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Abstract
Web query languages promise convenient and e�cient access to Web data such as XML, RDF, or Topic
Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for
e�ective and convenient query authoring, particularly tailored to versatile access to data in di�erent Web
formats such as XML or RDF. However, without an implementation all the convenience matters little.
¿erefore, this deliverable introduces prototypes, APIs, and Web services that are available to Xcerpt users
now. It also discusses a few issues related to its implementation as well as an outlook towards Xcerpt
2.0, a re-engineering of Xcerpt that is still heavily under development, but expected to provide improved
performance and coverage of the language speci�cation.

¿e �rst part of this deliverable details Xcerpt 1.0, the �rst prototype for Xcerpt. In particular, it
contains the �rst published description of the Xcerpt API and its companion Web service available at
http://rewerse.net/I4/software/Xcerpt/. ¿e second part introduces revised principles of Xcerpt
2.0 as well as some language extensions not covered well in Xcerpt 1.0, viz. functions and modules, and
their implementation
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Overview of this Deliverable

¿e purpose of this deliverable is, �rst and foremost, to give an overview over the existing tools around
Xcerpt, their state and availability, techniques and algorithms used for implementing, where these are
relevant and novel. Second, we give an outlook on Xcerpt 2.0, the next generation implementation of
Xcerpt.

¿e �rst part is devoted to descriptions of the existing Xcerpt 1.0 prototype as well as its Java-API and
Web demonstrator. Chapter 1 introduces the command-line prototype for Xcerpt 1.0 (that is available
now from Sourceforge as well as http://rewerse.net/I4/software/Xcerpt/). A er a brief tutorial on
using the command-line interface, we summarize the structure of the source code to make integration
and extensions of Xcerpt easier. In particular, we discuss the implementation of the constraint solver and
the memoization matrix supporting e�cient simulation uni�cation.

In Chapter 2, we detail the operational semantics of Xcerpt 1.0, viz. the rules governing constraint
solving that implement the novel form of uni�cation (used for pattern and formula matching) in Xcerpt,
called simulation uni�cation.

Easier access to Xcerpt is provided in Chapter 3 in form of an object-oriented API providing much
the same features as database APIs for relational databases or XQuery such as JDBC or XQJ. We give a
gentle introduction to using Xcerpt this way in form of a tutorial and also provide a sample application: a
Web service the allows for easy demonstration and experimentation with Xcerpt using the Xcerpt API for
accessing and presenting query results.

Xcerpt 1.0 Demonstrator: http://rewerse.net/I4/software/Xcerpt/
A new demonstrator for Xcerpt that allows you without any so ware installation to
freely test Xcerpt’s features. A few basic examples as well as an online tutorial are
provided to get you started. Please not, that this interface is not tested extensively.
In particular, don’t enter large amounts of data in any of the form �elds. Rather try
using access to Web resources in Xcerpt itself.

¿e remainder of this deliverable is more forward-looking: It introduces revised principles for Xcerpt
2.0 and follows by picking out two particular issues related to the Xcerpt 2.0 prototype that we have
been working on recently. Both issues are actually results of cooperations between REWERSE I3 and
I4 working groups. In particular, Chapter 6 provides a look at modules in Xcerpt that is a result of a
close cooperation with I3 on a framework for modules in rule languages (for more details on the generic
composition framework and its use for modules see recent I3 deliverables and [41, 4]).
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Chapter 1

Xcerpt 1.0 Prototype

As part of this deliverable, a prototypical runtime system for evaluating Xcerpt programs has been
implemented. ¿is runtime system (from now on called “the prototype”) serves both as a testbed for
new features and algorithms, and as a means to implement and test Xcerpt queries. Being a prototype,
this implementation lacks some features that are desirable for practical applications (like the negation
constructs not and without) and evaluation speed was not one of the primary goals (although evaluation
is reasonably fast in many cases).

¿e runtime system is implemented in the functional language Haskell which, due to its purely
functional approach, is particularly well suited for the purpose of prototypical implementations. Haskell
allows to program at a very high level of abstraction and thus to stay close to the more formal de�nition of
the evaluation algorithm(s) in Deliverable I4-D11.

¿e following sections illustrate various aspects of the prototype and its evaluation. Since the complete
implementation is rather extensive (approximately 6500 lines of code), this chapter only highlights impor-
tant aspects while the complete source code is provided in electronic form at http://www.xcerpt.org.
Most of the code presented here is furthermore simpli�ed over the real implementation for presentation
purposes. ¿e descriptions here are thus rather meant as a guide to the source code than as a standalone
description and in most parts require to have the source code at hand. ¿e documentation in this chapter
is structured according to the module structure of the source code. Each section starts with a small
illustration of the (sub-)module hierarchy.

¿e source code of the prototype is copyright of the authors and made available under the GNU
General Public License (GPL), a copy of which is contained in the source archive. It uses several packages
from third parties, particularly the HaXML and HXML XML parsers, and an implementation of the HTTP
protocol. HaXML is available under GNU Library General Public Licence (LGPL), and HXML and HTTP
under BSD license. All components are Open Source and may be distributed freely. ¿e code is compiled
with the Glasgow Haskell Compiler (GHC) and runs on both Unix andWindows systems. Make�les for
make on Unix are provided.

1.1 Usage of the Prototype

¿e Xcerpt prototype consists of two callable Unix or Windows binary programs:

• xcerpt (or xcerpt.exe) implements the command line interpreter

• convert (or convert.exe) converts between di�erent Xcerpt syntaxes (i.e. XML and Xcerpt).
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xcerpt can operate in two modes: either with a program as argument (evaluation mode), or in
interactive command mode. ¿e �rst mode of operation is most frequently used and simply evaluates
the given program, which can be read either from a �le or from standard input. ¿e second mode of
operation serves mainly debugging purposes and allows to test various aspects of the program evaluation
(like uni�cation).

1.1.1 Command Line Switches

¿e program xcerpt supports the following command line options. As is common on Unix systems, all
options are pre�xed by - and provided in both a short and a long form:

short option long option description
-V -version show version number
-h, -? -help show usage
-I -interactive launch interactive interface
-c -cgi add CGI headers in output
-g term -goal=term evaluate query term against program
-p FILE -program=FILE evaluate program
-i <format> -in=<format> input format
-o <format> -out=<format> output format

¿e command line switch -I starts the prototype with the interactive interface, otherwise, it is started
in evaluation mode. ¿e switch -c is useful when using Xcerpt programs as CGI1 scripts that are evaluated
on aWeb server; it adds appropriate HTTP headers (like Content-Type:) to the output that allow browsers
to render the result correctly.

As input format (switch -i), the prototype supports xml (the Xcerpt program is in XML syntax),
xcerpt1 (the Xcerpt program is in the old Xcerpt syntax), and xcerpt2 (the Xcerpt program is in the new
Xcerpt syntax). If no input format is speci�ed, the default value of xcerpt2 is used. Output formats can
be speci�ed only, if the goals of the program do not contain an explicit format speci�cation. ¿e -o switch
supports the same arguments as -i. Other switches are explained in the following Section.

Running an Xcerpt Program

¿e basic command line syntax for running an Xcerpt program is:

xcerpt (<program file>) or xcerpt -p (<program file>)

¿e latter syntax is provided for symmetry with the -I switch. In both cases, the �le <program file> is
loaded as an Xcerpt program and all goals in it are evaluated.

In combination with these commands, it is possible to use the switches -c, -i, and -o described above.
In all cases, the output of the Xcerpt program is written either to the resources speci�ed in the program or
to standard output (i.e. the current console) if no explicit output resources are given. ¿e syntax of the
output again is either speci�ed in the output resource, or the syntax speci�ed by -o is used.

In addition, it is possible to evaluate a query term speci�ed at the command line against the rules of
the program. In this case, the prototype is called with

xcerpt -g <query term> -p <program file>

1Common Gateway Interface, a common standard for creating dynamic Web applications
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Note that the switch -p is required, and that the speci�ed query term must be in the syntax speci�ed with
-i. ¿e query term is evaluated only against the rules of the program, not against its goals. ¿is option is
useful when developing Xcerpt programs. ¿e output is a set of substitutions, always written to standard
output, and in the syntax speci�ed by the switch -o.

Xcerpt Programs as Unix Scripts

On Unix systems, it is possible to turn “text �les” into executable scripts by providing in the �rst line a
speci�cation of the interpreter to use. In this case, it is su�cient to just call the script itself instead of
specifying the complete command for the interpreter on the command line. For example, shell scripts for
the standard Unix shell usually look as follows:

#!/bin/sh
echo "Hello World."

¿e �rst line speci�es where to �nd the executable of the interpreter (in the example above /bin/sh), the
rest is the content of the script. ¿e whole script is passed to the standard input of the interpreter. ¿e
Xcerpt prototype supports this behaviour. An Xcerpt program can look as follows:

#!/usr/local/bin/xcerpt
GOAL
result { all var Book }
FROM
in {
resource { "file:bib.xml" },
bib {{ var Book }}
}
END

Assuming, the Xcerpt program is stored in a �le with name books, it can be evaluated by just entering the
command books instead of xcerpt books (assuming the permissions are set correctly). ¿is is particularly
useful when writing Web applications. In this case, the Web server does not need to be aware of Xcerpt
and can simply treat the Xcerpt program as a CGI script.

Interactive Interface

¿e interactive interface can be started with the command xcerpt -I. It provides a command prompt
indicated by the pre�x symbols ?-. ¿e following commands are available in this interface:
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Commands for program management:
:load <resource> load the program at the speci�ed resource into memory
:run run the loaded programs
:clear remove all loaded programs from memory

Generic commands:
:quit leave the interactive interface
:help show summary of commands
:version show version information
:reset remove all settings
:set <key> = <value> set the property <key> to <value>
:set show all options

Debugging commands:
:unify <t1> = <t2> unify <t1> and <t2> and return the resulting constraint store
:parse <resource> print the term representation of the speci�ed resource

An example session in this interactive interface (loading and running a program) looks as follows:

how may I help you?
?- :load prog.xcerpt
Loading prog.xcerpt ...
?- :run
<results>

Note that the interface might behave in unexpected ways due to Haskell’s lazy evaluation. For example,
the program is not actually loaded before the command :run is issued. As it is intended mainly for
debugging the prototype, the interactive interface does not provide additional commands. It is, however,
easy to add this functionality if desirable.
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1.2 Overall Structure of the Source Code

Figure 1.1: Overall module and �le structure; modules in green, �les in red

¿e source code of the runtime system is structured using Haskell’s hierarchical module mechanism.
¿e outline of the structure is shown in Figure 1.1. On the top level, there is the module Xcerpt containing
the actual runtime system and the two �les Xcerpt.hs and convert.hs, which implement the command
line interface and the conversion program and both use parts of the module Xcerpt. ¿e module Xcerpt
consists of the following submodules:

Xcerpt.Data contains data structures and helper functions to operate on these structures

Xcerpt.IO contains functions for accessing local and remote resources and accessing them in Haskell

Xcerpt.Parser contains the various parser modules (currently Xcerpt version 1 and 2, XML and HTML)
and provides functions for parsing strings into the data structures of Xcerpt.Data

Xcerpt.Show contains functions for formatting and pretty-printing the data structures of Xcerpt.Data

Xcerpt.EngineNG implements the core part of the runtime system the uni�cation and the constraint-
based backward chaining algorithm

Xcerpt.Methods contains the implementations of prede�ned functions, aggregations and comparisons
that are available in Xcerpt programs
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In the following, the respective modules are explained in more detail and certain aspects are highlighted
to provide pro�cient programmers the means to modify the prototype as desired to test new features.
Most of the code presented here is simpli�ed: the prototype usually contains additional data structures
or more complex function de�nitions that are needed for technical reasons or have been introduced for
certain test cases. It is assumed that the reader is already pro�cient with programming in Haskell, and is
familiar with tools like parser and lexer generators (like yacc and lex).
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1.3 Module Xcerpt.Data: Data Structures

Figure 1.2: Module and File Structure of the package Xcerpt.Data; modules in green, �les in red

¿e structure of the module Xcerpt.Data is shown in Figure 1.2. ¿e module consists of four �les:

Term.hs de�nes a uni�ed data structure for representing data, query, and construct terms, and provides
helper functions to perform various tasks on these terms (e.g. �nd all variables, test whether two
terms are equal, . . . ).

Program.hs contains data structures for programs, rules, resources, and queries

Constraint.hs contains the internal data structures of the constraint solver

BTree.hs contains the de�nition of generic BTrees used internally in some aspects of program evaluation
(see below)

Term.hs and Program.hs are the �les that are most relevant to developers. ¿eir data structures are
explained in the following two sections.

1.3.1 Term.hs: Data Structures for Terms

1.3.1.1 Data Structures

Listing 1.1 de�nes the data structure Term, which is used to represent data, construct, and query terms in a
uni�ed structure. ¿e code is simpli�ed in that it omits some constructs to improve readability.

Listing 1.1: Data De�nition of Term
data Term = Elem { label :: Term, namespace :: String,

2 ordered,total :: Bool, children :: [Term] }
| Text String

4 | RegExp { pattern :: String, vars :: [Maybe String] }
| Var String

6 | String :→ Term
| Desc Term

8 | All [Term]
| Some Int [Term]

10 | Reference { identifier :: String, refers :: Maybe Term }
| Anchor { identifier :: String, content :: Term }
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Lines 1 and 2 de�ne the most common form of Term, i.e. compound terms (e.g. f[a,b,c]) that consist
of a label, a namespace, a subterm speci�cation (ordered and total), and a list of subterms (children). A
label is of type Term, because this allows to represent text labels, variable labels, and regular expression
labels in a uniform manner; the types of the other �elds are straightforward. In Haskell, �eld names may
be used as functions for retrieving the respective �eld value. Assuming that a compound term is bound to
a variable t, the following code retrieves the label of t:

1label t

Lines 3 and 4 de�ne Terms for representing text content and regular expressions. ¿e de�nition of a
regular expression consists of a regular expression pattern (in POSIX syntax without Xcerpt extensions)
and a list of variables associated with the subexpressions in that pattern. Processing of Xcerpt extensions
is performed during parsing.

Lines 5 and 6 de�ne variables and variables with restrictions. A variable is always identi�ed by its name.
Variable names in the runtime system are usually di�erent to the original variable names in the Xcerpt
program, because variable renaming is performed to avoid con�icts between di�erent rule instances.

Line 7 de�nes the structure of descendant terms, and lines 8 and 9 de�ne the structure of terms of the
form all t and some i t.2.

Lines 10 and 11 de�ne referring occurrences and de�ning occurrences of references. A referring
occurrence (constructor Reference) consists of a reference name and possibly the referred term (if the
reference is already dereferenced). A de�ning occurrence simply associates an identi�er with a term.

Terms can e.g. be created in the following manner:

1let t = Elem { label = "f", namespace = "http://www.example.com",
ordered = True, total = True,

3children = [Text a, Text b, Text c] }

Besides the de�nition shown above, the �le Term.hs contains de�nitions for arithmetic expressions
and conditions.

1.3.1.2 Helper Functions

¿e �le Term.hs contains two higher order helper functions based on which most other functions are
de�ned. Both take a function as argument and implement a generic recursive traversal over the structure
of Term, applying the function argument to each subterm.

collectInTerm takes as arguments a term, a transformation function, a merging function, and a default
value, and returns a collection of information based on the transformation and merging functions;
the transformation function maps subterms to arbitrary values and the merging function merges a
list of these values to a single value

recurseTerm takes as arguments a term, a transformation function (transforming one term to another),
and returns a transformed term with the same structure

¿ese generic functions are best illustrated on some examples of helper functions that are de�ned
based on them. ¿e following function checks whether a term contains a grouping construct. It uses the
function collectInTerm and merges the results using or:

2both take a list of terms as arguments for future extensions
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Listing 1.2: Helper function de�ned using collectInTerm

1 containsGrouping :: Term →Bool
containsGrouping (All _) = True

3 containsGrouping (Some _ _) = True
containsGrouping t = collectInTerm t containsGrouping or False

Lines 2 and 3 de�ne that terms of the form all t and some i t contain a grouping construct. In a
sense, these de�nitions overwrite the recursive traversal implemented by collectInTerm. Line 4 applies to all
other cases and calls collectInTerm with containsGrouping as transformation function, or as merging
function, and a default value of False. Assuming that the examined term is complex, collectInTerm
applies the transformation function to all children and merges the list of results with the merging function.

Likewise, the following function uses recurseTerm to rename all variables in a term by adding a
certain post�x (given as �rst argument):

Listing 1.3: Helper function de�ned using recurseTerm

renameVariables :: String →Term →Term
2 renameVariables p (Var x) = (Var x++p)
renameVariables p (x $\leadsto$ t) = (x++p) :→ renameVariables p t

4 renameVariables p t = recurseTerm t (renameVariables p)

Lines 2 and 3 add the post�x p to variable names, and line 3 in addition applies the function to the
pattern restriction. Line 4 implements for all other terms a recursive traversal in which (renameVariables
p) is applied to all subterms.

One of the main advantage of these two generic functions is that modi�cations of the data structures
(e.g. adding a new kind of terms) usually only need to be re�ected in the de�nition of these two helper
functions; all functions that are based on them work without further modi�cation. Whenever changing
the data structures, it is therefore important to modify at least these two functions as well.

1.3.2 Program.hs: Data Structures for Programs

Listing 1.4: Data structures for programs

data Program = Prog [Rule] deriving Show
2 data Rule = Rule { rhead :: Term, rbody :: Query }

| Goal { output :: [Resource], rhead :: Term, rbody :: Query }
4 deriving Show

Consider Listing 1.4. Programs are simply represented as lists of rules. A rule is either a goal (line 3) or
a standard rule (line 2). Both rules and goals consist of a rule head (a term) and a rule body (a query part –
see below); in addition, goals contain a (list of) output resources.

Listing 1.5: Data structures for query parts

1 data Query = QTerm {resources :: [Resource], term :: Term }
| QAnd { resources :: [Resource], queries :: [Query] }

3 | QOr { resources :: [Resource], queries :: [Query] }
deriving (Eq,Show)

11



A query part is either a query term, an And-connection of query parts, or an Or-connection of query
parts.3 Each query part has a list of associated resources (which might be empty), i.e. the in construct of
Xcerpt is already resolved during parsing.

Listing 1.6: Data structures for resources
data Resource = XML URI

2 | Xcerpt URI
| HTML URI

4 | Parsed Term
deriving (Eq,Show)

Resources can be either in XML, Xcerpt, or HTML format (lines 1–3). ¿e respective constructors are
used by the parser to determine which parsing module to use. ¿e resource is identi�ed by a URI. Line 4
is used to represent data terms or XML/HTML documents that have already been parsed. ¿e prototype
retrieves all resources in a preprocessing step and replaces resource speci�cations of the �rst three kinds
by a parsed representation. ¿e advantage of this approach is technical: program evaluation does not
need to perform I/O and thus avoids the complexity of Haskell’s I/O system. Instead, it focusses on the
complexity of program evaluation. While this might seem ine�cient, Haskell’s lazy evaluation guarantees
that resources are only actually retrieved when needed. ¿e only drawback is that it anticipates the use of
variables in resource speci�cations.

3¿e �le Program.hs de�nes some additional kinds of queries not mentioned here to improve readability.
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1.4 Module Xcerpt.IO: Input/Output

Figure 1.3: Module and File Structure of the package Xcerpt.IO; modules in green, �les in red

¿emodule Xcerpt.IO contains functions for performing input/output operations to local �les or
over the network. ¿e module contains the following �les:

ResourceHandler.hs is the main �le of this module; it de�nes functions for retrieving a resource into a
term or string

Browser.hs and HTTP.hs implement access to network resources via the HTTP protocol; they are taken
from a library implemented by Warrick Gray4 and available under the BSD license

¿e two important functions exported by ResourceHandler.hs are the following:

parseResource takes a resource speci�cation as de�ned above and returns a parsed term structure of the
data using the parser for the speci�ed format

writeResource takes a term and writes it to the speci�ed resource. ¿e �rst argument is a �le handle used
if the speci�ed resource is standard output (i.e. stdout:), in which case the output can be redirected
by the system as appropriate.

4http://homepages.paradise.net.nz/warrickg/haskell/http/
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1.5 Module Xcerpt.Parser: Parser

Figure 1.4: Module and File Structure of the package Xcerpt.Parser; modules in green, �les in red

¿e Xcerpt parser currently consists of three parsing modules:

Xcerpt.Parser.Xcerpt provides functions for parsing terms and programs in Xcerpt syntax (old and new)

Xcerpt.Parser.XML provides functions for parsing terms and programs inXML syntax (based onHXML5)

Xcerpt.Parser.HTML provides functions for parsing HTML documents into Xcerpt terms; it di�ers from
the XML parser in that it is somewhat error-resistant and tries to also parse documents that are not
well-formed XHTML

All parser modules provide the function parseTerm for parsing (data) terms, and the Xcerpt and XML
parser in addition provide the function parseProgram for parsing programs (in Xcerpt and XML syntax).

1.5.1 Xcerpt.Parser.Xcerpt: Xcerpt V1 and V2 Parser

¿e Xcerpt parser module consists of two separate parsers: one for the old Xcerpt syntax (V1) primarily
used in publications before 2004 (e.g. [19]), and one for the new Xcerpt syntax (V2) used in 2004 and later
(and also in this chapter). Both parsers are implemented using the Haskell lexer generator alex6 and the
Haskell parser generator happy7.

5http://www.flightlab.com/~joe/hxml
6http://www.haskell.org/alex/
7http://www.haskell.org/happy/
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1.5.1.1 Lexer Specifications

In alex, tokens are de�ned in terms of regular expressions, similar to other lexer generators. More speci�c
instructions for using alex can be found in the alex documentation [29]. For example, the following
code de�nes identi�ers to begin with an alphabetic character and continue with alphanumeric characters.
It returns a token TIdentifier which stores the current position in the input �le and the value of the
character sequence matching the token. ¿e �rst lines de�ne character classes, and the last two lines de�ne
the token TIdentifier.

$idchar = [A-Z a-z 0-9 \- \_ \:]

tokens :-
<0> $alpha $idchar* { tok (\p s →TIdentifier p s) }

¿e �les XcerptLexerV1.x and XcerptLexerV2.x contain the respective lexer de�nitions for the old
and new Xcerpt syntax, including de�nitions for the various available tokens. Both �les de�ne a function
lexer that takes as input a single string and returns as output a list of tokens.

1.5.1.2 Grammar Specifications

¿eparser generator happy uses LALR(1) grammars that consist of rules in a syntax similar to Backus-Naur
Form (BNF), but extended by constructs that allow to de�ne actions for grammar rules. Developers
interested in extending or modifying the parser should consult happy’s documentation at [53]. For instance,
the following code speci�es the grammar rule for compound Xcerpt terms with partial and unordered
term speci�cation as a label (non-terminal), followed by two opening curly braces (terminals), a list of
terms (non-terminal), and two closing curly braces (terminals); it returns a Term instance with constructor
Elem and the �eld values set appropriately (occurrences of $n refer to the value of the n’th token of the
rule). Furthermore, a list of terms (PTermL) is de�ned as either a term (non-terminal), followed by a
comma and a list of terms, or a single term, or an empty list of terms; it returns a Haskell list of Term
elements:

PTerm :: { Term }

PTerm : label ’{’ ’{’ PTermL ’}’ ’}’ { Elem {label=(Text $1), namespace="",
total=False, ordered=False, children=$4}}

PTermL : PTerm ’,’ PTermL { ($1:$3) }

| PTerm { $1:[] }

| { [] }

¿e �les XcerptParserV1.y and XcerptParserV2.y contain the grammar de�nitions for parsing Xcerpt
terms and programs. In particular, they de�ne the functions parseTerm and parseProgram, which com-
bine the lexer with the generated parser. Both take as input a single string and return a Term resp. a
Program. In addition, the parser module contains the grammar de�nition RegexParser.y, which de�nes
a grammar for parsing regular expressions with Xcerpt extensions. ¿e regular expression parser is used
internally inside the Xcerpt and XML parsers.

1.5.2 Xcerpt.Parser.XML: XML parser

¿e prototype’s XML parser module uses the HXML parser for Haskell, which is very e�cient and makes
use of Haskell’s lazy evaluation. ¿e module consists of two �les:
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HXMLToXcerpt.hs provides transformation functions that convert XML data from HXML’s internal
data structures to the prototype’s Term structure. In particular, these transformation functions
take care of attributes and Xcerpt term constructs like term speci�cations or variables, and resolve
namespaces.

XMLParser.hs provides transformation functions that transform a term containing appropriate constructs
in the Xcerpt namespace (http://xcerpt.org) into a Program.

1.5.3 Xcerpt.Parser.HTML: HTML parser

Unfortunately, most of the HTML documents available in today’s Web do not conform to the XHTML
standard and are therefore not well-formed XML. To make use of existing Web pages, the Xcerpt pro-
totype also contains an HTML parser module. ¿is module uses the Haskell XML parser HaXML [79],
which provides an error tolerant HTML parser that parses HTML documents into the same structure as
XML documents. ¿e HTML parser consists of the single �le HTMLParser.hs, which de�nes a function
parseTerm to parse HTML documents into a Term structure. A function parseProgram is not available
for HTML, as Xcerpt programs cannot be represented in HTML.
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1.6 Module Xcerpt.Show: Output Formatting

Figure 1.5: Module and File Structure of the package Xcerpt.Show; modules in green, �les in red

¿e module Xcerpt.Show contains functions for pretty-printing Xcerpt data structures. ¿e main
interfaces to these functions are the classes XcerptPrintable and XMLPrintable, which de�ne pretty-
printing in Xcerpt (V1 and V2) and in XML syntax.

