader framework, namely a curriculum
planning service and a curriculum validation service;

2. PreDiCtS: PreDiCtS is a framework developed to allow for the the retrieval of services
based on composition patterns, which exploits past experience for better fitting the user’s
desires. After an introduction to the framework itself, we will focus on ontology-based
case definition, case creation and retrieval, and planning-based composition.

The integration of the two frameworks will be part of future work.

1

1 Introduction

This deliverable reports about the most recent achievements on the issue of testbeds, carried
on within the working group A3, with a particular attention to application systems, which have
been or are being developed.

The systems that we will describe are part of two frameworks which will also be introduced,
namely the Personal Reader and PreDiCtS. Both frameworks are related to web services, in
fact, the personal Reader has been recently redesigned as a web service-oriented system, while
PreDiCtsS is a framework for retrieving and composing web services in an automatic way. The
relevance of the use of web services and of the capability of dealing with web services were
identified as a strategic and promising direction to follow in deliverable A3-D6.

This deliverable witnesses the advancement of the works in the following way. The next
sections report brief descriptions of the objectives that have been pursued and how those ideas
have been or are being implemented in a collection of systems. For each system we report the
objective, the main characteristics, the design issues, and the state of development.

Detailed technical descriptions are, instead, contained in scientific articles, that were added
to this deliverable as an Appendix. Such articles either appeared in the proceedings of interna-
tional conferences/workshops or in international journals. For those parts of the works which
are under development, we will refer to technical reports, regularly registered at our institutes.

The deliverable is organized as follows. Section 2 reports the achievements concerning
the Personal Reader framework, while Section 3 concerns the achievements in the PreDiCtS
framework. Section 4 draws conclusions and future research lines. The deliverable is concluded
by two Appendixes, the first one reports the DOAP descriptions for the described application
systems, the second instead contains the collection of scientific papers, reporting the details of
the described systems.

2 The Personal Reader

The Personal Reader (PR) framework offers an environment for designing, implementing and
realizing Web content readers in a service-oriented approach (see [Henze and Krause,]). It is
characerized by a service oriented architecture to allow personalization in a plug-and-play way,
via the use of so called Personalization Services. Each personalization service offers a person-
alization functionality, for instance aimed at producing recommendations which are tailored
to the needs of specific users, pointers to information which is deemed as being related to the
interests of the user, more detailed or more general than the one being displayed, and so forth.
Personalization services are semantic in the sense that they communicate solely on the basis of
RDF documents. Besides personalization services, the PR framework also includes other kinds
of components, namely Syndication Services, User Interfaces and a Connector.

1. The Connector is a centralized and unique component, which offers mainly two function-
alities:

• Providing a repository of available Personalization and Syndication Services. This
respository is similar to an UDDI repository, but enables a better scalability as it
aids SynServices finding and selecting the appropriate PServices.

• Handling the communication between the Personalization and Syndication Services.
The user can define if some services should be excluded from each other. As the

2

Connector will not list the real URIs of the services stored in its respository it forced
the services to use the Connector to perform the communication.

2. User interfaces visualize RDF data which are delivered by the Syndication Services. These
RDF data are adopted according to a specific device. Hence, there are different user
interfaces available for one application.

3. Syndication services (SynServices for short) are used to deliver RDF data to user inter-
faces. Therefore, SynServices receive events from the user interfaces, which are generated
by the user interaction. In the SynService, these events are processed by a state machine.
According to the current state, this machine calls SynService-specific methods, which
implement the application logics. Normally, such a method behaves in the following way:

(a) Search for appropriate PServices by asking the Connector

(b) Create an RDF invoke request and invoke the received PServices

(c) Syndicate and postprocess the responses from the PServices

(d) Create the RDF response and send it to the user interface

The implementation of a SynService is very flexible in terms of reaction of the provided
PServices. If some required functionalities are not available (c.f. the corresponding PSer-
vice has been deleted) the SynService tries to invoke other PServices with a lower func-
tionality or skips this part of it’s result generation process. The user interfaces are also
keep flexible so that they can handle also subsets of RDF responses and visualize the
remaining data. The Syndication process itself will be described in more detail in the
deliverable A3-D9.

The personalization services that we describe in Sections 2.1 and 2.2 have been designed
for handling learning resources. By the term learning resource we mean a particular kind of
resource, used in educational frameworks.

While in early times learning resources were simply considered as “contents”, strictly tied
to the platform used for accessing them, recently, greater and greater attention has been posed
on the issue of re-use and, related to this, also on the problem to allow a cross-platform use
of educational contents, i.e. on the separation of the contents from the means that is neces-
sary for taking advantage of it. The proposed solution is to adopt a semantic annotation of
contents based on standard languages. Some proposal of languages to be used to this aim are
RDF [W3C,] and LOM [LOM, 2002].

Therefore, in this deliverable we consider a learning resource as formed by educational con-
tents plus semantic meta-data. By meta-data we supply information on the learning resources
at a knowledge level, i.e. on the basis of concepts taken from an ontology that describes the
educational domain. In the personalization services that are described hereafter, we rely on
the interpretation of learning resources as actions. for this reason, the meta-data captures the
learning objectives of the learning resource and its pre-requisites. Intuitively, pre-requisites cap-
ture the set of competences that the learner should have to profitably use a reasource; by using
it, the learner will acquire a new set of competences, which correspond to the learning objec-
tives. Following the action metaphor, we can interpret the pre-requisites as the preconditions
and the learning objectives as the effects of the learning resource.

Learning resources can either be web documents, book chapters, multi-media contents and
the like, or they can be lectures and courses. The personalization services described below can

3

be applied independently from the specific type of the contents but in the application scenarios
that we will consider we will refer to university courses.

As we have theoretically shown in previous work [Baldoni et al., 2004d, Baldoni et al., 2004a,
Baldoni et al., 2004b], given an annotation of resources with preconditions and effects one can
rely on a classical theory of actions and apply different reasoning techniques for building per-
sonalized curricula. By curriculum we hereby mean a sequence of learning resources, aimed at
acquiring some competency (also known as learning goal).

The modeling of learning resources as actions also allows the development of verification
services that can automatically detect if a user-given curriculum is compliant w.r.t a model
given as a set of constraints, as we will explain below.

2.1 The curriculum planning service

Motivation to building the service

Often a student knows what competency he/she would like to acquire but has no knowledge of
which courses will help him/her acquiring it. An automatic system for building a curriculum
is very helpful in this case, because it can suggest a pathway that is built taking into account
the specific interests of the student and his/her initial knowledge (which can either be deduced
from a set of previously used learning resources or can be directly declared by the user).

Description

A curriculum is here interpreted as a sequence of learning resources, that are homogeneous in
their representation. Given an action-based representation of the learning resources, a curricu-
lum can be interpreted as a sequence of actions, whose execution causes transitions from a state
to another, until some final state is reached. In general, curricula are supposed to allow the
achievement of a given learning goal. A learning goal is a set of knowledge elements of interest,
those that a student, following a curriculum, would like to acquire. We would like such ele-
ments to be contained in the final state reached by attending the curriculum. The initial state,
instead, represents the initial set of competencies that we suppose as being available before the
curriculum is taken. In other words, they capture the knowledge that the student already has.
This set can possibly be empty.

Given a semantic annotation with preconditions and effects of the courses, classical plan-
ning techniques are exploited for composing personalized curricula, in the spirit of the work
in [Baldoni et al., 2004b, Baldoni et al., 2004e]. Intuitively the idea is the following: given a
repository of learning resources, which have been semantically annotated as described, the user
expresses a learning goal as a set of knowledge elements he/she would like to acquire, and pos-
sibly also a set of already owned competencies. Then, the system applies planning to build a
sequence of learning resources that will allow him/her to achieve the goal.

State of development: The Curriculum Planning Service has been implemented and inte-
grated as a new plug-and-play personalization service in the Personal Reader framework.

Implementation and integration in the Personal Reader Framework

The curriculum planner is implemented in Prolog. The planning system is implemented as a
Personalization Service in the Personal Reader. Figure 1 reports the overall structure of such
Personalization Service, which is basically divided in two parts: a reasoner (Prolog planner)

4

and a wrapper (web service implementation). The web service implementation is the interface
of the Personalization Service. This interface, which has been defined according to the standard
for the Personal Reader framework (see [Henze and Krause,]), allows for the processing of RDF
documents and for inquiring (from outside) about the service capabilities. The service can, in
fact, be accessed by Syndication Services, used for discovery and invocation via the central
Connector component.

Figure 1: Curriculum Planning Web Service.

When invoked, the Java-to-Prolog Connector runs the SWI-Prolog executable in a sub-
process; essentially it passes the RDF document containing the request as-is to the Prolog
system, and collects the results, represented as RDF documents as well.

The curriculum planning task is accomplished by a reasoning engine, which has been im-
plemented in SWI Prolog1. The interesting thing of using SWI Prolog is that it contains a
semantic web library for dealing with RDF statements. Since all the inputs are sent to the
reasoner in a RDF request document, it actually simplifies the process of interfacing the planner
with the Personal Reader. In particular the request document contains:

1. links to the RDF document containing the meta-data of a repository of learning resources;

2. a reference to the user’s context;

3. the user’s learning goal, i.e. a set of knowledge concepts that the user would like to
acquire, and that are part of the domain ontology used for the semantic annotation of the
actual courses.

The reasoner can also deal with information about credits provided by the courses, when the
user sets a credit constraint together with the learning goal.

List of attached articles

Technical details about the curricula planning web service can be found in:
1http://www.swi-prolog.org/

5

http://www.swi-prolog.org/

M. Baldoni, C. Baroglio, I. Brunkhorst, N. Henze, E. Marengo, and V. Patti. A
Personalization Service for Curriculum Planning. In E. Herder and D. Heckmann,
editors, Proc. of the 14th Workshop on Adaptivity and User Modeling in Interactive
Systems, ABIS 2006, Hildesheim, Germany, October 2006.

2.2 The validation service

Motivation to building the service

The automatic checking of compliance combined with curriculum sequencing techniques could
be used for implementing processes like cooperation among institutes in curricula design and
integration, which are actually the focus of the so called Bologna Process, promoted by the EU
ministers responsible for higher education2 [European Commission and Training,],.

Description

The validation service is the most recent advancement of research work, concerning the appli-
cation of techniques for knowledge representation and for automatic reasoning to educational
domains. The early stages of this work have been published by the Artificial Intelligence Re-
view journal [Baldoni et al., 2004c]. The approach followed in that work consisted in adding a
further level of representation onto the level of the learning resources (also in that case learning
resources were university courses): the level of the curriculum schema. Curriculum schemas
were defined as abstract representations, capturing the structure of a curriculum in terms of
knowledge elements, and they were implemented by means of prolog-like logic clauses. Cur-
riculums schemas were used to perform a procedure-driven form of planning, which aimed at
identifying an execution of the clauses (a specific curriculum) that, on the one hand, allowed the
user to reach a learning goal of interest from an initial state, capturing his/her initial knowledge.
The advantage of adopting procedure-driven planning techniques is that the only curricula that
are tried are the possible executions of the procedure itself, and this restricts considerably the
search space.

In this context, it is also possible to apply forms of verification. In particular, to check
whether a curriculum given by a user is an instance of a given schema. This approach, however,
is limitating because procedure clauses, besides having a prescriptive nature, pose very strong
constraints on the sequencing of learning resources. In particular, clauses represent what is
“legal” and whatever sequence is not foreseen by the clauses is “illegal”. However, in an open
environment where resources are extremely various, they are added/removed dynamically, and
their number is huge, this approach becomes unfeasible: the clauses would be too complex, it
would be impossible to consider all the alternatives and the clauses should change along time.

For this reason it is appropriate to take another perspective and represent only those
constraints which are strictly necessary, as suggested by the so called social approach pro-
posed by Singh for describing communication protocols for multi-agent systems [Singh, 1998,
Singh, 2000]. In this approach only the obligations are represented. In our application context,
obligations capture relations among the times at which different pieces of knowledge are to be
acquired. The advantage of this representation is that we do not have to represent all that is
legal but only those necessary conditions that characterize a legal solution. To make example,

2“Curriculum design means drawing up of a common study path aimed at reaching the educational goals
that have been jointly defined. In these schemes the partners offer specific segments which complement the
overall curriculum designed” [European Commission and Training,].

6

by means of constraints we can request that a certain knowledge is acquired before some other
knowledge without expressing what else is to be done in between. If we used the clause-based
approach, instead, we should have described also what can legally be contained between the
two times at which the two pieces of knowledge are acquired. Generally, the constraints-based
approach is more flexible and more suitable to an open environment.

Summarizing, we have adopted a constraint-based representation of curricula models. Con-
straints are expressed as formulas in a temporal logic (LTL, linear-time logic [Emerson, 1990]).
This kind of logic allows the verification that a property of interest is true for all the possible
executions of a model, which in our case corresponds to the specific curriculum. This is often
done by means of model checking techniques [Clarke and Peled, 2001]. The curriculum that we
mean to check is, indeed, a Kripke structure; as thus, it is easy to verify properties expressed
as temporal logic formulas. Briefly, a Kripke structure identifies a set of states and transition
relation that allows passing from a state to another. In our case, the states correspond to the
competencies that are owned at a certain moment. Since we assume the domain is monotonic
in the sense pointed out in the previous subsection, states will contain all the competencies
acquired up to that moment. The transition relation is given by the actions that are contained
in the curriculum that is being checked. Since the sequence is linear and shows no branch, then,
it is possible to reason on the states and with LTL logic it is possible to verify that a given
formula holds starting from a state or that it holds for a set of states.

For example, the fact that a knowledge element β cannot be acquired before the knowledge
element α is acquired, can be written as the LTL temporal formula ¬β U α, where U is
the weak until operator. Given a set of knowledge elements to be acquired, such constraints
specify a partial ordering of the same elements. Other kinds of constraints might be taken
into account. For instance, that a knowledge element will be acquired sooner or later (3α,
eventually operator).

State of development: The Curriculum Validation Service has been designed and is cur-
rently being integrated as a new plug-and-play personalization service in the Personal Reader
framework.

Implementation and integration in the Personal Reader Framework

The service is being implemented. It will soon be integrated in the framework following a
schema that is analogous to the one descibed for the Curriculum Planning service.

List of attached articles

Technical details about curricula validation can be found in [Baldoni et al., 2006] and in:

Matteo Baldoni, Cristina Baroglio, Ingo Brunkhorst, Elisa Marengo, Viviana Patti,
A Personalization Web Service for Curricula Planning and Validation. Poster paper
at the European Semantic Web Conference (ESWC), 2007.

3 PreDiCtS

PreDiCtS (stands for Personalised Discovery and Composition of Services) is a framework, see
Figure 2 which provides for the retrieval of services based on service-composition templates.
The philosophy behind PreDiCtS is based on three fundamental assumptions:

7

1. the service-retrieval process is considered as the process that encapsulates both service
discovery and/or service composition.

2. it is important to make use of past experience to ease the service-retrieval process

3. it is important that the system identifies as clearly as possible the user’s service require-
ments.

4. having identified both the user-required functionality and a set of suitable templates the
system can start searching for services that fit into these templates.

The first assumption is motivated by the fact that composition of services comes into play
whenever the service discovery process is unable to find a service that fulfils the user’s require-
ments. At which point, the retrieval system has to identify which services, atomic or complex
(a service made up of other services), can be combined together to provide a complete solution.

The second assumption allows us to consider past experiences of service-retrieval and to
represent them through templates that capture generic aspects of specific service composition
instances. This approach is similar to that adopted in Rajasekaran [Rajasekaran et al., 2004],
Sirin [Sirin et al., 2005], Deelman [Deelman, 2003] and Weber [Weber et al., 2005], which use
pre-stored abstract workflow definitions (or templates) in their composition framework. This
presents the advantage that a new service-retrieval query aimed at discovering new function-
alities, does not necessarily lead to a service-composition process that is created from scratch.
Furthermore, the use of generalised templates provides flexibility whenever adaptations to these
templates are required, since composing Web services by means of concrete3 service interfaces
leads to tightly-coupled compositions in which each service involved in the chain is tied to a
Web service instance.

To equip PreDiCtS with the capability to identify more clearly which solution the user is
after, we considered an extension to Case-Based Reasoning (CBR), which is called Conver-
sational Case-Based Reasoning (CCBR), Aha [Aha et al., 2001]. The motivation being, that
CBR restricts the user to define a complete problem definition (service-retrieval query) at the
start of the case-retrieval process while CCBR uses a mixed-initiative approach that allows for
a partial definition of the problem by the user, and makes use of a refinning, dialogue process
to identify more clearly the user’ s problem state. This phase is referred to as the Similarity
Phase and is triggered when a new problem (i.e. a request for particular service functionality)
is presented to the system. The CCBR approach provides a set of questions (also referred to as
Question-Answer pairs) which the user can choose to answer. Depending on these answers, a
ranked list of past, similar cases are retrieved and recommended to the requester, together with
other unanswered questions. Through this dialogue process the requester can decide when to
stop this iterative-filtering phase, and when to reuse or adapt a chosen case.

The PreDiCtS service-retrieval process continues with a search for suitable services, in a
service-repository. We refer to this phase in PreDiCtS, as the Integration phase. During this
phase, a mapping is attempted, from the features in the solution of the chosen, and possibly,
adapted case (this we term as the Most-Similar Case or MSC), to actual services that are found
in a service registry. Whenever the Similarity phase does not return a suitable MSC the user
can create a new case from scratch. Building new cases is not a trivial task, since it requires
detailed knowledge about the domain. Therefore such task is best left for knowledge engineers.

3Concrete here is referring to service descriptions that are bound to specific, existing services

8

Figure 2: High-Level Architecture of PreDiCtS

We considered this situation and it is envisioned that in future versions of PreDiCtS users will
be allowed to add new cases by communicating with other peers across a network.

Queries are sent to a service registry and an AI planning component is used to combine re-
trieved services according to this information. The planning algorithm is based on the partial or-
der planning algorithm (POP) (defined in Weld [Weld, 1994]) and extended in Peer [Peer, 2005].

3.1 Integration of CCBROnto

Case-definition is based on an OWL-based ontology, which we call CCBROnto (no relation
to other similar ontology presented in Gómez-Gauch́ıa [Gómez-Gauch́ıa et al., 2006]) and de-
scribed in Abela [Abela and Montebello, 2006]. Each case is divided into three main compo-
nents, namely the CaseContext, Problem and Solution.

The CaseContext represents the knowledge which is related to the case creator, case history,
ranking value and case provenance. In this regard, we have considered context as defined by
Dey and also ideas presented in Bry [Bry et al., 2005] and Maamar [Maamar et al., 2005] which

9

discuss the importance of context in relation to Web services. In PreDiCtS, context knowledge
is used to identify why a case was created and by whom, certain aspects of case usage and the
case relevance to problem-solving.

The Problem description in a PreDiCtS case is a list of question-answer pairs (QAPs) rather
than a bag since these have to be ranked when they are presented to the user.

In CCBR a Solution represents an action that can be used to solve the requester’s problem.
Such actions in PreDiCtS encapsulates a process model description (or a service composition
template). Each template represents a workflow of generic, unbound service components. We
use the OWL-S [owls, 2004] process model as the basis for these templates in this work, though,
we envision that other workflow–model description languages could be utilised as well.

State of development: Version 1.0 of the CCBROnto ontology has been implemented and
used to create a number of test cases that were used in the initial evaluation of PreDiCtS.

List of attached articles

Technical details about the CCBR Ontology can be found in:

C. Abela and M. Montebello. CCBR Ontology for Reusable Service Templates. In
Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), Budva,
Montenegro (11th - 14th June 2006) 4011, 59-60, June 2006

3.2 Case Creation and Retrieval

The Case-creation process enables the case-designer to easily create a new case which in-
cludes the definitions of the Context, Problem and Solution. These definitions are based on
the CCBROnto ontology mentioned earlier. By providing an easy-to-use interface and hiding
the complexity of these definitions, the designer can concentrate on what he wants to achieve
with the new case rather then how the various definitions will be combined together.

The context knowledge that the designer is required to add reflects his credibility and
expertise. This will become very useful whenever cases are shared between PreDiCtS users.
Such knowledge provides for an element of trust in the form of a foaf:RDF [Miller and Brickley,]
description about the designer. The system, though, is flexible enough to deal with other
trust definition languages. Apart from trust in the designer himself, this context knowledge is
important when building a history of case– usage. Together with user feedback, this will help
in the generation of a reputation value associated with each case. It is envisioned that future
case users will be provided with a means to measure the utility of a particular case to solve a
problem.

Problems are represented through a set of QAPs. PreDiCtS provides for the creation,
reuse and maintenance of these QAPs. Creating QAPs involves the use of a mapping tool
that associates the newly defined question and answer with concepts from a chosen problem
definition ontology. Answers are either assigned binary-values, that is Yes or No, or else are
associated with a concept from the ontology. Reuse of QAPs is provided to allow case designers
to minimise the time for the case creation process. During case-creation a set of QAPs from a
chosen problem-domain are displayed and the user can decide whether a QAP is suitable for a
particular case or not.

The solution in a case-description is represented through a template which includes de-
tails about a workflow of services. To generate the solution, PreDiCtS provides a work-
flow composer tool based on the approach adopted by Scicluna [James Scicluna, 2004] and

10

Buckle [Buckle et al., 2005]. This allows for a workflow to be represented through a UML Ac-
tivity Diagram and then transformed into an OWL-S process definition. The present prototype
handles only OWL-S-based templates, though through the use of an existing mapping tool such
as, BPEL4WS2OWLS [Aslam,], a WS-BPEL [committee, 2006] description can be successfully
transformed into an OWL-S definition and used by PreDiCtS.

Retrieval in PreDiCtS provides the user with the possibility to find cases that include com-
position templates that fit as much as possible to his needs. This functionality is provided
through a mixed-initiative process that incrementally refines the user’s query and provides
cases whose problem definition is similar to the query. The retrieval mechanism uses a set
of similarity metrics to find the most suitable cases and also a set of respective conversation
generation algorithm to present new questions for the user during each retrieval cycle.

The similarity metrics that are used are based on those described by Weber [Weber, 2003]
and Gupta [Gupta, 2001]. The former provides for a simple calculation based on the direct
similarities between the QAPs. On the other hand the latter is based on a more complex
calculation that considers the taxonomic relations between the QAPs. We have adapted this
taxonomic similarity measure so that we are now able to use the concepts and relations defined
through ontologies.Nevertheless it is envisioned that other metrics such as those presented by
Hefke [Hefke et al., 2006] will be used in the future. These similarity measures are ideal when
comparing ontologies or parts of ontologies and are not based solely on the subsumption relation
but also on other relations that consider distance and other semantical aspects.

State of development: Case creation and retrieval have been implemented in a prototype
and initial evaluations have been carried out. However the work is still progressing and is now
focused on the adaptation component and feedback mechanism. These will soon be integrated
into PreDiCtS.

List of attached articles

Technical details about the PreDiCtS can be found in:

C. Abela and M. Montebello. PreDiCtS: A Personalised Service Discovery and
Composition Framework. In Proceedings of Semantic Web Personalization Work-
shop (SWP06), Budva, Montenegro (12th June 2006), 1-10, June 2006

C. Abela and M. Montebello. Conversational Case-Based Reasoning Approach to
Service Discovery and Composition. Technical Report, Computer Science Annual
Research Workshop (CSAW), University of Malta, November 2006.

3.3 PreDiCtS Planning and Execution

In the Similarity phase we refer to planning as being the next logical step towards the actual
discovery and composition of services. The idea is to take the MSC or its adapted copy and
present it to an AI planner that will use the relevant knowledge to query a matchmaker.

The PreDiCtS’ process has some advantages over other composition techniques such as those
defined in Peer [Peer, 2005], Sirin [Sirin et al., 2004], Mithun [Sheshagiri, 2004], since the user’
s involvement, through the CCBR process, identifies more clearly what the user is requesting.
The majority of the research initiatives adopting the use of AI planning describe a process which
leaves the requester out of the loop during the service-retrieval process, since it is assumed that
complete information is available to the planner. On the other hand we want the requester

11

to be in control and to specify as clearly as possible what his needs are. Thus while certain
initiatives, that are based on OWL-S, present a query to the matchmaker, which is based solely
on the profile, we allow the query to be based over a generalised definition by providing a
template which can be used by the planner to effectively create a successful stream of services
that satisfy the requester’s needs.

The implementation of this functionality requires the use of a suitable AI planning algorithm.
Both the HTN (Hierarchical Task Network) and POP (Partial Order Planning) algorithms could
be used in this situation as described by Sirin [Sirin et al., 2004] and Peer [Peer, 2005] respec-
tively. We envision that a mapping component that takes as input an OWL-S description and
transforms this into the planner’s plan definition language is required. For this purpose we will
make use of a third-party component, called OWLS2PDDL [16], that takes as input an OWL-S
description and transforms this into an XML-like representation of PDDL 2.1 [McDermott,]
called PDDXML, described in Klusch [Klusch and Gerber, 2006].

PDDL is a FOL language with lisp-like syntax, and PDDXML is a dialect that uses XML
syntax for PDDL expressions, which makes it easier to use. Essentially, the owls2pddl converter
creates the PDDL problem description (in PDDXML syntax) by using the following conversions:
(this is taken from the owls2pddl Readme file)

• OWL-S properties -> PDDL predicates;

• OWL-S types -> PDDL types;

• OWL-S objects -> PDDL objects;

• OWL-S resources and datatypes -> instantiated PDDL predicates for the initial and goal
state;

Given that services have been associated to the actions, in the planning domain, it is straight
forward to take the generated PDDXML file and the domain and problem definitions and present
these as input to an AI planner.

Since the initial OWL-S service definition is generic and therefore incomplete, the planner
has to be able to work with partial knowledge. Thus POP will be ideal for this situation and
can be used to find services that will bind with the chosen template to produce a concrete
OWL-S service that can eventually be executed.

State of development:This component is still in the design phase and development will start
in due time.

4 Conclusion

This deliverable reports about the most recent advancements of frameworks developed within
the working group A3 and, in particular, by th groups of Hannover, Malta and Turin. We
have presented an executive summary that describes at a high level the novelties and the
state of developments of such frameworks, and we attached in the Appendix articles that have
been accepted for presentation at international conferences or for publication in international
journals, in order to show the relevance of the proposals.

12

Acknowledgement

This research has been co-funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE num-
ber 506779 (cf. http://rewerse.net).

References

[Abela and Montebello, 2006] Abela, C. and Montebello, M. (2006). Ccbr ontology for reusable
service templates. In The Semantic Web: Research and Applications, ESWC06, Budva,
Montenegro.

[Aha et al., 2001] Aha, D. W., Breslow, L., and noz Avila, H. M. (2001). Conversational case-
based reasoning. Applied Intelligence, 14(1):9–32.

[Aslam,] Aslam, M. A. Bpel4ws2owls mapping tool. Available at
http://bpel4ws2owls.sourceforge.net/.

[Baldoni et al., 2006] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Torasso, L. (2006).
Verifying the compliance of personalized curricula to curricula models in the semantic web.
In Bouzid, M. and Henze, N., editors, Proc. of the Semantic Web Personalization Workshop,
held in conjuction with the 3rd European Semantic Web Conference, pages 53–62, Budva,
Montenegro.

[Baldoni et al., 2004a] Baldoni, M., Baroglio, C., and Patti, V. (2004a). Web-based adaptive
tutoring: an approach based on logic agents and reasoning about actions. Artificial Intelli-
gence Review.

[Baldoni et al., 2004b] Baldoni, M., Baroglio, C., and Patti, V. (2004b). Web-based adaptive
tutoring: An approach based on logic agents and reasoning about actions. Artificial Intelli-
gence Review, 1(22):3–39.

[Baldoni et al., 2004c] Baldoni, M., Baroglio, C., and Patti, V. (2004c). Web-based adaptive
tutoring: an approach based on logic agents and reasoning about actions. Artificial Intelli-
gence Review, 22(1):3–39.

[Baldoni et al., 2004d] Baldoni, M., Baroglio, C., Patti, V., and Torasso, L. (2004d). Reasoning
about learning object metadata for adapting scorm courseware. In Aroyo, I. L. and C. Tasso,
e., editors, Proc. of EAW’04: Methods and Technologies for personalization and Adaptation
in the Semantic Web, pages 4–13.

[Baldoni et al., 2004e] Baldoni, M., Baroglio, C., Patti, V., and Torasso, L. (2004e). Reason-
ing about learning object metadata for adapting SCORM courseware. In Aroyo, L. and
Tasso, C., editors, Int. Workshop on Engineering the Adaptive Web, EAW’04: Methods and
Technologies for Personalization and Adaptation in the Semantic Web, Part I, pages 4–13,
Eindhoven, The Netherlands.

[Bry et al., 2005] Bry, F., Hattori, T., Hiramatsu, K., Okadome, T., Wieser, C., and Yamada,
T. (2005). Context modeling in owl for smart building services. In Proceedings of 17. Work-
shop über Grundlagen von Datenbanken, Wörlitz, Germany (17th–20th May 2005). GI.

13

http://rewerse.net

[Buckle et al., 2005] Buckle, M., Abela, C., and Montebello, M. (2005). A bpel engine and
editor for the .net framework. In 3rd IEEE European Conference on Web Services (IEEE
ECOWS 2005), Vaxjo, Sweden.

[Clarke and Peled, 2001] Clarke, O. E. M. and Peled, D. (2001). Model checking. MIT Press,
Cambridge, MA, USA.

[committee, 2006] committee, W.-B. (2006). Ws-bpel specification. Available at
http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft,
May-17.htm.

[Deelman, 2003] Deelman, E. (2003). Mapping abstract complex workflows onto grid environ-
ments.

[Emerson, 1990] Emerson, E. A. (1990). Temporal and model logic. In Handbook of Theoretical
Computer Science, volume B, pages 997–1072. Elsevier.

[European Commission and Training,] European Commission, E. and Training. The bologna
process. http://europa.eu.int/comm/education/policies/educ/bologna/bologna en.
html.

[Gómez-Gauch́ıa et al., 2006] Gómez-Gauch́ıa, H., Dı́az-Agudo, B., and González-Calero, P. A.
(2006). Ontology-driven development of conversational cbr systems. In ECCBR, pages 309–
324.

[Gupta, 2001] Gupta, K. M. (2001). Taxonomic conversational case-based reasoning. In IC-
CBR, pages 219–233.

[Hefke et al., 2006] Hefke, M., Zacharias, V., Abecker, A., Wang, Q., Biesalski, E., and Breiter,
M. (2006). An extendable java framework for instance similarities in ontologies. In ICEIS
(2), pages 263–269.

[Henze and Krause,] Henze, N. and Krause, D. Personalized access to web services in the
semantic web. In The 3rd International Semantic Web User Interaction Workshop (SWUI,
collocated with ISWC 2006.

[James Scicluna, 2004] James Scicluna, Charlie Abela, M. M. (2004). Visual modelling of owl-s
services. In IADIS International Conference WWW/Internet, Madrid, Spain. IADIS.

[Klusch and Gerber, 2006] Klusch, M. and Gerber, A. (2006). Evaluation of service composition
planning with owls-xplan. In WI-IATW ’06: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT
2006 Workshops)(WI-IATW’06), pages 117–120, Washington, DC, USA. IEEE Computer
Society.

[LOM, 2002] LOM (2002). LOM: Draft Standard for Learning Object Metadata.
http://ltsc.ieee.org/wg12/index.html.

[Maamar et al., 2005] Maamar, Z., Mostéfaoui, S. K., and Mahmoud, Q. H. (2005). Context
for personalized web services. In HICSS.

