
I1-D10

Tool Improvements and Extensions 1

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Cottbus/I1-D10/D/PU/b1
Responsible editors: Sergey Lukichev
Reviewers: Dragan Gasevic
Contributing participants: Cottbus
Contributing workpackages: I1
Contractual date of deliverable: March 23, 2007
Actual submission date: March 30, 2007

Abstract
In this report we describe a number of improvements to the rule modeling tool Strelka, devel-
oped in the Working Group I1. The main focus is on improvements of actions/events metamodel
and using UML rules for modeling Web Services.

Keyword List
Rules, URML, Strelka, R2ML, Semantic Web, Web Services

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2007.

ii

Tool Improvements and Extensions 1

Sergey Lukichev1, Adrian Giurca1, Gerd Wagner1, Marko Ribaric3

1Institute of Informatics, Brandenburg Technical University at Cottbus, Germany
{lukichev, giurca, wagnerg}@tu-cottbus.de

3School of Electrical Engineering, University of Belgrade, Serbia
marko.ribaric@gmail.com

March 30, 2007

Abstract
In this report we describe a number of improvements to the rule modeling tool Strelka, devel-
oped in the Working Group I1. The main focus is on improvements of actions/events metamodel
and using UML rules for modeling Web Services.

Keyword List
Rules, URML, Strelka, R2ML, Semantic Web, Web Services

iv

Contents

1 Modeling Web Services with Strelka 1
1.1 Introduction . 1
1.2 UML-based Rules Modeling . 2
1.3 Web Services Artifacts in the URML . 3
1.4 Modeling WSDL MEPs with URML . 4

1.4.1 In-Out . 5
1.4.1.1 In-Out pattern with out-fault . 5
1.4.1.2 In-Out with in-fault . 7

1.4.2 Robust In-Only . 8
1.5 R2ML as an Interchange Format . 9
1.6 Generating Web service descriptions from URML models 11
1.7 Conclusion . 12

2 Other Improvements 15

v

vi

Chapter 1

Modeling Web Services with
Strelka

In this chapter, we present a UML- and rule-based approach to modeling Web services. The
core of the solution is the UML-based Rule Model Language (URML) that allows for develop-
ing business vocabularies and rules independent of an implementation technology. This helps
developers to focus on solving problems under study rather than on low-level platform-specific
details. Here we demonstrate how several Web service message exchange patterns can be mod-
eled by URML. To support the use of the proposed solution we: improve Strelka to support
events and actions, employ the REWERSE I1 Rule Markup Language (R2ML) for encoding
rules, and provide transformations between R2ML and WSDL, and thus round-trip engineering
of Web services.

1.1 Introduction

Developing interoperable and loosely coupled components is one of the most important goals
for Web-based software industry with the main goal to bridge the gaps between many different
stakeholders. Web services seem as a promising attempt toward achieving that challenge, since
they are based on a set of XML-defined standards for describing (WSDL [WSD]), publishing
(UDDI [UDD04]), and messaging (SOAP [soa]). Although Web services offer many benefits,
here we name two important factors that constraint their development and use:

1. There is no high-level approach to modeling systems under study, which should be sup-
ported by Web services. Instead, developers are manly focus on platform specific and
low-level implementation details (e.g., elements of WSDL). The consequence is that one
can hardly focus on modeling a system under study (e.g., a business process), and thus it
decreases the productivity. On the other hand, developers also have to implement many
things manually, which may lead to potential execution errors, especially when trying to
extend the present Web services with new functionalities.

2. There is no/there are limited automatic mechanisms for updating Web services based on
the business process changes. This is due to the fact that business systems are highly-
dynamic and may change quite often. However, developers need ways that will allow them

1

for updating Web services based on such changes.

In order to address the first of the above constraints, we propose using an approach based
on Model Driving Engineering (MDE). The main promise of MDE is to increase productivity
of developers by switching their focus form platform specific implementation details to high-
level (i.e. platform independent) modeling languages. Given such modeling languages, one can
build models that can be later transformed into different implementation platforms [Sch06].
We should mention that there have been several solutions that are based on UML profiles and
contain either elements of WSDL [BHLJ04], [VdCM05] or OWL-S [TG05], [GJH05]. Although,
they are based on UML and use MDE principles, they are still very low-level oriented, as they
again focus on implementation details covered either by WSDL or OWL-S.

To address the second issue, we propose using rule-based approaches [MdSM05]. When
business processes are modeled by rules, such rules can be interpreted in run-time, and thus
they can reflect the changes in the business process [Ros03]. However, currently there is no
generally adopted Web rule language with the capacity to express either rules [rif] on which a
Web service has been built or what events trigger the activations of a specific Web service. This
further emphasizes the previous constraint by preventing developers to automatically develop
Web services and their descriptions.

The solution that we propose is to use the UML-based Rule Modeling Language (URML)
([WGL06b], [LW06b]) that supports modeling domain vocabularies (i.e., ontologies) and in-
tegrity, derivation, production, reaction, and transformation rules. Considering the nature
of Web services, we specifically propose using reaction rules (also known as Event-Condition-
Action, ECA, rules) for describing business rules that can be later used for automatic generation
of Web service descriptions. In the next section we give a brief overview of the URML language
with the emphasis on reaction rules.

In Section 1.3, we describe how URML rules can be mapped to Web services, and thus using
URML as a language for modeling Web services. In Section 1.4, we illustrate how Web service
message exchange patterns are expressed by means of URML reaction rules. In Section 1.5, we
define how we use the REWERSE Rule Markup Language (R2ML) for serializing URML rules.
Before we conclude the paper, we describe process of transforming between URML and WSDL
that is a part of our tool for URML (Strelka) [LW06a].

1.2 UML-based Rules Modeling

In order to provide UML-based rules modeling, the REWERSE Working Group I1 has developed
a UML-based Rule Modeling Language (URML). The language has been designed having the
following in mind:

• Rules are built on assertions, and assertions are built on concepts as expressed by terms
[Ros03];

• MOF/UML can be used for defining a vocabulary of terms;

• UML metamodel is extended with additional rule concepts and visual notation for rules
has been defined.

In this report we are concerned with reaction rules. Such rule formalizes event-condition-
action behavioral model, where the action is executed on event with a condition satisfied. In
this section URML visual notation is explained by means of a reaction rule example:

2

Customer

BookItem
quantityInStock
ISBN

AvailableBookItem

«message event type»
CustomerBookRequest
quantity
ISBN

*1

«message event type»
ApproveOrderResponseRR

quantityInStock=quantityInStock@pre-cbr.quantity

cbr

cbr.isbn=isbn

Figure 1.1: An example of a reaction rule expressed in URML

On customer book item request, if the item is available, then approve order and
decrease amount of items in stock.

In this rule on customer book item request is a triggering rule event, if the item is available
is a rule condition, approve order is a rule action and decrease amount of items in stock is a
postcondition, which can be expressed as a logical constraint, requiring less amount of items in
stock, than before the rule execution. The rule diagram is depicted on Figure 1.1.

In order to model this rule in URML, first the rule vocabulary must be defined by means of
UML classes. The vocabulary of this rule includes the following classes: Customer, BookItem,
AvailableBookItem, CustomerBookRequest and ApproveOrderResponse. The event and the ac-
tion are also a part of the vocabulary and are classes CustomerBookRequest and ApproveOrder-
Response with the stereotype <<message event type>> (see Figure 1.1).

Rules in URML are depicted using circles with identifiers. Conditions are depicted as arrows
from a conditioned model element to a rule circle (i.e. →). A conditioned model element can
be one of UML classifiers: class, association, association end. A negated condition, is depicted
using a crossed arrow. A message event type model element is connected to the rule circle with
the help of a triggering event arrow with a solid head. A rule event is an arrow from an event
class to a rule circle. A postcondition arrow is depicted as an outgoing arrow with a double head
(in order to denote a state change) from the rule circle to the postcondition classifier (class,
association, or association end).

A condition arrow can be annotated with a filter expression, which is a boolean expression
and is used to filter out instances of the condition classifier. For instance, an annotation
cbr.isbn=isbn is a filter expression, which filters out only those available items, which correspond
to the ISBN, specified in the request.

For more information on URML visual notation, examples, and the modeling tool Strelka
we refer to [WGL06b] and [LW06a].

A postcondition arrow supports annotation with filter expressions, which specify the state
change of the system (for example, the expression quantityInStock = quantityInStock@pre−
cbr.quantity in Figure 1.1).

1.3 Web Services Artifacts in the URML

Reaction rules can be considered as a Web Service interaction description. In this section, we
define general web services artifacts as an extension of the URML metamodel for reaction rules.
Figures 1.2, 1.3 and 1.4 depict an excerpt from the URML reaction rule metamodel, which is
extended for the modeling of web service interfaces and operations.

3

MagicDraw UML, 1-1 D:\research\R2ML\r2ml-v0.5.mdxml ReactionRuleWS Nov 28, 2006 4:40:30 PM

Academic Use Only

EventCondition

<<metaclass>>
Package

RuleCondition

Postcondition
WSOperation

MEP

ReactionRule RuleAction11

0..1

1
1..*

1

1 1

Figure 1.2: An excerpt of the URML metamodel for reaction rules

MagicDraw UML, 1-1 D:\research\R2ML\r2ml-v0.5.mdxml ReactionRuleEvent Nov 28, 2006 4:55:35 P

Academic Use Only

FaultMessageEventType

MessageEventType

EventCondition

ObjectVariable

-inFault 1

-inputMessage

1

-1

Figure 1.3: An excerpt of the URML metamodel for reaction rule events

An event condition has a message event type as a web service operation input message or
fault message event type as an in-fault (See Figure 1.3). In the URML visual notation, an
instance of the MessageEventType class is a user-defined class with a <<message event type>>
stereotype, specifying a message.

An instance of the EventCondition class is depicted as an incoming arrow from the message
type or fault message type class to the rule circle. An event condition refers to an object variable,
which represents an instance of the message event class and corresponds to the annotation of
the event condition arrow with the variable name (e.g., cbr in Fig. 1.1).

A rule action has a message event type as an output message or fault message event type
as an out-fault. In the URML visual notation, the RuleAction class is depicted as an outgo-
ing arrow from the rule circle to the message type or fault type class. A rule action refers
to an object variable, which represents an instance of the MessageEventType class and corre-
sponds to the annotation of the action arrow with the variable name. An instance of the class
FaultMessageEventType is a class with the <<fault message event type>> stereotype.

A web service is represented as a UML package, which contains subpackages with types,
interfaces, and bindings (see Figure 1.5). A web service operation may be modeled by using
more than one rule (see Section 1.4.1.1). Rules, which define an operation, are grouped in one
package by the name of the operation. Several operations may define a web service interface,
and thus each operation package is a sub package of an interface package. The Type package
contains classes, which define types of the web service messages.

1.4 Modeling WSDL MEPs with URML

In this section, we consider modeling of the In-Out and Robust In-Only WSDL Message Ex-
change Patterns (Section 2.4.1.1 of [WSD]) with URML. These patterns reflect widely-used

4

MagicDraw UML, 1-1 D:\research\R2ML\r2ml-v0.5.mdxml ReactionRuleAction Nov 28, 2006 4:46:03 P

Academic Use Only

FaultMessageEventType

MessageEventType ObjectVariable

RuleAction

-outFault 1

-outputMessage

1 1

Figure 1.4: An excerpt of the URML metamodel for reaction rule actions

Description::interface Description::Operation
Description::Bindings

1 1..*

1
1

0..1
*

WebService::Description

1

*

1

1..*

Description::Types
1 1

Figure 1.5: URML packages for a Web Service

request-response interaction of a user with a web service. URML models, presented in this
section, are based on the metamodel, defined in Section 1.3. For each pattern, we give a web
service operation example and corresponding URML model.

1.4.1 In-Out

This pattern consists of exactly two messages and uses the fault replaces message. Here we
consider two examples of In-Out pattern: with an out-fault and with an in-fault.

1.4.1.1 In-Out pattern with out-fault

Let us consider a web service operation CheckAvailability, which has an input message Check-
Availability and an output message CheckAvailabilityResponse. The operation is performed
successfully if the specified parametar checkinDate in the input message is before the check-
outDate and the room isAvailable. We follow the MDA modeling approach where the system
is considered on the sequence of three levels: CIM (Computation-Independent Model), PIM
(Platform-Independent Model) and PSM (Platform-Specific Model). On each level some addi-
tional information is added [MM03].

A web service Computation Independent Model (CIM) describes the domain and require-
ments of the service. The CIM consist of a model from the informational viewpoint, which
captures information about the web service. The CIM corresponds to the conceptualization
perspective’s requirements model. The CIM level model of this operation, modeled with URML
is depicted in Figure 1.6.

A Platform Independent Model (PIM) of a system describes the data and the behavior
of the web service independent of any platform. A PIM might consist of a model from the

5

RRcheckinDate
checkoutDate
roomType

«message event type»
CheckAvailability

yesNoAnswer

«message event type»
CheckAvailabilityResponse

{checkinDate must be before checkoutDate}

Figure 1.6: CIM level In-Out pattern in URML

informational viewpoint, which captures information about the data of a system, and a model
from the computational viewpoint, which captures information about the processing of a system,
independent of any platform. The PIM corresponds to the specification perspective’s analysis
model. The PIM level of this operation is depicted in Figure 1.7. Types of attributes are
added and constraints are turned into URML conditions and filter expressions. At this level,
the operation is modeled by means of two reaction rules, which are triggered by the same input
message CheckAvailability.

ON CheckAvailability[input](checkinDate, checkoutDate)
IF checkinDate < checkoutDate AND isAvailable(Room)
THEN DO CheckAvailabilityResponse[output]("YES")

ON CheckAvailability[input](checkinDate, checkoutDate)
IF NOT checkinDate < checkoutDate THEN
DO InvalidDataError[outfault]("Check-in date

is more than check-out date")

The first rule with an identifier CheckAvReqService.CheckAvailability.R1 captures the web
service behavior if the data provided is correct and there is an available room. This rule is trig-
gered by the triggering event CheckAvailability and it has a condition, which specifies the valid-
ity of the input date. The condition is represented as an arrow from the class CheckAvailability
to the rule circle and is annotated with the filter expression checkinDate < checkoutDate. In
addition to the condition, which checks validity of the input data, there is a second condition,
requiring availability of the room and visualized as an arrow from the class Room to the R1
rule circle.

The second rule with an identifier CheckAvReqService.CheckAvailability.R2 captures the
web service behavior if the data provided is not correct. An arrow with a bold arrow-head,
connecting the class CheckAvailability and the rule circle, denotes a triggering event for the rule
and specifies an input message of the operation. An input message is represented by the class
CheckAvailability with the stereotype <<message event type>>. A crossed arrow from the
class CheckAvailability to the rule circle, annotated with the filter expression checkinDate <
checkoutDate, denotes a negated condition, which means that if the check-in date is more or
equal to the check-out date, then the fault message InvalidDataError should be fired.

The condition part of the reaction rule set can be used in the generation of the executable
code, while from WSDL only skeletons can be generated. Hence, URML models allows speci-
fying a richer description of a web service than the WSDL.

These two rules define one operation of a web service interface. In order to denote its
belongings to one operation, they are grouped in a package, named as the operation ”Check-
Availability”. The operation pattern, style and some other parameters are specified in the
annotation to a rule. Since both rules specify one operation, we annotate only one rule.

A PSM of a system describes the web service as it uses one or more specific platforms (i.e.
WSDL). A PSM might consist of a model from the informational viewpoint, which captures

6

«message event type»
CheckAvailability

checkinDate : Date
checkoutDate : Date
roomType : Integer

«message event type»
CheckAvailabilityResponse
yesNoAnswer : String

RR

checkinDate<checkoutDate

«fault message event type»
InvalidDataError

message : String

RR

checkinDate<checkoutDate

Room
roomNo : Integer
roomType : Integer
/isAvailable : Boolean

Booking
from : Date
to : Date1 *

customer
custNo : Integer

1

*

CheckAvReqService.CheckAvailability.R2

CheckAvReqService.CheckAvailability.R1
pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/style/rpc"
wsdlx:safe = "true"

isAvailable

Figure 1.7: PIM level In-Out pattern in URML

RR

checkinDate<checkoutDate

RR

checkinDate<checkoutDate

CheckAvReqService.CheckAvailability.R2

CheckAvReqService.CheckAvailability.R1
pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/style/rpc"
wsdlx:safe = "true"

«message event type»
CheckAvailability

checkinDate : Date
checkoutDate : Date
roomType : Integer

«fault message event type»
InvalidDataError

message : String

«message event type»
CheckAvailabilityResponse
yesNoAnswer : String

Room
roomNo : Integer
roomType : Integer
/isAvailable : Boolean

Booking
from : Date
to : Date1 *

customer
custNo : Integer

1 *

isAvailable

name : xs:NCName
type : MessageFormat = SOAP1.2
wsoap:protocol : TransmissionProtocol = HTTP
wsoap:version = "1.2"
whttp:methodDefault : HTTPMethod = POST

 : bindings::Binding

Figure 1.8: PSM level In-Out pattern in URML

information about the data of a web service, and a model from the computational viewpoint,
which captures information about the processing of the web service, based on a specific platform.
As a PSM targets a specific platform, it uses the features of the specific platform specified by
a platform model. The PSM level model of this operation is depicted in Figure 1.8. On this
level, the binding information is added and this model can be used to generate the WSDL XML
documents.

Below is a part of the WSDL XML for this operation:

<wsdl:interface name="CheckAvReqService">
<wsdl:operation name="CheckAvailability"

pattern="http://www.w3.org/2006/01/wsdl/in-out"
<wsdl:input element="tns:CheckAvailability"/>
<wsdl:output element="tns:CheckAvailabilityResponse"/>
<wsdl:outfault ref="tns:InvalidDataError"/>

</wsdl:operation>
</wsdl:interface>

1.4.1.2 In-Out with in-fault
Let us consider a situation, when a service has an internal problem. The service forwards its
incoming request to a mirror as an out-fault message. That mirror service has an operation

7

RRusername
password

«message event type»
UserLoginRequest

name
email

User
1

*

LoggedYesNo

«fault message event type»
LoginStatusFault

LoginService:LoginOp.R1

u

username
password

Authenticate u.username = username
u.password=password

Figure 1.9: Robust In-Only pattern in URML

CheckAvailability with an in-fault ServiceNotAvailable, output message CheckAvailabilityRe-
sponse, and out-fault InvalidDataError. Similar to the In-Out pattern from Section 1.4.1.1,
such an operation is modeled by means of two reaction rules, but these rules are triggered by
the same in-fault message ServiceNotAvailable.

ON ServiceNotAvailable[infault](checkinDate, checkoutDate)
IF checkinDate < checkoutDate AND isAvailable(Room)
THEN DO CheckAvailabilityResponse[output]("YES")

ON ServiceNotAvailable[infault](checkinDate, checkoutDate)
IF NOT checkinDate < checkoutDate THEN
DO InvalidDataError[outfault]("Check-in date is more

than check-out date")

The corresponding URML diagram is similar to the one on Figure 1.7, but instead of the in-
put message event type CheckAvailability, there is a fault message expression type (i.e., <<fault
message event type>>) ServiceNotAvailable.

1.4.2 Robust In-Only

This pattern consists of exactly one input message and uses message triggers fault. Let us
consider a login operation, which has an input message LoginRequest with a username and
password and an out-fault LoginFailed, which may be sent back to the user when login fails.
Below is a part of the WSDL XML document for this operation:

<wsdl:interface name="LoginService">
<wsdl:operation name="LoginOp"
pattern="http://www.w3.org/2006/01/wsdl/robust-in-only"
<wsdl:input element="tns:LoginRequest"/>
<wsdl:outfault ref="tns:LoginFailed"/>

</wsdl:operation>
</wsdl:interface>

This operation is modeled by means of one reaction rule:

ON LoginRequest[input](username, password)
IF NOT Authenticate(username, password)
DO LoginFailed[outfault]("Wrong password")

The corresponding URML diagram is depicted on Figure 1.9.
The input of the operation is a LoginRequest class with a username and password. Event

arrow from the message event type class to the rule circle is annotated with the rule variable
u. The rule has a condition, which checks whether the username and password, provided in
the event, correspond to the internal username and password. If username and password are
not correct, then the outfault LoginFailed is sent back to the user. We should note that in
this diagram, we show how parameters of the variable u are bound with attributes of the class
Authenticate.

8

AtomicEventExpr

MessageEventExpr

EventType

1 *

AtomicActionEventExpr

Slot

*

ObjectVariable

0..1{xor}

Figure 1.10: An excerpt from the R2ML event model

1.5 R2ML as an Interchange Format

The REWERSE I1 Rule Markup Language (R2ML) [WGL05], [WGL06a], [WGL06b] is an
XML rule interchange format with the main purpose to perform rule loss-free interchange. Its
abstract syntax is defined by a MOF-based metamodel, while its concrete syntax is defined
by an XML schema [WGL06b]. R2ML v0.5 supports various rule types including reaction
rules and it is a serialization format for the URML. An R2ML reaction rule is a statement of
programming logic that specifies the execution of one or more actions in the case of a triggering
event occurrence and if its conditions are satisfied. Post-conditions may be optionally required
to be satisfied after the action execution. The execution effect of reaction rules may depend
on the rules order (note that the order is defined by the rule execution mechanism or by the
rules representation). The R2ML Events Metamodel specifies the core concepts required for
dynamic behavior of rules and provides the infrastructure for more detailed definition of this
behavior. One of the event types supported by R2ML is the message event expression (see
Figure 1.10) which is suitable for modeling Web service messages. A message event expression
is an atomic event described by: i) a reference to an event type (from the domain vocabulary);
and ii) a number of slots (i.e. property-value pairs), which describe event parameters or a global
object variable, which encode all parameters. For instance, an instance of the CheckAvailability
message event type of the reaction rule R1 depicted in the Figure 1.7 is represented in R2ML
as:
<r2ml:MessageEventExpr r2ml:eventType="CheckAvailability">
<r2ml:DataSlot r2ml:attributeID="checkinDate">
<r2ml:value>
<r2ml:TypedLiteral r2ml:lexicalValue="2006-12-24"

r2ml:datatypeID="xs:date"/>
</r2ml:value>

</r2ml:DataSlot>
<r2ml:DataSlot r2ml:attributeID="checkoutDate">
<r2ml:value>
<r2ml:TypedLiteral r2ml:lexicalValue="2007-01-03"

r2ml:datatypeID="xs:date"/>
</r2ml:value>

</r2ml:DataSlot>
<r2ml:DataSlot r2ml:attributeID="roomType">
<r2ml:value>
<r2ml:TypedLiteral r2ml:lexicalValue="single"

r2ml:datatypeID="xs:string"/>
</r2ml:value>

</r2ml:DataSlot>
</r2ml:MessageEventExpr>

The URML CheckAvailability class (Figure 1.8) corresponds to the r2ml:eventType
attribute value. According to its stereotype <<message event type>>, an R2ML message
event expression is used (i.e., r2ml:MessageEventExpr).

The vocabulary class CheckAvailability directly corresponds to the WSDL XML element
declaration from the types section, i.e.
<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.service.org/resSvc"

9

Table 1.1: An excerpt of the mappings between the R2ML and WSDL elements
R2ML construct WSDL construct
EventType type
triggeringEvent input, infault
producedAction output, outfault
ReactionRule operation and bindings
RuleSet service

xmlns="http://www.service.org/resSvc">
<xs:element name="checkAvailability">
<xs:complexType>
<xs:sequence>
<xs:element name="checkInDate" type="xs:date" />
<xs:element name="checkOutDate" type="xs:date" />
<xs:element name="roomType" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>
<!- ... -->
</xs:schema>

</types>

This type corresponds to the type of the <input> of the web service operation, i.e.
<operation name="checkAvailability"
pattern="http://www.w3.org/2006/01/wsdl/in-out">
<input messageLabel="In" element="ghns:checkAvailability" />
<!-- ... -->

</operation>

The filter expressions from the rule R1 are represented as R2ML conditions. For instance,
the boolean filter checkinDate < checkoutDate is represented as a datatype predicate atom
(used to encode the relational predicate <).
<r2ml:DatatypePredicateAtom

r2ml:datatypePredicateID="swrlb:greaterThan">
<r2ml:dataArguments>
<r2ml:AttributeFunctionTerm

r2ml:attributeID="checkinDate">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="checkAv"

r2ml:classID="CheckAvailability"/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>
<r2ml:AttributeFunctionTerm

r2ml:attributeID="checkoutDate">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="checkAv"

r2ml:classID="CheckAvailability"/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>
</r2ml:dataArguments>

</r2ml:DatatypePredicateAtom>

The action part of the reaction rule R1 corresponds to another message event expression,
similar to the incoming event. Faults (in or out) are also message event expressions. The Table
1.1 describes an excerpt from the R2ML to WSDL mapping.

Each event type from the reaction rule is mapped onto a corresponding XML Schema ele-
ment in the WSDL types section as we already described in the previous example. An R2ML
MessageEventExpr is mapped into WSDL according to the following rules:

• The triggeringEvent of the rule is mapped to the WSDL input or WSDL infault
according to the event type from the domain vocabulary (see also Section 1.4.1.2).

10

URMLtoWSDL2.jpg (6525x2813x16M jpeg)

Figure 1.11: General procedure of getting a WSDL document from a URML tool (i.e., Strelka)

• The producedAction of the reaction rule is mapped into WSDL output or WSDL
outfault according to the event type from the domain vocabulary and the condition
part of the rule (see URML diagram from Figure 1.8).

The annotated R2ML ReactionRule element captures the entire information to describe the
WSDL operation element including name, pattern and style attributes. The WSDL service
element is captured by an annotated R2ML RuleSet element.

The next section describes the entire process of generating web services WSDL descriptions
from URML models. This includes an R2ML model as a serialization format for URML models.
From an R2ML model we obtain a WSDL model, compliant with the WSDL metamodel.

1.6 Generating Web service descriptions from URML mod-
els

In this section, we explain the transformation steps that need to be undertaken, to transform
R2ML rules used for encoding URML models onto WSDL descriptions. Here we should point
out that we are using a well-known UML tool called Fujaba for which we are developing a
plug-in named Strelka that is used to support URML notation. Among other things, Strelka
supports serialization of URML models into the R2ML XML concrete syntax. In Figure 1.11,
we give a high level description of the applied transformation procedure.

We decided to implement this transformation in the MOF technical space by using model
transformation languages such as ATL [atl]. This is an easier way to provide transformations
of MOF-based models and to maintain a transformation rather than using XSLT [JG03]. The
transformation process itself consists of four steps.

Step 1. This step consists of injecting R2ML rules encoded in the R2ML XML format into
the MOF technical space, i.e., to the representation compliant to the R2ML metamodel. Such
a process is shown in detail in [MGG+06]. We use the XML injector that transforms an R2ML
XML document into a model conforming to the MOF-based XML metamodel that defines
XML elements such as XML Node, Element, and Attribute. This XML injector is distributed
as a tool along with the ATL engine. The result of this injection is an XML model that can

11

be represented in the XML XMI format, which can be later used as the input for the ATL
transformation.

Step 2. In this step, we transform the XML model from Step 1 into a (R2ML) model
compliant with the R2ML metamodel [WGL06b]. This transformation is done by using the ATL
transformation named XML2R2ML.atl. Originally the transformation covered just production
and derivation rules, and now it is expanded with reaction rules.

Step 3. The R2ML model (obtained in the previous step) is transformed onto a (WSDL)
model compliant to the WSDL metamodel, which developed at the University of Cottbus (a
similar one to those presented in [BHLJ04][VdCM05]). This step represents the transformation
of the R2ML abstract syntax into the WSDL abstract syntax. This transformation step is fully
based on the conceptual mappings between the elements of the R2ML and WSDL metamodel.

In Figure 1.12, we show the conceptual model of this transformation. The actual trans-
formation between the R2ML model and elements of the WSDL metamodel are defined as a
sequence of rules in the ATL language (R2ML2WSDL.atl). These rules use additional helpers in
defining mappings. Each rule in the ATL has one input element (i.e., an instance of a metaclass
from a MOF based metamodel) and one or more output elements. ATL, in fact, instantiate the
WSDL metamodel (the M2 level), i.e. it creates WSDL models (the M1 level). It is important
to point out that M1 models (both source and target ones) must be conformant to their M2
metamodels. This principle is well-known as metamodel-driven model transformations [Bez01].

Step 4. The step is the transformation from the WSDL model to the WSDL XML format.
This transformation is done by using the ATL transformation named WSDL2WSDLxML.atl.
The output file is a regular WSDL XML-based document that allows service authors to provide
crucial information about the service so that others can use it.

We should also point out that all transformations mentioned are implemented in both direc-
tions, so that one can transform from R2ML XML to WSDL XML and way back from WSDL
XML to R2ML XML, and thus we can reversely engineer existing Web services into reaction
rules of the R2ML and URML.

1.7 Conclusion

In this report, we have proposed the use of a UML-based rule modeling language for modeling
Web services. Building the URML closely related to the R2ML Web rule language, we have
provided a representation completely independent of Web service and MEP models. This should
enable for transformation of the business logics that Web services are built on onto other rule
languages such as F-Logic or Jess. This means that rule-based business models can be shared
and reused regardless of the target technology on which they will be implemented. Moreover,
developers do not have to focus on low level Web service implementation details, but rather on
the description of business process by using reaction rules. Once they develop their business
models in the URML, they can generate Web services by using transformations we proposed
between R2ML and WSDL. Since URML is based on the UML, it also allows for using UML
classes for modeling business vocabularies, and thus generating XML Schema types based on
vocabulary concepts as well as interoperating with business vocabularies or ontologies.

This approach can be used not only when modeling business processes from scratch and
then generating new Web services, but it can also be applied to re-engineering the existing
Web services and update them with new business rules. This is possible, since our approach
contains two way transformations between WSDL and URML reaction rules. The novelty of

12

Figure 1.12: The model transformations between the R2ML metamodel and the WSDL meta-
model

our approach over other ones is that we propose the use of business rules rather than workflow
models and languages such as BPMN or BPEL4WS. Developing workflow models can be hard,
since one has to grasp and predicts all the aspects that might appear in the business process
execution. By using rules, workflows can automatically be generated based on the interpretation
of business, which allows for easier updating business policies and consequently Web services.

In the future, we plan to finalize our implementation of transformation chain between R2ML
and WSDL with the main emphasis on the full support of generation of XML schema types from
UML class models. This means not just types captured by message types, but also all other
types that are used in Web service message types. This is, of course, a natural point where we
consider a further extension of XML types generated to be annotated with vocabulary concepts.
That is, we will extend our approach on semantic Web services (e.g., WSDL-S or WSMO), where
we will also additionally investigate the use of pre- and post-conditions of reaction rules.

13

14

Chapter 2

Other Improvements

Here is a list of minor improvements that have been made to Strelka since it was described in
Deliverables [WL06a] and [WL06b]:

1. URML rules are built on top of UML vocabularies. Rules serialization into R2ML XML
by Strelka has been described in [WL06b]. Current version of Strelka serializes UML
vocabularies into R2ML vocabularies. Many rule languages (for instance, JBoss Rules,
F-Logic) need vocabularies for their rule, therefore XML code generation for vocabularies
is an important rule modeling issue for some rule platforms.

2. Improved support of OCL syntax in URML filter expressions (for instance, support of
operation calls).

3. A number of bug fixes has been made in R2ML XML code generation and in parsing of
filter expressions.

Our preliminary plan for further work includes:

1. Strelka as an Eclipse Plugin and, possibly, as an independent application, based on Eclipse
Graphical Modeling Framework (GMF). Shift to the Eclipse platform will spread the use of
URML among large community of Eclipse users and will make the tool more user-friendly,
since Eclipse has more advanced GUI and a lot of additional features (for instance, more
reliable OCL parser, then the one currently used in Strelka).

2. Further improvements of rule-based web services modeling.

3. Integration of Strelka with R2ML translators and the R2ML verbalizer.

15

16

Bibliography

[atl] ATLAS transformation language (ATL). http://www.sciences.univ-
nantes.fr/lina/atl.

[Bez01] J Bezivin. From object composition to model transformation with the MDA. In
In Proc. of the 39th Int. Conf. and Exh. on Tech. of OO Lang. and Sys., pages
350–355, 2001.

[BHLJ04] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying MDA approach for
Web Service Platform. In Proc. of the 8th IEEE Int. Conf. on Enterprise Distributed
Object Computing Conf., pages 58–70, 2004.

[GJH05] R. Gronmo, M.C. Jaeger, and H. Hoff. Transformations between UML and OWL-S.
In Proc. of the 1st European Conf. on Model Driven Architecture - Foundations and
Applications (ECMDA-FA), Nuremberg, Germany, pages 269–283, 2005.

[JG03] J. Jovanovic and D. Gasevic. XML/XSLT-based knowledge sharing. Expert Systems
with Applications, 29(3):535–553, 2003.

[LW06a] S. Lukichev and G. Wagner. Uml-based rule modeling with fujaba. In Holger Giese
and Bernhard Westfechtel, editors, Proceedings of the 4th International Fujaba Days
2006, University of Bayreuth, Germany, pages 31–35, 2006.

[LW06b] S. Lukichev and G. Wagner. Visual rules modeling. In Irina Virbitskaite and Andrei
Voronkov, editors, Proceedings of the 6th International Conference Perspectives of
Systems Informatics, volume 4378 of Lecture Notes in Computer Science, pages
467–673. Springer, 2006.

[MdSM05] Colleen McClintock and Christian de Sainte Marie. ILOG’s position on rule lan-
guages for interoperability. In Rule Languages for Interoperability. W3C, 2005.

[MGG+06] M. Milanovic, D. Gasevic, A. Giurca, G. Wagner, and V. Devedzic. On interchang-
ing between owl/swrl and uml/ocl. In Proceedings of the OCLApps Workshop, pages
81–95, Genova, Italy, 1-6 October 2006 2006.

[MM03] J. Miller and J. Mukerji. MDA guide, Ver. 1.0. Technical report, OMG, 2003.

[rif] RIF Use Cases and Requirements. W3C Working Draft 10 July 2006.
http://www.w3.org/TR/rif-ucr.

17

[Ros03] R. G. Ross. Principles of the Business Rule Approach. Addison-Wesley, 1nd edition
edition, 2003.

[Sch06] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer,
39(2):25–31, 2006.

[soa] SOAP Ver. 1.2 Part 1: Messaging Framework. W3C Recommendation 24 June
2003. http://www.w3.org/TR/soap12-part1/.

[TG05] J. T. Timm and G. C. Gannod. A Model-Driven Approach for Specifying Semantic
Web Services. In Proc. of the IEEE international Conf. on Web Services, pages
313–320, 2005.

[UDD04] UDDI302. UDDI Ver. 3.0.2. Technical report, OASIS, 2004.
http://uddi.org/pubs/uddi v3.htm.

[VdCM05] Juan M. Vara, Valeria de Castro, and Esperanza Marcos. WSDL Automatic Gen-
eration from UML Models in a MDA Framework. Int. Journal of Web Services
Practices, 1(1-2):1–12, 2005.

[WGL05] G. Wagner, A. Giurca, and S. Lukichev. R2ml: A general approach for marking up
rules. In Dagstuhl Seminar Proc. 05371, 2005.

[WGL06a] G. Wagner, A. Giurca, and S. Lukichev. A usable interchange format for rich syntax
rules. integrating ocl, ruleml and swrl. In Proceedings of the Reasoning on the Web
Workshop, Edinburgh, Scotland, May 2006.

[WGL06b] Gerd Wagner, Adrian Giurca, and Sergey Lukichev. Language improvements and
extensions. Deliverable i1-d8, REWERSE IST 506779, March 2006.

[WL06a] G. Wagner and S. Lukichev. Strelka - a visual rule modeling tool. Technical report,
REWERSE IST 506779, March 2006.

[WL06b] G. Wagner and S. Lukichev. Xml code generation component for the i1 rule mod-
eling tool. Technical report, REWERSE IST 506779, September 2006.

[WSD] WSDL20. Web Services Description Language (WSDL) Ver. 2.0 Part
1: Core Language. W3C Candidate Recommendation 27 March 2006.
http://www.w3.org/TR/2006/CR-wsdl20-20060327.

18

	Modeling Web Services with Strelka
	Introduction
	UML-based Rules Modeling
	Web Services Artifacts in the URML
	Modeling WSDL MEPs with URML
	In-Out
	In-Out pattern with out-fault
	In-Out with in-fault

	Robust In-Only

	R2ML as an Interchange Format
	Generating Web service descriptions from URML models
	Conclusion

	Other Improvements