Listing 1.7: XcerptPrintable
class XcerptPrintable a where

2 asXcerpt :: Int →a →String

4 showXcerpt :: XcerptPrintable a => a →String
showXcerpt = asXcerpt 0

¿e class XcerptPrintable de�nes a function prototype asXcerpt that takes the current level of
nesting (Int) and the data structure to be printed (a) as arguments and returns a String. ¿e function
showXcerpt is a convenient wrapper for the default nesting level of 0.

Listing 1.8: XMLPrintable
1 class XMLPrintable a where

asXML :: Bool →Int →a →String
3

showXML :: XMLPrintable a => a →String
5 showXML = asXML True 0

Likewise, the class XMLPrintable de�nes a function prototype asXML. asXML takes as arguments a Bool
indicating whether to add Xcerpt attributes for ordered/unordered and total/partial term speci�cations in
the resulting XML document, an Int for the current level of nesting, and the data structure to be printed
(a). Again, the function showXML is a convenient wrapper for default level of nesting and adding Xcerpt
attributes.

Both classes are instantiated for the data structures Term, Rule, and Program. ¿e module is divided
into the following �les:

XcerptV1.hs contains the de�nition and implementation of the class XcerptPrintable for the old Xcerpt
V1 syntax (before 2004)

XcerptV2.hs contains the de�nition and implementation of the class XcerptPrintable for the new
Xcerpt V2 syntax (2004 and later)

XML.hs contains the de�nition and implementation of the class XMLPrintable for the XML syntax
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1.7 Module Xcerpt.EngineNG: Program Evaluation

Figure 1.6: Module and File Structure of the package Xcerpt.EngineNG; modules in green, �les in red

¿emodule Xcerpt.EngineNG is the “heart” of the runtime system: it contains the evaluation algo-
rithms described in Deliverable I4-D11 and consists of the following parts:

Matrix.hs contains an auxiliary data structure used by the uni�cation algorithm called thememoisation
matrix; using it, simulation uni�cation can be evaluated in a rather e�cient manner.

Unify.hs contains the implementation of the simulation uni�cation algorithm described in Section 2.2; it
uses the memoisation matrix and the constraint solver described below.

Program.hs contains the implementation of the backward chaining algorithm described in Section 2.3; it
uses the uni�cation algorithm and the constraint solver described below.

Solver.hs contains the implementation of a simple and somewhat ine�cient but reliable constraint solver

Substitutions.hs implements functions for converting constraint stores into substitutions, and for apply-
ing substitutions to terms (cf. Section ??)

¿e following Sections illustrate this implementation in more detail.

1.7.1 Constraint Solver

¿e constraint solver implemented in the �le Solver.hs operates on a (conjunctive) list of Constraints
and yields a list of consistent alternative conjunctions of constraints. It applies simpli�cation rules (or
“veri�cation rules”) to pairs of constraints. Each application of a veri�cation rule yields a pair of two lists:
a list of removed constraints and a list of new constraints.

1type VerificationRule = (Constraint,Constraint) →([Constraint], [Constraint])

In contrast to traditional constraint solvers, the result of simpli�cation rules in this prototype may also
contain disjunctions; in the results of veri�cation rules, these are represented by a constraint of the form
Or [. . . ], and the incremental solver (in verifyInc) generates the disjunctive normal form represented
by a list of lists of constraints (i.e. a disjunction of conjunctions of constraints).
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¿e current implementation uses the two veri�cation rules consistency and transitivity (both
also de�ned in Solver.hs), which correspond to the respective rules in Section 2.1.4. ¿e de�nition of
consistency is given in Listing 1.9:

Listing 1.9: Consistency Rule

1 consistency :: VerificationRule

3 consistency (c1@(ts1@(Var v,_) :< ts2), c2@(ts1’@(Var v’,_) :< ts2’) )
| (v == v’) = ([c1],[solve $ andFl [(unify t2 t2’), (unify t2’ t2)] ])

5 where t2 = fst ts2
t2’ = fst ts2’

7 consistency _ = ([],[])

¿e de�nition in line 3 catches the case where the two constraints are of the forms var v ⪯ t2 and
var v′ ⪯ t′2 such that v = v′. In this case, one of the constraints is removed (c1), and the two upper bounds
are uni�ed, i.e. t′2 ⪯ t2 ∧ t2 ⪯ t′2 is added. Line 7 matches all other cases and neither removes nor adds
constraints, indicating that consistency is not applicable.

¿e main part of the constraint solver is implemented in the function verifyInc (which stands
for incremental veri�cation). verifyInc takes as parameters a list of veri�cation functions (currently
only consistency and transitivity), and two lists of constraints (the current constraint store and the
increment, i.e. the newly added constraints). ¿e increment must always be a part of the constraint store
and the constraint store without the increment is considered to be consistent; in this way, it is su�cient
to only consider pairs of constraints where at least one of the constraints is part of the increment. ¿e
function verifyInc is implemented as follows (note the comments in the source code):

Listing 1.10: Constraint Solver

1 verifyInc :: [VerificationRule] →[Constraint] →[Constraint] →[[Constraint]]

3 verifyInc rules current [] = maybe [] (:[]) $ simplifyPath current

5 verifyInc rules current added = concat $ recVerify $ added’
where run = flatPair . unzip . filter (/= ([],[])) $ map (applyRules rules)

(pairs (id current) (added))
7

-- recursively call verifyInc for all conjuncts in the disjunctive
9 -- normal form (see added’ below); first parameter to verifyInc is

-- the list of verification rules, second is the verified constraint
11 -- store minus the removed constraints and plus the new constraints,

-- third is the list of new constraints (increment)
13 recVerify = map (\x →verifyInc rules (old ‘addList‘ (new x)) (new x))

15 -- the new constraints of x are the constraints of x minus the
-- current list of constraints

17 new x = (dupelim x) ‘minusList‘ current

19 -- the remaining list of constraints is the current list of
-- constraints minus the removed constraints
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21 old = current ‘minusList‘ removed’

23 -- added’ is a list of lists of constraints containing the
-- disjunctive normal form of all additions (generated by getPaths)

25 added’ = simplifyPaths $ getPaths (And $ snd run)

27 removed’ = fst run

29 -- generate all pairs of the elements of two lists. since the first
-- list always contains the second list as a tail, and the order of

31 -- the pairs is of no importance, we can drop all elements of the
-- second list if it contains the current element.

33 pairs l1 l2 = let l1’ = filter isSimConstraint l1
l2’ = filter isSimConstraint l2

35 in [(x,y) | x <- l1’,
y <- (dropIfUntil l2’ x l2’), x /= y]

Since it uses Haskell’s function combinators ($ and .), the de�nition of the function verifyInc (line
5) is best read from right to le , and begins with the auxiliary de�nition of run (line 6): run implements a
complete run over all pairs of constraints from the old constraint store (current) and constraints from
the increment (added). ¿e result is a pair consisting of a list of constraints that need to be removed, and
a list of constraints that need to be added in subsequent calls of verifyInc. From the result of run, the
values added’ (line 25, containing the disjunctive normal form of the new constraints) and removed’ (line
27, containing a list of constraints to be removed) are extracted. With these lists, the function recVerify
(line 13) is called, which calls verifyInc recursively for each of the conjuncts in added’. ¿e recursion
terminates upon saturation, i.e. when no new constraints are added (line 3). ¿e application of concat to
the results of recVerify merges the results of the separate recursive calls into a single list. ¿e result is a list
of consistent conjunctions, each representing an alternative solution.

Besides verifyInc, the �le Solver.hs contains a function simplify that can be applied to any con-
straint or constraint store to create a simpli�ed representation without considering dependencies between
constraints. In particular, simplify eliminates the constraints with boolean values of True or False. ¿e
�le Solver.hs de�nes two additional convenience functions used below:

solveCS takes an arbitrary constraint (in general a constraint store), and returns a consistent constraint
store in disjunctive normal form, or the boolean constraint False.

solveM takes a memoisation matrix containing constraints or sub-matrices (usually created in a uni�ca-
tion), and returns a consistent constraint store in disjunctive normal form, or the boolean constraint
False.

1.7.2 Unification

¿e �le Unify.hs contains a prototypical implementation of the Simulation Uni�cation algorithm de-
scribed in Chapter I4-D11. ¿is Section �rst introduces a naïve implementation, which is straightforward
but has a very bad time and space behaviour. As an improvement over this approach, the so-called
memoisation matrix (de�ned in the �le Matrix.hs) is then introduced. Uni�cation with the memoisation
matrix is considerably more e�cient both with respect to time and space. A further re�nement of the
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memoisation matrix ismatrix compactisation (a pruning method to exclude parts that never contribute to
a valid answer), with which this Section is concluded.

¿e implementation is described in a very simpli�ed manner; the actual code in the prototype contains
many further constructs that improve e�ciency or cover some of the more complex constructs, but
anticipate a clean presentation. ¿e algorithms are described in a Haskell-like notation, with some
syntactic additions that are not available in Haskell but useful for readability. In particular, it uses the
Xcerpt term notation instead of the prototype’s data structure.

Due to the potentially exponential size of the desired result, time and space complexity are in general
exponential. However, an important measure is the number of uni�cation steps, i.e. recursive calls of the
unify function, that are performed. Each such step is computationally expensive, as it requires string
comparisons of the labels and recursive calls of unify for (in the worst case) all possible combinations of
children of the uni�ed subterms. ¿us, the number of uni�cation steps is a measure of the number of
comparisons that need to be done.

1.7.2.1 Naïve approach

Whenunifying two (compound) termswithmatching labels, the naïve approach simply builds a disjunction
of all alternative combinations of recursive uni�cations of the subterms and solves each separately (like the
declarative description of Simulation Uni�cation in Section 2.2). unify is thus a function that takes two
terms as arguments and returns a Constraint representing the disjunction of combinations of subterm
uni�cations and has the following signature:

unify :: Term →Term →Constraint

In the following, let mappings be the set of functionsΠ as de�ned in De�nition 2.4 (this list can be cre-
ated inHaskell in a straightforwardmanner). ¿e function unify for two compound terms l1{{t1, . . . , tn}}
l2{s1, . . . , sm} can be implemented as follows:

Listing 1.11: Naïve Implementation of unify

1 unify l1{{t1, . . . , tn}} l2{s1, . . . , sm} =
if l1 /= l2 then False

3 else Or [ And (zipWith unify [t1,...,tn] [sπ(1),...,sπ(n)]})
| π <- mappings ]

So, in the case of a label mismatch, the result is the atomic constraint False (see rule 4 in Deliv-
erable I4-D11). In any other cases, for each mapping π in mappings, a conjunctive constraint store is
created by recursively applying the unify function to the list of children [t1, . . . , tn] and their mapping
[sπ(1), . . . , sπ(n)].

Example 1 Consider a uni�cation of the two terms t1 = f{{var X, c}} and t2 = f{a,b, c,d}. Applying the
naïve unify to t1 and t2 yields (in mathematical notation):

(unify(var X,a) ∧ unify(c,b)) ∨ (unify(var X,a) ∧ unify(c, c)) ∨ (unify(var X,a) ∧ unify(c,d))∨
(unify(var X,b) ∧ unify(c,a)) ∨ (unify(var X,b) ∧ unify(c, c)) ∨ (unify(var X,b) ∧ unify(c,d))∨
(unify(var X, c) ∧ unify(c,a)) ∨ (unify(var X, c) ∧ unify(c,b)) ∨ (unify(var X, c) ∧ unify(c,d))∨
(unify(var X,d) ∧ unify(c,a)) ∨ (unify(var X,d) ∧ unify(c,b)) ∨ (unify(var X,d) ∧ unify(c, c))
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or a er evaluating the recursive calls of unify:

(var X ⪯ a ∧ False) ∨ (var X ⪯ a ∧ True) ∨ (var X ⪯ a ∧ False)∨
(var X ⪯ b ∧ False) ∨ (var X ⪯ b ∧ True) ∨ (var X ⪯ b ∧ False)∨
(var X ⪯ c ∧ False) ∨ (var X ⪯ c ∧ False) ∨ (var X ⪯ c ∧ False)∨
(var X ⪯ d ∧ False) ∨ (var X ⪯ d ∧ False) ∨ (var X ⪯ d ∧ True)∨

It is easy to observe that this implementation contains many redundancies (e.g. unify(c, c) is computed
thrice).

A er uni�cation, it is necessary to apply the constraint solver to the resulting constraint store in order
to eliminate conjunctions that are inconsistent (either because one of the recursive uni�cation steps fails
or because two constraints exclude each other). ¿e constraint solver in Solver.hs provides a function
solveCS, which takes an arbitrary constraint store and creates a consistent constraint store in disjunctive
normal form.
Complexity. As there are m!

(m−n)! di�erent total injective mappings from {t1, . . . , tn} to {s1, . . . , sm},
the cardinality of mappings is m!

(m−n)! . As a consequence, the resulting disjunctive constraint store will
contain m!

n! conjunctive subformulas, and require n ⋅
m!

(m−n)! uni�cation steps. In particular, many recursive
uni�cations will be performed on the same pairs of subterms, leading to much redundancy.

1.7.2.2 The Memoisation Matrix

An optimisation over the naïve appriach is to remove redundant uni�cation steps by only performing
each uni�cation of pairs of subterms once. ¿e results of these recursive calls are stored in a matrix called
thememoisation matrix (as it memos the results of uni�cations for further processing). In this manner, it
is possible to reduce the number of necessary uni�cation steps signi�cantly; whereas the naïve approach
required n ⋅ m!

(m−n)! uni�cation steps, the memoisation matrix requires at most n ⋅ m uni�cation steps
at one level. Nonetheless, the desired exponential result can be created in later steps by collecting the
appropriate uni�cation results in the matrix.

¿e unify function uses the following additional data structure (de�ned in Matrix.hs) to store uni�-
cation results (the actual implementation in Matrix.hs is much more complex, as it allows to use nested
matrices and stores additional properties needed for respecting ordered and/or total term speci�cations):

data MMatrix = MMatrix [[Constraint]]

¿ematrix is initialised with all possible combinations of uni�cations of children from one term with
children of the other term.8 Using the terms l1{{t1, . . . , tn}} and l2{s1, . . . , sm} as above, the matrix is
thus of size nŒm:

Listing 1.12: Memoisation Matrix Creation
1 initMatrix :: [Term] →[Term] →[[Constraint]]
initMatrix [] l = []

3 initMatrix (t:ts) [s1,...,sm] =
((map (unify t) [s1,...,sm]) : initMatrix ts [s1,...,sm])

Usage of the matrix is best illustrated on an example:
8Note that, using Haskell’s lazy evaluation, the actual values of the cells are only computed upon use; implementations in

other languages should re�ect this appropriately
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Example 2 Consider a uni�cation of the two terms f{{var X, c}} and f{a,b, c,d}. ¿e matrix for the
children is initialised as follows:

t1/t2 a b c d
var X unify(var X,a) unify(var X,b) unify(var X, c) unify(var X,d)

c unify(c,a) unify(c,b) unify(c, c) unify(c,d)

Immediate evaluation gives the following matrix:

t1/t2 a b c d
var X var X ⪯ a var X ⪯ b var X ⪯ c var X ⪯ d

c False False True False

Creating the di�erent total mappings of subterms of the one term to subterms of the other term from
this matrix is straightforward; informally, each mapping corresponds to a di�erent “path” through the
matrix such that a single cell of every row is collected. Note that this method is similar to the “Connection
Method” described in [10]. ¿e function getPaths serves to create all mappings:

Listing 1.13: Path Generation in Memoisation Matrix
getPaths :: [[Constraint]] →[[Constraint]]

2 getPaths [] = [[]]
getPaths [l] = map (\x →[x]) l

4 getPaths (x:xs) = [ (x’:xs’) | x’ <- x, xs’ <- (getPaths xs) ]

Using Haskell’s list comprehension, the set of paths is expressed in a very compact manner. However,
bear in mind that there are m!

(m−n)! possible paths in the matrix. In case the term speci�cation of the
corresponding query term is ordered or total, the function getPaths needs to be modi�ed appropriately
to only generate monotonic or surjective mappings; this modi�cation is straightforward and not described
here.

¿e result of a uni�cation is a constraint store in disjunctive normal form, the conjunctions of which
each correspond to a top-down path in the memoisation matrix. In the example above, e.g. the red path
represents the conjunction var X ⪯ a ∧ True.

Combining the pieces introduced separately above, the function unify with memoisation matrix is
thus implemented as follows (in simpli�ed form):

Listing 1.14: unify with Memoisation Matrix
unify l1{{t1, . . . , tn}} l2{s1, . . . , sm} =

2 if l1 /= l2 then False
else Or . map And . getPaths $ initMatrix [t1,...,tn] [s1,...,sm]

During or a er uni�cation, it is necessary to resolve inconsistencies by calling the constraint solver
for the resulting matrix. For this purpose, the �le Solver.hs (described above) provides a function
solveM that takes a (�lled) memoisation matrix as input and solves each of the conjunctive paths in
it. As an optimisation, the implementation in the prototype instead solves even while collecting the
di�erent paths. To this aim, the function solveM reverts to a di�erent implementation for getPaths called
getConsistentPaths, which uses the incremental constraint solver verifyInc to only generate paths
that are consistent.
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Complexity. ¿e overall space and time complexity is still exponential, as the possible size of the
desired result is exponential as well. However, the complexity measured in the number of uni�cation steps
in this approach is reduced to at most n ⋅m, where n,m are the number of nodes in t1, t2 respectively.
Each node from t1 is at most uni�ed with each node from t2, but in many practical cases less – depending
on the depth and breadth of the term structure.

1.7.2.3 Matrix Compactisation

An important observation is that a large part of the �elds of the matrix will evaluate to False in many
applications. Since a path will be translated into a conjunctive constraint store, each path containing at
least one False is immediately False itself. It is thus desireable to not consider such paths at all.

¿e Xcerpt Prototype uses a matrix compactisation such that paths containing False will not be
considered. ¿is compatisation can be implemented as follows:

Listing 1.15: Matrix Compactisation
1 compactise :: [[Constraint]] →[[Constraint]]
compactise matrix = map (filter (\x →x /= False)) matrix

Each row of the matrix is compactised such that it no longer contains any False constraints. ¿us,
each path is valid if it is and-connected. Obviously, applying the getPaths function to a matrix that is
compactised in such a way still returns the same (valid) paths as it would have returned without the
compactisation. All missing paths are those that would have evaluated to False when the and-connector
would have been applied.

However, using the inexpensive compactisation can reduce the time and space consumption in many
practical cases, as a large amount of paths usually contains at least one False. ¿is can easily be seen on
the example used above.

Tests conducted using the Haskell implementation as described here have shown an execution time
improvement by a factor of 30 in average for the considered data. Note that this compactisation does
not allow to determine whether the mapping corresponding to a path is injective and/or monotonic, so
generating the correct paths for ordered uni�cation requires to add additional information to the matrix
cells. In the current prototype, this is done by adding the subterm positions for the second term.

¿e complete unify function with memoisation matrix and matrix compactisation looks as follows:

Listing 1.16: unify with matrix compactisation
unify l1{{t1, . . . , tn}} l2{s1, . . . , sm} =

2 if l1 /= l2 then False
else Or . map And . getPaths . compactise $ initMatrix [t1,...,tn] [s1,...,sm]

1.7.3 Backward Chaining

¿e backward chaining algorithm is implemented in the �le Program.hs. ¿e main functions exported
by this �le are runProgram (evaluate a program and write resulting terms to resources speci�ed in pro-
gram or standard output if no resource is given), hRunProgram (evaluate a program and write resulting
terms to resources speci�ed in program or the handle provided to this function if no resource is given),
and tRunProgram (evaluate a program and return a list of all resulting terms, disrespecting potential
resource speci�cations). Furthermore, this �le provides the functions evalQuery and evalQueryCompat
for evaluating a query part against a program instead of evaluating the goals in the program
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¿emain data structure used by the backward chaining algorithm is a tree (structure BTree of module
Xcerpt.Data.BTree) representing the current constraint store. In this tree, each leaf node represents a
conjunct of the disjunctive normal form, but unlike the decomposition trees of Deliverable I4-D11, this
tree does not convey the history of applications of simpli�cation rules. ¿e sole purpose of this tree is to
provide an e�cient method for building the DNF by splitting a leaf node into two or more successors if a
disjunction needs to be inserted. To operate on this tree, Program.hs provides four internal functions
insertAtC (to insert a constraint in a certain leaf node), deleteAtC (to remove a constraint in a certain leaf
node), replaceAtC (to replace a constraint in a certain leaf node), and replaceC (to replace a constraint in
all leaf nodes). All functions ensure that a conjunct is consistent by calling the constraint solver described
above.

When evaluating a program, the algorithm loops over all conjuncts (function runC) in a breadth-�rst
fashion, selects constraints that are not yet fully evaluated (function selectC), and applies simpli�cation
rules (function eval) until no more simpli�cation rules can be applied. For this purpose, runC uses a data
structure called EvalContext as helper (it mainly contains the current program and the current position
in the constraint store).

¿e function eval decides, depending on the kind of constraint, how to evaluate the constraint and
applies uni�cation of query unfolding if necessary. ¿e results are combined and the tree representing the
constraint store is updated. Of particular interest is the treatment of the dependency constraint, which
requires to perform an auxiliary computation before the “waiting” constraint can be evaluated. Depending
on the result of this auxiliary computation, either the resulting substitutions are applied, or the constraint
fails.

Query unfolding and standardisation apart is performed by the function unfoldQuery, which takes as
an additional argument a pre�x used for variable renaming. ¿is pre�x is composed depending on the
current level of recursion and the position of queries in a conjunction/disjunction such that it is su�ciently
unique to avoid con�icts during evaluation. Note that unfolding a query term may yield dependency
constraints in case the query term is evaluated against the head of a rule containing a grouping construct.
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1.8 Module Xcerpt.Methods: User-Defined Functions

Figure 1.7: Module and File Structure of the package Xcerpt.Methods; modules in green, �les in red

¿e module Xcerpt.Methods contains the de�nitions of functions that are available in Xcerpt either
as arithmetic/string functions in construct terms (�le Arithmetics.hs), or as aggregation functions (�le
Aggregations.hs, or as sorting speci�cation in order by (�le Comparisons.hs). So as to not add every
function explicitly to the parser, all functions are stored in associated lists in which each entry consists of
a pair of string and function de�nition.

Listing 1.17: De�nition of Aggregation Functions
1 type AggregationFunction = [Term] →[Term]

3 aggregations :: [ (String,AggregationFunction) ]
aggregations =

5 [ ("count", ((:[]) . Text . show . length ) ),
("sum", ((:[]) . Text . show . sum . map parseFloat) ),

7 ("avg", ((:[]) . Text . show . avg . map parseFloat) ),
("min", ((:[]) . Text . show . min’ . map parseFloat) ),

9 ("max", ((:[]) . Text . show . max’ . map parseFloat) ),
("reverse", reverse ),

11 ("first", take 1 ),
("last", take 1 . reverse ),

13 ("rest", tail ),
("prefix", reverse . tail . reverse )

15 ]

Listing 1.17 shows the de�nition of the associated list aggregations, which contains the de�nition of
the currently available aggregation functions. Helper functions (like map’) are omitted for space reasons.
¿e lists in the �les Arithmetics.hs and Comparison.hs are de�ned in a similar manner.

Extending the prototype by new user-de�ned functions can be achieved easily by adding new function
de�nitions to these lists.
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Chapter 2

Operational Semantics of Xcerpt 1.0

¿is chapter describes an algorithm for the evaluation of Xcerpt programs using a backward chaining
strategy. ¿e algorithm is de�ned in terms of a simple constraint solver (described in Section 2.1). Con-
straint solving is a method that allows a rather e�cient evaluation by excluding irrelevant parts of the
solution space as early as possible, and has been applied to many practical problems (cf. [33]). Constraint
solving is advantageous because

• it uses declarative simpli�cation rules that are easy to understand,

• it allows to reduce the search space by detecting inconsistencies early,

• it tries to avoid complex computations (like creating answer terms) as long as possible, and

• it allows to easily add user-de�ned theories speci�ed in terms of additional simpli�cation rules to
the evaluation engine.

¿is constraint solver di�ers from traditional constraint solvers in that it needs to treat disjunctions
between constraint formulas and negation, but the approach taken here is rather straightforward.

¿e evaluation algorithm is de�ned in two parts: �rst, an algorithm called simulation uni�cation is
introduced. Simulation uni�cation is a novel kind of (non-standard) uni�cation that allows to treat the
particularities of Xcerpt terms properly and is based on the notions of ground query term simulation
and answers, cf. [67]. It has �rst been proposed in [20] and is further re�ned here. Based on simulation
uni�cation, a backward chaining algorithm is then described that eventually determines answer terms as
de�ned in [67]. Salient aspects of this backward chaining algorithm are the treatment of the grouping
constructs all and some, and the unusually high level of branching in the proof trees that result from
incomplete term speci�cations. While evaluation rules for programs with negation and optional subterms
are given, these are not veri�ed against the declarative semantics, as the �xpoint theory described in [67]
currently does not cover negation.

¿is chapter is structured as follows: Section 2.1 introduces the constraint solver and data structures
used in this chapter, and de�nes the meaning of a constraint store in form of solution sets. Section
2.2 describes the simpli�cation rules that constitute simulation uni�cation algorithm and shows the
correctness of this algorithm against an abstract formalisation of most general simulation uni�ers. Finally,
Section 2.3 describes the rules for a backward chaining evaluation. A soundness and weak completeness
result for this algorithm is also given.
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2.1 A Simple Constraint Solver

¿e evaluation of Xcerpt programs is described in terms of a constraint solver that applies so-called
simpli�cation rules to a constraint store consisting of conjunctions and disjunctions of constraints. ¿e
purpose of the constraint solver is to determine variable bindings for variables occurring in query and
construct terms, which ultimately yield substitutions that can be used to create the answer terms of a
program. A simpli�cation rule in this chapter has the following form:

C1
⋮

Cn
D

where C1, . . . ,Cn (n ≥ 1) are atomic constraints (the condition) and D is either an atomic constraint, or
a conjunction or disjunction of constraints (the consequence). If a simpli�cation rule is applied, then
the conjunction C1 ∧ ⋅ ⋅ ⋅ ∧ Cn in the constraint store is replaced by the constraint D. Note that these
simpli�cation rules are similar to the simpli�cation rules in the language Constraint Handling Rules [32],
albeit with a di�erent notation.

¿e constraint solver is non-deterministic to a high degree in that the order in which simpli�cation
rules are applied is not signi�cant. ¿is approach might be advantageous, as it gives much freedom to the
evaluation engine to e.g. perform optimisations (cf. Section ??).

¿is constraint solver di�ers from common approaches in that the result of a rule may contain
disjunctions, whereas usually only conjunctions are admitted. Such constraint solvers have been studied
in constraint programming research, e.g. in [84]. ¿e approach taken in this chapter is rather simplistic,
as it a er each application of a simpli�cation rule creates the disjunctive normal form (DNF) of the
constraint store. Simpli�cation rules are independently applied to the di�erent conjuncts of the DNF.
¿is approach is rather ine�cient in implementations, and various optimisations can be considered. A
straightforward optimisation would be to not create the DNF a er each simpli�cation step, but instead
only if it is “necessary”, because no other simpli�cation rules apply. However, such optimisations are
not further investigated in this chapter, as the focus is on Web query languages and not on constraint
programming.

Furthermore, the constraint solver needs to be able to treat negation. As both negation constructs
not and without describe negation as failure, the negation behaves di�erently to classic negation in some
cases (cf. Example 6). ¿e treatment of negation is described in the formula simpli�cation rules in Section
2.1.3, and in the consistency veri�cation rules 3, 4, and 5 in Section 2.1.4 below.

2.1.1 Data Structures and Functions

2.1.1.1 Constraints

¿emain data structure of the evaluation algorithm is the constraint store which may contain several types
of constraints, including other (sub-)constraint stores. For the purpose of this chapter, constraints are
de�ned by the following grammar (de�ned in a variant of Extended Backus-Naur Form):

<constraint> := <conjunction> | <disjunction>
| ’True’ | ’False’
| ’(’ <constraint> ’)’
| <sim-constraint>
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| <dep-constraint>
| <query-constraint> .
<conjunction> := <constraint> (’∧’ <constraint>)+ .
<disjunction> := <constraint> (’∨’ <constraint>)+ .
<negation> := ’¬’ <constraint> .
<sim-constraint> := <query-term> ’⪯u’ <construct-term> .
<dep-constraint> := ’(’ <constraint> ’∣’ <constraint> ’)’ .
<query-constraint> := ’⟨’ <query-term> ’⟩’’{’ <data-term-list>? ’}’ .
<dbterm-list> := <data-term> (’,’ <data-term>)* .

It is easy to observe that a constraint store usually consists of arbitrary conjunctions, disjunctions, and
negations of constraints. As usual, conjunctions always take precedence over disjunctions unless explicitly
speci�ed by parentheses. A brief description of the other kinds of constraints is given below:

Truth Values. ¿e truth values “True” and “False” have their expected meaning in a constraint
store. Simpli�cation of the constraint store can eliminate them in all cases except when they are the only
remaining constraint.

Simulation Constraint. A simulation constraint – written t1 ⪯u t2 for some construct, data, or query
term t1 and some construct or data term t2 – is a binary constraint which requires that variables are only
bound to data terms such that there is a ground query term simulation between the ground instances of t1
and t2. ¿e term t1 is called the le hand side of the simulation constraint and t2 is called the right hand
side of the simulation constraint in subsequent sections. So as to distinguish the simulation constraint
from the ground query term simulation, but nonetheless emphasise the relationship between the two, the
symbol ⪯u is used (with u for “to be uni�ed”). Note that the right hand side of a simulation constraint is
always necessarily a construct or data term, because the simpli�cation rules in the simulation uni�cation
and backward chaining algorithms never put a query term to the right hand side.

Most simulation constraints can be further reduced by applying the simulation uni�cation algorithm
on them until at least one of the sides consists merely of a variable. If a simulation constraint is of the form
X ⪯u t where X is a variable, t is also called an upper bound of X. Likewise, if a simulation constraint is of
the form t ⪯u X, t is called an lower bound of X.

Query Constraint. A query constraint is a constraint consisting of a valid Xcerpt query (i.e. either a
query term, an and/or-connection of queries, a negated query, or an input resource speci�cation containing
a query). Query constraints are used to represent queries that are not yet evaluated and are unfolded
during the evaluation (if necessary). For some query Q, the query constraint is denoted by ⟨Q⟩.

A query constraint may optionally have a set of associated data terms which results from resolving
and parsing an external resource (elimination of the in construct). If a query constraint ⟨Q⟩ is associated
with the data terms {t1, . . . , tn}, this is denoted by ⟨Q⟩{t1 ,...,tn}.

Dependency Constraint. A meta-constraint stating a dependency between two constraints. If C
and D are constraints, the dependency constraint (C ∣ D) requires that C may only be evaluated if
the evaluation of D did not fail (otherwise, the complete constraint fails). ¿us D usually needs to be
completely evaluated before C can be processed. ¿e substitutions resulting from the evaluation of D are
applied to C if they exist (i.e. under the condition that D is neither False nor True).

¿e justi�cation for the dependency constraint are the requirements of the grouping constructs all
and some, which require to consider all alternative solutions for the query part of a rule. If all or some
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appears in the head of a rule which is evaluated, the uni�cation of a query with the head cannot be
completed before the rule is fully evaluated.

2.1.1.2 Functions

substitutions(CS): ¿eultimate step of the algorithm, a er nomore rules are applicable or necessary,
is always to generate a set of substitutions from the constraint store. In this step, CS is put in DNF, all
constraints of the form X ⪯u t (where X is a variable and t is a construct term1) are replaced by X = t and
for each conjunct of CS a separate substitution is generated from these replacements. Note that

• substitutions(True) is the set of all all-grounding substitutions
• substitutions(False) = {}, i.e. there exists no substitution.

¿us, neither a result of True nor a result of False are desirable for a query containing variables. Fortu-
nately, the evaluation algorithm never yields True in case a variable occurs in a query, and only yields
False if the evaluation fails.

apply(Σ,t): Applying a set of substitutions Σ to a term is implemented recursively over the term
structure. ¿e implementation of this function can be derived from De�nitions in [67] a straightforward
manner.

retrieve(R): Given a resource description R, the function retrieve(R) returns a set of those terms
that are represented by this resource provided that the data can in some way be parsed into Xcerpt’s term
representation. A resource description may for example contain a URI for identifying the resource and a
format speci�cation to indicate which parser to use. ¿e current prototype provides support for XML,
HTML and Xcerpt syntax, but di�erent formats are more or less straightforward to implement (e.g. Lisp
S-expressions, RDF statements or relational databases).

restrict(V,C): restricts the constraint store C to only such (non-negated) simulation constraints
where the lower bound is a variable occurring in V. ¿is function is used for evaluating query negation
below.

deref(id): Dereferences the term reference identi�ed by id and returns the subterm associated with
the identi�er id.

vars(Q): Returns the set of all variables occurring non-negated in a query Q.

2.1.2 Solution Set of a Constraint Store

As the evaluation algorithm aims at determining an (all-grounding) substitution set for certain variables,
each constraint store conceptually represents a (all-grounding) substitution set in which each substitution
provides assignments for all conceivable variable names. ¿is set is called the solution set of the constraint
store, and represents the possible answers that the evaluation of the constraint store yields. Depending on
the constraint store, this solution set is restricted to substitutions ful�lling certain conditions. For example,
the constraint X ⪯u f{a} requires that all substitutions in the solution set provide an assignment for the

1due to the way rules are evaluated, the right hand side of a simulation constraint is always a construct term
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variable X that is compatible (i.e. simulates) with f{a}. Likewise, the constraint f{{}} ⪯u X requires that
the solution set only contains substitutions that provide an assignment t for X such that f{{}} ⪯ t.

In the following, we will consider only the solution set of a fully solved constraint store. Such a
constraint store contains only simulation constraints where one side of the inequation is a variable, of
conjunctions or disjunctions of constraints, and of the boolean constraints True and False. ¿is notion
of solution sets will be used in the formalisation of simulation uni�ers later in this chapter. Recall that
all-grounding substitutions are substitutions that map every possible variable to a data term.

De�nition 2.1 (Solution Set of a Constraint Store) Let CS be a completely solved constraint store, i.e. con-
sisting only of simulation constraints where one side is a variable, conjunctions, disjunctions, and the boolean
constraints True and False. ¿e solution set Ω(CS) is a grounding substitution set recursively de�ned as
follows:

• Ω(True) is the set of all all-grounding substitutions (cf. [67])

• Ω(False) = {}, i.e. the empty set

• Ω(X ⪯u t) is the set of all all-grounding substitutions σ such that σ(X) ≅ σ(t)

• Ω(t ⪯u X) is the set of all all-grounding substitutions σ such that σ(t) ⪯ σ(X)

• Ω(C1 ∧ C2) = Ω(C1) ∩Ω(C2)

• Ω(C1 ∨ C2) = Ω(C1) ∪Ω(C2)

• Ω(¬C) = Ω(True) ∖Ω(C)

¿e rationale behind using sets of all-grounding substitutions is that a constraint store in general
merely restricts the possible answers. Further constraints might add new variables that would have to be
considered. Using in�nite substitutions also simpli�es working with the solution set, because it su�ces to
use simple set operations instead of introducing a new “substitution theory”. For example, merging of two
all-grounding substitution sets merely requires the intersection of both.

Note that the solution set of a constraint storeCS is in general always in�nite, because each substitution
contains assignments for an in�nite number of variables. However, restricting this set to only �nitely many
variables V (i.e. those variables occurring in CS), yields a �nite set in case every such variable occurs in
each conjunct of the disjunctive normal form of CS on the right side of a simulation constraint.

¿e following result is important because it relates the abstract notion of solution set to the actually
computed substitutions. It follows trivially from the de�nition of solution sets and the de�nition of the
function substitutions(⋅). Recall that Σ∣V is the substitution set Σ restricted to the variables in V.

Corollary 1 LetCS = C1∨⋅ ⋅ ⋅∨Cn be a constraint store in disjunctive normal form, andV the set of variables
occurring in CS. If in every conjunct Ci, each variable X ∈ V occurs in a simulation constraint of the form
X ⪯u t where t is a data term, then substitutions(CS) = Ω(CS)∣V.

Note that as Xcerpt programs are range restricted, this corollary holds for every full evaluation of an
Xcerpt program.
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2.1.3 Constraint Simplification

¿e usual simpli�cation rules for formulas apply, for example:

• False ∧ C reduces to False for any constraint C, False ∨ C reduces to C for any constraint C

• True ∧ C reduces to C for any constraint C, True ∨ C reduces to True for any constraint C

• ¬(C ∧ D) simpli�es to ¬C ∨ ¬D, ¬(C ∨ D) simpli�es to ¬C ∧ ¬D

• ¬¬¬C simpli�es to ¬C

• ¬False = True and ¬True = False

Note, however, that constraints of the form¬¬C (whereC is not of the form¬C′) may not be simpli�ed
to C, because the range restrictedness disallows variable bindings also for variables that are negated twice
or more times.

2.1.4 Consistency Verification Rules

Before a variable can be bound to a term, it is necessary that the constraints for this variable are consistent.
¿ere are two kinds of consistency veri�cation rules, consistency and transitivity, divided into four rules to
distinguish the cases with and without negation. ¿e � h rule described here reduces certain kinds of
negated simulation constraints.

All consistency veri�cation rules are considered to be part of the constraint solver and are needed both
for the simulation uni�cation and the backward chaining algorithm. It is assumed that they are always
applied if possible and that the constraint store can always be treated as consistent.

2.1.4.1 Rule 1: Consistency

¿e consistency rule guarantees that upper bounds for a variable are consistent. ¿is veri�cation rule
implements the solution set de�nition of Ω(C ∧ D) = Ω(C) ∩Ω(D) and ensures that a conjunct does
not induce two assignments for a variable that are not simulation equivalent.

X ⪯u t1
X ⪯u t2
X ⪯u t1 ∧ t1 ⪯u t2 ∧ t2 ⪯u t1

Note that both t1 and t2 are necessarily construct or data terms. ¿us, the constraint ⪯u is applicable,
which requires a construct or data term on the right hand side.

Example 3 (Consistency Rule) 1. consider the two simulation constraints X ⪯u f{var Y} and X ⪯u
f{a}; applying the consistency rule yieldsX ⪯u f{var Y}∧a ⪯u Y∧Y ⪯u a (a ermutual uni�cation),
which limits the bindings for Y to a.

2. consider the two simulation constraints X ⪯u f{a} and X ⪯u f{b}; applying the consistency rule
determines that they are inconsistent, because f{a} and f{b} do not simulate.
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2.1.4.2 Rule 2: Transitivity

¿e transitivity rule replaces variable occurrences of a variable X in the upper bounds of a variable by
the upper bound of X. ¿is rule is justi�ed by the simulation pre-order de�ned in [67] and is needed to
ultimately create ground terms as bindings for all variables. In the following, the notation t[t′/X] denotes
“replace all occurrences of X in t by t′”.

t1 ⪯u t′1 such that t′1 contains the variable X
X ⪯u t2
X ⪯u t2 ∧ t1 ⪯u t′1[t2/X]

Note that the �rst constraint is consumed by this rule. ¿is might appear somewhat unusual, as further
applications of the transitivity rule might yield new constraints. However, if some constraint of the form
X ⪯u t′2 is added, it needs to be compatible with the constraint X ⪯u t2 (which is still in the conjunction)
and would thus not yield di�ering information.

Example 4 (Transitivity Rule) 1. consider the simulation constraints X ⪯u Y and Y ⪯u a; applying the
transitivity rule yields the additional constraint X ⪯u a and removes X ⪯u Y.

2. consider the simulation constraints X ⪯u f{var Y} and Y ⪯u a; applying the transitivity rule yields
the additional constraint X ⪯u f{a} and removes X ⪯u f{var Y}.

It would be possible to de�ne a similar transitivity rule for the lower bounds in a simulation constraints.
¿is is, however, not necessary, as the lower bounds do not yield variable bindings and thus need not be
ground.

2.1.5 Constraint Negation

Negated constraints represent exclusion of certain variable bindings, and may result from the evaluation
of the constructs without (subterm negation), optional (optional subterms), and not (query negation).
For example, the constraint ¬(X ⪯ f{a,b}) disallows bindings for X that are simulation equivalent with
f{a,b}. Note that, although these constructs implement negation as failure, constraint negation is the
ordinary negation of classical logic. ¿e usual transformation rules apply, namely ¬(C ∧ D) = ¬C ∨ ¬D,
¬(C ∨ D) = ¬C ∧ ¬D, ¬True = False, and ¬False = True. Note, however, that ¬¬C ≠ C, because C is
not allowed to de�ne variable bindings.

¿e following three additional consistency veri�cation rules are used in the constraint solver to treat
constraint negation. All three rules assume that the negation appears immediately in front of an atomic
constraint. ¿is assumption is safe when the constraint store is in disjunctive normal form. ¿e rules
continue the numbering scheme of the previous consistency veri�cation rules. ¿erefore, the �rst rule has
number 3.

2.1.5.1 Rule 3: Consistency with Negation

To detect inconsistencies between a non-negated and a negated simulation constraints, the consistency
rule needs to be modi�ed to yield inconsistency in case a non-negated constraint for a variable is consistent
with a negated constraint for the same variable. ¿e following rule means that if a simulation constraint
provides an upper bound for a variable (which represents a candidate binding for the variable), then there
must not be a negated simulation constraint that excludes this upper bound:
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X ⪯u t1
¬(X ⪯u t2)
X ⪯u t1 ∧ ¬(t1 ⪯u t2 ∧ t2 ⪯u t1)

Example 5 (Consistency Rule with Negation) Consider the constraint store

X ⪯u f{a,b} ∧ ¬(X ⪯u f{b,a}) ∧ ¬(X ⪯u g{a})
Applying the consistency rule with negation yields

X ⪯u f{a,b} ∧ ¬(f{a,b} ⪯u f{b,a} ∧ f{b,a} ⪯u f{a,b}) ∧ ¬(X ⪯u g{a})
the DNF of which is

X ⪯u f{a,b} ∧ ¬(f{a,b} ⪯u f{b,a}) ∧ ¬(X ⪯u g{a})∨
X ⪯u f{a,b} ∧ ¬(f{b,a} ⪯u f{a,b}) ∧ ¬(X ⪯u g{a})

and a er further decomposition steps

X ⪯u f{a,b} ∧ ¬(True) ∧ ¬(X ⪯u g{a})∨
X ⪯u f{a,b} ∧ ¬(True) ∧ ¬(X ⪯u g{a})

which ultimately yields False, i.e. no valid bindings.

Note that although subterm and query negation can never yield variable bindings themselves, there
might be variables that only appear in negated simulation constraints but nowhere else in a non-negated
simulation constraint, e.g. as the result of decomposition with without or optional. ¿ese are treated by
Rule 5 below.

2.1.5.2 Rule 4: Transitivity with Negation

Like the consistency rule, the transitivity rule needs to be adapted to cover negation properly. ¿e following
rule speci�es that if there is a negated simulation constraint where the upper bound t′1 contains a variable,
and this variable is bounded in a non-negated simulation constraint, then substituting the upper bound
for the variable in the �rst constraint must not yield a simulation.

¬(t1 ⪯u t′1) such that t′1 contains the variable X
X ⪯u t2
¬(t1 ⪯u t′1) ∧ X ⪯u t2 ∧ ¬(t1 ⪯u t′1[t2/X])

Likewise, if there is a non-negated simulation constraint where the upper bound contains a variable
occurring in a negated simulation constraint, then substituting the upper bound for the variable in the
�rst constraint must not yield a simulation.

t1 ⪯u t′1 such that t′1 contains the variable X
¬(X ⪯u t2)
t1 ⪯u t′1 ∧ ¬(X ⪯u t2) ∧ ¬(t1 ⪯u t′1[t2/X])

Note that unlike rule 2, transitivity with negation may not remove any of the original constraints,
because information would be lost.

34



2.1.5.3 Rule 5: Negation as Failure

¿e last rule is necessary for cases where a variable only appears in a negated simulation constraint, but
nowhere else in a non-negated simulation constraint of the constraint store. Due to the range restrictedness
of Xcerpt rules, such constraints can never be produced directly in the treatment of not or without (range
restrictedness enforces that each variable occurring in a negated part also appears elsewhere in a non-
negated part). ¿ey may, however, be the consequence of applications of rules 3 and 4, and might be
produced when decomposing a query term containing the construct optional (see Section 2.2.2 below).

Such constraints are reduced to False. ¿e rationale behind this is that, in case the variable does not
occur elsewhere outside a negation, the simulation constraint inside the negation represents a solution
for a negated query or subterm, and therefore the negated constraint must fail. In case the variable does
also appear elsewhere outside a negation rules 3 and 4 are applicable (which again might yield negated
simulation constraints).

¬(X ⪯u t) such that X does not appear in a non-negated simulation constraint
False

Constraints of the form ¬True and ¬False are treated by the formula simpli�cation described above.
An interesting application of this rule involves double negation:

Example 6 (Negation as Failure Rule) Consider the simulation constraint ¬¬(X ⪯u t) such that X does
not occur elsewhere in a non-negated simulation constraint. Applying Rule 5 to this constraint yields ¬False =
True (and not X ⪯u t as one might expect). ¿e rationale for this is that the negation used is negation as
failure and not classical negation, and variables within a simulation constraint that are negated twice do not
de�ne variable bindings.

2.1.6 Program Evaluation

Program evaluation starts at the program goals, and tries to determine answer terms by evaluating the
query parts for each goal in a backward chaining fashion. Given a program P, the general scheme of
program evaluation is as follows (the backward chaining algorithm itself is described in Section 2.3 below):

Algorithm 2.1
proceduremain():

foreach goal t← Q ∈ P do:
let Subst := solve(⟨Q⟩∅)
print apply(t,Subst)

Of course, printing the result in the scheme above has to respect a possible output resource associated
with the head of a goal. ¿e backward chaining algorithm itself is called with the function solve(C)
(where C is a constraint) which returns a list of substitutions that result from solving the constraint given
as parameter. ¿e general scheme of the function solve is as follows (cf. the function substitutions(⋅)
above):

Algorithm 2.2
function solve(Constraint C):

while a rule can be applied to C do:
select some constraint D in C and some rule R applicable to D
let D’ := apply rule R to D
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replace D by D’ in C
put C in disjunctive normal form and verify consistency

return substitutions(C)

Note that “rule” in the algorithm above denotes a simpli�cation rule of the constraint solver and not
an Xcerpt rule. Rules from all three parts may be interleaved and the decision on the selection of rule
applications is deliberately le open (i.e. the algorithm described here is non-deterministic), as long as
the selection is “fair” (i.e. each possible rule is applied within �nitely many steps). ¿is non-determinism
allows for interesting considerations about selection strategies that have not been investigated much in
logic programming.

2.2 Simulation Unification

Simulation Uni�cation, as previously described in [20], is an algorithm that, given two terms t1 and t2,
determines variable substitutions such that the ground instances of t1 and t2 simulate. Like standard
uni�cation (cf. [63]), simulation uni�cation is symmetric in the sense that it can determine (partial)
bindings for variables in both terms. Unlike standard uni�cation, it is however asymmetric in the sense
that it does not make the two terms equal, but instead ensures a ground query term simulation, which is
directed and asymmetric. ¿e outcome of Simulation Uni�cation is a set of substitutions called simulation
uni�er.

Simulation Uni�cation consists mainly of decomposition rules that operate recursively and in parallel
on the two uni�ed terms (Section 2.2.2). When all terms are completely decomposed, the result is a
constraint store containing conjunctions and disjunctions of simulation constraints where the le or the
right side is a variable. ¿ese yield variable bindings by replacing simulation constraints of the form X ⪯u t
by X = t. ¿e consistency veri�cation rules described above ensure that all simulation constraints are
consistent and can be interleaved at any point.

2.2.1 Simulation Unifiers

In Classical Logic, a uni�er is a substitution for two terms t1 and t2 that, applied to t1 and t2, makes the
two terms identical. ¿e simulation uni�ers introduced here follow this basic scheme, with two extensions:
instead of equality, simulation uni�ers are based on the (asymmetric) simulation relation of [67] and
instead of a single substitution, substitution sets as in [67] are considered. Both extensions are necessary,
as they recognise the special Xcerpt constructs all and some and incomplete term speci�cations.

Informally, a simulation uni�er for a query term tq and a construct term tc is a set of substitutions Σ,
such that each ground instance tq

′

of tq in Σ simulates into a ground instance tc
′

of tc in Σ. ¿is restriction
is too weak for fully describing the semantics of the evaluation algorithm. For example, consider a
substitution set Σ = {{X ↦ a,Y ↦ b},{X ↦ b,Y ↦ a}, a query term tq = f{var X} and a construct
term tc = f{var Y}. With the informal description above, Σ would be a simulation uni�er of tq in tc, but
this is not reasonable. We therefore also require that the substitution σ ∈ Σ that yields tq

′

also is “used” by
tc
′

. ¿is can be expressed by grouping the substitutions according to the free variables in tc.

De�nition 2.2 (Simulation Uni�er) Let tq be a query term, let tc be a construct term with the set of free
variables FV(tc), and let Σ be an all-grounding substitution set. Σ is called a simulation uni�er of tq in tc,
if for each JσK ∈ Σ/≃FV(tc) holds that

∀tq
′

∈ JσK(tq) tq
′

⪯ JσK(tc)
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Recall from [67] that all substitutions in an all-grounding substitution set assign data terms to each
variable. Intuitively, it is su�cient to only consider grounding substitutions for tq and tc. However,
all-grounding substitution sets simplify the formalisation of most general simulation uni�ers below.

Example 7 (Simulation Uni�ers) 1. Let tq = f{{var X,b}} and let tc = f{a,var Y, c}. A simulation
uni�er of tq in tc is the (all-grounding) substitution set

Σ1 = {{X↦ a,Y ↦ b},{X↦ c,Y ↦ b}}

2. Let tq = f{{var X}} and let tc = f{all var Y}. A simulation uni�er of tq in tc is the (all-grounding)
substitution set

Σ2 = {{X↦ a,Y ↦ b},{X↦ a,Y ↦ a}}
Assignments for variables not occurring in the terms tq and tc are not given in the substitutions above.