14

http://europa.eu.int/comm/education/policies/educ/bologna/bologna_en.html
http://europa.eu.int/comm/education/policies/educ/bologna/bologna_en.html

[McDermott,] McDermott, D. Pddl, planning domain definition language. Available at
http://cs-www.cs.yale.edu/homes/dvm/.

[Miller and Brickley,] Miller, L. and Brickley, D. Foaf specification. Available at
http://www.foaf-project.org/.

[owls, 2004] owls (2004). OWL-S: Web Ontology Language for Services, W3C Submission.
http://www.org/Submission/2004/07/.

[Peer, 2005] Peer, J. (2005). A pop-based replanning agent for automatic web service compo-
sition. In ESWC, pages 47–61.

[Rajasekaran et al., 2004] Rajasekaran, P., Miller, J. A., Verma, K., and Sheth, A. P. (2004).
Enhancing web services description and discovery to facilitate composition. In SWSWPC,
pages 55–68.

[Sheshagiri, 2004] Sheshagiri, M. (2004). Automatic composition and invocation of semantic
web services. Master’s thesis.

[Singh, 1998] Singh, M. P. (1998). Agent communication languages: Rethinking the principles.
IEEE Computer, 31(12):40–47.

[Singh, 2000] Singh, M. P. (2000). A social semantics for agent communication languages. In
In Issues in Agent Communication, number 1916 in LNCS, pages 31–45. Springer.

[Sirin et al., 2005] Sirin, E., Parsia, B., and Hendler, J. (2005). Template-based composition of
semantic web services. In Agents and the Semantic Web, AAAI Fall Symposium.

[Sirin et al., 2004] Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D. (2004). Htn planning
for web service composition using shop2. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, 1(4):377–396.

[W3C,] W3C. RDF Primer. Available at http://www.w3.org/TR/rdf-primer/.

[Weber, 2003] Weber, B. (2003). Integration of Workflow Management and Case-Based Rea-
soning, Supporting Business Processes through an Adaptive Workflow Management System.
PhD thesis, University of Innsbruck.

[Weber et al., 2005] Weber, B., Rinderle, S., Wild, W., and Reichert, M. (2005). Ccbr-driven
business process evolution. In ICCBR, pages 610–624.

[Weld, 1994] Weld, D. (1994). An introduction to least commitment planning. AI Magazine,
15:27–61.

Appendix 1

We collect in Appendix 1 the DOAP descriptions of the described systems. DOAP is a short
notation standing for “Description Of A Project”4. It is an XML/RDF vocabulary developed
to describe open source projects. More specifically:

4http://usefulinc.com/doap/.

15

• Figure 3 reports the DOAP description for the curriculum planning service;

• Figure 4 reports the DOAP description for the validation service;

• Figure 5 reports the DOAP description for PreDiCtsS.

16

<Project xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://usefulinc.com/ns/doap#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:admin="http://webns.net/mvcb/">

<name>Personal Reader: Curriculum Planner Service</name>

<shortname>Curriculum Planner</shortname>

<shortdesc>A PService for creating personalized Curriculum Plans</shortdesc>

<description>The Curriculum Planner is a Personalized Semantic Web

Service for creating a personalized study plan based on the users

preferences and given learning goals. It uses a simple prolog

reasoner to create a plan from a university course database

</description>

<homepage rdf:resource="http://www.personal-reader.de/" />

<wiki rdf:resource="http://wiki.kbs.uni-hannover.de/" />

<download-page rdf:resource="http://www.personal-reader.de/download" />

<os>Linux</os>

<os>Unix</os>

<programming-language>Java</programming-language>

<programming-language>Prolog</programming-language>

<license rdf:resource="http://usefulinc.com/doap/licenses/gpl" />

<license rdf:resource="http://usefulinc.com/doap/licenses/mit" />

<maintainer>

<foaf:Person>

<foaf:name>Ingo Brunkhorst</foaf:name>

<foaf:homepage rdf:resource="http://www.l3s.de/~brunkhor/"/>

<foaf:mbox_sha1sum>d99f3114b5202c4a2a8d3c24dd8d48b8f667e8c0</foaf:mbox_sha1sum>

</foaf:Person>

</maintainer>

<developer>

<foaf:Person>

<foaf:name>Elisa Marengo</foaf:name>

<foaf:homepage rdf:resource="http://www.di.unito.it/"/>

<foaf:mbox_sha1sum>93c5ab22037963f3c9734675af8ba157f4d0de5e</foaf:mbox_sha1sum>

</foaf:Person>

</developer>

<helper>

<foaf:Person>

<foaf:name>Matteo Baldoni</foaf:name>

<foaf:homepage rdf:resource="http://www.di.unito.it/~baldoni/"/>

</foaf:Person>

</helper>

<repository>

<CVSRepository>

<module>CurriculumPlannerService</module>

</CVSRepository>

</repository>

</Project>

Figure 3: DOAP description of the planning service.

17

<Project xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://usefulinc.com/ns/doap#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:admin="http://webns.net/mvcb/">

<name>Personal Reader: Curriculum Validation Service</name>

<shortname>Curriculum Validator</shortname>

<shortdesc>A PService for validation Curriculum Plans</shortdesc>

<description>The Curriculum Validator is a Personalized Semantic Web

Service for validation of a study plan against the formal model of a

curriculum. It uses SPIN model checking to validate a user given plan

against a specified formal curriculum model.

</description>

<homepage rdf:resource="http://www.personal-reader.de/" />

<wiki rdf:resource="http://wiki.kbs.uni-hannover.de/" />

<download-page rdf:resource="http://www.personal-reader.de/download" />

<os>Linux</os>

<os>Unix</os>

<programming-language>Java</programming-language>

<programming-language>Prolog</programming-language>

<programming-language>Promela</programming-language>

<license rdf:resource="http://usefulinc.com/doap/licenses/gpl" />

<license rdf:resource="http://usefulinc.com/doap/licenses/mit" />

<maintainer>

<foaf:Person>

<foaf:name>Ingo Brunkhorst</foaf:name>

<foaf:homepage rdf:resource="http://www.l3s.de/~brunkhor/"/>

<foaf:mbox_sha1sum>d99f3114b5202c4a2a8d3c24dd8d48b8f667e8c0

</foaf:mbox_sha1sum>

</foaf:Person>

</maintainer>

<developer>

<foaf:Person>

<foaf:name>Elisa Marengo</foaf:name>

<foaf:homepage rdf:resource="http://www.di.unito.it/"/>

<foaf:mbox_sha1sum>93c5ab22037963f3c9734675af8ba157f4d0de5e

</foaf:mbox_sha1sum>

</foaf:Person>

</developer>

<helper>

<foaf:Person>

<foaf:name>Matteo Baldoni</foaf:name>

<foaf:homepage rdf:resource="http://www.di.unito.it/~baldoni/"/>

</foaf:Person>

</helper>

<repository>

<CVSRepository>

<module>CurriculumValidatorService</module>

</CVSRepository>

</repository>

</Project>

Figure 4: DOAP description of the validation service.

18

<Project xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://usefulinc.com/ns/doap#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:admin="http://webns.net/mvcb/">

<name>Personalised Discovery and Composition of Services</name>

<shortname>PreDiCtS</shortname>

<description>PreDiCtS, is a framework for the personalised retrieval

of service templates. The retrieval process in PreDiCtS uses a

mixed- initiative technique based on Conversational Case-Based

Reasoning (CCBR), that provides i) for a clearer identification

of the user’s service requirements and ii) based on these

requirements, finds suitable service templates that satisfy the

user’s goal</description>

<homepage

rdf:resource="http://staff.um.edu.mt/cabe2/research/projects/

predicts/predicts.html" />

<download-page

rdf:resource="http://staff.um.edu.mt/cabe2/research/projects/

predicts/download.html" />

<os>Linux</os>

<os>Windows</os>

<programming-language>Java</programming-language>

<license rdf:resource="http://usefulinc.com/doap/licenses/gpl" />

<license rdf:resource="http://usefulinc.com/doap/licenses/mit" />

<developer>

<foaf:Person>

<foaf:name>Charlie Abela</foaf:name>

<foaf:mbox_sha1sum>6888726cc05d7e512a412b06052992ce85ed4788

</foaf:mbox_sha1sum>

<foaf:homepage rdf:resource="http://staff.um.edu.mt/cabe2"/>

</foaf:Person>

</developer>

<helper>

<foaf:Person>

<foaf:name>Matthew Montebello</foaf:name>

<foaf:mbox_sha1sum>7e1a50d3779f57b75b0049ab48275ed327de969d

</foaf:mbox_sha1sum>

<foaf:homepage

rdf:resource="http://www.cs.um.edu.mt/staff/mmont.html"/>

</foaf:Person>

</helper>

</Project>

Figure 5: DOAP description of PreDiCtS.

19

Appendix 2

This appendix contains the following articles:

• C. Abela and M. Montebello. PreDiCtS: A Personalised Service Discovery and Compo-
sition Framework. In Proceedings of Semantic Web Personalization Workshop (SWP06),
Budva, Montenegro (12th June 2006), 1-10, June 2006.

• C. Abela and M. Montebello. Conversational Case-Based Reasoning Approach to Ser-
vice Discovery and Composition. Technical Report, Computer Science Annual Research
Workshop (CSAW), University of Malta, November 2006.

• M. Baldoni, C. Baroglio, I. Brunkhorst, N. Henze, E. Marengo, and V. Patti. A Per-
sonalization Service for Curriculum Planning. In E. Herder and D. Heckmann, editors,
Proc. of the 14th Workshop on Adaptivity and User Modeling in Interactive Systems,
ABIS 2006, Hildesheim, Germany, October 2006.

• M. Baldoni, C. Baroglio, I. Brunkhorst, E. Marengo, V. Patti, A Personalization Web
Service for Curricula Planning and Validation. Poster at European Semantic Web Con-
ference, 2007.

20

PreDiCtS: A Personalised Service Discovery and
Composition Framework

Charlie Abela, Matthew Montebello

Department of Computer Science and AI
University of Malta

{charlie.abela, matthew.montebello}@um.edu.mt

Abstract. The proliferation of Web Services is fostering the need for
applications to provide more personalisation during the service discovery and
composition phases. An application has to cater for different types of users and
seamlessly provide suitably understandable and refined replies. In this paper,
we describe the motivating details behind PreDiCtS1, a framework for
personalised service discovery and composition. The underlying concept behind
PreDiCtS is that, similar service composition problems could be tackled in a
similar manner by reusing past composition best practices. These have to be
useful and at the same time flexible enough to allow for adaptations to new
problems. For this reason we are opting to use template-based composition
information. PreDiCtS’s retrieval and refinement technique is based on
conversational case-based reasoning (CCBR) and makes use of a core OWL
ontology called CCBROnto for case representations.

Keywords: CCBR, Ontologies, Semantic Web, Web services

1. Introduction

Reusability and interoperability are at the core of the Web Services paradigm. This
technology promises seamlessly interoperable and reusable Web components that
facilitate rapid application development and integration. When referring to
composition, this is usually interpreted as the integration of a number of services into
a new workflow or process. A number of compositional techniques have been
researched ranging from both, manual and semi-automatic solutions through the use
of graphical authoring tools [18], [19], to automated solutions based on techniques
such as AI planning [17] [20] and others.

The problem with most of the composition techniques mentioned above is three
fold (i) such approaches attempt to address service composition by composing web
services from scratch, ignoring reuse or adaptation of existing compositions or parts
of compositions, (ii) it is assumed that the requester knows exactly what he wants and

1 This research has partially been funded by the European Commission and by the Swiss Federal Office for
Education and Science within the 6th Framework Programme project REWERSE number 506779

how to obtain it and (iii) composing web services by means of concrete service
interfaces leads to tightly-coupled compositions in which each service involved in the
chain is tied to a web service instance. Using this approach for service reuse, may lead
to changes in the underlying workflow which range from slight modifications of the
bindings to whole re-designing of parts of the workflow description. Therefore in our
opinion, services should be interpreted at an abstract level to facilitate their
independent composition. [10] adds, “abstract workflows capture a layer of process
description that abstracts away from the task and behaviour of concrete workflows”,
and this allows for more generalisation and a higher level of reusability. A system can
start by considering such abstractly defined workflow knowledge and work towards a
concrete binding with actual services that satisfy the workflow.

To make effective reuse of such abstract workflow definitions one could consider
CBR, that is amenable for storing, reusing and adapting past experience for current
problems. Nevertheless CBR restricts the user to define a complete problem definition
at the start of the case-retrieval process. Therefore a mixed-initiative technique such
as CCBR [3] is more appropriate since it allows for a partial definition of the problem
by the user, and makes use of a refinement process to identify more clearly the user’s
problem state.

In summary we have identified the following motivating points:
1. Reusability of compositions has the advantage of not starting from scratch

whenever a new functionality is required.
2. For effective reusability a higher level of abstraction has to be considered,

which generalises service concepts and is not bound to specific service
instances.

3. Personalisation of compositions can be achieved by first identifying more
clearly the user’s needs and then allowing for reuse and adaptation of past
compositions based on these needs prior to binding with actual services.

The goal of this work is to present, the motivation behind, and prototype of
PreDiCtS, a framework which allows for personalisation of service discovery and
composition through the reuse of past composition knowledge. One could say that we
are trying to encode and store common practices of compositions which could then be
retrieved, reused and adapted through a personalisation technique. The solution we
propose in PreDiCtS has two phases.

For the first phase, which we call the Similarity Phase, we have adopted a mixed-
initiative technique based on CCBR. This provides for the personalisation process.
Given a new problem or service composition request, this approach allows first to
retrieve a ranked list of past, similar situations which are then ranked and suggested to
the requester. Through a dialogue process the requester can decide when to stop this
iterative-filtering phase, and whether to reuse or adapt a chosen case. Case definition
is through an OWL-based ontology which we call CCBROnto [2] and which provides
for the description of context, problem and solution knowledge At present PreDiCtS
allows for case creation and retrieval (adaptation is in the pipeline) and once a case
(or set of cases) is retrieved, it can be presented to the next phase, which we call the
Integration Phase where a mapping is attempted, from the features found in the
chosen solution, to actual services found in a service registry. Due to space
restrictions this is dealt with in a future paper.

The rest of this paper is organized as follows. In Section 2 we will give some brief
background information on CCBR. Then in Section 3 we will give an overview of the
OWL case ontology, CCBROnto. In Section 4 we will present the architecture of
PreDiCtS and some implementation details mainly focusing on the case-creator and
case-retriever components. After which we present the last section with future work
and concluding remarks.

2. Conversational Case-Based Reasoning

Case-Based Reasoning is an artificial intelligence technique that allows for the reuse
of past experience to solve new problems. The CBR process requires the user to
provide a well-defined problem description from the onset of the process. But users
usually cannot define their problem clearly and accurately at this stage. On the other
hand, CCBR allows for the problem state to be only partially defined at the start of the
retrieval process. Eventually the process allows more detail about the user’s needs to
be captured by presenting a set of discriminative and ranked questions automatically.
Depending on the user’s supplied answers, cases are filtered out and incrementally the
problem state is refined. With each stage of this problem refinement process, the
system presents the most relevant solutions associated to the problem. In this way the
user is kept in control of the direction that this problem analysis process is taking
while at the same time she is presented with solutions that could solve the initial
problem. If no exact solution exists, the most suitable one is presented and the user is
allowed to adapt this to fit her new requirements. Nevertheless, this adaptation
process necessitates considerable domain knowledge as explained in [4], and is best
left for experts.

One issue with CCBR is the number of questions that the system presents to the
user at every stage of the case retrieval process. This issue was tackled by [11] which
defined question-answer pairs in a taxonomy and by [1] through the use of
knowledge-intensive similarity metrics. In PreDiCtS we have adapted the former
method2 since a QA pairs taxonomy is defined to be an acyclic directed graph in
which nodes are related to other nodes through parent-child relations and it is
assumed that a node subsumes all its descendent nodes. This is very similar to how
classes in OWL are related via the subClassOf relation and this fits well with the
underlying case structure that we use in PreDiCtS.

3. CCBROnto

CCBROnto is an important component of PreDiCtS since it provides for (i) case and
question-answer pair definitions, and (ii) the association of domain and case-specific
knowledge. In CCBROnto the topmost concept is a Case. Its basic components are
defined by the CaseContext, Problem and Solution classes. In [8] context is defined as
“any information that can be used to characterize the situation of an entity. An entity

2 Whenever we refer to this taxonomic theory we will be referring the work done by Gupta

is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves”. We fully
agree with this definition and in the CaseContext, we have included knowledge
related to the case creator, case history, ranking and case provenance. We have
considered ideas presented in [6], [7] and [15] which discuss the importance of
context in relation to Web Services and stresses on the importance of the use of
context in CBR, especially when cases require adaptation. Such context knowledge
makes it possible to differentiate between users and thus the system could adapt cases
accordingly. For example in the travelling domain, both going to a conference and
going for a holiday may require similar services, such as hotel booking and flight
reservation, though the use of a conference booking service is only required in the
former. Thus, based on the contexts or roles of the users (a researcher the former and
a tourist the latter) the CBR system can adapt the case knowledge to present cases that
satisfy the requirements of both. A researcher can adapt the case for the tourist by
including a suitable conference booking service.

In PreDiCtS we consider highly important such context knowledge since it helps
to identify, why a case was created and by whom, together with certain aspects of
case usage and its relevance to solving a particular problem. The CaseCreator
provides a Role description that the creator associates himself with, together with a
foaf:Person instance definition that describes who this person is. The motivation
behind using foaf is to eventually be able to embed some level of reputation relevant
to the person who created the case. The importance of this feature will become more
visible and important when cases are shared.

The CaseContext also provides a place holder for CaseHistory. The knowledge
associated with this feature is important when it comes to case ranking and usage,
since it allows users to identify the relevance and usefulness of a case in solving a
particular problem. It is also important for the case administrator when case
maintenance is performed. Cases whose history indicates negative feedback may be
removed from the case base. Case Provenance is also used in conjunction with
reputation since it indicates a URL from where the case originated. Encapsulating
such information in each case will help in maintaining a reliable case base.

The Problem state description in a PreDiCtS case is based on the taxonomic
theory. Every problem is described by a list of QA pairs rather then a bag. This is
required since QA pairs have to be ranked when they are presented to the user. Each
QAPair is associated with a CategoryName, a Question and an Answer (see Fig.1).
Each question has a textual description and is associated with a concept from the
domain ontology through the isRelatedTo relation. We further assume that Answers
could be either binary or nominal-valued. For this reason we have created two types
of answer classes, YesNoAnswer and ConceptAnswer. The former is associated with a
literal represented by either a Yes or a No. While the latter, requires an association
with a concept in some domain ontology, through the previously mentioned
isRelatedTo property. The motivation behind the use of this property is related to the
taxonomic theory, which requires that QA pairs are defined in a taxonomy so that
during case retrieval, the number of redundant questions presented to the requester is
reduced. Thus during the case creation stage, each question and answer description is
associated with an ontological concept defined in the domain of discourse. This is
similar to how [1] associates ontology concepts with pre-defined questions. In

PreDiCtS we want to make use of such <concept-question> association so that
questions and answers are implicitly defined in a taxonomy. This association is also
important when similarities between QAPairs and between cases are calculated.

QAPair

Question Answer

hasQuestion hasAnswer

hasQuestio
nDescription

hasQuestionID

hasAnswerDescription
hasAnswerID

Thing isRelatedTo

Thing

hasQAPairCategory

YesNo
Answer

Concept
Answer

subClassOf subClassOf

xsd:integer

xsd:integerxsd:String

xsd:String

Thingxsd:String

hasYesNoValue isRelatedTo

Fig.1: CCBROnto Problem structure

The Solution in PreDiCtS provides a hook where composition templates can be
inserted. The main goal behind such a structure is to be able to present abstract
composition knowledge as solutions to the user’s request and at the same time allow
for more flexibility when searching for actual services. In fact each Solution is
defined to have an Action which has a description and isDefinedBy an
AbstractTemplate. A template can be sub-classed by any service composition
description, such as that defined by OWL-S. An OWL-S template in this case is an
intersection between a service, profile and process definitions.

4. PreDiCtS: implementation issues

As explained in other sections, the PreDiCtS framework allows for the creation and
retrieval of cases in its Similarity phase (see Fig. 2). The respective components that
perform these two tasks are the CaseCreator and the CaseRetrieval. PreDiCtS is
written in Java and is developed in Eclipse. It uses a MySQL database to store the
cases and makes use of both Jena and the OWL-S APIs.

The Similarity phase is triggered by the user whenever she requires knowledge
related to past compositions. In PreDiCtS the user is not expected to know exactly
which type of services or service composition are required but she is required to
answer a set of questions such that the system identifies more clearly what is required.
Given information related to the domain, the retrieval process is initiated whereby all
questions in a taxonomy relevant to that particular domain are presented to the user.
Given the set of questions to choose from, the user can then decide to answer some of
these questions. Depending on the answers provided, the system will try to find cases

Rank Questions

Problem Description

Create New Case Case Base

Retrieve
Case

User

Knowledge
Engineer

1. Initiate Dialog

2. Ranked Questions

3. Answer selected
Questions

4. Ranked Cases

New Case

QA Pairs
Base

Domain & Service
Ontologies

Fig.2: Taxonomic CCBR in PreDiCtS (adapted from Weber03)

in which questions where answered in a similar manner. A similarity measure is used
to rank cases. The questions which are present in the retrieved cases but which are
still unanswered, yet are related to the problem, are then presented in a ranked order
to the user. The process continues until the user either chooses a case which includes
a suitable solution or else, in absence of such a case, decides to adapt one of the most
similar cases, thus further personalising the solution to her needs. The user can also
opt to create a case from scratch to meet her requirements.

In the next sections we will describe the above mentioned PreDiCtS components
by referring to an example from the health domain which deals with the combination
of services that are used when a patient is admitted to hospital.

3.2 Case Creation

The CaseCreator component allows the expert user to add a new case to the case base.
A case c can be defined as c = (dsc, cxt, {q1a3….qiaj}, act, frq) where;
dsc is a textual description of the case.
cxt represents a set of context related features, such as Role and CaseCreator
information based on foaf.
{q1a3….qiaj} is a representation of the problem state by a set of question-answer pairs

act denotes the solution which is represented by service composition knowledge
stored in an abstract template.
frq, is the frequency with which a case is reused.

Title: New patient enters hospital with shortness of breath.

Context Knowledge of Creator:
 Role: Doctor
 Name: John Care

Specialistion: URTI and Cardiovascular Conditions
 Works with: Profs. Mary Nice

Question-Answer pairs:
 New Patient? Yes
 Patient's details taken? Yes
 Patient's age less than 16? No
 Patient has shortness of Breadth? Yes
 Admit to ward? Yes
 Preliminary assessment? Yes
 Doctor on call summoned? Yes
 Room allocation sought? Yes
 Patient's records updated? Yes
Solution:
 Sequence (details, assessment,SplitJoin(doctor, room), records)

<owl:Class rdf:ID="RoomAllocationService">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Condition"/>
<owl:Class rdf:ID="BreadthCondition">
 <rdfs:subClassOf rdf:resource="#Condition"/>
</owl:Class>
<owl:Class rdf:ID="PatientService">
 <rdfs:subClassOf rdf:resource="#Room"/>
</owl:Class>
<owl:Class rdf:ID="">
 <rdfs:subClassOf rdf:resource="#Room"/>
</owl:Class>
<owl:Class rdf:ID="PatientRecord">
 <rdfs:subClassOf rdf:resource="#Document"/>
</owl:Class>
<owl:Class rdf:ID="Doctor">
 <rdfs:subClassOf rdf:resource="#MedicPerson"/>
</owl:Class>
<owl:Class rdf:ID="Doctor_OnCall">
 <rdfs:subClassOf rdf:resource="#Doctor"/>
</owl:Class>

New Patient details Service

Assessment Service

Doctor On-Call
Service

Patient's Record
Service

<owl:Class rdf:ID="Patient">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Condition"/>
<owl:Class rdf:ID="BreadthCondition">
 <rdfs:subClassOf rdf:resource="#Condition"/>
</owl:Class>
<owl:Class rdf:ID="RoomAllocated">
 <rdfs:subClassOf rdf:resource="#Room"/>
</owl:Class>
<owl:Class rdf:ID="">
 <rdfs:subClassOf rdf:resource="#Room"/>
</owl:Class>
<owl:Class rdf:ID="PatientRecord">
 <rdfs:subClassOf rdf:resource="#Document"/>
</owl:Class>
<owl:Class rdf:ID="Doctor">
 <rdfs:subClassOf rdf:resource="#MedicPerson"/>
</owl:Class>
<owl:Class rdf:ID="Doctor_OnCall">
 <rdfs:subClassOf rdf:resource="#Doctor"/>
</owl:Class>

Room Allocation
Service

Fig. 3: Adding a new case

The example presented in Fig. 3 represents the combination of knowledge that is
required to build a new case. PreDiCtS takes into consideration both domain and
composition knowledge and combines them, based on the knowledge of the creator.
In the example, the case creator is a Doctor (John) who specialises in URTI (Upper
Respiratory Tract Infections) and cardiovascular conditions. The case in question
represents the situation where a new patient, who is more then 16 years old, has
entered hospital with shortness of breath. The creator enters context information about
himself and any relations that he has with other persons. In this scenario, John has
work relations with Professor Mary Nice. This information provides for a level of
reputation in the expertise of the creator. The composition knowledge in this case
represents a number of services that the hospital system wants to use to efficiently
cater for patients entering hospital. This particular functionality is required to monitor
the patient from the moment that he enters the hospital until he is comfortably
stationed in a room.

To add service information to a case, the creator can use a visual component which
is based on UML activity diagrams, though other representations, which are more
user-friendly, are being considered. Each visual representation is mapped into a

process model representation. In this work we use OWL-S as the underlying language
for this representation.

A service definition in OWL-S is just a place holder for information relating the
profile, process and grounding. We are not considering any grounding knowledge at
this stage, since this will be tackled later on in the Integration phase when actual
service bindings are sought. As regards the profile, we only consider that knowledge
which is relevant and which is not tide to specific providers. The profile part of the
template includes the definitions of inputs and outputs, profilehierarchy and
references to the process and service components. The profile hierarchy is considered
to be of particular importance since it represents a reference to the service domain
knowledge, that is, it identifies the taxonomic location of a particular set of service
profiles. We think that such ontologies will become increasingly more important in
relation to best practice knowledge. The template also provides information related to
how a number of service components are combined together. What is most important
here, are the control constructs such as Sequence, If-Then-Else, and Split that
determine the order of execution of the service components. These service
components are defined through the OWL-S Perform construct which associates a
particular service component with another by binding its outputs to another service
component’s inputs.

An important aspect of case-creation in CCBR is the addition of question-answer
pairs since they are fundamental for the case retrieval process. Through PreDiCtS we
allow the creator to either reuse existing QA pairs or create new ones. Textual
questions are associated with concepts defined in ontologies and this provides an
implicit taxonomic structure for QA pairs. Such association provides the possibility to
reason about these concepts, and also to limit the number of questions to present to
the user during the retrieval process. The taxonomic theory requires that each case
includes the most specific QA pair from a particular taxonomy. Given the open-world
assumed by ontologies on the Web, we assume that the knowledge (triples) associated
with a set of QA pairs is closed by adapting the idea of a local-closed world defined
by [12].

Adding a new case to the case base is mainly the job of the knowledge expert,
nevertheless we envision that even the not so expert user may be able to add cases
when required. For this reason we have used the same technique as that used by
recommending systems and also adopted by [21], which allows case-users to give
feedback on the utility of a particular case to solve a specific problem.

3.3 Case Retrieval

Similarity is based on an adaptation of the taxonomic theory, and is divided into two
steps, similarity between question-answer pairs and an aggregate similarity to retrieve
the most suitable cases. The prior, involves the similarity between the QA pairs
chosen by the user and those found in a case. In the taxonomic theory two pairs are
defined to be more similar if the one found in the case is a descendant (therefore more
specific) of the other, rather then its parent (therefore more generic). Though we have
adopted this similarity assessment metric, we take into consideration that each QA

pair is a set of triples or rather an acyclic directed graph. Thus similarity between QA
pairs is based on the similarity between two such graphs. The taxonomic similarity is
calculated as follows:

sim (CQ1,CQ2) =

1 if CQ2 ⊆ CQ1

(n+1-m)/(n+1+m) if CQ1 ⊆ CQ2

0 otherwise

where, CQ1 and CQ2 are concepts
 n= number of edges between CQ1 and the root i.e. the concept Thing
 m= number of edges between CQ1 and CQ2

Having calculated such similarity between QA pairs then an aggregate similarity
metric is used to calculate the overall similarity between the user query QU and a case
problem description, PC. This aggregate similarity is calculated as follows:

Σ sim(CQ i , CQ j)
i∈ QU , j∈ PCsim (QU, PC) =

T

where, T in the original taxonomic theory represents the number of taxonomies, here
it represents the number of different ontologies that are used to define the concepts
found in the QA pairs.

We are also looking at other research work which provides for similar measures, in
particular work related to ontology-based similarity measures [13], [16] and semantic
distance [5], [14]. Such work is important since it does not only consider the
taxonomic similarity between concepts but also similarity based on the number of
relations and attributes associated with the concepts.

4. Conclusion

In this paper we presented the main concepts behind PreDiCtS. The use of CCBR as a
pre-process to the service discovery and composition is promising since it provides
for inherent personalisation of the service request and thus as a consequence also
more personalised compositions. We also presented CCBROnto as a case definition
language which allows for seamless integration between CCBR and the Semantic
Web, by providing reasoning capabilities about concepts within the case definitions.
Nevertheless, there is still a lot to be done, especially where it comes to case
generation and evaluation. A case base can only be evaluated effectively if the
number of cases is large. We are infact considering the possibility of generating cases,
for experimental purposes, by extracting the required template knowledge from
already available service descriptions and then adding context information and QA
pairs. Other issues for future consideration include the design of the questions and the

way in which they are associated with ontology concepts, the effective evaluation of
the similarity metrics used with an eye on work being done on semantic similarity and
also the inclusion of an adaptation component. The latter will provide for more
personalisation of the solutions presented by PreDiCtS and thus also of the services
that will be presented to the user.

References

1. A.Aamodt, M. Gu, A Knowledge-Intensive Method for Conversational CBR, Proc.
ICCBR'05, Chicago, August 2005

2. C. Abela, CCBROnto, http://www.semantech.org/ontologies/CCBROnto.owl
3. D.W Aha, L.A. Breslow, H. Muñoz-Avila, Conversational case-based reasoning.

Applied Intelligence, 14, 9-32. (2001).
4. M.S. Aktas, D.B. Leake. et al, A Web based CCBR Recommender System for

Ontology aided Metadata Discovery, GRID'04
5. A. Bernstein, et al, Simpack: a Generic Java library for Similarity Measures in

Ontologies, University of Zurich, August 2005.
6. F. Bry et al, Context Modeling in OWL for Smart Buildings, Proc. of GvB2005.
7. M. d’Aquin, et al, Decentralized Case-Based Reasoning for the Semantic Web, Proc.

ISWC 2005
8. A. Dey, Understanding and Using Context, in proceeding of Personal and Ubiquitous

Computing, issue on Situated Interaction and Ubiquitous Computing, Feb 2001.
9. B. Diaz-Agudo et al, On Developing a Distributed CBR Framework through

Semantic Web Services, Workshop on OWL: Experiences and Directions, Galway’05
10. A. Goderis et al. Seven bottlenecks to workflow reuse and repurposing. 4th Int.

Semantic Web Conference, Galway, Ireland, 6-10 Nov. 2005
11. K. Gupta, Taxonomic Conversational Case-Based Reasoning, Proceedings of the 4th

International Conference on Case-Based Reasoning, 2001
12. J. Heflin, H. Muñoz-Avila, LCW-Based Agent Planning for the Semantic Web,

AAAI Workshop WS-02-112002
13. M. Hefke, A Framework for the successful Introduction of KM using CBR and the

Semantic Web Technologies, I-Know 2004
14. N.Henze, M. Herrlich, The Personal Reader: A Framework for Enabling

Personalization Services on the Semantic Web, Proc. of ABIS 04, Berlin, Germany.
15. Z. Maamar et al, Context for Personalised Web Services, 38th Hawaii International

Conference on system Science, 2005
16. A. Maedche, V. Zacharias, Clustering Ontology-based Metadata in the Semantic

Web, Joint Conferences (ECML'02) and (PKDD'02), Finland, Helsinki, 2002
17. J. Peer, A POP-based Replanning Agent for Automatic Web Service Composition

ESWC'05
18. J. Scicluna et al, Visual Modelling of OWL-S Services, IADIS International

Conference WWW/Internet, Madrid Spain, October 2004
19. E. Sirin et al, Semi-automatic composition of web services using semantic

descriptions, in ICEIS 2003, Angers, France, April 2003
20. E. Sirin et al. HTN planning for web service composition using SHOP2. Journal of

Web Semantics, 1(4):377-396, 2004
21. B.Weber, S. Rinderle, W. Wild, M. Reichert, CCBR–Driven Business Process

Evolution, Proc. ICCBR'05, Chicago, August 2005

CCBR Ontology for Reusable Service Templates1

1This research has partially been funded by the European Commission and by the Swiss Federal

Office for Education and Science within the 6th Framework Program project REWERSE

number 506779

Charlie Abela, Matthew Montebello
Department of Computer Science and AI

University of Malta
+356 2590 7295

{charlie.abela, matthew.montebello}@um.edu.mt
ABSTRACT
We present the motivation and design of CCBROnto, an OWL
Ontology for Conversational Case-Base Reasoning (CCBR). We
use this ontology to define cases that can eventually be stored,
retrieved and reused by a mixed-initiative approach based on
CCBR. We apply this technique for retrieving Web Service
Composition templates.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Design, Implementation

Keywords
CCBR, Ontologies, OWL, Web Services

1. INTRODUCTION
Web Services composition is usually interpreted as the
integration of a number of services into a new workflow or
process. A number of compositional techniques have been
researched [9,10] that attempt to address service composition by
composing web services from scratch while ignoring reuse or
adaptation of existing compositions or parts of compositions.
Furthermore composing web services by means of concrete
service interfaces leads to tightly-coupled compositions in
which each service involved in the chain is tied to a web service
instance. This approach may lead to changes in the underlying
workflow which range from slight modifications of bindings to
whole redesigning of parts of the workflow description.
Therefore we interpret services at an abstract level to facilitate
their independent composition. Infact our approach is more
similar to [8,11,12], which use pre-stored abstract workflow
definitions or templates in their composition framework.
Abstract workflows allow for more generalisations and a higher
level of reusability [5]. The use of such templates can be
thought of as a pre-processing stage towards service discovery
and composition, whereby abstractly defined workflow
knowledge can be concretely bound to actual services that
satisfy a template. To make effective reuse of such templates we
have considered CCBR [6]. This extends from CBR and allows
for partial definition of the problem by using a mixed-initiative
refinement process to identify more clearly the user’s problem
state.

2. RELATED WORK
In recent work relating CBR to the Semantic Web [2, 4], we find
the definition of two ontologies, CaseML and CBROnto. These
are both defined for CBR rather then CCBR and thus do not
define concepts related to question-answer (QA) pairs, which
are at the core of the CCBR process. Nonetheless we considered
these when we designed and implemented our OWL-based
ontology, which we call CCBROnto (this has no relation to
CBROnto). We make use of this ontology within our
personalised service discovery and composition framework
(PreDiCtS) to define cases of best practice composition
knowledge. In what follows we make explanatory references to
this ongoing work.

3. CCBRONTO
In CCBROnto the basic components of a Case are defined by
the CaseContext, Problem and Solution classes. This structure is
motivated by the underlying methodology used in PreDiCtS. In
this framework we adapt the CCBR approach to help the user
refine his query for a particular service request. The problem
description is defined by a set of discriminating QA pairs, which
characterize a particular solution. On the other hand, the
solution is a place holder for a reusable service composition
template which is a container of best practice knowledge about
composition of generic service components. In the following
sections we will explain in more detail the basic Case
components and illustrate by means of an example how such a
case is defined.

3.1 Context
In [3], the term context is defined as “any information that can
be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves”.

We fully agree with this definition and in the CaseContext, see
Figure 1, we have included knowledge related to the case
creator, case history, and case provenance. We have also
considered ideas presented in [7] and [1] which discuss the
importance of context in relation to Web Services. In PreDiCtS
context knowledge helps to identify, (i) why a case was created
and by whom, (ii) certain aspects of case usage and (iii) the case
relevance to problem solving. The CaseCreator includes a
reference to the Role description, that the creator associates
himself with, together with a foaf:Person instance-definition
that describes who this person is. The motivation behind using

Demos and Posters of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 11th - 14th June, 2006

foaf is to keep track of reputation knowledge which could be
used to reliably share cases between PreDiCtS users.

Case

Context

Ranking
Case

Creator

hasProvenanceURI

hasRanking hasCaseCreator

Role Person

hasRole subClassOf

Case
History

hasCaseHistory

History
Entry

hasHistoryEntry
hasTimeStamp

hasFeedback

xsd:String

xsd:time

CaseUser

hasUser

subClassOf

xsd:anyURI

hasRankingVlaue

xsd:integer

Figure 1: CCBROnto Context structure

The CaseContext also provides a place holder for CaseHistory,
which becomes important when it comes to case ranking and
usage, since it allows users to identify the relevance and
usefulness of a case in solving a particular problem. It is also
important for the case administrator when case maintenance is
performed. Cases whose history indicates negative feedback
may be removed from the case base. Case Provenance is also
used in conjunction with reputation issues, since it associates a
case with a URL indicating the case-origin.

3.2 Problem
The Problem state description, see Figure 3, in a PreDiCtS case
is based on the taxonomic theory of [6]. Every problem is
described by a list of QA pairs rather than a bag. This is
required since QA pairs have to be ranked when they are
presented to the user. Each QA pair consists of a
CategoryName, a Question and an Answer. Since the taxonomic
theory requires that QA pairs are defined in a taxonomy during
the case creation stage, each question description is associated,
through the property isRelatedTo, with an ontological concept
defined in the domain of discourse. This relation is not intended
to fully capture the natural semantics of the QAs, rather it is
important when calculating similarities.

A typical QA pair example from the traveling domain might
include the question, “What type of transportation? This is
related, by means of the isRelatedTo property, to the concept
Transportation, which is defined in the Traveling domain. On
the other hand, we assume that Answers could have either a
binary or nominal value and are respectively defined in the
ontology by the YesNoAnswer and ConceptAnswer classes.

QAPair

Question Answer

hasQuestion hasAnswer

hasQuestio
nDescription

hasQuestionID

hasAnswerDescription
hasAnswerID

Statement isRelatedTo

Thing

hasQAPairCategory

YesNo
Answer

Concept
Answer

subClassOf subClassOf

xsd:integer

xsd:integerxsd:String

xsd:String

Thingxsd:String

hasYesNoValue isRelatedTo

<ccbr:Case rdf:ID="case1">
 <ccbr:CaseContext rdf:ID="cntxt1">
 <ccbr:hasProvenanceURI rdf:resource="http://www......org"/>
 <ccbr:hasCaseCreator>
 <ccbr:CaseCreator rdf:ID="ccr1">
 <ccbr:hasRole rdf:resource="&role;#KnowledgeEng"/>
 <foaf:Person>
 <foaf:name>Joe Black</foaf:name>
 <foaf:mbox rdf:resource="mailto:joe@test.org"/>
 <foaf:homepage rdf:resource="http://www...../joe"/>
 </foaf:Person>
 </ccbr:CaseCreator>
 </ccbr:hasCaseCreator>
 </ccbr:CaseContext>
 <ccbr:Problem rdf:ID="prob1">
 <ccbr:QAPairList>
 <list:first>
 <ccbr:QAPair rdf:nodeID="quest1"/>
 </list:first>
 <list:rest rdf:resource="&list;#nil"/>
 </ccbr:QAPairList>
 </ccbr:Problem>
 <ccbr:Solution rdf:ID="sol2">
 <ccbr:hasAction>
 <ccbr:OWLSTemplate rdf:ID="tmpl3">
 <ccbr:hasServiceTemplate rdf:resource="#Trav_Serv"/>
 <ccbr:hasProcessTemplate rdf:resource="#Trav_Proc"/>
 <ccbr:hasProfileTemplate rdf:resource="#Trav_Prof"/>
 </ccbr:OWLSTemplate>
 </ccbr:hasAction>
 </ccbr:Solution>
</ccbr:Case>

Figure 3: Case Problem Definition
The former points to the binary literals, while the latter is used
to represent answers that are associated to a concept in a domain
ontology through the previously mentioned isRelatedTo
property.

3.3 Solution
The solution in PreDiCtS provides a hook where composition
templates can be inserted. Each Solution, see Figure 4, is
defined to be an Action which has a description and a
composition template. A template can be sub-classed by a
description such as that defined by OWL-S, as shown in Figure
2, though in practice it can be specialized also by other service
descriptions.

4. CONCLUSION
Through the use of CCBROnto we are able to define cases
whose solutions are composition templates. This allows our
PreDiCtS framework to retrieve such templates by consulting
the user in every stage and presenting her with the most suitable
composition knowledge available to choose from. The user can
then decide whether to reuse as is, or possibly adapt this to fit
her personal needs. Figure 2: CCBROnto Case instance definition

Solution

hasAction

Action

hasActionDescription

Abstract
Template

isDefinedBy

xsd:String

OWLS
Template

subClassOf

Figure 4: Case Solution Definition

5. REFERENCES
[1] Bry, F., et al, Context Modeling in OWL for Smart

Buildings, in proceedings of GvB2005.
[2] Chen, H., et al, CaseML: RDF based markup language for

CBR on the Semantic Web, ICCBR 2003
[3] Dey, A.K., Understanding and Using Context, in

proceedings of Personal and Ubiquitous Computing, issue
on Situated Interaction and Ubiquitous Computing,
February 2001.

[4] Diaz-Agudo, B., et al, On Developing a Distributed CBR
Framework through Semantic Web Services, OWL
Experiences and Directions Workshop, Galway, 2005

[5] Goderis, A., et al, Seven bottlenecks to workflow reuse and
repurposing, 4th Int. Semantic Web Conf., Galway,
Ireland, 6-10 Nov. 2005

[6] Gupta, K., Taxonomic Conversational Case-Based
Reasoning, 4th International Conference on CBR, 2001

[7] Maamar, Z., et al, Context for Personalized Web Services,
38th Hawaii International Conference on system Science,
2005

[8] Rajasekaran, P., et al, Enhancing Web services description
and discovery to facilitate composition, First International
Workshop, SWSWPC, July 2004

[9] Sirin, E., Parsia, B., et al, Filtering and selecting semantic
web services with interactive composition techniques, IEEE
Intelligent Systems, 19(4): 42-49,2004

[10] Sirin, E., et al, Planning for web service composition using
SHOP2, Journal of Web Semantics, 1(4):377-396, 2004

[11] Sirin, E., et al, Template-based composition of semantic
web services, AAAI Fall Symposium on Agents and the
Semantic Web, Virginia, November 2005.

[12] Weber, B., et al, CCBR-Driven Business Process
Evolution, Proc. 6th Int. Conf. on Case-Based Reasoning
(ICCBR'05), Chicago, August 2005

Verifying the compliance of personalized
curricula to curricula models in the semantic

web?

Matteo Baldoni, Cristina Baroglio, Alberto Martelli
Viviana Patti, and Laura Torasso

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

{baldoni,baroglio,mrt,patti,torassol}@di.unito.it

Abstract. In this work we propose the introduction of a decoupling
between personalized curricula and curricula models. A curricula model
is formalized as a set of time constraints, while personalized curricula
are formalized by means of an action theory. Given this framework, it is
possible to make various interesting verification tasks automatic. In par-
ticular, we will discuss the possibility of verifying the compliance of per-
sonalized curricula to models, by using temporal reasoning. Compliance
verification allows to check the soundness of a curriculum customized
w.r.t. available resources and user goals against a model that expresses
temporal learning dependencies at the knowledge level.

1 Introduction

The Semantic Web is concerned with adding a semantic layer to resources that
are accessible over the internet in order to enable sophisticated forms of re-use
and reasoning. In the last years standard models, languages, and tools for dealing
with machine-interpretable semantic descriptions of Web resources have been
developed. In this context a strong new impulse to research on personalization
can be given: the introduction of machine-processable semantics makes the use of
a variety of reasoning techniques for implementing personalization functionalities
possible, widening the range of the forms that personalization can assume.

Learning resources are particular kind of resources specifically useful in an ed-
ucational framework. Especially with the development of peer-2-peer and service
oriented e-learning architectures, it become fundamental to explore solutions for
personalizing w.r.t. the user’s needs the retrieval and the composition of learn-
ing web resources. In our opinion sophisticated personalization functionalities

? This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net), and it has also been
supported by MIUR PRIN 2005 “Specification and verification of agent interaction
protocols” national project.

should combine lesson learnt in the community of traditional educational sys-
tems (especially for what concerns the re-use of learning resources), and the new
possibility of running reasoning techniques developed in the AI community over
the semantically annotated learning resources.

In recent years, the educational systems community has focussed greater and
greater attention to the problem of separating the contents of learning resources,
from the means that is necessary for taking advantage of the contents. The chief
goal is to enable a reuse of the learning resources, where re-use is more and
more often intended as a process by which the contents of a new complex learn-
ing resource, e.g. a course, are assembled, at least partly, starting from already
encoded contents, the optimal situation being a complete decoupling of the re-
sources from the platforms used for playing them. A first significant step in this
direction is represented by the birth of SCORM [1] and of Learning Design [13,
14]. The former allows to build a new course (formally, a new SCO) on top
of existing SCOs or assets. The latter, is focussed on the design of processes
and workflows among a group of actors that take part to the learning activi-
ties. These tools, however, suffer the lack of a machine-interpretable information
about the learning resources, for enabling forms of automatic composition and
of verification, possibly based on reasoning.

Standard languages for semantic annotation like RDF [16] and LOM [12]
can be used for filling this lack and adding some meta-data to the resources. In
particular by meta-data we can supply information on the learning resources at
the knowledge level, e.g. knowledge about the learning objectives of the resource
and its prerequisites. Given such kind of annotation, we can interpret a learning
resource as an action, that can profitably be used if the learner has a given set
of competences (preconditions); by using it, the learner will acquire a new set
of competences (effects). As we have shown in previous work [3, 2], given an an-
notation of resources with preconditions and effects one can rely on a classical
theory of actions and applying different reasoning techniques for offering differ-
ent kind of personalization functionalities. For instance, one could use classical
planning for performing curriculum sequencing, i.e. for selecting and sequencing
a set of resources which will allow a user to achieve her/his learning goal [3].
Moreover it possible to exploit temporal projection for validate a student-given
curriculum verifying whether all the preconditions are respected [2]. Last but
not least it is possible to exploit procedural planning for performing curriculum
sequencing at the level of university courses, in order to help a student to cus-
tomize a curriculum offered by the University w.r.t his/her interest [2]. In our
previous work all these tasks were accomplished by exploiting the metaphor of
learning resources as actions and the representation at the knowledge level of
the student learning goal and knowledge profile. We exploited a reasoning engine
based of the logic language DyLOG [4], that provided a unified framework for
performing both classical and procedural planning and temporal projection.

In this work we aim at taking a step further on this line of research and
we focus on a kind of verification that can be profitably combined with the
curriculum sequencing personalization functionalities investigated in previous

work, by leading to implement sophisticated personalization applications in a
unified framework. Given a semantic annotation of the resources based on the
metaphor of resources as actions, we will focus on a new kind of reasoning, which
can be accounted as a compliance verification of personalized curricula w.r.t. a
curricula model. Personalized curricula are intended as learning paths through
learning resources personalized w.r.t. specific user need, e.g. they could be the
result of a curriculum sequencing method that exploits the planning techniques
mentioned above. Curricula models specify general rules for building such paths
and can be interpreted as constraints. These constraints are to be expressed
in terms of knowledge elements, and maybe also on features that characterize
the resources. If such resources are courses, they should not be based, generally
speaking, on specific course names. So a constraint might impose a lab course
to be attended after a theory course on the same topics but not that the course
C123 should follow C122.

Verifying the compliance a curriculum to a model means checking: first of
all, that the resources are sequenced in such a way that their preconditions are
respected, that the learning goal is achieved in the end, and that along the
sequence the constraints imposed by the model are satisfied. In the following
we present a preliminary proposal for a knowledge representation that suits the
outlined problem domain and sketch the techniques by which the comparison of
courses to constraint-based schemas can be performed.

Compliance verification can be useful in many practical cases where the need
of personalizing learning resource sequencing w.r.t. to the student desire has to
be combined with the ability to check that the result of personalization fit some
abstract constraints, possibly imposed by a third party. A given University could,
for instance, certify that the specific curricula that it offers for achieving a cer-
tain educational goal -that built upon the local university courses- respect some
European schemes defined at the abstract level of competence. Such automatic
checking of compliance combined with curriculum sequencing techniques could
be used for implementing processes like cooperation in curriculum design and
curricula integration which are actually the focus of the so called Bologna Process
[8], promoted by the EU ministers responsible for higher education: “Curriculum
design means drawing up of a common study path aimed at reaching the educa-
tional goals that have been jointly defined. In these schemes the partners offer
specific segments which complement the overall curriculum designed”. Further
use cases are sketched in the conclusions.

2 Knowledge representation and verification

In this section we discuss about the possible formal representations of specific
curricula, intended as sequences of learning resources (e.g. documents or entire
courses) and curricula models, intended as specifications of general schemata for
achieving a certain educational goal, where relationships among competencies
are described.

2.1 Description of resources based on an action theory

Let us consider a specific curriculum as a sequence of resources, that are homoge-
neous in their representation. Based on work in [2, 3], we represent such resources
in an action theory, taking the abstraction of resources as simple actions. We
interpret a learning resource as the action of acquiring some knowledge elements
(effects); it can be used only if the user owns given knowledge elements or compe-
tencies (preconditions). Thus, a resource can be described in terms of knowledge
elements. For instance let us use a classical STRIPS-like notation for describ-
ing the resource called db for biotech with prerequisites relational databases and
effects scientific databases as:

ACTION: db for biothec(),
PREREQ: relational db, EFFECTS: scientific db

Fig. 1. The labels on the edges, r1, r2, ... rn, represent learning resources. The states
Si represent sets of competences that are available at a given time.

As mentioned in the introduction, the idea is to introduce a semantic anno-
tation of learning resources that describe both their pre-requisites and effects,
as done in the curriculum sequencing application in [3].

A curriculum is a sequence of resources/actions. Actions in the sequence
cause transitions from a state to another, starting from an initial state up to
a final state. The initial state represents the initial set of competences that we
suppose available before the curriculum is taken (e.g. the basic knowledge that
the student already has). This set can also be empty. The subsequent states are
obtained by applying the actions (resources) that tag the transitions. Each of
such actions has a set of preconditions that must hold in the state to which the
action is applied and cause some modifications that consist in an update of the
state. The prerequisites of action ri must hold in the state Si−1. The state Si

is obtained by adding to Si−1 the effects of ri. See Figure 1. We assume that
competences can only be added to a state after executing the action of attending
a course (or more in general reading a learning material). The intuition behind
this assumption is that no new course will ever erase from the students memory
the concepts acquired in previous courses, thus knowledge grows incrementally.
Formally, it correspond to assume that the domain is monotonic.

2.2 Curricula models

Curricula models are to be defined on the basis of knowledge elements as well. In
particular, we would like to restrict the set of possible sequences of resources, by
imposing constraints on the order by which knowledge elements are added to the
states, e.g. “a knowledge element α is to be acquired before a knowledge element
β”, “a knowledge element α is guaranteed to be acquired”, “the acquisition of α
implies that also β will be acquired subsequently”. Therefore we will represent
a curriculum model as a set of temporal constraints. Being defined on knowledge
elements, a curriculum model is independent from the specific resources that are
taken into account, then, it can be used in an open and dynamic world like the
web. A set of similar constraints defines a schema that can be used for checking
user specific curricula intended as sequences of actual resources.

A natural choice for representing temporal constraints on action paths is
linear-time temporal logic (LTL) [7]. This kind of logic allows the verification
that a property of interest is true for all the possible executions of a model,
which in our case corresponds to the specific curriculum. This is often done by
means of model checking techniques [6]. The curriculum that we mean to check
is, indeed, a Kripke structure; as thus, it is easy to verify properties expressed as
temporal logic formulas. Briefly, a Kripke structure identifies a set of states and
transition relation that allows passing from a state to another (see Figure 1). In
our case, the states correspond to the competencies that are owned at a certain
moment. Since we assume the domain is monotonic in the sense pointed out in
the previous subsection, states will contain all the competencies acquired up to
that moment. The transition relation is given by the actions that are contained
in the curriculum that is being checked. Since the sequence is linear and shows
no branch, then, it is possible to reason on the states and with LTL logic it is
possible to verify that a given formula holds starting from a state or that it holds
for a set of states.

Fig. 2. β can hold only after α becomes true, therefore, in the states that follow S3 β
can either hold or not hold.

For example, the fact that a knowledge element β cannot be acquired before
the knowledge element α is acquired, can be written as the LTL temporal formula
¬β U α, where U is the weak until operator (see Figure 2). Given a set of
knowledge elements to be acquired, such constraints specify a partial ordering
of the same elements. Other kinds of constraints might be taken into account.
For instance, that a knowledge element will be acquired sooner or later (3α,
eventually operator). A curriculum model is meant to allow the achievement of

Fig. 3. A curriculum that allows the acquisition of the learning goal G.

a given learning goal, that consists in a set of knowledge elements. We expect
that the learning goal will hold in the final state of every curriculum that matches
with the model (see Figure 3).

2.3 Compliance Verification

Given a representation of a user specific curriculum as sequence of actions/resources
(r1, r2, ..., rn) with preconditions and effects, based on knowledge elements in an
action theory (A), and a representation of a curricula model, based on temporal
constraints (T) and a learning goal (G), it is possible to apply different reason-
ing techniques for performing various interesting tasks. Besides planning, that
we have already explored in previous works [2, 3], in this formal framework we
can verify the compliance of s user specific curriculum to a model. The verifica-
tion could be based on temporal reasoning techniques, like temporal projection,
and on model checking techniques. Verifying the compliance means, in simple
words, to check whether the curriculum respects the model, i.e that the se-
quence r1, ..., rn is sound w.r.t. the precondition and effect relations specified in
A, that the sequence allows reaching the goal G, and that the sequence respects
the temporal constraints in T . Intuitively, we can think of combining temporal
projection and model checking by verifying

A ²AL G after r1, ..., rn (∗)

where AL is any action logic that supports temporal projection, and

r1, ..., rn ²LTL T (∗∗)

where LTL is a linear-time temporal logic.

3 Possible implementation

In the following we discuss the possibility of exploiting existing technology and
languages for developing a system that can perform the forms of verifications
described above. In particular we will deal both with the selection of languages
for the representation of models and of curricula, and with the exploitation of
existing tools for performing the verifications. A semantic representation of an
action is quite simple and mostly consists of two lists of knowledge elements:
those required for using the resource and those supplied by the resource. In

order for the knowledge elements themselves to have a semantic value, they can
be implemented as terms in shared vocabulary (the simplest form of ontology).
RDF can be used as an implementation language. Resources are used to define
curricula. In this work we focus on curricula obtained by sequencing resources,
therefore we represent a curriculum as an action sequence. This sequence can
be considered as a simple kind of program that contains no branch or loop or
recursive call. For what concerns action representation, there is a wide choice of
action languages that are valuable candidates: we could use a logic programming
action language, like A by Gelfond and Lifschitz [9], DyLOG [4], or GOLOG [15],
all of which provide proof procedures that support temporal projection (*).

Given that a curriculum has passed the temporal projection test, we can
use a model checker to verify the temporal constraints (**). Model checking is
the algorithmic verification of the fact that a finite state system complies to
its specification. In our case the specification is given by the curriculum model
and consists of a set of temporal constraints, while the finite state system is
the curriculum to be verified. Among the various model checkers that have been
developed, it is worthwhile to mention SPIN [11] and NuSMV [5]. SPIN, in
particular, is used for verifying systems that can be represented by finite state
structures, where the specification is given in an LTL logic. The verification
algorithm is based on the exploration of the state space. This is exactly what
we need for performing the second step of our compliance test, provided that we
can translate the curriculum in the internal representation used by the model
checker. In the case of SPIN, the internal representation is given in the Promela
language. For example, we can represent the knowledge elements as boolean
variables, therefore actions as transitions that modify the values of some of these
variables. The constraints will be temporal formulas that use such variables. The
verification that the constraint should along the whole curriculum is performed
automatically by the model checker.

In the case of linear curricula it would be easy to integrate in the tempo-
ral projection algorithm the direct verification of the constraints. The opposite
solution of integrating the temporal projection into a model checker, which is
the one that we mean to pursue, has the advantage of allowing the extension
of the compliance test to curricula that have a more complex structure. In fact,
curricula might contain tests, branching points, and repetitions. For example, if
the curriculum corresponds to a learning resource that has been assembled on
the basis of other learning resources (for instance a SCORM object), it might
contain, as well as a program, also loops. As well as in the two-steps solution
described above, it would be necessary to have a translation mechanism that al-
lows turning the representation of the action theory into the internal formalism,
used by the model checker [10].

For the sake of completeness, hereafter, we report a part of the Promela
code for an example. The code allows the execution of both temporal projection
and model checking. Temporal projection is handled as a deadlock verification:
if the sequence is correct w.r.t. the action theory, no deadlock arises, other-
wise a deadlock will be detected. The complete example and an explanation of
it are available at http://www.di.unito.it/~alice/ccompliance/. This cur-

riculum passes the compliance test under the temporal constraints ¬f7 U f5 and
¬f8 U f5. In the web site it is possible to retrieve also examples of curricula
which fail the test.

mtype = { course1, course2, course3, course4, course5 };

mtype = { done, stop, success, fail }

chan attend = [0] of { mtype };

chan feedback = [0] of { mtype };

bool f1, f2, f3, f4, f5, f6, f7, f8;

init { f1 = true; f2 = false; f3 = false; f4 = false;

f5 = false; f6 = false; f7 = false; f8 = false;

run TestCompliance();

run UpdateState(); }

inline Curriculum4() {

attend!course1; feedback?done;

attend!course2; feedback?done;

attend!course5; feedback?done;

}

proctype TestCompliance() {

Curriculum4()

feedback!stop; feedback?success;

}

proctype UpdateState() {

do

:: attend?course1 -> if

:: (f1) -> f2 = true; f3 = true; f4 = true; feedback!done;

fi;

:: attend?course2 -> if

:: (f3) -> f4 = true; f5 = true; feedback!done;

fi;

:: attend?course3 -> if

:: (f2 && f6) -> f7 = true; f8 = true; feedback!done;

fi;

:: attend?course4 -> if

:: (f2 && f5) -> f7 = true; feedback!done;

fi;

:: attend?course5 -> if

:: (f2 && f4) -> f7 = true; f8 = true; feedback!done;

fi;

:: feedback?stop -> if

:: (f4 && f5 && f8) -> feedback!success;

:: else -> feedback!fail;

fi;

break;

od }

The above program is hand-coded but, as the modularity of the example
witnesses, it would be easy to produce an automatic translator able to turn the
description of sets of courses and the description of sequences of resources into
Promela code. Such code could, then, be validated according to curricula models
encoded as sets of temporal constraints.

4 Conclusions

In this work we have presented a two-level representation of curricula, aimed at
capturing the distinction between curricula and models of curricula that define
general rules or constraints to be satisfied. We have shown that by implementing
curricula models as temporal constraints, and curricula as sequences of actions,
it is possible to verify the compliance of a curriculum to a model by exploiting
reasoning techniques that combine temporal projection and model checking.

The possibility of verifying the compliance of curricula to models is extremely
important in many applicative contexts where the need of personalizing learning
resource sequencing w.r.t. to the student desire has to be combined with the
ability to check that the result of personalization fit some abstract models. In
this sense we can say that the compliance verification we propose is complemen-
tary w.r.t the capability of applying planning techniques for building from a set
of available resources, personalized curricula aimed at reaching a given learning
goal. Representing models as sets of constraints gives great freedom in the defi-
nition of specific curricula because it cuts away the undesired curricula without
imposing unnecessary constraints. The same freedom is not supplied if we repre-
sent, as in [2], models as procedures. Procedures have a prescriptive nature that
over-rules the possible solutions; the greater flexibility introduced by the use of
temporal constraints has a positive effect on the possible personalization of the
solutions, by allowing a greater autonomy in selecting among alternatives.

Concerning use cases, we have already mentioned the Bologna process. An-
other practical application could be helping a teacher that must teach a same
topic to different classes, with background and purposes that vary. For instance,
to teach Java to a University class as well as to professionals that work in an
information technology enterprise. The teacher might be interested in the fact
that all students of both classes acquire a same set of competences, with known
time constraints, however, since the target students are so different it is useful to
prepare two different courses exploiting different learning resources. The Univer-
sity students must, in fact, be taught also the theoretical background concerning
object-oriented programming. On the other hand, the professionals will surely be
more interested in more practical lessons, containing many real-world examples
of application. The teacher might select public-domain (semantically annotated)
learning resources from on-line repositories and use them to compose two differ-
ent curricula personalized w.r.t. the different student targets. Nevertheless, by
applying the approach that we have proposed he would have the possibility of
verifying that the built curricula respect an abstract curriculum schema, derived
from the expertise and the experience of the teacher himself.

We are working at the actual development of a system on the line of the sketch
described in the previous section. Moreover, we are thinking to an extension
(both from a formal and an implementation perspective), in which hierarchies
of knowledge elements are used instead of plain vocabularies. Hierarchies allow
a representation of knowledge elements at different levels of abstraction, thus
they would allow other forms of verification. In order to include them, it might
be necessary to integrate forms of ontological reasoning in the framework.

Acknowledgements

The authors would like to thank prof. Nicola Henze for the precious discussions.

References

1. ADLnet. Scorm specification. Available at http://www.adlnet.org.
2. M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an approach

based on logic agents and reasoning about actions. Artificial Intelligence Review,
2004.

3. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about learning ob-
ject metadata for adapting scorm courseware. In In L. Aroyo and editors C. Tasso,
editors, Proc. of EAW’04: Methods and Technologies for personalization and Adap-
tation in the Semantic Web, pages 4–13, 2004.

4. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming rational agents
in a modal action logic. Annals of Mathematics and Artificial Intelligence, 2004.

5. Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A new symbolic model checker. International Journal on Software Tools
for Technology Transfer, 2(4):410–425, 2000.

6. O. E. M. Clarke and D. Peled. Model checking. MIT Press, Cambridge, MA, USA,
2001.

7. E. A. Emerson. Temporal and model logic. In Handbook of Theoretical Computer
Science, volume B, pages 997–1072. Elsevier, 1990.

8. Education European Commission and Training. The bologna process.
http://europa.eu.int/comm/education/policies/educ/bologna/bologna en.html.

9. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–321, 1993.

10. Fausto Giunchiglia and Paolo Traverso. Planning as model checking. In ECP,
pages 1–20, 1999.

11. Gerard J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–
295, 1997.

12. Learning technology standards committee. draft standard for learning object meta-
data, 2002.

13. IMSGlobal. Learning design specifications. Available at
http://www.imsglobal.org/learningdesign/.

14. R. Koper and C. Tattersall. Learning Design: A Handbook on Modelling and De-
livering Networked Education and Training. Springer Verlag, 2005.

15. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59–83, 1997.

16. W3C. RDF Primer. Available at http://www.w3.org/TR/rdf-primer/.

A Personalization Web Service for Curricula Planning
and Validation

Matteo Baldoni1, Cristina Baroglio1, Ingo Brunkhorst2, Elisa Marengo1,
Viviana Patti1

1 Department of Computer Science
University of Torino
I-10149 Torino, Italy

baldoni, baroglio, patti@di.unito.it,elisa.mrng@gmail.com
2 L3S Research Center
University of Hannover

D-30539 Hannover, Germany
brunkhorst@l3s.de

Abstract. We present a service-oriented personalization system, set in an educa-
tional framework, based on a semantic annotation of courses, given at a knowl-
edge level (what the course teaches, what is requested to know for attending it in
a profitable way). The system supports users in building personalized curricula,
formalized by means of an action theory. It is also possible to verify the sound-
ness of curricula w.r.t. a model, expressing constraints at a knowledge level. For
what concerns the first task, classical planning techniques are adopted, which take
into account both the student’s initial knowledge and her learning goal. Instead,
curricula validation is done against a model, formalized as a set of time con-
straints. The planning service is supplied as a new plug-and-play personalization
service in the Personal Reader framework. We have developed a prototype of the
validation system by using the well-known SPIN model checker.

1 Introduction

The Semantic Web is concerned with adding a semantic layer toresources that are
accessible over the internet in order to enable sophisticated forms of re-use and reason-
ing. In the last years standard models, languages, and toolsfor dealing with machine-
interpretable semantic descriptions of Web resources havebeen developed. In this con-
text a strong new impulse to research on personalization canbe given: the introduction
of machine-processable semantics makes the use of a varietyof reasoning techniques
for implementing personalization functionalities possible, widening the range of the
forms that personalization can assume.

Learning resourcesare a particular kind of resource, used in educational frame-
works. Especially with the development of peer-to-peer andservice-oriented e-learning
architectures, it became fundamental to explore solutionsfor personalizing, w.r.t. the
user’s needs, the retrieval and the composition of learningweb resources. In our opin-
ion sophisticated personalization functionalities should combine lessons learnt in the
community of traditional educational systems (especiallyfor what concerns the re-use

of learning resources), and the new possibility of running reasoning techniques, devel-
oped in the AI community, over the semantically annotated learning resources. In recent
years, theeducational systemscommunity has focussed greater and greater attention on
the problem of separating thecontentsof learning resources, from themeansthat is nec-
essary for taking advantage of the contents. Standard languages for semantic annotation
like RDF3 and LOM4 are used to facilitate the re-use of complex learning resources and
allowing the building of new courses on top of existing assets. In particular by metadata
we can supply information on the learning resources at theknowledge level, e.g. knowl-
edge about thelearning objectivesof the resource and itsprerequisites. Given such
kind of annotation, we can interpret a learning resource as an action, that can profitably
be used if the learner has a given set of competences (preconditions); by using it, the
learner will acquire a new set of competences (effects). As we have shown in previous
work [1–3], given an annotation of resources with preconditions and effects one can rely
on a classical theory of actions and applying different reasoning techniques for offering
different kind of personalization functionalities. In thefollowing we will useclassical
planningfor performing curriculum sequencing, i.e. for selecting and sequencing a set
of resources which will allow a user to achieve her/his learning goal.

Another reasoning technique which can profitably be combined with the curricu-
lum sequencing is the verification of thecomplianceof personalized curricula w.r.t. a
curricula model. Personalized curricula are intended as learning paths through learning
resources personalized w.r.t. specific user need, e.g. theycould either be the result of a
curriculum sequencing method that exploits the planning techniques mentioned above,
or they could be written by hand by a user, based on own criteria. Curricula mod-
els specify general rules for building such paths and can be interpreted as constraints.
These constraints are to be expressed in terms of knowledge elements, and maybe also
on features that characterize the resources. Compliance verification is useful in many
practical cases where the need of personalizing learning resource sequencing w.r.t. to
the student desire has to becombinedwith the ability to check that the result of per-
sonalization fit some abstract constraints, possibly imposed by a third party. A given
University could, for instance, certify that the specific curricula that it offers for achiev-
ing a certain educational goal —built upon the local university courses— respect some
European schemes defined as constraints defined at an abstract level, as relations among
of knowledge elements and competencies. The automatic checking of compliance com-
bined with curriculum sequencing techniques could be used for implementing processes
like cooperation among institutes in curricula design and integration, which are actually
the focus of the so calledBologna Process[4], promoted by the EU ministers responsi-
ble for higher education5.

While SCORM [5] and Learning Design [6, 7] represent the most important steps
in the direction of managing and using e-learning based courses and workflows among
a group of actors participating in learning activities, most of the available tools lack

3 W3C Resource Description Frameworkhttp://www.w3.org/TR/rdf-primer/
4 Learning Object Metadatahttp://ltsc.ieee.org/wg12/
5 “Curriculum design means drawing up of a common study path aimed at reaching the ed-

ucational goals that have been jointly defined. In these schemes the partners offer specific
segments which complement the overall curriculum designed” [4].

the machine-interpretable information about the learningresources, and as a result are
not yet open for reasoning methods for personalization and automatic composition and
verification.

In our approach, using the Personal Reader (PR) framework, we use a service ori-
ented architecture to allow personalization in aplug-and-playway, via the use of so
called Personalization Services, which are the basic building blocks for allowing users
a personalized view on Web contents. Each service is offering a personalization func-
tionality, e.g. recommendations tailored to the needs of specific users, pointers torelated
/ interesting / more detailed / more generalinformation, and so on. These semantic web
services communicate solely based on RDF documents. The twoservices we devel-
oped are, first the “Curriculum Planning Service”, which uses a subset of the course
database of the University of Hannover as the knowledge baseand a Prolog reasoner to
create curriculum sequences. Second, we present the “Curriculum Validation Service”,
which uses the SPIN reasoner to validate a given curriculum sequence to a formalized
curriculum model.

Section 2 describes our approach to reasoning about curricula, details of the imple-
mentation of the new services are given in section 3: TheCurriculum Planning Service,
for building personalized paths in a space of semantic learning resources —university
courses, in our particular application domain—, and theValidation Servicethat allows
checking whether a curriculum satisfies the constraints given by a curricula model. We
finish with conclusions and further work in Section 4

2 Curricula representation and reasoning

2.1 Description of resources based on action theory

In this work we interpret acurriculum as a sequence of learning resources that are
homogeneous in their representation. Based on work in [2, 1], we represent such re-
sources in anaction theory, taking the abstraction of resources assimple actions, which
are described only in terms of knowledge elements. A learning resource is modelled
as an action for acquiring some knowledge elements (effects); such an action can be
applied only if the executor owns given knowledge elements or competencies (precon-
ditions). As an example of “learning resource as action”, let us describe the resource
db for biotechhaving as prerequisites the fact of having knowledge aboutrelational
databasesand as effects the fact of supplying knowledge aboutscientific databases(we
adopt a classical STRIPS-like notation):

ACTION: db for biothec(),
PREREQ: relationaldb, EFFECTS: scientificdb

Both preconditions and effects can be expressed by means of asemantic annotationof
the learning resource [1].

Given the above interpretation of learning resources, a curriculum can be inter-
preted as a sequence of simple actions, whose execution causes transitions from a state
to another, until some final state is reached. Theinitial state represents the initial set
of competences that we suppose available before the curriculum is taken (e.g. the basic

Fig. 1. The labels on the edges,r1, r2, ...rn, represent learning resources. The statesSi represent
sets of competences that are available at a given time.

knowledge that the student already has). This set can also beempty. With reference to
Figure 1, the subsequent states are obtained by applying theactions one after the other.
Of course, for an action to be applicable, its preconditionsmust hold in the state to
which it should be applied (the prerequisites of actionri must hold in the stateSi−1).
The application of the action will consist in an update of thestate. We assume that com-
petences can only be added to a state after executing the action of using a learning re-
source. The intuition behind this assumption is that the actof using a new resource will
never erase from the students’ memory the concepts acquiredpreviously, thus knowl-
edge grows incrementally. Formally, we assume that the domain is monotonic.

In the following we will often refer to learning resources as“courses” due to the
particular application domain that we have considered, i.e. University curricula.

Fig. 2. A curriculum that allows the acquisition of the learning goalG.

In general, curricula are supposed to allow the achievementof a given learning
goal. A learning goal is a set of knowledge elements of interest, those that a student,
following a curriculum, would like to acquire. A curriculumallows the acquisition of a
set of knowledge elements if such elements are contained in the final state reached by
it (see Figure 2). The learning goal is to be taken into account in a variety of tasks. The
construction of a personalized curriculum is, actually, the construction of a curriculum
which allows the achievement of the goal expressed by the user. In Section 3 we will
describe acurricula planning servicefor accomplishing this task.

2.2 Curricula models

Curricula models consist in sets of constraints that specify desired properties of curric-
ula. Curricula models are to be defined on the basis of knowledge elements as well as
learning resources (courses). In particular, we would liketo restrict the set of possible
sequences of resources composing a curriculum, by imposingconstraints on theorder
by which knowledge elements are added to the states, e.g. “a knowledge elementα is to

be acquired before a knowledge elementβ”, or specifying someeducational objective
to be achieved, in terms of knowledge that must be contained in the final state, e.g. “a
knowledge elementα will be surely acquired soon or later”. Therefore, we will repre-
sent a curricula model as a set oftemporal constraints. Being defined on knowledge
elements, a curricula model isindependentfrom the specific resources that are taken
into account, for this reason, it can be reused in different contexts and it is suitable to
open and dynamic environments like the web.

A natural choice for representing temporal constraints on action paths is linear-time
temporal logic (LTL) [8]. This kind of logic allows to verifyif a property of interest is
true for all the possible executions of a model (in our case the specific curriculum). This
is often done by means of model checking techniques [9].

The curricula as we represent them are, actually, Kripke structures. Briefly, a Kripke
structure identifies a set of states with a transition relation that allows passing from a
state to another (see Figure 1). In our case, the states contain the knowledge items that
are owned at a certain moment. Since the domain is monotonic (as explained above we
can assume that knowledge can only grow), states will alwayscontainall the compe-
tencies acquired up to that moment. The transition relationis given by the actions that
are contained in the curriculum that is being checked. It is possible to use the LTL logic
to verify if a given formula holds starting from a state or if it holds for a set of states.

Fig. 3. β can hold only afterα becomes true, therefore, in the states precedingS3 β cannot hold;
afterwards it can either hold or not hold.

For example, in order to specify in the curricula model constraints onwhat to
achieve, we can use the formula3α, where3 is the eventually operator. Intuitively
such a formula express that a set of knowledge elements will be acquired sooner or
later. Moreover, constraints concerninghowto achieve the educational objectives, such
as “a knowledge elementβ cannot be acquired before the knowledge elementα is ac-
quired”, can be expressed by the LTL temporal formula¬β U α, whereU is theweak
until operator (see Figure 3). Given a set of knowledge elements tobe acquired, such
constraints specify a partial ordering of the same elements.

2.3 Planning and Validation

Given a semantic annotation with preconditions and effectsof the courses, classical
planning techniques are exploited for creating personalized curricula, in the spirit of the
work in [3, 10].

For what concerns thecompositionof personalized curricula, intuitively the idea is
that, given a repository of learning resources, which have been semantically annotated

as described, the user expresses alearning goalas a set ofknowledge elementshe/she
would like to acquire, and possibly also a set of already owned competencies. Then,
the system applies planning to build a sequence of learning resources that will allow
him/her to achieve the goal.

The particular planning methodology that we implemented (see 3.2) is a simple
depth-first forward planning, where actions cannot be applied more than once. Starting
from the initial state, the set of applicable actions (i.e. those whose preconditions are
contained in the state) is identified and one is selected and its application is simulated
leading to a new state. The new state is obtained by adding to the previous one the
knowledge elements that define the effects of the selected action. The procedure is
repeated until either the goal is reached or a state is reached, in which no action can
be applied and the goal condition does not hold. In the lattersituation, backtracking is
applied to look for another solution. The procedure will eventually end because the set
of possible actions is finite and each is applied at most once.If the goal is achieved, the
sequence of actions that label the transitions leading fromthe initial to the final state is
returned as the resulting plan. The backtracking mechanismallows to collect a set of
alternative solutions.

Personalized curricula can be composed automatically by a service as described
above. However, it can be also interesting to consider the case when they are built
manually by a user, reflecting his/her personal interests and needs. Of course, not all
sequences which can be built starting from a set of learning resources, that are provided
by a particular institute, are lawful. Constraints, imposed by courses themselves, must
be respected. In other words, a course can appear at a certainpoint in a sequence only
if it is applicable at that point. The reason is that we mean students to understand the
topics taught in the various courses, and to this aim precedences and dependencies
that are innate to the nature of the taught concepts are to be considered. Moreover,
the student can be interested in checking if the curriculum actually allows him/her to
achieve the learning goal.

In such scenario a validation service for checking the soundness of the plan w.r.t. to
learning dependencies and goals is necessary. Given the interpretation of resources as
actions, on the one hand the verification to accomplish is an “executability” check of the
curriculum: given an an initial state, the actions are hypothetically executed one after
the other until a final state is reached. A course can be executed only if, the current state
contains all the concepts that are in course precondition. Intuitively, it will be applied
only if the student owns the notions that are required for understanding the topics of
the course. On the other hand, given that all the courses in the sequence can be applied,
one after the other, the final state that is reached must be compared with the learning
goal of the student: all the goals, in terms of concepts acquired, must be achieved,
so the corresponding knowledge elements must be contained in the final state. Such
verification task can be accomplished by the validation service described in Section
3.3.

Beside validation of user given curricula w.r.t learning dependencies and goals, the
validation service allows to perform another interesting verification task: checking if
a personalized curriculum is valid w.r.t. a particularcurricula model. Indeed a person-
alized curriculum that is proved to be executable, cannot, however, be automatically

considered as beingvalid w.r.t. a particularcurricula model. A curricula model, in fact,
imposes constraints onwhat to achieve andhowachieving it. The possibility of verify-
ing the compliance of curricula to models is extremely important in many applicative
contexts where the need of personalizing learning resourcesequencing w.r.t. to the stu-
dent desire has to be combined with the ability to check that the result of personalization
fit some abstract models.

In some cases these checks could be performed during the construction process but
it is important to be able to perform the verification independently from the construc-
tion of curricula. To understand why, let us consider a simple scenario concerning a
University which has already verified that its curricula satisfy the guidelines given by
the EU for a certain year. After some years the guidelines change: the University will
need to check if its curricula, which already exist, satisfythe new guidelines.

3 Implementation in the Personal Reader Framework

The Personal Reader Framework have been developed with the aim of offering to the
users a uniform entry point for accessing the Semantic Web, and in particular Semantic
Web Services. Indeed it offers an environment for designing, implementing and real-
izing Web content readers in a service-oriented approach (see Figure 4). For a more
detailed description, see [11].

Fig. 4. Personal Reader Framework Overview

Personalization Services(PServices) deliver personalized recommendations for con-
tent, obtained or extracted from the Semantic Web.Syndication Services(SynServices)
are used to create the appropriate user interfaces for displaying the results provided
by the different PServices. TheConnectoris used as a central component required for

organizing the communication among the involved parties. It supports the discovery, se-
lection, customization and invocation of services and, additionally, communicates with
a specialized service for user modelling,UMService, for creating and maintaining a
central user model.

3.1 Metadata Description of Courses

In order to create the corpus of courses for the system, we started with information
collected from an existing database of courses. We used the Lixto [12] tool to extract
the needed data from the web-pages provided by the HIS-LSF6 system of the Univer-
sity of Hannover. This approach was chosen based on our experience with Lixto in the
Personal Publication Reader[13] project, where we used Lixto for creating the publi-
cations database by crawling the publication pages of the project partners. The effort to
adapt our existing tool for the new data source was only small. From the extracted meta-
data we created an RDF document, containing course names, course catalog identifier,
semester, number of credit points, effects and preconditions, and the type of course,
e.g. laboratory, seminar or regular course with examinations in the end, as illustrated in
Figure 5.

Fig. 5. An annotated course from the Hannover course database

The larger problem was that the quality of most of the information in the database
turned out to be insufficient, mostly due to inconsistenciesin the description of pre-
requisites and effects of the courses. Additionally the corpus was not annotated using

6 HIS is a popular infrastructure for managing higher education in Germany, http://www.
his.de/

a common set of terms, but authors and department secretaries used a slightly vary-
ing vocabulary for each of their course descriptions, instead of relying on a common
classification system, like e.g. the ACM CCS7 for computer science.

As a consequence, we focussed only on a subset of the courses (computer science
and engineering courses), and manually post-processed thedata. Courses are annotated
with prerequisites and effects, that can be seen as knowledge concepts or competences,
i.e. ontology terms. After automatic extraction of effectsand preconditions, the col-
lected terms were translated into proper English language,synonyms were removed
and annotations were corrected where necessary. The resulting corpus had a total of 65
courses left, with 390 effects and 146 preconditions.

3.2 Embedding the Prolog Reasoner in a Personalization Web-Service

Fig. 6. Curriculum Planning Web Service

In order to integrate the Planning Service as a plug-and-play personalization ser-
vice in the Personal Reader architecture we worked at embedding the Prolog reasoner
into a web service. Figure 6 gives an overview over the components in the current im-
plementation. The web service implements the Personalization Service (PService[11])
interface, defined by the Personal Reader framework, which allows for the processing of
RDF documents and for inquiring about the services capabilities. TheJava-to-Prolog
Connectorruns the SWI-Prolog executable in a sub-process; essentially it passes the

7 http://www.acm.org/class/1998/

RDF document containing the requestas-is to the Prolog system, and collects the re-
sults, already represented as RDF. The service itself can beaccessed by Syndication
Services using discovery and invocation via the central Connector component. As a
proof-of-concept, we developed a SynService that providesa simple user interface for
the selection of learning goals and for displaying the generated plans.

The curriculum planning task itself is accomplished by a reasoning engine, which
has been implemented in SWI Prolog8. The interesting thing of using SWI Prolog is
that it contains a semantic web library allowing to deal withRDF statements. Since all
the inputs are sent to the reasoner in aRDF request document, it actually simplifies the
process of interfacing the planner with the Personal Reader. In particular the request
document contains: a) links to the RDF document containing the database of courses,
annotated with metadata, b) a reference to the user’s context c) the user’s actual learning
goal, i.e. a set of knowledge concepts that the user would like to acquire, and that are
part of thedomain ontologyused for the semantic annotation of the actual courses. The
reasoner can also deal with information about credits provided by the courses, when the
user sets a credit constraint together with the learning goal.

Given a request, the reasoner runs the Prolog planning engine on the database of
courses annotated with prerequisites and effects. The initial state is set by using infor-
mation about the user’s context, which is maintained by the User Modelling component
of the PR. In fact such user’s context includes information about what is considered as
already learnt by the student (attended courses, learnt concepts) and such information is
included in the request document. The Prolog planning engine has been implemented by
using a classical depth-first search algorithm [14]. This algorithm is extremely simple
to implement in declarative languages as Prolog.

At the end of the process, aRDF response documentis returned as an output. It
contains a list of plans (sequences of courses) that fulfill the users learning goals and
profile. The maximum number of possible solutions to computecan be set by the user
in the request document. Notice that further information stored in the user profile main-
tained by the PR could be used at this stage for sorting the list of plans with the aim of
adapting the presentation of the solutions.

3.3 The validation service

The validation service has been implemented based upon the model checker SPIN [15].
SPIN is used for verifying systems that can be represented byfinite state structures,
where the specification is given in an LTL logic. The verification algorithm is based
on the exploration of the state space. This is exactly what weneed for performing all
the validation tests that we mentioned in the previous sections, provided that we can
translate the curriculum in the internal representation used by the model checker. In the
case of SPIN, the internal representation is given in the Promela language.

The validation tool that we have developed can handle curricula that contain branch-
ing points. This kind of curricula do not correspond to a simple sequence of learning
resources but to a more complex structure, accounting also for uncertainties of the user.

8 http://www.swi-prolog.org/

A branching point corresponds to a possible choice among alternative resources. There-
fore, a curriculum with branches corresponds to a set of curricula, according to the in-
terpretation given in the first part of the paper. Notice thata curriculum with branches
can contain some paths that are valid w.r.t. the curricula model and some paths which
are not.

In order to verify if a curriculum with branches is valid w.r.t. a curricula model, we
will use temporal logic formulas andmodel checkingtechniques. In particular, we have
chosen SPIN, a model checker used to validate systems which can be represented as
finite state automataand that allows for the verification of LTL formulas. Such formulas
are used to describe the system requisites, and in our case they are used to define the
peculiarities of acurriculum.

To check a curriculum with SPIN, this must be translated in the Promela language.
In this implementation, theconceptsare represented asboolean variables. Initially, only
those variables that represent the initial knowledge of thestudent are true.Coursesare
implemented as actions that can modify the value of the variables. Since our application
domain is monotonic (knowledge can only grow) only those variables, whose value is
false in the initial state, can be modified. The program is made of two processes: one is
namedCurriculum (see Figure 7) and the otherUpdateState(see Figure 8). While the
former contains a representation of the curriculum itself,the latter contains the code for
updating the state step by step along the simulation of curriculum execution. The two
processes communicate by means of two channels,attendandfeedback. The notation
attend!courseNamein Figure 7 simulates the fact that the course with namecourse-
Nameis to be attended. In this case the sender process isCurriculumand the receiver is
UpdateState. UpdateStatewill check the preconditions of the course in the current state
and will send a feedback toCurriculumafter updating the state. On the other hand, the
notationfeedback?feedbackMsgrepresents the possibility for the processCurriculum
of receiving a feedback of kindfeedbackMsgfrom the processUpdateState.

Given these two processes it is possible to perform the temporal projection test,
aimed at verifying the correctness of the curriculum only w.r.t. the precondition/effect
check (executability check). Temporal projection is handled as a deadlock verification:
if the sequence is correct w.r.t. the action theory, no deadlock arises, otherwise a dead-
lock will be detected. Thecurricula modelis to be supplied apart, as a set of temporal
logic formulas.

Notice that the curriculum reported in Figure 7 contains branching points. The
branching points are encoded by the non-deterministicif; each suchif statement refers
to a set of alternative courses (e.g.langugesEnvironmentProgandprogrammingLan-
guages). Figure 8 represents the process that updates the current state. Depending on
the course communicated by the channelattend, it updates the state. The process con-
tinues until the messagestopis communicated. Then the learning goal is checked.

Let us see how to use the model checker to verify thetemporal constraintsthat
make a curricula model. Model checking is the algorithmic verification of the fact that
a finite state system complies to its specification. In our case the specification is given
by the curriculum model and consists of a set of temporal constraints, while the finite
state system is the curriculum to be verified.

inline Curriculum() {
attend!architecture; feedback?done;
attend!lab_languages; feedback?done;
attend!programmingII; feedback?done;
if
:: true -> attend!algorithms; feedback?done;
:: true -> skip;
fi;
attend!db; feedback?done;
attend!economy; feedback?done;
attend!operative_systems; feedback?done;
attend!int_sys; feedback?done;
attend!lab_sweb; feedback?done;
if
:: true -> attend!langugesEnvironmentProg; feedback?done;
:: true -> attend!programmingLanguages; feedback?done;
:: true -> skip;
fi;
attend!net_prog; feedback?done;
}

Fig. 7. The Promela code representing a curriculum.

proctype UpdateState() {
do
:: attend?architecture ->

if
:: (programming_basis_java) -> architecture_calculators = true;

feedback!done;
fi;

:: attend?lab_languages ->
if
:: (programming_basis) -> imperative_programming_bases_C = true;

data_structure_basis = true; feedback!done;
fi;

:: attend?programmingII ->
if

...
:: feedback?stop ->

if
:: (os) -> feedback!success;
:: else -> feedback!fail;
fi; break;

od
}

Fig. 8. The Promela code representing the processUpdateState.

In general, a model is made of a set of temporal constraints, using different temporal
operators, which must hold at the same time. SPIN allows to specify and verify every
kind of LTL formulas. It is not necessary to implement specific procedures for each
operator or for each kind of formula. The following is an example of curriculum model:
not(jdbc) until(sql and relationalalgebra), not(opsystems) until(basisof prog), not(basisof oo)
until(basisof prog), eventually(basisof prog) implies eventually(basisof java prog),
eventually(database), eventually(webservices). For instance the first constraint means
that before learningjdbc the student must own knowledge aboutsql and aboutrela-
tional algebra, while the last one means that soon or later the knowledge about web
service must be acquired.

By using SPIN it is possible to verify that the constraints inthe model hold in all
the possible executions of a curriculum represented by the processesCurriculum and
UpdateStatedescribed above.

The advantage of using a model checker rather than an ad hoc implementation it
that it can handle any kind of LTL temporal formula and moreover it can deal with
the validation ofnot linearcurricula. This makes the system suitable to more realistic
application frameworks. In fact, for what concerns curricula written by hand, users often
do not have a clear mind that allows them to write a single sequence. In the case of
curricula built by an automatic system, there are planners that are able to produce sets
of alternative solutions gathered in a tree structure.

4 Conclusion and Further Work

In this work we have shown the integration of semantic personalization web services for
Curriculum Planning and Validation within the Personal Reader Framework. The goal
of personalization is to create sequences of courses that fitthe specific context and the
learning goal of individual students. Despite some manual post-processing for fixing
inconsistencies, we used real data from the Hannover University database of courses.

Curriculum Planning and Validation offer a useful support in many practical con-
texts. Exchanging Courses, and taking courses at differentUniversities becomes more
and more common in Europe. As a consequence, building a curriculum might become
a complicated task for students, who must build a reasonablepath through an enormous
set of courses across the European countries, each described in different languages and
on the basis of different keywords. As a further development, in this same scenario,
it would be interesting to let our Curriculum Planning Service take into account fur-
ther information that is often already associated to the course descriptions, concerning
the schedule and location of courses, like for instance room-numbers, addresses and
teaching hours. Such metadata could be used by the reasoner,besides the learning pre-
requisites and effects, in order to find a solution that fits the desires and the needs of the
user in a more complete way.

Another application scenario in which the Validation service can offer an interesting
support is drawn by the effort, that European universities are carrying on to reduce costs
by cooperating in designing and integrating curricula. Through the Bologna Process
initiative, the European Community aims at harmonizing theacademic careers across

Europe and curricula integration9. In this context, in fact, there is a need to check if the
curricula proposed by a University satisfy the requirements of the European community.
A system that helps performing these checks in an automatic way would be of great
help.

The Curriculum Planning Service has been integrated as a newplug-and-play per-
sonalization service in the Personal Reader framework. More information about the Per-
sonal Reader can be found at the Homepage athttp://www.personal-reader.
de/. The current and future implementations of the Curriculum Planning Demonstrator
are available athttp://semweb2.kbs.uni-hannover.de:8080/plannersvc.
The Personal Reader Platform provides a natural framework for implementing a service-
oriented approach to personalization in the Semantic Web, allowing to investigate how
(semantic) web service technologies can provide a suitableinfrastructure for building
personalization applications, that consist of re-usable and interoperable personalization
functionalities.

The idea of taking a service oriented approach to personalization is quite new and
was born within the personalization working group of the Network of Excellence REW-
ERSE10 (Reasoning on the Web with Rules and Semantics). To the best of our knowl-
edge the work that is the closest to our approach is the one at the School of computing
from the Dublin City University and, in particular, by M. Melia et al., who are de-
veloping a course validation and correction framework (personal communication). In
this approach, whenever an error will be detected by the validation phase, a correction
engine will be activated. This engine will use a “CorrectionModel” to produce sugges-
tions for correcting the wrong curriculum, by means of a reasoning-by-cases approach.
The suggestions will, then, be presented to the course developer, who is in charge to
decide which ones to adopt (if any). Once a curriculum will have been corrected, it will
have to be validated again, because the corrections might introduce new errors.

We have developed a prototype of the validation system and weare currently inte-
grating it in the Personal Reader Framework.

Acknowledgement

This research has partially been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf.http://rewerse.net).

References

1. Baldoni, M., Baroglio, C., Patti, V., Torasso, L.: Reasoning aboutlearning object metadata
for adapting scorm courseware. In Aroyo, I.L., C. Tasso, e., eds.: Proc. of EAW’04: Methods
and Technologies for personalization and Adaptation in the Semantic Web. (2004) 4–13

2. Baldoni, M., Baroglio, C., Patti, V.: Web-based adaptive tutoring: anapproach based on logic
agents and reasoning about actions. Artificial Intelligence Review (2004)

9 http://europa.eu.int/comm/education/policies/educ/bologna/
bologna en.html

10 http://rewerse.net

3. Baldoni, M., Baroglio, C., Patti, V.: Web-based adaptive tutoring: Anapproach based on
logic agents and reasoning about actions. Artificial Intelligence Review1(22) (September
2004) 3–39

4. European Commission, E., Training: The bologna processhttp://europa.eu.int/
comm/education/policies/educ/bologna/bologna en.html.

5. : SCORM: The sharable content object reference model (2001)
http://www.adlnet.org/Scorm/scorm.cfm.

6. IMSGlobal: Learning design specifications Available at
http://www.imsglobal.org/learningdesign/.

7. Koper, R., Tattersall, C.: Learning Design: A Handbook on Modellingand Delivering Net-
worked Education and Training. Springer Verlag (2005)

8. Emerson, E.A.: Temporal and model logic. In: Handbook of Theoretical Computer Science.
Volume B. Elsevier (1990) 997–1072

9. Clarke, O.E.M., Peled, D.: Model checking. MIT Press, Cambridge, MA, USA (2001)
10. Baldoni, M., Baroglio, C., Patti, V., Torasso, L.: Reasoning about learning object metadata

for adapting SCORM courseware. In Aroyo, L., Tasso, C., eds.: Int. Workshop on Engi-
neering the Adaptive Web, EAW’04: Methods and Technologies for Personalization and
Adaptation in the Semantic Web, Part I, Eindhoven, The Netherlands (2004) 4–13

11. Henze, N., Krause, D.: Personalized access to web services in the semantic web. In: The
3rd International Semantic Web User Interaction Workshop (SWUI, collocated with ISWC
2006. (November 2006)

12. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with lixto. In
Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T.,
eds.: VLDB, Morgan Kaufmann (2001) 119–128

13. Baumgartner, R., Henze, N., Herzog, M.: The personal publication reader: Illustrating web
data extraction, personalization and reasoning for the semantic web. In Gómez-Ṕerez, A.,
Euzenat, J., eds.: ESWC. Volume 3532 of Lecture Notes in Computer Science., Springer
(2005) 515–530

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995)
15. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5) (1997) 279–295

	Introduction
	The Personal Reader
	The curriculum planning service
	The validation service

	PreDiCtS
	Integration of CCBROnto
	Case Creation and Retrieval
	PreDiCtS Planning and Execution

	Conclusion

