
I2-D6-1

On Interoperable Trust Negotiation Strategies

Project number: IST-2004-506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document R (report)
Dissemination level: PU (public)
Document number: IST506779/Naples/I2-D6-1/D/PU/a0.0
Responsible editor(s): P. A. Bonatti
Contributing participants: Naples
Contributing workpackages: I2
Contractual date of delivery: N.A.
Actual date of delivery: 6 March 2006

Abstract
Among the many works on trust negotiation, only a few deal with negotiation strategies. These works
are tailored to specific frameworks—so their results cannot be extended to competing approaches —and
introduce assumptions that cannot be always guaranteed, such as peer compliance with given rules, that
are needed for interoperability. In this paper we identify some guidelines for designing “good” (inter-
operable) trust negotiation strategies for selfish agents under the assumption that peers are interested
in making transactions succeed. Moreover, since our analysis is based on an abstract framework, the
guidelines apply to a wide range of policy languages and negotiation frameworks, including Protune,
PeerTrust, Trustbuilder, and the RT family.

This report generalizes the theoretical framework introduced in deliverable I2-D6 and refines and
extends its results. It has been published in the IEEE conference Policy 2007.

Keyword List
Interoperable strategies, Selfish agents, Cooperative agents, Domination

c© REWERSE 2007.



On Interoperable Trust Negotiation Strategies

S. Baselice, P. A. Bonatti, M. Faella

1 Universit̀a di Napoli Federico II
Email: {baselice,bonatti,mfaella }@na.infn.it

4 March 2007

Abstract
Among the many works on trust negotiation, only a few deal with negotiation strategies. These works
are tailored to specific frameworks—so their results cannot be extended to competing approaches —and
introduce assumptions that cannot be always guaranteed, such as peer compliance with given rules, that
are needed for interoperability. In this paper we identify some guidelines for designing “good” (inter-
operable) trust negotiation strategies for selfish agents under the assumption that peers are interested
in making transactions succeed. Moreover, since our analysis is based on an abstract framework, the
guidelines apply to a wide range of policy languages and negotiation frameworks, including Protune,
PeerTrust, Trustbuilder, and the RT family.

This report generalizes the theoretical framework introduced in deliverable I2-D6 and refines and
extends its results. It has been published in the IEEE conference Policy 2007.

Keyword List
Interoperable strategies, Selfish agents, Cooperative agents, Domination



Contents

1 Introduction 1

2 An abstract negotiation framework 2
2.1 The policy language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Negotiations and strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Classifying and comparing peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Properties of negotiation frameworks 6
3.1 Failure criteria and termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 An operational criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Frameworks with termination criterionF1 . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Frameworks with termination criterionFk, k > 1 . . . . . . . . . . . . . . . . . . . . 8
3.5 Interacting with monotonic servers:(k − 2)-cautiousness . . . . . . . . . . . . . . . . 9
3.6 Weak cautiousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 More on termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Summary and perspectives 14

A Theorem proofs 17

iii



1 Introduction

Trust negotiation [8, 7, 11, 10, 9, 3, 6, 5, 1, 4] is an approach to security and privacy preserving inter-
actions in open networked environment such as the web. In such scenarios peers often interact without
any previous relationship and without sharing any common security domain. As a consequence, tradi-
tional authentication is sometimes undesirable and frequently impossible. Access control policies and
privacy policies are rather based on userproperties, possibly including user identity as a special case.
Such properties can be encoded in various ways, including digital credentials, unsigned declarations,
and reputation measures [2].

Negotiations arise because peers incrementally exchange such pieces of information to achieve a
mutual level of trust that suffices to complete a transaction. To communicate security and privacy re-
quirements, peers exchange also suitable subsets of their policies. Parts of the policies are not disclosed
because they are irrelevant to the current transaction. Other fragments of the policies may be protected
because the policies themselves may be sensitive [3, 4, 12]. In some approaches, policy filtering may be
a quite articulated process [4].

A crucial problem in automating trust negotiations is the choice of appropriate negotiation strategies.
Some of the major related issues concern:

• Interoperability: Protecting policies means that the requirements to be fulfilled are not entirely
published. Consequently, a peer may fail to disclose the right credentials because it does not
realize that those credentials would grant the desired resource. Then the question is: to what extent
policy hiding may affect negotiation success? Which strategies yield a successful negotiation
whenever the policies of the involved peers permit it?

• Confidentiality: Is it possible to minimize the amount and the sensitivity of the information re-
leased during a negotiation?

While all works on TN specify the space of possible choices at each negotiation step, only a few
works deal with strategies.

In [13, 12], strategies and interoperability are studied in the framework of the Trustbuilder proto-
cols. A maximal family of mutually interoperable strategies—called DTS family—is introduced, which
is closed under so-calledhybrid strategiesand includes two strategies of practical interest. The nice
properties of the DTS family follow from two important assumptions: first, all the policy information
that can be released at a given negotiation step is immediately released; second, when a peer does not
want to disclose a credential, the peer declares it explicitly. These assumptions give peers a relatively
accurate view of the available options for completing the negotiation. Unfortunately, in some scenarios
there may be no guarantee that the peers actually meet these two assumptions.

In this work we aim at a general analysis of interoperability issues, independent from any particu-
lar policy language to make our results applicable to a wide range of frameworks. Moreover, we are
interested in strategies that do not necessarily meet the assumptions underlying the DTS family. In
our framework, peers are motivated to release information only by their interest in making transactions
succeed (roughly speaking, servers want to publish and clients want to access). We formalize such mo-
tivation through a notion ofcooperativenessbased on the game-theoretic notion of dominance. One of
our main goals is understanding the minimal requirements on strategies that follow from cooperative-
ness. In other words, rather thandesigninga family of strategies that work well together (as in [13, 12]),
wederivestrategies from the motivations that drive peers.

Unfortunately, almost no positive result can be proved in a completely general setting, because un-
restricted peers can behave in the strangest possible ways. For this reason—after some general negative
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results—we shall focus on a particular class of scenarios of practical interest, where servers adoptmono-
tonic strategies. Such peers generalize typical commercial servers such that:

• their credentials can be freely published, because they certify properties that may attract cus-
tomers, such as seal programs membership (Better Business Bureau, ETrust, etc.) and quality
certifications;

• the more information is released by a client, the larger is the portion of policy disclosed by the
server. Intuitively, a better characterization of the client lets the server present a wider range of
choices to get the desired resource.

Accordingly, monotonic strategies disclose more information to peers that release more information
about themselves.

On the contrary, clients—that are often requested to disclose sensitive user information—tend to
adopt non-monotonic strategies. Knowing more about the server’s policy means having a wider range
of opportunities for fulfilling that policy. In general, a wider range of choices lets the client satisfy the
policy by releasing less sensitive credential sets. So, given more knowledge about the server’s policy, a
client may decide to release a completely different set of information items.

Still, a client may adopt a (nonmonotonic) strategy which iscooperativewith respect to monotonic
strategies, in order to increase the chances of successful transactions with monotonic peers.

Under this assumption, we can derive the properties of the strategies that clients and monotonic
servers should adopt in order to be cooperative (and possibly interoperable). Such properties provide
guidelines to implement concrete trust negotiation strategies in a variety of frameworks.

The paper is organized as follows: In the next section we define the abstract negotiation framework.
In Section 3 we prove our results. Section 3.3 deals with transactions that fail as soon as one peer
sends avacuousmessage, that is, a message that carries no new information. Section 3.4 deals with
transactions that fail afterk > 1 consecutive vacuous messages. To strengthen our results, we then
consider monotonic servers. Section 3.5 characterizes the clients that are cooperative with monotonic
servers, and Section 3.6 characterizes servers that are cooperative to such clients. A comparison of some
termination criteria (Section 3.7) and some conclusions (Section 4) complete the paper.

To enhance readability, some proofs have been moved to the appendix.

2 An abstract negotiation framework

2.1 The policy language

Our negotiation framework abstracts away the details of the policy specification language and its se-
mantics. In this way, our results apply to many such languages.

We assume as languageL any set, whose members will be calledpolicy items. Intuitively, policy
items comprise both policy rules (e.g., logic programming rules such as those adopted in [3, 5, 1, 4]),
digital credentials, declarations [3, 4], and any resource and information that can be exchanged during
negotiations.

By releasing a set of policy itemsm1 to a peerA, a peerB may letA disclose a set of itemsm2.
In this case we say thatm1 and the policy ofA togetherunlockm2. Accordingly, the semantics ofL is
modelled by a relation

unlocks ⊆ ℘(L)× L

with the following properties:
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Monotonicity: if P1 ⊆ P2 thenP1 unlocks p impliesP2 unlocks p.

Expressiveness:for all q ∈ L there exists a finiteP ⊆ L such thatP unlocks q.

The former intuitively says that as more information becomes available the mutual level of trust in-
creases, and hence more items can be released (although a negotiation strategy may decide not to re-
lease them all). This property derives from the monotonicity requirement discussed in [7]. The second
property means that the language is rich enough to define conditions for releasing any possible item (be
it a rule, a credential, or a declaration). It is satisfied by many concrete frameworks, including [12, 5, 4].

Relationunlocks does not only model access control decisions. In some frameworks, a credential
can be released only if the access to a requested resource explicitly depends on the credential (i.e., the
credential should berelevantto the current negotiation). Relevance can be modelled viaunlocks, too. In
that case,R unlocks p intuitively means that (some of) the items inR (the information released during
negotiation) satisfy the access control policy for itemp andp is relevant to the current negotiation (i.e.,
the elements ofR show a connection betweenp and a requested resource).

Definition 2.1 A policy is a finite subset ofL.

What we call “policy” for simplicity actually covers also the portfolio of credentials and decla-
rations [10, 3, 5, 4]. So, intuitively, a policy is all the information that a server (or a client) has for
negotiating a resource. In some concrete frameworks,L is a logic programming language, and policies
are equivalent to Datalog programs.

2.2 Negotiations and strategies

Definition 2.2 A messageis a finite subset ofL.

By definition 2.2, both messages and policies have the same structure. Messages represent information
that is exchanged between a client and a server negotiating a resource. The client’s request for a resource
is itself a message.

We shall denote byMsgs the set of all messages. Given a (possibly infinite) message sequence
µ = µ0µ1 . . . µi . . . we denote by|µ| the lengthof µ (|µ| ∈ N ∪ {∞}). Each prefixµ′ = µ0 . . . µj of µ
will be denoted byµ≤j or µ<j+1. We say thatµ extendsµ′ if µ′ is a prefix ofµ.

Definition 2.3 A release strategyis a functionR : Msgs∗ → Msgs.

Given a sequence of messages, a release strategy prescribes the next “move” of apeer.

Definition 2.4 A peer (or agent) is a pairA = (PA, RA), wherePA is a policy andRA is a release
strategy.

Definition 2.5 A transactionis a structureT = 〈A,B, res, F 〉 where:

• A andB are peers, called theclient and theserverof T , respectively;A andB are also called the
peersinvolvedin T ;

• res ∈ L models theinitial requestthatA submits toB; res must belong toPB ;

• F ⊆ Msgs∗ is a failure criterion; informally, it contains all the sequences of messages corre-
sponding to a failed negotiation.
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The second condition rules out some trivial transactions and makes it possible to simplify notation
and theorem statements. The rationale behind it is that servers typically publish (possibly through a
broker) the list of services and resources they deploy. Clients ask only for such services and resources.
The services and resources published by a server are not completely unreachable, that is, they can be
obtained by fulfilling suitable conditions.

Each transactionT = 〈A,B, res, F 〉 induces anegotiationnego(T ) ∈ Msgs∗ ∪ Msgsω, that is a
message exchange between the peersA andB.

Definition 2.6 Let T = 〈A,B, res, F 〉 be a transaction. Thenegotiationinduced byT , nego(T ), is the
finite or infinite sequence of messagesµ = µ0µ1 . . . µk . . . that satisfies the following conditions:

• µ0 = {res}; this message is the initial request thatA sends toB;

• for all eveni < |µ|, µi+1 = RB(µ≤i);

• for all oddi < |µ|, µi+1 = RA(µ≤i);

• for all i ≤ |µ| such thati ∈ N, if res ∈ µi or µ≤i ∈ F , thenµ = µ≤i (i.e., the negotiation is either
infinite, or it terminates as soon as some termination condition is met).

For all message sequencesµ (including negotiations),released(µ) =
⋃|µ|

i=1 µi shall denote the set of all
policy items released byµ (note that the request messageµ0 is skipped). For all policiesP , let

released(P, µ) = P ∩ released(µ).

Analogously, letunlocked(P, µ) denote the items ofP unlocked by the items released byµ:

unlocked(P, µ) = {p | p ∈ P and(P ∪ released(µ)) unlocks p} .

A negotiation succeeds if the initial request is eventually released by the server. Formally:

Definition 2.7 A negotiationnego(T ) is successfulif res ∈ released(nego(T )) andfailed otherwise. A
transactionT is successfulif nego(T ) is, andfailed otherwise.

2.3 Classifying and comparing peers

Peers can be classified according to the properties of their release strategies. A peerA is:

Truthful: if for all µ ∈ Msgs∗, RA(µ) ⊆ PA. Informally, truthful peers release only items they actually
have. If an item represents a credential, then this assumption can be enforced via cryptographic
techniques (it simply means that credentials are unforgeable). A similar consideration applies
when the item represents the policy rule of a third party and the rule is signed (cf. [5]). If an item
represents a local policy rule, then there may be no guarantee that the item is actually part ofA’s
policy. PeerA might publish the item just to encourage other peers to release their information to
satisfy the fake policy. However, it is easy to detect that a rule is not applied after its preconditions
have been satisfied; reputation-based mechanisms (coupled with cautious trust-based protection
of sensitive items) may reduce and confine the effectiveness of these attacks.

Secure: if for all µ ∈ Msgs∗, RA(µ) ⊆ unlocked(PA, µ). That is, only unlocked information is
released.
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Monotonic: if for all message sequencesµ1 andµ2, released(µ1) ⊆ released(µ2) impliesRA(µ1) ⊆
RA(µ2)∪released(µ2). This means that the more information is released during a negotiation, the
larger the set of items released byA at the next step. The termreleased(µ2) is needed because in
general, for efficiency, policy items may be sent only once during a negotiation and not repeated
again and again in each message.

A peer iscanonicalif it is both truthful and secure.
We adopt the following notion of framework to focus on particular classes of peers and failure citeria.

Definition 2.8 A negotiation frameworkis a pairΨ = (C, F ) whereC is a class of peers andF is a
failure criterion. AΨ-peer is a member ofC. A Ψ-transaction is anyT = 〈A,B, res, F ′〉 such thatA
andB belong toC andF ′ = F . The framework iscanonicalif C is a class of canonical peers.

Next, we formalize the assumption that, other things being equal, peers are interested in achieving a
successful negotiation. To this purpose, we employ the game-theoretic notion ofdomination.

Let val(T ) = 1 if T is successful andval(T ) = 0 otherwise. For allT = 〈A,B, res, F 〉 let
T [A′/A] = 〈A′, B, res, F 〉 andT [B′/B] = 〈A,B′, res, F 〉.

Definition 2.9 A peerA Ψ-dominatesa peerA′ w.r.t. a class of peersC if

• A andA′ have the same policyP ,

• for all B ∈ C and allΨ-transactionsT involving A andB, val(T [A′/A]) ≤ val(T ),

• for someB ∈ C and someΨ-transactionT involving A andB, val(T [A′/A]) < val(T ).

Informally, A dominatesA′ if they have the same policy and the strategy ofA is strictly better than the
strategy ofA′ (in terms of the successful transactions it yields). Now we can define cooperative peers
as those whose strategy maximizes the set of successful transactions:

Definition 2.10 A peerA is Ψ-cooperativew.r.t. a class of peersC, if no A′ Ψ-dominatesA in C. When
C comprises allΨ-peers, we simply say thatA is Ψ-cooperative.

The notion of cooperativeness does not enjoy many closure properties. SupposeA is cooperative w.r.t.
a classC. It is not hard to see that ifC ⊆ C′, thenA is not necessarily cooperative w.r.t.C′ (roughly
speaking,A might not interact optimally with someB ∈ C′ \ C). Similarly, if C ⊇ C′, thenA is not
necessarily cooperative w.r.t.C′ (someA′ might dominateA overC′, and give worse results interacting
with someB ∈ C \ C′). We only have:

Proposition 2.11 If A is cooperative w.r.t.C1 andC2, thenA is cooperative w.r.t.C1 ∪ C2.

The proposition is not valid if we replace∪ with ∩.

2.4 Interoperability

Informally, two peers are interoperable if they can successfully interact, provided thattheir policies
allow it.

The message sequences defined below capture what the policies allow to disclose: Each message
contains only information unlocked by the previous messages, so the policies are satisfied. Note that
in general a strategy may be more restrictive. For example, it may release an item only if that item has
been explicitly requested (no blind disclosures to meet hidden policies).
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Definition 2.12 Let PA, PB be policies andres be a request. Adisclosure sequencefor PA, PB andres
is aµ ∈ Msgs∗ such that

• µ0 = {res},

• for all eveni such that0 < i ≤ |µ|, µi ⊆ unlocked(PA, µ<i),

• for all oddi such thati ≤ |µ|, µi ⊆ unlocked(PB , µ<i).

A successful disclosure sequenceµ for PA, PB andres is a disclosure sequence s.t.res ∈ released(µ).
A successful disclosure sequence forT = 〈A,B, res, F 〉 is a successful disclosure sequence forPA, PB

andres.

Now we are ready to formulate the notion of interoperability in terms of our framework.

Definition 2.13 Two peersA andB areΨ-interoperableif for all Ψ-transactionsT involving A andB,
T has a successful disclosure sequence only ifT is successful.

We shall sometimes omitΨ when it is clear from the context.

Remark 2.14 The notion of disclosure sequence and a similar formalization of interoperability have
been introduced in [13, 12]. However, in [13, 12], the notion of interoperability is not always symmetric.
It becomes symmetric in strategyfamilies.

In canonical frameworks, interoperability is stronger than cooperativeness.

Theorem 2.15 Let Φ be any canonical framework. For all classes of peersC, if A is Φ-interoperable
with all peers inC, thenA is Φ-cooperative w.r.t.C.

3 Properties of negotiation frameworks

The following terminology will be useful in the proof of our results. Given a transactionT with client
A and serverB, for all prefixesµ≤i of nego(T ), let turnT (µ≤i) = B if i is even, andturnT (µ≤i) = A
if i is odd. We say thatµ′ is anA-prefixof µ if µ′ is a prefix ofµ andturnT (µ′) = A. We say thatT
visitsa sequence of messagesµ if µ is a prefix ofnego(T ).

3.1 Failure criteria and termination

Consider the following family of failure criteria. For allk > 0, let

Fk =
{
µ = µ0...µn | µn−k+1 ∪ ... ∪ µn−k+n ⊆ released(µ)

}
.

Intuitively, Fk stipulates that a negotiation fails as soon as the peers exchangek messages that bear no
new information, that is,k consecutivevacuous messages:

Definition 3.1 Let µ = µ0µ1...µk be a negotiation w.r.t. a transactionT . We say that a messagem is
vacuousw.r.t. µ (or simplyvacuousif there is no ambiguity) ifm ⊆ released(µ).

Thevacuous tailof µ is the longest suffix ofµ consisting only of vacuous messages.

In [13, 12] the termination criterion isF1. The same authors considerFk with k > 1 in an unpublished
manuscript. A nice property of this family of failure criteria is that negotiations terminate under a mild
assumption.
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Lemma 3.2 For all transactionsT = 〈A,B, res, F 〉, if A andB are truthful andF = Fk, thennego(T )
is finite.

We shall focus on the negotiation frameworksΨk = (C, Fk), whereC is the set of all canonical
peers. Note that ifk = 0, then all sequences are failed.

3.2 An operational criterion

We are going to prove that cooperativeness implies some operational constraints on strategies, that we
formalize by the notion ofk-cautiousnessbelow. In particular,k-cautiousness means that as failure is
getting closer, a peer must release some of its unlocked information (if any). Such operational con-
straints constitute guidelines for designing concrete strategies. We shall prove that in a large class of
practically interesting scenarios, satisfying the operational constraints is a necessary and sufficient con-
dition for a strategy to be cooperative, as well as interoperable.

Definition 3.3 Let n ∈ N andν ∈ Msgs∗. A peerA is n-cautious afterν if for all transactionsT
involving A and all sequencesµ such that:

i. µ is anA-prefix ofnego(T ) extendingν,

ii. µ has a vacuous tail whose length isn or greater,

it holds thatunlocked(PA, µ) * released(µ) impliesRA(µ) 6⊆ released(µ) (i.e.,RA(µ) is not vacuous
if at least one unlocked unreleased item exists).

We say thatA is n-cautiousif it is n-cautious after the empty sequence.

In other words, aftern vacuous messages, ann-cautious peer is forced to send a non-vacuous message
(if possible).

3.3 Frameworks with termination criterion F1

In this section, we consider the negotiation frameworkΨ1. Recall thatΨ1 prescribes that a negotiation
is failed as soon as a vacuous message is sent by either peer.

The first result states that peers that areΨ1-cooperative do not send vacuous messages unless they
have no other choice.

Theorem 3.4 If A is Ψ1-cooperative, thenA is 0-cautious in everyΨ1-transaction whereA is the
client.

The same conclusion holds ifA is the server. In that case,A is dominated by the serverA′ that, after
the prefixµ, starts to release all unlocked information. We thus have the following.

Theorem 3.5 If A is Ψ1-cooperative, thenA is 0-cautious in everyΨ1-transaction whereA is the
server.

Next, we show that two peers that are bothΨ1-cooperative need not be interoperable.
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Example 3.6 Consider peersA andB, wherePA = {p, q} andPB = {res}. Suppose that∅ unlocks p,
∅ unlocks q, andq is necessary and sufficient to unlockres (i.e.,X unlocks res if and only if q ∈ X). The
release strategyRA is such thatA releases firstp and thenq. The release strategyRB simply releases
res as soon as it is unlocked. Such peers are canonical.

For the transactionT = 〈A,B, res, F1〉, we have thatT has a successful disclosure sequence (such
as{res}∅{q}{res}), butT is failed.

PeerB is obviously cooperative. To see that alsoA is cooperative, compare it with the peerA′ that
has the same policy asA, but whose release strategy chooses to release bothp andq as soon as possible
(at step 2). It turns out thatA′ does not dominateA, since there is a serverB′ that prefersA′ overA: it
is the server that releasesres at step 5 (and releases irrelevant items in the meanwhile).

Finally, we show that peers that areΨ1-cooperative w.r.t. monotonic peers always release all unlocked
information. Clearly, this is an undesirable property that renders release strategies useless.

Theorem 3.7 If A is Ψ1-cooperative w.r.t. monotonic peers, then for allΨ1-transactionsT whereA is
the client and the server is monotonic, and for allA-prefixesµ of nego(T ), we haveunlocked(PA, µ) ⊆
released(µ) ∪RA(µ).

3.4 Frameworks with termination criterion Fk, k > 1

In this section, when not explicitly stated otherwise, we consider an arbitrary negotiation framework
Φ = Ψk, with k > 1.

In general, if peers have no special property besides cooperativeness, then we can only prove a
limited set of results. We start with a useful guarantee. Suppose the server is cooperative; if the client
succeeds in unlocking the resource, then the server will release it (although this might not happen
immediately).

Lemma 3.8 Let C be any class of peers. For allΦ-transactionsT = 〈A,B, res, Fk〉 such that (i)A
belongs toC, (ii) B is cooperative w.r.t.C, and (iii) res ∈ unlocked(PB , nego(T )), we have thatT is
successful.

From an operational point of view (cautiousness), cooperativeness requires that peers make a “last
minute” attempt at preventing failure, that is, they must release some unlocked item (if any) if the
negotiation is just one step away from failure. This property is formalized by the next two lemmas.

Theorem 3.9 If A is Φ-cooperative, thenA is (k − 1)-cautious in everyΦ-transaction.

Unfortunately, the property of being(k − 1)-cautious in itself is not very strong. It does not en-
sure cooperativeness nor interoperability. The class of(k − 2)-cautious peers enjoys a number of nice
properties, instead.

We start their analysis with a technical lemma, stating that if two peers are(k − 2)-cautious from
some step on, then the two peers are interoperable in a restricted sense, that is, for the particular initial
requestres that originates the negotiation.

In the following, when the context clearly states thatµ is a prefix of nego(T ), where T =
〈A,B, res, F 〉, we adopt the abbreviation:

unlocked(µ) = unlocked(PA, µ) ∪ unlocked(PB , µ).
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Lemma 3.10 For all Φ-transactionsT = 〈A,B, res, Fk〉 and all prefixesν of nego(T ) such that the
last message ofν is not vacuous, ifA and B are (k − 2)-cautious afterν and T has a successful
disclosure sequence, thenT is successful.

Proof: Suppose not, that is, for someT = 〈A,B, res, Fk〉 and some prefixν of nego(T ), such thatA
andB are(k − 2)-cautious afterν andT has a successful disclosure sequenceµ, T is not successful.
We shall derive a contradiction.

Let ν′ = nego(T ). By Lemma 3.2,ν′ is finite. Suppose its length isn. Sincek > 1, ν′n−1 andν′n
must be vacuous, and hencereleased(ν′<n−1) = released(ν′).

Clearly, the successful sequenceµ releases some item that does not belong toreleased(ν′<n−1).
So, let i be the least integer such that there existsp ∈ µi \ released(ν′<n−1). Sincei is minimal,
released(µ<i) ⊆ released(ν′<n−1). Moreover, by definition of disclosure sequence,p must belong to
unlocked(µ<i). Then, by monotonicity ofunlocks, p ∈ unlocked(ν′<n−1). But thenp should belong
to eitherν′n−1 or ν′n, becauseA andB are(k − 2)-cautious at that point. Consequently,p should be a
member ofreleased(ν′) and hence ofreleased(ν′<n−1): a contradiction.

As an immediate consequence, we have that(k−2)-cautious peers can interoperate with each other:

Theorem 3.11 If A andB are (k − 2)-cautiousΦ-peers, thenA andB are interoperable.

While cooperative peers are not necessarily(k − 2)-cautious, in general, we shall see in the next
section that(k − 2)-cautiousness is essential in order to interact with monotonic servers.

3.5 Interacting with monotonic servers:(k − 2)-cautiousness

In this section we still assume that the underlying negotiation framework is someΦ = Ψk with k > 1.
We start this section with a technical lemma. Intuitively, it proves that monotonic peers “appreciate”

that the other peers release some information, to the extent that within two steps from failure, a vacuous
message may cause failure while a non-vacuous message may lead to success.

Lemma 3.12 LetT be aΦ-transaction involving peersA andB. Supposenego(T ) has a prefixµ with
a (k − 2) steps long vacuous tail and such thatturnT (µ) = A. Then there exists a monotonicΦ-peer
B′ such that

1. If RA(µ) is vacuous, thenT [B′/B] fails;

2. If RA(µ) is not vacuous andRA(µ · σ) = unlocked(PA, µ · σ), for all σ ∈ Msgs2, thenT [B′/B]
succeeds.

Now we can derive an important operational guideline: In order to be cooperative with monotonic
peers, it is necessary and sufficient that the strategy is(k − 2)-cautious. We start by proving necessity.

Theorem 3.13 If A is Φ-cooperative w.r.t. monotonic peers, thenA is (k − 2)-cautious.

We are only left to prove that(k − 2)-cautiousness suffices to be cooperative with monotonic peers.

Theorem 3.14 If a peerA is (k − 2)-cautious thenA is Φ-cooperative w.r.t. monotonic peers.
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Proof: Suppose not. Then there exist a(k − 2)-cautious peerA, a monotonicΦ-peerB, and aΦ-
peerA′ such that some transactionT involving A andB fails, but T [A′/A] is successful. Letσ =
nego(T [A′/A]) be the successful negotiation andφ = nego(T ) be the failed one. Clearly,released(σ)\
released(φ) 6= ∅ (it contains at leastres), and hence there must be a positive indexi such thatσi 6⊆
released(φ).

Let j be the least positive index such thatσj 6⊆ released(φ), and letp be any item such thatp ∈
σj \ released(φ). We havep ∈ unlocked(σ<j), because bothA′ andB areΦ-peers (and hence secure).
This impliesp ∈ unlocked(φ), becauseunlocks is monotonic andreleased(σ<j) ⊆ released(φ) (by the
minimality of j).

Now, if p ∈ PA, then the last message ofA in φ should not have been empty, because there would be
at least one unlocked and unreleased item inA’s policy (i.e.,p) andA is (k−2)-cautious. Thenp ∈ PB

must hold. Infact, sinceB is monotonic andreleased(σ<j) ⊆ released(φ) = released(φ≤|φ|−2) then we
have thatRB(σ<j) ⊆ (RB(φ≤|φ|−2)∪ released(φ≤|φ|−2)). So, it should hold thatp ∈ (RB(φ≤|φ|−2)∪
released(φ≤|φ|−2)) and thenp ∈ released(φ). A contradiction.

Unfortunately, being(k− 2)-cautious is not sufficient to beinteroperablewith all monotonic peers,
as the following simple example shows.

Example 3.15 Consider peerB = (PB , RB), such thatPB = {res}, andRB(µ) = ∅ for all µ ∈
Msgs∗. Notice thatB is canonical and monotonic. Assume that∅ unlocks res. For all peersA and
all k > 0, the transactionT = 〈A,B, res, Fk〉 admits the successful disclosure sequence{res}{res}.
However,T is failed due to the restrictive release strategy ofB. Thus,A andB are not interoperable.

For this reason we are going to put some restrictions on servers and investigate what happens when they
are cooperative w.r.t. clients. But first we state a nice side effect of our approach: If two clients are
cooperative with monotonic servers, then they are also interoperable with each other.

Corollary 3.16 If A and B are Φ-cooperative w.r.t. monotonic peers, thenA and B are Φ-
interoperable.

3.6 Weak cautiousness

Next we focus on the strategies that should run on a monotonic server, assuming we only require the
server to be cooperative with respect to the clients that are in turn cooperative with monotonic servers
(and hence(k − 2)-cautious). The first result tells that in this context, every cooperative strategy guar-
antees interoperability.

Theorem 3.17 If A is Φ-cooperative w.r.t.(k − 2)-cautious peers, thenA is Φ-interoperable with all
(k − 2)-cautious peers.

Proof: Suppose not. Then there exists a transactionT = 〈A,B, res, Fk〉 (or T = 〈B,A, res, Fk〉)
involving A and some(k − 2)-cautious peerB s.t. there is a successful disclosure sequence forA, B
andres butval(T ) = 0.

Let A′ = (PA, RA′) be the peer defined by

RA′(σ) = unlocked(PA, σ).

By construction,A′ is (k−2)-cautious. Our aim is to derive the contradiction thatA′ dominatesA w.r.t.
(k − 2)-cautious peers.
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By Theorem 3.11,A′ andB are interoperable and since, by hypothesis, there exists a successful
disclosure sequence forA, B andres, there also exists a successful disclosure sequence forA′, B and
res. Thus,val(T [A′/A]) = 1.

Let B′ be any (k − 2)-cautious peer, and letT ′ be a transaction involvingA and B′ (i.e.,
T ′ = 〈A,B′, res′, Fk〉 or T ′ = 〈B′, A, res′, Fk〉). By Theorem 3.11,A′ andB′ are interoperable.
So, val(T ′) ≤ val(T ′[A′/A]) = 1. Hence,A′ dominatesA in the class of(k − 2)-cautious peers,
which is a contradiction.

Now we have to provide operational guidelines for being interoperable with(k−2)-cautious clients.
For this purpose, we introduce a relaxed notion of cautiousness calledweak cautiousness. A peer is
weakly cautious if it does not emit any vacuous messages when it “knows” that it could be useful to
release some information. Then we prove that interoperability with(k− 2)-cautious clients requires the
strategy to beweakly(k − 2)-cautious.

Definition 3.18 A peer A is weakly (k − 2)-cautiousif the following condition holds. For allΦ-
transactionsT betweenA and someB, for all A-prefixesµ of nego(T ) having a vacuous tail whose
length isk − 2 or greater, if there exists a(k − 2)-cautiousB′ such that

i. µ is a prefix ofnego(T [B′/B]),

ii. if RA(µ) is vacuous thenT [B′/B] fails,

iii. there exists a successful disclosure sequence forPA, PB′ and the initial request ofT ,

thenunlocked(PA, µ) 6⊆ released(µ) impliesRA(µ) 6⊆ released(µ).

Condition (i) means thatA cannot distinguishB from B′, as both peers would yield the sequence
µ. Intuitively, A should check whether the other peerB might be a peerB′ that might successfully
complete the negotiation (by iii) but would react to a vacuous message with a failure (by ii). In that
case,A should return a non-vacuous message if possible. The above definition can be reformulated in
an equivalent but simpler way:

Definition 3.19 A peer A is weakly (k − 2)-cautiousif the following condition holds. For allΦ-
transactionsT involving A and someB, and for allA-prefixesµ of nego(T ), if the following conditions
hold:

i. µ has a vacuous tail whose length isk − 2 or greater,

ii. if RA(µ) is vacuous thenT fails,

iii. there exists a successful disclosure sequence forT ,

thenunlocked(PA, µ) 6⊆ released(µ) impliesRA(µ) 6⊆ released(µ).

Lemma 3.20 Definitions 3.18 and 3.19 are equivalent.

Theorem 3.21 If A isΦ-interoperable with all(k−2)-cautious peers, thenA is weakly(k−2)-cautious.

Proof: By contradiction, assume thatA is interoperable w.r.t. all(k − 2)-cautious peers, butA is not
weakly(k−2)-cautious. Then, there exists a transactionT involving A and some(k−2)-cautious peer
B s.t.nego(T ) has a prefixµ such that:
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1. turn(µ) = A,

2. µ has a vacuous tail of length at leastk − 2,

3. if RA(µ) is vacuous thenT fails,

4. unlocked(PA, µ) 6⊆ released(µ) andRA(µ) ⊆ released(µ),

5. T has a successful disclosure sequence.

It follows thatA cannot be interoperable w.r.t.(k − 2)-cautious peers because the transactionT is
failed while it has a successful disclosure sequence.

Note that even ifA is interoperable with all(k − 2)-cautious peers, stillA might not be(k − 2)-
cautious. Actually,A might not be(k − 1)-cautious either, as shown in the following example.

Example 3.22 Let A′ = (PA′ , RA′) be a peer s.t.PA′ = {c} andRA′(σ) = unlocked(PA′ , σ), and
A = (PA, RA) be a peer s.t.PA = {a, b} and

RA(σ) =
{

a if σ0 = res
unlocked(PA, σ) otherwise.

Moreover, let∅ unlocks a, ∅ unlocks b, ∅ unlocks c, {a} unlocks res, {c} unlocks res.

Note that for eachν s.t. ν0 6= res, A is (k − 2)-cautious afterν and for eachν s.t. ν0 = res, A
releases all it is needed to unlockres. It is easy to verify thatA is iteroperable with all(k − 2)-cautious
peers.

A is the client: Consider the transactionT = 〈A,A′, res, F2〉. Then,

nego(T ) = {res}, {c}, {a}, {c}, {a}

andA is not a(k − 1)-cautious peer.

A is the server: Consider the transactionT1 = 〈A′, A, res, F2〉. Then,

nego(T ) = {res}, {a}, {c}, {a}, {c}

andA is not a(k − 2)-cautious peer. Now, if we consider the transactionT2 = 〈A′, A, res, F3〉
then

nego(T ) = {res}, {a}, {c}, {a}, {c}, {a}

andA is not a(k − 1)-cautious peer.

Actually, weak cautiousness is necessaryand sufficientto be interoperable with(k − 2)-cautious
peers. As a corollary, weakly cautious peers are also cooperative with(k − 2)-cautious peers.

Theorem 3.23 If A is weakly(k − 2)-cautious, thenA is Φ-interoperable with all(k − 2)-cautious
peers.
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Proof: By contradiction, letB be a(k − 2)-cautious peer andT be a transaction involvingA andB,
such thatT has a successful disclosure sequenceσ, butν = nego(T ) is failed, that is,ν has a vacuous
tail νn−k · · · νn (n = |ν|).

Let j be the least index such thatσj 6⊆ released(ν) = released(ν<n−1). Sincej is minimal,
released(σ<j) ⊆ released(ν<n−1), therefore all membersp of σj \ released(ν) are unlocked inν<n−1.

If such p were inPB , thenB should release some of them inνn−1 or νn, becauseB is (k − 2)-
cautious by assumption. Analogously, if thosep were inPA, thenA should release some of them in
νn−1 or νn, becauseT satisfies the properties of Definition 3.19 andA is weakly(k − 2)-cautious. In
both cases, somep would belong toreleased(ν) (a contradiction).

Corollary 3.24 If A is weakly(k − 2)-cautious thenA is Φ-cooperative w.r.t.(k − 2)-cautious peers.

3.7 More on termination criteria

In this section we shall analyze the impact of different choices ofk in the termination criterionFk. This
choice is important not only to help transactions to succeed, but also to prevent”cunning” peers from
forcing another peer to release all of its unlocked information.

In this section we consider the apparently non-problematic case of a negotiation between a mono-
tonic, weakly(k − 2)-cautious server and a(k − 2)-cautious client (which are interoperable).

If we takeF1 as the termination criterion, then we obtain a negotiation frameworkΨ1 in which
the release strategy of the client is always degenerate. More precisely, by Theorem 3.7, a clientΨ1-
cooperative w.r.t. monotonic peers always releases all unlocked information at every step. Clearly, this
property is highly undesirable for privacy-aware users.

Next assumek > 1. Are there any differences between even and oddk? The answer isyes.
First, supposek is odd. A serverB can reply to a client’s request with vacuous messages to get as

much information as possible. Even if a clientA replies with more vacuous messages, after a sequence
of k−2 vacuous messagesA must release a non vacuous message (if any) becauseA is (k−2)-cautious
and turn({res} ∅k−2) = A. PeerB could iterate this process untilA has something to release—in
particular a sequence ofk − 1 empty message tellsB thatA can release no more items, thereforeB
can safely detect when the time has come for releasing a new piece of information. The corresponding
negotiation would be a sequence like:

{res} ∅k−2 mA
1 ∅k−2 mA

2 . . . ∅k−2 mA
n ∅k−1 mB

1 . . .

wheremA
1 , . . . ,mA

n are messages released by clientA, ∅k−2 represents ak−2 long sequence of vacuous
messages andmB

1 is a message released by serverB.
Now suppose thatk is even. In this case the serverB cannot use the same trick to extract information

from A becauseturn({res} ∅k−2) = B. SinceB is cooperative w.r.t.(k − 2)-cautious peers,B must
release a non-vacuous message (if at all possible). The corresponding negotiation would be a sequence
like:

{res} ∅k−2 mB
1 ∅k−2 mA

1 ∅k−2 mB
2 ∅k−2 mB

2 . . .

until one of the peers really has no new piece of unlocked information (then a sequence∅k−1 can be
observed).

Therefore, even values fork are preferrable. In order to minimize the number of vacuous messages
(and make the protocol more efficient) the recommended choice isk = 2. Under the above assumptions
on A andB, vacuous messages would always correspond to the actual lack of unreleased unlocked
items.
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Figure 1: Some of our main results

4 Summary and perspectives

We have introduced an abstract framework that generalizes several concrete trust negotiation frame-
works introduced in the literature, several of which have been actually implemented. Our results apply
to all these concrete frameworks.

By the notion ofcooperativenesswe modelled peers that are interested in making negotiations suc-
ceed. We studied the strategies driven by this unique goal. Unfortunately, our results prove that in
general there are no guarantees of successful termination. Negotiations may fail just because confiden-
tial policies are not (entirely) disclosed, and because the strategy of the other peers are unknown. In
technical terms, two cooperative peers are not necessarilyinteroperable. We could prove much stronger
results for the negotiations that involve mutually cooperative peers and monotonic servers (that model
service providers of practical interest). Figure 1 summarizes these results, that are also discussed below.

To make a clientA cooperative with monotonic peers, it is necessary and sufficient to programA’s
strategy in a(k−2)-cautious way, that is, when failure is at most two steps awayA should release at least
one new unlocked item (if any). As an unexpected side effect, any two such clients are interoperable.

In the absence of further assumptions, cooperativeness does not entail interoperability with the
servers. However, if a server is cooperative with(k − 2)-cautious clients, then the server is also inter-
operable with any such client. The necessary and sufficient operational criterion for being cooperative
(and hence interoperable) is weak(k − 2)-cautiousness.

These results suggest to adopt frameworks where clients are(k− 2)-cautious and servers are mono-
tonic and weakly(k − 2)-cautious. Finally, we argued that in these frameworks the appropriate failure
condition is the occurrence of two consecutive vacuous messages.

While implementing(k − 2)-cautious strategies is trivial, programming weakly(k − 2)-cautious
strategies may be tricky, and we suspect that with some policy languagesL weak cautiousness may
be computationally hard. If this conjecture turned out to be true, then it might be preferrable to adopt
(k− 2)-cautious strategies also for servers, as an approximation of weak cautiousness. In this paper we
have not investigated this problem because it requires more details onL’s syntax and semantics.

Our analysis should be extended to confidentiality issues (i.e., minimizing the amount and sensitivity
of disclosed information), and to negotiations involving more than two peers.
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A Theorem proofs

Theorem 3.4If A is Ψ1-cooperative, thenA is 0-cautious in everyΨ1-transaction whereA is the client.

Proof: By contradiction, letT be aΨ1-transaction involvingA and letµ be anA-prefix of nego(T )
such thatRA(µ) ⊆ released(µ) and there existsr ∈ unlocked(PA, µ) \ released(µ). We show that
A is dominated by another peerA′ = (PA, R′

A). The strategyR′
A behaves exactly likeRA, except

that R′
A(µ) = RA(µ) ∪ {r}. First, we have to check that, for allΨ1-transactionsT ′ involving A,

val(T ′) ≤ val(T ′[A′/A]). Consider anyΨ1-transactionT ′ = 〈A,B, res, F1〉. If T ′ does not give rise
to the negotiation prefixµ, thenA′ behaves exactly likeA and so, ifA achieves a successful negotiation,
so doesA′. Next, assume thatT ′ does give rise toµ. Then,val(T ′) = 0 and certainlyT ′[A′/A] cannot
do any worse.

Finally, we have to exhibit a canonical serverB that prefersA′ overA. Consider a serverB that,
together withA, gives rise to the negotiation prefixµ. Moreover,B releasesres as soon as it receives
r. One can easily check that such a canonical server exists. It follows from the construction that
val(〈A,B, res, F1〉) = 0 andval(〈A′, B, res, F1〉) = 1.

Theorem 3.7If A is Ψ1-cooperative w.r.t. monotonic peers, then for allΨ1-transactionsT whereA is
the client and the server is monotonic, and for allA-prefixesµ of nego(T ), we haveunlocked(PA, µ) ⊆
released(µ) ∪RA(µ).

Proof: By contradiction, assume thatA is Ψ1-cooperative w.r.t. monotonic peers, but for a certainΨ1-
transactionT = 〈A, B̄, res, F1〉 A retains the unlocked itemr after the negotiation prefixµ. Formally,
r ∈ unlocked(PA, µ), r 6∈ released(µ), andr 6∈ RA(µ). We prove thatA is dominated by the canonical
peerA′ = (PA, R′

A), whereR′
A(ν) = unlocked(PA, ν) for all ν ∈ Msgs∗. First, for all transactions

T ′ involving A and a monotonic peerB, if T ′ is successful, so isT ′[A′/A]. To this purpose, assume
that T ′ is successful. Using the fact thatB is monotonic, we can show by induction thatnego(T ′)
is stepwise contained innego(T ′[A′/A]). It remains to be checked that no vacuous message occurs
in nego(T ′[A′/A]) beforeres is released. Since bothA′ andB are monotonic, they do not recover
from vacuous messages. In other words, a vacuous message innego(T ′[A′/A]) can only be followed
by more vacuous messages. But sinceres is eventually released innego(T ′), it must be released in
nego(T ′[A′/A]) before any vacuous message occurs.

Finally, we show that there exists a canonical and monotonic serverB that “prefers”A′ overA. We
defineB in such a way that, together withA, it gives rise to the negotiation prefixµ. Then,B issues a
vacuous message in reply toµ · RA(µ), thus aborting the negotiation withA. In order to be successful
with A′, B releases all unlocked information (which certainly includesres) as soon as its peer releases
something whichA would not have released.
Formally, we setPB = PB̄ ∪X, whereX is a finite set such thatX unlocks res. Assuming that|µ| = n,
for all ν ∈ Msgs∗ we set:

RB(ν) =


RB̄(µ<n) if ν = µ ·RA(µ);
RB̄(ν) if ν 6= µ ·RA(µ) and

released(ν) ⊆ released(µ);
unlocked(PB , ν) otherwise.

One can check thatB is canonical and monotonic. Moreover,val(〈A,B, res, F1〉) = 0 and
val(〈A′, B, res, F1〉) = 1.
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Lemma 3.12LetT be aΦ-transaction involving peersA andB. Supposenego(T ) has a prefixµ with
a (k − 2) steps long vacuous tail and such thatturnT (µ) = A. Then there exists a monotonicΦ-peer
B′ such that

1. If RA(µ) is vacuous, thenT [B′/B] fails;

2. If RA(µ) is not vacuous andRA(µ · σ) = unlocked(PA, µ · σ), for all σ ∈ Msgs2, thenT [B′/B]
succeeds.

Proof: First supposeT = 〈A,B, res, Fk〉 (i.e.,B is the server). DefineB′ = (P ′, R′), whereP ′ is any
subset ofL such thatP ′ ⊇ PB andP ′ unlocks res. The strategyR′ is defined by:

R′(σ) =



RB(σ) if σ = µ≤i andturnT (µ≤i) = B,

∅ if σ = µ ·m andm is vacuous,

unlocked(P ′, σ) if σ = µ ·m andm is not vacuous,⋃ {
R′(σ′) | released(σ′) ⊆ released(σ) and

σ′ ∈ {µ≤i | turnT (µ≤i) = B}
∪{µ ·m | m ∈ Msgs}

}
otherwise.

The reader can easily verify thatB′ is a monotonicΦ-peer, and thatB′ behaves likeB within µ, i.e.,µ
is a prefix ofnego(T [B′/B]), too.

Moreover, ifRA(µ) is vacuous, thenR′(µ ·RA(µ)) is vacuous, too, by construction. ThenT [B′/B]
fails becausenego(T [B′/B]) containsk consecutive vacuous messages. This proves statement 1.

Next, suppose thatRA(µ) is not vacuous and satisfies the assumption of point 2. By construction,
R′(µ·RA(µ)) = unlocked(P ′, µ·RA(µ)) containsres, soT [B′/B] is successful. This proves statement
2 and completes the proof for the transactions whereB is the server.

Now assumeT = 〈B,A, res, Fk〉 (i.e., B is the client). LetQ be any subset ofL such that(PA ∪
Q) unlocks res. DefineB′ = (P ′, R′), whereP ′ is any subset ofL such thatP ′ ⊇ PB ∪ Q and
P ′ unlocks p for all p ∈ Q. The strategyR′ is defined as before.

As in the previous case,B′ is monotonic, and ifRA(µ) is vacuous, thenR′(µ ·RA(µ)) is vacuous,
too. ThenT [B′/B] fails becausenego(T [B′/B]) containsk consecutive vacuous messages. This
proves statement 1.

Next, suppose thatRA(µ) is not vacuous and satisfies the assumption of point 2. By construction,
R′(µ · RA(µ)) = unlocked(P ′, µ · RA(µ)). The right-hand side containsQ, therefore we haveres ∈
unlocked(PA, µ · RA(µ) · R′(µ · RA(µ))), i.e., res is unlocked by the last message ofB′. So, by the
assumption onRA of point 2, res is released at the next step, soT [B′/B] is successful. This proves
statement 2 and completes the proof.

Theorem 3.13If A is Φ-cooperative w.r.t. monotonic peers, thenA is (k − 2)-cautious.

Proof: Suppose not. Then there exist anA which isΦ-cooperative with monotonic peers, and aΦ-
transactionT = 〈A,B′, res, Fk〉 or T = 〈B′, A, res, Fk〉 such thatnego(T ) has a prefixµ with the
following properties:

a. µ has a vacuous tail whose length isk − 2

b. turnT (µ) = A
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c. RA(µ) ⊆ released(µ) (the next message is vacuous)

d. unlocked(PA, µ) 6⊆ released(µ)

We are going to show thatA cannot beΦ-cooperative with monotonic peers (a contradiction). For this
purpose we define a suitable peerA′ = (PA, RA′) that dominatesA. Let

RA′(σ) =
{

RA(σ) if σ is a prefix ofµ andσ 6= µ
unlocked(PA, σ) otherwise.

Note that by constructionA and A′ have the same behavior withinµ, which is a prefix of both
nego(T ) and nego(T [A′/A]). So, by Lemma 3.12, there exists a monotonicΦ-peerB′′ such that
val(T [B′′/B′]) < val(T [A′/A][B′′/B′]). To prove thatA′ dominatesA, we are only left to show
that for all transactionsT ′ involving A and some monotonicB, val(T ′) ≤ val(T ′[A′/A]).

Suppose not, that is, for someT ′ with the above propertiesval(T ′) = 1 > val(T ′[A′/A]) = 0. Let
ν andν′ be abbreviations fornego(T ′) andnego(T ′[A′/A]), respectively.

SinceT ′ succeeds whileT ′[A′/A] fails, released(ν) 6⊆ released(ν′), and there must be some index
i such thatreleased(ν≤i) 6⊆ released(ν′). Let j be the least such index, and letp ∈ released(ν≤j) \
released(ν′). Note thatν≤j cannot be a strict prefix ofµ becauseA andA′ do different things.

The minimality ofj implies thatreleased(ν<j) ⊆ released(ν′) = released(ν′n−k), wheren = |ν′|
(sinceν′ must belong toFk). Moreover, sinceA andB are secure,p ∈ unlocked(ν<j) and hence (by
monotonicity ofunlocks) p ∈ unlocked(ν′n−k).

Now there are two possibilities. First, ifp ∈ RA(ν<j), then by definition ofRA′ , A′ should release
p within ν′≤n−k+2, becausep is unlocked.

The second possibility is thatp ∈RB(ν<j). In this case, sinceB is monotonic andreleased(ν<j) ⊆
released(ν′n−k), B should releasep within ν′≤n−k+2.

Summarizing, in both casesp ∈ released(ν′), which contradicts the definition ofp.

Lemma 3.20Definitions 3.18 and 3.19 are equivalent.

Proof: The implication “3.18 =⇒ 3.19” is straightforward. Assume thatA is weakly(k−2)-cautious
according to Definition 3.18. LetB be a peer andµ be a negotiation prefix satisfying conditions(i)-
(iii) of Definition 3.19.B andµ are instances of the peerB′ and the negotiation prefixµ required by
Definition 3.18. Thus, we obtain thatunlocked(PA, µ) 6⊆ released(µ) impliesRA(µ) 6⊆ released(µ),
and the thesis.

Conversely, assume thatA is weakly (k − 2)-cautious according to Definition 3.19. Following
Definition 3.18, letT be aΦ-transaction betweenA and someB, letµ be anA-prefix ofnego(T ) having
a vacuous tail whose length isk−2 or greater. Moreover, assume there is a(k−2)-cautiousB′ satisfying
conditions(i)-(iii) of Definition 3.18. Now, apply Definition 3.19 to transactionT ′ = T [B′/B] and to
the negotiation prefixµ. We can do this sinceT ′ andµ satisfy conditions(i)-(iii) of Definition 3.19.
We obtain thatunlocked(PA, µ) 6⊆ released(µ) impliesRA(µ) 6⊆ released(µ). Therefore,A is weakly
(k − 2)-cautious also according to Definition 3.18.
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