Simulation uni�ers are required to be grounding substitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding substitution sets can be applied to construct terms
containing grouping constructs, because a grouping is not possible otherwise. ¿is restriction is less
signi�cant than it might appear: as rules in Xcerpt are range restricted, the evaluation algorithm always
determines bindings for the variables in tc, so that it is always possible to extend the solutions determined
by the simulation uni�cation algorithm to a grounding substitution set by merging with these bindings.

Usually, there are in�nitely many uni�ers for a query term and a construct term. Traditional logic
programming therefore considers the most general uni�er (mgu), i.e. the uni�er that subsumes all other
uni�ers. Since simulation uni�ers are always grounding substitution sets, such a de�nition is not possible
for simulation uni�ers. Instead, we de�ne the most general simulation uni�er (mgsu) as the smallest
superset of all other simulation uni�ers. Note that the notionmost general simulation uni�er is – although
di�erent in presentation – indeed similar to the traditional notion of most general uni�ers, because a most
general simulation uni�er subsumes all other simulation uni�ers.

De�nition 2.3 (Most General Simulation Uni�er) Let tq be a query term and let tc be a construct term
without grouping constructs such that there exists at least one simulation uni�er of tq in tc. ¿emost general
simulation uni�er (mgsu) of tq in tc is de�ned as the union of all simulation uni�ers of tq in tc.

In Section 2.2.3, we shall see that the simulation uni�cation algorithm described here computes the
most general simulation uni�er. Note that themost general simulation uni�er is indeed always a simulation
uni�er if tc does not contain grouping constructs. ¿is is easy to see because the union of two simulation
uni�ers simply adds ground instances of tq and tc where for every ground instance tq

′

of tq there exists
a ground instance tc

′

of tc such that tq
′

⪯ tc
′

. ¿is does in general not hold for construct terms with
grouping, but as grouping is not treated inside the uni�cation algorithm, the de�nition above su�ces for
the purpose of formalising the results of this algorithm.

2.2.2 Decomposition Rules

Decomposition rules take a single simulation constraint and try to recursively decompose the two terms in
parallel until no further rules are applicable. Each decomposition step yields one or more subsequent con-
straints, o en even a large disjunction containing alternatives. ¿is re�ects the many di�erent alternative
ground query term simulations that need to be considered in case of partial term speci�cations.

All decomposition rules are �rst given without examples, because the examples tend to be very
extensive, and mutually depend on other decomposition rules.
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2.2.2.1 Preliminaries

In the following, let l (with or without indices) denote a label, and let t1 denote query terms and t2
construct terms (both with or without indices). Furthermore, let � be a special term (not occurring as
subterm in any actual term) with the property that for all t ≠ � holds that t ⪯u � = False, i.e. no term
uni�es with �. In the following sections, it is furthermore assumed that t2 contains neither grouping
constructs, functions, aggregations, nor optional subterms. In practice, this restriction is insigni�cant,
because construct terms containing one of these constructs are always made ground before computing the
simulation uni�cation (see Dependency Constraint below).

De�nition 2.4 Given two terms t1 = l{t11, . . . , t1n} and t2 = l{t21 , . . . , t2m}, the following sets of functions
ΠX ∶ ⟨t11, . . . , t1n⟩→ ⟨t21 , . . . , t2m⟩ are de�ned:

• SubT+ ⊆ ⟨t11, . . . , t1n⟩ is the sequence of all non-negated subterms of t1 and SubT− ⊆ ⟨t11, . . . , t1n⟩ is
the sequence of all negated subterms of t1

• SubT!
⊆ ⟨t11, . . . , t1n⟩ is the sequence of all non-optional subterms of t1 and SubT?

⊆ ⟨t11, . . . , t1n⟩ is the
sequence of all optional subterms of t1

• Π is the set of partial, index injective functions π from ⟨t11, . . . , t1n⟩ to ⟨t21 , . . . , t2m⟩ that are total on
SubT+ and on SubT!, each completed by t↦ � for all t on which π is not de�ned

• Πmon is the set Π restricted to all index monotonic functions

• Πbij is the set Π restricted to all index bijective functions

• Πpp is the set of all position preserving functions

• Πpr is the set of all position respecting functions

• Πm−pr = Πmon ∩Πpr, Πb−pr = Πbij∩Πpr, Πb−pp = Πbij∩Πpp, and Πm−b = Πbij∩Πmon

To simplify the rules below, all partialmappings in Π are assumed to be completed by mapping all values
on which the mappings are unde�ned to the special term �. In this manner, every mapping in Π can be
considered to be total in case the distinction is not necessary, whereas in the cases where partial mappings
are considered (optional and without), the distinction is made explicitly.

Example 8 Consider the terms t1 = f[[a,without b]] and t2 = f[a,b, c]. ¿e set of index monotonic
mappings of the set of subterms of t1 into the set of subterms of t2 (Πmon) is as follows (without b abbreviated
as ¬b):

{a↦ a,¬b↦ �} {a↦ b,¬b↦ �} {a↦ c,¬b↦ �}
{a↦ a,¬b↦ b} {a↦ b,¬b↦ c}
{a↦ a,¬b↦ c}

Note that all these mappings can be generated in a rather straightforward manner by creating a table
with the terms t11⋯t1n arranged top-down and the terms t21⋯t2m arranged le -right and then determining
paths from the �rst line to the nth line that ful�l certain properties. ¿is technique is called thememoisation
matrix.

2.2.2.2 Root Elimination

Root elimination rules compare the roots of the two terms and distribute the uni�cation to the subterms.
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Brace Incompatibility ¿e �rst set of rules treat incompatibility between braces and thus all of these
rules reduce the simulation constraint to False. For instance, an ordered simulation into an unordered
term is not reasonable, as the order cannot be guaranteed.
Decomposition Rule decomp.1:

l[t11, . . . , t1n] ⪯u l{t21 , . . . , t2m} l[[t11, . . . , t1n]] ⪯u l{t21 , . . . , t2m}
False False

Le Termwithout Subterms ¿is set of rules consider all such cases where the le term does not contain
subterms. ¿ese cases have to be treated separately from the general decomposition rules below, since
using the latter would yield the wrong result in such cases. For instance, an empty or is equvialent to False
but the result should always be True in case the le term is only a partial speci�cation. In the following, let
m ≥ 0 and k ≥ 1:
Decomposition Rule decomp.2:

l{{ }} ⪯u l{t21 , . . . , t2m} l{{ }} ⪯u l[t21 , . . . , t2m] l[[ ]] ⪯u l[t21 , . . . , t2m]
True True True

l{ } ⪯u l{t21 , . . . , t2k} l{ } ⪯u l[t21 , . . . , t2k] l[ ] ⪯u l[t21 , . . . , t2k]
False False False

l{ } ⪯u l{ } l{ } ⪯u l[ ] l[ ] ⪯u l[ ]
True True True

As speci�ed by these rules, a term without subterms but a partial speci�cation (double braces) matches
with any term which has the same label. If the term speci�cation is total, it matches only with such terms
that also do not have subterms.

Decomposition without all, some, without, and optional ¿e general decomposition rules eliminate
the two root nodes in parallel and distributes the uni�cation to the various combinations of subterms that
result from ordered/unordered speci�cation and from total/partial term speci�cations. If there exists no
such combination, then the result is an empty or, which is equivalent to False. ¿ese term speci�cations are
represented by the di�erent sets of mappings Π, Πbij, Πmon, Πpr, and Πpp. In the following, let n,m ≥ 1.
Decomposition Rule decomp.3:

l{{t11, . . . , t1n}} ⪯u l{t21 , . . . , t2m} l{{t11, . . . , t1n}} ⪯u l[t21 , . . . , t2m]
⋁π∈Πpp⋀1≤i≤n t1i ⪯u π(t1i) ⋁π∈Πpr ⋀1≤i≤n t1i ⪯u π(t1i)

l{t11, . . . , t1n} ⪯u l{t21 , . . . , t2m} l{t11, . . . , t1n} ⪯u l[t21 , . . . , t2m]
⋁π∈Πbij∩Πpp⋀1≤i≤n t1i ⪯u π(t1i) ⋁π∈Πbij∩Πpr ⋀1≤i≤n t1i ⪯u π(t1i)

l[[t11, . . . , t1n]] ⪯u l[t21 , . . . , t2m] l[t11, . . . , t1n] ⪯u l[t21 , . . . , t2m]
⋁π∈Πmon∩Πpr ⋀1≤i≤n t1i ⪯u π(t1i) ⋁π∈Πmon∩Πbij⋀1≤i≤n t1i ⪯u π(t1i)

For instance, if the le term has a partial, unordered speci�cation for the subterms, the simulation
uni�cation has to consider as alternatives all combinations of subterms of the le term with subterms of
the right term, provided that each child on the le gets a matching partner on the right.
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Label Mismatch In case of a label mismatch, the uni�cation fails. In the following, let l1 ≠ l2.
Decomposition Rule decomp.4:

l1{{t11, . . . , t1n}} ⪯u l2{t21 , . . . , t2m} l1{t11, . . . , t1n} ⪯u l2{t21 , . . . , t2m}
False False

l1{{t11, . . . , t1n}} ⪯u l2[t21 , . . . , t2m] l1{t11, . . . , t1n} ⪯u l2[t21 , . . . , t2m]
False False

l1[[t11, . . . , t1n]] ⪯u l2[t21 , . . . , t2m] l1[t11, . . . , t1n] ⪯u l2[t21 , . . . , t2m]
False False

2.2.2.3 ; Elimination

Pattern restrictions of the form X ; t1 ⪯u t2 are decomposed by adding t2 as upper bound for the
variable X (as usual), adding the pattern restriction as lower bound for X (to ensure that there exists no
upper bound that is incompatible with the pattern restriction), and immediately trying to unify t1 and t2.
¿e latter step is not strictly necessary, as it would also be performed by consistency rule 2 (transitivity).
However, immediate evaluation is advantageous as it excludes incompatible upper bounds immediately.
Decomposition Rule var:

X ; t1 ⪯u t2

t1 ⪯u t2 ∧ t1 ⪯u X ∧ X ⪯u t2

2.2.2.4 Descendant Elimination

¿e descendant construct in terms of the form desc t is decomposed by �rst trying to unify t with the
other term, and then trying to unify desc t with each of the subterms of the other term in turn. In this
manner, unifying subterms at all depths can be determined. Letm ≥ 0.
Decomposition Rule desc:

desc t1 ⪯u l{t21 , . . . , t2m} desc t1 ⪯u l[t21 , . . . , t2m]
t1 ⪯u l{t21 , . . . , t2m} ∨ ⋁1≤i≤m desc t1 ⪯u t2i t1 ⪯u l[t21 , . . . , t2m] ∨ ⋁1≤i≤m desc t1 ⪯u t2i

2.2.2.5 Decomposition with without

¿e declarative speci�cation of without in the ground query term simulation of [67] requires that a
partial function (of the set of non-negated subterms into the set of subterms of the second term) is not
completable to a (partial or total) function such that one of the negated subterm is mapped to a subterm
in which it simulates. Since the term on the right hand side of a simulation constraint is always a data or
construct term, it is su�cient to consider the case where the right term does not contain negated subterms.
For a simulation constraint t1 ⪯u t2, the decomposition rules for the case without negated subterms is
intuitively described as follows:

• A mapping π is �rst restricted to the non-negated subterms of t1, i.e. the subterms of the le term
that are not of the form without t, on which the decomposition is performed in the same way as
for decomposition without without. Note that there might be several di�erent mappings that are
identical with π for all the non-negated subterms and only di�er on the negated subterms.

40



• It is then necessary to verify whether there exists a mapping π′ that maps the non-negated subterms
of t1 to the same subterms of t2 as π (in particular, π′ might be π itself), and permits to map at least
one negated subterm without s1 of t1 to a subterm s2 of t2 such that s1 ⪯ s2. In this case, the mapping
restricted to the positive subterms of t1 is considered to be invalid, because it is completable to a
mapping that allows to map a negated subterm of t1 to a matching non-negated subterm of t2. ¿us,
allmappings that map the positive subterms of t1 to the same subterms of t2 have to be ruled out.

It is important to note that the set of mappings Π is de�ned (in the Preliminaries above) as the set of all
partial functions that are total on the set of positive subformulas. Recall furthermore, that the mappings
in Π are completed by mapping all unde�ned values to �.

In the following, let SubT+ ⊆ ⟨t11, . . . , t1n⟩ be the sequence of all subterms not of the form without t,
and let SubT− ⊆ ⟨t11, . . . , t1n⟩ be the sequence of all subterms of the form without t. Also, two functions
π and π′ are considered to be equal on the positive part, denoted π(SubT+) = π′(SubT+), if for all
t ∈ SubT+ holds that π(t) = π′(t). Furthermore, let p(⋅) be a function that removes the without
construct in front of a negated subterm, i.e. p(without t) = t.
Decomposition Rule without:

l{{t11, . . . , t1n}} ⪯u l{t21 , . . . , t2m}
⋁π∈Πpp (⋀t+∈SubT+ t+ ⪯u π(t+) ∧ ¬ (⋁π′∈Πpp with π(SubT+)=π′(SubT+)⋁t−∈SubT− p(t−) ⪯u π′(t−)))

l[[t11, . . . , t1n]] ⪯u l[t21 , . . . , t2m]
⋁π∈Πm-pr (⋀t+∈SubT+ t+ ⪯u π(t+) ∧ ¬ (⋁π′∈Πm-pr with π(SubT+)=π′(SubT+)⋁t−∈SubT− p(t−) ⪯u π′(t−)))

l{{t11, . . . , t1n}} ⪯u l[t21 , . . . , t2m]
⋁π∈Πpr (⋀t+∈SubT+ t+ ⪯u π(t+) ∧ ¬ (⋁π′∈Πpr with π(SubT+)=π′(SubT+)⋁t−∈SubT− p(t−) ⪯u π′(t−)))
Note that decomposition with without is currently not covered in the completeness and correctness

proofs of Section 2.2.3.

2.2.2.6 Decomposition with optional in the query term

Intuitively, decomposition with optional in the query term should “enable” the maximal number of
optional subterms such that they can participate in the simulation. In the following, this is expressed as
follows:

• for all required subterms (i.e. not of the form optional t), the treatment is as before (since all
negated subterms are required, they must be treated here as well, but this is omitted in the rules
below to enhance readability)

• for all optional subterms, a certain number is “enabled” by adding appropriate simulation constraints,
and all others are “disabled” by adding appropriate negated simulation constraints

In the following, these requirements are expressed as follows: given a partial mapping π ∈ Π (by de�nition
πmust be total on the set of non-optional subterms, but may be partial on the set of optional subterms),
it is �rst veri�ed whether π yields a simulation by unifying all terms on which π is de�ned with their
mapping (in the same manner as before). In the second part of the formula, it is then necessary to ensure
that π is also themaximalmapping with this property, i.e. π is not completable to a mapping π′ such that
this would also yield a simulation. ¿is is ensured by adding a negated disjunction testing for all mappings
that are identical with π on the subterms for which π is de�ned, but di�er on the other subterms, whether
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there exists an additional subterm that would unify with the subterm it is mapped to in π′. If yes, π is not
maximal and completable to π′. If no, π is maximal.

For a given mapping π, let SubTπ ⊆ SubT be the sequence on which π is de�ned and not mapped to
�, i.e. for all t ∈ SubTπ holds that π(t) ≠ �, and let SubTπ = SubT ∖ SubTπ. Also, two functions π and π′
are considered to be equal on a set of subterms X ⊆ SubT, denoted π(X) = π′(X), if for all t ∈ X holds
that π(t) = π′(t). Furthermore, let p(⋅) be a function that removes the optional construct in front of an
optional subterm, i.e. p(optional t) = t.
Decomposition Rule optional:

l{t11, . . . , t1n} ⪯u l{t21 , . . . , t2m}
⋁π∈Πb−pp (⋀t∈SubTπ t ⪯u π(t) ∧ ¬ (⋁π′∈Πb−pp with π(SubTπ)=π′(SubTπ)⋁t′∈SubTπ

p(t′) ⪯u π′(t′)))

l{{t11, . . . , t1n}} ⪯u l{t21 , . . . , t2m}
⋁π∈Πpp (⋀t∈SubTπ t ⪯u π(t) ∧ ¬ (⋁π′∈Πpp with π(SubTπ)=π′(SubTπ)⋁t′∈SubTπ

p(t′) ⪯u π′(t′)))

l[t11, . . . , t1n] ⪯u l[t21 , . . . , t2m]
⋁π∈Πm−b (⋀t∈SubTπ t ⪯u π(t) ∧ ¬ (⋁π′∈Πm−b with π(SubTπ)=π′(SubTπ)⋁t′∈SubTπ

p(t′) ⪯u π′(t′)))

l[[t11, . . . , t1n]] ⪯u l[t21 , . . . , t2m]
⋁π∈Πm−pr (⋀t∈SubTπ t ⪯u π(t) ∧ ¬ (⋁π′∈Πm−pr with π(SubTπ)=π′(SubTπ)⋁t′∈SubTπ

p(t′) ⪯u π′(t′)))

l{t11, . . . , t1n} ⪯u l[t21 , . . . , t2m]
⋁π∈Πb−pr (⋀t∈SubTπ t ⪯u π(t) ∧ ¬ (⋁π′∈Πb−pr with π(SubTπ)=π′(SubTπ)⋁t′∈SubTπ

p(t′) ⪯u π′(t′)))

l{{t11, . . . , t1n}} ⪯u l[t21 , . . . , t2m]
⋁π∈Πpr (⋀t∈SubTπ t ⪯u π(t) ∧ ¬ (⋁π′∈Πpr with π(SubTπ)=π′(SubTπ)⋁t′∈SubTπ

p(t′) ⪯u π′(t′)))

Note the close similarity to the decomposition rules for terms containing without. Intuitively, this
similarity means that decomposition with optional corresponds to creating all di�erent alternatives
where zero or more optional subterms are “turned on” by omitting the optional and the others are
“turned o�” by replacing optional by without, and evaluating all resulting terms as alternatives. Consider
for example the term

f{{var X→ a,optional var Y → b,optional var Z → c}}
¿e substitution resulting from the evaluation of this query term is equivalent to the union of the results
of the four terms

f{{var X→ a,var Y → b,var Z → c}}
f{{var X→ a,var Y → b,without var Z → c}}
f{{var X→ a,without var Y → b,var Z → c}}
f{{var X→ a,without var Y → b,without var Z → c}}

Note that this representation might be surprising on a �rst glance, because the intuitive understanding
of optional would be to simply leave out the optional subterms instead of replacing them by negated
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subterms, as in:
f{{var X→ a,var Y → b,var Z → c}}
f{{var X→ a,var Y → b}}
f{{var X→ a,var Z → c}}
f{{var X→ a}}

However, this term representation does not re�ect that an optional subterm is required to match, if it is
possible to match. Consider for example a uni�cation with the term f{a, c}. ¿e correct solution would
be the substitution set

Σ = {{X↦ a,Z ↦ c}}
whereas the evaluation of the second set of terms would yield

Σ = {{X↦ a,Z ↦ c},{X↦ a}}

Note that decomposition with optional is currently not covered in the completeness and correctness
proofs of Section 2.2.3.

2.2.2.7 Incomplete Decomposition with grouping constructs, functions, aggregations, and optional sub-
terms in construct terms

A uni�cation with a term containing grouping constructs, functions, or aggregations is in general incom-
plete because a complete decomposition requires to handle meta-constraints over the constraint store
itself, which is very inconvenient. Consider for instance a uni�cation f{a,b, c} ⪯u f[all X]. To provide
the full information stated in this constraint, it would be necessary to add a meta-constraint stating that
there must be exactly three alternative bindings for X, and of those, one must be a, another b and the
third c. Evaluation of a query containing X would thus become very complex.

Although a complete decomposition is preferable, it is (fortunately) not necessary for evaluating Xcerpt
programs, as grouping constructs always depend on the bindings of the variables in the query part of a
rule. Rules containing grouping constructs are treated by the dependency constraint (cf. Section 2.3.1),
which performs an auxiliary computation for solving the query part of a rule and then substitutes the
results in the rule head. ¿us, in this case it is su�cient to treat the uni�cation of a query term with a data
term, which does not contain grouping constructs (and obviously also no variables).

However, it is still desirable to unify a term containing grouping constructs as far as possible in order
to exclude irrelevant evaluations of query parts in the dependency constraint as early as possible. For
example, the terms f{a,b} and g{all var X} will never yield terms that unify, regardless of the bindings
for X. Likewise, the terms f{g{a}, g{b}} and f{all h{var X}} will never yield terms that unify, because
neither g{a} nor g{b} can be successfully uni�ed with any of the ground instances of h{var X}.

¿erefore, the algorithm described here takes a di�erent approach, in which a uni�cation with all only
yields a necessary set of constraints, not a su�cient set. ¿e algorithm is thus incomplete (or “partial”) in
this respect.

¿e following decomposition rule is used, where the return value is either simply True or False, with
the informal meaning “there might be a result” or “a result is precluded”.
Decomposition Rule grouping:

t1 ⪯u all t2

(t1 ⪯u t2) ≠ False

In the case where the constraint is reduced to True, it is possible that there is a result, but it is also
possible that there is none, depending on the further evaluation of the variables in t2.
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2.2.2.8 Term References: Memoing of Previous Computations

Resolving References. References occurring in either term of a simulation constraint are dereferenced
in a straightforward manner using the dere f(⋅) function described above:
Decomposition Rule deref :

↑ id ⪯u t2

t1 ⪯u t2 t1 = dere f(id) t1 ⪯u ↑ id
t1 ⪯u t2 t2 = dere f(id)

Memoing. Dereferencing alone is not su�cient for treating references, because the simulation uni�cation
would not terminate in case both terms contain cyclic references. ¿e technique used by the algorithm to
avoid this problem ismemoing (also known as tabling). In general, memoing is used to avoid redundant
computations by storing the result of all previous computations inmemory (e.g. in a table). If a computation
has already been performed previously, it is not necessary to repeat it as the result can simply be retrieved
from memory. ¿is technique is among others used in certain implementations of Prolog [81, 24].

Consider for example the following (naïve) implementation of the Fibonacci numbers in Haskell:

fib :: Int →Int
2fib 0 = 1

fib 1 = 1
4fib n = fib (n-1) + fib (n-2)

Without memoing, this implementation performs many redundant computations.2 For example, for the
computation of fib(n) it is necessary to compute fib(n− 1) and fib(n− 2), and for the computation of
fib(n− 1) it is necessary to compute fib(n− 2) and fib(n− 3). ¿us, fib(n− 2) needs to be computed
twice. With memoing, the second computation could instead refer to the previous computation.

In Xcerpt, memoing for uni�cation with references can be implemented by keeping for each conjunct
in the disjunctive normal form a history of all previous applications of simpli�cation rules (without
their results) that were used for the creation of the conjunct. In every decomposition step it is then �rst
veri�ed whether the considered constraints have already been evaluated in a previous application of this
simpli�cation rule. If yes, the constraint reduces to True; if no, the computation is continued as usual.

In the following rule, let H be a set of constraints that have been considered in previous applications
of simpli�cation rules in the current conjunct of the disjunctive normal form (history). Furthermore, t1 is
considered to be not of the form desc t.
Decomposition Rulememoing:

desc t1 ⪯u t2 such that desc t1 ⪯u t2 ∈H t1 ⪯u t2 such that t1 ⪯u t2 ∈H

False True

It might be somewhat surprising that the constraint is reduced to True/False instead of inserting the
result of a previous computation. ¿e rationale behind this is that the result of the previous computation
is already part of the current conjunct in the disjunctive normal form. True and False are the neutral
elements of conjunction and disjunction, and thus terminate the uni�cation while keeping results of
previous computations.

2.2.3 Soundness and Completeness

¿e following theorem shows soundness and completeness for the simulation uni�cation algorithm applied
to a simulation constraint of the form tq ⪯u tc. tq is assumed to not contain subterm negation or optional

2Note that Haskell’s lazy evaluation performs a technique similar to memoing
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subterms. Also, as rules with grouping constructs are always evaluated in an auxiliary computation using
the dependency constraint, it is assumed that tc does not contain grouping constructs. Furthermore, tc is
assumed not to contain functions, aggregations or optional subterms.

¿eorem 2.5 (Soundness and Completeness of Simulation Uni�cation) Let tq be a query term without
subterm negation and optional subterms and let tc be a construct term without grouping constructs, func-
tions/aggregations, and optional subterms. A substitution set Σ is a most general simulation uni�er of tq
and tc if and only if the simulation uni�cation of tq ⪯u tc terminates with a constraint store CS such that
Σ = Ω(CS).

2.3 Backward Chaining

¿e backward chaining algorithm presented here is inspired by the SLD resolution calculus used in logic
programming [50]. However, traditional approaches like SLD resolution do not account well for Xcerpt
constructs like partial term speci�cation or grouping constructs. Both kinds of constructs seriously
in�uence the resolution calculus:
High Branching Rate. In traditional logic programming, there are two elements of nondeterminism that
lead to branching in the proof tree: selection of the predicate to unfold in the evaluation of a rule body,
and the selection of the program rule used for further chaining. Xcerpt’s usage of partial patterns adds a
third element: When using partial patterns, there is in general no single way to match two terms. Instead,
all possible alternative matchings have to be considered, which leads to a signi�cantly higher branching
rate.
Grouping Constructs all and some. Unlike Prolog’s setof and bagof predicates, the grouping constructs all
and some are an integral part of the language. It is hence desirable to support such higher order constructs
in the proof calculus itself rather than treating them as external predicates.

In the following, a backward chaining algorithm based on constraint solving is introduced. It makes
use of the simple constraint solver of Section 2.1 and the simulation uni�cation algorithm of Section 2.2.
In this algorithm, it is assumed that Xcerpt programs are range restricted, strati�ed, and separated apart.
Evaluation always begins with a single, folded query constraint, i.e. a single constraint of the form ⟨Q⟩
for some goal tc ←g Q, and terminates when the constraint store either fails or is su�ciently solved to
produce the answer term for the goal.3 “Su�ciently” currently means that the constraint store is solved
completely, but it might be desirable to investigate optimisations based on the construct term tc of the
goal that solve only relevant parts of the constraint store.

Instead of using backtracking to evaluate rule chaining, the backward chaining algorithm for Xcerpt
uses disjunctions in the constraint store to represent alternatives. In this manner, it is possible to use other
selection strategies than depth-�rst search for the selection of paths to evaluate. ¿is is desirable as the
all construct requires to �nd all solutions to a query anyway.

Note that the algorithmdoes not necessarily terminate for any input, as programsmay contain recursive
rules that produce in�nite chains. As it is desirable to have this expressive power in Xcerpt, it is the duty
of programmers to ensure that programs terminate. Non-termination might also be desirable, e.g. to
produce continuous streams of data (together with the all construct), but such applications have not yet
been investigated in detail.

¿e following Sections �rst introduce the dependency constraint as a means to treating the grouping
constructs all and some, functions, and aggregations by performing an auxiliary computation. A erwards,
simpli�cation rules for unfolding folded queries are discussed, which also implement the main part of the

3Recall that the result of a goal is always either failure or a single data term.
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algorithm Di�erent approaches to backward chaining in Xcerpt have been considered in the course of
this chapter [21, 69]. ¿e approach presented here is a further re�nement of the “all at once” approach
presented in [21].

2.3.1 Dependency Constraint

¿e dependency constraint is of the form (t1 ⪯u t2 ∣ D) for a simulation constraint t1 ⪯u t2 and some
constraint D (usually a folded query) and expresses a temporal and functional dependency between
t1 ⪯u t2 and D. A dependency constraint of the form above requires to completely evaluate the constraint
D in an auxiliary computation (also considering other constraints with which the dependency constraint
is in conjunction) before t1 ⪯u t2, and applies the substitution resulting from the evaluation of D to t2
(application to t1 is not necessary as the terms t1 and t2 stem from di�erent rules and are thus variable
disjoint). If the evaluation of D fails, then the dependency constraint also fails without evaluating t1 ⪯u t2.
¿e following simpli�cation rule formalises this treatment:

( t1 ⪯u t2 ∣ D )
⋁t′2∈Σ(t2) t1 ⪯u t′2

Σ = subst(solve(D))

Note that if Σ is empty (i.e. there is no solution for D), the set Σ(t2) is empty and thus the result of the
evaluation is the empty disjunction, which simpli�es to False. In case the evaluation of D yields simply
True, the resulting substitution set Σ is not empty, but contains the empty substitution (identity).

¿e dependency constraint is necessary because the (incomplete) simulation uni�cation with a con-
struct term containing the grouping constructs all or some, or functions and aggregations, usually does
not su�ciently characterise the possible bindings of the variables in the two terms.

In order to detect inconsistencies early (and avoid unnecessary recursion), it is reasonable to perform
a partial uni�cation between the query term and the construct term and add that result to D in order
to exclude such cases for which no answer can exist. Consider for instance the simulation constraint
f{{g{var X}}} ⪯u f{all h{var Y}}). A partial uni�cation could determine that for all Y must hold that
g{⋅} ⪯u Y, but not g{var X} ⪯u Y as this would possibly yield inconsistent restrictions for the variable X.
¿e following re�nement of the rule above uses the incomplete decomposition of all and some to add
such information:

( t1 ⪯u t2 ∣ D )
⋁t′2∈Σ(t2) t1 ⪯u t′2

Σ = subst(solve(D ∧ t1 ⪯u t2))

2.3.2 Query Unfolding

¿e rules for query unfolding take a folded query constraint of the form ⟨Q⟩ and evaluate it by “unfolding”
it. For and/or connected queries, this simply means to distribute the evaluation to the subqueries and
connect the corresponding folded query constraints with the respective connectives. For query terms (i.e.
atomic queries), this means either to query the terms at the associated resource, or to query the construct
parts of program rules. In both cases, the algorithm reverts to simulation uni�cation for determining the
solution. In case a query term queries the construct parts of program rules, it is furthermore necessary to
evaluate the respective query parts of the rules and to take care of grouping constructs that possibly occur
in the construct part of rules. ¿e following query unfolding rules are used:
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And/Or-Connection ¿e connectives and and or are simply mapped to their counterparts in the con-
straint store. ¿e rules for and and or are therefore straightforward:

⟨and{Q1, . . . ,Qn}⟩R ⟨or{Q1, . . . ,Qn}⟩R
⟨Q1⟩R ∧ ⋅ ⋅ ⋅ ∧ ⟨Qn⟩R ⟨Q1⟩R ∨ ⋅ ⋅ ⋅ ∨ ⟨Qn⟩R

Note that the resource speci�cation R is distributed recursively, and that in particular, Rmay be empty
(i.e. R = ∅).

Query Negation Xcerpt query negation is negation as failure (NaF), and evaluated in an auxiliary
computation very much like the dependency constraint. ¿e result of this auxiliary computation is a
constraint formula C specifying which variable bindings are disallowed for the variables occurring in Q.
It is thus �rst restricted to constraints containing variables that occur in Q and then added negated to
the original constraint store. ¿e consistency veri�cation rules 3–5 of the constraint solver ensure that
variables cannot be bound to values disallowed by C.

⟨not Q⟩R
¬C V = vars(Q),C = restrict(V , solve(⟨Q⟩R))

Resource Speci�cation In the case where the query is the speci�cation of an input resource, this resource
needs to be retrieved. ¿e function retrieve(RSpec) takes a resource speci�cation of any form (e.g. an
URI together with a format speci�cation of “xml” such that it can be parsed correctly) and returns a set of
data terms corresponding to this resource. Note that it is also possible that a resource contains more than
one term, e.g. when the resource is another Xcerpt program.

⟨in{RSpec,Q}⟩R′
⟨Q⟩R R = retrieve(RSpec)

Note that the old resource speci�cationR′ is shadowed by the new resource speci�cationR = retrieve(RSpec)

Query Term Two simpli�cation rules process query terms. ¿e �rst rule considers query terms with
associated resources. In this case, the query term is unfolded to a disjunction of simulation constraints,
one constraint for each resource. ¿e intuitive meaning is “query any of the given resources”.

⟨tq⟩{t1 ,...,tn}
tq ⪯u t1 ∨ ⋅ ⋅ ⋅ ∨ tq ⪯u tn

¿e second query term unfolding works on such query terms that have no resource associated. In such
a case, the query term is evaluated against all rules in the program. For each rule containing grouping
constructs, functions, or aggregations, a dependency constraint is added which evaluates the uni�cation
between the query term and the head of the rule only, if the body of the rule can be evaluated successfully
and the result can be applied to the rule head. For each rule not containing a grouping construct, the
folded query is replaced by a simulation constraint between the query term and the construct term of the
rule together with the (folded) query part of the rule. Each rule evaluation is an alternative, hence the
result is a disjunction of constraints.

In the following, let Pgrouping ⊆ P be the set of program rules tc ← Q such that tc contains grouping
constructs, functions, aggregations, or optional subterms, and letPnongrouping ⊆ P bet the set of program rules
tc ← Q such that tc does not contain grouping constructs, functions, aggregations, or optional subterms.
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Note that goals are not considered in either case, as they do not participate in chaining. Furthermore,
n ≥ 0 andm ≥ 0.

⟨tq⟩∅
⋁tc←Q∈Pgrouping(tq ⪯u tc ∣ ⟨Q⟩∅) ∨ ⋁tc←Q∈Pnongrouping t

q
⪯u tc ∧ ⟨Q⟩∅ ∨ ⋁td∈P tq ⪯u td

2.3.3 Soundness and Completeness

In this section, it is shown that the backward chaining algorithm is sound with respect to the �xpoint
semantics described in [67], and that it is complete in all cases where the algorithm terminates. ¿is
completeness result is weak, but appears to be inherent to backward chaining. As rules with grouping
constructs in the rule head require the body to be maximally satis�ed, the proofs for soundness and
completeness are tightly interweaved. We therefore �rst show the following Lemma, which is at the core
of both soundness and (weak) completeness. Recall that Ω(CS) denotes the solution set of a constraint
store CS.

Lemma 2.6 Let P be a negation-free, grouping strati�ed Xcerpt programwithout goals, letMP be the �xpoint
of P, and let Q be a negation-free query (composed of one or more query terms). If the evaluation of ⟨Q⟩
terminates with a constraint store CS, then Σ = Ω(CS) is a maximal substitution set withMP ⊧ Σ(Q).

¿is Lemma contains almost all necessary “ingredients” for both soundness and completeness: it states
that the solution set of the resulting constraint store is a maximal (i.e. “complete”) substitution set for the
satisfaction (i.e. “soundness”) of the query part of a goal.

Recall for the remainder of this section that goals di�er from rules in that the ground instances of the
goal heads cannot be queried by query terms. ¿is di�erence is not re�ected in the declarative semantics
described in [67], but can be achieved by ensuring that no query term simulates into a ground instance
of a goal head, e.g. by wrapping goal heads as subterms of a term with a label not used elsewhere in the
program.

2.3.3.1 Soundness

¿eorem 2.7 (Soundness of the Backward Chaining Algorithm) Let P be a negation-free, grouping strat-
i�ed Xcerpt program, and let G = tc ←g Q be a goal in P. If the evaluation of Q in P terminates with a
constraint store CS inducing a grounding substitution set Σ = substitutions(CS), then Σ(tc) is a subset of
the �xpointMP of P.

Proof. Let P be a negation-free, grouping strati�ed Xcerpt program, and letG = tc ←g Q be a goal in P. Assume that
P′ ⊆ P is P without the goals. According to Lemma 2.6, evaluation of ⟨Q⟩ in P′ terminates with a constraint store
CS = D1 ∨ ⋅ ⋅ ⋅ ∨ Dn in disjunctive normal form such that the substitution set Ψ = Ω(CS) is a maximal substitution
set withMP′ ⊧ Ψ(Q).

As the results of goals do not participate in rule chaining, adding the goals to P′ does not in�uence the other rules
in P′ and only adds new data terms toMP′ . ¿us, also forMP holds thatMP ⊧ Ψ(Q), andΨ is maximal. Ψ(tc) ⊆ MP

then follows from the de�nition of TP. Furthermore, because P is range restricted, it holds that every variable X in
tc appears in every conjunct Di in a simulation constraint of the form X ⪯u t. Hence, with Corollary 1 follows that
substitutions(CS) = Ω(CS)∣V , where V is the set of variables occurring in tc. ¿us, substitutions(CS) yields the
same ground instances of tc as Ψ = Ω(CS). ¿e backward chaining algorithm is thus sound. .
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2.3.3.2 Completeness

In general, backward chaining is incomplete with respect to the �xpoint semantics described in [67]. ¿is
is easy to see on a small example. Consider the program

f{a}← f{a}
f{a}

¿e �xpoint for this program obviously is simply {f{a}}. However, evaluation of e.g. f{var X} does
not terminate in the backward chaining evaluation, because the rule in the program above is applicable
in�nitely o en. ¿is problem is not particular to Xcerpt: other logic programming languages like Prolog
terminate neither with such programs.

To solve this, SLD resolution [50] uses a fairness clause that states that every clause (i.e. rule or data
term) must be used eventually, which ensures that SLD resolution determines an answer a er �nitely
many steps, if an answer exists. Unfortunately, this fairness clause is not applicable in Xcerpt, because the
grouping constructs require to retrieve all solutions to a query, whereas fairness only guarantees to �nd
one solution a er �nitely many steps. Consider for example the program

g{all var X}← f{var X}
f{a}← f{a}
f{a}

¿is program is grouping strati�able and the �xpoint of this program is obviously {f{a}, g{a}}. Con-
struction of the result g{a} however requires to retrieve all solutions to f{var X}; a single solution does
not su�ce because it violates the maximality requirement in the semantics of the all construct.

Hence, we restrict the statement of completeness to negation-free, grouping strati�ed Xcerpt programs
for which the evaluation algorithm terminates. ¿is result is obviously somewhat unsatisfactory, because
any non-terminating program would be complete under this assumption. We therefore also give criteria
and suggest enhancements that ensure that programs terminate (in case the �xpoint is �nite).

¿eorem 2.8 (Weak Completeness of the Backward Chaining Algorithm) LetP be a negation-free, group-
ing strati�ed Xcerpt program, with a strati�cation P = P1 ⊎ ⋅ ⋅ ⋅ ⊎ Pm (m ≥ 1), and let G = tc ←g Q be
a goal in P such that the evaluation of Q terminates. Assume that P has a �xpoint MP = Tω

P (P). If the
evaluation of Q in P terminates with a constraint store CS, then CS induces amaximal substitution set Σ
with Σ(tc) ⊆ MP (i.e. there exist no other ground instances of tc inMP).

Proof. By¿eorem 2.7, evaluation ofQ in P yields a constraint storeCS inducing a substitution setΣwith Σ(tc) ⊆ MP.
Hence, we only have to show that Σ is also maximal wrt. tc, i.e. there exists no Σ′ with Σ∣V ⊆ Σ′∣V for the set of variables
V occurring in tc.

From Lemma 2.6, we know that the evaluation of ⟨Q⟩ in P terminates with a constraint store CS such that
Ψ = Ω(CS) is a maximal substitution withMP ⊧ Ψ(Q), and thusΨ(tc) ⊆ MP. Furthermore,Ψ is maximal wrt. toQ.
As by de�nition of goals, no ground instances of tc besides those produced by the goalmay exist4,Ψ is thus alsomaximal
wrt. Ψ(tc) ⊆ MP. Also, we have already seen in the proof of ¿eorem 2.7 that Σ = substitutions(CS) = Ω(CS)∣V
where Σ yields the same ground instances of tc as Ω(CS). ¿us, Σ is also maximal wrt. Σ(tc) ⊆ MP. .

4otherwise, disambiguation is possible because results of goals do not participate in rule chaining
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2.3.3.3 Criteria for Termination

No Recursion. Disallowing recursion is an obvious way to ensure termination. ¿is restriction appears
very strict on a �rst glance. However, due to the powerful grouping constructs all and some, this restricted
class still allows many useful programs that would require recursion in traditional logic programming.
For example, the program computing the sum of rows and columns in an HTML table described in [67]
didn’t use recursion despite the rather complex task. Likewise, many of the other examples of [67] do not
require recursion while still being useful programs.

Of course, as has been argued before, there are many applications that still require recursion. It is
therefore important to study re�nements of this restriction that disallow only certain kinds of recursion.
A useful candidate are programs where only the ground instances of rules are non-recursive (so-called
locally hierarchical programs [61]).

Retrieving only Some Solutions. In many cases, it is actually not necessary to retrieve all solutions of
the constraint store, e.g. when the rules that depend on the recursion do not contain grouping constructs.
Also, a user might be satis�ed with results that can be delivered in a certain time span. For both cases,
the change to the evaluation algorithm would only be minor: instead of iterating as long as a rule can
be applied to the constraint store, the function solve(⋅) (Section 2.1.6) would need to terminate as soon
as one of the conjuncts of the constraint store is completely solved. Also, a fair rule application strategy
would be necessary (e.g. breadth-�rst search or some other complete search strategy).

Tabling. Tabling [24] is a technique (used e.g. in XSB Prolog) where redundant and non-terminating
rule applications are avoided by caching the results of previous applications, and is known to terminate
more o en than the SLD resolution used in standard Prolog [74]. In particular, it avoids the problem
described above.
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Chapter 3

Object-oriented API for Xcerpt 1.0 and
2.0

3.1 Introduction

3.1.1 Motivation

Xcerpt ¿e language Xcerpt [67] is a declarative, rule-based query language for graph-structured data.
Xcerpt aims to be simple to use for users and nevertheless to be powerful enough to build complex query
programs.

In contrast to other XML [78] query languages, Xcerpt provides means to reason with Semantic Web
data similar to those of other rule-based or logic programming languages (e.g. Prolog) as well as with
conventional Web data.

Altough there are a wide range of standard query languages such as the W3C recommendations
XQuery [77] and XSLT [75], Xcerpt di�ers from them in that it is better suited for many tasks than
other languages. Due to Xcerpt’s deductive, rule-based nature, this is particularly true for Semantic Web
applications, where reasoning is of major importance.

APIs An Application Programming Interface (API) is a language interface for the communication
between a so ware application and an operating system or any other underlying so ware system. An
API supports easy access to so ware applications from other applications, no matter which programming
language the other applications are written in. Using APIs do not require deep knowledge of the underlying
so ware system. ¿e programmer knows what the underlying so ware system does and what it is
useful for, but usually he does not know how it is used e�ectively. An API’s main purpose is the ease of
use of underlying systems and an API is central for developing layered so ware, where the lower layer
implementations can be exchanged without a�ecting the upper layers.

APIs provide interfaces, classes and methods, which perform common tasks needed in the underlying
system. An API must be designed with greater care than usual interfaces as they are expected to be used
by di�erent applications and, once released, hard to change. Most o en an API provides possibilities to
implement more e�cient applications than if the programmer himself takes care of the communication
with the underlying system.

APIs usually evolve as the underlying so ware system evolves. Using an API helps encapsulating the
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underlying so ware system. If the underlying so ware system changes, the programmer using an API
does not have to rewrite the programs. ¿e programmer just has to ensure that he uses an up to date
implementation of the APIs.

Xcerpt API Standard APIs are de�ned for most popular query language, such as XQJ for XQuery or
JDBC for SQL.¿ese APIs are based on abstract speci�cations, and concrete implementations are provided
for a wide range of programming languages. Providing APIs helps these languages to increase their
popularity. It is obvious why a well speci�ed API facilitates this process: the usage of the query language
is clearly de�ned, the programmer does not have to deal with particularities of the underlying query
language engine and he can easily exchange di�erent implementations of the API.

So far, Xcerpt has mostly been used as a stand-alone tool for data extraction and analysis. At time
the only possibility to execute Xcerpt programs is via a console program, which is not the best starting
position for a query language.

With an Xcerpt API all so ware applications using Xcerpt queries can be designed independently
from a concrete Xcerpt engine, because the usage is clearly de�ned by the interfaces of the Xcerpt API. An
Xcerpt API may help to increase the popularity of Xcerpt, as it gets the attention of a wide range of users.

3.1.2 Contribution

¿e aim of this chapter is to provide an object oriented Xcerpt API. First, an abstract speci�cation of the
Xcerpt API is given, and some requirements for the interfaces and methods are established, which have
to be adhered to by all concrete implementations of the API. A general architecture of the Xcerpt API is
designed followed by a de�nition of various usage possibilities (of the Xcerpt API).

A concrete implementation of the Xcerpt API in the programming language Java is given for the
Xcerpt prototype engine, which is written in Haskell. ¿e usage of this concrete API implementation
is demonstrated by use cases, and tests are conducted for the correctness of several parts and for the
performance of the API.

3.1.3 Outline of this Chapter

¿is chapter contains seven sections.
For the purpose of speci�ying an Xcerpt API other similar query APIs are analyzed in Section two,

which gives an overview of such related work. ¿is overview contains a set of APIs for popular query
languages. Learned lessons from these APIs are pointed out and motivate to take over some features for
the speci�cation of the Xcerpt API.

Based on the lessons learned an Xcerpt API speci�cation is described in Section three, which is the
main part of this chapter. It explains the requirements and the architecture of the API, which are to be
followed by each concrete implementation of the API. It also represents an elaborate API speci�cation by
describing its main interfaces and methods of the Xcerpt API. At last, various usage possibilities of the
Xcerpt API are pointed out by code examples.

As the aim of this chapter does not only consist of the speci�cation of an Xcerpt API, a concrete
implementation of the speci�ed Xcerpt API is in the focus of Section four. ¿e implementation is written
in the programming language Java, and uses the Xcerpt Haskell prototype engine. It is structured a er the
corresponding architecture that is speci�ed by the Xcerpt API.

As proof-of-concept of the API speci�cation and implementation, Section �ve shows some use cases
for the Xcerpt API.¿e focus of the use cases lies on an ad hoc implementedWeb application, which serves
several purposes, such as demonstrating usage of the Xcerpt API, providing a Web service (supporting
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machine-to-machine interactions) and aWeb interface. ¿eWeb application works independently, no
matter which concrete Xcerpt API implementation is used.

Section six is dedicated to testing the Xcerpt API implementation. It is classi�ed into conformance and
performance tests. With the conformance tests the correctness of speci�c parts of the API implementation
shall be shown and the purpose of the performance tests is to clarify that the performance overhead
occurring in the Xcerpt API implementation is acceptable.

Finally, section seven summarizes this chapter and gives perspectives for further work on the Xcerpt
API.

3.1.4 Query Languages

With query languages one can retrieve information from a collection of data. Query languages can be
generally classi�ed into two groups: database query languages and information retrieval IR [82] query
languages. ¿e �rst group includes very popular query languages, such as SQL, XQuery, or XSLT for
example. Since XML is used increasingly in the web and database world, there are more and more query
languages that deal with XML data. ¿e second group, IR query languages, deal with weighting and
ranking, “relevance-orientation”, semantic relativism and logic-based probabilism. An example of an IR
query language isGoogle’s query interface based on keywords and phrases or the CommonQuery Language
(CQL), a formal language for representing queries to Information Retrieval systems such as web indexes,
bibliographic catalogs and museum collection information. We �rst look at some of these languages to
establish their basic capabilities. For that, we compare XQuery and Xcerpt, since we are going to base
some of the design decisions for the Xcerpt API on XQJ (XQuery API for Java). Section 3.1.5 introduces
XQuery, the XML Query Language developed at W3C, which is by now a W3C recommendation. Finally,
Section 3.1.6 introduces Xcerpt, a novel declarative and rule-based query and transformation language for
the (semantic) web.1

3.1.5 XQuery

¿e XML Query Language, XQuery, is a query language for extracting and transforming information
from XML documents and is a W3C recommendation since January 23, 2007. XQuery makes use of the
XML selection language XPath for addressing speci�c parts of XML documents in a navigational manner.
¿e next section describes the basics of XPath followed by an introduction to XQuery expressions is given.
Finally, the XQuery Data Model (XDM) is explained, which is the common data model for both, XPath
and XQuery.

XPath ¿e XML Path Language, XPath [76], is a W3C recommended selection language for XML, and
is mainly used in host query languages like XQuery or XSLT. XPath expressions are used to address nodes
in XML trees. ¿e central construct in XPath is the path expression, which consists of several so called
location steps. In a path expression, location steps are separated by ’/’ and consist themself of the following
parts:

1. an axis speci�er, specifying the direction of the step’s navigation

2. a node test, specifying a condition that must be ful�lled by nodes to which the step is navigating

3. zero or more predicates, which further �lter the set of nodes to which the step is navigating

1Some examples in this section are examples used from [67].
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¿e next table shows all axis speci�ers usable in location steps. A erwards the node tests are shown and
described.

Axis speci�ers

attribute contains the attributes of the context node
child contains the children of the context node
descendant contains the descendants of the context node
descendant-or-self contains the context node and the descendants of the context node
following contains all nodes that are descendants of the root of the tree in which the

context node is found, are not descendants of the context node, and occur a er
the context node in document order

following-sibling contains the context node’s following siblings, those children of the context
node’s parent that occur a er the context node in document order

self contains just the context node itself
parent returns the parent of the context node, or an empty sequence if the context node

has no parent
ancestor is de�ned as the transitive closure of the parent axis; it contains the ancestors of

the context node (the parent, the parent of the parent, and so on)
ancestor-or-self contains the context node and the ancestors of the context node; thus, the

ancestor-or-self axis will always include the root node
preceding contains all nodes that are descendants of the root of the tree in which the

context node is found, are not ancestors of the context node, and occur before
the context node in document order

preceding-sibling contains the context node’s preceding siblings, those children of the context
node’s parent that occur before the context node in document order

Node tests

attribute() matches any attribute node
comment() matches any comment node
⟨label⟩ matches any element node with name equal to label
node() matches any node
∗ matches any element node, dependend on the axis speci�er

Besides the axis speci�er and the node test (which are separated by ’::’), a location step may contain
predicates, which are enclosed by square brackets. ¿e predicate contains conditions, which must be
full�lled by the nodes selected by the location step. Several possibilities exist to specify conditions in
predicates. For example, they may be value comparisons, node existence tests or boolean conjunctions
and disjunctions.

A location step is evaluated on a sequence of nodes, which is the result of the application of a previous
location step. For each node in that sequence, the location step is executed separately. In the application
of a location step on such a node, that node is called context node. Starting from the context node, the
location step navigates to all nodes reachable with the speci�ed axis speci�er and node test, which results
in a new sequence of nodes. If the location step contains a predicate, the resulting sequence is further
�ltered.

¿e execution of a path expression’s last location step yields the result for the path expression. ¿e
result is always a (possibly empty) sequence. ¿is result sequence may not only contain nodes, but can
also contain primitive data. A more detailed description of XPath’s data model is given in Section 3.1.5.
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XQuery Expressions ¿is section introduces several kinds of XQuery expressions, which can be used
to select data, iterate over data and to construct new data. All examples shown in this section consider the
input XML document shown in Listing 3.1.

Listing 3.1: Input XML document for examples
<?xml version="1.0"?>

2<faculty fID="informatics">
<courses term="summer">

4<course>
<title>Analysis and Design of Algorithms</title>

6<lecturer>
<name>Prof. Dr. Abc</name>

8<phone>123456</phone>
</lecturer>

10</course>
<course>

12<title>Databases</title>
<lecturer>

14<name>Dr. Xyz</name>
<phone>456241</phone>

16</lecturer>
<assistant>

18<name>Assist Ant</name>
<phone>548976</phone>

20</assistant>
</course>

22</courses>
<courses term="winter">

24<course>
<title>Introduction to Robotics</title>

26<lecturer>
<name>Prof. Dr. Abc</name>

28<phone>123456</phone>
</lecturer>

30</course>
</courses>

32</faculty>

¿e selection of XML data is done with XPath expressions. A simple XQuery expression selecting
speci�c nodes in an XML document consists of just the appropriate XPath expression. Hence, every XPath
expression is also an XQuery expression (but not vice versa).

For constructing new data, constructor expressions are used in XQuery. With constructors one can
construct attribute, comment, document, element, text and processing instruction nodes. A simple
example for a constructor expression is <someElement>text content</someElement>. ¿e constructor
expression in this example looks exactly like the data it constructs.

XQuery supports embedding further XQuery expressions within constructor expressions. ¿ese
subexpressions must be enclosed within curly braces. ¿e occurrence of such subexpression within a
constructor expression is replaced by the result of the evaluation of the subexpression.
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¿e FLWOR (pronounced “�ower”) expression has a central role in XQuery. It is analog to the SELECT
FROM WHERE clause in SQL. ¿e word FLWOR is an acronym made up of the initial letters of the words:
For, Let,Where, Order by and Return. A FLWOR expression is used for iteration over sequences and to
bind intermediate results to variables.

For the next example consider that we want to extract and list the lecture titles from the XML document
shown in Listing 3.1. ¿eXQuery expression for this rearrangement is shown in Listing 3.2 and the achieved
result of this transformation can be seen in Listing 3.3.

Listing 3.2: XQuery expression to extract and list lecture titles
<summerlectures>

2{
for $c in /descendant::courses[attribute::term=’summer’]/child::course

4return
<lecture>

6{
string($c/child::title)

8}
</lecture>

10}
</summerlectures>

Listing 3.3: Resulting list of lecture titles for the summer term
1<summerlectures>

<lecture>Analysis and Design of Algorithms</lecture>
3<lecture>Databases</lecture>

</summerlectures>

In Listing 3.2, each course that is o�ered in a summer term is written to the output within an outermost
element <summerlectures>. ¿e element node <course> is renamed by <lecture> and its only child is the
text node() of the former <title> element. With the for construct the variable $c is bound to a course
element, that is o�ered in summer in each iteration step. ¿e return part constructs an outer element (for
each variable binding) and its content. A return clause may also contain a nested XQuery expression like
in the former example, or it just returns literals.

WHERE is optional (as well as LET and ORDER BY). ¿e where clause can be replaced by predicates or
if-clauses (or vice versa) in the for clause. In the example above it may be:

Listing 3.4: Replacing predicates by using where clause
for $c in /descendant::courses/child::course

2where $c/parent::courses/attribute::term = ’summer’
return ...

ORDER BY orders the variable bindings from the FOR part by the given ordering. ORDER BY is followed
by an XPath expression that selects the nodes by which the ordering is done. For instance the courses may
be ordered alphabetically by their titles:

1for $c in /descendant::course
order by $c/child::title
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XQuery/XPath Data Model: XDM Before an XQuery program can be processed, the input has to be
represented by an XDM (XQuery/XPath Data Model) instance. An XDM instance can be obtained from
an input XML document in several ways. One way is to parse the input document with an XML parser,
that generates an Information Set. ¿is information set is then validated against relevant schemas. So a
Post-Schema Validation Infoset (PSVI) is created. ¿en with this abstract information structure an XDM
instance is constructed. In XQuery (and XPath) every XML document is represented by an ordered tree.
Document ordermeans for example that the root node is the �rst node of the document. Another constraint
for the document order, among other three, is, that every node occurs before its children and descendants.
¿e data model contains seven kinds of nodes: document, element, attribute, text, namespace, processing
instruction, and comment. ¿ere are Accessors de�ned for each node type. ¿ese are not functions for the
user, but for the data model to gather information for each item. For example the document node has a
children accessor that returns the sequence of children of this document node. Because of completeness
all accessors are de�ned for each node. So sometimes an empty sequence is returned. Every value in the
data model is an ordered sequence with zero or more items. ¿ere is no di�erence between a singleton (a
sequence containing only one item) or the item itself. Items are tuples of values and types, they can be
either a node or an atomic value. A sequence cannot be nested. ¿e data model represents not only the
input and output of an document, but also intermediate values during processing at runtime. ¿e data
model speci�es 23 prede�ned types for the items. But there is the possibility of user or implementation
de�ned types also.

3.1.6 Xcerpt

¿is section introduces Xcerpt, a rule based query and transformation language for the Web. Xcerpt arises
from the PhD chapter of Sebastian Scha�ert at the Ludwig-Maximilians University of Munich. By now
Xcerpt is part of the EU FP6 Network of Excellence REWERSE and is actively supported. In contrast to the
path-based approach of query languages like XSLT or XQuery, Xcerpt is pattern based. Another special
aspect of Xcerpt is, that query and construction parts are separated strictly. ¿e following parts provide
an insight into the language Xcerpt with examples, that illustrate the potentials and usage of Xcerpt.

Term Speci�cations In Xcerpt three term speci�cations are provided, data terms, query terms and
construct terms, which all have the same syntax.

An Xcerpt data term represents semistructured data and is the input of an Xcerpt program. ¿e input
can be given in the Xcerpt speci�c syntax or in any semistructured data format (e.g. XML or RDF). In
Xcerpt, term speci�cations can be ordered or unordered. ¿is is indicated by square brackets or curly
braces. Listing 3.5 shows the same input document as in Listing 3.1. But in contrast the input in Listing 3.5
is written in Xcerpt’s data term syntax.

Listing 3.5: Input in Xcerpt’s data term syntax
faculty [

2attributes { fID { "informatics" } },
courses [

4attributes { term { "summer" } },
course [

6title [ "Analysis and Design of Algorithms" ],
lecturer [

8name [ "Prof. Dr. Abc" ],
phone [ "123456" ]
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10]
]

12course [
title [ "Databases" ],

14lecturer [
name [ "Dr. Xyz" ],

16phone [ "456241" ]
]

18assistant [
name [ "Assist Ant" ],

20phone [ "548976" ]
]

22]
]

24courses [
attributes {term {"winter"}},

26course [
title [ "Introduction to Robotics" ],

28lecturer [
name [ "Prof. Dr. Abc" ],

30phone [ "123456" ]
]

32]
]

34]

As one can see in the example above, two di�erent brackets are used in the input document. ¿ey indicate
whether a data term consists of ordered or unordered set of subterms. Square brackets denote an ordered
sequence of subterms in a term, that is the subterms’ order is signi�cant2. So in this example the course
element’s children are always ordered, that is the title element occurs before the lecturer element. Curly
braces however denote an unordered set of subterms, that is the order of the subterms is insigni�cant.
In Xcerpt attributes have no special treatment like in XML, they are grouped in an attributes labeled
subterm, that is the �rst subterm in the set of subterms regardless of the set is ordered or unordered. For
compatibility with XML, attributes in Xcerpt has always an unordered term speci�cation.

¿is paragraph deals with the second type of terms, the query term. A query term is a (possibly
incomplete) pattern, that queries data terms. ¿e incompleteness of such a pattern can be in depth or in
breadth respective to the graph structure induced by the given data term. An incompleteness in depth
is expressed by a descendant construct, i.e. descendant dmatches with all d elements at arbitrary depth.
An incompleteness in breadth is expressed by partial term speci�cations. A partial term speci�cation,
expressed by double curly braces (double square brackets, resp.) matches with the data term with possibly
other elements (with no other elements, resp.) beside those elements matched by the query term. A total
term speci�cation however is expressed with single brackets as explained in the previous paragraph. Query
terms may also contain variables for selecting data. ¿ey are expressed by using the keyword var followed
by an identi�er. In Xcerpt there are four types of variables:

2An order is needed for accessing the data by position
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Label variables occur in place of a label in a query term
Namespace variables occur in place of namespace pre�xes in a query term
Term variables without restriction can be bound to any subterms
Term variables with restriction are bound only to subterms, that match with the pattern they are

restricted to
¿e following examples take a closer look to the query terms of Xcerpt.

Listing 3.6: Query term in Xcerpt
courses {{

2var C →course {{
title [ var T ]

4}}
}}

¿is query matches courses with at least one course element that has in turn at least one title element.
¿is example shows two di�erent notions of variables. ¿e �rst one (var C) is a variable with restriction,
it binds to course elements with at least one title element. ¿e second one (var T) is a variable without
any restrictions. ¿is query is partial, that means that a data term with any additional subterm to courses
matches with this query term also.

Listing 3.7: Query term using without
1courses {{

course {{
3title { var T ],

without lecturer [ "Prof. Dr. Abc" ]
5}}

}}

¿e query term in the upper example retrieves all titles of courses which are not lectured by Prof. Dr. Abc.
For such cases of negation, Xcerpt provides the without construct. It is only applicable on subterms and
makes sense to be used in partial term context, for an ordered sequence of subterms is not required for a
negation.

Rules Rules are essential elements of Xcerpt programs, which consist of at least one rule. ¿ey are similar
to functions in other programming languages or views in relational databases. With rules one can retrieve
di�erent representations of source data from the Web. A rule is of form as shown in Listing 3.8

Listing 3.8: Rule in Xcerpt
1CONSTRUCT

<construct part>
3FROM

<query part>
5END

A rule relates construct terms with query terms. ¿e <construct part> constructs the result of a rule
and the <query part> contains a query term, that can be an and or or connection of many query terms.
All variables, that occur in the <construct part> must also occur in the <query part>. ¿e input of
a rule is always a data term (more than one resources are connected with an and or or operator). ¿e
resource speci�cation may refer to external resources or to the output of other rules, for the result of a
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rule is also a data term. ¿is process of querying the result of other rules is called rule chaining. Rule
chaining enables to have complex and recursive programs and has the advantage to break down such
complex queries. Xcerpt provides also the possibility to group the constructed terms. ¿is is done by the
keywords all and some. Listing 3.9 demonstrates boolean connectives in queries and Listing 3.10 shows
how explicit grouping is done with the group by construct.

Listing 3.9: Boolean connectives in queries
and {

2in {
resource [ "file:bib.xml" ],

4bib [[
book [[

6title [ var T ],
price [ var Pa ]

8]]
]]

10},
in {

12resource [ "file:reviews.xml" ],
reviews [[

14entry [[
title [ var T ],

16price [ var Pb ]
]]

18]]
}

20}

Listing 3.10: Explicit grouping with “group by”
1table [

all tr [
3all td [

var Value ] group by { var Row }
5] group by { var Col }

]

A special rule is the GOAL rule. Every Xcerpt program has to have at least one GOAL. Unlike construct-
query rules, GOALs have an output speci�ed. If no output resource is speci�ed, the standard output is
implicitely assumed to be the output resource. Example 3.11 shows a GOAL with explicit output resource
speci�cation and Example 3.12 shows a GOAL which writes the result to the standard output.

Listing 3.11: Goal writing its result to the speci�ed �le
1GOAL

out {
3resource [ "file:prices.html", "html" ],

html [
5head [ title [ "Price Comparison" ] ],
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body [ var Content ]
7]

}
9FROM

var Content →table {{ }}
11END

Listing 3.12: Goal writing its result to the standard output implicitly
GOAL

2html [
head [ title [ "Price Comparison" ] ],

4body [ var Content ]
]

6

FROM
8var Content →table {{ }}

END

3.2 Related APIs

For the purpose of specifying an Xcerpt API, other popular APIs for query languages are analyzed �rst.
¿is section gives an overview about such APIs. With this overview lessons are to be learned about what
features make up a well de�ned API and which ones can be taken over into the Xcerpt API.

3.2.1 JDBC

¿e Java Database Connectivity (JDBC) [72, 62, 30, 14] is an API for the Java programming language for
accessing (relational) databases, and is part of Java SE since version 1.1. With JDBC programmers can
use SQL statements for querying and updating data in databases. It is desirable that these statements
are sent to databases in a platform independent manner. As there are many di�erent commercial and
non-commercial Database Management Systems (DBMS), there must be di�erent implementations of
the interfaces speci�ed in the JDBC API, which are called JDBC Drivers. So, the same Java program can
be used with several DBMS just by switching the JDBC Driver, the Java code remains unchanged. ¿e
JDBC Driver, usually provided by the speci�c DBMS, converts statements in the Java program to a DBMS
speci�c protocol.

¿e following sections show what JDBC consists of, and how the API can be used in a Java program.
Section 3.2.1.1 shows how JDBC Drivers are initialized and establish a connection to the DBMS. In Section
3.2.1.2, di�erent kinds of statements are introduced and their execution is explained. Section 3.2.1.3 �nally
shows how results of the statements are returned to the Java program and how these results can be
processed.

3.2.1.1 Initializing and Connection

As there are many di�erent JDBC Drivers, there must be ways for selecting speci�c ones. For better
generality the selection should occur dynamically at program runtime. ¿is way the programmer can
choose to switch to other DBMS at any time without changes to the program code. Furthermore there
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may be the need to use more than one DBMS at the same time. ¿e selection of drivers is managed by the
JDBC Driver Manager.

One of the essential JDBC classes is the Connection class. ¿is class is in fact an interface and
hence cannot be instantiated directly. JDBC Drivers are responsible for providing implementations
of this interface. ¿e Java programmer can create a Connection instance by using one of the JDBC
Driver Manager’s factory methods. ¿e Driver Manager will return an object of a speci�c Connection
implementation, depending on the chosen JDBC Driver.

Listing 3.13 shows how a JDBC connection is established. First the JDBC Driver (here a MySQL
driver) is loaded by calling Class.forName(‘‘com.mysql.jdbc.Driver’’). A er loading the driver a
connection is established using the DriverManager’s getConnection() method. Its arguments in this
example are the URL of the database and a user-password pair. ¿e programmer is responsible for catching
any exceptions which may be thrown by the getConnection()method when errors occur. When work
with the Connection object is �nished, all resources must be closed using its close()method.

Listing 3.13: Establishing a JDBC Connection

try {
2Class.forName("com.mysql.jdbc.Driver");

Connection con = DriverManager.getConnection(
4"jdbc:mysql:///dbtest",

"user", "password");
6} catch (SQLException e) {

handle(e);
8} finally {

con.close();
10}

Once the connection to a speci�c DBMS is established, the Connection instance can be used for
querying information about the DBMS. For example the programmer can ask for database capabilities or
supported SQL versions. ¿e Connection instance is also used for creating statements and sending them
to the DBMS for execution. Statement is another essential class of the JDBC API. Like Connection, it
is an interface, and factory methods are used for instantiation of Statement objects. ¿e creation of a
Statement is done via the createStatement()method of a Connection instance, as is shown in Listing
3.14

Listing 3.14: Creation of a JDBC Statement

Statement stmt = con.createStatement(
2ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

¿e Statement object is not yet linked with a speci�c SQL query or update. In fact, the same statement
object can be used with di�erent SQL queries. ¿e existence of the Statement interface in JDBC is
justi�ed by the fact, that there are subinterfaces of Statement(PreparedStatement, CallableStatement),
with di�erent execution behavior. ¿is is shown in Section 3.2.1.2. ¿e createStatement()method in
the previous listing accepts two optional arguments indicating the behavior of results of the statement
execution. ¿is is shown in more detail in Section 3.2.1.3.
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3.2.1.2 Executing Statements

Statements in JDBC can be classi�ed in di�erent ways. Query statements return row result sets and
update statements return the number of rows, which have been updated by the execution of the statement.
JDBC furthermore distinguishes between regular statements, prepared statements, and callable statements.
Listing 3.15 shows the execution of a regular JDBC statement.

Listing 3.15: Executing a JDBC Statement

try {
2Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT Name, Age FROM PERSONS");
4processResults(rs);

} finally {
6stmt.close();

rs.close();
8}

¿e Statement object can be used for executing one or more SQL queries (or updates). Processing of
results in the result set is shown in Section 3.2.1.3. ¿is example executes the query SELECT Name, Age
FROM PERSONS.

Some DBMS support precompilation of SQL statements. ¿is makes sense whenever SQL statements,
with possibly di�erent parameters, are executed multiple times. ¿e SQL statement is then sent to the
database only once, and can be precompiled. For subsequent executions of the statement, the user needs
to provide the new execution arguments only. ¿is is done in JDBC as shown in Listing 3.16.

Listing 3.16: Precompiled (prepared) statements in JDBC

PreparedStatement pstmt = con.prepareStatement(
2"UPDATE PERSONS SET Age = ? WHERE Name = ?");

4pstmt.setInt(1, 30);
pstmt.setString(2, "John");

6pstmt.execute();

8pstmt.setInt(1, 40);
pstmt.setString(2, "Jack");

10pstmt.execute();

In this example a prepared statement is created instead of a regular statement. In contrast to regular
statements, prepared statements are directly linked to SQL queries (or updates). Here a parameterized
SQL update is used. Whenever the statement is to be executed, parameters for the statement are set using
one of several set methods. ¿e �rst argument in the set method is the number of the parameter in the
prepared statement. In this example the same prepared statement is used twice, setting John’s age to 30
and Jack’s age to 40.

JDBC also allows the execution of procedures, which are stored in the DBMS. Stored procedures
represent logical units, they are sets of queries which belong together and perform a speci�c task. Stored
procedures are executed using CallableStatement instances. ¿e usage of this class is very similar to the
previous examples, and are not further discussed here.
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3.2.1.3 Answer/Result API

¿e last one of the important JDBC interfaces is ResultSet. A result set is usually generated by executing
a query statement, and represents the result table of the database query. It de�nes many methods for
accessing rows and columns of the result. Very noticeable is JDBC’s capability of retrieving result rows
iteratively. In JDBC this capability is expressed by the so called cursor. ¿e cursor of a ResultSet object is
a pointer to the current row in the result table, and is initially positioned before the �rst row. JDBC’s cursor
capabilities allow moving forward and/or moving in any direction relative and absolute to the current
cursor position. It is also possible to update the data directly in the result set, which then is re�ected to
the database. Support of these capabilities is DBMS dependent, the programmer must query the database
capabilities via the Connection instance.

In Listing 3.17 a regular statement is created with the TYPE_FORWARD_ONLY and CONCUR_READ_ ONLY
options. ¿e cursor of the result set hence can only move forward, and the result set cannot be used
for updating data in the database. ¿at means that the user can iterate through the result set only once
and only from the �rst result to the last result. ¿e result set’s next()method moves the cursor forward
one step and returns whether there are more results. ¿e getInt() and getString() methods of the
ResultSet object are used for retrieving column data inside the current row.

Listing 3.17: Processing JDBC Query Results

Statement stmt = con.createStatement(
2ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_READ_ONLY);
4ResultSet rs = stmt.executeQuery("SELECT Name, Age FROM PERSONS");

while (rs.next()) {
6String name = rs.getString("Name");

int age = rs.getInt("Age");
8processOnePerson(name, age);

}

¿e result set has various methods for retrieving the data inside a column of the current result. ¿e column
data can be retrieved either by using the column’s index or its name. ¿ere are also di�erent methods
for directly converting the column’s data types to Java speci�c types. In the previous example the data is
retrieved as int and String, but there are methods for other datatypes also.

Next, the creation of updatable and scrollable results is shown in Listing 3.18. ¿e cursor is positioned on
the second result in the result set, which then is updated with a new name. With the call to rs.updateRow()
the changes are applied to the database.

Listing 3.18: Advanced result processing in JDBC

Statement stmt = con.createStatement(
2ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);
4ResultSet rs = stmt.executeQuery("SELECT Name, Age FROM PERSONS");

6rs.absolute(2);
rs.updateString("Name", "John");

8rs.updateRow();
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¿e programmer is responsible for closing result sets a er using them. ¿is is done with the close()
method of the result set instance. In the case that exceptions are thrown during result processing, the
programmer must take care of catching these exceptions.

3.2.2 XQJ

¿is section describes XQJ (XQuery API for Java), an application programming interface for the Java
programming language, designed for executing queries written in the XQuery language. XQJ is still
in development under the Java Community Process [45]. As SQL, XQuery is a query language, but in
contrast, it is not limited to querying databases. XQuery is designed to query both, XML databases and
XML documents, a property that is carried over to the XQJ API. ¿e result of an XQJ query is always a
sequence of result items. ¿ese items may have di�erent item types, such as boolean, string or node. If
the result type is node, it can be accessed using one of di�erent XML representation APIs, such as DOM
(see Section 3.2.3), SAX or StAX. ¿e structure of the XQJ API is very similar to that of the JDBC API
(described in Section 3.2.1). A typical XQJ application consists of following parts:

1. connecting to an XML datasource and a speci�c XQuery engine

2. creating an expression (or prepared expression) from the connection

3. possibly binding values for external variables used in an expression (or prepared expression)

4. executing the expression (or prepared expression)

5. processing the result

6. optionally repeating steps 2-6 as needed, and

7. closing the connection, expressions and results and thereby freeing all resources

¿e following sections describe the most important parts from above. Section 3.2.2.1 shows how a
connection to a speci�c datasource and XQuery engine is established. In Section 3.2.2.2, creation and
execution of XQJ Expressions is explained. Section 3.2.2.3 �nally describes how results of the query are
returned to the Java program and how these results can be processed.

3.2.2.1 Initializing and Connection

As in JDBC, the XQJ API provides means of connecting to a datasource, and queries cannot be executed
without having established a connection. An XQJ datasource is an abstraction over any data, for which an
XQJ query may make sense. For example, this can be relational data in databases, XML documents in the
WEB or XML documents on the local �le system. ¿e support for di�erent datasource kinds is vendor
dependent. Di�erent XQJ engine vendors may support connections to di�erent datasources. ¿is is similar
to the JDBC Driver concept, where di�erent Driver implementations provide di�erent capabilities, but
goes a bit further in the spirit of XQuery’s ability to query not just databases but also other XML storages.

In the XQJ API, the XQDatasource interface is the representation of an XQJ datasource. Obtaining an
XQDatasource objectmay happen through di�erentmeans, which are vendor dependent. Once obtained, it
can be used for establishing a connection and retrieving an XQConnection object, which is the counterpart
of the JDBC Connection object (see Section 3.2.1.1). XQJ query expressions and result sequences only exist
in the context of an XQJ connection. A connection has the following properties, which a�ect expression
and results obtained in the context of the connection:
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Scrollability indicates whether the sequences can be read in a forward only manner (one can iterate
through it only once and only from the �rst item to the last), or if the produced sequences are
scrollable.

Updatability indicates whether the returned result sequences are updatable or not 3

Holdability indicates whether the result sequence can be held beyond the transaction in which the
expression was executed

Listing 3.19 shows how a connection with a datasource can be established. Assume that the datasource
variable is a reference to an XQDataSource instance. ¿e scrollability and updatability properties of the
connection can be set using appropriate setter methods. Calls to any methods in the XQJ API may yield
an XQException, which has to be catched. Finally, the connection has to be closed, to free all related
ressources. ¿is is done in the �nally block, to ensure that the ressources are freed also in the case of an
exception.

Listing 3.19: Establishing an XQJ XQConnection
try {

2XQConnection connection = datasource.createConnection();
connection.setScrollability(XQConstants.SCROLLTYPE_SCROLLABLE);

4connection.setUpdatability(XQConstants.RESULTTYPE_READ_ONLY);

6//do something with connection
} catch (XQException e) {

8handle(e);
} finally {

10connection.close();
}

3.2.2.2 Creating and Executing Expressions

Query expressions are created using an XQConnection object. ¿e expressions always exist in the context
of a connection. If the connection is closed, all related expressions implicitely are closed too. Like JDBC,
XQJ distinguishes between ordinary expressions and prepared expressions. In the XQJ API these are
represented by the interfaces XQExpression and XQPreparedExpression. Furthermore, XQJ also provides
means for de�ning external variables for the queries.

Listing 3.20: Creating XQJ Expressions
XQExpression expression = connection.createExpression();

2XQResultSequence results = expression.executeQuery("for $i in (1,6,3) return $i");
//process results

Listing 3.20 shows the creation and execution of a simple query, which results in the sequence con-
taining the numbers 1, 6 and 3. Note, that the execution of an expression always results in a sequence of
result items, but the type of the particular items can be di�erent. ¿e XQResultSequence can be used for
processing the result items, which is shown in Section 3.2.2.3. ¿e next listing demonstrates the use of
prepared expressions and external variables.

3At time of writing, there is no support for updatable result sequences in the XQJ API and this property is always set to
READ_ONLY
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Listing 3.21: Creating XQJ expressions
String query = "declare variable $j as xs:int external; "

2+ "for $i in (1,6,3) return $i+$j";
XQPreparedExpression preparedExpression = connection.prepareExpression(query);

4

preparedExpression.bindInt(new QName("j"), 5);
6XQResultSequence results = preparedExpression.executeQuery();

//process results
8

preparedExpression.bindInt(new QName("j"), 10);
10results = preparedExpression.executeQuery();

//process results

In this example, the query declares an external variable j as type xs:int, and then produces the result
sequence (1+j,6+j,3+j). ¿e method invocation connection.prepareExpression(query) creates a
prepared expression, which then is executed twice, binding the external variable j to di�erent values. ¿e
binding is done using the bindInt(QName, int)method.

¿e advantage of using precompiled expressions is that the programmer can use the same expression
and supply it with di�erent values each time he executes it. With this approach the execution time can be
reduced and the probability of mistakes in several expression that are string manipulated is also reduced.

3.2.2.3 Answer/Result API

¿e result of executing an XQuery expression is always a sequence of result items (may be an empty
sequence also). ¿ese items may be of di�erent types, such as int, boolean, string or node. XQJ provides
an item accessor facility for accessing result items of di�erent types. In the case of the node type, the item
can be accessed using several XML processing APIs, such as DOM, SAX or StAX. Result sequences in
XQJ can be scrollable or forward only and updatable or read only, depending on the properties of the
connection, in which context the result sequence is created. Like expressions, results are dependent on their
context connection: if the connection (or the expression) is closed, the result will be closed also. Assume
the XQuery expression for $i in doc("contacts.xml")/descendant::phone/child::text()return $i.
¿is query results in the sequence of all phonenumbers in the contacts.xml document. In Listing 3.22,
the method getQuery() returns this XQuery expression. Using an XQExpression object, this query is
executed. ¿e result sequence then is used for iterating all phonenumbers. Because the result is a sequence
of integers, the getInt()method can be used to retrieve the result items.

Listing 3.22: Processing an XQJ Result Sequence
String query = getQuery();

2XQResultSequence result = expression.executeQuery(query);

4while (result.next()) {
int phoneNr = result.getInt();

6

//do something with phone number
8}

10result.close();
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For the next example, assume that an XQuery expression results in a new XML document. ¿e result
sequence hence contains one item only, and the type of that item is node. Listing 3.23 shows how this item
can be retrieved using DOM as XML representation API.

Listing 3.23: Processing an XQJ result item with result type node
XQResultSequence result = expression.executeQuery(query);

2

result.next();
4Node domNode = result.getNode();

6result.close();

At the beginning, the cursor of the result sequence is positioned before the �rst result item. Hence
invoking result.next() advances the cursor to the �rst result (which is also the only result). ¿en,
result.getNode() retrieves the result, represented as a DOM Node.4 Other possibilities range from
writing the result to a stream to forwarding the result to a SAX content handler or using the StAX API.

3.2.3 DOM

¿e Document Object Model (DOM) [42] is a W3C standard for representing XML documents as a tree
structure. DOM de�nes an API for object oriented programming languages to access, navigate, and update
XML document trees. It is not designed towards a speci�c programming language, but rather can be used
in every language for which an appropriate DOM implementation exists. ¿e most common use case for
the DOM API is the dynamic access and update of XML documents representing webpages.

¿e DOM API includes a hierarchy of classes for representing the XML document tree. ¿ese classes
contain methods for navigating (forward and also backward) in the document tree and accessing or
updating stored data. Navigation and update is the DOM API’s primary use, and navigation to arbitrary
nodes is very frequent. Hence the whole document tree has to be stored in memory when DOM is used.

¿e class hierarchy, representing the document tree, consists of several classes for each node type (see
Figure 3.1). Node types are for example elements, attributes and text. ¿e following sections describe some
of these classes, showing their usage with examples. In the examples the DOM tree shown in Figure 3.2 is
assumed to be represented by a Document instance. It is the representation of the XML document shown
in Listing 3.24.

Listing 3.24: XML document represented by the DOM tree shown in Figure 3.2
<members>

2<member>
<memberid>100</memberid>

4<name>John</name>
</member>

6<member>
<memberid>101</memberid>

8<name>Jack</name>
</member>

10</members>

4In fact, methods for accessing result items are not speci�ed in the XQResultSequence interface, but rather are speci�ed in
one of its superinterfaces, the XQItemAccessor
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3.2.3.1 Interface Document

¿e root of a document tree is always an instance of the Document interface. It does not represent the
�rst element tag in an XML document, but rather represents a root node, whose child is the �rst element
node. Document instance can hence be seen as the representation of the whole XML document. Document
object provides methods for accessing any nodes in the tree, e.g. by id or by tag name. Document also
provides factory methods for creating new nodes of any type. ¿e creation of new nodes is needed, when
the document tree shall be updated.

In Listing 3.25 the variable doc references an Document instance representing the DOM tree shown
in Figure 3.2. Assume we want to change how memberids are stored in the XML Document. ¿ey
shall be stored as attributes of the member element, instead of child elements. Since there are no at-
tributes in the document yet, we �rst have to create them using the createAttribute(String name)
method of the Document instance. ¿is is done once for every member in the document. Using the
getElementsByTagName(String name)method, we get a NodeList containing all elements in the docu-
ment with the label member. ¿e remainder of our goal is postponed to a later listing, as we do not yet
know how to use Element and Attr objects.

Listing 3.25: Navigating to and creating new nodes
NodeList members = doc.getElementsByTagName("member");

2

for (int i = 0; i < members.getLength(); i++) {
4Node member = members.item(i);

Attr attribute = doc.createAttribute("memberid");
6

//remainder omitted
8}

3.2.3.2 Interface Node

¿is interface represents the primary datatype in DOM. All node types are direct or indirect subinterfaces
of this base interface (also Document is a subinterface of Node). ¿e Node interface de�nes methods for
navigating to nodes in a relation to a given node. For example methods exist for getting all children and
the parent of a node. Since all node types are subtypes of node, this is not unproblematic, as some node
types (like text or attribute) do not have children. Trying to get the children of such nodes hence yields in
a runtime exception. Node also de�nes update methods, which allow setting the value of the node and
appending new children to a node. As before, these methods may throw an exception, if the nodetype
does not support them.

Returning to our goal of the previous example, we still have to add the new attributes to the member
nodes. We furthermore have to remove the child elements labeled memberid. ¿e Node interface does not
provide us with means of completing our goal, but we can get one step closer. In the following listing,
assume that the variable member is de�ned as shown in Listing 3.25.

Listing 3.26: Removing of nodes in the document tree
Node child = member.getFirstChild();

2member.remove(child);
String memberID = child.getTextContent();
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Assume, that we have an XML schema, which requires the memberid to be the �rst child of each
member node. We can then navigate to the memberid, using the getFirstChild()method, and invoke
remove(Node) for removing this child node. By removing a child node, that node does not get deleted
from the memory. As long, as there are references to the node, one can access the node’s data and all its
substructure. In our example the child variable still references the child node, although it is removed
from its parent. ¿e memberid node however is not the text content representing the member’s ids. It is
the element wrapping the text content. We hence use the method getTextContent() for retrieving the
memberid values and reference them with the variable memberID.

3.2.3.3 Interfaces Element, Attr and Text

Some of the more speci�c node types are Element, Text and Attr. ¿ey represent elements, text data and
attributes in the XML document. Elements may contain child nodes and may contain attributes. ¿e
Element interface de�nes methods for getting and setting the element tag’s name, its children and its
attributes. ¿e other two interfaces, Attr and Text, represent node types, which cannot have any children.
Attribute nodes in DOM are not considered children of elements, but rather are properties of element
nodes. Hence one cannot navigate to a parent node starting from an attribute node, the use of the speci�c
methods will yield an exception.

Our example of replacing elements with attributes is almost �nished. We attain our goal by adding the
newly created attribute nodes to the member nodes. ¿is cannot be done with the Node interface, as it does
not provide the required methods. Fortunately, our member nodes are not only of type Node. In fact, they
are of type Element (a subtype of Node). Listing 3.27 shows how we cast the member nodes to Element and
set their attributes. Variables member, attribute and memberID are de�ned as previously.

Listing 3.27: Setting attributes for element nodes
attribute.setValue(memberID);

2Element memberElement = (Element)member;
memberElement.setAttributeNode(attribute);

¿e string memberID references the text content representing the member’s ids. ¿is string is used
to set the value of the newly created attributes, using the setValue(String)method. A er casting the
member nodes to Element, the setAttributeNode(Attr) is used for setting the element node’s memberid
attribute.

3.2.4 More XML processing APIs

¿is section introduces some more XML related APIs, which can be used for processing XML results of
Xcerpt. SAX and StAX are stream based processing APIs for XML, they are introduced in Section 3.2.4.1
and Section 3.2.4.2.

3.2.4.1 SAX

¿e Simple API for XML (SAX) [54] was originally designed for the Java programming language, but in
the meantime is adopted by a wide range of object oriented programming languages, and is now a de facto
standard. Using SAX allows users to process XML documents in a stream basedmanner. Unlike DOM,
there is no representation of the whole XML document tree kept in memory. ¿e SAX API is designed
as an event drivenmodel. Users of the SAX API must provide callback methods, which are invoked by
SAX when its parser traverses the XML document. SAX is a so called push API, which means that the
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client program is driven by the parser. An uncomfortable point at push APIs is, that the data is delivered
continuously to the client, regardless whether the user is ready for that data or not.

¿e most important interface in the SAX API is the ContentHandler. It speci�es several callback
methods, such as startDocument(), startElement(namespace,localName,qname,attrs), etc. ¿ese
methods must be implemented by the user and are called by SAX upon traversing of appropriate nodes in
the XML document. For example, when the SAX parser traverses a new element opening tag, it invokes
the user implemented method startElement on the arguments namespace, local name, quali�ed name
and attributes. ¿e user provided code is executed and on termination the process is returned to the SAX
parser, which then continues its traversal of the XML document.

3.2.4.2 StAX

¿e Streaming API for XML (StAX) [26] is a new generation API for XML processing in Java. Like SAX,
StAX allows users processing XML documents in a stream based manner. In contrast to SAX, it is designed
on a pull parsing modell. Pull parsing APIs are more comfortable and familiar in the usage than push
parsing APIs. ¿e user controls the application �ow and asks (pulls) the parser for new information items.
Using pull parser APIs o en yields a more natural code, than using push parsing APIs.

StAX de�nes two distinct API sets, called iterator API and cursor API. ¿e only di�erence between
these two APIs is their complexity. ¿e cursor API of StAX is a low level API, which can be implemented
very e�ciently. For simple applications it is easier to use this low level API. ¿e iterator API, on the
other hand, is a more complex high level API. Using the iterator API allows writing more advanced
applications, with the cost of more complexity. ¿ese two models are mainly realized by the two interfaces
XMLStreamReader for the cursor model and XMLEventReader for the iterator model.5

Both, the cursor and the iterator API are very similar in usage. Both reading interfaces provide means
for querying whether there are more information items (for example a hasNext()method). ¿ey also
provide methods for pulling the next item, �rst advancing the cursor with a next()method, and then
getting the current item with appropriate getter methods. Noticeable is the fact, that the user has the
possibility to skip several information items, for example by using the method nextTag() instead of
next().6

3.2.5 Lessons Learned for the Xcerpt API

¿is section describes the features of the previously introduced APIs, that are to be taken over into the
Xcerpt API.

Engine transparency One important aspect of the APIs is engine transparency (cf. 3.2.1.1, 3.2.2.1). ¿is
means that the API is more general and �exible in the manner that the API user can switch between
di�erent engines at runtime without changing themeaning of his programs. An engine transparency
also ensures the extensibility of an API.

Iterable results ¿is feature is important for both e�ciency and �exibility of a query API. E�ciency is
gained by the “on demand” creation of results and �exibility is ensured if the results are scrollable.

Various result representations Providing the API user with the �exibility of choosing between various
result representations (cf. 3.2.2.3) allowes the user to write e�cient programs. ¿e API user can
choose the result representation, which �ts best into his application.

5For writing XML the StAX API also provides the two interfaces XMLStreamWriter and XMLEventWriter
6A freedom users of push parsing APIs do not have
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3.3 Xcerpt API

Based on the lessons learned from the other APIs for query languages, this section describes the design of
an API (application programming interface) for the query language Xcerpt. ¿e purpose of the API is
to ease the use of Xcerpt in widespread object oriented programming languages such as Java. ¿e API
is carefully designed not to be tailored towards one speci�c language and platform but to be language
and platform independent. ¿is chapter distinguishes between the abstract API speci�cation (which is
described in this section) and the implementation of the API in a speci�c programming language and for
a speci�c Xcerpt engine (as described in Section 3.4).

¿is section is structured as follows. Section 3.3.1 describes requirements de�ned for the abstract API
de�nition and all implementations of the API. Section 3.3.2 discusses architecture (i.e. components and
modules) and the principles followed by the Xcerpt API. ¿e abstract API de�nition consists mostly of
interfaces that must be implemented by all implementations of the API (similar to the abstract de�nition
of DOM). Section 3.3.3 speci�es all provided interfaces of the Xcerpt API. Finally, di�erent usage modi of
the Xcerpt API are described in Section 3.3.4.

3.3.1 Requirements

¿e Xcerpt API is designed according to the following four general requirements:

Simplicity: ¿e Xcerpt API shall be intuitive and easy to use.

Extensibility: ¿e API shall be easily extensible.

Flexibility: ¿e API shall allow for �exible usage.

E�ciency: ¿e API shall be e�cient in both time and space.

Although the satisfaction of these requirements mostly falls into the API implementation’s �eld of
responsibility, the abstract API speci�cationmust be carefully designed not to hinder API implementations.
Hence these general requirements are described in more detail in the next four sections.

Of course, it is not possible to ful�ll all of these requirements perfectly and to the same level. For
example, the requirements Simplicity and Flexibility are competing goals. ¿e more �exible a system is,
the more complex is the usage of it. Hence the best tradeo� between the requirements must be found.

3.3.1.1 Simplicity

¿e Xcerpt API shall be intuitive and easy to use, which can be ensured in several ways. ¿e Xcerpt API is
designed similar to existing popular APIs for querying languages, because many programmers are familiar
with those APIs. ¿is ensures that the API is learned quickly by the majority of programmers.

A premise for a simple API is that it is small. ¿e Xcerpt API provides only a handful of interfaces,
capable of dealing with the execution of Xcerpt programs and queries, and handling of results. ¿us, the
API end users see immediately, which interfaces they have to use in order to achieve their goal.

¿e Xcerpt API further does not require end users to write “boilerplate” code. Boilerplate code is
a problem in many APIs at time. ¿ey require the end users to write code, which does not deal with
application logic. A characteristic of boilerplate code is that it is repeated in every program using a speci�c
API, no matter what goals that program tries to achieve. ¿e Xcerpt API does not force the programmer
to use long code sequences. ¿e API is designed in such a way that most tasks can be performed with a
handful of statements.
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Another problem of APIs at time is the lack of information about how objects are created for speci�c
interfaces or abstract classes. O en abstract APIs de�ne interfaces and abstract classes only, and do not
provide access to concrete implementations. ¿e API end users have to �nd a way of creating objects for
these interfaces, which is o en very complicated and badly documented. In the Xcerpt API, the creation
of objects for the core interfaces is possible in a very simple manner. ¿e creation of objects is handled
centrally by the XcerptFactory class.

3.3.1.2 Extensibility

A well designed API has the property that the programs using the API do not have to be changed if
the API is extended. ¿e Xcerpt API is easily extensible in this manner. ¿is is ensured for example
by modularization in the API design. Section 3.3.3 shows three di�erent modules of the API, each of
which deal with di�erent aspects of Xcerpt query execution. ¿e Xcerpt API is furthermore designed with
foresight to concrete implementations of the API for speci�c Xcerpt engines, which may involve several
problems. ¿e abstract API architecture is designed with engine speci�c di�culties in mind, providing
enough space for concrete implementations to overcome their obstacles.

3.3.1.3 Flexibility

¿e Xcerpt API provides �exibility in several ways. First, the API allows the user to execute both, Xcerpt
programs and Xcerpt queries. While the execution of Xcerpt programs is feasible in static and large
applications, the execution of simple queries is designed more towards small dynamic or interactive
applications. ¿e Xcerpt API not only allows obtaining constructed results (for an executed Xcerpt
program), but it also provides means for obtaining the substitution sets found for a speci�c goal inside an
Xcerpt program or for a speci�c standalone Xcerpt query. Di�erent usage modi are provided by the Xcerpt
API, ranging from querying input data to querying the results of the execution of an Xcerpt program.

Another �exibility provided to the end user by the Xcerpt API is the freedom to choose where the
input data for the Xcerpt programs and queries come from. Besides the regular ways provided by Xcerpt
(i.e. de�ning a regular input resource speci�cation in the Xcerpt program), the API also provides the
possibility to de�ne input data in a more API wise manner by using setInputDatamethods. ¿us the
Xcerpt API can be used, even if the application using the API does not have access to the local �le system
or to the web.

Flexibility in the navigation through the result set is another important point. Hence theResultSequence
interface is designed to allow easy and �exible navigation through the results. ¿e API end user can decide
to iterate through every result in the sequence, or he can choose to examine one speci�c result only.

Desirable is furthermore a �exible representation of results. ¿e results of an Xcerpt program (or query)
execution can be represented in di�erent output formats like Xcerpt character stream, XML character
stream, DOMnodes or SAX events. For this purpose the Xcerpt API provides several result transformators.

3.3.1.4 Efficiency

E�ciency is mainly in the responsibility of the concrete API implementation. ¿ough the abstract API
speci�cation is carefully designed not to hinder an e�cient implementation.

¿e API provides means for accessing the results of an Xcerpt program execution in an iterative
manner. By doing this, the API design allows concrete API implementations to construct results on
demand. When an Xcerpt program is executed through the API, the API implementation may choose not
to obtain all results of the execution (e.g. by con�guring the underlying engine, or by executing only parts
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of the Xcerpt program). Whenever the API end user accesses one particular result in the result sequence,
that result can be obtained lazily. Hence e�ciency is gained for both, time and space.

A further aspect of e�ciency is the precompilation of queries. Once compiled, the Xcerpt programs
and queries can be executed several times, and each execution of the program or query can be associated
with di�erent input data. ¿is saves much time, if the API end user is going to execute an Xcerpt program
or query very o en.

¿e possibility to choose between di�erent result representations further contributes to API e�ciency.
If one particular result is large, one would not choose a DOM representation of that result, because this
would yield high memory consumption. Instead a stream based representation is sometimes desirable
in such cases. A stream based representation of results is provided in the Xcerpt API by a SAX result
transformer, which transforms the results into an event stream.

3.3.2 Architecture and Principles

¿e core principle, the Xcerpt API is based on, is engine transparency. ¿e API is designed carefully to be
independent of both language, platform and engine. ¿e user of the Xcerpt API should not know about
the various implementations of the API for di�erent Xcerpt engines. A user provided program using the
Xcerpt API must run equally on all API implementations, regardless of engine, language or platform.

In order to facilitate this principle in API implementations for less powerful engines (cf. Section 3.4,
API Implementation for the Xcerpt Prototype Engine), the API must provide means for overcoming
obstacles placed by the engine, language or platform.

In order to help overcoming obstacles in underlying engines, the Xcerpt API speci�es three execution
phases. ¿e �rst phase and the third phase are meant to help compensating lacks in the various underlying
engines. ¿e execution of every Xcerpt programwithin the Xcerpt API runs through these three phases. As
is shown in Figure 3.3, the phases are called preprocessing phase, engine execution phase and postprocessing
phase.

3.3.2.1 Preprocessing

¿e preprocessing phase has the function of preparing all API end user provided input, such as Xcerpt pro-
grams, queries and input data, such that the underlying Xcerpt engine can handle them. If the underlying
engine has any shortcomings, the API implementation has to do a workaround in the preprocessing phase.

¿e preprocessing phase furthermore has the function of gathering all input data and produce local
copies of them. ¿is way a clear snapshot semantic is de�ned for the execution of queries, which can be
ful�lled by any Xcerpt engine.

3.3.2.2 Engine Execution

A er the preparation of the Xcerpt programs or queries and the input data in the preprocessing phase,
the Xcerpt API executes the Xcerpt programs or queries in the underlying Xcerpt engine in the engine
execution phase. ¿is phase takes care of the communication with the underlying Xcerpt engine in the
background, without the recognition of the API end user. Problems occurring during the execution of the
underlying Xcerpt engine are carried over to the API. If the execution of the underlying Xcerpt engine
yields an error message, the execution phase of the API terminates with an exception containing that error
message. If the execution of underlying Xcerpt engine does not terminate, the execution phase of the API
does not terminate also.
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3.3.2.3 Postprocessing

¿e postprocessing phase serves the preparation of the results, which are obtained a er the execution phase.
¿e results are brought in an appropriate form and ResultSequence and SubstitutionSet objects are
created and linked with the results. In this form, the results can be accessed by the end user in an API
wise manner, as is explained in Section 3.3.3.

3.3.3 API Specification

¿is section describes the speci�cation of the Xcerpt API, which mostly consists of interfaces that are to
be implemented by a speci�c Xcerpt API implementation. ¿e end user of the API usually does not have
to provide own implementations for these interfaces.

Each interface and its instance methods are described in the following. In the instance method
descriptions the word “this” refers to the instantiated object whose method is invoked.

¿e Xcerpt API can be divided into the following three modules, which are described in the following
three sections.

Core Contains the interfaces an Xcerpt API end user has to deal with at most.

Node Representation Contains standard types for the representation of both results and input data.

Transformations Provides interfaces for the transformation of the standard type node representation
into representation of various APIs.

3.3.3.1 Core

¿is module contains the most important interfaces of the Xcerpt API. It provides means for creating
Xcerpt programs and queries and providesmeans for handling the results of program and query executions.

Interface XcerptFactory Represents a factory for the creation of Xcerpt programs, queries and diverse
result transformers. ¿e Xcerpt API end user mostly uses an instance of this interface for creating instances
of all other interfaces de�ned in the Xcerpt API. An instance of an XcerptFactory can be obtained by the
class method createFactory(className:String).

¿e following methods are provided by XcerptFactory.

createFactory(className:String):XcerptFactory ¿is class method (static method in Java)
creates and returns an instance of XcerptFactory for a speci�c API implementation speci-
�ed by its argument string. For example createFactory(“org.xcerpt.haskimpl.XcerptFactoryImpl”)
returns an XcerptFactory instance for the API implementation that uses the Xcerpt
prototype written in Haskell.

createProgram(program:Reader):XcerptProgram Creates and returns an XcerptProgram
object for the Xcerpt program speci�ed by the argument program. ¿e argument
program is a Reader providing a character stream of the Xcerpt program.

createProgram(program:Reader, vars:String[]):XcerptProgram Creates and returns an XcerptProgram
object for the Xcerpt program speci�ed by the argument program. ¿e argument pro-
gram is a Reader providing a character stream of the Xcerpt program. ¿e argument
vars speci�es the variable names for which a substitution set is to be created when the
returned XcerptProgram instance is executed.
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createQuery(query:Reader, vars:String[]):XcerptQuery Creates and returns an XcerptQuery
object for the Xcerpt query speci�ed by the argument query. ¿e argument query is a
Reader providing a character stream of the Xcerpt query. ¿e argument vars speci�es
the variable names for which a substitution set is to be created when the returned
XcerptQuery instance is executed.

createQuery(query:String, vars:String[]):XcerptQuery Creates and returns an XcerptQuery
object for the Xcerpt query speci�ed by the string argument query. ¿e argument vars
speci�es the variable names for which a substitution set is to be created when the
returned XcerptQuery instance is executed.

createQuery(query:Reader, program:Reader, vars:String[]):XcerptQuery Creates and re-
turns an XcerptQuery object for the Xcerpt query speci�ed by the argument query. ¿e
query queries against the Xcerpt program speci�ed by the argument program. ¿e argu-
ments query and program are Reader providing character streams for the Xcerpt query
and program. ¿e argument vars speci�es the variable names for which a substitution
set is to be created when the returned XcerptQuery instance is executed.

domTransformer():XcerptToDom Creates an XcerptToDom transformer instance that can
be used to transform objects of the standard node representation (interface Node) into
objects of the DOM API.

saxTransformer(ch:ContentHandler):XcerptToSAX Creates an XcerptToSAX transformer
instance that can be used to transform objects of the standard node representation
(interface Node) into appropriate events of the SAX API.

xcerptStreamTransformer(w:Writer):XcerptToXcerptStream Creates an XcerptToXcerptStream
transformer instance that can be used to serialize objects of the standard node represen-
tation (interface Node) into an Xcerpt character stream.

xmlStreamTransformer(w:Writer):XcerptToXMLStream Creates an XcerptToXMLStream
transformer instance that can be used to serialize objects of the standard node represen-
tation (interface Node) into an XML character stream.

Interface XcerptProgram Represents an Xcerpt program that contains at least one rule. A rule may
either be a construct-query-rule (see Listing 3.28) or a goal (see Listing 3.29).

Listing 3.28: Construct-Query-Rule in Xcerpt
CONSTRUCT
<Xcerpt construct term>

FROM
<Xcerpt query>

END

Listing 3.29: Goal in Xcerpt
GOAL
out {
resource [ <output resource specification> ],
<Xcerpt construct term>

}
FROM
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<Xcerpt query>
END

and yields a result and substitution set.
¿is interface provides methods for achieving the results and substitution sets of this Xcerpt program

(if the program contains goals). Results are created by the construct terms of each goal and can be obtained
in a ResultSequence object returned by the getResultSequence() method. ¿e substitution sets are
created for each goal separately and contain substitutions for variables appearing in the query of the goal.
Substitution sets are returned by the getSubstitutionSet(goalNr:int)method. ¿e result sequence
and substitution sets can not be obtained before the program is executed via the execute()method.

An XcerptProgram instance is created by an XcerptFactory instance for a speci�c API implementa-
tion.

¿e following methods are provided by the XcerptProgram interface.

execute():void Executes the Xcerpt program represented by this XcerptProgram instance in
the underlying Xcerpt engine. ¿is method does not terminate if the underlying Xcerpt
engine does not terminate.
Invoking this method creates a result sequence and substitution sets for the goals
appearing in the Xcerpt program. ¿ey can be obtained by various methods of the
XcerptProgram interface.

getSubstitutionSet(goalNr:int):SubstitutionSet Returns the substitution set for the speci-
�ed goal, containing substitutions for variables appearing in the query of the goal. ¿e
argument goalNr indicates for which goal of this XcerptProgram the substitution set
is returned. If the speci�ed goal does not yield a result, this method returns an empty
substitution set.
¿is method must not be invoked before this XcerptProgram is executed via the
execute()method.

getResultSequence():ResultSequence Returns the result sequence for this XcerptProgram
containing one result element for each goal in this XcerptProgram, which yields a result.
¿e returned result sequence does not contain “empty” elements for goals that do not
yield a result.
¿ismethodmust not be invoked before this XcerptProgram is executed via the execute
method.

getSubstitutionSet():SubstitutionSet A convenience method returning a substitution set
for the �rst goal in this XcerptProgram. Invoking getSubstitutionSet() has the same
e�ect as invoking getSubstitutionSet(1).

setInputData(data:Reader, id:String):void Sets the input data for some of the queries ap-
pearing in this program. Any query having an input resource speci�cation of the form
"apiin:id" will use this input data (where id corresponds to the argument id of this
method).
¿e input data is speci�ed by the argument data, which is a Reader providing a character
stream of the data. ¿e format of the data can be any format accepted by Xcerpt. ¿e
programmer must be careful to specify the correct format in the input resource speci�-
cation (e.g resource { "apiin:1", "xml" } or resource { "apiin:1", "xcerpt"
}).
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If there is no apiin input resource speci�cation with the given id in this program, then
calling this method does not have any e�ect. Setting the input data for the same id
multiple times will overwrite the data for that id.

setInputData(data:String, id:String):void Sets the input data for some of the queries ap-
pearing in this program. Any query having an input resource speci�cation of the form
"apiin:id"will use this data (where id corresponds to the argument id of this method).
¿e input data is speci�ed by the string argument data. ¿e format of the input data
can be any format accepted by Xcerpt. ¿e programmer must be careful to specify the
correct format in the input resource speci�cation (e.g resource { "apiin:1", "xml"
} or resource { "apiin:1", "xcerpt" }).
If there is no apiin input resource speci�cation with the given id in this program, then
calling this method does not have any e�ect. Setting the input data for the same id
multiple times will overwrite the data for that id.

setInputData(data:Node, id:String):void Sets the input data for some of the queries ap-
pearing in this program. Any query having an input resource speci�cation of the form
"apiin:id"will use this data (where id corresponds to the argument id of this method).
¿e input data is speci�ed by the argument data. ¿e programmer must be careful to
specify the correct format in the input resource speci�cation, i.e. “xcerpt” must be used
as the input data format.
If there is no apiin input resource speci�cation with the given id in this program, then
calling this method does not have any e�ect. Setting the input data for the same id
multiple times will overwrite the data for that id.

Interface XcerptQuery Represents an Xcerpt query term, that can be executed on the underlying Xcerpt
engine. Since an Xcerpt query term itself is not an executable Xcerpt program, the Xcerpt API takes charge
of bringing the query in an appropriate form that can be executed by the underlying Xcerpt engine.

A query can be executed via the execute()method, what yields in the creation of a substitution set
for the variables appearing in the query, which can be obtained with the getSubstitutionSet()method.

¿e query either queries input data represented in its input resource speci�cation (e.g. in { resource
{ ... }, query } ), or it queries against a provided Xcerpt program (in which case the query must not
have an input resource speci�cation).

An XcerptQuery instance is created by an XcerptFactory instance for a speci�c API implementation.
¿e following methods are provided by the XcerptQuery interface.

execute():void Executes this Xcerpt query and creates a substition set for the variables in the
query, which can be obtained with the getSubstitutionSet()method.
¿is method does not terminate, if the underlying Xcerpt engine does not terminate.

setInputData(data:Reader, id:String):void Sets the input data for this query or one of its
subqueries (queries inside boolean conjunctions or disjunctions). Any query having an
input resource speci�cation of the form "apiin:id" will use this input data (where id
corresponds to the argument id of this method).
¿e input data is speci�ed by the argument data, which is a Reader providing a character
stream of the data. ¿e format of the data can be any format accepted by Xcerpt. ¿e
programmer must be careful to specify the correct format in the input resource speci�-
cation (e.g resource { "apiin:1", "xml" } or resource { "apiin:1", "xcerpt"
}).
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If there is no apiin input resource speci�cation with the given id in this query, then
calling this method does not have any e�ect. Setting the input data for the same id
multiple times will overwrite the data for that id.

setInputData(data:String, id:String):void Sets the input data for this query or one of its
subqueries (queries inside boolean conjunctions or disjunctions). Any query having an
input resource speci�cation of the form "apiin:id" will use this input data (where id
corresponds to the argument id of this method).
¿e input data is speci�ed by the string argument data. ¿e format of the data can be
any format accepted by Xcerpt. ¿e programmer must be careful to specify the correct
format in the input resource speci�cation (e.g resource { "apiin:1", "xml" } or
resource { "apiin:1", "xcerpt" }).
If there is no apiin input resource speci�cation with the given id in this query, then
calling this method does not have any e�ect. Setting the input data for the same id
multiple times will overwrite the data for that id.

setInputData(data:Node, id:String):void Sets the input data for this query or one of its
subqueries (queries inside boolean conjunctions or disjunctions). Any query having an
input resource speci�cation of the form "apiin:id" will use this input data (where id
corresponds to the argument id of this method).
¿e input data is speci�ed by the argument data. ¿e programmer must be careful to
specify the correct format in the input resource speci�cation, i.e. “xcerpt” must be used
as the input data format.
If there is no apiin input resource speci�cation with the given id in this query, then
calling this method does not have any e�ect. Setting the input data for the same id
multiple times will overwrite the data for that id.

getSubstitutionSet():SubstitutionSet Returns the substitution set containing substitutions
for variables in this query. ¿is method must not be invoked before the execute()
method is invoked.

Interface ResultSequence Represents the results of an Xcerpt program, which are created by the con-
struct terms of the goals of theXcerpt program. A ResultSequence instance is created, when an XcerptProgram
instance is executed via the execute()method and is returned by the getResultSequence()method of
the XcerptProgram interface.

¿e result sequence may be empty if the Xcerpt program does not contain any goals, or if its goals do
not yield any results. An element in a result sequence represents the results of one goal.

Aresult sequenceworkswith a so-called cursor, which is a pointer on the result elements in the sequence.
Most of the methods in this interface provide means for moving this cursor forward or backward. If
possible (with the underlying Xcerpt engine), an implementation of this interface must create the results in
a lazy manner (or “on demand”), creating the results not before they are accessed by the end user. Initially
the cursor is positioned before the �rst result element in the sequence, i.e. the cursor must be moved on a
result element by the end user, before he can obtain them.

¿e following methods are provided by ResultSequence.

absolute(pos:int):boolean Moves the cursor to the absolute position in the sequence, speci-
�ed by the argument pos. ¿is method returns true, if there is a result element at the
new position.
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relative(pos:int):boolean Moves the cursor to a position relative to the current cursor posi-
tion. Returns true, if there is a result element at the new position.

a erLast():void Moves the cursor to the position a er the last item in the sequence. ¿is
method can be used to initiate a reverse iteration over the result elements.

beforeFirst():void Moves the cursor to the position before the �rst item in the sequence
(initially the cursor is positioned on this position).

�rst():void Moves the cursor to the �rst position in the sequence, pointing at the �rst result
element (if there is any).

getPosition():int Returns the current cursor position.
isA erLast():boolean Checks whether the cursor is positioned a er the last item of the

sequence. Returns true, if it is, false otherwise.
isBeforeFirst():boolean Checks whether the cursor is positioned before the �rst item of the

sequence (initially the cursor is positioned on this position). Returns true, if it is, false
otherwise.

isFirst():boolean Checks whether the cursor is positioned on the �rst item of the sequence.
Returns true, if it is, false otherwise.

isLast():boolean Checks whether the cursor is positioned on the last item of the sequence.
Returns true, if it is, false otherwise.

isOnItem():boolean Checks whether the cursor is positioned on an result element. Returns
true, if it is, false otherwise.

last():void Moves the cursor to the last item of the sequence.
next():boolean Moves the cursor to the next position in the sequence. Returns true, if there

is an item at the new position, and false otherwise.
previous():boolean Moves the cursor to the previous position in the sequence. Returns true,

if there is an item at the new position, and false otherwise.
count():int Returns the number of the items in this ResultSequence object.
getResult():Node Returns the result item the cursor is currently pointing at. ¿rows an

exception, if the cursor is currently not pointing at a result item.
close():void Closes this ResultSequence object and releases all associated resources.
isClosed():boolean Checks whether this ResultSequence object is closed. Returns true, if

it is, false otherwise.

Interface SubstitutionSet Represents a set of variable substitutions for a goal in an Xcerpt Program. Per
goal there may be more than one substitutions for a variable, which are collected in a SubstitutionSet.
Furthermore, an Xcerpt programmay contain more than one goal, and hence there may be more than one
SubstitutionSet instances created by the execution of an Xcerpt program. ¿e substitution sets created
by the execution of an Xcerpt program are obtained via the getSubstitutionSet(goalNr:int)method
of the XcerptProgram interface.

¿e following methods are provided by SubstitutionSet.

print(w:Writer):void Serializes this substitution set to the speci�ed character stream writer
argument w.

getSet():Set⟨Substitution⟩ Returns an immutable set of the substitutions of this SubstitutionSet
object. ¿e returned set is a set representation provided by the host language. It can be
used to iterate over the substitutions in this set.
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Interface Substitution A Substitution stores bindings for variables.
¿e following methods are provided by Substitution.

get(varName:String):Node Returns the binding for the variable speci�ed by the argument
varName. Returns null, if there is no binding for the speci�ed variable.

getMappings():Map⟨String, Node⟩ Returns an immutable map of the bindings in this sub-
stitution. ¿e returned map is provided by the host language and can be used to iterate
over the bindings in this map.

variableNamesIterator():Iterator⟨String⟩ Returns an iterator over the keys of the map of
this Substitution.

isEmpty():boolean Returns true, if this substitution does not de�ne any variable bindings,
and false otherwise.

3.3.3.2 Node Representation

¿e Xcerpt API includes a hierarchy of classes for representing documents represented in Xcerpt syntax.
¿is standard node representation is used throughout the Xcerpt API, both for representing input data
and results. Figure 3.5 shows a class diagram containing each node type used for representing Xcerpt data.
¿e various node types are described in more detail in the following.

Interface Node ¿e Node interface is the basic data type of the Xcerpt data model, and is extended by
various other types. A Node instance represents a single node in the document. All types extending the
Node type inherit its methods for navigating through a document.

isAttributeNode():boolean Checks whether the Node object is an AttributeNode. Returns
true, if it is, false otherwise.

isDocumentNode():boolean Checks whether the Node object is an DocumentNode. Returns
true, if it is, false otherwise.

isElementNode():boolean Checks whether the Node object is an ElementNode. Returns true,
if it is, false otherwise.

isContentNode():boolean Checks whether the Node object is a ContentNode. Returns true,
if it is, false otherwise.

isCommentNode():boolean Checks whether the Node object is a CommentNode. Returns
true, if it is, false otherwise.

isProcessingInstructionNode():boolean Checkswhether the Node object is a ProcessingInstructionNode.
Returns true, if it is, false otherwise.

getSuccessorCount():int Returns the number of successors of the Node object.

getSuccessors():List⟨Node⟩ Returns an immutable view of all successors of the Node object.

getOwnerDocument():DocumentNode Returns the owner document of the Node object.
¿e owner document is the document this node was created with.
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Interface NamedNode ¿e NamedNode interface extends the Node interface, and provides additional
methods. All node types that have a label, a pre�x and a namespace uri (e.g. ElementNodes and Attribute-
Nodes) extend this interface.

¿e following methods are provided by NamedNode.

getLabel():String Returns the label of this named node.

getNamespaceUri():String Returns the namespace URI of this named node. ¿at is: If a
namespace is directly set for this node, then that namespace is returned. If a pre�x is
de�ned for this node, then the namespace declaration for that pre�x is retrieved in the
owner document.

getNamespacePre�x():String Returns the namespace pre�x of this NamedNode object, if it
has any.

setLabel(String label):void Sets the label of this NamedNode.

setNamespaceUri(uri:String):void Sets the namespace URI of this NamedNode. ¿is method
removes any previously set pre�x and namespace.

setNamespacePre�x(pre�x:String):void Sets the namespace pre�x of this named node. ¿is
method removes any namespace previously set for this node. ¿rows an IllegalArgumentException,
if there is no namespace declaration for the speci�ed pre�x in the owner document.

equalNames(other:NamedNode):boolean A named node object equals another named
node object, if they both have the same namespace and label. ¿e namespace pre-
�x is not important for equivalence.

Interface DocumentNode ¿e DocumentNode interface represents an Xcerpt document object and ex-
tends the Node interface. DocumentNode provides methods for creating ElementNodes, AttributeNodes
and ContentNodes (text content). ¿e created nodes belong automatically to this document node. Since
Xcerpt documents do not support nested namespace declarations (as in XML), the DocumentNode interface
provides a method for globally setting the namespace declaration for the whole document.

¿e following methods are provided by DocumentNode.

getNamespaceDeclaration(pre�x:String):String Returns the namespace declaration for the
speci�ed pre�x. All nodes in this document that have the same pre�x p also have
the same namespace as determined by this method (Xcerpt does not support nested
namespace declarations as in XML). ¿is method returns null if no namespace is
declared for the speci�ed pre�x.

setNamespaceDeclaration(pre�x:String, namespace:String):void Sets the namespace dec-
laration for the speci�ed pre�x and namespace. All nodes in this document that have
the same pre�x as the speci�ed argument will have the same namespace as speci�ed by
this method (Xcerpt does not support nested namespace declarations as in XML). If the
document has already a mapping for the speci�ed pre�x the old value is replaced by the
speci�ed namespace. Null arguments are not allowed.

getDeclaredNamespacePre�xes():Set⟨String⟩ Returns the namespace pre�xes declared for
this document.

createElementNode(label:String):ElementNode Creates and returns a new element node.
¿e owner document of that element node will be set to this document.
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createAttributeNode(label:String, value:String):AttributeNode Creates and returns a new
attribute node. ¿e owner document of that attribute node will be set to this document.

createContentNode(content:String):ContentNode Creates and returns a new content node.
¿e owner document of that content node will be set to this document.

getRootElement():ElementNode Returns the root element node of this document instance.
If this document does not have any root element set, returns null.

getOwnerDocument():DocumentNode ¿is method throws an IllegalStateException
because there is no owner document de�ned for DocumentNodes.

getSuccessorCount():int Since a document has only one successor, called root element, this
method returns always 1.

getSuccessors():List⟨Node⟩
getBaseURI():URI

Interface ElementNode ¿e ElementNode interface represents data terms in an Xcerpt document (cor-
responding to element nodes in XML), and extends the Node interface. Element nodes may have attributes
associated with them, and provides methods for retrieving attributes or adding or removing them.

¿e following methods are provided by ElementNode.

getAttributes():List⟨AttributeNode⟩ Returns a list of attributes that belong to this ElementNode.
setOrdered(ordered:boolean):void Sets whether this element node is ordered or unordered,

as speci�ed by the argument ordered.
getAttributeCount():int Returns the number of attributes in this ElementNode.
addAttribute(attribute:AttributeNode):void Adds the speci�ed attribute to this ElementNode.

¿e owner element of the speci�ed attribute will be set to this element node. If
the speci�ed attribute already has an owner element, an IllegalStateException is
thrown. If an attribute with equal label and namespace already exists in this element
node’s attributes list, then the existing attribute is overwritten. ¿is method throws
an IllegalStateException, if the argument attribute does have an owner document
di�erent to this element node’s owner document.

addAttributes(attributes:List⟨AttributeNode⟩):void Adds the speci�ed attributes to this
ElementNode. ¿e owner element of the speci�ed attributes will be set to this element
node. If the speci�ed attributes already have an owner element, an IllegalStateException
is thrown. If any attribute of the speci�ed attributes list with equal label and namespace
already exists in this element node’s attributes list, then the existing attribute is over-
written. ¿is method throws an IllegalStateException, if the argument attributes
does have any attribute that’s owner document is di�erent to this element node’s owner
document.

removeAttribute(label:String, namespaceUri:String):void Removes the attributewith spec-
i�ed label and namespace from this element node’s attributes list. If the namespace
argument is null, an attribute is removed that has the speci�ed label and no speci�ed
namespace. If no such attribute exists, nothing happens.

addSuccessor(successor:Node):void Adds a new successor node to this element node’s list
of successors. ¿e successor node to be addedmust not be an AttributeNode. To add at-
tributes use addAttribute(att:AttributeNode) or addAttributes(atts:List⟨AttributeNode⟩).
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¿is method throws an IllegalStateException, if the argument node does have an
owner document di�erent to this element node’s owner document.

removeSuccessor(successor:Node):void Removes the speci�ed successor node from this
element node’s list of successors. ¿e successor node to be removed must not be
an AttributeNode. To remove attributes use removeAttribute(label:String, names-
paceUri:String). If no such successor exists in the successor list of this ElementNode,
nothing happens. ¿is method throws an IllegalStateException, if the argument
node does have an owner document di�erent to this element node’s owner document.

addSuccessors(successors:List⟨Node⟩):void Adds new successor nodes to this element node’s
list of successors. ¿is method throws an IllegalStateException, if the argument list
does have any node that’s owner document is di�erent to this element node’s owner
document.

getAttribute(label:String, namespace:URI):AttributeNode Returns an attribute of this ElementNode
with the speci�ed label and namespace. If the namespace argument is null, an attribute
is returned that has the speci�ed label and no speci�ed namespace URI. If no such
attribute is found, null is returned.

isOrdered():boolean Checks whether this ElementNode is ordered.

Interface AttributeNode ¿e AttributeNode interface represents an attribute of an element node, and
extends the Node interface. Since attributes have no children, some of the inherited methods like getSucc-
essors() have no e�ect and return “empty” values. Each attribute of a speci�c element is unique by its
label or namespace and label.

¿e following methods are provided by AttributeNode.

getValue():String Returns the value property of this AttributeNode object.
setValue(value:String):void Sets the value property of this AttributeNode object.
getOwnerElement():ElementNode Returns the ElementNode which this attribute belongs

to.

Interface ContentNode ¿e ContentNode interface represents text content in an Xcerpt document
(corresponding to text nodes in XML), and extends the Node interface. Since text nodes have no children,
some inherited methods have no e�ect and return “empty” values (e.g. getSuccessors() returns an empty
list).

¿e following methods are provided by ContentNode.

setContent(content:String):void Sets the content of this ContentNode instance, as speci�ed
by the string argument content.

getContent():String Returns the content of this ContentNode instance.

3.3.3.3 Transformations

Besides the standard data representation with Node, the Xcerpt API also supports �exible representations
of data using other data formats and APIs. For this purpose various transformer interfaces are de�ned,
which provide means for transforming data represented in the standard type Node to data represented in
other formats or APIs. For example, transformers are provided that transform data represented as Node
to data represented as DOM nodes or to SAX events. Transformer instances can be obtained using an
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XcerptFactory instance for a speci�c Xcerpt API implementation. To simplify the implementation of the
Transformers for a concrete Xcerpt engine, the Xcerpt API speci�es a NodeVisitor interface that is based
on the Visitor design pattern.

¿e following interfaces are de�ned for the transformation of data represented as Node.

Interface NodeVisitor ¿is interface realizes the Visitor design pattern. ¿e Visitor design pattern is
used as an approach for realizing an algorithm for various polymorph types. A visitor encapsulates an
algorithm for the various types of an object structure, for example the various node transformers are
de�ned to be node visitors.

¿e objects in the node object structure invoke call-back methods of the NodeVisitor interface (visit()
methods). ¿e NodeVisitor interface provides such call-back methods for each type in the node type
hierarchy, and hence polymorphism is assured. Each type in the node type hierarchy de�nes an accept()
method accepting a node visitor, and invoking the appropriate call-back method in the visitor.

Visitors should be used if the object structure changes rarely but new algorithms are introduced o en.
¿e Node class hierarchy ful�lls this criteria, so it is safe using a node visitor whenever new algorithms are
introduced.

Interface XcerptToDOM Transforms data represented as Node to data represented as DOM nodes.

transform(doc:DocumentNode):org.w3c.dom.Document ¿ismethod transforms an org.xcerpt.DocumentNode
instance into an org.w3c.dom.Document instance.

transform(doc:Node):org.w3c.dom.Node ¿is method transforms an org.xcerpt .Node in-
stance into an org.w3c.dom.Node instance.

Interface XcerptToXcerptStream Transforms data represented as Node to an Xcerpt character stream
representation.

transform(doc:org.xcerpt.DocumentNode):Void ¿ismethod transforms an org.xcerpt.DocumentNode
instance into an Xcerpt stream.

transform(node:org.xcerpt.Node):Void ¿is method transforms an org.xcerpt .Node in-
stance into an Xcerpt stream.

setWriter(w:Writer):void Sets the speci�ed writer for this XcerptToXcerptStream trans-
former.

Interface XcerptToXMLStream Transforms data represented as Node to an XML character stream
representation.

transform(doc:DocumentNode):Void ¿is method transforms an org.xcerpt .DocumentN-
ode instance into an XML stream.

transform(node:Node):Void ¿is method transforms an org.xcerpt.Node instance into an
XML stream.

setWriter(w:Writer):void Sets the speci�ed writer for this XcerptToXMLStream transformer.
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Interface XcerptToSAX Transforms data represented as Node to SAX events.

transform(DocumentNode doc, ContentHandler saxHandler):void ¿ismethod transforms
an org.xcerpt.DocumentNode into a sequence of calls to methods of the speci�ed SAX
ContentHandler. If any SAXExceptions are thrown by the speci�ed content handler’s
methods, they will be wrapped in RuntimeExceptions that are thrown instead.

transform(Node doc, ContentHandler saxHandler):void ¿ismethod transforms an org.xcerpt.Node
into a sequence of calls to methods of the speci�ed SAX ContentHandler. If any SAXEx-
ceptions are thrown by the speci�ed content handler’s methods, they will be wrapped
in RuntimeExceptions that are thrown instead.

3.3.4 Usage

¿is section describes the usage of the Xcerpt API, demonstrating it with short code examples. Every
program using the Xcerpt API starts with the creation of an XcerptFactory instance, as is shown in Section
3.3.4.1. Section 3.3.4.2 describes how the factory instance is used for creating instances of the XcerptProgram
and XcerptQuery interfaces. A er that, Section 3.3.4.3 explains the possibilities of specifying input
resources with the Xcerpt API. Finally, the execution of an Xcerpt program or query and the handling of
results using the ResultSequence and SubstitutionSet interfaces is described in Section 3.3.4.4.

3.3.4.1 Creation of XcerptFactory Instance

Every program using the Xcerpt API starts by creating an XcerptFactory instance. An Xcerpt factory
instance is created for a speci�c implementation of the Xcerpt API and takes care about the creation of
instances for the most important interfaces of the API. ¿e following listing demonstrates how an Xcerpt-
Factory instance can be obtained for a speci�c API implementation (in this case the API implementation
for the Xcerpt prototype engine is used).

Listing 3.30: Obtaining an XcerptFactory instance for a speci�c API implementation
XcerptFactory factory = XcerptFactory.createFactory(

2"org.xcerpt.haskimpl.XcerptFactoryImpl");
XcerptProgram program = factory.createProgram(...);

4XcerptQuery query = factory.createQuery(...);

¿e listing also shows how the factory is used for creating instances of various interfaces de�ned in the
Xcerpt API. Once a speci�c API implementation is chosen and an XcerptFactory instance is obtained, the
factory takes care of creating instances for the right API implementation. ¿e creation of an factory instance
is the only time the end user has to deal with code that is speci�c for an API implementation (i.e. the string
argument given to the createFactory()method is speci�c to the API implementation). