
I4-D12

Xcerpt 2.0
Specification of the (Core) Language Syntax

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D12/D/PU/a1
Responsible editors: Tim Furche
Reviewers: Antonius Weinzierl and Jakob Henriksson
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: 28 February 2007
Actual submission date: 17 April 2007

Abstract
This article defines a revised syntax for the I4 query language, Xcerpt. Indeed, not only a single syntax,
but rather three syntactical forms of Xcerpt are introduced: (1) the term syntax, a non-standard syntax
that allows the succinct formulation of queries and is intended mostly for human authors; (2) the XML
syntax provides a fine granular language markup in XML, ideal for processing through XML-based
tools and for automated query generation or reasoning about query programs; (3) the compact XML
syntax is a hybrid syntax of (1) and (2). The concepts are introduced UML. In addition to the formal
syntax specification, principles of the syntax design are discussed. Furthermore, for a number of
advanced constructs the reasoning supporting the design choice, as well as alternative solutions are
illustrated. An impression of how the introduced language constructs allow to write and understand
complex queries is given by numerous examples interspersed among the construct specifications.

We discuss several major revisions to Xcerpt’s syntax from Deliverable I4-D6 in a second part:
identity, grouping, and functions. We conclude with a report on ongoing work about modules and
extended RDF support for Xcerpt. In an appendix we provide an ANTLR grammar for most of the core
language used in the currently under-development Xcerpt 2.0 prototype.

Keyword List

reasoning, query language, Semantic Web, concepts, grammar, syntax, terms, XML

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth

Framework Programme.

© REWERSE 2007.

ii

Xcerpt 2.0
Specification of the (Core) Language Syntax

Tim Furche1, François Bry1, Sebastian Schaffert2

1 Institute for Informatics, University of Munich, Germany
Email: {Francois.Bry,Tim.Furche}@ifi.lmu.de

2 Salzburg Research, Salzburg, Austria
Email: {Sebastian.Schaffert@salzburgresearch.at}

17 April 2007

Abstract
This article defines a revised syntax for the I4 query language, Xcerpt. Indeed, not only a single syntax,
but rather three syntactical forms of Xcerpt are introduced: (1) the term syntax, a non-standard syntax
that allows the succinct formulation of queries and is intended mostly for human authors; (2) the XML
syntax provides a fine granular language markup in XML, ideal for processing through XML-based
tools and for automated query generation or reasoning about query programs; (3) the compact XML
syntax is a hybrid syntax of (1) and (2). The concepts are introduced UML. In addition to the formal
syntax specification, principles of the syntax design are discussed. Furthermore, for a number of
advanced constructs the reasoning supporting the design choice, as well as alternative solutions are
illustrated. An impression of how the introduced language constructs allow to write and understand
complex queries is given by numerous examples interspersed among the construct specifications.

We discuss several major revisions to Xcerpt’s syntax from Deliverable I4-D6 in a second part:
identity, grouping, and functions. We conclude with a report on ongoing work about modules and
extended RDF support for Xcerpt. In an appendix we provide an ANTLR grammar for most of the core
language used in the currently under-development Xcerpt 2.0 prototype.

Keyword List
reasoning, query language, Semantic Web, concepts, grammar, syntax, terms, XML

iv

Contents

1 Introduction 1

2 Meta-Syntax Notations for Abstract and Concrete Syntax 3
2.1 Abstract Syntax: UML Diagrams . 3
2.2 Concrete Syntax: EBNF . 4
2.3 Concrete Syntax: Relax NG . 5

I Definition of the Core Language 7

3 Xcerpt: A Versatile Web Query Language 9
3.1 Data Model . 10

3.1.1 Terms for Representing Data and Queries . 11
3.2 A Textual Non-XML Term Syntax for Xcerpt . 11

3.2.1 Lexical Structures . 12
3.2.2 Reserved Names . 13
3.2.3 Whitespace and Comments . 13

3.3 Hybrid XML-style Term Syntax . 14
3.4 Pure XML Syntax . 14

4 Specifying Semi-structured Data: Xcerpt’s Data Terms 15
4.1 Defining Data Terms . 15

4.1.1 Textual Term Syntax: Basic Data Terms . 16
4.1.2 XML-style Term Syntax: Basic Data Terms . 18
4.1.3 Pure XML Syntax: Basic Data Terms . 18

4.2 Content Data Terms . 20
4.2.1 Textual Term Syntax: Content Data Terms . 21
4.2.2 XML-style Term Syntax: Content Data Terms . 21
4.2.3 Pure XML Syntax: Content Data Terms . 21

4.3 Structured Data Terms . 22
4.3.1 Textual Term Syntax: Structured Data Terms . 23
4.3.2 XML-style Term Syntax: Structured Data Terms . 24
4.3.3 Pure XML Syntax: Structured Data Terms . 25

4.4 Top-level Data Terms . 27
4.4.1 Textual Term Syntax: Top-Level Data Terms . 29
4.4.2 XML-style Term Syntax: Top-Level Data Terms . 29

v

4.4.3 Pure XML Syntax: Top-Level Data Terms . 29

4.5 Exemplary Data Term . 29

4.6 XML Documents as Data Terms . 30

5 How to specify queries?
Part 1: Construction 37
5.1 An Aside: A Parameterized Model for Terms . 38

5.2 Specifying New Data: Construct Terms . 40

5.2.1 Substitutions and Substitution Sets . 40

5.3 The Shape of Construct Term . 42

5.3.1 Textual Term Syntax . 42

5.3.2 XML-style Term Syntax . 46

5.3.3 Pure XML Syntax . 46

5.4 Grouping in Construct Terms . 47

5.4.1 Textual Term Syntax . 48

5.4.2 XML-style Term Syntax . 50

5.4.3 Pure XML Syntax . 50

5.5 Optional Construct Terms . 52

5.5.1 Textual Term Syntax . 53

5.5.2 XML-style Term Syntax . 53

5.5.3 Pure XML Syntax . 53

5.6 Instantiating a Construct Term . 54

6 How to specify queries?
Part 2: Selection 59
6.1 Specifying Query Patterns: Query Terms . 59

6.1.1 Textual Term Syntax . 61

6.1.2 XML-style Term Syntax . 63

6.1.3 Pure XML Syntax . 63

6.2 Variables in Query Terms . 65

6.2.1 Textual Term Syntax . 69

6.2.2 XML-style Term Syntax . 70

6.2.3 Pure XML Syntax . 70

6.3 Incomplete Patterns . 71

6.3.1 Textual Term Syntax . 75

6.3.2 XML-style Term Syntax . 75

6.3.3 Pure XML Syntax . 76

6.4 Top-level Query Terms . 76

6.4.1 Term Formulas . 76

6.4.2 Document Specifications . 77

6.4.3 Textual Term Syntax . 78

6.4.4 XML-style Term Syntax . 80

6.4.5 Pure XML Syntax . 80

6.5 Summary: Modifiers and Where they Occur . 81

vi

7 Programming in Xcerpt: Programs, Goals, and Rules 83
7.1 Xcerpt Programs . 83

7.1.1 Textual Term Syntax . 85
7.1.2 XML-style Term Syntax . 85
7.1.3 Pure XML Syntax . 86

7.2 Semantic Restrictions on Xcerpt Programs . 88
7.2.1 Range Restrictedness . 88

7.2.1.1 Polarity of Subterms . 88
7.2.2 Negation and Grouping Stratification . 90

II Language Extensions and Open Issues 93

8 Node Identity in Xcerpt 95
8.1 Introduction . 95
8.2 Object Identity in Data Management . 97
8.3 “Do we really need object identity?” . 99

8.3.1 Regular Infinite Trees . 99
8.3.2 Object Identity: Updates, Sharing, . 100

8.4 Aims of the Proposal . 102
8.5 Proposal 1: Infinite Regular Trees . 102
8.6 Proposal 2: Hidden Identity . 103
8.7 Conclusion and Future Work . 104

9 Grouping and Aggregation in Xcerpt 105
9.1 Introduction . 105
9.2 Multirelations, Bags, and Sequences . 105
9.3 Solution Proposal . 107

10 Modules in Xcerpt 2.0—Reuseware Integration 109
10.1 Introduction . 109
10.2 Rule Languages . 109
10.3 Framework for rule language module systems . 110
10.4 Module system operators . 111

10.4.1 Module Definition Operators . 111
10.4.2 Module Access Operators . 112

10.5 Extending Xcerpt for Module Support . 114
10.5.1 Abstract Syntax . 115
10.5.2 Term Syntax . 116

11 RDF Access in Xcerpt 2.0—An Outlook 119
11.1 Introduction . 119
11.2 Challenges Related to the Data Model . 120

11.2.1 Graph Data Model and References . 120
11.2.2 Labeled Edges . 121
11.2.3 Incomplete and Unbounded Data . 121
11.2.4 RDF Graphs as Xcerpt Data Terms . 122
11.2.5 Order of Sub-Terms . 122

vii

11.3 An Intuitive Syntax for Versatile Web Query Languages . 122
11.4 Common Query Constructs for the Web and the Semantic Web 123

11.4.1 Query Patterns and Answer Closedness . 123
11.4.2 Injectivity and Querying RDF Sequences . 125
11.4.3 Blank Node Treatment . 126
11.4.4 Negation and Breadth-Complete Queries . 126
11.4.5 Optional Sub-Terms . 127

11.5 From Queries to Transformations . 128
11.5.1 Construct-Query-Rules and User Defined Reasoning 128
11.5.2 Grouping Constructs . 128
11.5.3 Versatile access to XML and RDF . 129

11.6 Conclusion and Outlook . 130

12 Open Issues: Language Constructs 131
12.1 General Issues . 131

12.1.1 Defaults and Default Modes . 131
12.2 Construct Specific Issues . 132

12.2.1 Conditional Construction and optional Terms . 132
12.2.2 Query Formulas as Subterms . 133

12.2.2.1 withouts as Direct Siblings . 133
12.2.3 Functions and Libraries: Built-In and User-defined 134
12.2.4 Variables . 134
12.2.5 Varia . 134

12.3 Querying the Type of Data, Typed Accessors . 135
12.4 Collapsing Text Nodes . 135

13 Open Issues: Specific to Data Representation Format 137
13.1 Serializing to XML and from XML . 137

14 Open Issues: Specific to Concrete Syntax 139
14.1 Non-XML Term Syntax . 139
14.2 XML-style Term Syntax . 139
14.3 Pure XML Syntax . 139

III Full Language Grammars 141

A Grammar for Non-XML Term Syntax 143
A.1 Literal Structures . 143
A.2 Data Terms . 144
A.3 Construct Terms . 145
A.4 Query Terms . 147
A.5 Programs . 150

B Grammar for XML-style Term Syntax 151
B.1 Literal Structures . 151
B.2 Data Terms . 151
B.3 Construct Terms . 152
B.4 Query Terms . 154

viii

B.5 Programs . 157

C Relax NG Schema for XML Syntax 159
C.1 Parameterized Grammars: Terms, Declarations, Modifiers, etc. 159

C.1.1 Declarations . 159
C.1.2 Conditions . 160
C.1.3 Formulas . 160
C.1.4 Modifiers . 160
C.1.5 Term . 161

C.2 Grammar for Xcerpt Programs . 163
C.3 Exemplary Data Term . 169

D ANTLR Grammar for Xcerpt 2.0 181

ix

x

Chapter 1

Introduction

Xcerpt is semi-structured query language, but very much unique among the exemplars of that type of
query languages (for an overview see [7]):

1. In its use of a graph data model, it stands more closely to early semi-structured query languages
such as Lorel [2, 45] than to current mainstream XML query languages.

2. In its aim to address all specificities of XML with great care, it resembles more current main-
stream XML query languages such as XSLT [16] or XQuery [9]. Xcerpt is tailored to XML in
numerous ways, e.g., by proper support for attributes and namespaces [10]. This is achieved
without sacrificing the conceptual simplicity and syntactical conciseness of the language. Some
aspects of XML are treated differently than in mainstream XML query languages, e.g., the
transparent resolution of non-hierarchical relations expressed using ID/IDREF, XLink [24], etc.

3. In using (slightly enriched) patterns (or templates or examples) of the sought-for data for
querying, it resembles more the “query-by-example” paradigm [54] and XML query languages
such as XML-QL [25]. In contrast, current mainstream XML query languages use navigational
access to XML data.

4. In offering a consistent extension of XML to overcome certain restrictions of XML, that seem
arbitrary in the context of Web querying and Xcerpt in particular, it is ready to incorporate
access to data represented in richer data representation formats. Instances of such features are
element content, where the order is irrelevant (and can not be queried) and labels that contain
“reserved” XML characters.

5. In providing (syntactical) extensions for querying, among others, RDF, Xcerpt becomes a versa-
tile query language (as defined in [13]).

6. In a strict separation of querying and construction and in its use of logical variables and
deductive rules, it resembles more logic programming languages or Datalog. In contrast, SQL,
e.g., mixes construction and querying (nested queries) and uses explicit references to views
rather than rule chaining.

These unique characteristics of Xcerpt motivate many of the language concepts introduced in the
remainder of this chapter, a more complete discussion of the guiding design principles for (versatile)
Web query languages as exemplified in Xcerpt can be found in [13].

1

Xcerpt exhibits not just one concrete syntax, but rather three, each focused on providing a unique
set of strengths.

1. The first, non-XML syntax is based around the idea of representing terms as in logic-programming
and the following principles:

(a) Terms are represented similar to logic-programming: prefix notation with bracketed
argument lists for the children of the term. Special provisions are made to adapt this basic
principle to handle the specificities of XML and other Web formats.

(b) Different types of brackets encode term properties and distinguish language constructs
from data.

(c) The syntax strives to be concise, but still easy to read. The latter objective is supported, e.g.,
by the preference for explicit full-word keywords (e.g., optional) to represent language
constructs instead of shorthand notations (such as @ for attribute in XPath).

(d) The non-XML term syntax emphasizes that Xcerpts data model and language features
are not specific for one representation formalism such as XML and RDF, but rather allow
different ones to be handled with the same concepts by mapping them to Xcerpt terms,
still providing for all the specificities of the supported representation formalisms.

2. The hybrid XML-style term syntax is a rather recent development. It aims at

(a) providing a syntax that is (almost) immediately accessible to persons accustomed with
XML;

(b) very explicit, i.e., uses in addition to the XML syntax uses only English words to represent
language features;

This makes the syntax both easier to read and harder to write, as it is slightly less compact than
the term syntax but therefore often uses English words to represent language features instead of
special symbols.

The mixing of XML-style syntax for terms and keywords as in the non-XML syntax raises a
number of potential clashes. Most notably, character data still has to be quoted in contrast to
XML to avoid having to escape non-XML parts of the syntax.

3. The previous two syntaxes are mainly intended for human use. Like Relax NG, Xcerpt also
exhibits a pure XML syntax that, though harder to author and read for humans, is easy to
process with XML tools. The guiding principle is a form of markup reification, i.e., elements and
attributes are explicitly represented by XML elements named element and attribute (similar to
XSLT’s xsl:element and xsl:attribute elements for construction of elements with computed
names).

As in the other concrete syntaxes, the Xcerpt namespace http://xcerpt.org/ns/core/1.0 is
reserved to indicate language constructs. Indeed, in the XML syntax all language constructs are
expressed through elements in the Xcerpt namespace.

2

http://xcerpt.org/ns/core/1.0

Chapter 2

Meta-Syntax Notations for
Abstract and Concrete Syntax

This article presents the syntax of Xcerpt from three different perspectives: an abstract syntax focusing
on the language concepts, a concrete syntax that represents terms in a compact style familiar from,
e.g., logic programming, and a concrete XML syntax that represents a basis for Xcerpt tools and
machine processing of Xcerpt programs.

To define each of these syntaxes appropriate meta-languages are chosen: For the abstract syntax of
Xcerpt—in other words, its information model, what form of information is needed for which feature
of the language—the OMG’s Unified Modelling Language (UML) is used. The concrete term syntax is
defined using EBNF grammars and/or railroad syntax diagrams. Finally, the concrete XML syntax is
specified by means of Relax NG schemata.

The remainder of this chapter serves (1) as a (very brief) introduction in the notions of these
meta-languages used in this article (2) to define, where necessary, the precise variant of the meta-
languages referred to in the following chapters, and (3) to point to authoritative specifications of the
meta-languages.

2.1 Abstract Syntax: UML Diagrams or

What is the Information conveyed in an Xcerpt Program?

UML models are shown here in the notation from [47], the OMG UML 2.0 Superstructure specification.
However, only a small subset of UML’s diagrams and notions is needed for the purpose of this article:
the abstract syntax is defined using (static) class diagrams. Moreover, neither attributes nor methods
are present in the diagrams, thus allowing the diagrams to be considered as merely concepts and
relations.

In particular, generalizations (solid line, with an closed, but unfilled arrow head at the end con-
nected to the more general concept) are used to express different variants of a concept, e.g., the
different kinds of data terms, each representing a more specialized variant of the general concept
“data term”. Generalizations can be decorated with constraints (attached to the line in braces). In the
following, only the complete and the disjoint constraint are used. The first indicates that no instances
of the more general concept exist, that are not also instance of (at least) one of the specialized concepts,
the latter that the instance sets of the specialized concepts are disjoint.

3

ISO EBNF Construct Operator Type Meaning

unquoted word non-terminal symbol
"..." terminal symbol
’...’ terminal symbol
(...) grouping override precedence)
[...] optional symbols
{...} zero or more repetition of symbols
{...}- one or more repetition of symbols

= in symbol definition
; post rule terminator
| in alternative
, in symbol concatenation
- in except

* in n occurrences of symbols
(*...*) comment
?...? special sequences (extensible)

Table 2.1: ISO Standard Extended BNF Notation

Aggregations (solid line with an unfilled rhombus at the end connected to the “whole” concept) are
used for “part-whole” relations, e.g., to express that data term-level declarations contain data terms.
Roles and multiplicities can be used to further annotate aggregations (and other relations).

One advanced concept from UML is used to highlight the differences and commonalities among
the three kinds of Xcerpt terms: “parameterized collaborations”. UML uses parameterized collabo-
rations to describe what is often referred to as (software) patterns (not to be confused with Xcerpt’s
patterns), i.e., collections of concepts and relations among concepts that occur in different con-
texts. They are “parameterized”, as a number of the concepts in the parameterized collaboration
are “exported” as parameters and must be related to concrete concepts when using the pattern. See
Section 5.1 for a description of a model for Xcerpt terms based on parameterized collaborations.

For more information on UML (including tutorials) see the OMG UML homepage http://www.
uml.org/.

2.2 Concrete Syntax: Regular Expression-Style EBNF or

Defining the Textual Term Syntax for Xcerpt

A common choice to define the textual syntax of a programming or query language is a variant of the
“Backus Naur Form” introduced for the specification of ALGOL [6].

Several extensions, then referred to as Extended BNF or EBNF, to the basic BNF notation have
been suggested, mostly adding some form of repetition and optionality to the original language (that
only provided constructs for terminals, non-terminals, definition of non-terminals, and alternative).

Indeed, several standardization bodies have recently defined “standard’ ’1 variants of BNF, most
notably the ISO EBNF international standard [36], the IETF [22] internet standard, and the W3C-style
EBNF notation defined in Section 6 of the XML specification [11]. Table 2.1 shows the constructs of

1Refined from the dozens of variants, cf. http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html.

4

http://www.uml.org/
http://www.uml.org/
http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html

W3C EBNF Construct Operator Type Meaning

unquoted word non-terminal symbol
"..." terminal symbol
’...’ terminal symbol
[...] character groups as in regular expressions
(...) grouping (to override precedence)
...? post optional symbols
...* post zero or more repetition of symbols
...+ post one or more repetition of symbols
::= in symbol definition
| in alternative
- in except

/*...*/ comment

Table 2.2: W3C Extended BNF Notation

the ISO EBNF standard in contrast to the constructs of the W3C-style EBNF given in Table 2.2.
For this article, the W3C-style notation is used, since it is reminiscent of regular expressions as

also used in Xcerpt and is likely to be most familiar for readers accustomed to W3C standards.
Like [9], we slightly deviate from the syntax in [11] to address the differences in print vs.online

publications:

1. Instead of marking non-terminal symbols with links (commonly displayed using underline and
blue color), non-terminal symbols are enclosed in typographic angle brackets (〈·〉) and set in
italics.

2. To further strengthen the difference between meta-language and language constructs, teletype
is reserved for terminal symbols, all non-terminals and meta-language constructs are formatted
as usual text. In particular, typographic single quotes are used for quoting non-terminals.

3. Whitespace handling is left out of the grammar: By default, additional whitespace may occur
anywhere between non-terminals. The few exceptions (names, IRIs, and strings) are noted in
the natural language description of the grammar rules.

Finally, to reference non-terminals defined in other specifications a notation similar to the one pro-
posed in [9] is adopted: 〈http://www.w3.org/TR/REC-xml-names/#Digit〉 references the non-terminal
〈Digit〉 from the XML specification identified through its canonical URI.

EBNF rules are often visualized using railroad syntax diagrams similar to [12]: terminals and
non-terminals are drawn on a line to specify concatenation. Alternatives are represented by stacked
lines fanning out at the decision point and repetition is indicated using loops (optionality comes for
free as alternative where one of the stacked lines does not contain terminals or non-terminals).

2.3 Concrete Syntax: Relax NG or

A Schema for Xcerpt Programs in XML

Xcerpt’s XML syntax is specified in form of an Relax NG grammar. Relax NG [18] is a schema language
for XML. It has been chosen for the specification of Xcerpt’s syntax as it (a) has, in contrast to XML

5

Schema [28], a compact, easy to read syntax, (b) supports, in constrast to DTDs namespaces, and (c)
has support for parameterized grammar rules. The latter point makes it possible to drastically reduce
the size of the language specification by reusing the definition of, e.g., a term over all three term kinds
of Xcerpt, parameterizing where necessary. It also allows a close alignment with the abstract syntax.

Relax NG has, like Xcerpt, both a compact textual non-XML syntax [17] and a more verbose pure
XML syntax. In the following, the compact non-XML syntax for Relax NG is used.

A Relax NG grammar consists in a single start production and a set of normal productions, each
defining one non-terminal (called named pattern). Element content can be defined using connectives
like in regular expressions or DTDs: sequence (,), choice (|), repetition (* and +), and optionality
(?). Elements and attributes are treated symmetrically, specified using element, resp. attribute
followed by the name of the element or attribute. Literal content is either text or content typed
according to the XML Schema Datatypes [8].

Non-terminals (named patterns) may be defined by multiple productions, if each production
is marked with the how to combine the alternatives: |= instead of the usual = indicates that the
alternative productions form a choice. I.e., if S |= P and S |= Q then S = P | Q. This allows the
introduction of additional choices, e.g., when including an existing grammar and is used extensively
to define construct and query terms as extensions of the productions for data terms, cf. Chapter 5,
and Chapter 6.

Relax NG is a particular convenient choice for defining Xcerpt, as it allows (to some extend) to
express parameterized concepts (as discussed above): In Relax NG grammars (i.e., sets of productions
or (non-terminal) definitions) may be merged or included into each other. When including one
grammar in another one (using the include keyword and a reference to the file in which the grammar
to be included is contained), definitions for non-terminals may be replaced or combined with new
ones. Such replaced non-terminals can be seen like parameters of the grammar. Grammars can
furthermore be nested to “hide” away all productions except the start symbol of the grammar.

Namespaces can be attached to all elements of a grammar or to individual elements. There only
the first means are used, cf. Section 4.1.

More information about Relax NG and its compact syntax can be found at the OASIS Relax NG site
http://www.relaxng.org/.

6

http://www.relaxng.org/

Part I

Definition of the Core Language

7

Chapter 3

Xcerpt: A Versatile Web Query
Language

Xcerpt is semi-structured query language, but very much unique among the exemplars of that type of
query languages (for an overview see [7]):

1. In its use of a graph data model, it stands more closely to early semi-structured query languages
such as Lorel [2, 45] than to current mainstream XML query languages.

2. In its aim to address all specificities of XML with great care, it resembles more current main-
stream XML query languages such as XSLT [16] or XQuery [9]. Xcerpt is tailored to XML in
numerous ways, e.g., by proper support for attributes and namespaces [10]. This is achieved
without sacrificing the conceptual simplicity and syntactical conciseness of the language. Some
aspects of XML are treated differently than in mainstream XML query languages, e.g., the
transparent resolution of non-hierarchical relations expressed using ID/IDREF, XLink [24], etc.

3. In using (slightly enriched) patterns (or templates or examples) of the sought-for data for
querying, it resembles more the “query-by-example” paradigm [54] and XML query languages
such as XML-QL [25]. In contrast, current mainstream XML query languages use navigational
access to XML data.

4. In offering a consistent extension of XML to overcome certain restrictions of XML, that seem
arbitrary in the context of Web querying and Xcerpt in particular, it is ready to incorporate
access to data represented in richer data representation formats. Instances of such features are
element content, where the order is irrelevant (and can not be queried) and labels that contain
“reserved” XML characters.

5. In providing (syntactical) extensions for querying, among others, RDF, Xcerpt becomes a versa-
tile query language (as defined in [13]).

6. In a strict separation of querying and construction and in its use of logical variables and
deductive rules, it resembles more logic programming languages or Datalog. In contrast, SQL,
e.g., mixes construction and querying (nested queries) and uses explicit references to views
rather than rule chaining.

9

These unique characteristics of Xcerpt motivate many of the language concepts introduced in the
remainder of this chapter, a more complete discussion of the guiding design principles for (versatile)
Web query languages as exemplified in Xcerpt can be found in [13].

3.1 Data Model

As stated above, Xcerpt uses a graph data model. More precisely, Xcert provides access to one or more
data graphs (that are usually stored in data units called “documents” identified by IRIs [27]). Each
data graph is a rooted, directed, node-labeled, ordered, unranked graph with two types of nodes:

§1 Element Nodes
Element (or structural) nodes represent XML elements or similar structured data items (e.g., re-
sources in RDF).

Each element node is decorated further with a dictionary (or associative list) of (XML-style)
attributes. Some attributes are predefined and exist at all nodes, viz.the label and namespace (cf. [10]),
others are specified in the data, e.g., as XML attributes. Just like in XML, attributes are single valued1

and unordered, i.e., for each attribute name (dictionary key) a single value exists and the order of the
key-value pairs is not significant and can not be queried.

Currently, element nodes in Xcept do not have an explicit object or node identity, i.e., two element
nodes with the same attributes and children can not be distinguished from each other. Though,
explicit node identity can be simulated with the current approach, direct support of explicit node
identity is under consideration, cf. Issue ??.

Element nodes closely resemble element information items from [21] with two minor deviations:
Xcerpt does, at least at the time of writing, not provide access to in-scope namespaces (cf. Issue 19)
and for the base URI according to the XML Base recommendation [43] (cf. Issue 18). The handling
of attributes, however, deviates notably from the XML information set to emphasize the distinction
of elements and attributes: attributes are simple key-value pair, where the key is an XML name (and
thus may consist in prefix and local name) and the value is an arbitrary string. No further information
can be attached to attributes.

Each element nodes has zero or more edges to other nodes, called its children. These edges are
always ordered. However, in contrast to pure XML, one can specify whether this order is significant,
i.e., whether it has to be preserved during storage or transformation and can be queried. All element
nodes originating from XML documents are by default ordered (cf. Section 4.6). Element nodes where
the order is significant are called ordered, element nodes where the order is insignificant unordered.
There are no further restrictions on the edges, i.e., the graph may be cyclic, may have loops, the same
two nodes may be connected by several nodes, e.g., if a node is the 2nd, 4th, and 12th children of
another one.

§2 Content Nodes
Content (or atomic) nodes represent data items that are considered unstructured in the context of
Xcerpt.

Content nodes can be further distinguished into

1. Text nodes that represent the textual content of element nodes. The only attribute of a text
node is the string it represents. The same restrictions as for text nodes in XSLT [16], XQuery, and

1See Issue ?? for a discussion on list-valued attributes (such as attributes of type IDREFS in XML).

10

XPath [29] apply, i.e., (1) text nodes never represent an empty string, (2) two text nodes can never
be direct siblings of each other. Two nodes are direct siblings, if either they are children of the
same ordered element node and are consecutive in the children order or they are children of
the same unordered element node. Thus, an unordered element node may not have more than
one text node child (cf. Issue 15). If two text nodes are constructed as direct siblings they are
collapsed.

2. Comment nodes that represent comments, i.e., annotations on the actual data that are not
meant for machine processing. As text nodes, they have only one attribute: the content of the
comment. However, in contrast to text nodes no further restrictions are placed on comment
nodes.

3. Processing instruction nodes that represent processing instructions, i.e., annotations on the
actual data that are meant for processing by specific “target” services. They carry two attributes,
the content of the processing instruction (usually some form of instructions for the “target”
service) and the name of the “target” service.

3.1.1 Terms for Representing Data and Queries

Inspired by logic programming languages, Xcerpt chooses the concept of terms for representing,
constructing, and querying complex (or structured) data: Xcerpt uses three forms of terms:

1. data terms for representing semi-structured data, i.e., all node types from the data model are
represented as terms,

2. construct terms for specifying “forms” or “templates” of data to be constructed with variables
to indicate where data obtained from the (separated) query part is to be “filled” in, and finally

3. query terms for specifying “patterns” or “examples” of the data to be matched by a query again
with variables to indicate where data is to be extracted from the matches.

(XML) element nodes represented as terms are the only complex data structure in Xcerpt. In
particular, variables can only be of type term (which includes literal content such as strings as atoms).
Other complex data structure such as lists (or sequences), homogeneous or heterogeneous records,
sets, and dictionaries (or associative lists) can be simulated as terms, but no specific constructs are
offered. Instead Xcerpt avoids to burden the query author with the selection of the appropriate data
structures and leaves this to the query processor. The query processor can choose appropriate storage
and access methods, if a term is restricted, e.g., by means of a schema (i.e., type information, see
Section 12.3). E.g., a term’s children may be stored and accessed using algorithms for dictionaries if it
is known that the labels of all children are mutually distinct. Or duplicate elimination may be skipped
during query evaluation if the children of a term are indeed restricted to a proper set.

The remainder of this chapter introduces the three concrete syntaxes for Xcerpt discussed in this
article: the textual non-XML term syntax, the pure XML syntax, and the hybrid XML-style term syntax.

3.2 A Textual Non-XML Term Syntax for Xcerpt

Xcerpt exhibits not just one concrete syntax, but rather three, each focused on providing a unique set
of strengths. The first, non-XML syntax is based around the idea of representing terms as in logic-
programming and the following principles:

11

1. Terms are represented similar to logic-programming: prefix notation with bracketed argument lists
for the children of the term. Special provisions are made to adapt this basic principle to handle the
specificities of XML and other Web formats.

2. Different types of brackets encode term properties and distinguish language constructs from data.

3. The syntax strives to be concise, but still easy to read. The latter objective is supported, e.g., by the
preference for explicit full-word keywords (e.g., optional) to represent language constructs instead of
shorthand notations (such as @ for attribute in XPath).

4. The non-XML term syntax emphasizes that Xcerpts data model and language features are not specific
for one representation formalism such as XML and RDF, but rather allow different ones to be handled
with the same concepts by mapping them to Xcerpt terms, still providing for all the specificities of the
supported representation formalisms.

The actual syntax is introduced in each chapter along the abstract and the other concrete syntaxes. The
following preliminary remarks set the basis for the discussion of the non-XML term syntax in the rest of this
article.

3.2.1 Lexical Structures

The textual non-XML term syntax makes use of the following five lexical structures:

1. Names: For, among others, element labels and variables, Xcerpt uses the namespace-aware identifiers,
that must adhere to the definition for 〈NCName〉 in the W3C XML Namespace recommendation [10].
Notice, that this allows for slightly different identifiers than allowed by the definition of an XML (1.0)
〈Name〉 in [11]. The difference is that in namespace-aware identifiers as used in Xcerpt the double
colon characters is not allowed.

2. IRIs: For namespaces and as a pool for unique identifiers, Internationalized Resource Identifiers (short
IRIs) may be used in Xcerpt. Internationalized Resource Identifiers are defined in RFC 3987 [27]. Like
strings, IRIs are always enclosed in straight double quotes in Xcerpt.

3. Strings: Literal content is represented as strings of characters. However, to avoid the introduction of
character entities into Xcerpts non-XML syntax, Java strings (as of §3.10.5 of [32]) are chosen and not,
e.g., XML character data. Since Xcerpt’s syntax is not line-oriented, there is no need to escape linefeed
or carriage return. Thus, an Xcerpt string is an arbitrary sequence of Unicode characters with straight
double quotes and backslashes backslash-escaped. For convenience, Java escape sequence (e.g., \t
for a tabulator) and Unicode escapes (e.g., \u000d for a carriage return) are also allowed. Strings in
Xcerpt are always enclosed in straight double quotes ("), never in single straight quotes.

4. Numbers: Some Xcerpt constructs have parameters that are natural numbers. Here, we use again
the definition from [11].

5. Regular Expressions: In query terms (cf. Chapter 6), Xcerpt uses POSIX.1 regular expressions as
defined in [33], Base Definitions Volume (XBD), ch. 9, but extends these regular expressions with
variable bindings.

This results in the following grammar for the lexical structures used in Xcerpt’s non-XML term syntax
(lexical structures are distinguished from other non-terminals by an uppercase first letter):

〈NCName〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#NCName〉

〈IRI〉 ::= ‘"’ 〈http://www.ietf.org/rfc/rfc3987.txt#IRI〉 ‘"’

〈String〉 ::= ‘"’ 〈StringCharacter〉* ‘"’

〈StringCharacter〉 ::= 〈http://java.sun.com/docs/books/jls#StringCharacter〉 | 〈Line-feed〉 | 〈Carriage-return〉

〈Line-feed〉 ::= ‘\{}u000a’

12

〈Carriage-Return〉 ::= ‘\{}u000d’

〈Int〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#Digit〉*

〈Regexp〉 ::= ‘/’ 〈{http://www.unix.org/version3/ieee_std.html#}extended_reg_exp〉 ‘/’

〈http://www.unix.org/version3/ieee_std.html#ERE_expression〉 ::=
〈http://www.unix.org/version3/ieee_std.html#one_char_or_coll_elem_ERE〉

| ‘^’
| ‘$’
| ‘(’ 〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉 ‘)’
| ‘(’ 〈variable〉 ‘->’

〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉‘)’
| 〈http://www.unix.org/version3/ieee_std.html#ERE_expression〉

〈{http://www.unix.org/version3/ieee_std.html#}ERE_dupl_symbol〉
Notice, how the 〈ERE_expression〉 from the POSIX standard is overwritten by the production specified here

that includes (in line 6 of the production) the added syntax for binding Xcerpt variables in regular expressions.
For 〈variable〉 production is defined in Chapter 6.

3.2.2 Reserved Names

Xcerpt’s non-XML term syntax does not reserve any names as language keywords, as the structured of the
language allows a disambiguation between keywords and names.

However, the Xcerpt namespace identified by the IRI http://xcerpt.org/ns/core/1.0 is reserved for
language constructs and can not be used for other purposes.

Some implementations may additionally want to restrict the occurrence of keywords in identifiers, i.e.,
the may want to chose the following restricted definition of 〈NCName〉:
〈NCName〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#NCName〉 - 〈ReservedNames〉

〈ReservedNames〉 ::= ‘all’ | ‘and’ | ‘desc’ | ‘descendant’ | ‘except’ | ‘first’ | ‘not’ | ‘optional’ |
‘or’ | ‘position’ | ‘some’ | ‘without’

3.2.3 Whitespace and Comments

In the grammars for the non-XML term syntax, whitespace is not explicitly included. Rather Xcerpt uses the
following whitespace handling rules (similar to, e.g., XQuery [9]):

1. Arbitrary sequence of whitespace characters (as defined by the character class 〈S〉 in the XML speci-
fication [11]) and Xcerpt comments may occur in between any two terminals and must occur where
otherwise two sequential terminals are recognized as one. It can be safely “normalized” to a single
whitespace character.

2. Strings, names, and other literal structures are considered a single terminal for the purpose of this rule.
In other words, in strings, names, and other literals whitespace is significant and may not be ignored.
E.g., the string " a " differs from the string "a".

Xcerpts non-XML term syntax allows both end-of-line and block comments to occur in place of whitespace.
The following rules define whitespace and comments for Xcerpt’s non-XML term syntax.

〈Whitespace〉 ::= (〈http://www.w3.org/TR/REC-xml/#S〉 | 〈End-of-line-comment〉 |
〈Block-comment〉)*

〈Comment-char〉 ::= 〈http://www.w3.org/TR/REC-xml/#NT-Char〉

〈End-of-line〉 ::= 〈Line-feed〉 | 〈Carriage-return〉 (〈Line-feed〉)?

13

{
{
http://xcerpt.org/ns/core/1.0

〈End-of-line-comment〉 ::= ‘#’ (〈Comment-char〉* –
(〈Comment-char〉* 〈End-of-line〉 〈Comment-char〉*)

〈End-of-line〉

〈Block-comment〉 ::= ‘/#’ (〈Comment-char〉* –
(〈Comment-char〉* (‘/#’ | ‘/#’) 〈Comment-char〉*)

‘/#’

Notice, that block comments can not be nested, cf. Issue

3.3 Hybrid XML-style Term Syntax

The hybrid XML-style term syntax is a rather recent development. It aims at

1. providing a syntax that is (almost) immediately accessible to persons accustomed with XML;

2. very explicit, i.e., uses in addition to the XML syntax uses only English words to represent language
features;

This makes the syntax both easier to read and harder to write, as it is slightly less compact than the term
syntax but therefore often uses English words to represent language features instead of special symbols.

The mixing of XML-style syntax for terms and keywords as in the non-XML syntax raises a number of
potential clashes. Most notably, character data still has to be quoted in contrast to XML to avoid having to
escape non-XML parts of the syntax.

As the remainder of this article illustrates, that the hybrid XML-style term syntax can indeed be defined
by very few deviations from the non-XML term syntax that only affect the representation of (structured) terms
as XML-style elements instead of logic-programming style.

The same lexical structures and reserved words as in the non-XML syntax are used. In particular, character
data must be quoted as in the non-XML syntax. Neither normal XML character data nor CDATA sections are
allowed.

Note, that this is possible as the Xcerpt term syntax follows the same convention as XML for plain names.

The same syntax for end-of-line and block comments as in Xcerpt’s term syntax is used. Note, that block

comments in the XML syntax, i.e., using <!-- and --> as delimiters, may also occur, but represent comments

in the data, not in the query language (cf.Section 4.2).

3.4 Pure XML Syntax

The previous two syntaxes are mainly intended for human use. Like Relax NG, Xcerpt also exhibits a pure
XML syntax that, though harder to author and read for humans, is easy to process with XML tools. The
guiding principle is a form of markup reification, i.e., elements and attributes are explicitly represented by
XML elements named element and attribute (similar to XSLT’s xsl:element and xsl:attribute elements for
construction of elements with computed names).

The lexical structures and whitespace handling rules used are, of course, those of XML, see [11]. In
particular, character data must follow the XML restrictions, i.e., < and & must be escaped.

As in the other concrete syntaxes, the Xcerpt namespace http://xcerpt.org/ns/core/1.0 is reserved

to indicate language constructs. Indeed, in the XML syntax all language constructs are expressed through

elements in the Xcerpt namespace.

14

http://xcerpt.org/ns/core/1.0

Chapter 4

Specifying Semi-structured Data:
Xcerpt’s Data Terms

4.1 Defining Data Terms

Starting with this section, the remainder of this chapter discusses the three different kinds of terms
used in Xcerpt starting with data terms, the most basic term kind.

§1 Data Terms

Data terms are (linear) representations of semi-structured data in Xcerpt.

Unsurprisingly, data terms are closely aligned with Xcerpt’s data model as introduced in Section 3.1.
Each of the node types in Xcerpt’s data model are represented by a corresponding kind of data term.
However, data terms differ in two notable aspects:

First, data terms are hierarchical (i.e., tree shaped). Thus, to obtain a linear representations of
the Xcerpt data graph, referable term identifiers and references are introduced that allow to express
non-hierarchical relations.

§2 Term Identifiers
Referable term identifiers are identifiers for (structured) terms (representing element nodes) that
are unique at least within the current document and allow references to the identified terms.

Term identifiers are only required to be unique within the current document (cf. Issue ??). This
allows for easier authoring and validation but excludes out- or cross-document links. Such links must
be explicitly traversed using a value join, e.g., in the case of (X)HTML between the fragment identifier
in an href attribute and the id attributes in the target document.

§3 References
References are “links” in the linear term syntax for representing non-hierarchical relations. They
are transparently resolved, i.e., the case of a term containing a reference to another term can not
be distinguished from the case where the term contains the other term as a direct child. For all
references in a document, there must be exactly one term with a term identifier identical to the
value of the reference in the same document.

15

StructuredTerm:DataTermTopLevelTermDeclare:DataTerm

!

TopLevelTerm:DataTerm

"#$%&'()(*+,-./$-0)1

NamespaceDeclaration

2334

Content:DataTerm

"#$%&'()(*+,-./50#)1

StructuredTerm:DataTerm

Term:DataTerm

Reference:DataTerm

Identifier:DataTerm

-,6(7

!

TermLevelDeclare:DataTerm

NamespaceDeclaration

2334

LiteralContent:DataTerm

"#$%&'()(*+,-./50#)1

Comment:DataTerm

Content:DataTerm

ProcessingInstruction:DataTerm

StringIdentifier:DataTerm

"#$%&'()(1

#$0)(0)!

#$0)(0)

!

)869()+08%(!

!334

Figure 4.1: UML Model of Data Terms

At the time of writing, term identifiers and references are exclusively part of the linear term
representations and not preserved in the data model (cf. Issue ?? on introducing explicit node identity
in Xcerpt). As a consequence, term identifiers can not be queried.

Second, namespace declarations (and thus the concept of in-scope namespaces) are not con-
sidered as part of term specifications, but are declared in declaration blocks surrounding the terms
where they may be used. This allows slightly more flexibility in the block structure for declarations
and a consistent treatment of declarations on term and rule level (cf. Section 7). Declaration blocks
are also used for other declarations (e.g., variable declarations in query and construct terms or type
declarations), but at the time of writing namespace declarations are the only kind of declarations
allowed in data term declaration blocks. A more detail description of declarations and declaration
blocks is given in Section 7.

Figure 4.1 summarizes the kind of terms found as data terms in form of an UML model (cf. Section:
A data term can be either

1. an atomic or content data term that represents a content node in the data model from Sec-
tion 3.1,

2. a structured data term that represents an element node in the data model,

3. a reference to another (structured) data term expressed by a term identifier, or

4. a term-level namespace declaration surrounding any number of other data terms.

4.1.1 Textual Term Syntax: Basic Data Terms

Data terms are defined in the textual term syntax just like in the abstract syntax: either term-level declarations,
structured or content data terms, or a reference to another term.

The following productions define first 〈data-term〉, a basic data-term, and then references (indicated by a
^ symbolizing an ↑ often used to indicate references) and term-level declarations (indicated by the declare
keyword). Content and structured data terms are discussed in the next sections.

Notice, how the concrete syntax allows both the list of namespace declarations and the data terms in the
scope of the declaration to be empty. The abstract syntax (cf.Figure 4.1) however demands that both lists
are at least size 1. This is no contradiction: the concrete syntax is designed to be open, i.e., to allow also
constructs that are superfluous but not harmful to ease, e.g., query refactoring and iterative query authoring.
In the abstract syntax that presents the information model of an Xcerpt program these superfluous constructs
are, however, not any more present. If in the concrete case of term-level declarations either list is empty,

16

there either have been no namespaces declared or there are no affected data-terms. In both cases, the
declaration is ineffectual and will be dropped.

Xcerpt has a considerable number of parameterized concepts, i.e., concepts that occur in different
contexts with different parameters. E.g., declaration blocks may enclose data terms, top-level data terms,
query terms, construct terms, and rules as body, but in each place where a declaration block may occur
only one such enclosed construct type is allowed. This form of parameterized concepts can not be directly
expressed in notation such as EBNF. Therefore non-terminals that indicate by a suffix the context in which,
e.g., a declaration block occurs are used (e.g., 〈term-level-declare-dt〉 instead of just 〈term-level-declare〉).
〈data-term〉 ::=- 〈term-level-declare-dt〉

〈reference-dt〉
〈structured-dt〉
〈content-dt〉

-

〈reference-dt〉 ::=- ‘^’ 〈identifier-dt〉 -

〈term-level-declare-dt〉 ::=- ‘declare’ 〈ns-declaration-dt〉 · · ·

· · · ‘(’ ?〈data-term〉 ‘,’ ‘)’-

Note, that the parentheses used to enclose the in-scope data terms of the declaration are colored in
‘gray’. In the following this is used as a short-hand to indicate that, if a construct that has a list of terms as
parameter is applied to (a list of) exactly one, then the brackets can be omitted. I.e., A ‘(’ B* ‘)’ where A and
B are arbitrary right-hand side expressions in the EBNF syntax used in this article, is equivalent to (A B) | A
‘(’ B+ ‘)’.

Identifiers (in data terms) are introduced here, but also use in several other parts of a data term,
cf.Section 4.3. Identifiers in the non-XML term syntax can be either namespace-aware XML names, IRIs, or
strings. As discussed in Section 3.2.1, both IRIs and strings are always enclosed in straight double quotes,
only namespace-aware XML names remain unquoted.

〈identifier-dt〉 ::=- 〈NCName〉
〈IRI〉

〈String〉

-

Namespace Declarations (in data terms) are the basic form of namespace declarations. In query and
construct terms namespace declarations are slightly extended to also allow variables instead of prefixes or
namespace URIs.

〈ns-declaration-dt〉 ::=- ?〈ns-prefix-dt〉 ‘,’ 〈ns-default-dt〉 ‘,’ · · ·

· · · ?〈ns-prefix-dt〉 ‘,’ -

〈ns-prefix-dt〉 ::=- ‘ns-prefix’ 〈NCName〉 ‘=’ 〈IRI〉 -

〈ns-default-dt〉 ::=- ‘ns-default’ 〈IRI〉 -

17

4.1.2 XML-style Term Syntax: Basic Data Terms

Here, the XML-style term syntax uses the exact same productions as the non-XML term syntax, differences
occur only in later parts of data-terms, viz. when defining structured data terms.

4.1.3 Pure XML Syntax: Basic Data Terms

The pure XML syntax is, as mentioned above, defined using Relax NG schemata. To highlight the similarities
between data, construct, and query terms and to ensure consistency, all three terms are defined based a
common grammar for terms, that is parameterized where needed. In fact, this common grammar exactly
captures data terms and is explained in the following.

The first excerpt defines syntax for the basic concepts introduced above: terms, references, and term-level
declarations. Syntax for content and structured (data) terms is discussed in the following sections.

1 default namespace = "http://xcerpt.org/ns/core/1.0"

3 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class |=

5 reference | content-term | structured-term | term-level-declare

7 ## A declaration block on term level allows possibly (in data and construct terms) only namespace
declarations.

term-level-declare =
9 grammar {

include "declare−block.rnc" {
11 content = parent term.class*

var-declaration = empty
13 }

}
15

The using occurrence of a reference, i.e. "^ id" in term syntax.
17 reference = element reference { identifier.class }

Notice, how term-level declarations are indeed defined by referencing an nested grammar and pa-
rameterizing some of its non-terminals, viz. what the content of a declaration is (here a term) and that
no variable-declarations are used. Figure 4.2 shows a visualization of the definition of term-level-declare
unfolding the nested grammar.

Surprisingly, Relax NG restricts the ability to parameterize grammars to inclusion of grammars in external
files, here the file declare-block.rnc, whose content is the following Relax NG grammar:

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = declare-block
5

A declare block with an empty content and both namespace and variable declarations.
7 declare-block =

element declare { (ns-declaration | var-declaration)*, content }
9 ns-declaration =

ns-prefix-declaration*,
11 element ns-default {

element iri { iri.class }
13 }?,

18

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 1 of 2
Continue on page 2

/ {grammar} Start top-level-term.class

top-level-term.class DocDoc

structured-term

{grammar} declare-block.rng

term.class DocDoc

reference

content-term

structured-term

term-level-declare

term-level-declare DocDoc

{grammar} declare-block.rng

include: start from declare-block.rng

Start declare-block

include: define from declare-block.rng

declare-block DocDoc A declare block with an empty content and both namespace and variable declarations.

declare

http://xcerpt.org/ns/core/1.0

0..! ns-declaration

var-declaration

content

include: define from declare-block.rng

ns-declaration 0..! ns-prefix-declaration

0..1 ns-default

http://xcerpt.org/ns/core/1.0

iri

http://xcerpt.org/ns/core/1.0

iri.class

0..! ns-prefix-declaration

include: define from declare-block.rng

ns-prefix-declaration ns-prefix

http://xcerpt.org/ns/core/1.0

name

http://xcerpt.org/ns/core/1.0

ncname.class

iri

http://xcerpt.org/ns/core/1.0

iri.class

include: define from declare-block.rng

var-declaration variable

http://xcerpt.org/ns/core/1.0

@ name DD NCName

include: define from declare-block.rng

content

include: define from declare-block.rng

iri.class text

include: define from declare-block.rng

ncname.class DD NCName

content 0..! term.class

var-declaration

structured-term DocDoc

element

http://xcerpt.org/ns/core/1.0

term-local-spec

term-children

0..1 term-condition

term-condition DocDoc

term-local-spec DocDoc

0..1 term-identifier

ns-label

Figure 4.2: Relax NG Schema for Term-level Declarations in Data Terms

19

StructuredTerm:DataTermTopLevelTermDeclare:DataTerm

!

TopLevelTerm:DataTerm

"#$%&'()(*+,-./$-0)1

NamespaceDeclaration

2334

Content:DataTerm

"#$%&'()(*+,-./50#)1

StructuredTerm:DataTerm

Term:DataTerm

Reference:DataTerm

Identifier:DataTerm

-,6(7

!

TermLevelDeclare:DataTerm

NamespaceDeclaration

2334

LiteralContent:DataTerm

"#$%&'()(*+,-./50#)1

Comment:DataTerm

Content:DataTerm

ProcessingInstruction:DataTerm

StringIdentifier:DataTerm

"#$%&'()(1

#$0)(0)!

#$0)(0)

!

)869()+08%(!

!

Figure 4.3: UML Model of Atomic Data Terms

ns-prefix-declaration*
15 ns-prefix-declaration =

element ns-prefix {
17 element name { ncname.class },

element iri { iri.class }
19 }

var-declaration =
21 element variable {

attribute name { xsd:NCName }
23 }

content = empty
25 iri.class |= text

ncname.class |= xsd:NCName

Notice, the use of combinable definitions (indicated by |=) for uri.class and ncname.class. This allows
later the easy addition of more choices (viz. variables that can occur instead of the plain IRIs or names).

4.2 Content Data Terms

§4 Content Data Terms
The atomic form of data terms are terms that represent information that is considered unstructured
in the context of Xcerpt, viz. literal (character) content as well as data annotations in form of com-
ments for human consumption and in form of processing instructions for machine consumption.

A formal model of content data terms is shown in Figure 4.3: for each of the content nodes in the
data model introduced in Section 3.1 a corresponding data term exists. Notice, that in alignment with
[11] neither processing instructions, comments, or literal (character) content can be nested.

XML restricts the literal content of comments (processing instructions, resp.) to disallow the
character sequence ‘-’ (‘?>’, resp.). This is not the case in Xcerpt. However, when creating XML data
these additional restrictions have to be considered, cf.Issue 16).

20

4.2.1 Textual Term Syntax: Content Data Terms

Literal content is represented in the non-XML term syntax by simple (Java-style Unicode) strings as defined
in Section 3.2.1. Comments and processing-instructions use the same syntax as structured data terms
introduced in the next section: label in prefix position followed by the list of attributes and children. Here, the
first is enclosed in (round) parentheses, the second in (square) brackets. Structured terms may also use curly
braces around the children list to indicate that the order is insignificant.

Since comments may have no attributes their attribute list is always empty.

〈content-dt〉 ::=- 〈literal-content-dt〉
〈comment-dt〉

〈processing-instruction-dt〉

-

〈literal-content-dt〉 ::=- 〈String〉 -

〈comment-dt〉 ::=- ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ’) ‘ ‘[’ 〈literal-content-dt〉 ‘]’ -

〈processing-instruction-dt〉 ::=- ‘xcerpt’ ‘:’ ‘processing-instruction’
‘xcerpt’ ‘:’ ‘pi’

· · ·

· · · ‘(’ ‘target-name’ ‘=’ 〈identifier-dt〉 ‘)’ · · ·
· · · ‘[’ 〈literal-content-dt〉 ‘]’ -

4.2.2 XML-style Term Syntax: Content Data Terms

Again the XML-style term syntax uses the same productions as the non-XML term syntax, but differs on the
representation of comments and processing instructions: Both are represented as in XML with the exception
of their literal content. That is, as literal content of elements, quoted by straight double quotes (just like
in the non-XML term syntax). Thus if an element in an XML document contains the character sequence
a & b < c \ d or က this may be written as "a & b < c \\ d or \u1000" if it occurs in a
Xcerpt data term in XML-style term syntax.

〈comment-dt〉 ::=- ‘<!-’ 〈literal-content-dt〉 ‘->’ -

〈processing-instruction-dt〉 ::=- ‘<?’ 〈identifier-dt〉 〈literal-content-dt〉 ‘?>’ -

Also note, that XML disallows comments containing character sequence ‘-’ (and no quoting mechanism
is applicable, as entities are not expanded in comments) as well as processing instructions containing the
character sequence ‘?>’ (again no quoting mechanism applicable). These restrictions are not present in
Xcerpt or one of its syntaxes.

4.2.3 Pure XML Syntax: Content Data Terms

Again, we show the case for representing general terms in the pure XML syntax:

A content term represents literal or other non−nestable content.
2 content-term = literal-content.class | annotation-content

4 ## Content kinds that can be used to annotate elements.
annotation-content =

6 element comment { literal-content.class }
| element processing-instruction {

21

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 2 of 2

Continue on page 1

/ {grammar}

term-local-spec

attr-term-list

term-identifier DocDoc

identifier

http://xcerpt.org/ns/core/1.0

identifier.class

ns-label DocDoc

label

http://xcerpt.org/ns/core/1.0

0..1 ns

http://xcerpt.org/ns/core/1.0

identifier.class

identifier.class

attr-term-list DocDoc

attributes

http://xcerpt.org/ns/core/1.0

@ total total.class

0..! attribute-term

total.class DocDoc

true

attribute-term DocDoc

base-attribute.class

base-attribute.class DocDoc

attribute

http://xcerpt.org/ns/core/1.0

ns-label

value

http://xcerpt.org/ns/core/1.0

literal-content.class

identifier.class DocDoc

text

content-term literal-content.class

ref: literal-content.class

literal-content.class DocDoc

text

annotation-content

ref: annotation-content

annotation-content DocDoc

comment

http://xcerpt.org/ns/core/1.0

literal-content.class

processing-instruction

http://xcerpt.org/ns/core/1.0

@ target identifier.class

literal-content.class

annotation-content DocDoc

comment

http://xcerpt.org/ns/core/1.0

literal-content.class

processing-instruction

http://xcerpt.org/ns/core/1.0

@ target identifier.class

literal-content.class

literal-content.class DocDoc

text

term-children DocDoc

children

http://xcerpt.org/ns/core/1.0

@ ordered true

false

@ total total.class

0..! term.class

reference DocDoc

reference

http://xcerpt.org/ns/core/1.0

identifier.class

Figure 4.4: Relax NG Schema for Content Terms

8 attribute target { identifier.class },
literal-content.class

10 }

12 ## Character data or other atomic content.
literal-content.class |= text

Notice, how literal-content.class is “open” (indicated by |=), i.e., further choices for literal-content.class
may be added separately. Figure 4.4 shows a visual representation of the Relax NG schema fragment with
definitions inlined.

4.3 Structured Data Terms

§5 Structured Data Terms
Structured data terms correspond with element or structural nodes in the data model and can be
nested.

Structured data terms can be distinguished in ordered and unordered data terms. As for element
nodes, the distinction indicates

§6 Ordered and Unordered Terms
A (structured) term is called ordered, if the order of its children is significant. Otherwise it is called
unordered. In the former case the order must be preserved during processing and storage and is
accessible in queries, whereas in the latter it may change during storage or processing and can not
be queried.

For consistency with query terms, structured data terms are further classified as total.

§7 Total Terms

A term is called total, if its list of children is complete, i.e., there can be no additional children.

In Xcerpt, all data terms are total, i.e., must have all their children specified (cf. Issue ??).
Each structured term consists in two parts: a specification of its attributes (called in the following

“local” specification as attributes are the non-structural properties of that term) and its children as
shown in Figure 4.5:

• The children of a structured data term is a sequence of zero or more (arbitrary) data terms. If

22

StructuredTerm:DataTerm

OrderedStructuredTerm:DataTerm UnorderedStructuredTerm:DataTerm

!

"#$%&'

())*

TotalStructuredTerm:DataTerm

+#,-.&/0/1

LocalSpecification:DataTerm

Term:DataTerm

+#,-.&/0/23'%45,%601

Figure 4.5: UML Model of Structured Data Terms

the children list is empty, the term itself is often referred to as an empty term. This children list
corresponds to the child edges in the data model after reference resolution.

• The local specification of a structured data term is depicted in Figure 4.6. It allows the specifi-
cation of

1. An optional term identifier that can be used to reference the term, as discussed above.
Term identifiers can be either XML Names1 or IRIs.

2. Exactly one name or label of the data term. The label itself consists in an optional names-
pace prefix and a mandatory local part. Again both can be either XML Names or IRIs.

3. An attribute term list, that is (a) in data terms always total and (b) consists of one or more
attribute terms, which in data terms are simple pairs of attribute names (or key) and values.
The name has the same shape as data term labels, the value as literal content data terms.

4.3.1 Textual Term Syntax: Structured Data Terms

Structured data terms form the core of the non-XML term syntax: the “local”, non-structural properties are
specified in prefix notation followed by the list of children. The list of children is enclosed in brackets, either
square brackets (‘[]’) to indicate that the order in which the children are specified is significant or curly
braces (‘{ }’) to indicate that the order is insignificant:

〈structured-dt〉 ::=- 〈local-spec-dt〉 〈children-list-dt〉 -

〈children-list-dt〉 ::=- ‘[’ ?〈data-term〉 ‘,’ ‘]’

‘{’ ?〈data-term〉 ‘,’ ‘}’

-

1Or, more precisely, NCNames as defined in the W3C XML Namespace recommendation [10]. Notice, that these are not
quite identical to the original XML (1.0) Names defined in [11], that do not treat the double colon as a special character.

23

LocalSpecificaiton:DataTerm

!"#$%&'(()

+,-

) BaseAttributeTerm:DataTerm

NsLabel:DataTerm

.-/#)

TotalAttributeTermList:DataTerm

)

0#"/1%2#.0%$%#"

'(()
3-*4#)

.-/#

)

AttributeTermList:DataTerm

AttributeTerm

LiteralContent:DataTerm

Identifier:DataTerm

NCName IRI

5,+/!*#0#612%78+%.09

5,+/!*#0#9

'((:

Figure 4.6: UML Model of the Local Specification for Structured Data Terms

Local properties of a structured term are the optional term identifier (that is preceding the remaining
properties and separated from them by ‘@’), the label of the term, and its attributes. The label itself falls into
two parts separated by ‘:’, viz. the optional namespace and the local name. Term identifier, namespace, and
local name are all identifiers as defined above in Section 4.1.

〈local-spec-dt〉 ::=- 〈term-identifier-dt〉 〈ns-label-dt〉 〈attr-term-list-dt〉 -

〈term-identifier-dt〉 ::=- 〈identifier-dt〉 ‘@’ -

〈ns-label-dt〉 ::=- 〈identifier-dt〉 ‘:’ 〈identifier-dt〉 -

Attribute terms are specified in a attribute list term, enclosed in round parentheses. Each attribute is a
pair, separated by ‘=’, of the attribute label (itself, as an element label, a pair of namespace and local name
separated by ‘:’) and the attribute content.

〈attr-term-list-dt〉 ::=- ‘(’ ?〈attr-term-dt〉 ’)’-

〈attr-term-dt〉 ::=- 〈base-attr-term-dt〉 -

〈base-attr-term-dt〉 ::=- 〈ns-label-dt〉 ‘=’ 〈literal-content-dt〉 -

Notice, that both the list of children nor the attribute may be empty, but neither may be absent. I.e.,

neither a[] nor a() or a are structured terms, but, e.g., a()[] and a(){}, cf. Issue 1.

4.3.2 XML-style Term Syntax: Structured Data Terms

In the representation of structured terms lies the main difference between the non-XML and the XML-style
term syntax: instead of prefix notation for terms as in logic-programming, XML-style element and attribute
notation is used. To achieve this, the following four productions are changed or added:

24

〈structured-dt〉 ::=- ‘<’ 〈local-spec-dt〉 〈properties-dt〉 · · ·
· · · ‘/>’

‘>’ 〈children-list-dt〉 ‘</>’
‘<’ 〈ns-label-dt〉 ‘>’

-

〈properties-dt〉 ::=- ‘{’ ‘ordered’ ‘}’
‘{’ ‘unordered’ ‘}’

-

〈children-list-dt〉 ::=- ?〈data-term〉 -

〈attr-term-list-dt〉 ::=- ?〈attr-term-dt〉 -

There is an additional restriction on the first production: the (namespace, local name) pair used as label
in the end element tag and the (namespace, local name) pair used in the start element tag (i.e., produced as
part of 〈local-spec-dt〉) must be (modulo whitespace) component wise equivalent character sequences.

Observe, how the first production encloses the entire local spec (including, e.g., the term identifier) in the
start element tag. Just like in XML this makes all the attributes part of the start element tag. Instead of using
different brackets, the significance of the order is indicated here using special term properties ‘{ordered}’
and ‘{unordered}’. If neither is given the term is assumed to be ordered as in standard XML.

4.3.3 Pure XML Syntax: Structured Data Terms

Structured terms (and as such structured data terms) are represented in the pure XML syntax by an XML
element element with sub-elements for its identifier (optional), its label, its list of children, and its list of
attributes.

E.g., the following data term in non-XML term syntax

1 a(b = "c & a \\ b"){ o1 @ d()[e()[]], d()[] }

is represented in pure XML syntax as:

1 <element> <!−− a(b = "c & a \\ b"){ o1 @ d()[e()[]], d()[] } −−>
<label>a</label>

3 <attributes>
<attribute total="true">

5 <label>b</label>
<value>c & a \ b</value>

7 </attribute>
</attributes>

9 <children ordered="false" total="true">

11 <element> <!−− o1 @ d()[e()[]] −−>
<identifier>o1</identifier>

13 <label>d</label>
<attributes total="true" />

15 <children ordered="true" total="true">
<element>

17 <label>e</label>
<attributes total="true" />

25

19 <children ordered="true" total="true" />
</element>

21 </children>
</element>

23

<element> <!−− d()[] −−>
25 <label>e</label>

<attributes total="true" />
27 <children ordered="true" total="true" />

</element>
29 </children>

</element>

Obviously, this is vastly more verbose than either the non-XML or the XML-style term syntax. However,
it has the virtue that (with the exceptions of regular and qualified descendant expressions, cf. Chapter 6)
all constructs of Xcerpt are explicitly represented as either XML elements or attributes. No non-XML “sub-
languages” remain that require special consideration, such as XPath in XSLT. This makes the syntax very easy
to process with XML tools.

The following gives the full grammar for structured terms in Relax NG compact syntax:

A structured term is a term that may have children and
2 ## attributes. It contrasts with literal content.
structured-term =

4 element element { term-local-spec, term-children, term-condition? }

6 ## Some terms may have additional constraints attached to them.
term-condition = empty

8

The children of a term can be ordered or unordered, total or partial.
10 term-children =

element children {
12 attribute ordered { "true" | "false" },

attribute total { total.class },
14 term.class*

}
16

The specification of the ’local’ properties of a term: identifier, label, namespace, and attributes.
18 term-local-spec = term-identifier?, ns-label, attr-term-list

20 ## The defining occurrence of a reference, i.e. "id @" in term syntax.
term-identifier = element identifier { identifier.class }

22

Label and namespace of an Xcerpt term or attribute.
24 ns-label =

element label {
26 element ns { identifier.class }?,

identifier.class
28 }

30 ## A term specifying the attributes of an element.
attr-term-list =

32 element attributes {

26

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 1 of 3
Continue on page 2

/ {grammar} Start top-level-term.class

top-level-term.class DocDoc

structured-term

{grammar} declare-block.rng

term.class DocDoc

using-reference

ref: using-reference

using-reference DocDoc

reference

http://xcerpt.org/ns/core/1.0

identifier.class

ref: identifier.class

identifier.class DocDoc

text

content-term

structured-term

term-level-declare

ref: term-level-declare

term-level-declare DocDoc

{grammar} declare-block.rng

term-level-declare DocDoc

{grammar} declare-block.rng

include: start from declare-block.rng

Start declare-block

include: define from declare-block.rng

declare-block DocDoc A declare block with an empty content and both namespace and variable declarations.

declare

http://xcerpt.org/ns/core/1.0

0..! ns-declaration

var-declaration

content

include: define from declare-block.rng

ns-declaration ns-default

http://xcerpt.org/ns/core/1.0

@ value text

ns-prefix

http://xcerpt.org/ns/core/1.0

@ name DD NCName

@ value text

include: define from declare-block.rng

var-declaration variable

http://xcerpt.org/ns/core/1.0

@ name DD NCName

include: define from declare-block.rng

content

content 0..! term.class

var-declaration

structured-term DocDoc

element

http://xcerpt.org/ns/core/1.0

term-local-spec

term-children

ref: term-children

term-children DocDoc

children

http://xcerpt.org/ns/core/1.0

@ ordered true

false

@ total total.class

0..! term.class

0..1 term-condition

ref: term-condition

term-condition DocDoc

Figure 4.7: Relax NG Schema for Structured Terms

attribute total { total.class },
34 attribute-term.class*

}
36

Class of values for attributes specifying totality or
38 ## partiality of a term’s children or attribute list.

total.class |= "true"
40

A attribute term is an attribute possibly modified with respect to location, modality, and selection.
42 attribute-term.class |= base-attribute

44 ## An attribute consists of a label and an attribute content.
base-attribute =

46 element attribute {
ns-label,

48 element value { literal-content.class }
}

In the grammar (and, more easily recognizable, in Figure 4.7 where the productions are inlined) term
conditions are provided but as an empty production. This is a sort of “hook” where in query terms actual term
conditions can be plugged in. Similarly, the attribute total (cf. also Figure 4.8 showing the local part of a term
specification) might strike as peculiar, since it is fixed to the value ‘true’. However, the possible values are
defined in the non-terminal total.class for which here only a single production is given, but others might be
added, e.g., when defining query terms leading to a choice of attributes.

4.4 Top-level Data Terms

To conclude the discussion of data terms, it should be noted, that data terms on top-level are slightly
restricted in comparison to data terms at any other level as discussed so far: Only structured data
terms and declare blocks are allowed, the later again being restricted to contain only a single top-level
data term instead of one or more arbitrary data terms. Figure 4.9 shows the full model of top-level
data terms.

27

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/term.rng 1 of 2
Continue on page 2

/ {grammar} Start top-level-term.class

top-level-term.class DocDoc

structured-term

{grammar} declare-block.rng

term.class DocDoc

reference

content-term

structured-term

term-level-declare

term-level-declare DocDoc

{grammar} declare-block.rng

structured-term DocDoc

element

http://xcerpt.org/ns/core/1.0

term-local-spec

term-children

0..1 term-condition

term-condition DocDoc

term-local-spec DocDoc

0..1 term-identifier

ref: term-identifier

term-identifier DocDoc

identifier

http://xcerpt.org/ns/core/1.0

identifier.class

ns-label

ref: ns-label

ns-label DocDoc

label

http://xcerpt.org/ns/core/1.0

0..1 ns

http://xcerpt.org/ns/core/1.0

identifier.class

identifier.class

attr-term-list

ref: attr-term-list

attr-term-list DocDoc

attributes

http://xcerpt.org/ns/core/1.0

@ total total.class

ref: total.class

total.class DocDoc

true

0..! attribute-term.class

term-identifier DocDoc

identifier

http://xcerpt.org/ns/core/1.0

identifier.class

ns-label DocDoc

label

http://xcerpt.org/ns/core/1.0

0..1 ns

http://xcerpt.org/ns/core/1.0

identifier.class

identifier.class

attr-term-list DocDoc

attributes

http://xcerpt.org/ns/core/1.0

@ total total.class

0..! attribute-term.class

total.class DocDoc

true

attribute-term.class DocDoc

base-attribute

Figure 4.8: Relax NG Schema for Local Specifications of Structured Terms

StructuredTerm:DataTermTopLevelTermDeclare:DataTerm

!

TopLevelTerm:DataTerm

"#$%&'()(*+,-./$-0)1

NamespaceDeclaration

2334

Content:DataTerm

"#$%&'()(*+,-./50#)1

StructuredTerm:DataTerm

Term:DataTerm

Reference:DataTerm

Identifier:DataTerm

-,6(7

!

TermLevelDeclare:DataTerm

NamespaceDeclaration

2334

LiteralContent:DataTerm

"#$%&'()(*+,-./50#)1

Comment:DataTerm

Content:DataTerm

ProcessingInstruction:DataTerm

StringIdentifier:DataTerm

"#$%&'()(1

#$0)(0)!

#$0)(0)

!

)869()+08%(!

!

Figure 4.9: UML Model of Top Level Data Terms

28

4.4.1 Textual Term Syntax: Top-Level Data Terms

Due to the different declaration blocks (i.e., basic data terms may be declaration blocks that contain all forms
of basic terms, top-level data terms may be declaration blocks that contain only top-level terms), a top-level
data term can not be specified as a basic data term with some exceptions. Rather a separate production is
needed:

〈top-level-data-term〉 ::=- 〈top-term-level-declare-dt〉 〈structured-dt〉 -

〈top-term-level-declare-dt〉 ::=- ‘declare’ 〈ns-declaration-dt〉 ‘(’ 〈top-level-data-term〉 ‘)’ -

4.4.2 XML-style Term Syntax: Top-Level Data Terms

Again, the productions for the XML-style term syntax do not differ from the non-XML term syntax.

4.4.3 Pure XML Syntax: Top-Level Data Terms

The treatment of top-level terms concludes the definition of terms (which are, as stated above, exactly data
terms). Terms are defined in a separate grammar and will be included in the full Xcerpt syntax three times,
once for each type of term. For data terms, no parameterization occurs at inclusion:

1 # Data Terms
data-term =

3 grammar {
include "term.rnc"

5 }

term.rnc contains the grammar for terms including all productions discussed so far and the following
fragment for top-level terms:

1 default namespace = "http://xcerpt.org/ns/core/1.0"

3 start = top-level-term.class

5 ## A term that may occur at top−level. Slightly more
restricted than a basic term.

7 top-level-term.class =
structured-term

9 | grammar {
include "declare−block.rnc" {

11 content = parent top-level-term.class*
var-declaration = empty

13 }
}

Notice, how the start symbol of the grammar is set to top-level-term.class. The above inclusion of the

grammar thus makes data-term an alias for top-level-term.class from term.rnc.

4.5 Exemplary Data Term

The following data term will be used as running example for the remainder of this article (e.g., as basis
for query and construct term examples). It is drawn from the domain of bibliography management:

29

Mixing typical bibliographic records (similar to Bibtex or DBLP) with actual content (represented as
XHTML or in a Docbook-style format) it combines

• so-called document-oriented with data-oriented XML, i.e., data with flexible, recursive structure
and data with rather rigid and flat structure. Recursive structure is used, e.g., for the content of
articles in Docbook-style format.

• normalized with de-normalized representation of data (e.g., author information is duplicated
for each authored paper, whereas the information about the journal is represented once and
referenced in other parts),

• hierarchical with delimiter-based structuring of data (e.g., (X)HTML style sections delimited by
consecutive hn elements vs. nested sections as, e.g., in DocBook),

• resolved and unresolved links. Where links are used to normalize the data (e.g., in case of
journal information of a an article), these links are resolved to Xcerpt references. Other links
(e.g., the link to another section in the content of an article) are left unresolved as they must be
distinguished from “normal” nesting. E.g., links to other sections in the content of an article
(like “cf.Section 10”) part-of relations).

Figures 4.10 and 4.11 show fictional journal, proceeding, and article information in non-XML
and XML-style term syntax. Notice, the close relation of these syntactical variants: each line of the
non-XML term syntax has exactly one corresponding line in the XML-style term syntax.

Unsurprisingly, in pure XML syntax the sample data is considerably longer than in either of the
term syntaxes (715 lines vs. 130 lines, i.e., a 5.5-fold increase): Essentially, the entire syntax tree is
represented explicitly as XML elements. The full sample data is shown in Appendix C.3, an excerpt
(the full journal entry) in Figure 4.12.

4.6 XML Documents as Data Terms

Before taking a look at how queries—that is selection of existing data and construction of new data—
are expressed in Xcerpt, the discussion of data terms in Xcerpt is concluded by a look at how XML
documents are transformed into data terms when queried with Xcerpt.

An XML document contains (leaving aside for the moment prolog and epilog) a single document
element that can be accessed in Xcerpt as a single data term. Section 6.4.2 introduces document
specifications that also allow access to prolog and epilog of an XML document. Here, we take a look
at how the document element of an XML document is interpreted as an Xcerpt data term. For the
most part that is very straightforward, i.e., elements are mapped to structured terms, character data,
comments, and processing instructions to their respective form of content terms. However, three
issues demand a closer look:

• Transparent Reference Resolution: One of the strengths of Xcerpt is the transparent resolution
of references. However, when reading XML documents one must consider

1. How is the identifier of an element (represented by a structured data term) specified?
Following, [11] and [44], Xcerpt aims at support for the two standard mechanisms for
defining element ID’s: attributes of type ID (declared in a DTD or similar schema) and
xml:id attributes. Currently, the first one is not available, as Xcerpt does not yet provide
access to type information from a schema, cf. Issue 12.3.

30

bib(){
2 journal.adm @ journal(){

title()["Applied Data Management"]
4 editors()[

editor-in-chief()["Titus Pomponius Atticus"]
6 editor(region="Africa")["Marcus Aemilius Aemilianus"]

editor(region="Gaul")["Aulus Hirtius"
8 affiliation()["Governor, Transalpine Gaul"]]

editor(region="Cilicia")["Marcus Tullius Cicero"
10 affiliation()["Governor, Cilicia"]]

]
12 publisher()["Titus Pomponius Atticus"]

volumes()[
14 journal.adm.v10 @ volume()[

journal.adm.v10.n1 @ number(type="special−issue"){
16 title()["Data Processing Challenges in the Age of Wax Tablets"]

editorial()[^ articles.66.cicero.wax]
18 year()["60"]

month()["july"]
20 }

journal.adm.v10.n2 @ number(){
22 year()["60"]

month()["november"]
24 }

]
26]

]

1 <bib {unordered}>
<journal.adm @ journal {unordered}>

3 <title>"Applied Data Management"</title>
<editors>

5 <editor-in-chief>"Titus Pomponius Atticus"</editor-in-chief>
<editor region="Africa">"Marcus Aemilius Aemilianus"</editor>

7 <editor region="Gaul">"Aulus Hirtius"
<affiliation>"Governor, Transalpine Gaul"</affiliation></editor>

9 <editor region="Cilicia">"Marcus Tullius Cicero"
<affiliation>"Governor, Cilicia"</affiliation></editor>

11 </editors>
<publisher>"Titus Pomponius Atticus"</publisher>

13 <volumes>
<journal.adm.v10 @ volume>

15 <journal.adm.v10.n1 @ number type="special−issue" {unordered}>
<title>"Data Processing Challenges in the Age of Wax Tablets"</title>

17 <editorial>^ articles.66.cicero.wax</editorial>
<year>"60"</year>

19 <month>"july"</month>
</number>

21 <journal.adm.v10.n2 @ number {unordered}>
<year>"60"</year>

23 <month>"november"</month>
</number>

25 </volume>
</volumes>

27 </journal>

29 conf.dmmc @ proceedings(){
editors()[

31 editor()["Marcus Aemilius Lepidus"
affiliation ["Consul, SPQR"]]

33 editor()["Gaius Julius Caesar Octavianus"]
editor()["Marcus Antonius"]

35]
title()[

37 "Advancements in Data Management for Military and Civil Application"
]

39 invited-papers()[
^inproc.44.brutus

41 ^article.66.scaurus.qumran
]

43 abbrev()["DMMC"]
year()["44"]

45 month()["july"]
location()["Mutina"]

47 publisher()["SPQR"]
}

<conf.dmmc @ proceedings {unordered}>
30 <editors>

<editor>"Marcus Aemilius Lepidus"
32 <affiliation>"Consul, SPQR"</affiliation></editor>

<editor>"Gaius Julius Caesar Octavianus"</editor>
34 <editor>"Marcus Antonius"</editor>

</editors>
36 <title>

"Advancements in Data Management for Military and Civil Application"
38 </title>

<invited-papers>
40 ^inproc.44.brutus

^article.66.scaurus.qumran
42 </invited-papers>

<abbrev>"DMMC"</abbrev>
44 <year>"44"</year>

<month>"july"</month>
46 <location>"Mutina"</location>

<publisher>"SPQR"</publisher>
48 </proceedings>

article.66.scaurus.qumran @ article(){
51 author()["Marcus Aemilius Scaurus"

affiliation()["Tribun, Gnaeus Pompeius Magnus"]]
53 title()["From Wax Tablets to Papyri: The Qumran Case Study"]

in(scrolls="102−112")[^ journal.adm.v10.n1]
55 citations [

cite(ref="article.66.cicero.wax")[]
57 cite(type="formatted")["M. Aemilius Scaurus (104): A Case for Permanent

Storage of Senate Proceedings. In: M. Aemilius Scaurus, ed. (104): "
59 i()["Princeps Senatus: Honor and Responsibility"]

", Chapter 2, 14−88."]
61]

]

<article.66.scaurus.qumran @ article {unordered}>
51 <author>"Marcus Aemilius Scaurus"

<affiliation>"Tribun, Gnaeus Pompeius Magnus"</affiliation></author>
53 <title>"From Wax Tablets to Papyri: The Qumran Case Study"</title>

<in scrolls="102−112">^ journal.adm.v10.n1</in>
55 <citations>

<cite ref="article.66.cicero.wax" />
57 <cite type="formatted">"M. Aemilius Scaurus (104): A Case for Permanent

Storage of Senate Proceedings. In: M. Aemilius Scaurus, ed. (104): "
59 <i>"Princeps Senatus: Honor and Responsibility"</i>

", Chapter 2, 14−88."</cite>
61 </citations>

</article>

Figure 4.10: Exemplary Data Term, Part I: Non-XML and XML-style Term Syntax

31

article.66.cicero.wax @ article(){
65 authors()[

author()["Marcus Tullius Cicero"
67 affiliation()["Governor, Cicilia"]]

author()["Marcus Aemilius Lepidus"
69 affiliation()["Gens Aemilia"]]

author()["Marcus Tullius Tiro"
71 affiliation()["Secretary, M. T. Cicero"]]

]
73 title()["Space− and Time−Optimal Data Storage on Wax Tablets"]

in(scrolls="1−94")[^ journal.adm]
75 content(type="xhtml")[

declare ns-default "http://www.w3.org/1999/xhtml"
77 body()[

xcerpt:comment["incomplete due to melted letters on some tablets"]
79 h1(id="contributions")["Contributions"]

h1()["A History of Data Storage: From Stone to Parchment"]
81 p()["Despite " cite()[^ article.66.scaurus.qumran] ...]

ol()[
83 li()[em()[strong()["Homeric"] " Age:"] ...]

li()[em()["Age of the " strong()["Kings"] ":"] ...]
85]

h1(id="tiro")["Notae Tironianae"]
87 img(title="Tironian et" src=...)[]

p()["As discussed in " a(href="#contributions")[...]]
89 h1(id="tachygraphy")["Challenges for Tachygraphy on Wax"]

p()["Though conditions for writing on wax tablets are adverse
91 to tachygraphy, systems as described in " a(href="#tiro")[...]]

]
93]

}

<article.66.cicero.wax @ article {unordered}>
65 <authors>

<author>"Marcus Tullius Cicero"
67 <affiliation>"Governor, Cicilia"</affiliation></author>

<author>"Marcus Aemilius Lepidus"
69 <affiliation>"Gens Aemilia"</affiliation></author>

<author>"Marcus Tullius Tiro"
71 <affiliation>"Secretary, M. T. Cicero"</affiliation></author>

</authors>
73 <title>"Space− and Time−Optimal Data Storage on Wax Tablets"</title>

<in scrolls="1−94">^ journal.adm.v10.n1</in>
75 <content type="xhtml">

declare ns-default "http://www.w3.org/1999/xhtml"
77 <body>

<!−− "incomplete due to melted letters on some tablets" −→
79 <h1 id="contributions">"Contributions"</h2>

<h1>"A History of Data Storage: From Stone to Parchment"</h1>
81 <p>"Despite "<cite>^ article.66.scaurus.qumran</cite> ...</p>

83 "Homeric"" Age:"...

"Age of the ""Kings"":"...
85

<h1 id="tiro">"Notae Tironianae"</h1>
87

<p>"As discussed in "...</p>
89 <h1 id="tachygraphy">"Challenges for Tachygraphy on Wax"</h1>

<p>"Though conditions for writing on wax tablets are adverse
91 to tachygraphy, systems as described in "...</p>

</body>
93 </content>

</article>

inproc.44.brutus @ inproceedings(){
97 authors()[

author()["Marcus Antonius"
99 affiliation()["Consul, SPQR"]]

author()["Decimus Junius Brutus"
101 affiliation()["Governor, Cisalpine Gaul"]]

]
103 title()["Efficient Management of Rapidly Changing Personal Records"]

in(scrolls="24−48")[^ conf.dmmc]
105 content(type="docbook") [

declare ns-default "http://example.org/ns/docbook/simplified/1.0"
107 section()[info()[title()["Introduction"]]

section()[info()[title()["Contributions"]]
109 para()["The most notable contributions of this article include:"

list(type="ordered")[
111 item()[

para()["A new " em()["methodology"] " to ..., cf. "
113 pageref(idref="inproc.44.brutus.s1")[...]]

figure()[title()["Chart of Desertions"]
115 img()[...]]

para()["As " cite()[^article.66.cicero.wax] ...]
117]

]
119]

]
121]

inproc.44.brutus.s1 @ section()[
123 info()[title()["Acknowledgements"]]

para()["We would like to thank the editors of "
125 cite()[^journal.adm.v10.n1] ...]

]
127]

}
129 }

96 <inproc.44.brutus @ inproceedings {unordered}>
<authors>

98 <author>"Marcus Antonius"
<affiliation>"Consul, SPQR"</affiliation></author>

100 <author>"Decimus Junius Brutus"
<affiliation>"Governor, Cisalpine Gaul"</affiliation></author>

102 </authors>
<title>"Efficient Management of Rapidly Changing Personal Records"</title>

104 <in scrolls="24−48">^ conf.dmmc</in>
<content type="docbook">

106 declare ns-default "http://example.org/ns/docbook/simplified/1.0"
<section><info><title>"Introduction"</title></info>

108 <section><info><title>"Contributions"</title></info>
<para>"The most notable contributions of this article include:"

110 <list type="ordered">
<item>

112 <para>"A new ""methodology"" to ..., cf. "
<pageref idref="inproc.44.brutus.s1" /> ...</para>

114 <figure><title>"Chart of Desertions"</title>
</figure>

116 <para>"As "<cite>^ article.66.cicero.wax</cite>...</para>
</item>

118 </list>
</para>

120 </section>
</section>

122 <inproc.44.brutus.s1 @ section>
<info><title>"Acknowledgements"</title></info>

124 <para>"We would like to thank the editors of "
<cite>^ journal.adm.v10.n1</cite> ...</para>

126 </section>
</content>

128 </inproceedings>
</bib>

Figure 4.11: Exemplary Data Term, Part II: Non-XML and XML-style Term Syntax

32

6 <element>
<identifier>journal.adm</identifier>

8 <label>journal</label>
<attributes total="true" />

10 <children ordered="false" total="true">
<element>

12 <label>title</label>
<attributes total="true" />

14 <children ordered="true" total="true"
>Applied Data Management</children>

16 </element>
<element>

18 <label>editors</label>
<attributes total="true" />

20 <children ordered="true" total="true">
<element>

22 <label>editor-in-chief</label>
<attributes total="true" />

24 <children ordered="true" total="true"
>Titus Pomponius Atticus</children>

26 </element>
<element>

28 <label>editor</label>
<attributes total="true" >

30 <attribute><label>region</label><value>Africa</value>
</attribute>

32 </attributes>
<children ordered="true" total="true"

34 >Marcus Aemilius Aemilianus</children>
</element>

36 <element>
<label>editor</label>

38 <attributes total="true" >
<attribute><label>region</label><value>Gaul</value>

40 </attribute>
</attributes>

42 <children ordered="true" total="true"
>Aulus Hirtius<!−− −−>

44 <element>
<label>affiliation</label>

46 <attributes total="true" />
<children ordered="true" total="true"

48 >Governor, Transalpine Gaul</children>
</element>

50 </children>
</element>

52 <element>
<label>editor</label>

54 <attributes total="true" >
<attribute><label>region</label><value>Cilicia</value>

56 </attribute>
</attributes>

58 <children ordered="true" total="true"
>Marcus Tullius Cicero<!−− −−>

60 <element>
<label>affiliation</label>

62 <attributes total="true" />
<children ordered="true" total="true">Governor, Cicilia</children>

64 </element>
</children>

66 </element>
</children>

68 </element>
<element>

70 <label>publisher</label>
<attributes total="true" />

72 <children ordered="true" total="true"
>Titus Pomponius Atticus</children>

74 </element>

<element>
76 <label>volumes</label>

<attributes total="true" />
78 <children ordered="true" total="true">

<element>
80 <identifier>journal.adm.v10</identifier>

<label>volume</label>
82 <attributes total="true" />

<children ordered="true" total="true">
84 <element>

<identifier>journal.adm.v10.n1</identifier>
86 <label>number</label>

<attributes total="true">
88 <attribute><label>type</label><value>special-issue</value>

</attribute>
90 </attributes>

<children ordered="false" total="true">
92 <element>

<label>title</label>
94 <attributes total="true" />

<children ordered="true" total="true"
96 >Data Processing Challenges in the Age of Wax Tablets</children>

</element>
98 <element>

<label>editorial</label>
100 <attributes total="true" />

<children ordered="true" total="true"
102 ><reference>articles.66.cicero.wax</reference></children>

</element>
104 <element>

<label>year</label>
106 <attributes total="true" />

<children ordered="true" total="true"
108 >60</children>

</element>
110 <element>

<label>month</label>
112 <attributes total="true" />

<children ordered="true" total="true"
114 >july</children>

</element>
116 </children>

</element>
118 <element>

<identifier>journal.adm.v10.n2</identifier>
120 <label>number</label>

<attributes total="true" />
122 <children ordered="false" total="true">

<element>
124 <label>year</label>

<attributes total="true" />
126 <children ordered="true" total="true"

>60</children>
128 </element>

<element>
130 <label>month</label>

<attributes total="true" />
132 <children ordered="true" total="true"

>november</children>
134 </element>

</children>
136 </element> <!−− number −−>

</children>
138 </element> <!−− volume −−>

</children>
140 </element> <!−− volumes −−>

</children>
142 </element> <!−− journal −−>

Figure 4.12: Exemplary Data Term, Excerpt: pure XML syntax

33

All xml:id attributes in XML documents are translated to identifiers for the appropriate
structured term, if the document does not contain xml:id errors (cf.[44], Section 2), in
which case xml:id attributes are handled as normal attributes.

2. How is a reference to a (defined) identifier specified? Again, Xcerpt aims to support the
standard mechanism, i.e., attributes of type IDREF or IDREFS. However, there are other
(internal) links, e.g., HTML-style href attributes. Furthermore, not all such links are to be
transparently resolved, as discussed above.

In all cases, the query author can specify a view that resolves the references and then
formulate the rest of the query on top of this view. However, such a view requires a recursive
descent through the document structure and is not trivial to program. Thus, Xcerpt
introduces a processing instruction as a convenience that address the most common cases
where transparent references are needed:

The syntax of the processing instruction follows [15]: the target name is xcerpt-resolve-
reference and the content of the processing instruction is a list of “pseudo-attributes”
(again following syntax and notion from [15]). The following pseudo-attributes are sup-
ported:

attribute specifies the name of the referencing attribute, i.e., the attribute that contains
the actual reference(s).

on specifies the (local) name of the element whose attributes contain the reference(s) to
be resolved.

ns specifies the namespace of the element. May be omitted in which case only references
on elements in the empty namespace are resolved.

type specifies the type of reference. Currently, the values IDREF, IDREFS, and fragment
are supported, indicating that the referencing attribute contains a single ID refer-
ence, multiple ID references, or a single HTML-style fragment indicator (e.g., #tiro)
respectively.

replace specifies whether the element carrying the referencing attribute is merely a
placeholder for the referenced element and thus is to be replaced by the reference.
Possible values are true and false, with false as default value.

E.g., the processing instruction

<?xcerpt-resolve-reference "attribute=’idref’ on=’cite’ type=’IDREF’
2 ns=’http://example.org/ns/docbook/simplified/1.0’"?>

specifies that all values in idref attributes on cite elements in the specified namespace are
to be considered as IDREF links and transparently resolved when loading the document.

• Unordered Content: Though the children of structured terms are always ordered, Xcerpt allows
the specification whether this order is significant and must be preserved. In XML documents
this distinction can be made by annotating elements with the ordered attribute from the Xcerpt
namespace (http://xcerpt.org/ns/core/1.0). The possible values are true or false, as in
the pure XML syntax, indicating significant and insignificant order.

• In-scope Namespaces: XML documents provide no means to separate the scope of namespaces
from the scope of individual elements. E.g., the content element in our sample data may contain
elements from the XHTML namespace or from the namespace for our simplified Docbook
version. However, the namespace declaration must be attached to individual elements, thus

34

http://xcerpt.org/ns/core/1.0

requiring either a wrapper element (the body element in line 77 in Figure 4.11 and line 89 in
Figure 4.13) or separate namespace declarations on all sub-elements of content, cf. line 119
and 135 in Figure 4.13.

Figure 4.13 shows an XML document with the appropriate processing instructions and IDs to
result in the sample data term, when loaded in Xcerpt.

35

<?xml version="1.0" standalone="yes"?>
2 <?xcerpt-resolve-reference

"attribute=’idref’ on=’cite’ ns=’http://example.org/ns/docbook/simplified/1.0’
4 type=’IDREF’"?>

<?xcerpt-resolve-reference "attribute=’idref’ on=’in’ type=’IDREF"?>
6 <?xcerpt-resolve-reference "attribute=’idref’ on=’editorial’ type=’IDREF"?>

<?xcerpt-resolve-reference "attribute=’idref’ on=’ref’ replace=’true’
type=’IDREF"?>

8 <bib xmlns:xc="http://xcerpt.org/ns/core/1.0" xc:ordered="false">
<journal xml:id="journal.adm" xc:ordered="false">

10 <title>Applied Data Management</title>
<editors>

12 <editor-in-chief>Titus Pomponius Atticus</editor-in-chief>
<editor region="Africa">Marcus Aemilius Aemilianus</editor>

14 <editor region="Gaul">Aulus Hirtius
<affiliation>Governor, Transalpine Gaul</affiliation>

16 </editor>
<editor region="Cilicia">Marcus Tullius Cicero

18 <affiliation>Governor, Cilicia</affiliation></editor>
</editors>

20 <publisher>Titus Pomponius Atticus</publisher>
<volumes>

22 <volume xml:id="journal.adm.v10">
<number xml:id="journal.adm.v10.n1" type="special−issue"

24 xc:ordered="false">
<title>Data Processing Challenges in the Age of Wax

26 Tablets</title>
<editorial idref="articles.66.cicero.wax"></editorial>

28 <year>60</year>
<month>july</month>

30 </number>
<number xml:id="journal.adm.v10.n2" xc:ordered="false">

32 <year>60</year>
<month>november</month>

34 </number>
</volume>

36 </volumes>
</journal>

38 <proceedings xml:id="conf.dmmc" xc:ordered="false">
<editors>

40 <editor>Marcus Aemilius Lepidus
<affiliation>Consul, SPQR</affiliation></editor>

42 <editor>Gaius Julius Caesar Octavianus</editor>
<editor>Marcus Antonius</editor>

44 </editors>
<title>Advancements in Data Management for Military and Civil

46 Application</title>
<invited-papers>

48 <ref idref="inproc.44.brutus" />
<ref idref="article.66.scaurus.qumran" />

50 </invited-papers>
<abbrev>DMMC</abbrev>

52 <year>44</year>
<month>july</month>

54 <location>Mutina</location>
<publisher>SPQR</publisher>

56 </proceedings>
<article xml:id="article.66.scaurus.qumran" xc:ordered="false">

58 <author>Marcus Aemilius Scaurus
<affiliation>Tribun, Gnaeus Pompeius Magnus</affiliation>

60 </author>
<title>From Wax Tablets to Papyri: The Qumran Case Study</title>

62 <in scrolls="102−112" idref="journal.adm.v10.n1" />
<citations>

64 <cite ref="article.66.cicero.wax" />
<cite type="formatted">M. Aemilius Scaurus (104): A Case for

66 Permanent Storage of Senate Proceedings. In: M. Aemilius
Scaurus, ed. (104): <i>Princeps Senatus: Honor

68 and Responsibility</i>, Chapter 2, 14-88.</cite>
</citations>

70 </article>
<article xml:id="article.66.cicero.wax" xc:ordered="true">

72 <authors>
<author>Marcus Tullius Cicero

74 <affiliation>Governor, Cicilia</affiliation></author>
<author>Marcus Aemilius Lepidus

76 <affiliation>Gens Aemilia</affiliation></author>
<author>Marcus Tullius Tiro

78 <affiliation>Secretary, M. T. Cicero</affiliation>
</authors>

80 <title>Space- and Time-Optimal Data Storage on Wax Tablets</title>
<in scrolls="1−94" idref="journal.adm" />

82 <content type="xhtml">
<body xmlns="http://www.w3.org/1999/xhtml">

84 <!−− incomplete due to melted letters on some tablets −−>
<h1 id="contributions">Contributions</h2>

86 <h1>A History of Data Storage: From Stone to Parchment</h1>
<p>Despite recent evidence ...</p>

88
Homeric Age:...

90 Age of the Kings:...

92 <h1 id="tiro">Notae Tironianae</h1>

94 <p>As discussed in ...</p>
<h1 id="tachygraphy">Challenges for Tachygraphy on Wax</h1>

96 <p>Though conditions for writing on wax tablets are adverse to
tachygraphy, systems as described in ...</p>

98 </body>
</content>

100 </article>
<inproceedings xml:id="inproc.44.brutus" xc:ordered="false">

102 <authors>
<author>Marcus Antonius<affiliation>Consul, SPQR</affiliation>

104 </author>
<author>Decimus Junius Brutus<affiliation

106 >Governor, Cisalpine Gaul</affiliation></author>
</authors>

108 <title>Efficient Management of Rapidly Changing Personal Records</title>
<in scrolls="24−48" idref="conf.dmmc"/>

110 <content type="docbook">
<section xmlns="http://example.org/ns/docbook/simplified/1.0">

112 <info><title>Introduction</title></info>
<section><info><title>Contributions</title></info>

114 <para>The most notable contributions of this article include:
<list type="ordered">

116 <item>
<para>A new methodology to ..., cf.

118 <pageref idref="inproc.44.brutus.s1" /> ...</para>
<figure><title>Chart of Desertions</title>

120 </figure>
<para>As <cite idref="article.66.cicero.wax" />...</para>

122 </item>
</list>

124 </para>
</section>

126 </section>
<section xml:id ="inproc.44.brutus.s1"

128 xmlns="http://example.org/ns/docbook/simplified/1.0">
<info><title>Acknowledgements</title></info>

130 <para>We would like to thank the editors of
<cite idref="journal.adm.v10.n1" /> ...</para>

132 </section>
</content>

134 </inproceedings>
</bib>

Figure 4.13: Exemplary Data Term: From an XML Document

36

Chapter 5

How to specify queries?
Part 1: Construction

As briefly mentioned above, Xcerpt uses very much similar concepts and syntax for data and queries.
Queries in Xcerpt are guided by a small number of principles:

• Queries as Patterns. Instead of using separate concepts and syntax for queries (as in naviga-
tional query languages such as XQuery [9]), Xcerpt uses terms for representing both data and
queries. All data terms are also query terms, but there are some additional constructs in data
terms, that allow (a) the extraction of data by using logical variables, (b) the specification of
queries that are only incomplete patterns of the data, i.e., where more nodes may occur in the
data than specified in the query, and (c) the specification of formulas in terms, i.e., conjunction,
disjunction, negation, optionality etc.

• Logical Variables. In query terms, logical variables are used to indicate which data is to be
selected and to join data (indicated by multiple occurrences of the same variable as in logic
programming languages). The result of a query is conceptually a set of tuples each representing
a combination of bindings (or matches) for all the variables occurring in the query term. For
each tuple, a data term must exist that matches the query where all the variables are substituted
by the bindings of the tuple.

• Separation of Querying and Construction. In contrast to query languages such as SQL or
XQuery, construction and querying are strictly separated in Xcerpt, in particular there are no
nested queries in Xcerpt (rather rules and rule chaining is used, cf. Section 7). The data con-
structed by a rule is specified in construct terms, that contain variables from the corresponding
query terms acting as placeholders for selected data. Additionally construct terms make use of
gouping constructs to return all or some of the alternative bindings of a variable.

• Incomplete Patterns. In most cases, queries specify just enough restrictions on the data to
be returned, as required by the query intent, rather than specifying full or “total” patterns of
the data. Xcerpt supports such queries by providing constructs to express that a pattern is
incomplete in breadth (i.e., there can be more children than specified), depth (i.e., there can be
additional nodes and edges between the matched nodes) etc.

37

TopLevelTerm, Term, StructuredTerm, Identifier, LiteralContent, DeclareBlock

Content StructuredTerm

Term

Reference

Identifier

!"#$%&

TopLevelTermDeclare

&

TopLevelTerm

TermLevelDeclare

ProcessingInstruction

String

'(#)$'*+(,$

&

Comment

LiteralContent

-.+'$+'

&

DeclareBlock

Figure 5.1: UML Model for Terms as Parameterized Collaboration

• Terms as Formulas. Query terms are not only augmented by variables, but also by constructs
for expressing negation, disjunction, conjunction, and optionality.

In the remainder of this part, first construct terms and then query terms are introduced in detail
and compared to data terms. To facilitate a better understanding and description of the differences
between data terms, construct terms, and query terms, a short aside introduces a parameterized
model for terms, that precisely specifies in what aspects the three kinds of terms may differ from each
other.

5.1 An Aside: A Parameterized Model for Terms

UML uses the notion of “parameterized collaborations” to describe what is otherwise known as
(software) patterns (not to be confused with Xcerpt’s patterns), i.e., collections of concepts and
relations among concepts that occur in different contexts. They are “parameterized”, as a number of
the concepts in the parameterized collaboration are “exported” as parameters and must be related to
concrete concepts when using the pattern.

Figure 5.1 shows an example for the notation adopted in UML for defining such parameterized
collaborations: concepts and relations are drawn as usual, but a dashed ellipsis is drawn around the
concepts that are part of the definition. The parameter concepts are depicted in a box at the top of the
ellipsis.

Indeed, Figure 5.1 shows an Xcerpt term as a parameterized collaboration: all the relations and
concepts depicted are common to all three kinds of Xcerpt terms, they only vary in the six parameters

38

StructuredTerm, Term, LocalSpecification

StructuredTerm

OrderedStructuredTerm UnorderedStructuredTerm

!

"#$%&'

())*

TotalStructuredTerm

LocalSpecificaiton

Term

Figure 5.2: UML Model for Structured Terms as Parameterized Collaboration

LocalSpecification, AttributeTermList, AttributeTerm, BaseAttributeTerm, Identifier, LiteralContent

LocalSpecificaiton

!"#$%&'(()

+,-

) BaseAttributeTerm

NsLabel

)

TotalAttributeTermList

)

.#"/0%1#2.%$%#"

'(()
3-*4#)

2-/#

)

AttributeTermList

AttributeTerm

LiteralContent

Identifier

NCName IRI

5,+/!*#.#601%78+%2.9

5,+/!*#.#9

'((:

Figure 5.3: UML Model for Local Term Specifications

39

given in the top corner: (1) what is a top-level term, (2) what is a basic term, (3) what is a structured
term, (4) what is an identifier, (5) what is a literal content, and (5) what is a declaration block.

Figures 5.2 and 5.3 complete the definition of a term by defining parameterized collaboration
for structured terms and for local descriptions of terms (these could be part of a single pattern as
they are never used separately, but for readability they have been split over three diagrams). The
parameterized collaboration for structured terms shares the second and third parameter of the
parameterized collaboration for terms and adds an additional parameter, the local specification,
to link to the parameterized collaboration for local term specifications shown in Figure 5.3. The
parameterized collaboration for a local term specification has additional parameters for (1) attribute
terms, (2) attributes, and (3) basic (or literal) attributes.

Notice, how similar these patterns are to data terms. This is due to the fact, that all data terms are
also valid terms in the other two term kinds.

Given these parameterized collaborations, data terms can be defined as shown in Figure 5.4:
all parameters for the three parameterized collaborations are simply “instantiated” with concrete
concepts for data terms without adding any additional concepts or relations.

5.2 Specifying New Data: Construct Terms

As mentioned above, conceptually the result of a query is a multi-set of mappings each representing
one combination (or substitution) of bindings for all variables occurring in the query term. For each
tuple, an (extensional or intensional) data term must exist that matches the query where all the
variables are substituted by the bindings of the tuple.

5.2.1 Substitutions and Substitution Sets

A substitution is a mapping from the set of (all) variables to the set of (all) construct terms. As usual, a
substitution is a mapping of infinite sets. Of course, finite representations are usually used, as the
number of variables occurring in a term is finite. Substitutions are often conveniently denoted as
sets of variable assignments instead of as functions. For example, we write

{
X 7→ a,Y 7→ b

}
to denote a

substitution that maps the variable X to a and the variable Y to b, and any other variable to arbitrary
values. In general, a substitution provides assignments for all variables, but “irrelevant” variables are
not given in the description of substitutions.

A substitution multi-set is simply a multi-set containing substitutions. Often the substitutions in a
substitution multi-set have very similar sets of “relevant” variables, differing only, e.g., in optional
variables. Thus a substitution multi-set can also be denoted as an n-ary multi-set relation over the
set of all construct terms where n is the size of the maximum set of variables “relevant” for any
substitution in the multi-set. Substitutions become tuples in this relation with “irrelevant” variables
marked as null values. E.g., the following table is a representation for a substitution multi-set with
three substitutions using “relevant” variables X, Y, and Z. The first tuple represents the substitution{
X 7→ a,Y 7→ b,Z 7→ c

}
, the second

{
X 7→ c,Y 7→ b,Z 7→ b

}
, and the third

{
X 7→ c,Y 7→ a

}
.

X Y Z

a b c
c b b
c a null

40

T
er

m

-T
o
p
L
e
v
e
lT
e
rm

T
o

p
Le

ve
lT

er
m

:D
at

aT
er

m

St
ru

ct
u

re
d

T
er

m
:D

at
aT

er
m

-S
tr
u
c
tu
re
d
T
e
rm

Id
en

ti
fi

er
:D

at
aT

er
m

Li
te

ra
lC

o
n

te
n

t:
D

at
aT

er
m

-I
d
e
n
ti
fi
e
r

-L
it
e
ra
lC
o
n
te
n
t

-T
e
rm

T
er

m
:D

at
aT

er
m

St
ru

ct
u

re
d

T
er

m

-T
e
rm

Lo
ca

lS
p

ec
if

ic
at

io
n

:D
at

aT
er

m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

Lo
ca

lS
p

ec
if

ic
at

io
n

A
tt

ri
b

u
te

T
er

m
:D

at
aT

er
m

A
tt

ri
b

u
te

T
er

m
Li

st
:D

at
aT

er
m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

-L
it
e
ra
lC
o
n
te
n
t

-I
d
e
n
ti
fi
e
r

-A
tt
ri
b
u
te
T
e
rm

-A
tt
ri
b
u
te
T
e
rm
L
is
t

B
as

eA
tt

ri
b

u
te

T
er

m
:D

at
aT

er
m

-B
a
s
e
A
tt
ri
b
u
te
T
e
rm

-D
e
c
la
re
B
lo
c
k

D
ec

la
re

B
lo

ck

-S
tr
u
c
tu
re
d
T
e
rm

F
ig

u
re

5.
4:

U
M

L
M

o
d

el
fo

r
D

at
a

Te
rm

s
u

si
n

g
Pa

ra
m

et
er

iz
ed

C
o

lla
b

o
ra

ti
o

n
s,

cf
.F

ig
u

re
5.

1–
5.

3

41

More details on substitutions can be found in [49, 50]. Notice, that there substitution sets are used
to simplify definitions and proofs (cf. Issue 9).

5.3 The Shape of Construct Term

§1 Construct term
Construct terms specify the shape of data that is constructed (or derived) for each match of the
corresponding query term. In that, they are comparable to clause heads in Datalog.

If a construct term contains no variables, it becomes equivalent to a data term: The full shape of
the derived data is specified. But construct terms may also contain variables, viz. in place of sub-terms
(term variables) and in place of literal content or identifiers such as element labels and namespaces,
attribute labels, etc. (literal variables).

However, there is one major difference between Xcerpt (and similar query languages for structured
data) when comparing to Datalog on flat tuples: E.g., given bindings for authors and titles one would
like to create author elements that contain for each author all corresponding titles. Explicit support
for grouping constructs in the scope of other data is needed to express that form of construction.

Figure 5.5 shows an UML model for construct terms using the parameterized collaborations
for general terms introduced in the aside of Section 5.1. The figure highlights the exact differences
between data and construct terms:

1. Variables can occur instead of (a) (structured or attribute) terms or instead of (b) identifiers
and literal content.

2. Modifiers specify (a) the grouping of sub-terms by one or more variables, i.e., the repetition of
parts of a construct term for all or some of the alternative bindings of one or more variables,
and (b) the optionality of sub-terms, i.e., the omission of a part of a construct term based on the
bindings of one or more variables.

Notice, that the functionality of these modifiers is almost a corollary of adding variables: Once
variables that may have more than one binding are allowed in construct terms, it is necessary to
handle the case of bindings for one variable included in construct terms for bindings of another one
(grouping). In the same way, once variables may have no bindings at all, it is necessary to define which
part of a construct term is to be left out if there is no bindings (optionality).

Figures 5.6 and 5.7 detail modifiers for structured and attribute terms: All modifiers “modify”
construct terms to indicate that the modified term is to be handled differently from its unmodified
form. The construct terms modified by a modifier are the scope of the modifier. In construct terms,
all modifiers have a scope of one or more construct terms except the grouping modifier for attribute
terms. The latter one has a scope of a single attribute construct terms and deviates from the general
rule, as attributes are unordered and single-valued (i.e., there may be no repeated attribute names)
and thus grouping over sequences of terms is not useful.

5.3.1 Textual Term Syntax

Although the syntactic differences between data and construct terms are from a conceptual perspective few,
the EBNF specification of the non-XML (as well as of the XML-style) term syntax share only the productions
for lexical structures. This is due to the inability of the EBNF notation to express parameterized productions
or grammars. E.g., declaration blocks are identical except that in data terms they contain data terms and

42

T
er

m

-T
o
p
L
e
v
e
lT
e
rm

T
o

p
Le

ve
lT

er
m

:C
o

n
st

ru
ct

T
er

m

St
ru

ct
u

re
d

T
er

m
:C

o
n

st
ru

ct
T

er
m

-S
tr
u
c
tu
re
d
T
e
rm

Id
en

ti
fi

er
:C

o
n

st
ru

ct
T

er
m

Li
te

ra
lC

o
n

te
n

t:
C

o
n

st
ru

ct
T

er
m

-I
d
e
n
ti
fi
e
r

-L
it
e
ra
lC
o
n
te
n
t

-T
e
rm

T
er

m
:C

o
n

st
ru

ct
T

er
m

St
ru

ct
u

re
d

T
er

m

-T
e
rm

Lo
ca

lS
p

ec
if

ic
at

io
n

:C
o

n
st

ru
ct

T
er

m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

Lo
ca

lS
p

ec
if

ic
at

io
n

A
tt

ri
b

u
te

T
er

m
:C

o
n

st
ru

ct
T

er
m

A
tt

ri
b

u
te

T
er

m
Li

st
:C

o
n

st
ru

ct
T

er
m

-L
o
c
a
lS
p
e
c
if
ic
a
ti
o
n

-L
it
e
ra
lC
o
n
te
n
t

-I
d
e
n
ti
fi
e
r

-A
tt
ri
b
u
te
T
e
rm

-A
tt
ri
b
u
te
T
e
rm
L
is
t

B
as

eA
tt

ri
b

u
te

T
er

m
:C

o
n

st
ru

ct
T

er
m

-B
a
s
e
A
tt
ri
b
u
te
T
e
rm

-D
e
c
la
re
B
lo
c
k

D
ec

la
re

B
lo

ck

-S
tr
u
c
tu
re
d
T
e
rm

T
er

m
V

ar
ia

b
le

M
o

d
if

ie
d

T
er

m
:C

o
n

st
ru

ct
T

er
m

Li
te

ra
lV

ar
ia

b
le

T
er

m
V

ar
ia

b
le

M
o

d
if

ie
d

A
tt

ri
b

u
te

T
er

m
:C

o
n

st
ru

ct
T

er
m

F
ig

u
re

5.
5:

U
M

L
M

o
d

el
fo

r
C

o
n

st
ru

ct
Te

rm
s

u
si

n
g

Pa
ra

m
et

er
iz

ed
C

o
lla

b
o

ra
ti

o
n

s

43

StructuredTerm:ConstructTerm

OrderedStructuredTerm:ConstructTerm UnorderedStructuredTerm:ConstructTerm

!

Term:ConstructTerm

"#$%&'

())*
+,-'.-.'/

TotalStructuredTerm:ConstructTerm

+#,01&.2.34'%56,%72/

LocalSpecification:ConstructTerm

ModifiedTerm:ConstructTerm

"0,'%8%.'

!))*

GroupingModifier:ConstructTerm OptionalModifier:ConstructTerm

+#,01&.2.3'%56,%72/ "'.89:&2 ())*

EquivalenceRelationSpecification

TermVariable

;-,:1<=

!))*

,-'.-<= ())*

!

Identifier:ConstructTerm

+#,01&.2.3'%56,%72/

AllGroupsModifier:ConstructTerm

SomeGroupsModifier:ConstructTerm

FirstGroupsModifier:ConstructTerm
09>!

IntervalNumber

0%7

!

09> !

!

Term:ConstructTerm

,12%,79&!))*

OrderRelationSpecification

!

Figure 5.6: UML Model for Modified Structured Construct Terms

ModifiedAttributeTerm:ConstructTerm

OptionalModifier:AttributeTerm:ConstructTermGroupingModifier:AttributeTerm:ConstructTerm

!"#$%&'(')*+,-.#,/(0 +'123&(4556

!"#$%&'(')+,-.#,/(0

AllGroupsModifier:AttributeTerm:ConstructTerm

SomeGroupsModifier:AttributeTerm:ConstructTerm

FirstGroups:AttributeTerm:ConstructTerm

Interval

7

AttributeTerm:ConstructTerm

$#+,1,'+7

$#+,1,'+

7556

EquivalenceRelationSpecification

TermVariable

89#3%:;

7556

#9+'9:; 4556

7

#%(,#/2&7556

OrderRelationSpecification

7

$2<7

Number

Figure 5.7: UML Model for Modified Attribute Construct Terms

44

in construct terms they contain construct terms. In EBNF two separate non-terminals (and productions) are
needed, since it is not possible to parameterize the production of declaration blocks with respect to the kind
of contained terms.

Aside of this minor nuisance, the productions are very similar. In fact, except for the following four
productions and the addition of variables and modifiers discussed below they are identical and will not be
repeated in detail here. With the exception of the following four non-terminals and their productions all
productions are copied from the data term syntax replacing the -dt prefix in all non-terminals by -ct. The full
syntax can be found in Appendix A.3.

The deviation lies in the productions for the non-terminals 〈construct-term〉 and 〈attr-term-ct〉, where
term variables and modified terms (for grouping and optionality) are added, as well as for 〈identifier-ct〉 and
〈literal-content-ct〉, where literal variables are added:

〈construct-term〉 ::=- 〈term-level-declare-ct〉
〈reference-ct〉
〈structured-ct〉
〈content-ct〉

〈term-variable-ct〉
〈modified-ct〉

-

〈attr-term-ct〉 ::=- 〈base-attr-term-ct〉
〈term-variable-ct〉

〈modified-attr-term-ct〉

-

〈identifier-ct〉 ::=- 〈NCName〉
〈IRI〉

〈String〉
〈literal-variable-ct〉

-

〈literal-content-ct〉 ::= 〈String〉 | 〈literal-variable-ct〉- 〈String〉
〈literal-variable-ct〉

-

Though conceptually, literal and term variables are different and not always interchangeable they are
not separated syntactically, as this is left to as-of-now unfinished type system. Syntactically variables are
represented in the term syntax by names preceded with the keyword variable (or its shorthand var). A
variable may occur without the leading keyword, if it is in the scope of a variable declaration that reserves the
name of the variable, cf. Section 6 and 7.

〈variable-ct〉 ::=- 〈term-variable-ct〉
〈literal-variable-ct〉

-

〈term-variable-ct〉 ::=- 〈var-specification-ct〉 -

〈literal-variable-ct〉 ::=- 〈var-specification-ct〉 -

〈var-specification-ct〉 ::=- ‘variable’
‘var’

〈NCName〉 -

Finally, modifiers occurring in construct terms can be distinguished in grouping and optional modifiers,
the detailed syntax of which is discussed in the following sections.

〈modified-ct〉 ::=- 〈grouping-ct〉 〈optional-ct〉 -

〈modified-attr-term-ct〉 ::=- 〈grouping-attr-term-ct〉 〈optional-attr-term-ct〉 -

Notice, that the grammar does not specify any order among the modifiers, i.e., both a grouping modifier

in the scope of an optional modifier and vice versa are allowed.

45

5.3.2 XML-style Term Syntax

The XML-style term syntax once again uses the same productions as the non-XML term syntax, deviating from
data terms (in XML-style term syntax) in exactly the same ways. The full grammar is shown in Appendix B.3.

5.3.3 Pure XML Syntax

In contrast to EBNF notation, Relax NG provides some means for parameterized grammars, as used above for
defining declaration blocks. Indeed, construct terms can be defined using the same grammar as for data terms,
but parameterizing term.class and attribute.term.class, as well as identifier.class and literal-content.class.
In all cases the parameterization happens by adding additional choices to the existing ones: variables and
modified terms or attributes.

Then definitions for variables as well as modified terms and attributes needs to be added to the grammar.
Modified terms and attributes are defined using another parameterized grammar, this time the parameters
are the content of the modifiers (once structured construct terms, once attribute construct terms) and what
represents a variable. The details of that grammar are discussed in the following section.

1 construct-term =
grammar {

3 variable-ct = parent variable-ct
Add grouping and optional for attributes

5 modified-attribute =
grammar {

7 include "modifiers.rnc" {
start = grouping

9 content = parent attribute-term.class
variable = parent variable-ct

11 }
}

13 | grammar {
include "modifiers.rnc" {

15 start = optional
content = parent attribute-term.class*

17 variable = parent variable-ct
}

19 }
Add grouping and optional for elements

21 modified-term =
grammar {

23 include "modifiers.rnc" {
start = grouping

25 content = parent term.class*
variable = parent variable-ct

27 }
}

29 | grammar {
include "modifiers.rnc" {

31 start = optional
content = parent term.class*

33 variable = parent variable-ct
}

35 }

46

37 ## Construct terms may also be variables or modified by
grouping and optional modifiers.

39 term.class |= variable-ct | modified-term

41 ## Construct attribute terms may also be variables or modified by
grouping and optional modifiers.

43 attribute-term.class |= variable-ct | modified-attribute
Add variables to identifiers and literal content

45 identifier.class |= variable-ct
literal-content.class |= variable-ct

47 include "term.rnc"
}

5.4 Grouping in Construct Terms

§2 Grouping modifier

A grouping modifier expresses a grouping over the bindings of all its grouping variables. For
alternative substitutions of the grouping variables, the construct in the scope of the grouping
modifier are repeated once with the occurrences of the variables substituted accordingly.

A grouping modifier specifies four aspects of a grouping:

1. Scope: What is to be repeated? The scope of grouping modifiers for structured terms is a list of
construct terms that is to be repeated. This allows, e.g., the bracketing of grouped terms or the
creation of structures such as sections in HTML that are expressed through element delimiters
instead of nesting. Grouping modifiers for attributes, however, only apply to a single attribute
term, e.g., a variable or an attribute specification containing a variable for the name of the
attribute. Lists of terms are not useful in this case, as attributes are always unordered and no
two attributes of the same element node may have the same name.

2. Groups: How to form groups? An essential part of grouping is the determination of the ac-
tual groups: i.e., to specify when two substitutions of the associated grouping variables are
considered equivalent and thus part of the same “group” (i.e., equivalence class).

Commonly, query languages use a single, pre-defined equivalence relation for grouping, e.g.,
SQL uses equivalence based on the typed value of the grouping attributes, i.e., all tuples with the
same typed value for the grouping attributes are considered as one group. In object-oriented or
semi-structured query languages, one as finds equivalence based on object or node identity, i.e.,
substitutions for the grouping variables are considered equivalent only if they have for each
grouping variable the very same nodes as substitution.

In Xcerpt, the default equivalence relation is structural equivalence, i.e., two bindings are
considered equivalent if their label, children, and/or content is equal (formally, structural
equivalence in Xcerpt uses the notion of simulation as defined in [49, 14], cf. Section 6.1).
Beyond this default equivalence, Xcerpt’s grouping modifiers may also explicit specify an
equivalence relation that relates equivalent substitutions for the grouping variables. It must
adhere to the usual definition of an equivalence relation, i.e., it must be a reflexive, symmetric,
and transitive relation over the domain

47

3. How to order the repeated terms? An order among the groups established in point (2) is
needed not only in the case of first-selecting grouping terms, but also if the grouping term is
contained in a (structured) term where the order of the children is significant. In both cases, the
order among the groups is defined by (a) a list of ordering variables and (b) a total order relation
(i.e., a reflexive, antisymmetric, transitive, and comparable relation) on the substitutions for
ordering variables. Note, that the ordering variables must be a subset of the grouping variables.
Also note, that the order relation must be consistent with the equivalence relation, i.e., whenever
b1 ≤ b2 and b2 ≤ b1 for the order relation ≤ use in a grouping term G and bindings b1,b2, then
b1 ∼ b2 for the equivalence relation ∼ used in G .

4. Group Selection: Which of the groups to consider? In many cases, the grouping should only
iterate over certain of the groups. Xcerpt addresses the selection of relevant groups by providing
three grouping modifiers:

• The All-Groups modifier uses all of the groups established as explained in point (2).

• The Some-Groups modifier uses some of the groups: At most m groups are selected arbi-
trarily and possibly non-deterministically. At most m, as there may be less than m groups,
in which case, all groups are selected.

• The First-Groups modifier uses some of the groups, but the selection is determined by
the order of the groups: An interval n−m specifies that the nth to mth group are to be used.
Again, there may be less than m (in which case all groups after and including the nth group
are used) and even less than n groups (in which case no group is used). The order of the
groups is defined by the order relation described in the previous point.

Grouping modifiers may be nested leading to the expected behavior: say a grouping over authors of
books contains another grouping over titles of books. In the constructed data, the terms constructed
by the grouping over titles are contained in the terms constructed by grouping over authors based on
the author-title combinations found in the substitutions. Intuitively, nested grouping constructs are
similar to nested for-loops in imperative programming languages.

To summarize Xcerpt’s grouping modifiers allow the repetition of subterms based on substitutions
for grouping variables. They allow extensive customization of what defines a group and how to order
the repetitions without sacrificing simplicity in common cases.

Like in all query languages, where the result of a query can have a complex (structured) shape,
grouping is not only essential in combination with aggregation (as in relational query languages), but
also to define how the nesting of the result is constructed based on the relations of data items selected
by a query in variable bindings. The nature of data with complex shape also requires the support of
nested grouping, i.e., repetition within repetition.

5.4.1 Textual Term Syntax

The non-XML term syntax for grouping modifiers in construct terms closely reflects the four aspects of the
abstract syntax:

1. Group selection is indicated using the three different keywords all, some, first. some is followed
by a number (or a variable) that indicates the number of groups to select. first is followed by an
interval specification, i.e., two numbers (or variables) separated by a −. Two shorthands for intervals
are provided: n− to select all groups starting with the nth and + as abbreviation for 1−. Thus first 1−
is equivalent to all.

48

2. The scope of the modifiers are the construct terms included in parentheses after the modifier. As in
declaration blocks the parentheses may be omitted, if the scope is exactly one construct term.

3. Groups are formed using the optional equivalence relation on the bindings of the grouping variables.
Grouping variables are either implicit or explicit. Implicit grouping variables are all free variables in the
scope of the grouping modifier, i.e., all variables that occur in the scope of the grouping modifier but
not in the scope of another nested grouping modifier. Explicit grouping variables are specified in a list
enclosed by parentheses after the order-by keyword. Again the parentheses may be omitted if the list
is a singleton.

4. The order of the groups is determined by the order variables (a subset of the grouping variables)
and the order relation. The order variables are specified in a list (enclosed by parentheses) after the
keyword order-by. Again the parentheses may be omitted if the list is a singleton. Notice, that if both
are present order-by follows group-by.

For attributes the specification is similar, but only a single attribute construct term may in the scope of a
grouping modifier. This prevents the repetition of same-name attributes (recall, that attributes are essentially
(key, value) pairs in a dictionary associated with their structured term and duplicate keys are forbidden in
accordance to XML).

〈grouping-ct〉 ::=- 〈grouping-modifier〉 ‘(’ ?〈construct-term〉 ‘,’ ‘)’ · · ·

· · · 〈groupby〉 〈orderby〉 -

〈grouping-attr-term-ct〉 ::=- 〈grouping-modifier〉 ‘(’ 〈attr-term-ct〉 ‘)’ · · ·

· · · 〈groupby〉 〈orderby〉 -

〈grouping-modifier〉 ::=- ‘all’
‘some’ 〈number-ct〉
‘first’ 〈interval-ct〉

-

〈orderby〉 ::=- ‘order-by’ ‘(’ ? 〈optional-variable〉
〈variable-ct〉

‘,’ ‘)’ · · ·

· · · 〈order-relation〉 -

〈order-relation〉 ::=- ‘ascending’
‘descending’
〈NCName〉

-

〈groupby〉 ::=- ‘group-by’ ‘(’ ? 〈optional-variable〉
〈variable-ct〉

‘,’ ‘)’ · · ·

· · · 〈equivalence-relation〉 -

49

〈equivalence-relation〉 ::=- 〈NCName〉 -

〈optional-variable〉 ::=- 〈optional-modifier〉 〈variable-ct〉 -

〈interval-ct〉 ::=- 〈number-ct〉 ‘-’ 〈number-ct〉 〈number-ct〉 ‘-’ ‘+’ -

〈number-ct〉 ::=- 〈Int〉
〈literal-variable-ct〉

-

5.4.2 XML-style Term Syntax

The same productions as for the non-XML term syntax can be used for the XML-style term syntax. The full

grammar is given in Appendix B.3.

5.4.3 Pure XML Syntax

As seen above, the pure XML syntax can utilize parameterized grammars not just for construct terms in
general, but also for modifiers itself. Figure 5.8 shows the Relax NG schema for that grammar. As in the
grammar for declaration blocks, the content pattern is to be overwritten when importing this grammar.
Additionally also the variable pattern can be replaced to specify the shape of variable occurrences.

The following listing gives the textual grammar in Relax NG’s compact syntax:

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = grouping
content = empty

6 grouping =
element all { content, order-by?, group-by? }

8 | element some { number, content, order-by?, group-by? }
| element first { interval, content, order-by?, group-by? }

10 order-by =
element order-by {

12 attribute order-relation { text }?,
optional-variable+

14 }
group-by =

16 element group-by {
attribute equivalence-relation { text }?,

18 optional-variable+
}

20 optional-variable =
element optional { variable }

22 | variable
variable = empty

24 interval =
element interval {

26 element min { number-literal.class },
element max { number-literal.class }

28 }
number = element number { number-literal.class }

30 number-literal.class = xsd:int | variable

50

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/modifiers.rng 1 of 1

/ {grammar} Start grouping

content

grouping all

http://xcerpt.org/ns/core/1.0

content

0..1 order-by

0..1 group-by

some

http://xcerpt.org/ns/core/1.0

number

content

0..1 order-by

0..1 group-by

first

http://xcerpt.org/ns/core/1.0

interval

content

0..1 order-by

0..1 group-by

order-by order-by

http://xcerpt.org/ns/core/1.0

0..1 @ order-relation text

1..! optional-variable

group-by group-by

http://xcerpt.org/ns/core/1.0

0..1 @ equivalence-relation text

1..! optional-variable

optional-variable optional

http://xcerpt.org/ns/core/1.0

variable

variable

variable

interval interval

http://xcerpt.org/ns/core/1.0

min

http://xcerpt.org/ns/core/1.0

number-literal.class

max

http://xcerpt.org/ns/core/1.0

number-literal.class

number number

http://xcerpt.org/ns/core/1.0

number-literal.class

number-literal.class DD int

variable

optional optional

http://xcerpt.org/ns/core/1.0

content

0..1 with-default

http://xcerpt.org/ns/core/1.0

content

Figure 5.8: Relax NG Grammar for Modifiers in Construct Terms

51

optional =
32 element optional {

content,
34 element with-default { content }?

}

As in the term syntax, grouping variables can be specified explicitly or implicitly, i.e., in the group-by

subelement or by occurring as free variables inside the scope of the grouping modifier.

5.5 Optional Construct Terms

Aside of grouping to collect alternative bindings for a variable, Xcerpt’s construct terms add one
more modifier to handle the case where a variable may have no bindings in a given substitution: the
optional construct term.

§3 Optional Modifier

An optional modifier in construct terms specifies a form of conditional construction: some of the
variables reported as result of a query may not have any bindings in some substitutions, as they
occur only in optional parts of a query (cf. Section 6.1). In this case, an optional modifier must be
used in the construct term to mark the part of the construct term that depends on the existence of
bindings for the optional variables associated with the optional modifier.

Recall, Figures 5.6 and 5.7 for the precise model of optional construct terms. An optional modifier
in construct terms needs three parameters, the first two are similar to those for grouping modifiers:

1. Scope: Which part of the construct term is optional? The scope of an optional modifier are the
modified construct terms. Again, a list of construct terms is allowed to facilitate optional parts
that cover several siblings, e.g., for bracketing. In contrast to grouping modifiers for attribute
terms, optional modifiers have also in the case of attribute terms a list of (attribute) construct
terms as scope, since the problem with repeated attribute names does not occur in this case
(since there is no repetition).

The construct terms in the scope of an optional modifier are the only place, where optional
variables may occur in construct terms. More precisely, only those optional variables that an
optional modifier O (or an optional modifier that O is part of) depends on, may occur in O.

2. Condition: On bindings for which variables depends the conditional construction? Optional
modifiers specify a set of optional variables that are used to determine whether the construct
terms in the scope of the optional modifier are part of the result or not: They are included in the
result for a substitution σ only if bindings for all the specified optional variables exist in σ. Note,
that all variables that an optional modifier depends on must be optional in the query as well (cf.
Section 6.1).

3. Default value: Finally, an optional modifier also specifies a default value in the form of another
list of construct terms. The default value is used in the result for a substitution σ if for one of
the optional variables no binding exist in σ. Note, that the default value must not contain any of
the optional variables, as they may have no binding.

Notice how an optional construct term resembles a conditional expression of the form
if 〈condition〉 then 〈modified construct terms〉 else 〈default construct terms〉.

52

The condition is, however, always fixed to the existence for bindings for all optional variables in a
substitution (cf. Issue 2 for a discussion on general conditional expressions in Xcerpt construct terms).

5.5.1 Textual Term Syntax

Optional modifiers follow very much the syntax of grouping modifiers: the in-scope construct terms follow the
optional keyword (or its shorthand opt) enclosed in parentheses. The parentheses may be omitted if the
scope is a single construct term, as usual. The list of in-scope terms is followed by an optional specification of
the default terms, i.e., those terms that are used in the construction, if for one of the optional variables no
binding exists. The specification of the default terms is preluded by the with-default keyword and, as usual,
enclosed in parentheses that may be omitted if there is a single default term.

The optional variables can only be specified implicitly (cf. Issue 2), i.e., all free variables inside the
optional modifier form the list of optional variables for which bindings must exist so that the in-scope terms
are constructed.

〈optional-ct〉 ::=- 〈optional-modifier〉 ‘(’ ?〈construct-subterm〉 ‘,’ ‘)’ · · ·

· · · ‘with-default’ ‘(’ ?〈construct-subterm〉 ‘,’ ‘)’ -

〈optional-attr-term-ct〉 ::=- 〈optional-modifier〉 ‘(’ ?〈attr-term-ct〉 ‘,’ ‘)’ · · ·

· · · ‘with-default’ ‘(’ ?〈attr-term-ct〉 ‘,’ ‘)’ -

〈optional-modifier〉 ::=- ‘optional’
‘opt’

-

5.5.2 XML-style Term Syntax

Again there are no deviations in the productions and non-terminals for the XML-style term syntax. A full

grammar is given in Appendix B.3.

5.5.3 Pure XML Syntax

Optional modifiers follow the general syntax for modifiers as introduced in Section 5.4. As in the term syntax,

optional variables con only be specified implicitly.

53

fun instantiate(C : construct term list, B : substitution multi-set,
V : variables, ∼: equivalence relation)

R ← initially empty list of resulting construct terms
for all t in π∼

V (B) do
for all C ∈C do

B− ← B\πV (B)
replace V in C by bindings for V in t
for all G such that G is a grouping modifier directly in C do

TG ← the list of modified construct terms of G
VG ← grouping variables in G
∼G← equivalence relation used in G
replace G by instantiate(TG ,B−,VG ,∼G)

end for
for all O such that O is an optional modifier directly in C do

VO ← optional variables in O
if ∀v ∈VO : ∃b ∈ B : b is a binding for v then

T+ ← the list of modified construct terms of O
replace O by sequence of instantiate(T+,B ,V ,∼)

else
T− ← the list of default construct terms of O
replace O by sequence of instantiate(T−,B ,V ,∼)

end if
end for
R ← append C to R

end for
end for
return R

end fun

Algorithm 5.1: Instantiating a Construct Term (with π∼ understood as the projection for tuples using
∼ to remove duplicates and “directly in a term T ” understood as “occurs in the scope of T but not
within the scope of a nested grouping or optional construct term)

5.6 Instantiating a Construct Term

Summarizing, a construct term C can be “instantiated” by a substitution multi-set B . If each substitu-
tion in the substitution multi-set maps all non-optional variables occurring in the construct term to
data terms, the result of the instantiation is a data term. The details of the instantiation are described
in [50]. The instantiate function shown in Algorithm 5.1 provides an instantiation of a construct term,
if called with parameters C , B , the free variables in the construct term, i.e., all variables that occur
(also) outside of any grouping or optional term, and the empty relation ; as last parameter (i.e., an
equivalence relation such that each binding tuple is equivalent to itself only).

In other words, the resulting data terms are obtained by

1. replacing all free variables in the construct term, i.e., all variables that occur (also) outside of
any grouping or optional modifier, by bindings from each tuple. If there are no free variable a
single resulting data term is constructed.

54

2. replacing each grouping modifier by repeating the in-scope construct terms for each group
of grouping variables, each time replacing all occurrences of the grouping variables by the
particular group’s bindings. This is done recursively for all grouping modifiers.

3. replacing each optional modifier by the in-scope construct terms, if there exists a combination
of bindings for all optional variables.

Example 5.1 (Construct Terms). The following substitutions for the variables Author, Title, and
Publication are given as result of a query:

Author Title Publication

“Cicero” “Data Processing ...” null
“Cicero” “Space and ...” journal2

“Antonius” “Advancements ...” null
“Antonius” “Efficient Manage...” proceedings29

“Tiro” “Space and ...” journal2

Notice, that Publication is an optional variable.
Then the following construct term in XML-style term syntax

1 <result>
all <author> var Author </author>

3 </result>

results in the single data term

1 <result>
<author>"Cicero"</author>

3 <author>"Antonius"</author>
<author>"Tiro"</author>

5 </result>

Notice, how Xcerpt defaults to grouping by structural equivalence and thus treats the two substitutions
with author “Cicero” as one group, constructing only a single result data term for them.

If we add Title as free variable in the scope of the grouping modifier, the grouping variables and
thus the groups change:

1 result()[
all author()[

3 var Author
title()[var Title]

5]
]

Leading to the result:

result()[
2 author()["Cicero"

title()["Data Processing ..."]]
4 author()["Cicero"

title()["Space and ..."]]
6 author()["Antonius"

55

title()["Advancements ..."]]
8 author()["Antonius"

title()["Efficient Manage..."]]
10 author()["Tiro"

title()["Space and ..."]]
12]

Now the substitutions for author and title are both considered for forming a group, leading to more
groups!

Nesting grouping modifiers also affects the free variables, e.g., in the following construct term
Title is no longer free for the out all only for the inner.

result()[
2 all author()[

var Author
4 all title()[var Title]

]
6]

Thus the result on the sample substitutions is:

result()[
2 author()["Cicero"

title()["Data Processing ..."]
4 title()["Space and ..."]

]
6 author()["Antonius"

title()["Advancements ..."]
8 title()["Efficient Manage..."]

]
10 author()["Tiro"

title()["Space and ..."]]
12]

Combining grouping an optional modifiers can lead to surprisingly expressive constructs:

result()[
2 all author()[

var Author
4 all (title()[var Title]

optional var Publication
6 with-default standalone()[])

]
8]

Results in the following data term:

result()[
2 author()["Cicero"

title()["Data Processing ..."]
4 standalone()[]

]
6 author()["Cicero"

title()["Space and ..."]
8 journal.adm @ journal() [...]

56

]
10 author()["Antonius"

title()["Advancements ..."]
12 standalone()[]

]
14 author()["Antonius"

title()["Efficient Manage..."]
16 conf.dmmc @ proceedings()[...]

]
18 author()["Tiro"

title()["Space and ..."]
20 journal.adm @ journal() [...]

]
22]

57

58

Chapter 6

How to specify queries?
Part 2: Selection

6.1 Specifying Query Patterns: Query Terms

As introduced above, query terms are the second part of expressing the derivation of new data
in Xcerpt: where construct term dictate the shape of the new data, query terms specify (possibly
incomplete) patterns for data that is to be found, e.g., in Web resources such as XML pages or RDF
resource descriptions. As construct terms, query terms enrich basic data terms by variables, but here
variables serve to identify data that is to be extracted by the query in form of variable bindings.

Query terms are “matched” with data or construct terms by a non-standard unification method
called simulation unification that is based on a relation called simulation (for details see [14]). In con-
trast to Robinson’s unification (as e.g.used in Prolog), simulation unification is capable of determining
substitutions also for incomplete and unordered query terms. Since incompleteness usually allows
many different alternative bindings for the variables, the result of simulation unification is not only a
single substitution, but a (finite) multi-set of substitutions, each of which yielding ground instances of
the unified terms such that the one ground term matches with the other.

§1 Query term

Query terms specify structure and values of data that is to be matched and which parts of the
matched data are to be extracted. In that, they are comparable to clause bodies in Datalog or FROM
and WHERE clauses in SQL.

Query terms differ more notably from data terms than construct terms do, as they add additional
features beyond variables that are essential to express patterns for data, when the data may vary or
only limited knowledge about the (shape of the) data is available: In detail, query terms deviate from
basic data terms in essentially three aspects (cf. Figure 6.1): the addition of variables, the support
for incomplete patterns, and the use of term formulas to express conjunctions, disjunctions, and
negations.

To better understand these extensions, an intuition of the answer notion in Xcerpt is needed. The
questions, which data and construct terms match with a query term, and what the answer (i.e., the
substitution multi-set) for a query term is, are formally addressed in [49, 50]. At the root of Xcerpt’s
answer notion stands an extended form of rooted graph simulation (cf. [46, 35] and [31, 26] for more

59

T
erm

-T
o
p
L
e
v
e
lT
e
rm

T
o

p
LevelT

erm
:Q

u
eryT

erm

Stru
ctu

red
T

erm
:Q

u
eryT

erm

-S
tru
c
tu
re
d
T
e
rm

Id
en

tifier:Q
u

eryT
erm

LiteralC
o

n
ten

t:Q
u

eryT
erm

-Id
e
n
tifie

r

-L
ite
ra
lC
o
n
te
n
t

LiteralV
ariab

le

-T
e
rm

T
erm

:Q
u

eryT
erm

T
erm

V
ariab

le

Stru
ctu

red
T

erm

-T
e
rm

-S
tru
c
tu
re
d
T
e
rm

Lo
calSp

ecificatio
n

:Q
u

eryT
erm

-L
o
c
a
lS
p
e
c
ific
a
tio
n

M
o

d
ified

T
erm

:Q
u

eryT
erm

Lo
calSp

ecificatio
n

A
ttrib

u
teT

erm
List:Q

u
eryT

erm

-L
o
c
a
lS
p
e
c
ific
a
tio
n

-L
ite
ra
lC
o
n
te
n
t

-Id
e
n
tifie

r

-A
ttrib

u
te
T
e
rm

-A
ttrib

u
te
T
e
rm
L
is
t

PartialSu
b

term
:Q

u
eryT

erm

B
aseA

ttrib
u

teT
erm

:Q
u

eryT
erm

T
erm

V
ariab

le

A
ttrib

u
teT

erm
:Q

u
eryT

erm

!"
#
$
%
&'
('
)*+
,-
.#
,/
(0

M
o

d
ified

A
ttrib

u
teT

erm
:Q

u
eryT

erm

R
estrictio

n

1

1

B
aseO

rV
arA

ttrib
u

teT
erm

:Q
u

eryT
erm

-B
a
s
e
A
ttrib

u
te
T
e
rm

R
eg

u
larExp

ressio
n

PartialA
ttrib

u
teT

erm
List:Q

u
eryT

erm

2
331

C
o

n
d

itio
n

R
estrictio

n

1

1

-D
e
c
la
re
B
lo
c
k

D
eclareB

lo
ck

:Q
u

eryT
erm

V
ariab

leD
eclaratio

n

2
334

F
igu

re
6.1:U

M
L

M
o

d
elfo

r
Q

u
ery

Term
s

u
sin

g
Param

eterized
C

o
llab

o
ratio

n
s

60

recent work on efficient algorithms for computing simulation and bisimulation). This extension of the
classical notion is necessary to accommodate incomplete patterns as discussed below in Section 6.3.

Intuitively, a query term without any of the extensions discussed in the following matches only
with a data term that has exactly the same shape modulo reordering of direct sub-terms in unordered
structured terms and of attributes in any terms. In the following it is noted, how each of the extensions
affect the matching of query terms, but the full details are left to [50].

6.1.1 Textual Term Syntax

The following grammar defines the basic non-terminals for query terms. Notice, the added non-terminal
〈modified-qt〉. It represents query terms that are possibly modified by varibles or operators discussed in the
remainder of this chapter.

Declaration blocks in query terms may also contain variable declarations the details of which are discussed
in the next section.

〈query-term〉 ::=- 〈modified-qt〉
〈term-level-declare-qt〉

-

〈term-level-declare-qt〉 ::=- ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉 · · ·

· · · ‘(’ ?〈query-term〉 ‘,’ ‘)’ -

〈modified-qt〉 ::=- 〈variable-term-qt〉
〈location-modified-qt〉

〈occurrence-modified-qt〉
〈selection-modified-qt〉

-

〈base-term-qt〉 ::=- 〈reference-qt〉
〈content-qt〉

〈structured-qt〉

-

〈reference-qt〉 ::=- ‘^’ 〈identifier-qt〉 -

〈ns-decl-qt〉 ::=- ?〈ns-prefix-decl-qt〉 ‘,’ 〈ns-default-decl-qt〉 ‘,’ · · ·

· · · ?〈ns-prefix-decl-qt〉 ‘,’ -

〈ns-prefix-decl-qt〉 ::=- ‘ns-prefix’ 〈identifier-qt〉 ‘=’ 〈IRI〉
〈literal-variable-qt〉

-

〈ns-default-decl-dt〉 ::=- ‘ns-default’ 〈IRI〉
〈literal-variable-qt〉

-

〈identifier-qt〉 ::=- 〈NCName〉 〈IRI〉 〈String〉 〈literal-variable-qt〉 〈Regexp〉 -

61

Content Query Terms Though the productions for content query terms remain unchanged, the introduction
of variables into literal content and identifiers in the next sections indirectly also affect content query terms.

〈content-qt〉 ::=- 〈literal-content-qt〉
〈comment-qt〉

〈processing-instruction-qt〉

-

〈literal-content-qt〉 ::=- 〈String〉
〈literal-variable-qt〉

〈Regexp〉

-

〈comment-qt〉 ::=- ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-qt〉 ‘]’ -

〈processing-instruction-qt〉 ::=- ‘xcerpt’ ‘:’ ‘processing-instruction’
‘xcerpt’ ‘:’ ‘pi’

· · ·

· · · ‘(’ ‘target-name’ ‘=’ 〈identifier-qt〉 ‘)’ · · ·
· · · ‘[’ 〈literal-content-qt〉 ‘]’ -

Structured Query Terms Aside of the introduction of variables and their new found ability to occur inside
modifiers, structured query terms are nearly identical to structured data terms. Additionally, query terms
may be incomplete indicated by double braces or brackets enclosing the list of children. Also query terms can
be annotated with condition clauses as described in the next section.

〈structured-qt〉 ::=- 〈local-spec-qt〉 〈children-list-qt〉 〈condition-clause-qt〉 -

〈children-list-qt〉 ::=- ‘[’ (〈query-term〉 ‘,’ ?)* ‘]’
‘{’ (〈query-term〉 ‘,’ ?)* ‘}’

‘[[’ (〈query-term〉 ‘,’ ?)* ‘]]’
‘{{’ (〈query-term〉 ‘,’ ?)* ‘}}’

-

〈local-spec-qt〉 ::=- 〈term-identifier-qt〉 〈ns-label-qt〉 〈attr-term-list-qt〉 -

〈term-identifier-qt〉 ::=- 〈identifier-qt〉 ‘@’ -

〈ns-label-qt〉 ::=- 〈identifier-qt〉 ‘:’ 〈identifier-qt〉 -

〈attr-term-list-qt〉 ::=- ‘(’ ?〈attr-term-qt〉 ‘,’ ? ‘)’

‘((’ ?〈attr-term-qt〉 ‘,’ ? ‘))’

-

〈attr-term-qt〉 ::=- 〈modified-attr-term-qt〉 -

〈modified-attr-term-qt〉 ::=- 〈base-attr-term-qt〉
〈variable-attr-term-qt〉

〈occurrence-modified-attr-term-qt〉
〈selection-modified-attr-term-qt〉

-

62

〈base-attr-term-qt〉 ::=- 〈ns-label-qt〉 ‘=’ 〈literal-content-qt〉 -

6.1.2 XML-style Term Syntax

Once more, the XML-style term syntax is closely aligned with the non-XML term syntax, but differs in the
representation of comments, processing-instructions, and properties of structured terms. Here, incomplete
term specifications are indicated with ‘{partial}’ (and complete or total terms specifications with ‘{total}’).
The same applies for incomplete attribute term lists. As in data and construct terms, query terms are
syntactically similar to XML elements, but may contain Xcerpt constructs additionally.

〈comment-qt〉 ::=- ‘<!-’ 〈literal-content-qt〉 ‘->’ -

〈processing-instruction-qt〉 ::=- ‘<?’ 〈identifier-qt〉 〈literal-content-qt〉 ‘?>’ -

〈structured-qt〉 ::= · · · ‘<’ 〈local-spec-qt〉 〈properties-qt〉 -

· · · ‘>’ 〈children-list-qt〉 ‘</>’
‘<’ 〈ns-label-qt〉 ‘>’

‘/>’

· · ·

- 〈condition-clause-qt〉 · · ·

〈properties-qt〉 ::= · · · ‘{’ ‘ordered’ ‘}’
‘{’ ‘unordered’ ‘}’

‘{’ ‘total’ ‘}’
‘{’ ‘partial’ ‘}’

-

- ‘{’ ‘total attributes’ ‘}’
‘{’ ‘partial attributes’ ‘}’

· · ·

〈children-list-qt〉 ::=- ?〈query-term〉 -

〈attr-term-list-qt〉 ::=- ?〈attr-term-qt〉 -

6.1.3 Pure XML Syntax

Once more, the pure XML syntax for query terms relies heavily on the parameterizable Relax NG grammar
for terms introduced in Section 4.1. Evidently, query terms can become the most complex of the three term
kinds in Xcerpt, cf.Figure 6.2. As construct terms they add variables to data terms. But they also provide
means for expressing incompleteness: partial terms, descendant and position location modifiers, etc.

Query terms deviate from the basic term case in (a) extended top-level terms, (b) the introduction of
modified-terms, (c) the use of condition formulas attached to each term, and (d) the use of variables and
regular-expressions in identifiers and literal content.

A POSIX.1 regular expression annotated with variables may occur in
2 ## query terms at the position of identifiers or literal content.
regular-expression =

4 element regexp {
attribute value { text }

6 }

8 query-term =

63

grammar {
10

include "term.rnc" {
12 # Redefine the top−level term for query terms: add variables to

declare blocks and allow optional, descendant, variable restriction.
14 # Add document specifications

Add query term formula
16

A term that may occur at top−level. Slightly more
18 ## restricted than a basic term.

top-level-term.class =
20 optional-top-level-term

| term-formula
22 | document-specification

| grammar {
24 include "declare−block.rnc" {

content = parent top-level-term.class*
26 }

}
28 # Redefine terms: only modified terms, which can in fact be

unmodified :−) Term−level declare blocks may also contain variable
30 # declarations

32 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class = modified-term | term-level-declare

34

A declaration block on term level allows possibly (in data and construct terms) only namespace
declarations.

36 term-level-declare =
grammar {

38 include "declare−block.rnc" {
content = parent term.class*

40 }
}

42

An attribute term is an attribute possibly modified with respect to location, modality, and
selection.

44 attribute-term.class = modified-attr-term
Allow conditions on arbitrary query terms

46 term-condition = condition-clause

48 }

50 # Add variables and regular expressions to identifiers and literal
content

52 identifier.class |= variable | parent regular-expression
literal-content.class |= variable | parent regular-expression

54

Variables for query terms.
56 variable =

element variable {

64

58 attribute anonymous { "true" }
| attribute name { xsd:NCName }

60 }

62 # #1# TOP−LEVEL QUERY TERM
see below

64

#2# CONDITION CLAUSES
66 # see below

68 # #3# MODIFIED TERMS AND ATTRIBUTE TERMS
see below

70

}

6.2 Variables in Query Terms

Variables in query terms are used for three purposes: (a) to specify which parts of a matched (construct
or data) term are “selected” by the query and can be used in the corresponding construct term, (b)
to specify joins, i.e., multiple occurrences of the same data term or literal value (usually unknown at
time of query authoring), and (c) to specify arithmetic or other conditions involving (literal) values of
variables.

Like in construct terms variables may be used in query terms in place of (a) (structured or attribute)
terms or in place of (b) identifiers and literal content. In either case, a variable matches (unless further
restricted as discussed below) any sub-term or literal that may occur at that position, i.e., regardless of
the shape of the sub-term or literal.

Variables are named so that they can be referred to in other parts of the query term (forming a join)
or in the corresponding construct term. Xcerpt allows in addition to named variables also contain
anonymous variables (like in Prolog). As unrestricted named variables, an anonymous variables
matches arbitrary terms or literals that may occur at the position of the variable. However, bindings
for anonymous variables are not recorded and different occurrences of the same anonymous variables
are treated like different named variables. Thus, anonymous variables can neither be used for joins,
nor be restricted through variable restrictions or conditions, nor occur in construct terms. Their sole
purpose is to act as a wildcard construct.

Additionally, query terms may contain so-called variable restrictions, where a variable does not
just replace some sub-term (and thus is bound to all sub-terms in a matching data term that can
occur at that point), but the sub-terms that may be bound to the variable are further restricted by
specifying a arbitrary query term.

§2 Variable Restrictions
A variable restriction places a constraint on the structure of (data or construct) terms that can be
bound to the restricted variable by specifying the possible shapes of such (data or construct) terms
as a query term.

Variable restrictions may only occur in place of structured and attribute query terms, not in place
of identifiers or literal content (cf. Issue 8). Figure 6.3 shows variable restrictions in the context of
basic query terms: Each variable restriction restricts one (term) variable to a (basic) query term (the
scope of that variable restriction). Variable restrictions for attribute terms are analogous.

65

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/xcerpt.rng 1 of 2
Continue on page 2

/ {grammar} Start

program

rule-level-block

rule

goal

data

data-term {grammar} term.rng

variable-ct

construct-term

regular-expression DocDoc

regexp

http://xcerpt.org/ns/core/1.0

@ value text

query-term DocDoc

{grammar} variable DocDoc

variable

http://xcerpt.org/ns/core/1.0

@ anonymous true

@ name DD NCName

optional-top-level-term optional

http://xcerpt.org/ns/core/1.0

descendant-top-level-term

descendant-top-level-term

descendant-top-level-term descendant

http://xcerpt.org/ns/core/1.0

var-restriction-top-level-term

var-restriction-top-level-term

var-restriction-top-level-term restriction

http://xcerpt.org/ns/core/1.0

variable

structured-term

structured-term

term-formula {grammar} formula.rng

document-specification xml-document

http://xcerpt.org/ns/core/1.0

@ location text

0..1 xml-declaration

http://xcerpt.org/ns/core/1.0

0..1 @ standalone true

false

variable

0..1 @ xml-version 1.0

1.1

variable

0..1 doctype

http://xcerpt.org/ns/core/1.0

0..1 @ system-id identifier.class

0..1 @ public-id identifier.class

0..1 @ root-name identifier.class

children

http://xcerpt.org/ns/core/1.0

0..! annotation-content

top-level-term.class

0..! annotation-content

condition-clause condition

http://xcerpt.org/ns/core/1.0

{grammar} formula.rng

comparison comparison

http://xcerpt.org/ns/core/1.0

@ operator eq

neq

lt

bt

elt

ebt

arithmetics

arithmetics

optional

http://xcerpt.org/ns/core/1.0

comparison

arithmetics

arithmetics arithmetics

http://xcerpt.org/ns/core/1.0

@ operator plus

minus

times

div

power

arithmetics

arithmetic-parameter

arithmetics

arithmetic-parameter

optional

http://xcerpt.org/ns/core/1.0

arithmetics

arithmetic-parameter

arithmetic-parameter variable

value

http://xcerpt.org/ns/core/1.0

text

modified-term variable-term

location-term

occurrence-term

selection-term

base-term reference

content-term

structured-term

variable-term base-term

variable

restriction

http://xcerpt.org/ns/core/1.0

variable

base-term

location-term descendant

http://xcerpt.org/ns/core/1.0

variable-term

position

http://xcerpt.org/ns/core/1.0

number

http://xcerpt.org/ns/core/1.0

variable

DD int

variable-term

selection-term except

http://xcerpt.org/ns/core/1.0

modified-term

occurrence-term without

http://xcerpt.org/ns/core/1.0

modified-term

optional

http://xcerpt.org/ns/core/1.0

modified-term

modified-attr-term base-attribute

variable-attr-term

occurrence-modified-attr-term

selection-modified-attr-term

variable-attr-term variable

restriction

http://xcerpt.org/ns/core/1.0

variable

base-attribute

occurrence-modified-attr-term without

http://xcerpt.org/ns/core/1.0

modified-attr-term

Figure 6.2: Relax NG Grammar for Query Terms (Excerpt)

66

Content:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTerm:QueryTerm

Term:QueryTerm

Restriction

1

1

1

TopLevelTerm:QueryTerm

Resource:QueryTerm

TopLevelTermDeclare:QueryTerm

1

OptionalTopLevelTerm:QueryTerm

DescendantTopLevelTerm:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTopLevelTerm:QueryTerm

1

1

DescendantOrBaseTerm:QueryTerm TermVariable

Reference:QueryTerm

Identifier:QueryTerm

StructuredTerm:QueryTerm Restriction

1

TermVariable

1

NamespaceDeclaration

2334

VariableDeclaration

2334

(#

,+5'6

(#

TermFormula:QueryTerm

TermLevelDeclare:QueryTerm

1334

NamespaceDeclaration

2334

VariableDeclaration

2334

ModifiedTerm:QueryTerm

Figure 6.3: UML Model for (basic) Query Terms

Another means to restrict the bindings of a variable are conditions. Where variable restrictions
restrict the terms a variable can be bound to, conditions restrict the values:

§3 Conditions
Conditions restrict the possible (literal) values a variable can be bound to and thus are mostly used
to restrict literal variables, i.e., variables that occur in place of identifiers or literal content.

Conditions consist in arbitrary expressions (though currently, only arithmetic and comparison
expressions on (floating point) numbers are defined, cf. Section 12.2.3) formed with identifiers or
literal content as atoms. Also conditions may use boolean connectives to form condition formulas. A
more detailed description of conditions (and functions in general) is under development, cf. Issue 7.

Rather than restricting the terms or literal values that a variable can be bound to, term variables
may also be bound to only parts of a matched sub-term:

§4 Except Binding Modifier

A binding modifiers changes the binding a variable without affecting the match of a query. The
only kind of binding modifier in Xcerpt is the except binding modifier. Using except a part of a
sub-term can be omitted from the bindings.

The scope of an except modifier is a single (possibly modified basic or attribute, resp.) query term
as seen in Figures 6.4 and 6.5 (cf. Issue ??).

Since except changes variable bindings it is only useful in the scope of a variable restriction.
Occurrences outside of any variable restriction are ignored (cf. Issue ??).

Notice, that except does not change the original matched term, but only the variable bindings. It
also does not affect the matching of a query term: The query term obtained by replacing all except’s
in a query term by their in-scope query terms matches the same data or construct terms as the original
one. The only differences is that some variable bindings might have certain parts removed.

Variables may be declared in term-level declare blocks just like namespaces.

§5 Variable Declarations
A variable declaration is, at the time of writing, only reserving a certain identifier for use as a
variable in the scope of the declaration block.

67

ModifiedTerm:QueryTerm

PositionSpecification

!

Number LiteralVariable

OccurrenceModifier LocationModifier

"#$%&'()(*+,-./$-0)1

OptionalModifier WithoutModifier

"#$%&'()(*+,-./$-0)1

DescendantModifier PositionModifier

SelectionModifier

ExceptModifier

"#$%&'()(*+,-./$-0)1 "#$%&'()(1

"#$%&'()(*+,-./$-0)1

Term:QueryTerm

LocationOrBaseTerm

Term:QueryTerm

%$,-2-(,

!334 %$,-2-(,!

%$,-2-(,

!

Figure 6.4: UML Model for Modified Structured Query Terms

LocalSpecification:QueryTerm

!"#$%&'(()

+,-

)

BaseAttribute:QueryTerm

NsLabel:QueryTerm

)

TotalAttributeTerm:QueryTerm

'((.
/,+0!*#1#23%45+%617

)((.

Reference:QueryTerm

'(()

8-*9#)

6-0#

)

AttributeTerm:QueryTerm

TermVariable

Attribute:QueryTerm

/,+0!*#1#2:3%45+%617

Content

Identifier:QueryTerm

NCName IRI

/,+0!*#1#2:3%45+%617

LiteralVariable

)

ModifiedAttribute:QueryTerm

PartialAttributeTerm:QueryTerm

Restriction

)

RegularExpression

)

AttributeFormula:QueryTerm

ModifiedAttribute:QueryTerm

OccurrenceModifiedAttribute

/,+0!*#1#2:3%45+%617

OptionalAttribute AbsentAttribute

/,+0!*#1#2:3%45+%617

SelectionModifiedAttribute

ExceptAttribute

/,+0!*#1#7

)

)((.

BaseOrVarAttribute:QueryTerm

BaseOrVarAttribute:QueryTerm

/,+0!*#1#2:3%45+%617

Attribute:QueryTerm

'(()

ConditionBox

Formula-BaseClass

AttributeFormula:QueryTerm

AttributeNegation AttributeConjunction Attributedisjointion

/,+0!*#1#23%45+%617

Attribute:QueryTerm

)

;((.
;((.

'(()

Condition

Figure 6.5: UML Model for Modified Attribute Query Terms

68

However, it is envisioned that in the same way variables might be typed, e.g., to restrict a certain
variable to literal values or to structured values only (cf. Issue 12).

6.2.1 Textual Term Syntax

〈condition-clause-qt〉 ::= ‘where’ ‘(’ 〈condition-qt〉 ‘)’

〈condition-qt〉 ::=- 〈c-parameter〉 〈comparison-op〉 〈c-parameter〉
〈comparison-op〉 ‘(’ 〈c-parameter〉 ‘,’ 〈c-parameter〉 ‘)’

‘and’ ‘(’ 〈condition-qt〉 ‘,’ ?〈condition-qt〉 ‘,’ ‘)’

‘or’ ‘(’ 〈condition-qt〉 ‘,’ ?〈condition-qt〉 ‘,’ ‘)’

‘not’ ‘(’ 〈condition-qt〉 ‘)’
〈c-parameter〉

-

〈condition-op〉 ::=- ‘==’
‘!=’
‘<’
‘>’
‘<=’
‘>=’

-

〈arithmetic-op〉 ::=- ‘+’
‘-’
‘*’
‘/’
‘^’

-

〈c-parameter〉 ::=- 〈optional-variable-qt〉
〈variable-qt〉

〈String〉
〈Int〉

〈c-parameter〉 〈arithmetic-op〉 〈c-parameter〉
〈arithmetic-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’

-

〈optional-variable-qt〉 ::=- 〈optional-modifier〉 〈variable-qt〉 -

〈variable-decl-qt〉 ::=- ? ‘variable’
‘var’

〈NCName〉 ‘,’ -

〈variable-term-qt〉 ::=- 〈base-term-qt〉
〈term-variable-qt〉 ‘->’ 〈base-term-qt〉

-

〈variable-qt〉 ::=- 〈term-variable-qt〉
〈literal-variable-qt〉

-

69

〈variable-attr-term-qt〉 ::=- 〈term-variable〉 ‘->’ 〈base-attr-term-qt〉 -

〈term-variable-qt〉 ::=- 〈var-specification-qt〉 -

〈literal-variable-qt〉 ::=- 〈var-specification-qt〉 -

〈var-specification-qt〉 ::=- ‘variable’
‘var’

) 〈NCName〉

〈anonymous-variable〉

-

〈anonymous-variable〉 ::=- ‘_’ -

6.2.2 XML-style Term Syntax

Once more, the XML-style term syntax uses productions identical to the ones for the non-XML term syntax.
The full grammar is given in Appendix B.4.

6.2.3 Pure XML Syntax

The following parameterized grammar for formulas is used not only for defining condition clauses at term-level,
but also for term formulas only occuring at top-level in query terms.

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = formula
5 formula =

element and { formula, formula+, condition? }
7 | element or { formula, formula+, condition? }

| element not { formula }
9 | content
condition = empty

11 content = empty

Condition clauses consist in such formulas, where the content can be comparisons and arithmetic
expressions over variables.

1 # #2# CONDITION CLAUSES ##
condition-clause =

3 element condition {
grammar {

5 include "formula.rnc" {
content = parent comparison*

7 }
}

9 }
comparison =

11 element comparison {
attribute operator {

13 "eq" | "neq" | "lt" | "bt" | "elt" | "ebt"
},

70

15 arithmetics,
arithmetics

17 }
| element optional { comparison }

19 | arithmetics
arithmetics =

21 element arithmetics {
attribute operator {

23 "plus" | "minus" | "times" | "div" | "power"
},

25 (arithmetics | arithmetic-parameter),
(arithmetics | arithmetic-parameter)

27 }
| element optional { arithmetics }

29 | arithmetic-parameter
arithmetic-parameter =

31 variable
| element value { text }

6.3 Incomplete Patterns

As discussed above, query terms are meant to be examples or patterns of the sought-for data. So
far, however, query terms always have to specify all parts of matched data, even if only a small part
is sufficient to distinguish relevant from irrelevant data. Obviously, this is unacceptable for many
queries. Therefore, Xcerpt introduces a number of concepts to allow query terms to be incomplete
patterns of the sought-for data, that may specify only what is needed to distinguish relevant from
irrelevant data. In contrast to many other query languages (such as XQuery and SQL) that assume
that a query specifies only parts of the sought-for data and make it difficult to specify queries where
no additional data may occur, Xcerpt patterns make it obvious where a query term is incomplete and
where not. This is a property that is particularly welcome in the context of semi-structured data as
here the schema of the data is often unknown or variable, allowing, e.g., optional or repeated children.

Query terms (i.e., patterns) can be incomplete with respect to

1. breadth, i.e., only a subset of the actual children of a term is specified.

§6 Partial Terms
A term is called partial, if only some of the children of the term are specified. When matching partial
terms, additional children may occur without affecting the match. However, all specified children
must occur and, in case of ordered terms, must occur in the same order.

If a term is not partial, it is called total as discussed above. Notice, that neither data nor
construct terms may contain partial terms, as data is always presumed to be “complete” (cf.
Issue ??).

Partial terms are obviously essential for dealing with semi-structured data, where the schema
of the data may allow for repetition or omissions of data (both in breadth and depth). Thus,
queries can not specify total (or complete) patterns for the data.

71

However, partial terms also introduce a number of new challenges in a pattern language such
as Xcerpt—that do not occur, e.g., in logic programming languages such as Prolog, where term
arity and children order of two matching terms are always the same.

First, assume an ordered query term q that specifies only a partial list of children. Then the
position (among its siblings) of a match m′ for a child of m may (and will in most cases) differ
from the position of m among its siblings (i.e., among q’s children). However, in many cases
access to the (sibling) position is needed, e.g., to obtain the first child or immediate following
sibling of a matched term. Therefore, Xcerpt provides access to the sibling position through the
position modifier:

§7 Position Modifier
The position modifier allows the specification of the position of a child among its siblings, i.e.,
in the list of children of its parent. The position may be specified as an arithmetic expression
composed of the usual arithmetic operators for natural numbers and natural numbers as well as
(literal) variables as atomic expressions. The scope of a position modifier is a single term.

Obviously, a position modifier can only occur inside other (structured) terms and not at the
top-level of a query term.

Using variables one can (a) query the position, (b) express positional joins, e.g., to find immedi-
ate siblings, and (c) correlate data and position. Variables occurring in position specifications
may only be bond to natural numbers, otherwise a (run-time) exception occurs (cf.Issue 12).
The following example shows the use of positional variables to find the immediate two following
siblings of a term:

Example 6.1. immediate following two siblings

Second, though one may not be able to specify how all of the children of a sought-for term ought
to be shaped like, one might be able to specify how they ought not to be shaped. Again, this
makes sense only in a partial term, as in a total term the shape of all children must be explicitly
stated. Xcerpt uses the without modifier to express this subterm negation:

§8 Without Modifier
The without modifier expresses that not all sub-terms in its scope may match with a sub-term of a
match for its parent term. The scope of a without modifier is a list of one or more sub-terms.

Sub-terms in the scope of a without modifier are often referred to as negative, those outside as
positive.

Notice, that the definition does not specify that none of the sub-terms may occur in a match
for the parent: If the scope of a without modifier is a list of sub-terms, than the parent term t
matches another term t ′, if there is a mapping of the positive sub-terms of t to t ′, that can not
be extended to also cover all negative sub-terms. Thus, subterm negation is existential.

Example 6.2. examples with a list and a single without

Like position modifiers, without modifiers may only occur in sub-terms. Note, also that
Xcerpt places some limitations on variables used in without modifiers, cf.Section 7.2.

Currently, without modifiers may not be either arbitrary siblings of each other in an unordered
parent term or immediate siblings of each other in an ordered parent term (cf. Issue 5).

72

Figure 6.6: UML Model for Qualified Descendant

2. depth: Semi-structured data may not only vary in the number, order, and repetition of children,
but also in how elements are nested. E.g., in (X)HTML most inline elements such as em may
occur in most block-level elements such as p or div, but may also be nested inside each other.
Thus selecting all em elements in an (X)HTML document in a pattern requires a means to
specify patterns that are incomplete in depth, i.e., that contain sub-terms that are not direct
sub-terms of their parent but stand in another structural relation to it, e.g., occurring at any
depth under their parent or occurring at depth 5 under their parent.

To express such incompleteness in depth Xcerpt provides the descendant modifier, similar in
its basic form to the descendant axis in XPath. In contrast to XPath (and thus XSLT and XQuery),
Xcerpt also provides a more expressive variant of the descendant modifier that allows direct
expression of constraints such as “occurs at depth 5 under its parent” or “occurs at any depth
under its parent but with only div elements in between its parent and itself”. The latter variant
of the descendant modifier is referred to as qualified, the basic case as unqualified.

§9 (Unqualified) Descendant Modifier

The unqualified variant of the descendant modifier specifies that the single sub-term in its scope
may occur at any depth under the parent term (rather than as an immediate child).

Notice, that the position and descendant modifier can not be mixed, as the former to the
position among the immediate children of the parent term, and the latter specifies that the
sub-term may also be nested more deeply inside the parent term.

In contrast to the position modifier the descendant modifier may occur at top-level, thus
specifying that the contained term may occur at any level in the document.

§10 Qualified Descendant Modifier

The qualified variant of the descendant modifier specifies a more involved relation between the
parent term and the single in-scope sub-term: The in-scope sub-term occurs inside the parent term,
but the path in between is restricted by a qualifying expression that consists in a selection and a
repetition part.

A detail model of the qualified descendant is given in Figure 6.6: The selection part is a sequence
of (one or more) element label and optional attribute term specifications, both possibly con-
taining variables. The repetition part is an interval [i , j] with i <= j and i , j ∈N0 ∪ {∞}. The
interval boundaries may also be literal variables.

Thus, the qualified descendant restricts the in-scope sub-term to matchings that are reached
from a match of the parent term via a path that matches the selection part repeated between i
and j times.

Notice, that variable occurrences in the selection and repetition part of a qualified descendant
are non-binding, i.e., all such variables must be bound in another part of the query term (cf.
Section 7.2).

Example 6.3.

73

3. optional parts: One of the most distinguishing features of semi-structured data in contrast
to, e.g., relational data aside is the allowance for optional information, i.e., information that
occurs in some elements of a certain type but is missing in others of the same type. Though
testing for the existence or absence of such optional information has been a focus in many semi-
structured and XML query languages (most notably structural predicates in XPath), selecting
of or construction based on optional information has been far less closely investigated. Xcerpt
provides query authors with a unified concept for handling optional information in the context
of testing, selection, and construction, quite in contrast to mainstream XML query languages
such as XQuery and XSLT.

Just like in construct terms, the optional modifier is used in query terms to indicate which parts
of a query may be missing without affecting the matching of the remainder of the query.

§11 Optional Modifier

The optional modifier in query terms indicates that its in-scope terms may be missing in a matching
term, but have to be considered, if they are existent. The scope of an optional modifier is a list of
terms.

This way optional modifiers serve to bind variables to part of the data that may be absent, but
that must be included in the substitutions resulting from a query, if present. Obviously, only
bindings for variables that do not occur (positively, cf. Section 7.2) also outside of the scope of
any optional are effect by the presence or absence of the optional part, as in the other case their
bindings are already established by the outside occurrence. Therefore, an optional modifier
with no such variable in scope does not affect either matching or the resulting substitutions
and can thus be safely removed from the query.

4. order: As discussed above, data and construct terms may already be distinguished in ordered
and unordered terms. Often, however, one might not care about the order in which matches for
the sub-terms in a query occur in the data, even if the data itself is ordered. Xcerpt acknowledges
this fact by allowing query terms that are unordered to match with ordered terms, but not the
other way around. I.e., if the query specifies the order is significant then only data where the
order is significant as well can match with that query; if the query however indicates that the
order may be ignored, then also data is considered that is ordered, however the sub-terms of
the query are matched in any order with the sub-terms of the data.

5. literal specification: Finally, like in the relational case, queries often may not be able to specify
literal content or identifiers completely, but rather query for data where the literal content or
the identifiers falls into some class, specified in Xcerpt by means of POSIX.1 regular expressions
enhanced with variable bindings: additionally to using POSIX’s numeric backreferences, Xcerpt
allows subexpressions to be bound to Xcerpt literal variables. This allows the extraction and
insertion of data from the rest of the Xcerpt query into the regular expression.

As stated, regular expressions may occur anywhere in a query term where literal content or
identifiers may occur, except where only natural numbers are allowed, as in repetition and
position specifications.

Notice, that for the “wildcard” regular expression .* anonymous variables may be used and are
often more convenient.

74

6.3.1 Textual Term Syntax

〈selection-modified-qt〉 ::=- 〈selection-modifier〉 ‘(’ ?〈modified-qt〉 ‘,’ ‘)’ -

〈selection-modified-attr-term-qt〉 ::=- 〈selection-modifier〉 ‘(’ ?〈modified-attr-term-qt〉 ‘,’ ‘)’ -

〈selection-modifier〉 ::=- ‘except’ -

〈occurrence-modified-qt〉 ::=- 〈occurrence-modifier〉 ‘(’ ?〈modified-qt〉 ‘,’ ‘)’ -

〈occurrence-modified-attr-term-qt〉 ::=- 〈occurrence-modifier〉 ‘(’ -

- ?〈modified-attr-term-qt〉 ‘,’ ‘)’ · · ·

〈occurrence-modifier〉 ::=- 〈optional-modifier〉
‘without’

-

〈location-modified-qt〉 ::=- 〈location-modifier〉 ‘(’ ?〈term-variable-qt〉 ‘,’ ‘)’ -

〈location-modifier〉 ::=- 〈descendant-modifier〉
〈position-modifier〉

-

〈descendant-modifier〉 ::=- ‘descendant’
‘desc’

-

〈position-modifier〉 ::=- ‘position’
‘pos’

〈number-qt〉 -

〈number-qt〉 ::=- 〈Int〉
〈literal-variable-ct〉

-

6.3.2 XML-style Term Syntax

Once more, the XML-style term syntax uses productions identical to the ones for the non-XML term syntax.
The full grammar is given in Appendix B.4.

75

6.3.3 Pure XML Syntax

Like in the term syntax, the XML syntax enforces a hierarchy of modified terms with occurrence and selection
modified terms at the top followed by occurrence modified terms, variable restrictions and finally base terms.

#3# MODIFIED TERMS
2 modified-term =

variable-term | location-term | occurrence-term | selection-term
4 base-term = reference | content-term | structured-term

variable-term =
6 base-term

| variable
8 | element restriction { variable, base-term }

location-term =
10 element descendant { variable-term }

| element position {
12 element number { variable | xsd:int },

variable-term
14 }

selection-term = element except { modified-term }
16 occurrence-term =

element without { modified-term }
18 | element optional { modified-term }

#4# MODIFIED ATTRIBUTE TERMS
20 modified-attr-term =

base-attribute,
22 variable-attr-term,

occurrence-modified-attr-term,
24 selection-modified-attr-term

variable-attr-term =
26 variable

| element restriction { variable, base-attribute }
28 occurrence-modified-attr-term =

element without { modified-attr-term }
30 | element optional { modified-attr-term }

selection-modified-attr-term = element except { modified-attr-term }

6.4 Top-level Query Terms

As mentioned in the discussion of some of the query term modifiers above, certain modifiers are only
allowed at sub-term level, but not at the top-level. On the other hand, there are some constructs that
may only occur in top-level query terms, viz. term formulas and document specifications. Figure 6.7
shows a detailed model of top-level query terms. Notice that from all modifiers in query terms only
optional and descendant modifiers are allowed at top-level.

6.4.1 Term Formulas

(Top-level) query terms can be connected by the usual boolean connectives to form so-called query
term formulas.

76

Content:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTerm:QueryTerm

Term:QueryTerm

Restriction

1

1

1

TopLevelTerm:QueryTerm

Resource:QueryTerm

TopLevelTermDeclare:QueryTerm

1

OptionalTopLevelTerm:QueryTerm

DescendantTopLevelTerm:QueryTerm

!"#$%&'(')*+,-.#,/(0

StructuredTopLevelTerm:QueryTerm

1

1

DescendantOrBaseTerm:QueryTerm TermVariable

Reference:QueryTerm

Identifier:QueryTerm

StructuredTerm:QueryTerm Restriction

1

TermVariable

1

NamespaceDeclaration

2334

VariableDeclaration

2334

(#

,+5'6

(#

TermFormula:QueryTerm

TermLevelDeclare:QueryTerm

1334

NamespaceDeclaration

2334

VariableDeclaration

2334

ModifiedTerm:QueryTerm

Figure 6.7: UML Model for Top-level Query Terms

Formula

Negation Conjunction disjointion

!"#$%&'(')*+,-#+.(/

BaseClass

0

1223

1223

4220

Condition

BaseClass
SubtermFormula:QueryTerm

SubtermNegation SubtermConjunction Subtermdisjointion

!"#$%&'(')*+,-#+.(/

Subterms:QueryTerm

0

1223
1223

4220

Condition

AttributeFormula:QueryTerm

AttributeNegation AttributeConjunction Attributedisjointion

!"#$%&'(')*+,-#+.(/

Attribute:QueryTerm

0

1223
1223

4220

Condition

TermFormula:QueryTerm

TermNegation TermConjunction Termdisjointion

!"#$%&'(')*+,-#+.(/

TopLevelTerm:QueryTerm

0

1223
1223

4220

Condition

Figure 6.8: UML Model for Query Formula

§12 Term Formulas
A term formula is an expression formed from boolean connectives (and, or, and not) over top-level
query terms. Intuitively, or merely merges the resulting multi-sets of substitutions resulting from
the contained queries (similar to union in SQL database systems), whereas and creates the joins the
individual substitutions (if none of the queries contains a negation).

Besides the sub-term negation introduced in Section 6.3 above (without modifier), Xcerpt also
supports query negation, denoted using not. The query negation used in Xcerpt is negation as (finite
or infinite) failure like in logic programming, i.e., a negated query not(Q) succeeds if the query Q fails.
Like in negated sub-terms, variables occurring in a negated query do not yield bindings, i.e., they have
to appear elsewhere in the query outside the scope of a negation construct (cf.Section 7.2).

Notice, that query negation is universal quantified, i.e., there may be no term that matches the
query, whereas sub-term negation filters out those parent terms that contain the negated sub-term,
and thus is effectively existential quantified if the parent term is not bound to a variable.

6.4.2 Document Specifications

So far, query terms have not specified what document the data they are matched against comes
from. In this case, data and construct terms that are part of the program (or set-up by some other
environment specific method) are considered. If data stored in external sources is to be accessed, a
document specification is needed to specify the needed information about that external data source.

77

TermFormula:QueryTerm

TermNegation TermConjunction TermDisjunction

!"#$%&'(')*+,-#+.(/

TopLevelTerm:QueryTerm

0

1223
1223

4220

Condition

DocumentSpecification:QueryTerm

LiteralContent:QueryTerm

!"#$%&'(')5*+,-#+.(/

Comment:QueryTerm

Content:QueryTerm

ProcessingInstruction:QueryTerm

StringIdentifier:QueryTerm

!"#$%&'(')*+,-#+.(/

"#.('.(0

"#.('.(

0

(678'(5.6$'0

LiteralVariableRegularExpression

9:9

0

NumberStandaloneDocumentSpecification

AnnotationContent:QueryTerm

!"#$%&'(')5*+,-#+.(/

AnnotationContent:QueryTerm

AnnotationContent:QueryTerm

TopLevelTerm:QueryTerm

;<=5>'7,+#.4220

DocTypeDeclaration:QueryTermIdentifier:QueryTerm

#"(?%' 4220'."#+.8 4220

0

%7#

4223

'%+

4223

Identifier:QueryTerm

,?,('$5+*

0 %@A&+"5+*

4220

7##(5.6$' 0

Figure 6.9: UML Model for Document Specifications

§13 Document Specification

A document specification describes an external data source such as an XML document. Typically
document specifications contain at least access parameters, e.g., the IRI (Internationalized Resource
Identifier [27]) of an XML document.

At the time of writing, the only form of document specification are XML document specifications.

§14 XML Document Specification

An XML document specification is a document specification to specify access to XML documents.
Aside of an IRI identifying the document to be accessed, an XML document specification may
contain most of the information present in the document and document type declaration infor-
mation items from [21]: XML version, standalone status flag, root name (i.e., the tag name of the
document element), system, and public identifier of the document type declaration if any, as well
as the document element (a top-level term) and two lists of annotation content (i.e., processing
instruction or comment terms) for document prolog and epilog.

Note, that there is currently no mechanism in Xcerpt to enable or disable validation in presence of
a document type declaration. In absence of such a mechanism, Xcerpt implementations are expected
to validate all documents with document type declaration. If such a document is not valid, an error
is generated. Thus, if a root name is present, it will always be the same as the label of the document
element.

For querying, document specifications are treated just like any other form of data, i.e., one can,
e.g., query all documents conforming to a DTD identified by a specific public or system ID.

Document specifications are also used for specifying properties of output documents, cf. Section 7.

6.4.3 Textual Term Syntax

As noted, top-level query terms may, in addition to structured query terms and top-level declare blocks as in
data and construct terms, may also be modified through optional, descendant, or a variable restriction and
may be formulas of query terms as well as document specifications, i.e., expression for accessing specific
resources on the Web.

78

〈top-level-query-term〉 ::=- 〈top-term-level-declare-qt〉
〈optional-top-level-qt〉

〈term-formula-qt〉
〈document-specification-qt〉

-

〈top-term-level-declare-qt〉 ::= · · · ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉 -
- ‘(’ 〈top-level-construct-term〉 ‘)’ · · ·

〈optional-top-level-qt〉 ::=- 〈optional-modifier〉 ‘(’ 〈descendant-top-level-qt〉 ‘)’
〈descendant-top-level-qt〉

-

〈descendant-top-level-qt〉 ::=- 〈descendant-modifier〉 ‘(’ 〈var-restriction-top-level-qt〉 ‘)’
〈var-restriction-top-level-qt〉

-

〈var-restriction-top-level-qt〉 ::=- 〈term-variable〉 ‘->’ 〈structured-term-qt〉
〈structured-term-qt〉

-

〈term-formula-qt〉 ::=- ‘not’ ‘(’ 〈top-level-qt〉 ‘)’

‘and’
‘or’

‘(’ 〈top-level-qt〉 ‘,’ ?〈top-level-qt〉 ‘,’ ‘)’

· · ·

· · · 〈condition-clause-qt〉 -

〈document-specification-qt〉 ::=- ‘in’ 〈xml-document-specification-qt〉 -

〈xml-document-specification-qt〉 ::= · · · ‘xml-document’ ‘((’ 〈location-qt〉 〈xml-decl-qt〉 -

- 〈doctype-decl-qt〉 ‘))’ 〈xml-document-children-qt〉 · · ·

〈location-qt〉 ::=- ‘location’ ‘=’ 〈IRI〉 | 〈literal-variable-qt〉 -

〈xml-decl-qt〉 ::=- ‘standalone’ ‘=’ ‘true’
‘false’

〈literal-variable-qt〉

· · ·

· · · ‘xml-version’ ‘=’ ‘1.0’
‘1.1’

〈literal-variable-qt〉

-

〈doctype-decl-qt〉 ::=- ‘system-id’ ‘=’ 〈identifier-qt〉 · · ·

· · · ‘public-id’ ‘=’ 〈identifier-qt〉 · · ·

- ‘root-name’ ‘=’ 〈identifier-qt〉 · · ·

79

〈xml-document-children-qt〉 ::=- ‘[[’ 〈xml-document-content-qt〉 ‘]]’
‘{{’ 〈xml-document-content-qt〉 ‘}}’
‘{’ 〈xml-document-content-qt〉 ‘}’
‘[’ 〈xml-document-content-qt〉 ‘]’

-

〈xml-document-content-qt〉 ::=- ?〈annotation-content-qt〉 ‘,’ 〈top-level-query-term〉 -

· · · ?〈annotation-content-qt〉 ‘,’ -

〈annotation-content-qt〉 ::=- 〈comment-qt〉
〈processing-instruction-qt〉

-

6.4.4 XML-style Term Syntax

Once more, the XML-style term syntax uses productions identical to the ones for the non-XML term syntax.

The full grammar is given in Appendix B.4.

6.4.5 Pure XML Syntax

Top-level query terms differ from general top-level terms in the possible use of a optional or descendant
modifier, the possible use of a variable restriction and, most notably, in the addition of term formulas and
document specifications, both occuring exclusively at the top-level of query terms. Notice the reference to
the generic grammar for formulas using 〈optional-top-level-term〉 as basic content type.

#1# TOP−LEVEL QUERY TERM
2 optional-top-level-term =

element optional { descendant-top-level-term }
4 | descendant-top-level-term

descendant-top-level-term =
6 element descendant { var-restriction-top-level-term }

| var-restriction-top-level-term
8 var-restriction-top-level-term =

element restriction { variable, structured-term }
10 | structured-term

term-formula =
12 grammar {

include "formula.rnc" {
14 content = parent optional-top-level-term

condition = parent condition-clause
16 }

}
18 document-specification =

element xml-document {
20 attribute location { text },

element xml-declaration {

80

22 attribute standalone { "true" | "false" | variable }?,
attribute xml-version { "1.0" | "1.1" | variable }?

24 }?,
element doctype {

26 attribute system-id { identifier.class }?,
attribute public-id { identifier.class }?,

28 attribute root-name { identifier.class }?
}?,

30 element children {
annotation-content*, top-level-term.class, annotation-content*

32 }
}

6.5 Summary: Modifiers and Where they Occur

To address the needs of querying and construction, Xcerpt provides quite a number of modifiers that
affect the way their in-scope terms are handled.

Most of these modifiers may occur either in construct or in query terms. The single exception
from this rule is the optional modifier: it marks both parts of construct terms that may or may not
occur depending on the result of the query term and parts of query terms that may or may not yield
bindings depending on the data the query term is matched against.

Table 6.1 summarizes the eight modifiers (and three boolean connectives for term formulas) and
gives at a glance which modifier may occur where and with what scope.

As discussed above, the following additional constraints hold:

1. In construct terms grouping and occurrence (optional) modifiers may be arbitrarily mixed.
Grouping modifiers on attributes are limited to a single term as scope to avoid the repetition of
attributes with the same name.

2. In query terms location modifiers “stick closely to the term modified by them”, i.e., occurrence
and selection modifiers may contain location modifiers, but not vice versa. Therefore, location
modifiers also always affect only a single term.

3. Finally, for top-level query terms only optional and descendant are allowed (the latter may
occur inside the former), each with a single in-scope term.

81

Data Terms Construct Terms Query Terms
Subterms Attributes Subterms Attributes Top-level

Grouping Modifiers .
all (all bindings) — * • — — —
some (some m bindings) — * • — — —
first (nth −mth bindings) — * • — — —

Selection Modifiers .
except (omit from binding) — — — * * —

Occurrence Modifiers .
optional (may occur) — * * * * •
without (must not occur) — — — * * —

Location Modifiers .
descendant (at any depth) — — — • — •

position (as nth child) — — — • — —

Term formulas .
and, or — — — — — 2..∗
not — — — — — •

Table 6.1: Occurrence of Modifiers (* indicates that the modifier has a scope of one to many terms,
• exactly one term; — indicates that the modifier may not occur in that context)

82

Chapter 7

Programming in Xcerpt:
Programs, Goals, and Rules

7.1 Xcerpt Programs

§1 Program

An Xcerpt program consists of at least one goal and some (possibly zero) construct-query rules.

Figure 7.1 shows an UML model for Xcerpt programs. For convenience, some of the input data
of a program may be specified as part of the program using data blocks (similar to facts from logic
programming, i.e., rules with an always successful query part.

§2 Goal
An Xcerpt goal specifies output of an Xcerpt program including an optional specification of where
the output is to be stored.

Implementations must define default behavior for goals without output specification. More
refined specifications for (XML and other) document properties as part of output specifications are
under investigation, cf. Issue 16.

A program may contain multiple goals, allowing result to be stored in different files or at different
Web locations. Notice, that the order of goals is currently undefined, cf. Issue 10, thus multiple goals
with the same output target should be avoided for the time being.

§3 Rule

An Xcerpt construct-query rule (short: rule) relates a construct term to a top-level query term.

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the
construct term by evaluating the query against Web resources (e.g. an XML document or a database).

Recursive chaining of rules is possible (but note certain restrictions on recursion, cf. Section 7.2).
In contrast to the inherent structural recursion used e.g. in XSLT, which is essentially limited to the
tree structure of the input document, recursion in Xcerpt is always explicit and free in the sense that
any kind of recursion can be implemented. Applications of recursion on the Web are manifold:

83

XcerptProgram

ConstructQueryRule Goal

Term:ConstructTerm

Term:QueryTerm

!"#$%&&'

()
#*

%

+"*,

%

()#*

%

+"
*,

%

Resource

"-./&&%

RuleLevelDeclareBlock

NamespaceDeclaration

GoalBlock

%&&%

/&&'

/&&'

Term:DataTerm

/&&'

/&&'

/&&'

VariableDeclaration

/&&'

NamespacePrefixDeclaration

IRI

NCName

%

%

DefaultNamespaceDeclaration

%

Variable

Figure 7.1: UML Model for Xcerpt Programs

84

• structural recursion over the input tree (like in XSLT) is necessary to perform transformations
that preserve the overall document structure and change only certain things in arbitrary docu-
ments (e.g. replacing all em elements in HTML documents by strong elements).

• recursion over the conceptual structure of the input data (e.g. over a sequence of elements) is
used to iteratively compute data (e.g. create a hierarchical representation from flat structures
with references).

• recursion over references to external resources (hyperlinks) is desirable in applications like Web
crawlers that recursively visit Web pages.

In addition to the syntactic constraints discussed so far, semantic constraints are imposed on the
variables in rules, cf. Section 7.2.

7.1.1 Textual Term Syntax

The textual syntax for rules deviates from the term syntax by using uppercase keywords for block structures.
This provides an easier visual distinction of rule- and term-level constructs.

〈program〉 ::=- ‘PROGRAM’ ‘(’ 〈goal-block〉 ‘)’ ‘END’ -

〈goal-block〉 ::=- ?〈rule-level-declare-block〉 〈goal〉 ?〈rule-level-declare-block〉

〈rule-level-declare〉 ‘(’ 〈goal-block〉 ‘)’ ‘END’

-

〈rule-level-declare-block〉 ::=- 〈goal〉
〈construct-query-rule〉

〈data〉

〈rule-level-declare〉 ‘(’ ?〈rule-level-declare-block〉 ‘)’ ‘END’

-

〈goal〉 ::=- ‘GOAL’ ‘(’ 〈out-resource〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’ -

〈rule〉 ::=- ‘CONSTRUCT’ ‘(’ 〈construct-term〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’ -

〈out-resource〉 ::=- construct-term
‘out’ (〈iri〉 | 〈literal-var〉)‘(’construct-term‘)’

-

〈data〉 ::=- ‘DATA’ ‘(’ 〈data-term〉 ‘)’ ‘END’ -

〈rule-level-declare〉 ::=- ‘DECLARE’ ‘(’ ?〈var-decl-qt〉 ?〈ns-decl-qt〉 ‘)’-

7.1.2 XML-style Term Syntax

The XML-style term syntax follows the same grammar as the non-XML term syntax. The full grammar is given
in Section B.5.

85

7.1.3 Pure XML Syntax

In the pure XML syntax programs, goals, rules, and data blocks are very much straight forward and make
extensive use of Relax NG’s parameterizable grammars for declaration blocks. Figure 7.2 gives a graphical
representation of the following Relax NG grammar.

1 ## An Xcerpt program is a set of (one or more) goals, as well as (any number of) rules and inline data
terms (like facts in Prolog). Rules and data terms may be surrounded by declaration blocks.

program = element program { goal-block }
3 goal-block =

rule-level-block*
5 | goal

| rule-level-block*
7 | grammar {

include "declare−block.rnc" {
9 content = parent goal-block

}
11 }

13 ## Rule−level blocks form the basic block structure of an Xcerpt programs: goals, rules, and inline data
terms form the basic block structures. They can be included into declaration blocks that define the
scope of variable and namespace declarations.

rule-level-block =
15 goal

| rule
17 | data

|
19 ## A declaration block on rule level allows both variable and namespace declarations.

grammar {
21 include "declare−block.rnc" {

content = parent rule-level-block*
23 }

}
25

A rule specifies how from data matched by the query term new data is constructed according to a
construct term.

27 rule =
element rule {

29 element construct { construct-term },
element from { query-term }

31 }

33 ## A goal is a rule, where the resulting data is written to a specified resource. Hence, goals are not
chained.

goal =
35 element goal {

element out {
37 (variable-ct

| attribute value {
39 text

>> a:documentation [

86

file:/Users/timfu/archive/research/deliverables/d6/examples/xcerpt-xml/xcerpt.rng 1 of 6
Continue on page 3

C
o

n
ti
n

u
e

 o
n

 p
a

g
e

 2

/ {grammar} Start program

program DocDoc

program

http://xcerpt.org/ns/core/1.0

goal-block

goal-block 0..! rule-level-block

goal

0..! rule-level-block

{grammar} declare-block.rng

rule-level-block DocDoc

goal

rule

data

{grammar} DocDoc

declare-block.rng

rule DocDoc

rule

http://xcerpt.org/ns/core/1.0

construct

http://xcerpt.org/ns/core/1.0

construct-term

from

http://xcerpt.org/ns/core/1.0

query-term

goal DocDoc

goal

http://xcerpt.org/ns/core/1.0

out

http://xcerpt.org/ns/core/1.0

variable-ct

@ value text

DocDoc

construct

http://xcerpt.org/ns/core/1.0

construct-term

from

http://xcerpt.org/ns/core/1.0

query-term

data DocDoc

data

http://xcerpt.org/ns/core/1.0

data-term

data-term {grammar} term.rng

variable-ct DocDoc

variable

http://xcerpt.org/ns/core/1.0

@ name DD NCName

construct-term DocDoc

{grammar} variable-ct variable-ct

modified-attribute {grammar} modifiers.rng

{grammar} modifiers.rng

modified-term {grammar} modifiers.rng

{grammar} modifiers.rng

include: start from modifiers.rng

Start grouping

include: define from modifiers.rng

content

include: define from modifiers.rng

grouping all

http://xcerpt.org/ns/core/1.0

content

0..1 order-by

0..1 group-by

some

http://xcerpt.org/ns/core/1.0

number

content

0..1 order-by

0..1 group-by

first

http://xcerpt.org/ns/core/1.0

interval

content

0..1 order-by

0..1 group-by

include: define from modifiers.rng

order-by order-by

http://xcerpt.org/ns/core/1.0

0..1 @ order-relation text

1..! optional-variable

include: define from modifiers.rng

group-by group-by

http://xcerpt.org/ns/core/1.0

0..1 @ equivalence-relation text

1..! optional-variable

include: define from modifiers.rng

optional-variable optional

http://xcerpt.org/ns/core/1.0

variable

variable

include: define from modifiers.rng

variable

include: define from modifiers.rng

interval interval

http://xcerpt.org/ns/core/1.0

min

http://xcerpt.org/ns/core/1.0

number-literal.class

Figure 7.2: Relax NG Grammar for Xcerpt Programs

87

41 "This should in−fact be a IRI as by RFC 3987. Since XML Schema datatypes only provides the
anyURI datatype for URIs conforming the older RFC 2396, arbitrary text is allowed."

]
43 }),

element construct { construct-term }
45 },

element from { query-term }
47 }

49 ## An inline data term allows the specification of data terms inside Xcerpt programs similar to facts in
Prolog.

data = element data { data-term }

7.2 Semantic Restrictions on Xcerpt Programs

Xcerpt imposes two major semantic restrictions on valid programs: range restrictedness and nega-
tion/grouping stratification. Where range restrictedness is a “local” property of a rule, negation and
grouping stratification is a (global) property of an entire program.

Intuitively, range restrictedness ensures that all variables used in the construction part of a rule are
properly bound in the query part. Negation and grouping stratification, on the other hand, disallow
programs with a recursion over negated queries or grouping constructs, thus allowing an easier
declarative semantics for Xcerpt programs.

optional or except variable only inside optional in head ERR optional should contain at least one
variable WAR

or where the arity of the variable sets of the parts is not the same

7.2.1 Range Restrictedness

Intuitively, range restrictedness means that a variable occurring in a rule head also must occur at
least once in the rule body. This requirement simplifies the definition of the formal semantics of
Xcerpt, as it allows to assume that all query terms are unified with data terms instead of construct
terms (i.e., variable free and collection free terms). Without this restriction, it is necessary to consider
undefined or infinite sets of variable bindings, which would be a difficult obstacle for a forward
chaining evaluation. Besides this formal reason, range restricted programs are also usually more
intuitive, as they disallow variables in the head that are not justified somewhere in the body.

The following sections give a formal, syntactic criterion for range restrictedness, which considers
negated queries and optional subterms as well as disjunctions in rule bodies.

7.2.1.1 Polarity of Subterms

So as to determine whether a rule is range restricted, variable occurrences in query and construct
terms are associated with the polarities positive (+) or negative (−), and the attributes optional (?)
or not optional (!) for such variables that are contained within an optional subtree and thus are not
bound in all valid matchings. Intuitively, a negative variable occurrence is a defining occurrence,
whereas a positive variable occurrence is a consuming occurrence. Since most terms are considered
to be not optional, the attribute ! is omitted in most examples.

88

The polarity of variable occurrences in a term can be determined by recursively attributing all
subterms of a term.

Polarity of Subterms

1. Let t be a query term with polarity p and optionality o.

• if t is of the form without t ′, then t ′ is of polarity + (regardless of p) and optionality o

• if t is of the form optional t ′, then t ′ is of polarity p and optionality ?.

• if t is of the form 〈modifier〉 t ′, where 〈modifier〉 is not an occurrence modifier (i.e., neither
optional nor without), then then t ′ is of polarity p and optionality o (unchanged).

• if t is of the form var X → t ′ then t ′ is of polarity p and optionality o (unchanged).

• if t is of one of the forms l {{t ′1, . . . , t ′n}}, l {t ′1, . . . , t ′n}, l [[t ′1, . . . , t ′n]] or l [t ′1, . . . , t ′n] (n ≥ 0), then
t ′1, . . . , t ′n are of polarity p and optionality o (unchanged).

• if t is of the form t ′ where c with c a condition formula, then t ′ is of polarity p and
optionality o, c is of polarity + and optionality o (conditions are always consuming).

• if c is a condition formula of the form optionl c ′ with c ′ a condition formula, then c ′ is of
polarity p and optionality ?.

The rules for attribute terms are analogously, i.e., optional forces the optionality to ?, without
the polarity to +, all other modifiers leave them unchanged.

2. Let t be a construct or data term with polarity p and optionality o.

• if t is of the form optional t ′, then t ′ is of polarity p and optionality ?.

• if t is of the form optional t ′ with-default t ′′, then t ′ is of polarity p and optionality ?
and t ′′ is of polarity p and optionality o.

• if t is of one of the forms f {t ′1, . . . , t ′n} or f [t ′1, . . . , t ′n] (n ≥ 0), then t ′1, . . . , t ′n are of polarity p
and optionality o.

• if t is of the forms all t ′ or some t ′, then t ′ is of polarity p and optionality o.

• if t is of the form op(t ′1, . . . , t ′n), with op a function or aggregation identifier, then t ′1, . . . , t ′n
are of polarity p and optionality o.

The root of a query term is usually of negative polarity (and thus define variable bindings), as
query terms usually occur in rule bodies. The root of a construct or data term is usually of positive
polarity.

In a rule, the construct term in the head always has positive polarity and the query part has
negative polarity and both are, by default, not optional. If negation constructs occur, the polarity
changes accordingly. Furthermore, if parts of a query are negated by not, the polarity of these parts is
again positive:

Polarity in Rules

1. If R = t c ←Q is a rule or goal with t c a construct term and Q a query part, then the polarity of t c

is + and the polarity of Q is −.

2. Let Q be a query part with polarity p.

89

• if Q is of the form not Q ′, then Q ′ is of polarity + (regardless of p)

• if Q is of the forms and(Q1, . . . ,Qn) or or (Q1, . . . ,Qn), then Q1, . . . , Qn are of polarity p

• if Q is a document specification with content C , then all variables occuring in the docu-
ment specification are of polarity + and C is of polarity p.

• if Q is of the form t (a query term), then t is of polarity p.

Note that the polarity of negated subterms and queries is always positive, regardless of the level of
nesting. The rationale behind this is that, since negation in Xcerpt is negation as failure and not the
negation of classic logic, additional negations do not completely revert previous negations. Variable
occurrences that are in the scope of at least one negation construct are always consuming occurrences,
since negation as failure requires to perform auxiliary computations.

Returning to the definition of range restrictedness, it requires that in a rule, for each consuming
occurrence of a variable, there exists at least one defining occurrence. Furthermore, a variable for
which all defining occurrences are optional also needs to be optional on all consuming occurrences.
This restriction is straightforward to understand, as it just requires that “each variable in the head or
in a negated query needs to be bound elsewhere”.

This intuitive definition of range restrictedness is complicated by the possibility of disjunctions in
the rule body, in which case a variable occurring positively in the rule head needs to occur negatively
in each disjunct. Since disjunctions can also be nested, it is useful to define a disjunctive rule normal
form, cf. [50].

Given a rule in such a disjunctive rule normal form, range restrictedness requires that each variable
that occurs positively in one of the disjuncts occurs also negatively in the same disjuncts. Range
restrictedness is formalised by the following definition:

Range Restrictedness Let R be a rule or goal and let R ′ = t c ←Q1∨ . . .∨Qn (n ≥ 0) be the disjunctive
rule normal form of R. R is said to be range restricted, iff

1. for each disjunct Qi (1 ≤ i ≤ n) holds that each variable occurring with positive polarity in either
t c or Qi also occurs at least once with negative polarity in Qi .

2. each variable that occurs in at least one of the Qi (1 ≤ i ≤ n) attributed as as optional without
another non-optional, negative occurrence in Qi

1 or that occurs in Qi , but not in Q j for some
1 ≤ i , j ≤ n is attributed as optional in all positive occurrences in Qi (including condition
formulas and document specifications) and t c .

A program P is called range restricted, if all rules R ∈ P are range restricted.

7.2.2 Negation and Grouping Stratification

Stratification is a technique first proposed by Apt, Blair, and Walker [3] to define a class of logic
programs where non-monotonic features like Xcerpt’s grouping constructs or negation can be defined
in a declarative manner. The principal idea of stratification is to disallow programs with a recursion
over negated queries or grouping constructs and thereby precluding undesirable programs. While
this requirement is very strict, its advantages are that it is straightforward to understand and can
be verified by purely syntactical means without considering terms that are not part of the program.

1Notice, that the optional occurrence must be of negative polarity in this case, as the query term would otherwise contradict
rule (1).

90

Several refinements over stratification have been proposed, e.g. local stratification [48] that allow
certain kinds of recursion, but these usually require more “knowledge” of the program or the queried
resources.

Xcerpt programs in this thesis are considered to be stratifiable2. Furthermore, the notion of
stratification is not only used for proper treatment of negation, it also extends to rules with grouping
constructs, because a recursion over grouping constructs usually defines undesirable behaviour. A
detailed discussion of stratification in Xcerpt can be found in [50, 49].

Here, we only give the final definition of a fully stratified Xcerpt program:

Full Stratification of an Xcerpt Program Let P = P1] . . .] Pn denote a partitioning of a set P into
disjoint sets Pi . Given a program P consisting of rules/goals {R1, . . . ,Rm} (m ≥ 1).

1. Let R = t c ←Q and R ′ = t c ′ ←Q ′ be rules.

• R depends on R ′ if there exists a (negated or non-negated) query term t q in Q such that t q

simulation unifies in t c ′

• R depends positively on R ′ if there exists a non-negated query term t q in Q such that t q

simulation unifies in t c ′

• R depends negatively on R ′ if there exists a negated query term not t q in Q such that t q

simulation unifies in t c ′

2. P is called fully stratifiable (or simply stratifiable), if there exists a partitioning (n ≥ 1)

P = P1] . . .] Pn

of P such that for every stratum Pi (1 ≤ i ≤ n) and for every rule R ∈ Pi holds:

• if R depends negatively on a rule R ′, or the head of R contains grouping constructs and
R depends positively or negatively on R ′, then R ′ ∈ ⋃

j<i P j , i.e. R ′ is in a strictly lower
stratum than R

• if the head of R contains no grouping constructs and R depends positively on a rule R ′
then R ′ ∈⋃

j≤i P j , i.e. R ′ is in the same or in a lower stratum than R

The partition P = P1] . . .] Pn is called a full stratification of P , and the Pi are called strata of P .

2Rather than calling a program stratified as in the original definition, we call it stratifiable as it is not necessary to compute
the stratification during (backward chaining) evaluation.

91

92

Part II

Language Extensions and Open Issues

93

Chapter 8

Node Identity in Xcerpt

8.1 Introduction

Managing structured or semi-structured data involves the determination of what defines the identity
of a data item (be it a node in a tree, graph, or network, an object, a relational tuple, a term, or an
XML element). Identity of data items is relevant for a variety of concepts in data management, most
notably for joining, grouping and aggregation, as well as for the representation of cyclic structures.

“What constitutes the identity of a data item or entity?” is a question that has been answered,
both in philosophy and in mathematics and computer science, essentially in two ways: based on the
extension (or structure and value) of the entity or separate from it (and then represented through a
surrogate).

Extensional Identity Extensional identity defines identity based on the extension (or structure and
value) of an entity. Variants of extensional identity are Leibniz’s law1 of the identity of indiscernibles,
i.e., the principle that if two entities have the same properties and thus are indiscernible they must
be one and the same. Another example of this view of identity is the axiom of extensionality in
Zermelo-Fraenkel or Von Neumann-Bernays-Gödel set theory stating that a set is uniquely defined by
its members.

Extensional identity has a number of desirable properties, most notably the compositional nature
of identity, i.e., the identity of an entity is defined based on the identity of its components. However,
it is insufficient to reason about identity of entities in the face of changes, as first pointed out by
Heracleitus around 500 BC:

ποταμοῖσι τοῖσιν αὐτοῖσιν ἐμϐαίνουσιν ἕτερα καὶ ἕτερα
ὕδατα ἐπιρρεῖ·

You cannot step twice into the same river; for fresh waters are flowing in upon you.
(HERACLEITUS, Fragment 12)

He postulates that the composition or extension of an object defines its identity and that the
composition of any object changes in time. Thus, nothing retains its identity for any time at all, there
are no persistent objects.

1So named and extensively studied by Willard V. Quine.

95

This problem has been addressed both in philosophy and in mathematics and computer science
by separating the extension of an object from its identity.

Surrogate Identity Surrogate identity defines the identity of an entity independent from its value
as an external surrogate. In computer science surrogate identity is more often referred to as object
identity. The use of identity separate from value has three implications (cf.[5] and [38])

• In a model with surrogate identity, naturally two notions of object equivalence exist: two entities
can be identical (they are the same entity) or they can be equal (they have the same value).

• If identity is separate from value, identity is no longer necessarily compositional and it is
possible that two distinct entities share the same (meaning identical, not just same value)
properties or sub-entities.

• Updates or changes on the value of an entity are possible without changing its identity, thus
allowing the tracking of changes over time.

In [5] value, structure, and location independence are identified as essential attributes of surrogate
identity in data management. An identifier or identity surrogate is value and structure independent
if the identity is not affected by changes of the value or internal structure of an entity. It is location
independent if the identity is not affected by movement of objects among physical locations or address
spaces.

Object identity in object-oriented data bases following the ODMG data model fulfill all three
requirements. Identity management through primary keys as in relational databases violates value
independence (leading to Codd’s extension to the relation model [19] with separate surrogates for
identity). Since object-oriented programming languages are usually not concerned with persistent
data, their object identifiers often violate the location independence leading to anomalies if objects
are moved (e.g., in Java’s RMI approach).

Surrogate or object identity poses, among others, two challenges for query and programming
languages based on a data model supporting this form of identity: First, where for extensional identity
a single form of equality (viz.the value and structure of an entity) suffices, object identity induces at
least two, often three flavors of equality (and thus three different joins): Two entities may be equal
w.r.t. identity (i.e., their identity surrogates are equivalent) or value. If entities are complex, i.e., can
be composed from other objects, one can further distinguish between “shallow” and “deep” value
equality: Two entities are “shallow” equivalent if their value is equal and their components are the
same objects (i.e., equal w.r.t. identity) and “deep” equivalent if their value is equal and the values
of their components are equal. Evidently, “shallow” value-based equality can be defined on top of
identity-based and “deep” value-based equality.

The same distinction also occurs when constructing new entities based on entities selected in a
query: A selected entity may be linked as a component of a constructed entity (object sharing) or a
“deep” or “shallow” copy may be used as component.

Summarizing, surrogate or object identity is the richer notation than extensional identity address-
ing in particular object sharing and updates, but conversely also requires a slightly more complex set
of operators in query language and processor.

Following a short outlook at related work on object identity in data management, the advantages
and challenges for introducing surrogate identity in Xcerpt, a versatile Web query language for XML
and RDF, are investigated.

96

8.2 Object Identity in Data Management or

“How do the others solve it?”

The need for surrogate identity in contrast to extensional identity as in early proposals for relational
databases has been argued for [19], as early as 1979 by Codd himself. He acknowledges the need for
unique and permanent identifiers for database entities and argues that user-defined, user-controlled
primary keys as in the original relational model are not sufficient. Rather permanent surrogates are
suggested to avoid anomalies resulting from user-defined primary keys with external semantics that
is subject to change.

In [38] an extensive review of the implications of object identity in data management is presented.
The need for object identity arises if it is desired to “distinguish objects from one another regardless
of their content, location, or addressability” [38]. This desire might stem from the need for dynamic
objects, i.e., objects whose properties change over time without loosing their identity, or versioning as
well as from object sharing.

[38] argues that identity should neither be based on address (-ability) as in imperative program-
ming languages (variables) nor on data values (in the form of identifier keys) as in relational databases,
but rather a separate concept maintained and guaranteed by the database management system.

Following [38], programming and query languages can be classified in two dimensions by their
support for object identity: the first dimension represents to what degree the identity is managed by
the system vs.the user, the second dimension represents to what degree identity is preserved over
time and changes.

Problems of user defined identity keys as used in relational databases lie in the fact that they
cannot be allowed to change, although they are user-defined descriptive data. This is especially a
problem if the identifier carries some external semantics, such as social security numbers, ISBNs, etc.
The second problem is that identifiers can not provide identity for some subsets of attributes.

The value of object identities (OIDs) as query language primitives is investigated in [1]. It is shown
that OIDs are useful for

• object sharing and cycles in data,

• set operations,

• expressing any computable database query.

The data model proposed in [1] generalizes the relational data model, most complex-object data
models, and the logical data model [40]. At the core of this data model stands a mapping from OIDs
to so-called o-values, i.e., either constants or complex values containing constants or further OIDs.
Repeated applications of the OID-mapping yield pure values that are regular infinite trees. Thus trees
with OIDs can be considered finite representations of infinite structures.

The OID-mapping function is partial, i.e., there may be OIDs with no mapping for representing
incomplete information.

It is shown that “a primitive for OID invention must be in the language . . . if unbounded structures
are to be constructed” [1]. Unbounded structures include arbitrary sets, bags, and graph structures.

Lorel [2] represents a semi-structured query language that supports both extensional and object
identity. Objects may be shared, but not all “data items” (e.g., paths and sets) are objects, and thus not
all have identity. In Lorel construction defaults to object sharing and grouping defaults to duplicate
elimination based on OIDs.

97

data value

user supplied
name

built-in

within a
program or
transaction

between
transactions

between
structural

reorganizations

temporary data persistent data

UNIX shell

Pascal
Prolog

SQL
QBE

SQL
QBE

Smalltalk-80
Java

XPath
XQuery

XSLT

GEM
OPAL
OQL

REPRESENTATION

TEMPORAL

Figure 8.1: Identity in Programming and Query Languages

98

article [
2 sect [

para ["Wie froh ..."]
4 title ["First"]

intro @ sect [
6 title ["First"]

sect [
8 title ["First"]

^intro
10]

]
12]

]

article [
2 sect [

para ["Wie froh ..."]
4 title ["First"]

intro @ sect [
6 title ["First"]

sect [
8 title ["First"]

sect [
10 title ["First"]

sect [
12 title ["First"]

^intro
14]]]]]]

Figure 8.2: Cyclic Xcerpt Data Terms

8.3 Issue Description or

“Do we really need object identity?”

In the classification scheme established in the previous section, Xcerpt currently supports extensional
identity exclusively. Before presenting arguments for surrogate identity, a closer look at the current
Xcerpt data model is needed.

8.3.1 Regular Infinite Trees

In contrast to claims in prior descriptions of Xcerpt, the data model of Xcerpt is indeed not much so
based on graphs, as on regular infinite trees. This is in part due to the lack of object sharing at the
level of the data model (rather than only in the serialization of data) and thus very much related to the
topic of this article. After [20] a (possibly infinite) tree t is called regular, if under structural equality
the set of all its (possibly infinite) subtrees is finite. Acyclic Xcerpt data terms can be seen as finite
regular trees, cyclic Xcerpt data terms as infinite regular trees, since their number of subtrees is finite
under structural equality. Consider, e.g., the two data terms in Figure 8.2.

Both data terms have the same five subtrees, viz.the subtree rooted at article1, sect2, para3, title4,
and sect5. Evidently, the number of explicit representations of the cycle in the data term does not
affect the number of subtrees.

This result is unsurprising in the light of [1], where it is shown that a graph-shaped object-oriented
data model (with object sharing) can be reduced to a regular infinite tree, if one ignores object identity
replacing (recursively) each object reference with the value of the object. The informed reader will
notice that the latter is the conceptual modus operandi of Xcerpt as defined so far.

The cause of this limitation is a desirable property of Xcerpt, viz.that parent-child and ID-IDREF
links are indistinguishable in the data model and in queries. This means in other worlds, that Xcerpt
does not distinguish between object copy and object reference or sharing.

In a pure tree data model this is indeed no limitation at all, since in a tree data model the position of
an object (i.e., the position among its siblings and (recursively defined) the identity of its parent node)
is sufficient for a unique identification of that object. However, in graphs this does not suffice due to

99

object sharing, i.e., the occurrence of the identical object at different positions. Positional identity
would, e.g., in the data term a{ x@b{}, ^x} result in two a children of the b with different identity.
Considering the example x@a{^x, ^x} one sees how this “positional” identity leads to infinitely many
objects, if the term contains cyclic references. “infinite trees”. This is also the root cause why there
is no Xcerpt query that can distinguish between the data term a{ x@b{}, ^x} and the data term
a{ b{}, b{} }. Neither is there a query that can distinguish the two data terms in Figure 8.2.

Indeed, positional identity is already used in Xcerpt to some extent, viz.in the index injectivity
property of the simulation relation.

To sum up, currently Xcerpt uses a data model based on regular infinite trees but for serialization
(and in-memory representation) these regular trees are represented as finite and, in general, cyclic
graphs. The following section argues that there are at least three reasons, why a reconsideration of
object identity and as an immediate consequence a proper graph data model is worthwhile.

8.3.2 Object Identity: Updates, Sharing,

Historically, there are two main incentives for object identity vs.extensional identity in data man-
agement systems, viz.object sharing and object updates. Both apply also for Xcerpt. Additionally,
object identity is needed in Xcerpt to properly support an important class of queries, viz.occurrence
queries.2

Object Updates: Under extensional identity object updates and transformations are indistinguish-
able. In particular, it is not possible to track changes to objects over time. Object identity, on the
other hand, allows the tracking of object updates. E.g., event queries of the form “if a certain object is
changed twice within 10 minutes” require some form of object identity. As argued above, it would be
possible to simulate object identity through extensional identity, but this leads to a violation of the
value independence and places the burden of managing the identity on the user.

Object Sharing: If object identity is provided in a data management system, object sharing
is almost always desirable to make views, rules, or similar “procedural abstraction” mechanisms
transparent. Without object sharing, such procedural abstractions have a side-effect, namely that
all objects in their result get a new identity, even if they are extracted from queried data. This makes
identity joins over rule boarders infeasible (see XQuery).

Occurrence Queries: Possibly the strongest argument for object identity is, however, the need for
occurrence queries. Occurrence queries ask for occurrences of certain data items in the data base.
Examples of occurrence queries are, e.g., “How many title elements occur in the first section?”, “List all
occurrences of title in the first section!”, or “For each supplier count the average number of items per
order (where an order may contain the same item several times)!”.

In Xcerpt occurrence queries are only supported as “distinct” occurrence queries, i.e., in the form
“How many distinct title elements occur in the first section?”. It is not possible to count the actual
occurrences, if some of them share the same structure, as they are considered identical in this case.
One might think that a simple solution here could be to use bags to gather these occurrences (instead
of sets as in the current semantics of Xcerpt). This, however, suffices not as a solution: Consider, e.g.,
the following query term against the first data term of Figure 8.2:

article [[
2 position 1 sect {{

2Note, that one might think that identity is linked closely to duplicate elimination and thus to grouping and aggregation.
In fact, this is not necessarily the case as grouping and aggregation constructs have to be based on bags or sequences (as in
virtually any mainstream database query language, viz.SQL, QUEL, OQL, Lorel, XSLT, XQuery) instead of sets anyway. However,
a stringent handling of object identity provides for an easier handling of grouping and aggregation.

100

article

sect

sect

title

para

Wie froh bin
ich, daß ich
weg bin!

First
Section

secttitle

First
Section

title

First
Section

(a) Short Cycle

article

sect

sect

title

para

Wie froh bin
ich, daß ich
weg bin!

First
Section

secttitle

First
Section

title

First
Section

sect

secttitle

First
Section

title

First
Section

(b) Long Cycle

Figure 8.3: Structure-equivalent Data Terms with Different Cycle Length

var X →desc title {{ }}
4 }}

The query asks “Find all occurrences of title elements at any depth in the first section.”
How many bindings for X should this query return on the given data? If one assumes duplicate

elimination based on extensional identity (structure and value of terms), a single binding for X is
returned. If no duplicate elimination takes place, however, i.e., in the case of an occurrence query
where simply all the occurrences are of interest, there are infinite occurrences under the section. This
becomes more obvious if one considers the same data with a longer cycle as in the second data term
of Figure 8.2. To better illustrate the point, Figure 8.3 shows a visual representation of the data.

Since references are considered transparent the answer to this query should be the same! Therefore
not bound for the number of occurrences of title in the first section can be given. Indeed, this is the
expected answer, if one assumes a data model of regular infinite trees as Xcerpt does (see above).

If one assumes duplicate elimination based on object identity, the query returns different answers
on the two data terms, as they are no longer identical (they represent different graphs), viz.three
bindings for the first data term and five for the second.

The following two tables summarize the differences between the result for the query term on the
two data terms with different forms of duplicate elimination:

duplicate elimination X

value-based title["First"]

identity-based t4, t6, t8

none t4, t6, t8, t10, t12, t14, t16, . . .

duplicate elimination X

value-based title["First"]

identity-based t4, t6, t8, t10, t12

none t4, t6, t8, t10, t12, t14, t16, . . .

101

Changes Transparent Rules Updates Occurrence Queries No User Manipulation

1: few ++ - – -
2: many + ++ ++ +

Table 8.1: Evaluation of the Proposals

To conclude, unrestricted occurrence queries are currently not expressible in Xcerpt (only distinct
occurrence queries are). But unrestricted occurrence queries are an essential class of queries. Their
introduction on a regular infinite tree data model is however at least problematic, at worst impossible.
On a graph data model with object identity they are easy to handle, but an obvious consequence is
the loss of Xcerpt’s property to handle reference and child links indistinguishably.

8.4 Aims of the Proposal

The following two sections present two proposals for addressing the issues raised above in this paper.
They are evaluated by five possibly contradicting goals:

1. Keep the changes to Xcerpt small and easy to grasp.

2. Ensure Xcerpt’s procedural abstraction mechanism remains “transparent”, i.e., that it can be
introduced without changing the query beyond the factoring out of the procedure.

3. Enable updates without identity change to allow update tracking.

4. Enable unrestricted occurrence queries.

5. Avoid the need for the user to manage identity. It should be possible to express identity joins
and to create objects with new identity, but it should not be possible to explicitly manipulate
the identity surrogates (e.g., identifiers).

Table 8.1 gives a brief overview of the two proposals with respect to these criteria. The details are
discussed in the following two sections.

8.5 Proposal 1: Infinite Regular Trees

The first proposal is to make no changes to the language. However, as discussed above, currently
Xcerpt’s data model resembles more an infinite regular tree than a graph. This fact should be made
much clearer if this proposal is adopted. Also, the fact the simulation is index injective, not node
identity injective must be clarified in this case.

The main advantage of this proposal is that Xcerpt retains the desirable property that reference
links and parent-child links are indistinguishable and transparently handled. However, the price
is that this precludes unrestricted occurrence queries and that the user still has to cope with the
finite representations needed for serialization. Update tracking could be realized using user managed
identity (e.g., keys) with all the known problems this involves.

102

8.6 Proposal 2: Hidden Identity

The second proposal is to move Xcerpt to a proper graph data model with object or node identity. This
is obviously a major change to the language. However, it is a much needed change to address updates
and occurrence queries.

On the level of the data model, a (total) surrogate function s associates each node in the domain
with a unique identifier, i.e., the surrogate function is injective. The identifiers are assumed to be
globally unique, however different documents may contain the same node (object sharing, see below).
The actual shape of the identifiers is implementation dependent and never revealed to the user.

The query language is extended by the following construct:

• Identity variables are (temporary) representatives for the identity surrogate of a node. In query
terms, they may exclusively occur instead of term identifiers, e.g., desc idvar ID @ a {{ }}.
Though the position already clearly separates them from other variables in query terms, this is
not true for construct terms. Therefore a different keyword, e.g., idvar, is used to emphasize
the difference.

• As hitherto, in data terms only local “pseudo identifiers” that are resolved at parsing are allowed.

• Queries may contain identity joins expressed simply by repeated occurrence of the same
identity variable. Cyclic queries using “pseudo identifiers” are no longer supported. This means
that queries can define the length of the cycle, but arbitrary cycle length queries can still be
expressed using descendant or qualified descendant. Such cyclic queries are not only easier to
evaluate, but have also a very strict and immediate meaning.

• Joins on non-identity variables remain pure value joins. A shorthand for an unrestricted identity
join might be worth considering, e.g., by allowing idvar outside of term identifiers in query
terms.

• In construct terms, object sharing is achieved by using identity variables instead of normal
variables, indicating that a link to the object represented by the surrogate is to be constructed.
A normal variable still indicates just a deep copy of the value. When creating unbounded
structures, i.e., in the case of grouping, surrogate invention is needed: E.g., if the result should
contain an a with itself as child for each binding of some variable the link between the two must
be established using surrogate invention. A possible syntax could be:

CONSTRUCT
2 result [

all new_id(invention_label) @ a [
4 ^last_id(invention_label)

] group-by var X
6]
FROM

8 var X →desc title {{ }}
END

• All nodes have identity including text nodes, comment nodes, and processing instruction nodes.
This is necessary to properly support occurrence queries.

Notice, that no direct support for shallow copies or shallow-value joins is proposed as these can
be simulated by a combination of deep-value and identity joins.

103

Cross-Document References: Using the object sharing mechanism discussed here it becomes
possible to share nodes not only between different elements in the same document but also beyond
document borders. If this is a desirable property and, at least in the context of RDF, this seems to be
the case, a “serialization” format for these cross document references as well as possible automatic
dereferencing should be addressed in further work.

Exposable Identity: Indeed, in the context of “serialization” of identity a closer look at exposing
identity must be taken: Exposing identity might be necessary for update tracking, but also for handling
of documents where identity is also used to reference sub-documents (as in (X)HTML). A principled
correlation between “internal” and “external” identity must be established. This will be addressed in
an upcoming discussion on serialization issues for XML and RDF, cf.[30], Chapter 9.

8.7 Conclusion and Future Work

This article summarizes the state-of-the-art on identity of data items, both for general data manage-
ment as well as for Xcerpt. Based on this analysis, a number of problems of the current status in
Xcerpt are discussed that are mostly equally valid for any language that uses extensional identity. Two
proposals for addressing these problems are discussed and evaluated along a number of criteria.

The evaluation clearly shows that a stringent introduction of object identity in Xcerpt is possible,
but that it is also a not trivial change to the language.

104

Chapter 9

Grouping and Aggregation in
Xcerpt

9.1 Introduction

Currently, the Xcerpt semantics uses substitution sets, but the description of construct terms pre-
sented in Section 5 uses multi-sets. In the case of sets, duplicate substitutions are removed. Though
this is useful in some queries, there are many cases where this is not necessary or even detrimental:

1. First, duplicate removal is a costly operation. Though (node identity-based) duplicates can be
avoided at small additional cost for queries against trees (as shown for XPath evaluation), this
is not true for general queries against graphs. In particular, the current duplicate elimination
based on structural equivalence is unfavorable from a complexity point of view (structural
equivalence between ordered terms resumes to graph isomorphism).

2. Second, for many types of queries duplicate removal is not wanted, e.g., in transformation and
aggregation queries: It is currently not possible to express such simple and straightforward
queries as “Count the number of title elements in a document” or “Replace all a labeled elements
in the input tree with b labeled elements otherwise retaining the same structure” without
resorting to complicated rules using position.

9.2 Multirelations, Bags, and Sequences

Multirelations (or relations with duplicate tuples) are usually ignored in relational model theory as
relations as sets make many theoretical considerations, such as relational algebra and complexity
theory, easier and more elegant. Nevertheless, the need for multirelations is evident when considering
aggregation queries like “what is the sum of the values of some column”. In a set relational algebra
the projection to the aggregation column collapses all same value tuples and thus makes this query
impossible to express. The same argument can be made for any query that returns just a projection
of the columns of queried relations, as the number of duplicates may be significant to the user (e.g.,
in “what are the titles of all first and second level sections”). Also, many practical systems support
multirelations to save the cost of duplicate handling. Indeed, neither QUEL [52] nor SQL [4] are (set)
relational query languages, but rather possesses features that are not expressible in (set) relational

105

algebra, viz.aggregation, grouping, and duplicate elimination. The semantic of these expressions
assumes that the underlying data structure is a bag rather than a set.

Therefore, in practical query languages duplicate handling must be addressed. Based on the
control over duplicate creation and elimination, one can distinguish relational query languages
into weak and strong duplicate controlling languages. QUEL [52] and SQL [4] provide little control
over duplicates (essentially just the DISTINCT operator in combination with GROUP-BY clauses) and
thus fall into the first class. The only means is an explicit duplicate elimination. Similarly, Prolog’s
operational semantics [53] also contains a operations for explicit duplicate handling (e.g., bagof vs.
setof).

In contrast, DAPLEX [51] is based on “iteration semantics” and gives precise control over the
creation and elimination of duplicates. An example of a DAPLEX query is shown in the following
listing:

FOR EACH Student
2 SUCH THAT FOR SOME Course(Student)

Name(Dept(Course)) = "EE" AND
4 Rank(Instructor(Course)) = "ASSISTANT PROFESSOR"

PRINT Name(Student)

A first formal treatment of this “iteration semantics” for relational databases is found in [23], where
a generalization of the relational algebra to multirelations is proposed. This extension is not trivial
and raises a number of challenges for optimizations: joins are no longer idempotent, the position
of projections and selections is less flexible, as πR (R ×S) 6= R and σP (R)]σQ (R) 6= σP∨Q (R) due to
duplicates in the first expression1. Though this algebra provides a useful theoretical foundation, it
does little to address the concerns regarding efficient processing of “iteration semantics” expressions.

[34] shows that (nested) relational algebra on multirelations (i.e., relations as bags) is strictly more
expressive than on relations as sets. Unsurprisingly, the core difference lies in the “counting power”
of the bag algebra. Similarly, [41] proposes a query language called BQL over bags whose expres-
siveness amounts to that of a relational language with aggregates. This approach provides a formal
treatment of aggregations and grouping as found, e.g., in SQL (GROUP-BY clause and aggregation
operators such as AVG, COUNT, and SUM). BQL is “seen as a rational reconstruction of SQL” that is
fully amenable to formal treatment. [41] also considers extensions of BQL with power operators,
structural recursion, or loops and shows that the latter two extensions are equivalent.

[39] proposes a different view of multirelations as incomplete information: though conceptually
“a relation represents a set of entities”, one tuple per entity, and thus does not contain duplicates,
the concept of a multirelation allows a formal treatment of partial information about entities. A
multirelation is a projection of a complete relation, i.e., it consists of a subset of columns within some
relation (without duplicates). Thus it may contain duplicates in contrast to the relation. [39] considers
multirelations only as output of queries not as first class data items in the database. Semantically,
they can not exist independently of the base relation. No (base or derived) relation should contain
duplicates.

1Assuming π and σ to be the multiset generalizations of their relational counterparts.] is understood here as additive
union, i.e., t occurs n times in R ∪S, if t occurs i times in R and j times in S and n = i + j . [34] considers additionally maximal
union (i.e., where n = max(i , j)), which does not exhibit this particular anomaly.

106

9.3 Solution Proposal

The solution shown in Section 5.6 already uses multi-sets as foundation for construction. Syntacti-
cally, there are no further changes needed. A new specification of the semantics is currently under
development as part of the effort to specify a query algebra for Xcerpt 2.0 and related query languages
such as XQuery and XPath.

107

108

Chapter 10

Modules in Xcerpt 2.0—Reuseware
Integration

10.1 Introduction

In this chapter, we first discuss a generic module extension framework for rule languages developed
jointly between I3 and I4 and then show some consideration of a suitable extension employing that
framework for Xcerpt. For details on the implementation see I4-D13.

10.2 Rule Languages

A relatively common way of expressing or accessing knowledge is by means of rules. Rules are
considered a natural and easily understandable formalism for knowledge management. Rules can
be considered a versatile formalism covering a wide range of application areas, including deductive
querying, reactive data, data construction and schema specification. In particular, rules are currently
playing a major role in the development of the Semantic Web with languages such as SWRL, RIF-Core,
Xcerpt and XChange etc.

In this section we introduce the notion of rules in a general manner as possible, such as not to
be weighed down with the details of one particular language. One of the advantages of rules is their
declarative nature, which makes them easy to read and specify. As such rules can also be used by
non-technical users, e.g. for a manager to clearly specify business strategies to be implemented in an
organization.

Rules in a particular language are usually specified in a rule-base, a finite set of (possibly) related
simple rules. A simple rule consists of a head and a body and has the following form:

head op bod y

were bod y and head are sets of atomic formula of the rule language. The formula of each set are
composed using some language specific logical connectives. The operator op relates the head and
the body of the rule, and thus defines how the rule is to be understood. Depending on the particular
rule language, different logical connectives and relation operators are selected.

Datalog A well-known rule language is the database query language Datalog. For Datalog, the
operator op is instantiated with the implication operator ←. As such, rules are read "‘if the body holds,

109

then the head also holds"’. In Datalog, the head is usually considered to be a singleton set and the
bod y a set of Datalog atoms connected via conjunction (∧). A Datalog atom is an n-ary predicate of
the form p(a1, . . . , an), where ai (1 ≤ i ≤ n) are constant symbols or variables. As such, a Datalog rule
may take the following form:

uncl e(j ohn, steve) ← f ather (j ohn, pa),br other (pa, steve)

to be understood as defining that j ohn is the uncle of steve if pa is the father of j ohn and steve
is the brother of pa.

For other rule languages, the general rule form presented above can be instantiated differently and
rules associated with specific semantics. Note that the semantics associated with rules are specific to
each rule language and cannot be described in general terms. For the case of Datalog, semantics are
given by definition of a least Herbrand model of a rule-set.

10.3 Framework for rule language module systems

In Section 10.2 we introduced rule languages and thier form in general terms and described their
usefulness. In the following section, we introduce the formal notions of our rule language module
system framework. This is achieved by first establishing requirements for specific rule languages such
that they fit the framework. That is, if the rule language fulfills the requirements then it is applicable
to the framework. We then briefly introduce two such rule languages which fulfill the requirements,
viz. Xcerpt and R2G2. Xcerpt in particular we will treat in Section 10.5 where we use the notions of the
framework to realize an Xcerpt module system.

The main assumption made on a rule language is that a rule language has a concept of "‘rule
chaining"’, or "‘rule dependency"’, where one rule depends on another for proper processing.

More precisely, for a language to be amenable to the module extension framework presented here,
it must fulfill the following requirements:

1. It must have some form of program concept. A program is understood as a (finite) sequence of
rules. Note, that here and in the following we use sequences to allow the support for languages
where order is relevant. Obviously, if rule order is irrelevant, an arbitrary order may be chosen.

2. A rule is understood as consisting in (exactly) one head and (exactly) one body, where each the
body and the head are (finite) sequences of rule parts. Body rule parts are understood as a kind
of condition, head rule parts as a kind of result, action, or other consequence of the rule.

3. Rule parts1 are, for the purpose of this work, atomic.

4. Finally, and most importantly, we assume that a rule language has a concept of accessibility:
With each program P , a relation ℵ ⊂ N2 ×N2 can be associated such that (ir1 , ib , ir2 , ih) ∈ ℵ if
results of the ih-th head part of the ir2 -th rule in P (such as derived data, actions taken, state
changes, or triggered events) are accessible to (and thus may affect) the condition expressed by
the ib-th body part of rule ir1 . Conversely, if a pair (ir1 , ib , ir2 , ih) 6∈ ℵ the results of (ir2 , ih) may
not be accessible to (ir1 , ib). Intuitively, ℵ partitions the space of rule parts into allowed and
forbidden pairs.

A rule language is required to provide means to express the allowed accessibility in an arbitrary
ℵ relation on a given program. How this achieve is left to the language.

1We refrain from calling rule parts literals, as they may be, e.g., entire formulas or other constructs such as actions that are
not usually considered logical literals.

110

Notice, that the notion of accessibility is weaker than common notions of rule dependency or rule
dependency graph. Furthermore, the module extension framework only requires the ability to express
an arbitrary accessibility relation, however poses no restrictions on the shape of ℵ for a module-free
program. Indeed, for any module-free rule program P N4 forms a perfectly acceptable ℵ relation on P .

However, more restricted versions of ℵ for module-free programs may help to better “localize” the
effect of module imports and thus are usually beneficial. E.g., in case of Datalog predicate symbols
are often partitioned into extensional and intensional ones and this can be exploited to only adapt ℵ
for intensional body parts since only those can be affected by a module import. Essentially, whenever
a body part is explicitly referring to external data or resources (i.e., data that can not be resulting from
rule applications) the same argument applies. This is, e.g., the case if external resources are accessed
in query languages such as Xcerpt. Xcerpt, e.g., surrounds body parts with in statements specifying
the external resource to access.

To summarize, the main requirement on a rule language to be amenable to the proposed module
extension framework is the ability to express (in some way) arbitrary accessibility relations. This
requirement is fulfilled by most rule languages that allow some form of rule chaining, e.g., Datalog,
SWRL, SQL, Xcerpt, R2G2. However, it precludes rule languages such as CSS where all rules operate on
the same input and no rule chaining is possible. CSS already provides its own module concept but
without information hiding. Rules from all imported modules are merged into one sequence of rules
and all applied to the input data.

10.4 Module system operators

As discussed above, the aim of the module extension framework is to allow a rule program to be
divided into conceptually independent collection of rules with well-defined interfaces between these
collections. For this purpose, we first in Section 10.4.1 define operators that define collections of
rules (called “modules”) and, among such a collection of rules, which rules contribute to the (public)
interface of the collection. These operators are complemented with module access operators in
Section 10.4.2 which specify where the (public) interface of a previously defined module is accessible.

10.4.1 Module Definition Operators

We use module identifiers (from some alphabetΣID as means to refer to modules, e.g., when importing
modules. Some means of resolving module identifiers to modules (stored, e.g., in files or in a database)
is assumed. See Section ?? for an example how this is achieved in the case of the Xcerpt module
system.

Module Formally, we understand a module M as a quadruple (R1,R2,ℵ, ID) ⊂R×R \ {[]}×N4 ×ΣID
where R is the set of all finite sequences over the set of permissible rules for a given rule language.
We call R1 the private, R2 the public rules of M , ℵ the accessibility relation for M , and ID its identifier
(which is assumed to be unique among all modules). For the purpose of numbering rules, we consider
R = R1 ¦R2 the sequence of all rules in M .

In the following, we consider, where convenient, a program as a special case of a module where all
rules are public.

There is only a single, unsurprisingly simple module construction operator:

111

private

public

RA1

RA2

RA3

RA4

Module A

RB1

private

public

RB2

RB3

RB4

Module B

RP1

RP2

RP3

RP4

Program

Figure 10.1: Program and two defined modules without imports

CREATE-MODULE ΣID be a set of module identifiers. Then, CREATE-MODULE : R×R \ {[]} →ΣID .
CREATE-MODULE(r1,r2) creates a module from the finite sequence of private rules r1 and the finite,
non-empty sequence of public rules r2 and returns an identifier for the newly created module.

Notice, that only the sequence of private rules may be empty. Every module is expected to consist
in at least one public rule. It is expected that the returned identifier is uniquely resolvable to the
module created by this call ofCREATE-MODULE. However, the details of module storage and resolution
are left to each instance of the module extension framework.

Figure 10.1 shows an exemplary configuration of a program together with two modules A and
B. Where the program consists in a single sequence of rules, the rules of each of the modules are
partitioned into private and public rules. The allowed dependency relation ℵ is represented in the
following way: All body parts in each of the areas , , and are depending on all head parts in the
same area and no other head parts. No access or import of modules takes place, thus no inter-module
access exists in ℵ between rule parts from one of the modules with each other or with the (main)
program.

Notice, that for the accessibility within a module the partitioning in private and public plays no
role whatsoever. Body parts in private rules may access head parts from public rules and vice versa.

10.4.2 Module Access Operators

Module access or import operators allow the (principled, i.e., via their public interface) definition of
inter-module access. Three types of module access and their corresponding operators are discussed
here that differ mostly in the amount of information hiding. All three operators hide information
resulting from private rules in a module, however the public information is made accessible in
different ways by each of the operators: The private and public import operators differ only if modules
are cascaded, i.e., a module A that imports another modules B is itself imported. In that case the
public import operator makes the public interface of B part of the public interface of A, whereas the
private import operator keeps the import of B hidden. Both operators make all information from the
public interface of B accessible to all rules of A. In contrast, the third operator, called qualified import
operator, makes the information from the public interface of B accessible only to explicitly marked
rules.

Formally, the operators are defined as follows:

112

private

public

RA1

RA2

RA3

RA4

Module A

RB1

private

public

RB2

RB3

RB4

Module B

RP1

RP2

RP3

RP4

Program

Figure 10.2: Private import of A into B and B into the main program

PRIVATE-IMPORT Given a module identifier ID′ and a module M = (R1,R2,ℵ, ID), PRIVATE-IMPORT(ID′, M)
resolves the module identifier to obtain a module M ′ = (R ′

1,R ′
2,ℵ′, ID′) that is to be imported into M

and returns a new module M ′′ = (R ′′
1 = R1 ¦R ′

1 ¦R ′
2,R ′′

2 = R2,ℵ′′, ID). ℵ′′ is the accessibility relation for
the resulting module: ℵ′′ = I ∪ I ′∪C where I = slide(ℵ, [|R1|+1, |R1 ¦R2|], [|R ′′

1 |+1, |R ′′
1 ¦R2|]), i.e., the

accessibility relation of the importing module with R2 slided after R ′
1 and R ′

2, I ′ = slide(ℵ′, [1, |R ′
1 ¦

R ′
2|], [|R1| +1, |R ′′

1 |]), i.e., the accessibility relation of the imported module slided after R1 and C =
{(i , j ,k, l) ∈N4 : ∃r,b,r ′,h : r is the i -th rule in R1 ¦R2 ∧b is the j -th body part in r ∧ r ′ is the k-th rule
in R1 ¦R ′

1 ¦R ′
2 ∧k > |R1 ¦R ′

1| ∧h is the l-th head part in r ′ } is the part of the accessibility relation
that established that all body parts of the importing module may access all public head parts of the
imported modules.

Figure 10.2 shows the effect of the private import operator on the configuration from Figure 10.1:
Module B imports module A privately and the main program imports module B privately. In both
cases, the immediate effect is the same: The body parts of B get access to the head parts in A’s public
rules and the body parts of the main program get access to the head parts in B ’s public rules. The
import of A into B is hidden entirely from the main program. This contrasts to the case of the public
import shown in Figure 10.3. There the main program’s body parts also gain access to the head parts
in A’s (and not only B ’s) public rules.

PUBLIC-IMPORT Given a module identifier ID′ and a module M = (R1,R2,ℵ, ID), PUBLIC-IMPORT(ID′, M)
resolves the module identifier to obtain a module M ′ = (R ′

1,R ′
2,ℵ′, ID′) that is to be imported into M

and returns a new module M ′′ = (R ′′
1 = R1 ¦R ′

1,R ′′
2 = R2 ¦R ′

2,ℵ′′, ID). ℵ′′ is the accessibility relation for
the resulting module: ℵ′′ = I ∪ I ′∪C where I = slide(ℵ, [|R1|+1, |R1 ¦R2|], [|R ′′

1 |+1, |R ′′
1 ¦R2|]), i.e., the

accessibility relation of the importing module with R2 slided after R ′
1, I ′ = slide(slide(ℵ′, [|R ′

1|+1, |R ′
1 ¦

R ′
2|], [|R ′′

1 ¦R2|+1, |R ′′
2 |]), [1, |R ′

1|], [|R1|+1, |R ′′
1 |]), i.e., the accessibility relation of the imported module

with R ′
1 slided after R1 and R ′

2 slided after R2 and C = {(i , j ,k, l) ∈N4 : ∃r,b,r ′,h : r is the i -th rule in
R1 ¦R2 ∧b is the j -th body part in r ∧ r ′ is the k-th rule in R1 ¦R ′

1 ¦R2 ¦R ′
2 ∧k > |R1 ¦R ′

1 ¦R2|∧h is the
l-th head part in r ′ } the part of the accessibility relation that established that all body parts of the
importing module may access all public head parts of the imported modules.

QUALIFIED-IMPORT Given a module identifier ID′ and a module M = (R1,R2,ℵ, ID), and a set P of
pairs (i , j) identifying body parts in rules that explicitly access the imported module,QUALIFIED-IMPORT(ID′, M ,P)
resolves the module identifier to obtain a module M ′ = (R ′

1,R ′
2,ℵ′, ID′) and returns a new module

M ′′ = (R ′′
1 = R1 ¦ R ′

1 ¦ R ′
2,R ′′

2 = R2,ℵ′′, ID). ℵ′′ is the accessibility relation for the resulting module:

113

private

public

RA1

RA2

RA3

RA4

Module A

RB1

private

public

RB2

RB3

RB4

Module B

RP1

RP2

RP3

RP4

Program

Figure 10.3: Public import of A into B and B into the main program

private

public

RA1

RA2

RA3

RA4

Module A

RB1

private

public

RB2

RB3

RB4

Module B

RP1

RP2

RP3

RP4

Program

Figure 10.4: Qualified import of (1) module A into body part 3 of rule RB2 and into body part 1 of rule
RP1 and (2) of module B into body part 2 and 3 of rule RP1. into the main program

ℵ′′ = I ∪ I ′∪C where I = slide(ℵ, [|R1|+1, |R1 ¦R2|], [|R ′′
1 |+1, |R ′′

1 ¦R2|]), i.e., the accessibility relation of
the importing module with R2 slided after R ′

1 and R ′
2, I ′ = slide(ℵ′, [1, |R ′

1¦R ′
2|], [|R1|+1, |R ′′

1 |]), i.e., the ac-
cessibility relation of the imported module slided after R1 and C = {(i , j ,k, l) ∈N4 : (i , j) ∈ P ∧∃r ′,h : r ′
is the k-th rule in R1¦R ′

1¦R ′
2∧k > |R1¦R ′

1|∧h is the l -th head part in r ′ } is the part of the accessibility
relation that established that only the explicitly qualified body parts in P may access any of the public
head parts of the imported module.

The effect of the qualified import operator is, expected, more focused than that of either the public
or the private import operator. For the configuration from Figure 10.1, it is shown in Figure 10.4,
assuming that (1) module A is imported into B qualifying only body part 3 of rule RB2 and that (2)
module A is imported into the main program qualifying only body part 1 of rule RP1 for access and
module B is imported into the main program qualifying only body parts 2 and 3 of rule RP1.

10.5 Extending Xcerpt for Module Support

The following two sections give first extensions to the abstract of Xcerpt as introduced in the first
part of this deliverable and second extensions to the concrete term syntax. Extensions for the other
syntactical variants should be straightforward. Notice, that the discussed realisation of the module
system uses a sophisticated parametrized module concept that allows arbitrary expressions of the
module algebra from Section 10.3 to be used for module import in Xcerpt. E.g., one can import an

114

RDF reasoner parametrizing the actual RDF database, which parts of the RDF(S) entailment rules to
use, whether to include OWL– reasoning, etc.

A more complete description of the module system is currently being specified in joint work
between I3 and I4 and is expected to be published as extra REWERSE deliverable in 2007.

10.5.1 Abstract Syntax

Figure 10.5: Xcerpt Module

115

10.5.2 Term Syntax

<module> ::= <visibility> ´MODULE´ ´(´ <iri>
<module-rule-level-declare-block>+

´)´ ´END´

<visibility> ::= (´public´ | ´private´)

<module-rule-level-declare-block> ::= <module-goal>
| <module-construct-query-rule>
| <data>
| <module-rule-level-declare>
<module-rule-level-declare-block>+

<module-goal> ::= ´GOAL´ ´(´ <resource> ´)´
´FROM´ ´(´ <top-level-query-term> ´)´
´END´

<resource> ::= <module-construct-term>
| ´out´ (<iri> | <literal-var>) ´(´ <module-construct-term> ´)´

<module-construct-term> ::= <visibility>? <construct-term>
| <NCName> <construct-term>

<module-construct-query-rule> ::= ´CONSTRUCT´ ´(´ <module-construct-term> ´)´
´FROM´ ´(´ <top-level-query-term> ´)´
´END´

<module-rule-level-declare> ::=

´DECLARE´ ´(´ <var-decl-qt>* <ns-decl-qt>* ´)´

|´DECLARE PARAM´ ´(´ (<NCName>
(´AS´ <iri>
| ´AS PARAM´ <NCName>
| ´WITH DEFAULT´ (<iri> | ´PARAM´ <NCName>)
)?
´,´?

)+
´)´

| <visibility>? (´IMPORT´ ´(´ <iri>
| ´IMPORT PARAM´ ´(´ <NCName>
)

(´AS´ <NCName>)?
<using-expressions>*

´)´

116

<using-expressions> ::= ´USING´ (<iri> | <NCName>)
(´(´ <using-expressions> ´)´)*

´AS PARAM´ <NCName>

117

118

Chapter 11

RDF Access in Xcerpt 2.0—An
Outlook

11.1 Introduction

Data on the web is increasingly enriched with semantic meta-data, linking it to the real world or to
other information. While XML has already gained wide-spread acceptance, RDF is on the best way to
do so. Query languages have established themselves as a valuable means for accessing both formats,
and a considerable number of query languages for XML (such as XQuery[?], XPath[?], XSLT[16],
Xcerpt[49, ?, ?]) and for Semantic Web data (e.g. SPARQL[?], RQL[?], Versa[?]) have been proposed
and implemented, cf. [7] for a survey. XML query languages can be used to query XML serializations
of RDF data. This, however, hardly yields a programmer-comfortable approach to RDF data. In fact,
most of the above languages have not been specifically designed to cope with both worlds, and do
not provide a uniform language and common constructs to query and transform data in the various
formats. Moreover, most mainstream query languages lack a flexible data model that is powerful
enough to naturally comprehend both Semantic Web data formats (especially RDF and Topic Maps)
and XML.1

This article highlights challenges related to the data model and convenient constructs for querying
both standard Web and Semantic Web data with an emphasis on facilitating sophisticated reasoning.
It is shown that Xcerpt’s data model and querying constructs are well-suited also for the Semantic
Web, but that some adjustments of Xcerpt’s syntax would allow for even more effective and natural
query authoring with respect to RDF.

The rest of this article is structured according to its contributions: Section 11.2 examines require-
ments related to the data model of versatile web query languages with focus on RDF and XML. Section
11.3 proposes an extended edge-labeled syntax for Xcerpt terms that can be straightforwardly mapped
to usual Xcerpt data terms. Section 11.4 illustrates that Xcerpt’s constructs for handling heterogeneity
are beneficial to both XML and RDF querying. Section 11.5 underlines the importance of grouping
constructs in the scope of the Semantic Web. Finally, Section 11.6 concludes this article and sheds
light upon further research both with respect to the language itself and its efficient evaluation.

1Exceptions are early query languages for semi-structured data such as XML-QL and Lorel.

119

11.2 Challenges Related to the Data Model

Figure 11.1 presents two possible representations of information about countries, their names and
their border-countries in XML (on the left hand side) and RDF (on the right hand side). Nodes
of the XML document tree are represented as grey rectangles containing the element name. Text
nodes are distinguished by quotes and attribute-value pairs are displayed at the top right of the node
they belong to. The namespace prefixes rdf, rdfs and geo are assumed to be bound to http://www.
w3.org/1999/02/22-rdf-syntax-ns#, http://www.w3.org/2000/01/rdf-schema# and http://
geo.org/#, respectively, in the entire article. Nodes of the RDF graph on the right are either depicted
as grey rectangles containing the URI or blank node name in the case of non-literals or as oval nodes
in the case of literal values.

Countries

“Montenegro”

“Albania”

1 2

Country Country

1

Name

1

id=001

1

id=002

borderCountry

idref=002

2 borderCountry

idref=001

1

Name

1

“USA”

Country

1

id=003

Name

1

3

geo:countries/Montenegro

rdfs:label

_:country2

_:country1

geo:bordersOn

rdfs:label

rdfs:label

geo:bordersOn

geo:country

rdf:type

rdf:type

“USA”

“Albania”

“Montenegro”

Figure 11.1: XML data versus RDF data

Figure 11.1 naturally exemplifies that XML semi-structured data and Semantic Web data differ
in various ways, complicating the conversion of the formats in either direction and impeding the
use of a query language specialized on only one of the formats for accessing both. On the one hand,
XML data can only be unnaturally represented as RDF, because (1) the order of outgoing edges in RDF
is irrelevant, (2) nodes are uniquely identified by URIs except for literals and blank nodes, (3) RDF
does not support the concept of attributes. On the other hand, XML cannot naturally comprehend
RDF data, in that (1) besides nodes also the edges of RDF graphs are labeled, (2) RDF is truly graph
structured, and (3) RDF graphs need not be connected and are unrooted. In this section all of these
differences are discussed and it is illustrated that although Xcerpt’s term and graph oriented data
model allows the representation also of RDF data in a very straight-forward way.

11.2.1 Graph Data Model and References

One of the most striking differences between Semantic Web data and XML is that XML does not allow
multiple parent nodes for the same XML element and must be considered tree structured under this
consideration. This is why most XML query languages such as XPath and XQuery provide a tree data

120

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
 http://www.w3.org/2000/01/rdf-schema#
http://geo.org/#
http://geo.org/#

model. Taking the special attributes id and idref into account, XML may also be viewed as a graph
structure. When querying XML it may sometimes even be useful to consider these XML references
as true parent-child relationships. In contrast, Semantic Web data is truly graph structured, in that
predicates are the only way of specifying relationships amongst resources, and nodes of an RDF
graph may very well have multiple incoming edges. RDF graphs are usually represented by triples
without any explicit references. Nevertheless, a graph structure is implied by these triples, because
RDF references are implicit in that they exploit the fact that RDF resources are uniquely identified by
URIs.

Whereas for XML query languages, such as XPath, XQuery and XSLT a tree data model is a natural
choice, versatile query languages that incorporate also Semantic Web data must adopt a graph data
model.

From the beginning Xcerpt was designed to not only handle XML data, but also semi-structured
graph data, which means that it can be adapted to natively handle Semantic Web data easier than
other XML query languages.

11.2.2 Labeled Edges

Put simply, the XML data model is a node-labeled tree. In contrast, RDF graphs are not only node-
labeled, but also edge-labeled. In XML serializations of RDF graphs such as RDF/XML, this difference
is overcome by “striped” XML, which means that element nodes representing RDF nodes and edges
alternate in the nested XML serialization. The Syntactic Web Approach suggests querying RDF se-
rializations with XML query languages. This solution is unsatisfactory in various ways: (1) It is not
coherent with the visual and intuitive representation of RDF data as graphs, and is thus more difficult
to grasp. (2) It does not pay tribute to the different roles assumed by subjects, objects and predicates
of the RDF graph, which complicates e.g. the determination of the set of all predicates of an RDF
graph. (3) Many XML serializations (such as RDF/XML and RDF/A) offer a great amount of variability
and syntactic sugar for representing RDF graphs, which makes the formulation of queries against
such serializations in XML query languages cumbersome.

As a result, a truly versatile query language for the Web must offer a data model that comprehends
both: node- and edge-labeled graphs as well as purely node-labeled graphs. As has been mentioned
before, node- and edge-labeled graphs can be transformed into graphs without edge labels in a
straightforward manner. Nevertheless, the user must be provided with a syntax (see Section 11.3) that
clearly distinguishes between edge- and node-labels both in query constructs and in the data.

11.2.3 Incomplete and Unbounded Data

In the Semantic Web, resources are uniquely identifiable, and thus anybody is free to make statements
about resources by simply referencing the unique URI as subject, predicate or object within one’s own
statements. A consequence of this ability for everyone to make statements about arbitrary resources
is that one may never be sure to be aware of all statements made about a given resource (this is why
RDF data can be considered inherently incomplete). From a graph perspective on Semantic Web
data, this means that collecting all existing outgoing edges of a resource is not possible, which is a
fundamental difference to XML data, where the sequence of children of an element node is fixed and
can be determined simply by looking at the document containing the node in question.

A possible solution (which also yields other benefits) to this problem is to restrict one’s attention
to the contents of specific documents or groups of statements, which are often referred to as Named

121

Graphs. “Named graphs is the idea that having multiple RDF graphs in a single document/repos-
itory and naming them with URIs provides useful additional functionality built on top of the RDF
Recommendations.”2 In fact, RDF query languages such as SPARQL and TriQL provide constructs for
handling and constructing named graphs.

The above observations show that the data model for a Semantic Web query language must be able
to express both complete (in form of named graphs or documents) and incomplete data (information
that does not belong to any graph). While conventional Xcerpt query terms may already be complete
and incomplete in breadth, data terms have always been considered to be complete. As shown in
section 11.4 data terms can be naturally extended to include incomplete data, and an extended
operational semantics that takes this extension of the data model into account is being considered.

11.2.4 RDF Graphs as Xcerpt Data Terms

While in semi-structured data, there is always a distinguished top level term, the root, Semantic Web
data does not have the concept of top level terms. Furthermore, it may not even be possible to single
out a resource from which all other resources are reachable over edges in the graph, because RDF
graphs may consist of disconnected subgraphs. It is, however, possible to determine a set of resources,
such that each resource in the graph is reachable from at least one of them. Choosing these resources
as top level nodes, RDF graphs are very conveniently represented by sets of Xcerpt data terms.

11.2.5 Order of Sub-Terms

Another difference between RDF and XML data illustrated in Figure 11.1 is that RDF data usually does
not impose an order on outgoing edges of a node. To be more precise, RDF data is always unordered
unless otherwise specified by the use of an rdf:Seq sequence container. Hence, the data model must
be able to represent both ordered and unordered information. The distinction between ordered und
unordered data is especially useful in the scope of positional queries against semi-structured data as
exemplified in Section 11.4.

Xcerpt data terms have been conceived to not only represent XML data, but also semi-structured
data in general. Therefore Xcerpt already supports the concept of unordered sets of children unlike
most other XML query languages and does not need to be adapted to the Semantic Web in this respect.

Summing up the particularities of XML and RDF data, the data model must support possibly cyclic and
disconnected graphs with labeled and unlabeled edges, complete and incomplete data specifications,
ordered and unordered child elements, implicit and explicit references, and finally multiple roots.

11.3 An Intuitive Syntax for Versatile Web Query Languages

In previous work [?], we have shown that due to its versatility gained from construct-query-rules
and constructs for treating heterogeneous data, Xcerpt is particularly well-suited to handle XML
serializations for the Semantic Web data formats RDF and Topic Maps such as RDF/A, RDF/XML
and XTM. An obvious alternative to processing XML serializations of Semantic Web formats is their
direct treatment. In fact, for Xcerpt’s users it may be more convenient to use a syntax that better
distinguishes between edges and nodes within an RDF graph. In this section, we propose a possible

2http://www.w3.org/2004/03/trix/

122

syntax derived from the syntax of Xcerpt data terms that represents RDF data in a very similar way to
XML data.

Listing 11.1: The RDF Graph of Figure 11.1 represented as an Xcerpt data term

geo:countries/Montenegro{
2 <geo:bordersOn> _:country1{

<geo:bordersOn> geo:countries/Montenegro,
4 <rdfs:label> literal(’Albania’),

}
6 <rdfs:label> literal(’Montenegro’),

<rdf:type> geo:country,
8 }

10 _:country2 {
<rdfs:label> literal(’USA’),

12 <rdf:type> geo:country
}

In listing 11.1 edges (predicates) of the RDF graph in figure 11.1 are enclosed by angle braces and
appear in between the elements (subjects and objects) that stand for the nodes of the graph. This
syntax eases the authoring and understanding of queries considerably, because subjects, predicates
and objects are much more easily distinguished.

As has been mentioned above, data with labeled edges may be transformed to graph structured
data with unlabeled edges by the introduction of an additional node for each edge. This approach has
already been used to query Semantic Web data with Xcerpt in [?]. A graph data model with labeled
edges can be offered to the user by the internal and automatic transformation of both RDF query
and data graphs to graph data with unlabeled edges, which can already be handled by Xcerpt. In this
article it is argued that the user of a versatile query language should be unconscious of and not be
confronted with this transformation.

11.4 Common Query Constructs for the Web and the Se-

mantic Web

Schema information often being unavailable, data on the Web is very heterogeneous. But even
if schema information is present, it usually leaves room for variability. In contrast to relational
database query languages, Web query languages must therefore provide constructs for handling this
heterogeneity.

Besides querying Semantic Web data, programmers are also interested in transforming it. An
example scenario for one such transformation is the collection of data from different sources, and its
rearrangement according to a joint schema.

Xcerpt has been designed as a declarative language rooted in logic programming. This section
shows that Xcerpt’s approach to querying, transforming and reasoning is well-suited not only for
ordinary semi-structured data, but also for the Semantic Web.

11.4.1 Query Patterns and Answer Closedness

One of the design principles of SPARQL and Xcerpt is answer closedness. This principle dictates
that all answers to queries may themselves be used as queries. By ensuring similar syntaxes for

123

both the formulation of queries and the representation of data, answer closedness eases program
understanding.

Using data terms as queries, it is just possible to check whether an RDF graph is entailed3 by the
queried data, or whether a particular XML fragment is contained within a document. In order to
extract parts of the data, queries must contain logical variables. Xcerpt query terms are data terms
enriched by variables and a series of constructs for handling heterogeneous data. These constructs
are just as useful in the Semantic Web as for ordinary XML data. Constructs for handling heterogeneity
in Xcerpt include optional term selection, double braces for incompleteness in breadth and arbitrary
length traversal path expressions.

One might be interested in all resources that represent countries directly or transitively bordering
on Montenegro and their names. Assuming data of a similar form as in Figure 11.1, the following
Xcerpt query in edge-labeled notation helps out:

Listing 11.2: An Xcerpt query term with constructs for handling heterogeneity

1 var Country →/.*/{{
<rdf:type> geo:country{{ }},

3 desc(<geo:bordersOn> /.*/)*
<geo:bordersOn>

5 geo:countries/Montenegro{{ }},
optional <rdfs:label> var Name →literal(/.*/)

7 }}

There are several noteworthy constructs in the above query term:

• Variable Constraints. In Line 1, the bindings for the variable Country is constrained to graphs
matching the pattern following →.

• Incompleteness in breadth. The schema of data on the web is in many cases unknown. Therefore
one might not know or even not care about the set of outgoing edges of an RDF node. Double
curly braces are used in Xcerpt to indicate that the matched data may also contain additional
siblings other than those specified by the query term.

• Regular expressions for labels. The logical variable Country in Listing 11.2 is supposed to be
bound to all kinds of nodes within the queried RDF graph, no matter whether it is a blank node
or a resource. The regular expression /.*/ matches arbitrary URIs and b-nodes. In order to
match just blank nodes or resources, the keywords b-node and resource can be used.

• Incompleteness in depth. The resource r1 matching with variable Country shall be directly or
transitively connected over geo:bordersOn-predicates with the resource geo:countries/Montenegro,
which stands for Montenegro. The RDF nodes in between r1 and geo:countries/Montenegro
are of no interest, and therefore an arbitrary length traversal path expression containing a
wild-card regular expression for the resources of the intermediate nodes is used in line three.

• Optional sub-terms. Labels for the resources r1 are to be retrieved if present. In the absence of
such a label the query is not intended to fail, but to simply restitute no binding for the variable
Name. Making use of the keyword literal ensures that Name is only bound to literals, never to
URIs.

3for a definition of RDF entailment see http://www.w3.org/TR/rdf-mt/ , Section 3.2

124

http://www.w3.org/TR/rdf-mt/

Solutions to Xcerpt queries are given in the form of substitution sets, which are sets of mappings
from the logical variables in the query to subgraphs of the data. The query in Listing 11.2 applied to
the RDF graph in Figure 11.1 yields the following substitution set:

{ {Country 7→ _:country1{ . . . }, Name 7→ ’Albania’ } }

The fact that the variable Country is bound to the entire subgraph rooted at the resource it
matches differentiates Xcerpt from other query languages such as SPARQL and RQL. Since in densely
connected RDF graphs, the bindings of variables may contain large sub-graphs of the data or even
the whole data graph, Xcerpt provides a second kind of variables called label variables which are not
bound to entire subgraphs but only to the nodes they match with. The usage of a label variable in
Listing 11.2 would be syntactically indicated by directly prefixing the double curly braces in Line 1 by
the variable var Country.

Note that also SPARQL provides a way to return more information (entire subgraphs) about
resources than just their URIs through the keyword describe. The exact nature of such descriptions
is left unspecified by the SPARQL working draft, but the Concise Bounded Description4 proposed by
Nokia is mentioned as an example.

The semantics of the query in Listing 11.2 is implicitly defined by mapping the node-and-edge-
labeled syntax of the query to purely node-labeled query terms.

11.4.2 Injectivity and Querying RDF Sequences

When specifying a query term to be matched with semi-structured data, the semantics intended by
the query author is usually that sibling nodes shall not match with the same node of the queried graph.
Matching a query term q and its children q1, . . . qn with a data term d and its children d1, . . . ,dm can
be formalized by a function m : {q1, . . . qn} → {d1, . . . ,dm}. We demand m to be injective to reflect the
authors intention. Listing 11.3 shows a query selecting all pairs of countries bordering on Montenegro,
and Xcerpt’s semantics5 ensures that the variables Country1 and Country2 are not bound to the same
node. Note that formulating a query that allows the bindings for Country1 and Country2 to be the
same can be easily expressed using Xcerpt’s and connective for queries.

Listing 11.3: A query selecting all pairs of countries bordering to Montenegro

geo:countries/Montenegro{{
<geo:bordersOn> var Country1 →/.*/{{ }},
<geo:bordersOn> var Country2 →/.*/{{ }}

}}

As has been mentioned in Section 11.2.5 Semantic Web data can both be ordered and unordered.
Xcerpt’s positional approach to querying allows to match data dependent on the order of sub-terms.
Figure 11.2 contains a possible representation of information about spoken languages in countries
using an RDF sequence container.

The query in Listing 11.4 selects all countries in which Serbian is more common than Albanian
assuming a schema as in Figure 11.2. The use of square brackets instead of curly braces indicates that
the order of occurrence within the RDF sequence is relevant.

Listing 11.4: An Xcerpt query taking into account the order of subterms within an RDF-Container

var Country →/.*/{{

4http://swdev.nokia.com/uriqa/CBD.html
5formally defined in [49, Chapter 8] at the aid of functions similar to m above

125

geo:Montenegro

rdf:_3

_:languagesgeo:spokenLanguages rdf:_1

rdf:seq rdf:type rdf:_2

“Albanian”

“Montenegrin”

“Serbian”

Figure 11.2: An RDF sequence containing the languages in the order of their diffusion in Montenegro

<geo:spokenLanguage> /.*/[[
</.*/> literal(’Serbian’),
</.*/> literal(’Albanian’)

]]
}}

11.4.3 Blank Node Treatment

Blank nodes (also called b-nodes) in RDF graphs are used to assert that a resource r1 exists that is
related with other resources in a certain way without associating a URI to r1. One unresolved issue
related to querying RDF data containing b-nodes concerns the redundancy of answer sets. To see this
reconsider the RDF graph from Figure 11.1.

Listing 11.5: A query selecting all resources of type geo:country

var Country →/.*/{{<rdf:type> geo:country}}

Selecting all resources of the graph that are of type geo:country, the query in Listing 11.5 cannot de-
termine whether _:country2 and geo:countries/Montenegro are meant to be the same concepts.
Hence, the question arises, whether both the blank node _:country2 and the resource identified by
geo:countries/Montenegro should be returned or only the URI. The solution considered to be the
most convincing by the authors is to exclude such query solutions that are entailed by other solutions,
but to keep all others. The query in Listing 11.5 would therefore return both resources. In the case
that the triple (_:country2, rdfs:label, ’USA’) were not present, returning the blank node of
the graph would be redundant.

11.4.4 Negation and Breadth-Complete Queries

As has been discussed in Section 11.2.3, Semantic Web data must be considered as inherently incom-
plete and unbounded in comparison to XML. Additionally taking into account that RDF statements
are always positive assertions, the only sensible form of negation is scoped negation as failure, which
has already been proven useful in the context of the Semantic Web[?, ?].

An approach that goes even beyond scoped negation as failure by providing explicit negative
information to additionally enable strong negation is suggested in [?]. Although strong negation
would certainly be helpful for Semantic Web Reasoning, it is not yet supported by Xcerpt.

While some Semantic Web query languages including the SPARQL family do not provide negation,
XML query languages including Xcerpt usually do. To underline the importance of scoped negation in

126

geo:countries/Montenegro
geo:countries/Montenegro

the Semantic Web consider the following query issued against the resource http://countries.org/country-
_information.

Listing 11.6: Scoped negation as failure in Xcerpt query terms

1 in{ resource{ ’http://countries.org/country_information’ },
/.*/{{

3 <rdf:type> geo:country{{ }},
<geo:bordersOn> geo:countries/Montenegro{{ }},

5 <rdfs:label> var Name →literal(/.*/),
not(<geo:bordersOn> /.*/{{ <rdfs:label> literal(’Albania’) }})

7 }},
}

Listing 11.6 queries the names of all countries bordering to Montenegro but not to Albania.
Matching a term with both positive and negated sub-terms with a data term is carried out as follows:
At first, it is tested, whether each of the positive query sub-terms can be associated with a matching
sub-term of the data respecting the injectivity requirement mentioned in Section 11.4.2. If this
matching succeeds, it is searched for a matching sub-term of the data for the negated sub-terms. If
any of the negated sub-terms can be matched, the entire matching fails. If all positive sub-terms
can be matched with the data, but none of the negated ones, the entire matching succeeds. The
query semantics for node- and edge-labeled query and data terms as needed for RDF data is ascribed
to the semantics of purely node-labeled terms as described in [49, Section 8.2] by straight-forward
normalization rules transforming edge-labeled terms to purely node-labeled terms.

Breadth-complete queries are an issue which is closely related to negated sub-terms, because they
can be rewritten as breadth-incomplete queries using the without-construct. They are indicated by
single curly braces or brackets instead of double ones and can only be matched with data that does
not contain any additional sub-terms besides those specified in the query term. To find countries that
only border to Italy (and do not appear as subject in any other statement of the RDF graph), the query
in Listing 11.7 could be used.

Listing 11.7: Breadth-complete queries against RDF data

in{ resource{ ’http://countries.org/country_information’ },
2 var Country →/.*/{

<geo:bordersOn> geo:countries/Italy{{ }},
4 },
}

In the same way as queries with negated sub-terms, breadth-complete queries must be scoped to
a single or a set of named graphs.

11.4.5 Optional Sub-Terms

As exemplified in Listing 11.2, optional constructs are of great help for Semantic Web queries in that
they allow to extract certain parts of the queried data only if they are present. Closer examination of
the optional construct reveals that it is only syntactic sugar for a disjunction of queries. The query in
Listing 11.2 could also be written using the Xcerpt or construct:

Listing 11.8: The same query as in Listing 11.2 without the optional construct

1 or (
var Country →/.*/{{

127

3 <rdf:type> geo:country{{ }},
desc(<geo:bordersOn> /.*/)* <geo:bordersOn> geo:countries/Montenegro{{ }},

5 <rdfs:label> var Name →literal(/.*/)
}},

7 var Country →/.*/{{
<rdf:type> geo:country{{ }},

9 desc(<geo:bordersOn> /.*/)* <geo:bordersOn> geo:countries/Montenegro{{ }},
without <rdfs:label> var Name →literal(/.*/)

11 }}
)

As in SPARQL, multiple optional sub-terms may occur as siblings, or may even be nested. The
semantics of such graph patterns seems to be straightforward at first glance: For each optional
sub-term that succeeds to match, the bindings of its variables are included in the substitution set
returned by the overall graph pattern. The failed matching of an optional sub-term does not prevent
the overall graph pattern from returning a substitution set, which simply does not contain bindings
for the variables in the unmatched optional sub-terms. Since variables may – and often do – occur
multiple times in a query pattern, they may also be shared among multiple optional sub-terms,
causing interdependencies among them. In particular, it may happen that only one of two optional
sub-terms may be matched, but not both. While the SPARQL working draft does not define which of
the sub-terms is to be picked, Xcerpt adopts the following convention: If multiple optional sub-terms
impede each other from matching, all selections of these sub-terms are chosen that maximize the
number of variable bindings.

11.5 From Queries to Transformations

While most Semantic Web query languages are limited to querying and returning sets of mappings of
their variables to resources, Xcerpt – and to some extent also SPARQL – are designed to do more: by
providing construct terms (in SPARQL they are called graph templates) to be filled with the variable
bindings gained from the evaluation of queries, they allow the construction of results having an
entirely different schema. This combination of querying and construction in so-called construct-
query-rules (see Section 11.5.1 for details) gives rise to the possibility of complex transformations.

11.5.1 Construct-Query-Rules and User Defined Reasoning

The evaluation of Xcerpt query terms and SPARQL graph patterns against RDF data yields substitution
sets. Xcerpt construct terms are Xcerpt data terms enriched by variables as place holders and grouping
constructs like all and some. Substitutions are applied to construct terms by replacing the variables
in the construct term by their bindings in the substitution set (for the detailed semantics see [49,
Section 7.3.3]). Query and construct terms are combined by so-called construct-query-rules, which
allow sophisticated user-defined reasoning which goes beyond the predefined rules of RDFS and
OWL.

11.5.2 Grouping Constructs

A major difference between SPARQL graph templates and Xcerpt construct terms is that only the
latter allow merging of substitution sets (called result sets in SPARQL) by using grouping constructs.
Merging substitution sets is necessary because often the need arises to collect variable bindings from

128

different matches of the query pattern with the data. In contrast, a query result form within a SPARQL
query is always filled exactly as often as the graph pattern in the WHERE clause matches with the
queried RDF graph.

Reconsidering the information about countries and languages as exemplified in Figure 11.2, one
might wish to construct an RDF graph that groups countries according to the languages which are
spoken in them. To be more precise, for each language a blank node shall be constructed carrying
an rdfs:label such as “Albanian”, “Serbian”, etc. Moreover the blank node must feature outgoing
geo:spokenIn edges for each country that the language is spoken in.

Listing 11.9: Grouping countries according to languages

CONSTRUCT
2 _:language{

<rdfs:label> var Language,
4 all <geo:spokenIn> var Country }
FROM

6 var Country →/.*/{{
<geo:spokenLanguage> /.*/{{ </.*/> var Language }} }}

8 END

Using the grouping construct all (line 4), the query in Listing 11.9 collects all bindings for the
variable Country that are contained within a substitution set for a fixed binding of variable Language.
An important issue to note is that – just as in SPARQL – although the name _:language of the blank
node in Line 2 is constant, a new blank node is constructed for each binding of the variable Language.

11.5.3 Versatile access to XML and RDF

Integrated access to different data formats includes the requirement that data should be easily
transformed from one format to the other, and that different formats are queried simultaneously.
As an exemplary use-case imagine that information about bordering countries is available in XML
format structured similarly to that in the left part of Figure 11.1, and that information about languages
spoken in these countries is only available in RDF format as in Figure 11.2.

The query in Listing 11.10 extracts all those pairs of border-countries whose citizens understand
each other, because they speak the same language. The query part of the rule is a conjunction of
two query terms, the first one querying the XML resource, and the second one drawing information
from an RDF file. The names of countries sharing a common border are found by comparing the
values of the id and idref attributes with a value join over the variable ID (in Xcerpt, XML attributes
are enclosed in parentheses; double parentheses indicate that there may be additional unspecified
attributes). Similarly, pairs of countries which have the same most common language are selected by
a join over the variable Language.

The query uses both constructs that are peculiar to either RDF or XML – such as variables for XML
attribute values and edge-labeled query terms – and constructs that are applicable to both – such
as complete and incomplete query term specifications. Notice that the variables Name1 and Name2
are shared among both conjuncts, which would be cumbersome to implement with two specialized
languages for RDF and XML.

129

Listing 11.10: Versatile access to Web data Formats in Xcerpt

CONSTRUCT
2 result[all understanding-neighbors[var Name1, var Name2]]
FROM

4 and (
in{ resource{ ’http://geo.org/countries.xml’ },

6 Countries {{
Country((var ID →id)){{ Name{ var Name1 } }},

8 Country{{
borderCountry((var ID →idref)),

10 Name{ var Name2 } }} }} },
in{ resource{ ’http://geo.org/languages.rdf’ },

12 /.*/{{
<rdfs:label> var Name1,

14 <geo:spokenLanguage> /.*/{{ <rdf:_1> var Language }} }},
/.*/{{

16 <rdfs:label> var Name2,
<geo:spokenLanguage> /.*/{{ <rdf:_1> var Language }} }} }

18)
END

11.6 Conclusion and Outlook

Due to its graph data model, its rule-based nature and its convenient constructs for handling het-
erogeneity, Xcerpt turns out to be very well-suited not only for XML, but also for Semantic Web
querying, transformations and reasoning. RDF data being increasingly made available as descriptive
meta-data for HTML and XML documents, versatile access to both meta-data and XML in the same
query program becomes ever more important for the next generation of web applications such as
specialized search engines, and online booking and library systems. Developing such applications
can be strongly eased by providing a query language that does not restrict itself to one of the formats,
but provides integrated access to all of them, freeing the programmer from the burden of learning and
combining multiple languages.

Besides laying the foundation for effective query authoring, a versatile query and reasoning
language must process query programs efficiently in order to gain strong acceptance throughout the
Web community. Several challenges are related to efficient query processing, demanding future work
in the domain of Xcerpt.

• Efficient parsing of semi-structured data from various serializations and efficient construction
of in-memory graph representations of the data. Besides parsing documents, in-memory graph
representations must also be efficiently constructed from relational RDF stores.

• Efficient simulation unification of query patterns with graph data and construct terms. A large
amount of research has been carried out in this direction concerning primarily tree queries, but
also graph queries [?].

• Efficient backward chaining evaluation of programs. A forward chaining evaluation of Xcerpt
programs is less reasonable because (a) the set of facts of an Xcerpt program can be very large,
(b) the major part of derived facts may be irrelevant to the query, and (c) Xcerpt programs may
have infinite fixpoints if they contain recursive rules.

130

Chapter 12

Open Issues: Language
Constructs

The previous sections define the syntax for the language Xcerpt separated in (a) literal structures, (b)
data, construct, and query terms, and (c) programs, goals, rules, and data blocks. Where appropriate,
open issues are referenced in these sections. The remaining sections list those open issues and give
a brief discussion. It is expected that these open issues are gradually resolved and their resolution
integrated into the language Xcerpt.

Note, that these open issues do, by and large, not affect the core of the language but rather present
several “convenience” or extensions of the basic language.

This chapter is structured into issues related to general language constructs (Section 12.1), into
issues on specific data representation formats such as XML or RDF (Section 13, into issues specific to
one of the syntaxes for Xcerpt introduced above (Section 14), and finally into language extensions
(Section ??).

12.1 General Issues

12.1.1 Defaults and Default Modes

Issue 1. Absent attribute and children lists and other parts of a term specification
A number of parts in term specification are optional, i.e., may or may not occur or may or may not be
empty. These include:

• the lists of attributes and children,

• the namespace and identifier of a term,

• various parts of a XML document specification, and

• comments and processing instructions.

Currently, attribute and children lists may not be omitted, even if they are empty. Namespaces
and term identifiers may be omitted, but where no namespace in a query is equivalent to an empty
namespace, missing term identifiers do not affect matching. No special consideration is given to

131

comments and processing instructions, i.e., e.g., a total query term requires that a matching data
term contains not only the same children as the total query term but also the same comments and
processing instructions.

Solution Proposal(s): A more “unified” policy for defaults should be enacted. In particular, it
might be worth considering “default modes” that the programmer can control. Similar to (rule-level)
declaration blocks, a programmer could specify that in the scope of the mode declaration, e.g., omitted
attribute lists are to be considered as () or as (()).

Resolution: This issue is merely related to the language syntax and the Xcerpt parser/compiler.
The implementation of the language’s abstract machine is not affected by this choice. Therefore, we
can afford to leave this issue open for the moment.

12.2 Construct Specific Issues

12.2.1 Conditional Construction and optional Terms

Issue 2. Conditional Construction
Optional construct terms allow one form of conditional construction, viz.where the condition is that
bindings for all optional variables of the optional construct term exist. The with-default clause
plays are role similar to the else clause in if . . . then . . . else expressions.

However, this is a very limited form of conditional construction that also exhibits some anomalies:

1. optional is the only modifier allowed in query and construct terms, though with a slightly
different meaning. E.g., an optional ground term in a query term may or may not occur in the
data, but an optional ground term in a construct term always occurs in the result.

2. It allows only implicit specification of optional variables (in contrast to grouping), i.e., it is not
possible to make the optional part dependent on a variable not occurring in the result. This
makes it difficult to express the following query:

1 for $x in doc("books.xml")/bookstore/book
return if ($x/@category="CHILDREN")

3 then <child>{data($x/title)}</child>
else <adult>{data($x/title)}</adult>

3. When the choice depends on the value of a optional variable this can be expressed in a condition
box, but only in the case of exactly two choices, not if there are more alternatives.

CONSTRUCT
2 result [

optional (child(opt from-year=var Year)[var Title]) with-default (adult [
var Title])

4]
FROM

6 bookstore [[
book (from-year=opt var Year)[[var Title →title [[]]]

8]] where opt (var Year > 25)
END

132

Solution Proposal(s): A proposed solution is the introduction of a if . . . then . . . else or case
expression into construct terms, that allows for conditions as in where clauses. The requirement that
matching is never affected by the construct part of a rule should be upheld.

Resolution: For Xcerpt 2.0’s implementation the above proposal is adopted. On the syntax level,
we continue to experiment with different approaches.

Issue 3. Optional for Non-Term Variables
Occurrence modifiers (without and optional) are currently only allowed on entire term expressions.
However, namespaces and term identifier are also non-mandatory parts of a term, that might be
optionally queried. It is currently not possible to query, e.g., for all nodes without term identifiers.

Solution Proposal(s): For namespaces this issue could be resolved by referring to the empty
namespace (represented by the empty string). However, this introduces another form of “optionality”
into the language.

Alternatively, optional and without could also be allowed on non-term expressions (labels,
namespaces, etc.). Then a careful consideration where is needed (e.g,. document specifications).

This issue is related to Issue 1.
Resolution: Not yet reached.

12.2.2 Query Formulas as Subterms

Issue 4. Query Formulas as Subterms
Currently, query formulas (expressions using and, or, and not) are only allowed at the top-level of
query terms. However, programs become both more compact and easier to read, as well as easier to
efficiently evaluate, if formulas are allowed at sub-term level.

However, this introduces a number of questions:

• What becomes then the different between not and without? If not is allowed at sub-term level,
without seems to be superfluous.

• What is then the difference between t [[a,b]] and t [[and(a,b)]]? Only that the injectivity
constraint between a and b is lifted? Essentially, children are already connected by implicit
“and-injective” or “and-ordered”.

Solution Proposal(s): A detailed proposal is needed.
Resolution: The implementation of Xcerpt 2.0 allows arbitrary nesting of boolean formulas in

Xcerpt terms with configurable semantics. On the syntax level, experimentation continues.

12.2.2.1 withouts as Direct Siblings

Issue 5. Without Siblings
If several direct siblings in an ordered term or arbitrary siblings in an unordered term are modified by
without, the semantics of the expression becomes unclear: E.g., matches f[[a, without b, without

c, d]] with f[a,c,b,d] or not? In other words how are order and injectivity constraints enforced
between without-modified terms.

Solution Proposal(s): We allow multiple directly consecutive without’s with “or” semantics.
If sequence semantics (i.e., without a b followed by a c) is intended a single without may include
multiple query terms.

Resolution: Accepted, however implementation of this resolution in grammar and translation is
still open.

133

12.2.3 Functions and Libraries: Built-In and User-defined

Issue 6. Relational vs. functional Operators
Xcerpt does not have an extensive function library as of now. Introducing such a library requires
great care, in particular when considering not only functional operators (such as compare, concat, or
arithmetic operators), but also relational (sequence-valued) operators (such as tokenizers).

Solution Proposal(s): The latter are more similar to predicates (rules) where certain parameters
are consuming, others are defining. The addition of rules where parameters are specifically marked
as consuming only would solve these cases. Functional operators could also be handled this way,
but differ in where they may be used. Functional operators are also useful in construct terms and in
condition expressions.

Considering the sort of functions and operators to support, the XQuery and XPath function and
operator library [42] is certainly a good starting point.

Resolution: A more detailed proposals on functions and a basic function library is under devel-
opment, see Deliverable I4-D13, which describes also its implementation for Xcerpt 2.0

Issue 7. Expressions in Conditions
Optional modifiers are currently only allowed on variables in conditions, but should actually range
over entire expressions.

Resolution: Accepted.

12.2.4 Variables

Issue 8. Variable Restrictions for Identifiers and Literal Content
Following [49], the text currently allows variable restrictions only on structured terms and attribute
terms. This disallows in particular variable restrictions on label variables. The latter ones are useful
just as variable restrictions on literal content, if regular expressions are used to restrict the set of labels
or content nodes (or namespaces or any other place where an identifier may occur).

Solution Proposal(s): Note, that they are not strictly necessary due to variables in regular
expressions, i.e., instead of writing var X →/〈reg-exp〉/ one may use /(var X →〈reg-exp〉)/.

Resolution: Not implemented in Xcerpt 2.0. Might be added later as convenience.

12.2.5 Varia

Issue 9. Explicit Variable Specifications for Except
Except is defined to affect the bindings of all variables in restrictions for which it occurs. In the
following query term bindings for both X and Y are affected (i.e., the c sub-term is excluded from
bindings for both):

root [[var X →a [[var Y →b [[except c [[]]]]]]]]

Against the data term root[a[b[c]]] this results in one binding for X, viz. a [b []] and one
binding for Y, viz. b [].

This is problematic as it makes impossible nested variable restrictions where one excludes some
sub-term and another does not. In the example, it is not possible to affect the bindings to Y without
affecting the bindings for X.

Solution Proposal(s): Introducing explicit “variable specifications” for except, i.e., an explicit
list of variables in whose bindings the sub-terms in the scope of the except modifier are removed.

134

Bindings of all other variables remain unaffected and must contain all sub-terms in the scope of the
except (i.e., for them the except is simply ignored).

Resolution: Xcerpt 2.0 currently does not implement except due to its severe effects on the
complexity of query evaluation.

Issue 10.
Are goals evaluated in a particular order? What if one goal modifies data used in another? What if two
goals write to the same output?

Resolution: Xcerpt 2.0 uses order in file and creates output for all goals at the end of the evalua-
tion.

Issue 11. Document Specifications
Currently, document specifications are specifically treated in the grammar, which makes the grammar
rather bloated. It could be better to consider them as a canonical “transformation” to terms. However,
this would make the enforcement of constraints such as all variables in document specifications are
consuming only more difficult.

Resolution: None.

12.3 Querying the Type of Data, Typed Accessors

There are a number of issues related to an upcoming Xcerpt type system.

Issue 12. Typed Accessors and Coercion
For terms, it should be possible to access (a) the actual structure, (b) the typed value of the term, if it
has any, and (c) the string value of the term (defined, e.g., as in XPath).

Resolution: An extension for typed Xcerpt is under development. Details are going to be pub-
lished in co-operation with working group I3 in 2007.

Issue 13. Typing Data Terms
It should be possible to explicitly type data terms, e.g., to distinguish plain strings from strings
representing date.

Resolution: See above.

Issue 14. Querying Typed Data
It should be possible to query data based on its type. This is particularly helpful, if the type is complex,
as it avoids the need for complex (and difficult to evaluate) patterns in these cases.

Resolution: See above.

12.4 Collapsing Text Nodes

Issue 15. Consecutive Text Nodes Collapse
Currently, consecutive text nodes are (silently) collapsed at construction. This is in accordance to the
XML data model. Is this the desired behavior? Should we allow consecutive text nodes and provide an
explicit concatenation?

Resolution: The implementation of Xcerpt 2.0 allows multiple consecutive text nodes. A mode
(see Issue 12.1.1) is under consideration for switching between collapsing and non-collapsing behav-
ior.

135

136

Chapter 13

Open Issues: Specific to Data
Representation Format

13.1 Serializing to XML and from XML

Issue 16. Serializing to XML
Similar to the XML document specification in query terms, there should be a document serialization
specification in goals describing how to serialize the resulting term. It might be worth considering
the adoption of the XQuery/XSLT Serialization Recommendation [37]. Additionally, a canonical
representation of graph structures, non XML labels, contents of comments or processing-instructions
that are not XML conform, unordered elements, adjacent text nodes (if allowed, cf. Issue 15) must be
defined.

Resolution: We adopt the mechanisms discussed in XQuery/XSLT Serialization Recommenda-
tion [37].

Issue 17. Accessible Encoding of XML Documents
Currently, the XML document specification does not allow access to the encoding of the file in
accordance to the XML Information Set recommendation.

Resolution: Not accessible in Xcerpt 2.0.

Issue 18. XML Base
Xcerpt does not support the XML Base specification [43], i.e., no base URL at elements as in the XML
Information Set.

Consider the extraction of some element at a non-root level. Now relative references are not any
longer resolvable as the connection to the root-level xml:base attribute is lost.

Resolution: Not supported in Xcerpt 2.0, but query authors can write rules that “materialize”
XML base attributes according to [43].

Issue 19. In-scope Namespaces
There are a number of issues related to namespaces in XML in general and Xcerpt in particular:

1. exactly what strings are permitted as namespace URIs? Different W3C specifications differ on
this point.

137

2. Are namespace declarations information-bearing? For example, are the two documents below
equivalent: (1) <a xmlns:x="x"> (2) <a xmlns:x="x"><b xmlns:x="x"/>

3. Are in-scope namespaces that are not referenced information-bearing? For example, are either
of the above documents equivalent to:
(3) <a>?
The main problem here, of course, is "QNames in content": the use of namespace-sensitive
element and attribute values. But there are also applications that use the mere presence of a
namespace declaration as a flag or marker.

4. Are prefixes information-bearing? That is, is document (1) equivalent to: (4) <a xmlns:y="x">

Again, the main problem is "QNames in content".

5. In the light of the above, how should namespaces be handled by applications that allow a
document to be modified? For example, if an element is deep-copied from one place to another,
should it take all its in-scope namespace declarations with it?

Indeed the Canonical XML recommendation dropped even namespace rewriting for precisely these
reasons: “The C14N-20000119 Canonical XML draft described a method for rewriting namespace
prefixes such that two documents having logically equivalent namespace declarations would also have
identical namespace prefixes. The goal was to eliminate dependence on the particular namespace
prefixes in a document when testing for logical equivalence. However, there now exist a number
of contexts in which namespace prefixes can impart information value in an XML document. For
example, an XPath expression in an attribute value or element content can reference a namespace
prefix. Thus, rewriting the namespace prefixes would damage such a document by changing its
meaning (and it cannot be logically equivalent if its meaning has changed).”

Notice, that currently Xcerpt supports only namespace URIs in patterns. This is sufficient, as
namespace prefixes are considered not information carrying. However, since the introduction of
QNames in numerous W3C recommendations for XML applications (XML Schema, XSLT, etc.) in-
scope namespace prefixes are information carrying, as they are needed to find the namespace of a
QName.

Resolution: Namespaces and in-scope namespaces are considered information bearing and
thus preserved in the current implementation of Xcerpt 2.0. However, multiple declarations of the
same prefix in the same scope are (in accordance to Canonical XML and XQuery) not preserved.

138

Chapter 14

Open Issues: Specific to Concrete
Syntax

14.1 Non-XML Term Syntax

Issue 20. Nested Comments in Non-XML and XML-style Term Syntax
Currently, neither syntax allows nested comments. Though nested comments are commonly shunned
in programming languages, there are some recent languages (REXX, Haskell, XQuery) that use nested
comments. For a comparison of comments in programming languages cf. http://www.gavilan.
edu/csis/languages/comments.html.

Resolution: In Xcerpt 2.0, nested comments are not allowed. (No change resolution)

Issue 21. IRIs in Recommended IETF Angle Bracket Notation
Currently, IRIs are not syntactically separated from strings. The IETF recommends URIs to be denoted
in angle brackets, a notation used in many RDF formats. This clashes however with angle brackets in
XML.

Resolution: In Xcerpt 2.0, IRIs are not syntactically separate from strings. (No change resolution)

14.2 XML-style Term Syntax

Issue 22. Quoting in XML-style Term Syntax
Currently, strings are quoted in the XML-style term syntax. However, there is a strong motivation to
make XML documents cut-and-pastable, thus requiring the adoption of the XML character encoding
rules into the XML-style Term syntax. In this case, the issue of entities must be considered. Also,
keywords must be quoted in this case, possibly using character sequences illegal in XML.

Resolution: The XML-style term syntax is not yet supported in the current Xcerpt 2.0 implemen-
tation. (Unresolved)

14.3 Pure XML Syntax

No issues with the pure XML syntax have been identified so far.

139

http://www.gavilan.edu/csis/languages/comments.html
http://www.gavilan.edu/csis/languages/comments.html

Acknowledgements.

This research has been funded by the European Commission and by the Swiss Federal Office for
Education and Science within the 6th Framework Programme project REWERSE number 506779
(cf.http://rewerse.net).

140

http://rewerse.net

Part III

Full Language Grammars

141

Appendix A

Grammar for Non-XML Term
Syntax

A.1 Literal Structures

〈NCName〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#NCName〉

〈IRI〉 ::= ‘"’ 〈http://www.ietf.org/rfc/rfc3987.txt#IRI〉 ‘"’

〈String〉 ::= ‘"’ 〈StringCharacter〉* ‘"’

〈StringCharacter〉 ::= 〈http://java.sun.com/docs/books/jls#StringCharacter〉 | 〈Line-feed〉 | 〈Carriage-return〉

〈Line-feed〉 ::= ‘\{}u000a’

〈Carriage-Return〉 ::= ‘\{}u000d’

〈Number〉 ::= 〈int〉

〈Int〉 ::= 〈http://www.w3.org/TR/REC-xml-names/#Digit〉*

〈Regexp〉 ::= ‘/’ 〈{http://www.unix.org/version3/ieee_std.html#}extended_reg_exp〉 ‘/’

〈ERE_expression〉 ::= 〈http://www.unix.org/version3/ieee_std.html#one_char_or_coll_elem_ERE〉
| ‘^’
| ‘$’
| ‘(’ 〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉 ‘)’
| ‘(’ 〈variable〉 ‘->’ 〈http://www.unix.org/version3/ieee_std.html#extended_reg_exp〉‘)’
| 〈http://www.unix.org/version3/ieee_std.html#ERE_expression〉

〈{http://www.unix.org/version3/ieee_std.html#}ERE_dupl_symbol〉

〈Whitespace〉 ::= (〈http://www.w3.org/TR/REC-xml/#S〉 | 〈End-of-line-comment〉 | 〈Block-comment〉)*

〈Comment-char〉 ::= 〈http://www.w3.org/TR/REC-xml/#NT-Char〉

143

{
{

〈End-of-line〉 ::= 〈Line-feed〉 | 〈Carriage-return〉 (〈Line-feed〉)?

〈End-of-line-comment〉 ::= ‘#’ (〈Comment-char〉* - (〈Comment-char〉* 〈End-of-line〉 〈Comment-char〉*)
〈End-of-line〉

〈Block-comment〉 ::= ‘/#’ (〈Comment-char〉* - (〈Comment-char〉* (‘/#’ | ‘/#’) 〈Comment-char〉*)
‘/#’

A.2 Data Terms

〈data-term〉 ::= 〈term-level-declare-dt〉 | 〈reference-dt〉 | 〈structured-dt〉 | 〈content-dt〉

〈reference-dt〉 ::= ‘^’ 〈identifier-dt〉

〈term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ (〈data-term〉 ‘,’?)* ‘)’

〈identifier-dt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉

〈ns-declaration-dt〉 ::= (〈ns-prefix-declaration-dt〉 ‘,’?)* (〈ns-default-declaration-dt〉 ‘,’?)?
(〈ns-prefix-declaration-dt〉 ‘,’?)*

〈ns-prefix-declaration-dt〉 ::= ‘ns-prefix’ 〈identifier-dt〉 ‘=’ 〈IRI〉

〈ns-default-declaration-dt〉 ::= ‘ns-default’ 〈IRI〉

〈content-dt〉 ::= 〈literal-content-dt〉 | 〈comment-dt〉 | 〈processing-instruction-dt〉

〈literal-content-dt〉 ::= 〈String〉

〈comment-dt〉 ::= ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-dt〉 ‘]’

〈processing-instruction-dt〉 ::= (‘xcerpt’ ‘:’ ‘processing-instruction’ | ‘xcerpt’ ‘:’ ‘pi’)
‘(’ ‘target-name’ ‘=’ 〈identifier-dt〉 ‘)’ ‘[’ 〈literal-content-dt〉 ‘]’

〈structured-dt〉 ::= 〈local-spec-dt〉 〈children-list-dt〉

〈children-list-dt〉 ::= ‘[’ (〈data-term〉 ‘,’?) * ‘]’
| ‘{’ (〈data-term〉 ‘,’?)* ‘}’

〈local-spec-dt〉 ::= 〈term-identifier-dt〉? 〈ns-label-dt〉 〈attr-term-list-dt〉

〈term-identifier-dt〉 ::= 〈identifier-dt〉 ‘@’

〈ns-label-dt〉 ::= (〈identifier-dt〉 ‘:’)? 〈identifier-dt〉

〈attr-term-list-dt〉 ::= ‘(’ (〈attr-term-dt〉 ‘,’?)* ‘)’

〈attr-term-dt〉 ::= 〈base-attr-term-dt〉

144

〈base-attr-term-dt〉 ::= 〈ns-label-dt〉 ‘=’ 〈literal-content-dt〉

〈top-level-data-term〉 ::= 〈top-term-level-declare-dt〉 | 〈structured-dt〉

〈top-term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ 〈top-level-data-term〉 ‘)’

A.3 Construct Terms

〈construct-term〉 ::= 〈term-level-declare-ct〉 | 〈reference-ct〉 | 〈structured-ct〉 | 〈content-ct〉
| 〈term-variable-ct〉
| 〈modified-ct〉

〈reference-ct〉 ::= ‘^’ 〈identifier-ct〉

〈term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’

〈identifier-ct〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉 | 〈literal-variable-ct〉

〈ns-declaration-ct〉 ::= (〈ns-prefix-declaration-ct〉 ‘,’?)* (〈ns-default-declaration-ct〉 ‘,’?)?
(〈ns-prefix-declaration-ct〉 ‘,’?)*

〈ns-prefix-declaration-ct〉 ::= ‘ns-prefix’ 〈identifier-ct〉 ‘=’ (〈IRI〉 | 〈literal-variable-ct〉)

〈ns-default-declaration-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-ct〉)

〈content-ct〉 ::= 〈literal-content-ct〉 | 〈comment-ct〉 | 〈processing-instruction-ct〉

〈literal-content-ct〉 ::= 〈String〉 | 〈literal-variable-ct〉

〈comment-ct〉 ::= ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-ct〉 ‘]’

〈processing-instruction-ct〉 ::= (‘xcerpt’ ‘:’ ‘processing-instruction’ | ‘xcerpt’ ‘:’ ‘pi’)
‘(’ ‘target-name’ ‘=’ 〈identifier-ct〉 ‘)’ ‘[’ 〈literal-content-ct〉 ‘]’

〈structured-ct〉 ::= 〈local-spec-ct〉 〈children-list-ct〉

〈children-list-ct〉 ::= ‘[’ (〈construct-term〉 ‘,’?) * ‘]’
| ‘{’ (〈construct-term〉 ‘,’?)* ‘}’

〈local-spec-ct〉 ::= 〈term-identifier-ct〉? 〈ns-label-ct〉 〈attr-term-list-ct〉

〈term-identifier-ct〉 ::= 〈identifier-ct〉 ‘@’

〈ns-label-ct〉 ::= (〈identifier-ct〉 ‘:’)? 〈identifier-ct〉

〈attr-term-list-ct〉 ::= ‘(’ (〈attr-term-ct〉 ‘,’?)* ‘)’

〈attr-term-ct〉 ::= 〈base-attr-term-ct〉
| 〈term-variable-ct〉
| 〈modified-attr-term-ct〉

145

〈base-attr-term-ct〉 ::= 〈ns-label-ct〉 ‘=’ 〈literal-content-ct〉

〈top-level-construct-term〉 ::= 〈top-term-level-declare-ct〉 | 〈structured-ct〉

〈top-term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ 〈top-level-construct-term〉 ‘)’

〈variable-ct〉 ::= 〈term-variable-ct〉 | 〈literal-variable-ct〉

〈term-variable-ct〉 ::= 〈var-specification-ct〉

〈literal-variable-ct〉 ::= 〈var-specification-ct〉

〈var-specification-ct〉 ::= (‘variable’ | ‘var’)? 〈NCName〉

〈modified-ct〉 ::= 〈grouping-ct〉 | 〈optional-ct〉

〈modified-attr-term-ct〉 ::= 〈grouping-attr-term-ct〉 | 〈optional-attr-term-ct〉

〈grouping-ct〉 ::= 〈grouping-modifier〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-attr-term-ct〉 ::= 〈grouping-modifier〉 ‘(’ 〈attr-term-ct〉? ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-modifier〉 ::= ‘all’
| ‘some’ 〈number-ct〉
| ‘first’ 〈interval-ct〉

〈orderby〉 ::= ‘order-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈order-relation〉?

〈order-relation〉 ::= ‘ascending’ | ‘descending’ | 〈NCName〉

〈groupby〉 ::= ‘group-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈equivalence-relation〉?

〈equivalence-relation〉 ::= 〈NCName〉

〈optional-variable〉 ::= 〈optional-modifier〉 〈variable-ct〉

〈interval-ct〉 ::= 〈number-ct〉 ‘-’ 〈number-ct〉
| 〈number-ct〉 ‘-’
| ‘+’

〈number-ct〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈optional-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’)?

〈optional-attr-term-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈attr-term-ct〉‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈attr-term-ct〉 ‘,’?)* ‘)’)?

〈optional-modifier〉 ::= ‘optional’ | ‘opt’

146

A.4 Query Terms

〈query-term〉 ::= 〈modified-qt〉
| 〈term-level-declare-qt〉

〈term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’(〈query-term〉 ‘,’?)* ‘)’

〈modified-qt〉 ::= 〈variable-term-qt〉
| 〈location-modified-qt〉
| 〈occurrence-modified-qt〉
| 〈selection-modified-qt〉

〈base-term-qt〉 ::= 〈reference-qt〉 | 〈content-qt〉 | 〈structured-qt〉

〈reference-qt〉 ::= ‘^’ 〈identifier-qt〉

〈identifier-qt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉
| 〈literal-variable-qt〉
| 〈Regexp〉

〈ns-decl-qt〉 ::= (〈ns-prefix-decl-qt〉 ‘,’?)* (〈ns-default-decl-qt〉 ‘,’?)?
(〈ns-prefix-decl-qt〉 ‘,’?)*

〈ns-prefix-decl-qt〉 ::= ‘ns-prefix’ 〈identifier-qt〉 ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈ns-default-decl-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-qt〉)

〈variable-decl-qt〉 ::= ((‘variable’ | ‘var’) 〈NCName〉 ‘,’?)*

〈content-qt〉 ::= 〈literal-content-qt〉 | 〈comment-qt〉 | 〈processing-instruction-qt〉

〈literal-content-qt〉 ::= 〈String〉 | 〈literal-variable-qt〉
| 〈Regexp〉

〈comment-qt〉 ::= ‘xcerpt’ ‘:’ ‘comment’ ‘(’ ‘)’ ‘[’ 〈literal-content-qt〉 ‘]’

〈processing-instruction-qt〉 ::= (‘xcerpt’ ‘:’ ‘processing-instruction’ | ‘xcerpt’ ‘:’ ‘pi’)
‘(’ ‘target-name’ ‘=’ 〈identifier-qt〉 ‘)’ ‘[’ 〈literal-content-qt〉 ‘]’

〈structured-qt〉 ::= 〈local-spec-qt〉 〈children-list-qt〉 〈condition-clause-qt〉?

〈children-list-qt〉 ::= ‘[’ (〈query-term〉 ‘,’?) * ‘]’
| ‘{’ (〈query-term〉 ‘,’?)* ‘}’
| ‘[[’ (〈query-term〉 ‘,’?) * ‘]]’
| ‘{{’ (〈query-term〉 ‘,’?)* ‘}}’

〈condition-clause-qt〉 ::= ‘where’ ‘(’ 〈condition-qt〉 ‘)’

147

〈condition-qt〉 ::= 〈c-parameter〉 〈comparison-op〉 〈c-parameter〉
| 〈comparison-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’
| ‘and’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘or’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘not’ ‘(’ 〈condition-qt〉 ‘)’
| 〈c-parameter〉

〈condition-op〉 ::= ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈arithmetic-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’

〈c-parameter〉 ::= 〈optional-variable-qt〉 | 〈variable-qt〉
| 〈String〉 | 〈Int〉
| 〈c-parameter〉 〈arithmetic-op〉 〈c-parameter〉
| 〈arithmetic-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’

〈optional-variable-qt〉 ::= 〈optional-modifier〉 〈variable-qt〉

〈local-spec-qt〉 ::= 〈term-identifier-qt〉? 〈ns-label-qt〉 〈attr-term-list-qt〉

〈term-identifier-qt〉 ::= 〈identifier-qt〉 ‘@’

〈ns-label-qt〉 ::= (〈identifier-qt〉 ‘:’)? 〈identifier-qt〉

〈attr-term-list-qt〉 ::= ‘(’ (〈attr-term-qt〉 ‘,’?)* ‘)’
| ‘((’ (〈attr-term-qt〉 ‘,’?)* ‘))’

〈attr-term-qt〉 ::= 〈modified-attr-term-qt〉

〈modified-attr-term-qt〉 ::= 〈base-attr-term-qt〉
| 〈variable-attr-term-qt〉
| 〈occurrence-modified-attr-term-qt〉
| 〈selection-modified-attr-term-qt〉

〈base-attr-term-qt〉 ::= 〈ns-label-qt〉 ‘=’ 〈literal-content-qt〉

〈variable-term-qt〉 ::= 〈base-term-qt〉
| 〈term-variable-qt〉 (‘->’ 〈base-term-qt〉)?

〈variable-attr-term-qt〉 ::= 〈term-variable〉 (‘->’ 〈base-attr-term-qt〉)?

〈variable-qt〉 ::= 〈term-variable-qt〉 | 〈literal-variable-qt〉

〈term-variable-qt〉 ::= 〈var-specification-qt〉

〈literal-variable-qt〉 ::= 〈var-specification-qt〉

〈var-specification-qt〉 ::= (‘variable’ | ‘var’)? 〈NCName〉
| 〈anonymous-variable〉

148

〈anonymous-variable〉 ::= ‘_’

〈selection-modified-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈selection-modified-attr-term-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)* ‘)’

〈selection-modifier〉 ::= ‘except’

〈occurrence-modified-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈occurrence-modified-attr-term-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)* ‘)’

〈occurrence-modifier〉 ::= 〈optional-modifier〉 | ‘without’

〈location-modified-qt〉 ::= 〈location-modifier〉 ‘(’ 〈term-variable-qt〉 ‘,’?)* ‘)’

〈location-modifier〉 ::= 〈descendant-modifier〉 | 〈position-modifier〉

〈descendant-modifier〉 ::= ‘descendant’ | ‘desc’

〈position-modifier〉 ::= (‘position’ | ‘pos’) 〈number-qt〉

〈number-qt〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈top-level-query-term〉 ::= 〈top-term-level-declare-qt〉
| 〈optional-top-level-qt〉
| 〈term-formula-qt〉
| 〈document-specification-qt〉

〈top-term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’ 〈top-level-construct-term〉 ‘)’

〈optional-top-level-qt〉 ::= 〈optional-modifier〉 ‘(’ 〈descendant-top-level-qt〉 ‘)’
| 〈descendant-top-level-qt〉

〈descendant-top-level-qt〉 ::= 〈descendant-modifier〉 ‘(’ 〈var-restriction-top-level-qt〉 ‘)’
| 〈var-restriction-top-level-qt〉

〈var-restriction-top-level-qt〉 ::= 〈term-variable〉 ‘->’ 〈structured-term-qt〉
| 〈structured-term-qt〉

〈term-formula-qt〉 ::= ‘not’ ‘(’ 〈top-level-query-term〉 ‘)’ 〈condition-clause-qt〉?
| ‘and’ | ‘or’ ‘(’ 〈top-level-query-term〉 ‘,’? (〈top-level-query-term〉 ‘,’?)+

‘)’ 〈condition-clause-qt〉?

〈document-specification-qt〉 ::= ‘in’ 〈xml-document-specification-qt〉

〈xml-document-specification-qt〉 ::= ‘xml-document’ ‘((’ 〈location-qt〉
〈xml-decl-qt〉? 〈doctype-decl-qt〉? ‘))’ 〈xml-document-children-qt〉

149

〈location-qt〉 ::= ‘location’ ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈xml-decl-qt〉 ::= (‘standalone’ ‘=’ (‘true’ | ‘false’ | 〈literal-variable-qt〉))? (‘xml-version’
‘=’ (‘1.0’ | ‘1.1’ | 〈literal-variable-qt〉))?

〈doctype-decl-qt〉 ::= (‘system-id’ ‘=’ 〈identifier-qt〉)? (‘public-id’ ‘=’ 〈identifier-qt〉)? (‘root-name’
‘=’ 〈identifier-qt〉)?

〈xml-document-children-qt〉 ::= ‘[[’ 〈xml-document-content-qt〉 ‘]]’
| ‘{{’ 〈xml-document-content-qt〉 ‘}}’
| ‘{’ 〈xml-document-content-qt〉 ‘}’
| ‘[’ 〈xml-document-content-qt〉 ‘]’

〈xml-document-content-qt〉 ::= (〈annotation-content-qt〉 ‘,’)* 〈top-level-query-term〉
(〈annotation-content-qt〉 ‘,’)*

〈annotation-content-qt〉 ::= 〈comment-qt〉 | 〈processing-instruction-qt〉

A.5 Programs

〈program〉 ::= ‘PROGRAM’ ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈goal-block〉 ::= 〈rule-level-declare-block〉* 〈goal〉 〈rule-level-declare-block〉*
| 〈rule-level-declare〉 ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈rule-level-declare-block〉 ::= 〈goal〉 | 〈construct-query-rule〉 | 〈data〉
| 〈rule-level-declare〉 ‘(’ 〈rule-level-declare-block〉* ‘)’ ‘END’

〈goal〉 ::= ‘GOAL’ ‘(’ 〈out-resource〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈rule〉 ::= ‘CONSTRUCT’ ‘(’ 〈construct-term〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈out-resource〉 ::= construct-term
| ‘out’ (〈iri〉 | 〈literal-var〉) ‘(’ construct-term ‘)’

〈data〉 ::= ‘DATA’ ‘(’ 〈data-term〉 ‘)’ ‘END’

〈rule-level-declare〉 ::= ‘DECLARE’ ‘(’ 〈var-decl-qt〉* 〈ns-decl-qt〉* ‘)’

150

Appendix B

Grammar for XML-style Term
Syntax

B.1 Literal Structures

The literal structures for the XML-style term syntax are identical to the literal structures for non-XML
term syntax, i.e., as given in Section A.1.

B.2 Data Terms

〈data-term〉 ::= 〈term-level-declare-dt〉 | 〈reference-dt〉 | 〈structured-dt〉 | 〈content-dt〉

〈reference-dt〉 ::= ‘^’ 〈identifier-dt〉

〈term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ (〈data-term〉 ‘,’?)* ‘)’

〈identifier-dt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉

〈ns-declaration-dt〉 ::= (〈ns-prefix-declaration-dt〉 ‘,’?)* (〈ns-default-declaration-dt〉 ‘,’?)?
(〈ns-prefix-declaration-dt〉 ‘,’?)*

〈ns-prefix-declaration-dt〉 ::= ‘ns-prefix’ 〈identifier-dt〉 ‘=’ 〈IRI〉

〈ns-default-declaration-dt〉 ::= ‘ns-default’ 〈IRI〉

〈content-dt〉 ::= 〈literal-content-dt〉 | 〈comment-dt〉 | 〈processing-instruction-dt〉

〈literal-content-dt〉 ::= 〈String〉

〈comment-dt〉 ::= ‘<!-’ 〈literal-content-dt〉 ‘->’

〈processing-instruction-dt〉 ::= ‘<?’ 〈identifier-dt〉 〈literal-content-dt〉 ‘?>’

151

〈structured-dt〉 ::= ‘<’ 〈local-spec-dt〉 〈properties-dt〉 (‘>’ 〈children-list-dt〉 (‘</>’ | ‘<’ 〈ns-label-dt〉
‘>’) | ‘/>’)

〈properties-dt〉 ::= (‘{’ ‘ordered’ ‘}’)? | (‘{’ ‘unordered’ ‘}’)

〈children-list-dt〉 ::= 〈data-term〉*

〈local-spec-dt〉 ::= 〈term-identifier-dt〉? 〈ns-label-dt〉 〈attr-term-list-dt〉

〈term-identifier-dt〉 ::= 〈identifier-dt〉 ‘@’

〈ns-label-dt〉 ::= (〈identifier-dt〉 ‘:’)? 〈identifier-dt〉

〈attr-term-list-dt〉 ::= 〈attr-term-dt〉*

〈attr-term-dt〉 ::= 〈base-attr-term-dt〉

〈base-attr-term-dt〉 ::= 〈ns-label-dt〉 ‘=’ 〈literal-content-dt〉

〈top-level-data-term〉 ::= 〈top-term-level-declare-dt〉 | 〈structured-dt〉

〈top-term-level-declare-dt〉 ::= ‘declare’ 〈ns-declaration-dt〉 ‘(’ 〈top-level-data-term〉 ‘)’

• There is an additional restriction on the production for 〈structured-dt〉: the (namespace, local
name) pair used as label in the end element tag and the (namespace, local name) pair used in
the start element tag (i.e., produced as part of 〈local-spec-dt〉) must be (modulo whitespace)
component wise equivalent character sequences.

B.3 Construct Terms

〈construct-term〉 ::= 〈term-level-declare-ct〉 | 〈reference-ct〉 | 〈structured-ct〉 | 〈content-ct〉
| 〈term-variable-ct〉
| 〈modified-ct〉

〈reference-ct〉 ::= ‘^’ 〈identifier-ct〉

〈term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’

〈identifier-ct〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉 | 〈literal-variable-ct〉

〈ns-declaration-ct〉 ::= (〈ns-prefix-declaration-ct〉 ‘,’?)* (〈ns-default-declaration-ct〉 ‘,’?)?
(〈ns-prefix-declaration-ct〉 ‘,’?)*

〈ns-prefix-declaration-ct〉 ::= ‘ns-prefix’ 〈identifier-ct〉 ‘=’ (〈IRI〉 | 〈literal-variable-ct〉)

〈ns-default-declaration-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-ct〉)

〈content-ct〉 ::= 〈literal-content-ct〉 | 〈comment-ct〉 | 〈processing-instruction-ct〉

152

〈literal-content-ct〉 ::= 〈String〉 | 〈literal-variable-ct〉

〈comment-dt〉 ::= ‘<!-’ 〈literal-content-ct〉 ‘->’

〈processing-instruction-dt〉 ::= ‘<?’ 〈identifier-ct〉 〈literal-content-ct〉 ‘?>’

〈structured-ct〉 ::= ‘<’ 〈local-spec-ct〉 〈properties-ct〉 (‘>’ 〈children-list-ct〉 (‘</>’ | ‘<’ 〈ns-label-ct〉
‘>’) | ‘/>’)

〈properties-ct〉 ::= (‘{’ ‘ordered’ ‘}’)? | (‘{’ ‘unordered’ ‘}’)

〈children-list-ct〉 ::= 〈construct-term〉*

〈local-spec-ct〉 ::= 〈term-identifier-ct〉? 〈ns-label-ct〉 〈attr-term-list-ct〉

〈term-identifier-ct〉 ::= 〈identifier-ct〉 ‘@’

〈ns-label-ct〉 ::= (〈identifier-ct〉 ‘:’)? 〈identifier-ct〉

〈attr-term-list-ct〉 ::= 〈attr-term-ct〉*

〈attr-term-ct〉 ::= 〈base-attr-term-ct〉
| 〈term-variable-ct〉
| 〈modified-attr-term-ct〉

〈base-attr-term-ct〉 ::= 〈ns-label-ct〉 ‘=’ 〈literal-content-ct〉

〈top-level-construct-term〉 ::= 〈top-term-level-declare-ct〉 | 〈structured-ct〉

〈top-term-level-declare-ct〉 ::= ‘declare’ 〈ns-declaration-ct〉 ‘(’ 〈top-level-construct-term〉 ‘)’

〈variable-ct〉 ::= 〈term-variable-ct〉 | 〈literal-variable-ct〉

〈term-variable-ct〉 ::= 〈var-specification-ct〉

〈literal-variable-ct〉 ::= 〈var-specification-ct〉

〈var-specification-ct〉 ::= (‘variable’ | ‘var’)? 〈NCName〉

〈modified-ct〉 ::= 〈grouping-ct〉 | 〈optional-ct〉

〈modified-attr-term-ct〉 ::= 〈grouping-attr-term-ct〉 | 〈optional-attr-term-ct〉

〈grouping-ct〉 ::= 〈grouping-modifier〉 ‘(’ (〈construct-term〉 ‘,’?)* ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-attr-term-ct〉 ::= 〈grouping-modifier〉 ‘(’ 〈attr-term-ct〉? ‘)’ 〈groupby〉? 〈orderby〉?

〈grouping-modifier〉 ::= ‘all’
| ‘some’ 〈number-ct〉
| ‘first’ 〈interval-ct〉

153

〈orderby〉 ::= ‘order-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈order-relation〉?

〈order-relation〉 ::= ‘ascending’ | ‘descending’ | 〈NCName〉

〈groupby〉 ::= ‘group-by’ ‘(’ ((〈optional-variable〉 | 〈variable-ct〉) ‘,’?)* ‘)’ 〈equivalence-relation〉?

〈equivalence-relation〉 ::= 〈NCName〉

〈optional-variable〉 ::= 〈optional-modifier〉 〈variable-ct〉

〈interval-ct〉 ::= 〈number-ct〉 ‘-’ 〈number-ct〉
| 〈number-ct〉 ‘-’
| ‘+’

〈number-ct〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈optional-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈construct-subterm〉 ‘,’?)* ‘)’)?

〈optional-attr-term-ct〉 ::= 〈optional-modifier〉 ‘(’ (〈attr-term-ct〉‘,’?)* ‘)’
(‘with-default’ ‘(’ (〈attr-term-ct〉 ‘,’?)* ‘)’)?

〈optional-modifier〉 ::= ‘optional’ | ‘opt’

B.4 Query Terms

〈query-term〉 ::= 〈modified-qt〉
| 〈term-level-declare-qt〉

〈term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’(〈query-term〉 ‘,’?)* ‘)’

〈modified-qt〉 ::= 〈variable-term-qt〉
| 〈location-modified-qt〉
| 〈occurrence-modified-qt〉
| 〈selection-modified-qt〉

〈base-term-qt〉 ::= 〈reference-qt〉 | 〈content-qt〉 | 〈structured-qt〉

〈reference-qt〉 ::= ‘^’ 〈identifier-qt〉

〈identifier-qt〉 ::= 〈NCName〉 | 〈IRI〉 | 〈String〉
| 〈literal-variable-qt〉
| 〈Regexp〉

〈ns-decl-qt〉 ::= (〈ns-prefix-decl-qt〉 ‘,’?)* (〈ns-default-decl-qt〉 ‘,’?)?
(〈ns-prefix-decl-qt〉 ‘,’?)*

〈ns-prefix-decl-qt〉 ::= ‘ns-prefix’ 〈identifier-qt〉 ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

154

〈ns-default-decl-dt〉 ::= ‘ns-default’ (〈IRI〉 | 〈literal-variable-qt〉)

〈variable-decl-qt〉 ::= ((‘variable’ | ‘var’) 〈NCName〉 ‘,’?)*

〈content-qt〉 ::= 〈literal-content-qt〉 | 〈comment-qt〉 | 〈processing-instruction-qt〉

〈literal-content-qt〉 ::= 〈String〉 | 〈literal-variable-qt〉
| 〈Regexp〉

〈comment-qt〉 ::= ‘<!-’ 〈literal-content-qt〉 ‘->’

〈processing-instruction-qt〉 ::= ‘<?’ 〈identifier-qt〉 〈literal-content-qt〉 ‘?>’

〈structured-qt〉 ::= ‘<’ 〈local-spec-qt〉 〈properties-qt〉 (‘>’ 〈children-list-qt〉 (‘</>’ | ‘<’ 〈ns-label-qt〉
‘>’) | ‘/>’) 〈condition-clause-qt〉?

〈properties-qt〉 ::= (‘{’ ‘ordered’ ‘}’)? | (‘{’ ‘unordered’ ‘}’) ((‘{’ ‘total’ ‘}’)? | ‘{’ ‘partial’
‘}’) ((‘{’ ‘total attributes’ ‘}’)? | ‘{’ ‘partial attributes’ ‘}’)

〈children-list-qt〉 ::= 〈query-term〉*

〈condition-clause-qt〉 ::= ‘where’ ‘(’ 〈condition-qt〉 ‘)’

〈condition-qt〉 ::= 〈c-parameter〉 〈comparison-op〉 〈c-parameter〉
| 〈comparison-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’
| ‘and’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘or’ ‘(’ 〈condition-qt〉 〈condition-qt〉+ ‘)’
| ‘not’ ‘(’ 〈condition-qt〉 ‘)’
| 〈c-parameter〉

〈condition-op〉 ::= ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈arithmetic-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’

〈c-parameter〉 ::= 〈optional-variable-qt〉 | 〈variable-qt〉
| 〈String〉 | 〈Int〉
| 〈c-parameter〉 〈arithmetic-op〉 〈c-parameter〉
| 〈arithmetic-op〉 ‘(’ 〈c-parameter〉 〈c-parameter〉 ‘)’

〈optional-variable-qt〉 ::= 〈optional-modifier〉 〈variable-qt〉

〈local-spec-qt〉 ::= 〈term-identifier-qt〉? 〈ns-label-qt〉 〈attr-term-list-qt〉

〈term-identifier-qt〉 ::= 〈identifier-qt〉 ‘@’

〈ns-label-qt〉 ::= (〈identifier-qt〉 ‘:’)? 〈identifier-qt〉

〈attr-term-list-qt〉 ::= 〈attr-term-qt〉*

〈attr-term-qt〉 ::= 〈modified-attr-term-qt〉

155

〈modified-attr-term-qt〉 ::= 〈base-attr-term-qt〉
| 〈variable-attr-term-qt〉
| 〈occurrence-modified-attr-term-qt〉
| 〈selection-modified-attr-term-qt〉

〈base-attr-term-qt〉 ::= 〈ns-label-qt〉 ‘=’ 〈literal-content-qt〉

〈variable-term-qt〉 ::= 〈base-term-qt〉
| 〈term-variable-qt〉 (‘->’ 〈base-term-qt〉)?

〈variable-attr-term-qt〉 ::= 〈term-variable〉 (‘->’ 〈base-attr-term-qt〉)?

〈variable-qt〉 ::= 〈term-variable-qt〉 | 〈literal-variable-qt〉

〈term-variable-qt〉 ::= 〈var-specification-qt〉

〈literal-variable-qt〉 ::= 〈var-specification-qt〉

〈var-specification-qt〉 ::= (‘variable’ | ‘var’)? 〈NCName〉
| 〈anonymous-variable〉

〈anonymous-variable〉 ::= ‘_’

〈selection-modified-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈selection-modified-attr-term-qt〉 ::= 〈selection-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)* ‘)’

〈selection-modifier〉 ::= ‘except’

〈occurrence-modified-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-qt〉 ‘,’?)* ‘)’

〈occurrence-modified-attr-term-qt〉 ::= 〈occurrence-modifier〉 ‘(’ (〈modified-attr-term-qt〉 ‘,’?)* ‘)’

〈occurrence-modifier〉 ::= 〈optional-modifier〉 | ‘without’

〈location-modified-qt〉 ::= 〈location-modifier〉 ‘(’ 〈term-variable-qt〉 ‘,’?)* ‘)’

〈location-modifier〉 ::= 〈descendant-modifier〉 | 〈position-modifier〉

〈descendant-modifier〉 ::= ‘descendant’ | ‘desc’

〈position-modifier〉 ::= (‘position’ | ‘pos’) 〈number-qt〉

〈number-qt〉 ::= 〈Int〉 | 〈literal-variable-ct〉

〈top-level-query-term〉 ::= 〈top-term-level-declare-qt〉
| 〈optional-top-level-qt〉
| 〈term-formula-qt〉
| 〈document-specification-qt〉

156

〈top-term-level-declare-qt〉 ::= ‘declare’ 〈ns-decl-qt〉 〈variable-decl-qt〉
‘(’ 〈top-level-construct-term〉 ‘)’

〈optional-top-level-qt〉 ::= 〈optional-modifier〉 ‘(’ 〈descendant-top-level-qt〉 ‘)’
| 〈descendant-top-level-qt〉

〈descendant-top-level-qt〉 ::= 〈descendant-modifier〉 ‘(’ 〈var-restriction-top-level-qt〉 ‘)’
| 〈var-restriction-top-level-qt〉

〈var-restriction-top-level-qt〉 ::= 〈term-variable〉 ‘->’ 〈structured-term-qt〉
| 〈structured-term-qt〉

〈term-formula-qt〉 ::= ‘not’ ‘(’ 〈top-level-query-term〉 ‘)’ 〈condition-clause-qt〉?
| ‘and’ | ‘or’ ‘(’ 〈top-level-query-term〉 ‘,’? (〈top-level-query-term〉 ‘,’?)+

‘)’ 〈condition-clause-qt〉?

〈document-specification-qt〉 ::= ‘in’ 〈xml-document-specification-qt〉

〈xml-document-specification-qt〉 ::= ‘xml-document’ ‘((’ 〈location-qt〉
〈xml-decl-qt〉? 〈doctype-decl-qt〉? ‘))’ 〈xml-document-children-qt〉

〈location-qt〉 ::= ‘location’ ‘=’ (〈IRI〉 | 〈literal-variable-qt〉)

〈xml-decl-qt〉 ::= (‘standalone’ ‘=’ (‘true’ | ‘false’ | 〈literal-variable-qt〉))? (‘xml-version’
‘=’ (‘1.0’ | ‘1.1’ | 〈literal-variable-qt〉))?

〈doctype-decl-qt〉 ::= (‘system-id’ ‘=’ (〈String〉 | 〈literal-variable-qt〉))? (‘public-id’ ‘=’ (〈String〉
| 〈literal-variable-qt〉))? (‘root-name’ ‘=’ (〈String〉 | 〈literal-variable-qt〉))?

〈xml-document-children-qt〉 ::= ‘[[’ 〈xml-document-content-qt〉 ‘]]’
| ‘{{’ 〈xml-document-content-qt〉 ‘}}’
| ‘{’ 〈xml-document-content-qt〉 ‘}’
| ‘[’ 〈xml-document-content-qt〉 ‘]’

〈xml-document-content-qt〉 ::= (〈annotation-content-qt〉 ‘,’)* 〈top-level-query-term〉
(〈annotation-content-qt〉 ‘,’)*

〈annotation-content-qt〉 ::= 〈comment-qt〉 | 〈processing-instruction-qt〉

B.5 Programs

〈program〉 ::= ‘PROGRAM’ ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈goal-block〉 ::= 〈rule-level-declare-block〉* 〈goal〉 〈rule-level-declare-block〉*
| 〈rule-level-declare〉 ‘(’ 〈goal-block〉 ‘)’ ‘END’

〈rule-level-declare-block〉 ::= 〈goal〉 | 〈construct-query-rule〉 | 〈data〉
| 〈rule-level-declare〉 ‘(’ 〈rule-level-declare-block〉* ‘)’ ‘END’

157

〈goal〉 ::= ‘GOAL’ ‘(’ 〈out-resource〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈rule〉 ::= ‘CONSTRUCT’ ‘(’ 〈construct-term〉 ‘)’ ‘FROM’ ‘(’ 〈query-term〉 ‘)’ ‘END’

〈out-resource〉 ::= construct-term
| ‘out’ (〈iri〉 | 〈literal-var〉) ‘(’ construct-term ‘)’

〈data〉 ::= ‘DATA’ ‘(’ 〈data-term〉 ‘)’ ‘END’

〈rule-level-declare〉 ::= ‘DECLARE’ ‘(’ 〈var-decl-qt〉* 〈ns-decl-qt〉* ‘)’

158

Appendix C

Relax NG Schema for XML Syntax

C.1 Parameterized Grammars: Terms, Declarations, Modi-

fiers, etc.

C.1.1 Declarations

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = declare-block

6 ## A declare block with an empty content and both namespace and variable declarations.
declare-block =

8 element declare { (ns-declaration | var-declaration)*, content }
ns-declaration =

10 ns-prefix-declaration*,
(element ns-default {

12 element iri { iri.class }
}

14 | ns-prefix-declaration),
ns-prefix-declaration*

16 ns-prefix-declaration =
element ns-prefix {

18 element name { ncname.class },
element iri { iri.class }

20 }
var-declaration =

22 element variable {
attribute name { xsd:NCName }

24 }
content = empty

26 iri.class |= text
ncname.class |= xsd:NCName

159

C.1.2 Conditions

1 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3 start = condition

5 ## A condition is an opaque expression involving simple arithmetic and comparisons. This is preliminary
syntax.

condition = element condition { expression }
7 expression =

element arithmetic-expression {
9 attribute operator { "+" | "−" | "*" | "/" | "^" },

expression,
11 expression

}
13 | element comparison-expression {

attribute operator { "eq" | "neq" | "lt" | "gt" | "leq" | "geq" },
15 expression,

expression
17 }

| grammar {
19 include "formula.rnc" {

content = parent expression
21 }

}
23 | content

content = empty

C.1.3 Formulas

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = formula
formula =

6 element and { formula, formula+, condition? }
| element or { formula, formula+, condition? }

8 | element not { formula }
| content

10 condition = empty
content = empty

C.1.4 Modifiers

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = grouping
5 content = empty
grouping =

7 element all { content, order-by?, group-by? }

160

| element some { number, content, order-by?, group-by? }
9 | element first { interval, content, order-by?, group-by? }
order-by =

11 element order-by {
attribute order-relation { text }?,

13 optional-variable+
}

15 group-by =
element group-by {

17 attribute equivalence-relation { text }?,
optional-variable+

19 }
optional-variable =

21 element optional { variable }
| variable

23 variable = empty
interval =

25 element interval {
element min { number-literal.class },

27 element max { number-literal.class }
}

29 number = element number { number-literal.class }
number-literal.class = xsd:int | variable

31 optional =
element optional {

33 content,
element with-default { content }?

35 }

C.1.5 Term

1 default namespace = "http://xcerpt.org/ns/core/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

3

start = top-level-term.class
5

A term that may occur at top−level. Slightly more
7 ## restricted than a basic term.
top-level-term.class =

9 structured-term
| grammar {

11 include "declare−block.rnc" {
content = parent top-level-term.class*

13 var-declaration = empty
}

15 }

17 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class |=

19 reference | content-term | structured-term | term-level-declare

161

21 ## A declaration block on term level allows possibly (in data and construct terms) only namespace
declarations.

term-level-declare =
23 grammar {

include "declare−block.rnc" {
25 content = parent term.class*

var-declaration = empty
27 }

}
29

A structured term is a term that may have children and
31 ## attributes. It contrasts with literal content.

structured-term =
33 element element { term-local-spec, term-children, term-condition? }

35 ## Some terms may have additional constraints attached to them.
term-condition = empty

37

The specification of the ’local’ properties of a term: identifier, label, namespace, and attributes.
39 term-local-spec = term-identifier?, ns-label, attr-term-list

41 ## The defining occurrence of a reference, i.e. "id @" in term syntax.
term-identifier = element identifier { identifier.class }

43

Label and namespace of an Xcerpt term or attribute.
45 ns-label =

element label {
47 element ns { identifier.class }?,

identifier.class
49 }

51 ## A term specifying the attributes of an element.
attr-term-list =

53 element attributes {
attribute total { total.class },

55 attribute-term.class*
}

57

Class of values for attributes specifying totality or
59 ## partiality of a term’s children or attribute list.

total.class |= "true"
61

A attribute term is an attribute possibly modified with respect to location, modality, and selection.
63 attribute-term.class |= base-attribute

65 ## An attribute consists of a label and an attribute content.
base-attribute =

67 element attribute {
ns-label,

69 element value { literal-content.class }
}

162

71

An identifier such as a namespace or label.
73 identifier.class |= text

content-term = literal-content.class | annotation-content
75

Content kinds that can be used to annotate elements.
77 annotation-content =

element comment { literal-content.class }
79 | element processing-instruction {

attribute target { identifier.class },
81 literal-content.class

}
83

Character data or other atomic content.
85 literal-content.class |= text

87 ## The children of a term can be ordered or unordered, total or partial.
term-children =

89 element children {
attribute ordered { "true" | "false" },

91 attribute total { total.class },
term.class*

93 }

95 ## The using occurrence of a reference, i.e. "^ id" in term syntax.
reference = element reference { identifier.class }

C.2 Grammar for Xcerpt Programs

default namespace = "http://xcerpt.org/ns/core/1.0"
2 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

4 start = program
−

− − − − − − − − − − − − − − − − − − − −
6

Programs: Rules, Data, and Goals
8

−
− − − − − − − − − − − − − − − − − − − −

10

An Xcerpt program is a set of (one or more) goals, as well as (any number of) rules and inline data
terms (like facts in Prolog). Rules and data terms may be surrounded by declaration blocks.

12 program = element program { goal-block }
goal-block =

14 rule-level-block*
| goal

16 | rule-level-block*
| grammar {

18 include "declare−block.rnc" {
content = parent goal-block

163

20 }
}

22

Rule−level blocks form the basic block structure of an Xcerpt programs: goals, rules, and inline data
terms form the basic block structures. They can be included into declaration blocks that define the
scope of variable and namespace declarations.

24 rule-level-block =
goal

26 | rule
| data

28 |
A declaration block on rule level allows both variable and namespace declarations.

30 grammar {
include "declare−block.rnc" {

32 content = parent rule-level-block*
}

34 }

36 ## A rule specifies how from data matched by the query term new data is constructed according to a
construct term.

rule =
38 element rule {

element construct { construct-term },
40 element from { query-term }

}
42

A goal is a rule, where the resulting data is written to a specified resource. Hence, goals are not
chained.

44 goal =
element goal {

46 element out {
(variable-ct

48 | attribute value {
text

50 >> a:documentation [
"This should in−fact be a IRI as by RFC 3987. Since XML Schema datatypes only provides the

anyURI datatype for URIs conforming the older RFC 2396, arbitrary text is allowed."
52]

}),
54 element construct { construct-term }

},
56 element from { query-term }

}
58

An inline data term allows the specification of data terms inside Xcerpt programs similar to facts in
Prolog.

60 data = element data { data-term }
−

− − − − − − − − − − − − − − − − − − − −
62

Data Terms

164

64

−
− − − − − − − − − − − − − − − − − − − −

66 data-term =
grammar {

68 include "term.rnc"
}

70 # −
− − − − − − − − − − − − − − − − − − − −

72 # Construct Terms

74 # −
− − − − − − − − − − − − − − − − − − − −

76 ## Variables for construct terms.
variable-ct =

78 element variable {
attribute name { xsd:NCName }

80 }

82 ## A construct term differs from a data term in the addition of variables. As a corollary a few so−called
modifiers are needed to indicate, e.g., how to group the variables or whether a variable may have no
bindings.

construct-term =
84 grammar {

variable-ct = parent variable-ct
86 # Add grouping and optional for attributes

modified-attribute =
88 grammar {

include "modifiers.rnc" {
90 start = grouping

content = parent attribute-term.class
92 variable = parent variable-ct

}
94 }

| grammar {
96 include "modifiers.rnc" {

start = optional
98 content = parent attribute-term.class*

variable = parent variable-ct
100 }

}
102 # Add grouping and optional for elements

modified-term =
104 grammar {

include "modifiers.rnc" {
106 start = grouping

content = parent term.class*
108 variable = parent variable-ct

}

165

110 }
| grammar {

112 include "modifiers.rnc" {
start = optional

114 content = parent term.class*
variable = parent variable-ct

116 }
}

118

Construct terms may also be variables or modified by
120 ## grouping and optional modifiers.

term.class |= variable-ct | modified-term
122

Construct attribute terms may also be variables or modified by
124 ## grouping and optional modifiers.

attribute-term.class |= variable-ct | modified-attribute
126 # Add variables to identifiers and literal content

identifier.class |= variable-ct
128 literal-content.class |= variable-ct

include "term.rnc"
130 }

−
− − − − − − − − − − − − − − − − − − − −

132

Query Terms
134

−
− − − − − − − − − − − − − − − − − − − −

136

A POSIX.1 regular expression annotated with variables may occur in query terms at the position of
identifiers or literal content.

138 regular-expression =
element regexp {

140 attribute value { text }
}

142

Query terms can evidently become the most complex of the three term kinds in Xcerpt. As construct
terms they add variables to data terms. But they also provide means for expressing incompleteness:
partial terms, desc and position location modifiers, etc. A construct term differs from a data term in
the addition of variables.

144 query-term =
grammar {

146

Variables for query terms.
148 variable =

element variable {
150 attribute anonymous { "true" }

| attribute name { xsd:NCName }
152 }

#1# TOP−LEVEL QUERY TERM
154 optional-top-level-term =

166

element optional { descendant-top-level-term }
156 | descendant-top-level-term

descendant-top-level-term =
158 element descendant { var-restriction-top-level-term }

| var-restriction-top-level-term
160 var-restriction-top-level-term =

element restriction { variable, structured-term }
162 | structured-term

term-formula =
164 grammar {

include "formula.rnc" {
166 content = parent optional-top-level-term

condition = parent condition-clause
168 }

}
170 document-specification =

element xml-document {
172 attribute location { text },

element xml-declaration {
174 attribute standalone { "true" | "false" | variable }?,

attribute xml-version { "1.0" | "1.1" | variable }?
176 }?,

element doctype {
178 attribute system-id { identifier.class }?,

attribute public-id { identifier.class }?,
180 attribute root-name { identifier.class }?

}?,
182 element children {

annotation-content*, top-level-term.class, annotation-content*
184 }

}
186 # #2# CONDITION CLAUSES ##

condition-clause =
188 element condition {

grammar {
190 include "formula.rnc" {

content = parent comparison*
192 }

}
194 }

comparison =
196 element comparison {

attribute operator {
198 "eq" | "neq" | "lt" | "bt" | "elt" | "ebt"

},
200 arithmetics,

arithmetics
202 }

| element optional { comparison }
204 | arithmetics

arithmetics =

167

206 element arithmetics {
attribute operator {

208 "plus" | "minus" | "times" | "div" | "power"
},

210 (arithmetics | arithmetic-parameter),
(arithmetics | arithmetic-parameter)

212 }
| element optional { arithmetics }

214 | arithmetic-parameter
arithmetic-parameter =

216 variable
| element value { text }

218 # #3# Modified terms ##
modified-term =

220 variable-term | location-term | occurrence-term | selection-term
base-term = reference | content-term | structured-term

222 variable-term =
base-term

224 | variable
| element restriction { variable, base-term }

226 location-term =
element descendant { variable-term }

228 | element position {
element number { variable | xsd:int },

230 variable-term
}

232 selection-term = element except { modified-term }
occurrence-term =

234 element without { modified-term }
| element optional { modified-term }

236 # #4# Modified Attribute terms ##
modified-attr-term =

238 base-attribute,
variable-attr-term,

240 occurrence-modified-attr-term,
selection-modified-attr-term

242 variable-attr-term =
variable

244 | element restriction { variable, base-attribute }
occurrence-modified-attr-term =

246 element without { modified-attr-term }
| element optional { modified-attr-term }

248 selection-modified-attr-term = element except { modified-attr-term }
#A1# BASICS

250

Add variables and regular expressions to identifiers and literal
252 # content

identifier.class |= variable | parent regular-expression
254 literal-content.class |= variable | parent regular-expression

include "term.rnc" {
256 # Redefine the top−level term for query terms: add variables to

168

declare blocks and allow optional, descendant, variable restriction.
258 # Add document specifications

Add query term formula
260

A term that may occur at top−level. Slightly more
262 ## restricted than a basic term.

top-level-term.class =
264 optional-top-level-term

| term-formula
266 | document-specification

| grammar {
268 include "declare−block.rnc" {

content = parent top-level-term.class*
270 }

}
272 # Redefine terms: only modified terms, which can in fact be

unmodified :−) Term−level declare blocks may also contain variable
274 # declarations

276 ## A generic Xcerpt term. Variants are data, construct, and query terms.
term.class = modified-term | term-level-declare

278

A declaration block on term level allows possibly (in data and construct terms) only namespace
declarations.

280 term-level-declare =
grammar {

282 include "declare−block.rnc" {
content = parent term.class*

284 }
}

286 # Redefine attributes as well, again to make modification possible

288 ## An attribute term is an attribute possibly modified with respect to location, modality, and
selection.

attribute-term.class = modified-attr-term
290 # Allow conditions on arbitrary query terms

term-condition = condition-clause
292 }

}

C.3 Exemplary Data Term

1 <?xml version="1.0" encoding="UTF−8"?>
<element xmlns="http://xcerpt.org/ns/core/1.0">

3 <label>bib</label>
<attributes total="true" />

5 <children ordered="false" total="true">
<element>

7 <identifier>journal.adm</identifier>
<label>journal</label>

9 <attributes total="true" />
<children ordered="false" total="true">

11 <element>
<label>title</label>

169

13 <attributes total="true" />
<children ordered="true" total="true"

15 >Applied Data Management</children>
</element>

17 <element>
<label>editors</label>

19 <attributes total="true" />
<children ordered="true" total="true">

21 <element>
<label>editor-in-chief</label>

23 <attributes total="true" />
<children ordered="true" total="true"

25 >Titus Pomponius Atticus</children>
</element>

27 <element>
<label>editor</label>

29 <attributes total="true" >
<attribute><label>region</label><value>Africa</value>

31 </attribute>
</attributes>

33 <children ordered="true" total="true"
>Marcus Aemilius Aemilianus</children>

35 </element>
<element>

37 <label>editor</label>
<attributes total="true" >

39 <attribute><label>region</label><value>Gaul</value>
</attribute>

41 </attributes>
<children ordered="true" total="true"

43 >Aulus Hirtius<!−− −−>
<element>

45 <label>affiliation</label>
<attributes total="true" />

47 <children ordered="true" total="true"
>Governor, Transalpine Gaul</children>

49 </element>
</children>

51 </element>
<element>

53 <label>editor</label>
<attributes total="true" >

55 <attribute><label>region</label><value>Cilicia</value>
</attribute>

57 </attributes>
<children ordered="true" total="true"

59 >Marcus Tullius Cicero<!−− −−>
<element>

61 <label>affiliation</label>
<attributes total="true" />

63 <children ordered="true" total="true">Governor, Cicilia</children>
</element>

65 </children>
</element>

67 </children>
</element>

69 <element>
<label>publisher</label>

71 <attributes total="true" />
<children ordered="true" total="true"

73 >Titus Pomponius Atticus</children>
</element>

75 <element>
<label>volumes</label>

77 <attributes total="true" />
<children ordered="true" total="true">

79 <element>
<identifier>journal.adm.v10</identifier>

81 <label>volume</label>
<attributes total="true" />

170

83 <children ordered="true" total="true">
<element>

85 <identifier>journal.adm.v10.n1</identifier>
<label>number</label>

87 <attributes total="true">
<attribute><label>type</label><value>special-issue</value>

89 </attribute>
</attributes>

91 <children ordered="false" total="true">
<element>

93 <label>title</label>
<attributes total="true" />

95 <children ordered="true" total="true"
>Data Processing Challenges in the Age of Wax Tablets</children>

97 </element>
<element>

99 <label>editorial</label>
<attributes total="true" />

101 <children ordered="true" total="true"
><reference>articles.66.cicero.wax</reference></children>

103 </element>
<element>

105 <label>year</label>
<attributes total="true" />

107 <children ordered="true" total="true"
>60</children>

109 </element>
<element>

111 <label>month</label>
<attributes total="true" />

113 <children ordered="true" total="true"
>july</children>

115 </element>
</children>

117 </element>
<element>

119 <identifier>journal.adm.v10.n2</identifier>
<label>number</label>

121 <attributes total="true" />
<children ordered="false" total="true">

123 <element>
<label>year</label>

125 <attributes total="true" />
<children ordered="true" total="true"

127 >60</children>
</element>

129 <element>
<label>month</label>

131 <attributes total="true" />
<children ordered="true" total="true"

133 >november</children>
</element>

135 </children>
</element> <!−− number −−>

137 </children>
</element> <!−− volume −−>

139 </children>
</element> <!−− volumes −−>

141 </children>
</element> <!−− journal −−>

143

<element>
145 <identifier>conf.dmmc</identifier>

<label>proceedings</label>
147 <attributes total="true" />

<children ordered="false" total="true">
149 <element>

<label>title</label>
151 <attributes total="true" />

<children ordered="true" total="true"

171

153 >Advancements in Data Management for Military and Civil Application</children>
</element>

155 <element>
<label>editors</label>

157 <attributes total="true" />
<children ordered="true" total="true">

159 <element>
<label>editor</label>

161 <attributes total="true" />
<children ordered="true" total="true"

163 >Marcus Aemilius Lepidus<!−− −−>
<element>

165 <label>affiliation</label>
<attributes total="true" />

167 <children ordered="true" total="true"
>Consul, SPQR</children>

169 </element></children>
</element>

171 <element>
<label>editor</label>

173 <attributes total="true" />
<children ordered="true" total="true"

175 >Gaius Julius Caesar Octavianus</children>
</element>

177 <element>
<label>editor</label>

179 <attributes total="true" />
<children ordered="true" total="true"

181 >Marcus Antonius</children>
</element>

183 </children>
</element>

185 <element>
<label>publisher</label>

187 <attributes total="true" />
<children ordered="true" total="true"

189 >SPQR</children>
</element>

191 <element>
<label>abbrev</label>

193 <attributes total="true" />
<children ordered="true" total="true"

195 >DMMC</children>
</element>

197 <element>
<label>year</label>

199 <attributes total="true" />
<children ordered="true" total="true"

201 >44</children>
</element>

203 <element>
<label>month</label>

205 <attributes total="true" />
<children ordered="true" total="true"

207 >july</children>
</element>

209 <element>
<label>location</label>

211 <attributes total="true" />
<children ordered="true" total="true"

213 >Mutina</children>
</element>

215 <element>
<label>invited-papers</label>

217 <attributes total="true" />
<children ordered="true" total="true">

219 <reference>inproc.44.brutus</reference>
<reference>article.66.scaurus.qumran</reference>

221 </children>
</element> <!−− invited papers −−>

172

223 </children>
</element> <!−− proceedings −−>

225

<!−− /// −−>
227 <element>

<identifier>article.66.scaurus.qumran</identifier>
229 <label>article</label>

<attributes total="true" />
231 <children ordered="false" total="true">

<element>
233 <label>title</label>

<attributes total="true" />
235 <children ordered="true" total="true"

>From Wax Tablets to Papyri: The Qumran Case Study</children>
237 </element>

<element>
239 <label>author</label>

<attributes total="true" />
241 <children ordered="true" total="true"

>Marcus Aemilius Scaurus<!−− −−>
243 <element>

<label>affiliation</label>
245 <attributes total="true" />

<children ordered="true" total="true"
247 >Tribun, Gnaeus Pompeius Magnus</children>

</element>
249 </children>

</element>
251 <element>

<label>in</label>
253 <attributes total="true">

<attribute><label>scrolls</label><value>102-112</value>
255 </attribute>

</attributes>
257 <children ordered="true" total="true">

<reference>journal.adm.v10.n1</reference>
259 </children>

</element>
261 <element>

<label>citations</label>
263 <attributes total="true" />

<children ordered="true" total="true">
265 <element>

<label>cite</label>
267 <attributes total="true">

<attribute><label>ref</label><value>article.66.cicero.wax</value>
269 </attribute>

</attributes>
271 <children ordered="true" total="true" />

</element>
273 <element>

<label>cite</label>
275 <attributes total="true">

<attribute><label>type</label><value>formatted</value>
277 </attribute>

</attributes>
279 <children ordered="true" total="true"

>M. Aemilius Scaurus (104): A Case for Permanent Storage of
281 Senate Proceedings. In: M. Aemilius Scaurus, ed. (104):

<element>
283 <label>i</label>

<attributes total="true" />
285 <children ordered="true" total="true"

>Princeps Senatus: Honor and Responsibility</children>
287 </element>, Chapter 2, 14-88.</children>

</element> <!−− cite −−>
289 </children>

</element> <!−− citations −−>
291 </children>

</element> <!−− article−−>

173

293

<element>
295 <identifier>article.66.cicero.wax</identifier>

<label>article</label>
297 <attributes total="true" />

<children ordered="false" total="true">
299 <element>

<label>title</label>
301 <attributes total="true" />

<children ordered="true" total="true"
303 >Space- and Time-Optimal Data Storage on Wax Tablets</children>

</element>
305 <element>

<label>authors</label>
307 <attributes total="true" />

<children ordered="true" total="true">
309 <element>

<label>author</label>
311 <attributes total="true" />

<children ordered="true" total="true"
313 >Marcus Tullius Cicero<!−− −−>

<element>
315 <label>affiliation</label>

<attributes total="true" />
317 <children ordered="true" total="true"

>Governor, Cicilia</children>
319 </element>

</children>
321 </element>

<element>
323 <label>author</label>

<attributes total="true" />
325 <children ordered="true" total="true"

>Marcus Aemilius Lepidus<!−− −−>
327 <element>

<label>affiliation</label>
329 <attributes total="true" />

<children ordered="true" total="true"
331 >Gens Aemilia</children>

</element>
333 </children>

</element>
335 <element>

<label>author</label>
337 <attributes total="true" />

<children ordered="true" total="true"
339 >Marcus Tullius Tiro<!−− −−>

<element>
341 <label>affiliation</label>

<attributes total="true" />
343 <children ordered="true" total="true"

>Secretary, M. T. Cicero</children>
345 </element>

</children>
347 </element>

</children>
349 </element> <!−− authors −−>

<element>
351 <label>in</label>

<attributes total="true">
353 <attribute><label>scrolls</label><value>1-94</value>

</attribute>
355 </attributes>

<children ordered="true" total="true">
357 <reference>journal.adm.v10.n1</reference>

</children>
359 </element>

<element>
361 <label>content</label>

<attributes total="true">

174

363 <attribute><label>type</label><value>xhtml</value>
</attribute>

365 </attributes>
<children ordered="true" total="true">

367 <declare>
<ns-default><iri>http://www.w3.org/1999/xhtml</iri></ns-default>

369 <element>
<label>body</label>

371 <attributes total="true" />
<children ordered="true" total="true">

373 <comment>incomplete due to melted letters on some tablets</comment>
<element>

375 <label>h1</label>
<attributes total="true">

377 <attribute><label>id</label><value>contributions</value></attribute>
</attributes>

379 <children ordered="true" total="true">Contributions</children>
</element>

381 <element>
<label>h1</label>

383 <attributes total="true" />
<children ordered="true" total="true"

385 >A History of Data Storage: From Stone to Parchment</children>
</element>

387 <element>
<label>p</label>

389 <attributes total="true" />
<children ordered="true" total="true"

391 >Despite recent evidence <element>
<label>cite</label>

393 <attributes total="true" />
<children ordered="true" total="true"

395 ><reference>article.66.scaurus.qumran</reference></children>
</element> ... </children>

397 </element> <!−− p −−>
<element>

399 <label>ol</label>
<attributes total="true" />

401 <children ordered="true" total="true">
<element>

403 <label>li</label>
<attributes total="true" />

405 <children ordered="true" total="true">
<element>

407 <label>em</label>
<attributes total="true" />

409 <children ordered="true" total="true">
<element>

411 <label>strong</label>
<attributes total="true" />

413 <children ordered="true" total="true">Homeric</children>
</element> Age:</children>

415 </element><!−− em −−>
...

417 </children>
</element> <!−− li −−>

419 <element>
<label>li</label>

421 <attributes total="true" />
<children ordered="true" total="true">

423 <element>
<label>em</label>

425 <attributes total="true" />
<children ordered="true" total="true"

427 >Age pf the <element>
<label>strong</label>

429 <attributes total="true" />
<children ordered="true" total="true">Kings</children>

431 </element>:</children>
</element><!−− em −−>

175

433 ...
</children>

435 </element> <!−− li −−>
</children>

437 </element> <!−− ol −−>
<element>

439 <label>h1</label>
<attributes total="true">

441 <attribute><label>id</label><value>tiro</value></attribute>
</attributes>

443 <children ordered="true" total="true">Notae Tironianae</children>
</element> <!−− hi −−>

445 <element>
<label>img</label>

447 <attributes total="true">
<attribute><label>title</label><value>Tironian et</value></attribute>

449 <attribute><label>src</label><value>...</value></attribute>
</attributes>

451 <children ordered="true" total="true" />
</element> <!−− img −−>

453 <element>
<label>p</label>

455 <attributes total="true" />
<children ordered="true" total="true"

457 >As discussed in <element>
<label>a</label>

459 <attributes total="true">
<attribute><label>href</label><value>#contributions</value></attribute>

461 </attributes>
<children ordered="true" total="true"> ... </children>

463 </element></children>
</element> <!−− p −−>

465 <element>
<label>h1</label>

467 <attributes total="true">
<attribute><label>id</label><value>tachygraphy</value></attribute>

469 </attributes>
<children ordered="true" total="true">Challenges for Tachygraphy on Wax</children>

471 </element> <!−− hi −−>
<element>

473 <label>p</label>
<attributes total="true" />

475 <children ordered="true" total="true"
>Though conditions for writing on wax tablets are adverse

477 to tachygraphy, systems as described in <element>
<label>a</label>

479 <attributes total="true">
<attribute><label>href</label><value>#tiro</value></attribute>

481 </attributes>
<children ordered="true" total="true"> ... </children>

483 </element></children>
</element> <!−− p −−>

485 </children>
</element> <!−− html −−>

487 </declare>
</children>

489 </element> <!−− content −−>
</children>

491 </element> <!−− article−−>

493 <element>
<identifier>inproc.44.brutus</identifier>

495 <label>inproceedings</label>
<attributes total="true" />

497 <children ordered="false" total="true">
<element>

499 <label>title</label>
<attributes total="true" />

501 <children ordered="true" total="true"
>Efficient Management of Rapidly Changing Personal Records</children>

176

503 </element>
<element>

505 <label>authors</label>
<attributes total="true" />

507 <children ordered="true" total="true">
<element>

509 <label>author</label>
<attributes total="true" />

511 <children ordered="true" total="true"
>Marcus Antonius<!−− −−>

513 <element>
<label>affiliation</label>

515 <attributes total="true" />
<children ordered="true" total="true"

517 >Consul, SPQR</children>
</element>

519 </children>
</element>

521 <element>
<label>author</label>

523 <attributes total="true" />
<children ordered="true" total="true"

525 >Decimus Junius Brutus<!−− −−>
<element>

527 <label>affiliation</label>
<attributes total="true" />

529 <children ordered="true" total="true"
>Governor, Cisalpine Gaul</children>

531 </element>
</children>

533 </element>
</children>

535 </element> <!−− authors −−>
<element>

537 <label>in</label>
<attributes total="true">

539 <attribute><label>scrolls</label><value>24-48</value>
</attribute>

541 </attributes>
<children ordered="true" total="true">

543 <reference>conf.dmmc</reference>
</children>

545 </element>
<element>

547 <label>content</label>
<attributes total="true">

549 <attribute><label>type</label><value>docbook</value>
</attribute>

551 </attributes>
<children ordered="true" total="true">

553 <declare>
<ns-default><iri>http://example.org/ns/docbook/simplified/1.0</iri></ns-default>

555 <element>
<label>section</label>

557 <attributes total="true" />
<children ordered="true" total="true">

559 <element>
<label>info</label>

561 <attributes total="true" />
<children ordered="true" total="true">

563 <element>
<label>title</label>

565 <attributes total="true" />
<children ordered="true" total="true">Introduction</children>

567 </element>
</children>

569 </element>
<element>

571 <label>section</label>
<attributes total="true" />

177

573 <children ordered="true" total="true">
<element>

575 <label>info</label>
<attributes total="true" />

577 <children ordered="true" total="true">
<element>

579 <label>title</label>
<attributes total="true" />

581 <children ordered="true" total="true">Contributions</children>
</element>

583 </children>
</element>

585 <element>
<label>para</label>

587 <attributes total="true" />
<children ordered="true" total="true"

589 >The most notable contributions of this article
include:<element>

591 <label>list</label>
<attributes total="true">

593 <attribute><label>type</label><value>ordered</value></attribute>
</attributes>

595 <children ordered="true" total="true">
<element>

597 <label>item</label>
<attributes total="true" />

599 <children ordered="true" total="true">
<element>

601 <label>para</label>
<attributes total="true" />

603 <children ordered="true" total="true">
<element>

605 <label>em</label>
<attributes total="true" />

607 <children ordered="true" total="true">Clear Evidence</children>
</element> of the need ...</children>

609 </element> <!−− para −−>
</children>

611 </element> <!−− item −−>
<element>

613 <label>item</label>
<attributes total="true" />

615 <children ordered="true" total="true">
<element>

617 <label>para</label>
<attributes total="true" />

619 <children ordered="true" total="true">A new
<element>

621 <label>em</label>
<attributes total="true" />

623 <children ordered="true" total="true">methodology</children>
</element> to ..., cf. <element>

625 <label>pageref</label>
<attributes total="true">

627 <attribute><label>idref</label><value>inproc.44.brutus.s1</value></attribute>
</attributes>

629 <children ordered="true" total="true" />
</element></children>

631 </element> <!−− para −−>
<element>

633 <label>figure</label>
<attributes total="true" />

635 <children ordered="true" total="true">
<element>

637 <label>title</label>
<attributes total="true" />

639 <children ordered="true" total="true">Chart of Desertions</children>
</element>

641 <element>
<label>img</label>

178

643 <attributes total="true" />
<children ordered="true" total="true"> ... </children>

645 </element>
</children>

647 </element> <!−− figure −−>
<element>

649 <label>para</label>
<attributes total="true" />

651 <children ordered="true" total="true"
>As <element>

653 <label>cite</label>
<attributes total="true" />

655 <children ordered="true" total="true">
<reference>article.66.cicero.wax</reference>

657 </children>
</element> of the need ...</children>

659 </element> <!−− para −−>
</children>

661 </element> <!−− item −−>
</children>

663 </element> <!−− list −−>
</children>

665 </element> <!−− para −−>
</children>

667 </element> <!−− section −−>
</children>

669 </element> <!−− section −−>
<element>

671 <identifier>inproc.44.brutus.s1</identifier>
<label>section</label>

673 <attributes total="true" />
<children ordered="true" total="true">

675 <element>
<label>info</label>

677 <attributes total="true" />
<children ordered="true" total="true">

679 <element>
<label>title</label>

681 <attributes total="true" />
<children ordered="true"

683 total="true">Acknowledgements</children>
</element>

685 </children>
</element> <!−− info −−>

687 <element>
<label>para</label>

689 <attributes total="true" />
<children ordered="true" total="true"

691 >We would like to thank the editors of <element>
<label>cite</label>

693 <attributes total="true" />
<children ordered="true" total="true">

695 <reference>journal.adm.v10.n1</reference>
</children>

697 </element> ...
</children>

699 </element> <!−− para −−>
</children>

701 </element> <!−− section −−>
</declare>

703 </children>
</element> <!−− content −−>

705 </children>
</element> <!−− inproceedings−−>

707 </children>
</element>

179

180

Appendix D

ANTLR Grammar for Xcerpt 2.0

The following listing shows the grammar for Xcerpt 2.0 as used in the implementation currently under
development (see http://amachos.com/). It is a grammar for the ANTLR 3 (http://www.antlr.
org/) parser generator.

grammar XcerptGrammar;
2

options {
4 output=AST;

backtrack=true;
6 memoize=true;

}
8

tokens {
10 PROGRAM;

GOAL_BLOCK;
12 RULE_LEVEL_DECLARE_BLOCK;

RULE_LEVEL_DECLARE_BLOCK_GOAL;
14 RULE_LEVEL_DECLARE_BLOCK_RULE;

RULE_LEVEL_DECLARE_BLOCK_DATA;
16 RULE_LEVEL_DECLARE_BLOCK_DECLARE;

GOAL;
18 RULE;

OUT_RESOURCE;
20 OUT_RESOURCE_CONSTRUCT_TERM;

OUT_RESOURCE_IRI_LITERAL_VARIABLE;
22 DATA;

RULE_LEVEL_DECLARE;
24

QUERY_TERM;
26 QUERY_TERM_MODIFIED;

QUERY_TERM_DECLARE;
28 TERM_LEVEL_DECLARE_QT;

MODIFIED_QT;
30 MODIFIED_QT_VARIABLE_TERM;

MODIFIED_QT_LOCATION_MODIFIED;
32 MODIFIED_QT_OCCURRENCE_MODIFIED;

MODIFIED_QT_SELECTION_MODIFIED;
34 BASE_TERM_QT;

BASE_TERM_QT_REFERENCE;
36 BASE_TERM_QT_STRUCTURED;

BASE_TERM_QT_CONTENT;
38 REFERENCE_QT;

IDENTIFIER_QT;
40 IDENTIFIER_QT_NCNAME;

IDENTIFIER_QT_IRI;
42 IDENTIFIER_QT_STRING;

IDENTIFIER_QT_LITERAL_VARIABLE;

181

http://amachos.com/
http://www.antlr.org/
http://www.antlr.org/

44 IDENTIFIER_QT_REGEXP;
NS_DECL_QT;

46 NS_PREFIX_DECL_QT;
NS_DEFAULT_DECL_QT;

48 VARIABLE_DECL_QT;
CONTENT_QT;

50 CONTENT_QT_LITERAL_CONTENT;
CONTENT_QT_COMMENT;

52 CONTENT_QT_PROCESSING_INSTRUCTION;
LITERAL_CONTENT_QT;

54 LITERAL_CONTENT_QT_STRING;
LITERAL_CONTENT_QT_LITERAL_VARIABLE;

56 LITERAL_CONTENT_QT_REGEXP;
COMMENT_QT;

58 PROCESSING_INSTRUCTION_QT;
STRUCTURED_QT;

60 CHILDREN_LIST_QT;
CHILDREN_LIST_QT_BRACKETS;

62 CHILDREN_LIST_QT_BRACES;
CHILDREN_LIST_QT_DOUBLEBRACKETS;

64 CHILDREN_LIST_QT_DOUBLEBRACES;
CONDITION_CLAUSE_QT;

66 CONDITION_QT;
CONDITION_QT_CONDITION_OP;

68 CONDITION_QT_AND;
CONDITION_QT_OR;

70 CONDITION_QT_NOT;
CONDITION_QT_C_PARAMETER;

72 CONDITION_OP;
CONDITION_OP_EQUALS;

74 CONDITION_OP_NOT_EQUALS;
CONDITION_OP_LESS_THAN;

76 CONDITION_OP_GREATER_THAN;
CONDITION_OP_LESS_OR_EQUALS;

78 CONDITION_OP_GREATER_OR_EQUALS;
ARITHMETIC_OP;

80 ARITHMETIC_OP_PLUS;
ARITHMETIC_OP_MINUS;

82 ARITHMETIC_OP_MULTIPLY;
ARITHMETIC_OP_DIVIDE;

84 ARITHMETIC_OP_POWER;
C_PARAMETER;

86 C_PARAMETER_OPTIONAL_VARIABLE;
C_PARAMETER_VARIABLE;

88 C_PARAMETER_STRING;
C_PARAMETER_XCERPT_INT;

90 C_PARAMETER_ARITHMETIC_OP;
OPTIONAL_VARIABLE_QT;

92 LOCAL_SPEC_QT;
TERM_IDENTIFIER_QT;

94 NS_LABEL_QT;
ATTR_TERM_LIST_QT;

96 ATTR_TERM_LIST_QT_PAREN;
ATTR_TERM_LIST_QT_DOUBLEPAREN;

98 ATTR_TERM_LIST_QT_NOPAREN;
ATTR_TERM_QT;

100 MODIFIED_ATTR_TERM_QT;
MODIFIED_ATTR_TERM_QT_BASE_ATTR_TERM;

102 MODIFIED_ATTR_TERM_QT_VARIABLE_ATTR_TERM;
MODIFIED_ATTR_TERM_QT_OCCURRENCE_MODIFIED_ATTR_TERM;

104 MODIFIED_ATTR_TERM_QT_SELECTION_MODIFIED_ATTR_TERM;
BASE_ATTR_TERM_QT;

106 VARIABLE_TERM_QT;
VARIABLE_TERM_QT_BASE_TERM;

108 VARIABLE_TERM_QT_TERM_VARIABLE;
VARIABLE_ATTR_TERM_QT;

110 VARIABLE_QT;
VARIABLE_QT_TERM_VARIABLE;

112 VARIABLE_QT_LITERAL_VARIABLE;
TERM_VARIABLE_QT;

182

114 LITERAL_VARIABLE_QT;
VAR_SPECIFICATION_QT;

116 VAR_SPECIFICATION_QT_NCNAME;
VAR_SPECIFICATION_QT_ANONYMOUS_VARIABLE;

118 ANONYMOUS_VARIABLE;
SELECTION_MODIFIED_QT;

120 SELECTION_MODIFIED_ATTR_TERM_QT;
SELECTION_MODIFIER;

122 OCCURRENCE_MODIFIED_QT;
OCCURRENCE_MODIFIED_ATTR_TERM_QT;

124 OCCURRENCE_MODIFIER;
OCCURRENCE_MODIFIER_WITHOUT;

126 OCCURRENCE_MODIFIER_OPTIONAL_MODIFIER;
LOCATION_MODIFIED_QT;

128 LOCATION_MODIFIER;
LOCATION_MODIFIER_DESCENDANT_MODIFIER;

130 LOCATION_MODIFIER_POSITION_MODIFIER;
DESCENDANT_MODIFIER;

132 POSITION_MODIFIER;
NUMBER_QT;

134 NUMBER_QT_XCERPT_INT;
NUMBER_QT_LITERAL_VARIABLE;

136 TOP_LEVEL_QUERY_TERM;
TOP_LEVEL_QUERY_TERM_TOP_TERM_LEVEL_DECLARE;

138 TOP_LEVEL_QUERY_TERM_OPTIONAL_TOP_LEVEL;
TOP_LEVEL_QUERY_TERM_TERM_FORMULA;

140 TOP_LEVEL_QUERY_TERM_DOCUMENT_SPECIFICATION;
TOP_TERM_LEVEL_DECLARE_QT;

142 OPTIONAL_TOP_LEVEL_QT;
OPTIONAL_TOP_LEVEL_QT_OPTIONAL_MODIFIER;

144 OPTIONAL_TOP_LEVEL_QT_DESCENDANT_TOP_LEVEL;
DESCENDANT_TOP_LEVEL_QT;

146 DESCENDANT_TOP_LEVEL_QT_DESCENDANT_MODIFIER;
DESCENDANT_TOP_LEVEL_QT_VAR_RESTRICTION_TOP_LEVEL;

148 VAR_RESTRICTION_TOP_LEVEL_QT;
VAR_RESTRICTION_TOP_LEVEL_QT_TERM_VARIABLE;

150 VAR_RESTRICTION_TOP_LEVEL_QT_STRUCTURED;
TERM_FORMULA_QT;

152 TERM_FORMULA_QT_NOT;
TERM_FORMULA_QT_AND;

154 TERM_FORMULA_QT_OR;
DOCUMENT_SPECIFICATION_QT;

156 XML_DOCUMENT_SPECIFICATION_QT;
LOCATION_QT;

158 LOCATION_QT_IRI;
LOCATION_QT_LITERAL_VARIABLE;

160 XML_DECL_QT;
XML_DECL_QT_STANDALONE_TRUE;

162 XML_DECL_QT_STANDALONE_FALSE;
XML_DECL_QT_STANDALONE_LITERAL_VARIABLE;

164 XML_DECL_QT_VERSION_1_0;
XML_DECL_QT_VERSION_1_1;

166 XML_DECL_QT_VERSION_LITERAL_VARIABLE;
DOCTYPE_DECL_QT;

168 XML_DOCUMENT_CHILDREN_QT;
XML_DOCUMENT_CHILDREN_QT_DOUBLEBRACKETS;

170 XML_DOCUMENT_CHILDREN_QT_DOUBLEBRACES;
XML_DOCUMENT_CHILDREN_QT_SINGLEBRACES;

172 XML_DOCUMENT_CHILDREN_QT_SINGLEBRACKETS;
XML_DOCUMENT_CONTENT_QT;

174 ANNOTATION_CONTENT_QT;
ANNOTATION_CONTENT_QT_COMMENT;

176 ANNOTATION_CONTENT_QT_PROCESSING_INSTRUCTION;

178 CONSTRUCT_TERM;
CONSTRUCT_TERM_TERM_LEVEL_DECLARE;

180 CONSTRUCT_TERM_REFERENCE;
CONSTRUCT_TERM_MODIFIED;

182 CONSTRUCT_TERM_STRUCTURED;
CONSTRUCT_TERM_CONTENT;

183

184 CONSTRUCT_TERM_TERM_VARIABLE;
REFERENCE_CT;

186 TERM_LEVEL_DECLARE_CT;
IDENTIFIER_CT;

188 IDENTIFIER_CT_NCNAME;
IDENTIFIER_CT_IRI;

190 IDENTIFIER_CT_STRING;
IDENTIFIER_CT_LITERAL_VARIABLE;

192 NS_DECLARATION_CT;
NS_PREFIX_DECLARATION_CT;

194 NS_DEFAULT_DECLARATION_CT;
NS_DEFAULT_DECLARATION_CT_LITERAL_CONTENT;

196 NS_DEFAULT_DECLARATION_CT_COMMENT;
NS_DEFAULT_DECLARATION_CT_PROCESSING_INSTRUCTION;

198 CONTENT_CT;
CONTENT_CT_LITERAL_CONTENT;

200 CONTENT_CT_COMMENT;
CONTENT_CT_PROCESSING_INSTRUCTION;

202 LITERAL_CONTENT_CT;
LITERAL_CONTENT_CT_STRING;

204 LITERAL_CONTENT_CT_LITERAL_VARIABLE;
COMMENT_CT;

206 PROCESSING_INSTRUCTION_CT;
STRUCTURED_CT;

208 CHILDREN_LIST_CT;
CHILDREN_LIST_CT_BRACKETS;

210 CHILDREN_LIST_CT_BRACES;
LOCAL_SPEC_CT;

212 TERM_IDENTIFIER_CT;
NS_LABEL_CT;

214 ATTR_TERM_LIST_CT;
ATTR_TERM_CT;

216 ATTR_TERM_CT_BASE_ATTR_TERM;
ATTR_TERM_CT_TERM_VARIABLE;

218 ATTR_TERM_CT_MODIFIED_ATTR_TERM;
BASE_ATTR_TERM_CT;

220 TOP_LEVEL_CONSTRUCT_TERM;
TOP_LEVEL_CONSTRUCT_TERM_TOP_TERM_LEVEL_DECLARE;

222 TOP_LEVEL_CONSTRUCT_TERM_STRUCTURED;
TOP_TERM_LEVEL_DECLARE_CT;

224 VARIABLE_CT;
VARIABLE_CT_TERM_VARIABLE;

226 VARIABLE_CT_LITERAL_VARIABLE;
TERM_VARIABLE_CT;

228 LITERAL_VARIABLE_CT;
VAR_SPECIFICATION_CT;

230 MODIFIED_CT;
MODIFIED_CT_GROUPING;

232 MODIFIED_CT_OPTIONAL;
MODIFIED_ATTR_TERM_CT;

234 MODIFIED_ATTR_TERM_CT_GROUPING_ATTR_TERM;
MODIFIED_ATTR_TERM_CT_OPTIONAL_ATTR_TERM;

236 GROUPING_CT;
GROUPING_ATTR_TERM_CT;

238 GROUPING_MODIFIER;
GROUPING_MODIFIER_ALL;

240 GROUPING_MODIFIER_SOME;
GROUPING_MODIFIER_FIRST;

242 ORDERBY;
ORDERBY_LIST_OPTIONAL_VARIABLE;

244 ORDERBY_LIST_VARIABLE;
ORDER_RELATION;

246 ORDER_RELATION_ASCENDING;
ORDER_RELATION_DESCENDING;

248 ORDER_RELATION_NCNAME;
GROUPBY;

250 GROUPBY_LIST_OPTIONAL_VARIABLE;
GROUPBY_LIST_VARIABLE;

252 EQUIVALENCE_RELATION;
OPTIONAL_VARIABLE;

184

254 INTERVAL_CT;
INTERVAL_CT_FROM_TO;

256 INTERVAL_CT_FROM;
INTERVAL_CT_PLUS;

258 NUMBER_CT;
NUMBER_CT_XCERPT_INT;

260 NUMBER_CT_LITERAL_VARIABLE;
OPTIONAL_CT;

262 OPTIONAL_CT_DEFAULT;
OPTIONAL_ATTR_TERM_CT;

264 OPTIONAL_ATTR_TERM_CT_DEFAULT;
OPTIONAL_MODIFIER;

266

DATA_TERM;
268 DATA_TERM_TERM_LEVEL_DECLARE;

DATA_TERM_REFERENCE;
270 DATA_TERM_STRUCTURED;

DATA_TERM_CONTENT;
272 REFERENCE_DT;

TERM_LEVEL_DECLARE_DT;
274 IDENTIFIER_DT;

IDENTIFIER_DT_NCNAME;
276 IDENTIFIER_DT_IRI;

IDENTIFIER_DT_STRING;
278 NS_DECLARATION_DT;

NS_PREFIX_DECLARATION_DT;
280 NS_DEFAULT_DECLARATION_DT;

CONTENT_DT;
282 CONTENT_DT_LITERAL_CONTENT;

CONTENT_DT_COMMENT;
284 CONTENT_DT_PROCESSING_INSTRUCTION;

LITERAL_CONTENT_DT;
286 COMMENT_DT;

PROCESSING_INSTRUCTION_DT;
288 STRUCTURED_DT;

STRUCTURED_DT_LOCAL_SPEC;
290 STRUCTURED_DT_CHILDREN_LIST;

CHILDREN_LIST_DT;
292 CHILDREN_LIST_DT_BRACKETS;

CHILDREN_LIST_DT_BRACES;
294 LOCAL_SPEC_DT;

TERM_IDENTIFIER_DT;
296 NS_LABEL_DT;

ATTR_TERM_LIST_DT;
298 ATTR_TERM_DT;

BASE_ATTR_TERM_DT;
300 TOP_LEVEL_DATA_TERM;

TOP_LEVEL_DATA_TERM_TOP_TERM_LEVEL_DECLARE;
302 TOP_LEVEL_DATA_TERM_STRUCTURED;

TOP_TERM_LEVEL_DECLARE_DT;
304

NCNAME;
306 LITERAL_NCNAME;

IRI;
308 STRING;

STRINGCHARACTER;
310 LINE_FEED;

CARRIAGE_RETURN;
312 NUMBER;

XCERPT_INT;
314 REGEXP;

ERE_EXPRESSION;
316 WHITESPACE;

COMMENT_CHAR;
318 END_OF_LINE;

END_OF_LINE_COMMENT;
320 BLOCK_COMMENT;

}
322

@parser::header{

185

324 package org.xcerpt.generated;
}

326

@lexer::header {
328 package org.xcerpt.generated;

}
330

/**
332 NOTE: All lines indented only one TAB exist only for less paranthesised syntax. You savely should be able to comment them out.

Lesser paranthesis also cause massive backtracking sometimes.
334 */

336 /* PROGRAMS */
program :

338 (’PROGRAM’ ((’(’ goal_block ’)’)
| (goal_block)

340) ’END’)
→ ^(PROGRAM goal_block)

342 ;

344 //*
goal_block :

346 rule_level_declare_block+
→ ^(GOAL_BLOCK rule_level_declare_block+)

348 ; // to be LL(k)

350

rule_level_declare_block :
352 goal

→ ^(RULE_LEVEL_DECLARE_BLOCK_GOAL goal)
354 | rule

→ ^(RULE_LEVEL_DECLARE_BLOCK_RULE rule)
356 | data

→ ^(RULE_LEVEL_DECLARE_BLOCK_DATA data)
358 | (rule_level_declare ((’(’ rule_level_declare_block* ’)’)

| (rule_level_declare_block?)
360) ’END’)

→ ^(RULE_LEVEL_DECLARE_BLOCK_DECLARE rule_level_declare rule_level_declare_block*)
362 ;

364

goal :
366 ’GOAL’ ((’(’ out_resource ’)’)

| (out_resource)
368) ’FROM’ ((’(’ query_term ’)’)

| (query_term)
370) ’END’

→ ^(GOAL out_resource query_term)
372 ;

374 rule :
’CONSTRUCT’ ((’(’ construct_term ’)’)

376 | (construct_term)
) ’FROM’ ((’(’ query_term ’)’)

378 | (query_term)
) ’END’

380 → ^(RULE construct_term query_term)
;

382

out_resource :
384 construct_term

→ ^(OUT_RESOURCE_CONSTRUCT_TERM construct_term)
386 | (’out’ (iri | literal_variable_qt) ((’(’ construct_term ’)’)

| (construct_term)
388))

→ ^(OUT_RESOURCE_IRI_LITERAL_VARIABLE construct_term iri? literal_variable_qt?)
390 ;

392 data :
’DATA’ ((’(’ data_term ’)’)

186

394 | (data_term)
) ’END’

396 → ^(DATA data_term)
;

398

rule_level_declare :
400 ’DECLARE’ ((’(’ variable_decl_qt* ns_decl_qt* ’)’)

| (variable_decl_qt? ns_decl_qt?)
402)

→ ^(RULE_LEVEL_DECLARE variable_decl_qt* ns_decl_qt*)
404 ;

406 /* QUERY TERMS */
query_term :

408 modified_qt
→ ^(QUERY_TERM_MODIFIED modified_qt)

410 | term_level_declare_qt
→ ^(QUERY_TERM_DECLARE term_level_declare_qt)

412 ;

414 term_level_declare_qt : ’declare’ ns_decl_qt variable_decl_qt ((’(’ (query_term ’,’?)* ’)’)
| (query_term?)

416)
→ ^(TERM_LEVEL_DECLARE_QT ns_decl_qt variable_decl_qt query_term*)

418 ;

420 modified_qt :
variable_term_qt

422 → ^(MODIFIED_QT_VARIABLE_TERM variable_term_qt)
| location_modified_qt

424 → ^(MODIFIED_QT_LOCATION_MODIFIED location_modified_qt)
| occurrence_modified_qt

426 → ^(MODIFIED_QT_OCCURRENCE_MODIFIED occurrence_modified_qt)
| selection_modified_qt

428 → ^(MODIFIED_QT_SELECTION_MODIFIED)
;

430

base_term_qt :
432 reference_qt

→ ^(BASE_TERM_QT_REFERENCE reference_qt)
434 | structured_qt

→ ^(BASE_TERM_QT_STRUCTURED structured_qt)
436 | content_qt

→ ^(BASE_TERM_QT_CONTENT content_qt)
438 ;

440 reference_qt :
’^’ identifier_qt

442 → ^(REFERENCE_QT identifier_qt)
;

444

identifier_qt :
446 ncname

→ ^(IDENTIFIER_QT_NCNAME ncname)
448 | iri

→ ^(IDENTIFIER_QT_IRI iri)
450 | string

→ ^(IDENTIFIER_QT_STRING string)
452 | literal_variable_qt

→ ^(IDENTIFIER_QT_LITERAL_VARIABLE literal_variable_qt)
454 | regexp

→ ^(IDENTIFIER_QT_REGEXP regexp)
456 ;

458 ns_decl_qt :
(ns_prefix_decl_qt ’,’?)* (ns_default_decl_qt ’,’?)?

460 (ns_prefix_decl_qt ’,’?)*
→ ^(NS_DECL_QT ns_default_decl_qt? ns_prefix_decl_qt*)

462 ;

187

464 ns_prefix_decl_qt :
’ns−prefix’ identifier_qt ’=’ (iri | literal_variable_qt)

466 → ^(NS_PREFIX_DECL_QT identifier_qt iri? literal_variable_qt?)
;

468

ns_default_decl_qt :
470 ’ns_default’ (iri | literal_variable_qt)

→ ^(NS_DEFAULT_DECL_QT iri? literal_variable_qt?)
472 ;

474 bughelper1 : (’variable’|’var’);
variable_decl_qt :

476 bughelper1 ncname
→ ^(VARIABLE_DECL_QT ncname)

478 ;

480 content_qt :
literal_content_qt

482 → ^(CONTENT_QT_LITERAL_CONTENT literal_content_qt)
| comment_qt

484 → ^(CONTENT_QT_COMMENT comment_qt)
| processing_instruction_qt

486 → ^(CONTENT_QT_PROCESSING_INSTRUCTION processing_instruction_qt)
;

488

literal_content_qt :
490 string

→ ^(LITERAL_CONTENT_QT_STRING string)
492 | literal_variable_qt

→ ^(LITERAL_CONTENT_QT_LITERAL_VARIABLE literal_variable_qt)
494 | regexp

→ ^(LITERAL_CONTENT_QT_REGEXP regexp)
496 ;

comment_qt : ’xcerpt’ ’:’ ’comment’ (’(’ ’)’)
498 ?

’[’ literal_content_qt ’]’
500 → ^(COMMENT_QT literal_content_qt)

;
502

processing_instruction_qt
504 : (’xcerpt’ ’:’ ’processing−instruction’ | ’xcerpt’ ’:’ ’pi’)

((’(’ ’target−name’ ’=’ identifier_qt ’)’)
506 | (’target−name’ ’=’ identifier_qt)

) ’[’ literal_content_qt ’]’
508 → ^(PROCESSING_INSTRUCTION_QT identifier_qt literal_content_qt)

;
510

structured_qt :
512 local_spec_qt children_list_qt condition_clause_qt?

→ ^(STRUCTURED_QT local_spec_qt children_list_qt condition_clause_qt?)
514 ;

516 children_list_qt :
(’[’ (query_term ’,’?)* ’]’)

518 → ^(CHILDREN_LIST_QT_BRACKETS query_term*)
| (’{’ (query_term ’,’?)* ’}’)

520 → ^(CHILDREN_LIST_QT_BRACES query_term*)
| (’[[’ (query_term ’,’?)* ’]]’)

522 → ^(CHILDREN_LIST_QT_DOUBLEBRACKETS query_term*)
| (’{{’ (query_term ’,’?)* ’}}’)

524 → ^(CHILDREN_LIST_QT_DOUBLEBRACES query_term*)
;

526

condition_clause_qt :
528 ’where’ ((’(’ condition_qt ’)’)

| (condition_qt)
530)

→ ^(CONDITION_CLAUSE_QT condition_qt)
532 ;

188

534 condition_qt :
(c_parameter condition_op c_parameter)

536 → ^(CONDITION_QT_CONDITION_OP condition_op c_parameter+)
| (condition_op ’(’ c_parameter c_parameter ’)’)

538 → ^(CONDITION_QT_CONDITION_OP condition_op c_parameter+)
| (’and’ ’(’ condition_qt condition_qt+ ’)’)

540 → ^(CONDITION_QT_AND condition_qt+)
| (’or’ ’(’ condition_qt condition_qt+ ’)’)

542 → ^(CONDITION_QT_OR condition_qt+)
| (’not’ ’(’ condition_qt ’)’)

544 → ^(CONDITION_QT_NOT condition_qt)
| c_parameter

546 → ^(CONDITION_QT_C_PARAMETER c_parameter)
;

548

condition_op :
550 ’==’

→ ^(CONDITION_OP_EQUALS)
552 | ’!=’

→ ^(CONDITION_OP_NOT_EQUALS)
554 | ’<’

→ ^(CONDITION_OP_LESS_THAN)
556 | ’>’

→ ^(CONDITION_OP_GREATER_THAN)
558 | ’<=’

→ ^(CONDITION_OP_LESS_OR_EQUALS)
560 | ’>=’

→ ^(CONDITION_OP_GREATER_OR_EQUALS)
562 ;

564 arithmetic_op :
’+’

566 → ^(ARITHMETIC_OP_PLUS)
| ’−’

568 → ^(ARITHMETIC_OP_MINUS)
| ’*’

570 → ^(ARITHMETIC_OP_MULTIPLY)
| ’/’

572 → ^(ARITHMETIC_OP_DIVIDE)
| ’^’

574 → ^(ARITHMETIC_OP_POWER)
;

576

c_parameter :
578 optional_variable_qt

→ ^(C_PARAMETER_OPTIONAL_VARIABLE optional_variable_qt)
580 | variable_qt

→ ^(C_PARAMETER_VARIABLE variable_qt)
582 | string

→ ^(C_PARAMETER_STRING string)
584 | xcerpt_int

→ ^(C_PARAMETER_XCERPT_INT xcerpt_int)
586 // rule below extended by parenthesis to avoid leftrecursiveness →not conforming to syntax definition

| (’(’ c_parameter arithmetic_op c_parameter ’)’)
588 → ^(C_PARAMETER_ARITHMETIC_OP arithmetic_op c_parameter+)

| (arithmetic_op ’(’ c_parameter c_parameter ’)’)
590 → ^(C_PARAMETER_ARITHMETIC_OP arithmetic_op c_parameter+)

;
592

optional_variable_qt :
594 optional_modifier variable_qt

→ ^(OPTIONAL_VARIABLE_QT optional_modifier variable_qt)
596 ;

598 local_spec_qt :
term_identifier_qt? ns_label_qt attr_term_list_qt

600 → ^(LOCAL_SPEC_QT ns_label_qt attr_term_list_qt term_identifier_qt?)
;

602

term_identifier_qt :

189

604 identifier_qt ’@’
→ ^(TERM_IDENTIFIER_QT identifier_qt)

606 ;

608 ns_label_qt :
(left=identifier_qt ’:’)? right=identifier_qt

610 → ^(NS_LABEL_QT $right $left?)
;

612

614 attr_term_list_qt : (’(’ (attr_term_qt ’,’?)* ’)’)
→ ^(ATTR_TERM_LIST_QT_PAREN attr_term_qt*)

616 | (’((’ (attr_term_qt ’,’?)* ’))’)
→ ^(ATTR_TERM_LIST_QT_DOUBLEPAREN attr_term_qt*)

618 | (attr_term_qt?)
→ ^(ATTR_TERM_LIST_QT_NOPAREN attr_term_qt?)

620 ;

622 attr_term_qt :
modified_attr_term_qt

624 → ^(ATTR_TERM_QT modified_attr_term_qt)
;

626

modified_attr_term_qt :
628 base_attr_term_qt

→ ^(MODIFIED_ATTR_TERM_QT_BASE_ATTR_TERM base_attr_term_qt)
630 | variable_attr_term_qt

→ ^(MODIFIED_ATTR_TERM_QT_VARIABLE_ATTR_TERM variable_attr_term_qt)
632 | occurrence_modified_attr_term_qt

→ ^(MODIFIED_ATTR_TERM_QT_OCCURRENCE_MODIFIED_ATTR_TERM occurrence_modified_attr_term_qt)
634 | selection_modified_attr_term_qt

→ ^(MODIFIED_ATTR_TERM_QT_SELECTION_MODIFIED_ATTR_TERM selection_modified_attr_term_qt)
636 ;

638 base_attr_term_qt :
ns_label_qt ’=’ literal_content_qt

640 → ^(BASE_ATTR_TERM_QT ns_label_qt literal_content_qt)
;

642

variable_term_qt :
644 base_term_qt

→ ^(VARIABLE_TERM_QT_BASE_TERM base_term_qt)
646 | term_variable_qt (’→’ base_term_qt)?

→ ^(VARIABLE_TERM_QT_TERM_VARIABLE term_variable_qt base_term_qt?)
648 ;

650 variable_attr_term_qt :
term_variable_qt (’→’ base_attr_term_qt)?

652 → ^(VARIABLE_ATTR_TERM_QT term_variable_qt base_attr_term_qt?)
;

654

variable_qt :
656 term_variable_qt

→ ^(VARIABLE_QT_TERM_VARIABLE term_variable_qt)
658 | literal_variable_qt

→ ^(VARIABLE_QT_LITERAL_VARIABLE literal_variable_qt)
660 ;

662 term_variable_qt :
var_specification_qt

664 → ^(TERM_VARIABLE_QT var_specification_qt)
;

666

literal_variable_qt :
668 var_specification_qt

→ ^(LITERAL_VARIABLE_QT var_specification_qt)
670 ;

672 bughelper2 : ’variable’|’var’ ;
var_specification_qt : (bughelper2? ncname)

190

674 → ^(VAR_SPECIFICATION_QT_NCNAME ncname)
| anonymous_variable

676 → ^(VAR_SPECIFICATION_QT_ANONYMOUS_VARIABLE)
;

678

anonymous_variable : ’_’
680 → ^(ANONYMOUS_VARIABLE)

;
682

selection_modified_qt :
684 selection_modifier ((’(’ (modified_qt ’,’?)* ’)’)

| (modified_qt?)
686)

→ ^(SELECTION_MODIFIED_QT selection_modifier modified_qt*)
688 ;

690 selection_modified_attr_term_qt
: selection_modifier ((’(’ (modified_attr_term_qt ’,’?)* ’)’)

692 | (modified_attr_term_qt?)
)

694 → ^(SELECTION_MODIFIED_ATTR_TERM_QT selection_modifier modified_attr_term_qt*)
;

696

selection_modifier :
698 ’except’

→ ^(SELECTION_MODIFIER)
700 ;

702 occurrence_modified_qt :
occurrence_modifier ((’(’ (modified_qt ’,’?)* ’)’)

704 | (modified_qt?)
)

706 → ^(OCCURRENCE_MODIFIED_QT occurrence_modifier modified_qt*)
;

708

occurrence_modified_attr_term_qt :
710 occurrence_modifier ((’(’ (modified_attr_term_qt ’,’?)* ’)’)

| (modified_attr_term_qt?)
712)

→ ^(OCCURRENCE_MODIFIED_ATTR_TERM_QT occurrence_modifier modified_attr_term_qt*)
714 ;

716 occurrence_modifier :
’without’

718 → ^(OCCURRENCE_MODIFIER_WITHOUT)
| optional_modifier

720 → ^(OCCURRENCE_MODIFIER_OPTIONAL_MODIFIER)
;

722

// Below was a TYPO in the syntax appendix
724 location_modified_qt : location_modifier ((’(’ (variable_term_qt ’,’?)* ’)’)

| (variable_term_qt?)
726)

→ ^(LOCATION_MODIFIED_QT location_modifier variable_term_qt*)
728 ;

730 location_modifier :
descendant_modifier

732 → ^(LOCATION_MODIFIER_DESCENDANT_MODIFIER descendant_modifier)
| position_modifier

734 → ^(LOCATION_MODIFIER_POSITION_MODIFIER position_modifier)
;

736

descendant_modifier :
738 ’descendant’

→ ^(DESCENDANT_MODIFIER)
740 | ’desc’

→ ^(DESCENDANT_MODIFIER)
742 ;

191

744 bughelper3 : ’position’ | ’pos’ ;
position_modifier : bughelper3 number_qt

746 → ^(POSITION_MODIFIER number_qt)
;

748

number_qt :
750 xcerpt_int

→ ^(NUMBER_QT_XCERPT_INT xcerpt_int)
752 | literal_variable_qt

→ ^(NUMBER_QT_LITERAL_VARIABLE literal_variable_qt)
754 ;

756 top_level_query_term :
top_term_level_declare_qt

758 → ^(TOP_LEVEL_QUERY_TERM_TOP_TERM_LEVEL_DECLARE top_term_level_declare_qt)
| optional_top_level_qt

760 → ^(TOP_LEVEL_QUERY_TERM_OPTIONAL_TOP_LEVEL optional_top_level_qt)
| term_formula_qt

762 → ^(TOP_LEVEL_QUERY_TERM_TERM_FORMULA term_formula_qt)
| document_specification_qt

764 → ^(TOP_LEVEL_QUERY_TERM_DOCUMENT_SPECIFICATION document_specification_qt)
;

766

top_term_level_declare_qt
768 : ’declare’ ns_decl_qt variable_decl_qt ((’(’ top_level_construct_term ’)’)

| (top_level_construct_term)
770)

→ ^(TOP_TERM_LEVEL_DECLARE_QT ns_decl_qt variable_decl_qt top_level_construct_term)
772 ;

774 optional_top_level_qt :
(optional_modifier ((’(’ descendant_top_level_qt ’)’)

776 | (descendant_top_level_qt)
))

778 → ^(OPTIONAL_TOP_LEVEL_QT_OPTIONAL_MODIFIER optional_modifier descendant_top_level_qt)
| descendant_top_level_qt

780 → ^(OPTIONAL_TOP_LEVEL_QT_DESCENDANT_TOP_LEVEL descendant_top_level_qt)
;

782

descendant_top_level_qt : (descendant_modifier ((’(’ var_restriction_top_level_qt ’)’)
784 | (var_restriction_top_level_qt)

))
786 → ^(DESCENDANT_TOP_LEVEL_QT_DESCENDANT_MODIFIER descendant_modifier var_restriction_top_level_qt)

| var_restriction_top_level_qt
788 → ^(DESCENDANT_TOP_LEVEL_QT_VAR_RESTRICTION_TOP_LEVEL var_restriction_top_level_qt)

;
790

var_restriction_top_level_qt :
792 (term_variable_qt ’→’ structured_qt)

→ ^(VAR_RESTRICTION_TOP_LEVEL_QT_TERM_VARIABLE term_variable_qt structured_qt)
794 | structured_qt

→ ^(VAR_RESTRICTION_TOP_LEVEL_QT_STRUCTURED structured_qt)
796 ;

798 term_formula_qt :
(’not’ ((’(’ top_level_query_term ’)’)

800 | (top_level_query_term)
) condition_clause_qt?)

802 → ^(TERM_FORMULA_QT_NOT top_level_query_term condition_clause_qt?)
| (’and’ ((’(’ top_level_query_term ’,’? (top_level_query_term ’,’?)+ ’)’)

804 | (top_level_query_term ’,’? top_level_query_term)
) condition_clause_qt?)

806 → ^(TERM_FORMULA_QT_AND top_level_query_term+ condition_clause_qt?)
| (’or’ ((’(’ top_level_query_term ’,’? (top_level_query_term ’,’?)+ ’)’)

808 | (top_level_query_term ’,’? top_level_query_term)
) condition_clause_qt?)

810

→ ^(TERM_FORMULA_QT_OR top_level_query_term+ condition_clause_qt?)
812 ;

192

814 document_specification_qt :
’in’ xml_document_specification_qt

816 → ^(DOCUMENT_SPECIFICATION_QT xml_document_specification_qt)
;

818

xml_document_specification_qt :
820 ’xml−document’ ((’((’location_qt xml_decl_qt? doctype_decl_qt? ’))’)

| (location_qt xml_decl_qt? doctype_decl_qt?)
822) xml_document_children_qt

→ ^(XML_DOCUMENT_SPECIFICATION_QT location_qt xml_document_children_qt
824 xml_decl_qt? doctype_decl_qt?)

;
826

location_qt :
828 ’location’ ’=’ (iri

→ ^(LOCATION_QT_IRI iri)
830 | literal_variable_qt)

→ ^(LOCATION_QT_LITERAL_VARIABLE literal_variable_qt)
832 ;

834 xml_decl_qt_standalone :
’standalone’ ’=’ (

836 ’true’
→ ^(XML_DECL_QT_STANDALONE_TRUE)

838 | ’false’
→ ^(XML_DECL_QT_STANDALONE_FALSE)

840 | literal_variable_qt
→ ^(XML_DECL_QT_STANDALONE_LITERAL_VARIABLE literal_variable_qt)

842)
;

844

xml_decl_qt_version :
846 ’xml−version’ ’=’ (

’1.0’
848 → ^(XML_DECL_QT_VERSION_1_0)

| ’1.1’
850 → ^(XML_DECL_QT_VERSION_1_1)

| literal_variable_qt
852 → ^(XML_DECL_QT_VERSION_LITERAL_VARIABLE literal_variable_qt)

)
854 ;

856 xml_decl_qt :
xml_decl_qt_standalone? xml_decl_qt_version?

858

→ ^(XML_DECL_QT xml_decl_qt_standalone? xml_decl_qt_version?)
860 ;

862 doctype_decl_qt : (’system−id’ ’=’ sysid=identifier_qt)?
(’public−id’ ’=’ pubid=identifier_qt)?

864 (’root−name’ ’=’ rootid=identifier_qt)?
→ ^(DOCTYPE_DECL_QT $sysid? $pubid? $rootid?)

866 ;

868 xml_document_children_qt
: (’[[’ xml_document_content_qt ’]]’)

870 → ^(XML_DOCUMENT_CHILDREN_QT_DOUBLEBRACKETS xml_document_content_qt)
| (’{{’ xml_document_content_qt ’}}’)

872 → ^(XML_DOCUMENT_CHILDREN_QT_DOUBLEBRACES xml_document_content_qt)
| (’{’ xml_document_content_qt ’}’)

874 → ^(XML_DOCUMENT_CHILDREN_QT_SINGLEBRACES xml_document_content_qt)
| (’[’ xml_document_content_qt ’]’)

876 → ^(XML_DOCUMENT_CHILDREN_QT_SINGLEBRACKETS xml_document_content_qt)
;

878

xml_document_content_qt :
880 (annotation_content_qt ’,’?)* top_level_query_term

(annotation_content_qt ’,’?)*
882 → ^(XML_DOCUMENT_CONTENT_QT top_level_query_term annotation_content_qt*)

;

193

884

annotation_content_qt :
886 comment_qt

→ ^(ANNOTATION_CONTENT_QT_COMMENT comment_qt)
888 | processing_instruction_qt

→ ^(ANNOTATION_CONTENT_QT_PROCESSING_INSTRUCTION processing_instruction_qt)
890 ;

892

/* CONSTRUCT TERMS */
894 construct_term :

term_level_declare_ct
896 → ^(CONSTRUCT_TERM_TERM_LEVEL_DECLARE term_level_declare_ct)

| reference_ct
898 → ^(CONSTRUCT_TERM_REFERENCE reference_ct)

| modified_ct
900 → ^(CONSTRUCT_TERM_MODIFIED modified_ct)

| structured_ct
902 → ^(CONSTRUCT_TERM_STRUCTURED structured_ct)

| content_ct
904 → ^(CONSTRUCT_TERM_CONTENT content_ct)

| term_variable_ct
906 → ^(CONSTRUCT_TERM_TERM_VARIABLE term_variable_ct)

;
908

reference_ct :
910 ’^’ identifier_ct

→ ^(REFERENCE_CT identifier_ct)
912 ;

914 term_level_declare_ct :
’declare’ ns_declaration_ct ((’(’ (construct_term ’,’?)* ’)’)

916 | (construct_term?)
)

918 → ^(TERM_LEVEL_DECLARE_CT ns_declaration_ct construct_term*)
;

920

identifier_ct :
922 ncname

→ ^(IDENTIFIER_CT_NCNAME ncname)
924 | iri

→ ^(IDENTIFIER_CT_IRI iri)
926 | string

→ ^(IDENTIFIER_CT_STRING string)
928 | literal_variable_ct

→ ^(IDENTIFIER_CT_LITERAL_VARIABLE literal_variable_ct)
930 ;

932 ns_declaration_ct :
(ns_prefix_declaration_ct ’,’?)*

934 (ns_default_declaration_ct ’,’?)?
(ns_prefix_declaration_ct ’,’?)*

936 → ^(NS_DECLARATION_CT ns_default_declaration_ct? ns_prefix_declaration_ct*)
;

938

ns_prefix_declaration_ct :
940 ’ns−prefix’ identifier_ct ’=’ (

iri
942 → ^(NS_PREFIX_DECLARATION_CT identifier_ct iri)

| literal_variable_ct)
944 → ^(NS_PREFIX_DECLARATION_CT identifier_ct literal_variable_ct)

;
946

ns_default_declaration_ct :
948 literal_content_ct

→ ^(NS_DEFAULT_DECLARATION_CT_LITERAL_CONTENT literal_content_ct)
950 | comment_ct

→ ^(NS_DEFAULT_DECLARATION_CT_COMMENT comment_ct)
952 | processing_instruction_ct

→ ^(NS_DEFAULT_DECLARATION_CT_PROCESSING_INSTRUCTION processing_instruction_ct)

194

954 ;

956 content_ct :
literal_content_ct

958 → ^(CONTENT_CT_LITERAL_CONTENT literal_content_ct)
| comment_ct

960 → ^(CONTENT_CT_COMMENT comment_ct)
| processing_instruction_ct

962 → ^(CONTENT_CT_PROCESSING_INSTRUCTION processing_instruction_ct)
;

964

literal_content_ct :
966 string

→ ^(LITERAL_CONTENT_CT_STRING string)
968 | literal_variable_ct

→ ^(LITERAL_CONTENT_CT_LITERAL_VARIABLE literal_variable_ct)
970 ;

972 comment_ct :
’xcerpt’ ’:’ ’comment’ ((’(’ ’)’)

974 ?
// | ()

976) ’[’ literal_content_ct ’]’
→ ^(COMMENT_CT literal_content_ct)

978 ;

980 processing_instruction_ct :
(’xcerpt’ ’:’ ’processing−instruction’) | (’xcerpt’ ’:’ ’pi’)

982 ((’(’ ’target−name’ ’=’ identifier_ct ’)’)
| (’target−name’ ’=’ identifier_ct)

984) ’[’ literal_content_ct ’]’
→ ^(PROCESSING_INSTRUCTION_CT identifier_ct literal_content_ct)

986 ;

988 structured_ct :
local_spec_ct children_list_ct

990 → ^(STRUCTURED_CT local_spec_ct children_list_ct)
;

992

children_list_ct :
994 (’[’ (construct_term ’,’?)* ’]’)

→ ^(CHILDREN_LIST_CT_BRACKETS construct_term*)
996 | (’{’ (construct_term ’,’?)* ’}’)

→ ^(CHILDREN_LIST_CT_BRACES construct_term*)
998 ;

1000 local_spec_ct :
term_identifier_ct? ns_label_ct attr_term_list_ct

1002 → ^(LOCAL_SPEC_CT ns_label_ct attr_term_list_ct term_identifier_ct?)
;

1004

term_identifier_ct :
1006 identifier_ct ’@’

→ ^(TERM_IDENTIFIER_CT identifier_ct)
1008 ;

1010 ns_label_ct :
(ns=identifier_ct ’:’)? val=identifier_ct

1012 → ^(NS_LABEL_CT $val $ns?)
;

1014

attr_term_list_ct :
1016 ((’(’ (attr_term_ct ’,’?)* ’)’)

| (attr_term_ct?))
1018 → ^(ATTR_TERM_LIST_CT attr_term_ct*)

;
1020

attr_term_ct :
1022 base_attr_term_ct

→ ^(ATTR_TERM_CT_BASE_ATTR_TERM base_attr_term_ct)

195

1024 | term_variable_ct
→ ^(ATTR_TERM_CT_TERM_VARIABLE term_variable_ct)

1026 | modified_attr_term_ct
→ ^(ATTR_TERM_CT_MODIFIED_ATTR_TERM modified_attr_term_ct)

1028 ;

1030 base_attr_term_ct :
ns_label_ct ’=’ literal_content_ct

1032 → ^(BASE_ATTR_TERM_CT ns_label_ct literal_content_ct)
;

1034

top_level_construct_term :
1036 top_term_level_declare_ct

→ ^(TOP_LEVEL_CONSTRUCT_TERM_TOP_TERM_LEVEL_DECLARE top_term_level_declare_ct)
1038 | structured_ct

→ ^(TOP_LEVEL_CONSTRUCT_TERM_STRUCTURED structured_ct)
1040 ;

1042 top_term_level_declare_ct :
’declare’ ns_declaration_ct ((’(’ top_level_construct_term ’)’)

1044 | (top_level_construct_term)
)

1046 → ^(TOP_TERM_LEVEL_DECLARE_CT ns_declaration_ct top_level_construct_term)
;

1048

variable_ct :
1050 term_variable_ct

→ ^(VARIABLE_CT_TERM_VARIABLE term_variable_ct)
1052 | literal_variable_ct

→ ^(VARIABLE_CT_LITERAL_VARIABLE literal_variable_ct)
1054 ;

1056 term_variable_ct :
var_specification_ct

1058 → ^(TERM_VARIABLE_CT var_specification_ct)
;

1060

literal_variable_ct :
1062 var_specification_ct

→ ^(LITERAL_VARIABLE_CT var_specification_ct)
1064 ;

1066 bughelper4 : ’variable’ | ’var’ ;
var_specification_ct :

1068 bughelper4? ncname
→ ^(VAR_SPECIFICATION_CT ncname)

1070 ;

1072 modified_ct :
grouping_ct

1074 → ^(MODIFIED_CT_GROUPING grouping_ct)
| optional_ct

1076 → ^(MODIFIED_CT_OPTIONAL optional_ct)
;

1078

modified_attr_term_ct :
1080 grouping_attr_term_ct

→ ^(MODIFIED_ATTR_TERM_CT_GROUPING_ATTR_TERM grouping_attr_term_ct)
1082 | optional_attr_term_ct

→ ^(MODIFIED_ATTR_TERM_CT_OPTIONAL_ATTR_TERM optional_attr_term_ct)
1084 ;

1086 grouping_ct :
grouping_modifier ((’(’ (construct_term ’,’?)* ’)’)

1088 | (construct_term?)
) groupby? orderby?

1090 → ^(GROUPING_CT grouping_modifier construct_term* groupby? orderby?)
;

1092

196

1094 grouping_attr_term_ct :
grouping_modifier ((’(’ attr_term_ct? ’)’)

1096 | (attr_term_ct?)
) groupby? orderby?

1098 → ^(GROUPING_ATTR_TERM_CT grouping_modifier attr_term_ct? groupby? orderby?)
;

1100

1102 grouping_modifier :
’all’

1104 → ^(GROUPING_MODIFIER_ALL)
| (’some’ number_ct)

1106 → ^(GROUPING_MODIFIER_SOME number_ct)
| (’first’ interval_ct)

1108 → ^(GROUPING_MODIFIER_FIRST interval_ct)
;

1110

orderby_list :
1112 optional_variable

→ ^(ORDERBY_LIST_OPTIONAL_VARIABLE optional_variable)
1114 | variable_ct

→ ^(ORDERBY_LIST_VARIABLE variable_ct)
1116 ;

1118 orderby :
’order−by’ ((’(’ (orderby_list ’,’?)* ’)’)

1120 | (orderby_list?)
) order_relation?

1122 → ^(ORDERBY orderby_list* order_relation?)
;

1124

1126 order_relation :
’ascending’

1128 → ^(ORDER_RELATION_ASCENDING)
| ’descending’

1130 → ^(ORDER_RELATION_DESCENDING)
| ncname

1132 → ^(ORDER_RELATION_NCNAME ncname)
;

1134

groupby_list :
1136 optional_variable

→ ^(GROUPBY_LIST_OPTIONAL_VARIABLE optional_variable)
1138 | variable_ct

→ ^(GROUPBY_LIST_VARIABLE variable_ct)
1140 ;

1142 groupby :
’group−by’ ((’(’ (groupby_list ’,’?)* ’)’)

1144 | (groupby_list?)
) equivalence_relation?

1146 → ^(GROUPBY groupby_list* equivalence_relation?)
;

1148

1150 optional_variable :
optional_modifier variable_ct

1152 → ^(OPTIONAL_VARIABLE optional_modifier variable_ct)
;

1154 equivalence_relation :
ncname

1156 → ^(EQUIVALENCE_RELATION ncname)
;

1158

1160 interval_ct :
(number_ct ’−’ number_ct)

1162 → ^(INTERVAL_CT_FROM_TO number_ct+)
| (number_ct ’−’)

197

1164 → ^(INTERVAL_CT_FROM number_ct)
| ’+’

1166 → ^(INTERVAL_CT_PLUS)
;

1168

number_ct :
1170 xcerpt_int

→ ^(NUMBER_CT_XCERPT_INT xcerpt_int)
1172 | literal_variable_ct

→ ^(NUMBER_CT_LITERAL_VARIABLE literal_variable_ct)
1174 ;

1176 optional_ct_default :
(’with−default’ ((’(’ (construct_term ’,’?)* ’)’)

1178 | (construct_term?)
))

1180 → ^(OPTIONAL_CT_DEFAULT construct_term*)
;

1182

optional_ct :
1184 optional_modifier ((’(’ (construct_term ’,’?)* ’)’)

| (construct_term?)
1186) optional_ct_default?

→ ^(OPTIONAL_CT optional_modifier construct_term* optional_ct_default?)
1188 ;

1190

optional_attr_term_ct_default :
1192 (’with−default’ ((’(’ (attr_term_ct ’,’?)* ’)’)

| (attr_term_ct?)
1194))

→ ^(OPTIONAL_ATTR_TERM_CT_DEFAULT attr_term_ct*)
1196 ;

1198 optional_attr_term_ct :
optional_modifier ((’(’ (attr_term_ct ’,’?)* ’)’)

1200 | (attr_term_ct?)
) optional_attr_term_ct_default?

1202 → ^(OPTIONAL_ATTR_TERM_CT optional_modifier attr_term_ct* optional_attr_term_ct_default?)
;

1204

optional_modifier :
1206 ’optional’

→ ^(OPTIONAL_MODIFIER)
1208 | ’opt’

→ ^(OPTIONAL_MODIFIER)
1210 ;

1212

/* DATA TERMS */
1214 data_term :

term_level_declare_dt
1216 → ^(DATA_TERM_TERM_LEVEL_DECLARE term_level_declare_dt)

| reference_dt
1218 → ^(DATA_TERM_REFERENCE reference_dt)

| structured_dt
1220 → ^(DATA_TERM_STRUCTURED structured_dt)

| content_dt
1222 → ^(DATA_TERM_CONTENT content_dt)

;
1224

reference_dt :
1226 ’^’ identifier_dt

→ ^(REFERENCE_DT identifier_dt)
1228 ;

1230 term_level_declare_dt :
’declare’ ns_declaration_dt ((’(’ (data_term ’,’?)* ’)’)

1232 | (data_term?)
)

198

1234 → ^(TERM_LEVEL_DECLARE_DT ns_declaration_dt data_term*)
;

1236

identifier_dt :
1238 ncname

→ ^(IDENTIFIER_DT_NCNAME ncname)
1240 | iri

→ ^(IDENTIFIER_DT_IRI iri)
1242 | string

→ ^(IDENTIFIER_DT_STRING string)
1244 ;

1246 ns_declaration_dt :
(ns_prefix_declaration_dt ’,’?)*

1248 (ns_default_declaration_dt ’,’?)?
(ns_prefix_declaration_dt ’,’?)*

1250 → ^(NS_DECLARATION_DT ns_default_declaration_dt? ns_prefix_declaration_dt*)
;

1252

ns_prefix_declaration_dt :
1254 ’ns−prefix’ identifier_dt ’=’ iri

→ ^(NS_PREFIX_DECLARATION_DT identifier_dt iri)
1256 ;

1258 ns_default_declaration_dt :
’ns−default’ iri

1260 → ^(NS_DEFAULT_DECLARATION_DT iri)
;

1262

content_dt :
1264 literal_content_dt

→ ^(CONTENT_DT_LITERAL_CONTENT literal_content_dt)
1266 | comment_dt

→ ^(CONTENT_DT_COMMENT comment_dt)
1268 | processing_instruction_dt

→ ^(CONTENT_DT_PROCESSING_INSTRUCTION processing_instruction_dt)
1270 ;

1272 literal_content_dt :
string

1274 → ^(LITERAL_CONTENT_DT string)
;

1276

comment_dt :
1278 ’xcerpt’ ’:’ ’comment’ ((’(’ ’)’)

?
1280) ’[’ literal_content_dt ’]’

→ ^(COMMENT_DT literal_content_dt)
1282 ;

1284 processing_instruction_dt :
(’xcerpt’ ’:’ ’processing−instruction’) | (’xcerpt’ ’:’ ’pi’)

1286 ((’(’ ’target−name’ ’=’ identifier_dt ’)’)
| (’target−name’ ’=’ identifier_dt)

1288) ’[’ literal_content_dt ’]’
→ ^(PROCESSING_INSTRUCTION_DT identifier_dt literal_content_dt)

1290 ;

1292 structured_dt :
local_spec_dt

1294 → ^(STRUCTURED_DT_LOCAL_SPEC local_spec_dt)
| children_list_dt

1296 → ^(STRUCTURED_DT_CHILDREN_LIST children_list_dt)
;

1298

children_list_dt :
1300 (’[’ (data_term ’,’?)* ’]’)

→ ^(CHILDREN_LIST_DT_BRACKETS data_term*)
1302 | (’{’ (data_term ’,’?)* ’}’)

→ ^(CHILDREN_LIST_DT_BRACES data_term*)

199

1304 ;

1306 local_spec_dt :
term_identifier_dt? ns_label_dt attr_term_list_dt

1308 → ^(LOCAL_SPEC_DT ns_label_dt attr_term_list_dt term_identifier_dt?)
;

1310

term_identifier_dt :
1312 identifier_dt ’@’

→ ^(TERM_IDENTIFIER_DT identifier_dt)
1314 ;

1316 ns_label_dt :
(left=identifier_dt ’:’)? right=identifier_dt

1318 → ^(NS_LABEL_DT $right $left)
;

1320

attr_term_list_dt :
1322 (’(’ (attr_term_dt ’,’?)* ’)’)

| ((attr_term_dt)?)
1324 → ^(ATTR_TERM_LIST_DT attr_term_dt*)

;
1326

attr_term_dt :
1328 base_attr_term_dt

→ ^(ATTR_TERM_DT base_attr_term_dt)
1330 ;

1332 base_attr_term_dt :
ns_label_dt ’=’ literal_content_dt

1334 → ^(BASE_ATTR_TERM_DT ns_label_dt literal_content_dt)
;

1336

top_level_data_term :
1338 top_term_level_declare_dt

→ ^(TOP_LEVEL_DATA_TERM_TOP_TERM_LEVEL_DECLARE top_term_level_declare_dt)
1340 | structured_dt

→ ^(TOP_LEVEL_DATA_TERM_STRUCTURED structured_dt)
1342 ;

1344 top_term_level_declare_dt :
’declare’ ns_declaration_dt ((’(’ top_level_data_term ’)’)

1346 | (top_level_data_term)
)

1348 → ^(TOP_TERM_LEVEL_DECLARE_DT ns_declaration_dt top_level_data_term)
;

1350

1352

/* LITERAL STRUCTURES */
1354 // NOTE: These definitions are NOT complete and thus NOT conforming to any specification !!!

NCNAME : (LETTER | ’_’) NAMECHAR* ;
1356 ncname : NCNAME

→ ^(LITERAL_NCNAME NCNAME)
1358 ;

1360 iri : ncname
→ ^(IRI ncname)

1362 ;
string : ’"’ (options {greedy=false;} : NCNAME) ’"’

1364 → ^(STRING NCNAME)
;

1366 stringcharacter : ncname// | line_feed | carriage_return ;
→ ^(STRINGCHARACTER ncname)

1368 ;
line_feed : ’\n’ ;

1370 carriage_return : ’\r’ ;
number : xcerpt_int

1372 → ^(NUMBER xcerpt_int)
;

200

1374 xcerpt_int : DIGIT*
;

1376 regexp : NCNAME;//’/’ NCNAME ’/’ ;
// TODO

1378 ere_expression : ;
whitespace : ;

1380 comment_char : ;
end_of_line : ;

1382 end_of_line_comment : ;
block_comment : ;

1384

//keyword : ’declare’ | ’xcerpt’ | ’optional’ | ’opt’ /* ... */ ;
1386 WHITESPACE : (’\t’ | ’ ’ | ’\r’ | ’\n’| ’\u000C’)+ { $channel = 99; } ;

LETTER : ’a’..’z’ | ’A’ .. ’Z’ ;
1388 DIGIT : ’0’ .. ’9’ ;

NAMECHAR : LETTER | DIGIT | ’.’ | ’−’ | ’_’ | ’:’ ;
1390 CONSTRUCT : ’_’;

PROGRAM : ’_’;
1392 DECLARE : ’_’;

GOAL : ’_’;

201

202

Bibliography

[1] S. Abiteboul and P. C. Kanellakis. Object Identity as a Query Language Primitive. Journal of the
ACM, 45(5):798–842, 1998.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wienerm. The Lorel Query Language for
Semistructured Data. Intl. Journal on Digital Libraries, 1(1):68–88, 1997.

[3] K. Apt, H. Blair, and A. Walker. Towards a Theory of Deductive Knowledge. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, chapter 2, pages 89–148. Morgan
Kaufmann, 1988.

[4] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System
R: Relational Approach to Database Management. ACM Transactions on Database Systems,
1(2):97–137, 1976.

[5] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, and S. Zdonik. The Object-oriented
Database System Manifesto. In F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Building an
Object-oriented Database System: The Story of O2, Morgan Kaufmann Series In Data Management
Systems, chapter 1, pages 1–20. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[6] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson,
B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised Report on the
Algorithm Language ALGOL 60. Communications of the ACM, 6(1):1–17, 1963.

[7] J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query Languages: A Survey.
In J. Maluszinsky and N. Eisinger, editors, Reasoning Web Summer School 2005, number 3564 in
LNCS. Springer-Verlag, 2005.

[8] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition. Recommendation,
W3C, 2004.

[9] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language. Working draft, W3C, 2005.

[10] T. Bray, D. Hollander, and A. Layman. Namespaces in XML. Recommendation, W3C, 1999.

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language
(XML) 1.0 (Third Edition). Recommendation, W3C, 2004.

203

[12] L. Braz. Visual Syntax Diagrams for Programming Language Statements. In Proc. Intl. Conf. on
Systems Documentation, pages 23–27. ACM Press, 1990.

[13] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Querying the Web Reconsidered:
Design Principles for Versatile Web Query Languages. Journal of Semantic Web and Information
Systems, 1(2), 2005.

[14] F. Bry, T. Furche, S. Schaffert, and A. Schröder. Simulation Unification. Deliverable I4-D5,
REWERSE, 2005.

[15] J. Clark. Associating Style Sheets with XML Documents, Version 1.0. Recommendation, W3C,
1999.

[16] J. Clark. XSL Transformations, Version 1.0. Recommendation, W3C, 1999.

[17] J. Clark. RELAX NG Compact Syntax. Committee specification, OASIS, 2002.

[18] J. Clark and M. Murata. RELAX NG Specification. Committee specification, OASIS, 2001.

[19] E. F. Codd. Extending the Database Relational Model to Capture more Meaning. ACM Transactions
on Database Systems, 4(4):397–434, 1979.

[20] B. Courcelle. Fundamental Properties of Infinite Trees. Theoretical Computer Science, 25:95–169,
1983.

[21] J. Cowan and R. Tobin. XML Information Set (2nd Ed.). Recommendation, W3C, 2004.

[22] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF. Request for Comment
(RFC) 2234, IETF, 1997.

[23] U. Dayal, N. Goodman, and R. H. Katz. An Extended Relational Algebra with Control over
Duplicate Elimination. In Proc. ACM Symposium on Principles of Database Systems, pages
117–123, New York, NY, USA, 1982. ACM Press.

[24] S. DeRose, E. Maier, and D. Orchard. XML Linking Language (XLink) Version 1.0. Recommenda-
tion, W3C, 2001.

[25] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML. In Proc.
Intl. World Wide Web Conf., 1999.

[26] A. Dovier, C. Piazza, and A. Policriti. An efficient Algorithm for Computing Bisimulation Equiva-
lence. Theoretical Computer Science, 311(1-3):221–256, 2004.

[27] M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs). RFC (Request for
Comments) 3987, IEEE, 2005.

[28] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. Recommendation,
W3C, 2004.

[29] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and XPath 2.0 Data
Model. Working draft, W3C, 2005.

[30] T. Furche, F. Bry, and S. Schaffert. Initial Draft of a Language Syntax. Deliverable I4-D6, REWERSE,
2006.

204

[31] R. Gentilini, C. Piazza, and A. Policriti. From Bisimulation to Simulation: Coarsest Partition
Problems. Journal of Automated Reasoning, 31(1):73–103, 2003.

[32] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification, Third Edition. Addison-
Wesley Professional, 3rd edition, 2005.

[33] T. A. Group. Ieee standard 1003.1, 2004 edition (aka posix.1). IEEE Standard 1003.1, IEEE, The
Open Group, 2001-2004.

[34] S. Grumbach and T. Milo. Towards Tractable Algebras for Bags. In Proc. ACM Symposium on
Principles of Database Systems, pages 49–58. ACM Press, 1993.

[35] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing Simulations on Finite and Infinite
Graphs. In Proc. Symp. on Foundations of Computer Science (FOCS), page 453, Washington, DC,
USA, 1995. IEEE Computer Society.

[36] ISO/IEC. ISO/IEC 14977:1996, Syntactic Metalanguage – Extended BNF, 1996.

[37] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and XQuery 1.0 Serialization. Working
draft, W3C, 2005.

[38] S. N. Khoshafian and G. P. Copeland. Object Identity. In Proc. Intl. Conf. on Object-oriented
Programming Systems, Languages and Applications, pages 406–416, New York, NY, USA, 1986.
ACM Press.

[39] A. Klausner and N. Goodman. Multirelations — Semantics and Languages. In Proc. Intl. Conf. on
Very Large Data Bases, volume 11, pages 251–258. Morgan Kaufmann, 1985.

[40] G. M. Kuper and M. Y. Vardi. The Logical Data Model. ACM Transactions on Database Systems,
18(3):379–413, 1993.

[41] L. Libkin and L. Wong. Query Languages for Bags and Aggregate Functions. Journal of Computer
and System Sciences, 55(2):241–272, 1997.

[42] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators. Working
draft, W3C, 2005.

[43] J. Marsh. XML Base. Recommendation, W3C, 2001.

[44] J. Marsh, D. Veillard, and N. Walsh. xml:id Version 1.0. Recommendation, W3C, 2005.

[45] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: a database management
system for semistructured data. SIGMOD Record, 26(3):54–66, 1997.

[46] R. Milner. An Algebraic Definition of Simulation Between Programs. In Proc. Intl. Joint Conf. on
Artificial Intelligence, pages 481–489, 1971.

[47] Object Management Group. UML 2.0 Superstructure Specification. Specification, Object Man-
agement Group, 2005.

[48] T. Przymusinsik. On the Declarative Semantics of Deductive Databases and Logic Programs. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, chapter 5, pages
193–216. Morgan Kaufmann, 1988.

205

[49] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. Disserta-
tion/Ph.D. thesis, University of Munich, 2004.

[50] S. Schaffert, F. Bry, and T. Furche. Initial Draft of a Possible Declarative Semantics for the
Language. Deliverable I4-D4, REWERSE, 2005.

[51] D. W. Shipman. The Functional Data Model and the Data Languages DAPLEX. ACM Transactions
on Database Systems, 6(1):140–173, 1981.

[52] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The Design and Implementation of INGRES.
ACM Transactions on Database Systems, 1(3):189–222, 1976.

[53] D. H. D. Warren, L. M. Pereira, and F. Pereira. Prolog - the Language and its Implementation
compared with Lisp. In Proc. Symposium on Artificial Intelligence and Programming Languages,
pages 109–115, 1977.

[54] M. M. Zloof. Query By Example. In AFIPS National Computer Conference, 1975.

206

	Introduction
	Meta-Syntax Notations for Abstract and Concrete Syntax
	Abstract Syntax: UML Diagrams
	Concrete Syntax: EBNF
	Concrete Syntax: Relax NG

	I Definition of the Core Language
	Xcerpt: A Versatile Web Query Language
	Data Model
	Terms for Representing Data and Queries

	A Textual Non-XML Term Syntax for Xcerpt
	Lexical Structures
	Reserved Names
	Whitespace and Comments

	Hybrid XML-style Term Syntax
	Pure XML Syntax

	Specifying Semi-structured Data: Xcerpt's Data Terms
	Defining Data Terms
	Textual Term Syntax: Basic Data Terms
	XML-style Term Syntax: Basic Data Terms
	Pure XML Syntax: Basic Data Terms

	Content Data Terms
	Textual Term Syntax: Content Data Terms
	XML-style Term Syntax: Content Data Terms
	Pure XML Syntax: Content Data Terms

	Structured Data Terms
	Textual Term Syntax: Structured Data Terms
	XML-style Term Syntax: Structured Data Terms
	Pure XML Syntax: Structured Data Terms

	Top-level Data Terms
	Textual Term Syntax: Top-Level Data Terms
	XML-style Term Syntax: Top-Level Data Terms
	Pure XML Syntax: Top-Level Data Terms

	Exemplary Data Term
	XML Documents as Data Terms

	How to specify queries? Part 1: Construction
	An Aside: A Parameterized Model for Terms
	Specifying New Data: Construct Terms
	Substitutions and Substitution Sets

	The Shape of Construct Term
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Grouping in Construct Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Optional Construct Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Instantiating a Construct Term

	How to specify queries? Part 2: Selection
	Specifying Query Patterns: Query Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Variables in Query Terms
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Incomplete Patterns
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Top-level Query Terms
	Term Formulas
	Document Specifications
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Summary: Modifiers and Where they Occur

	Programming in Xcerpt: Programs, Goals, and Rules
	Xcerpt Programs
	Textual Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	Semantic Restrictions on Xcerpt Programs
	Range Restrictedness
	Polarity of Subterms

	Negation and Grouping Stratification

	II Language Extensions and Open Issues
	Node Identity in Xcerpt
	Introduction
	Object Identity in Data Management
	``Do we really need object identity?''
	Regular Infinite Trees
	Object Identity: Updates, Sharing,

	Aims of the Proposal
	Proposal 1: Infinite Regular Trees
	Proposal 2: Hidden Identity
	Conclusion and Future Work

	Grouping and Aggregation in Xcerpt
	Introduction
	Multirelations, Bags, and Sequences
	Solution Proposal

	Modules in Xcerpt 2.0---Reuseware Integration
	Introduction
	Rule Languages
	Framework for rule language module systems
	Module system operators
	Module Definition Operators
	Module Access Operators

	Extending Xcerpt for Module Support
	Abstract Syntax
	Term Syntax

	RDF Access in Xcerpt 2.0---An Outlook
	Introduction
	Challenges Related to the Data Model
	Graph Data Model and References
	Labeled Edges
	Incomplete and Unbounded Data
	RDF Graphs as Xcerpt Data Terms
	Order of Sub-Terms

	An Intuitive Syntax for Versatile Web Query Languages
	Common Query Constructs for the Web and the Semantic Web
	Query Patterns and Answer Closedness
	Injectivity and Querying RDF Sequences
	Blank Node Treatment
	Negation and Breadth-Complete Queries
	Optional Sub-Terms

	From Queries to Transformations
	Construct-Query-Rules and User Defined Reasoning
	Grouping Constructs
	Versatile access to XML and RDF

	Conclusion and Outlook

	Open Issues: Language Constructs
	General Issues
	Defaults and Default Modes

	Construct Specific Issues
	Conditional Construction and optional Terms
	Query Formulas as Subterms
	withouts as Direct Siblings

	Functions and Libraries: Built-In and User-defined
	Variables
	Varia

	Querying the Type of Data, Typed Accessors
	Collapsing Text Nodes

	Open Issues: Specific to Data Representation Format
	Serializing to XML and from XML

	Open Issues: Specific to Concrete Syntax
	Non-XML Term Syntax
	XML-style Term Syntax
	Pure XML Syntax

	III Full Language Grammars
	Grammar for Non-XML Term Syntax
	Literal Structures
	Data Terms
	Construct Terms
	Query Terms
	Programs

	Grammar for XML-style Term Syntax
	Literal Structures
	Data Terms
	Construct Terms
	Query Terms
	Programs

	Relax NG Schema for XML Syntax
	Parameterized Grammars: Terms, Declarations, Modifiers, etc.
	Declarations
	Conditions
	Formulas
	Modifiers
	Term

	Grammar for Xcerpt Programs
	Exemplary Data Term

	ANTLR Grammar for Xcerpt 2.0

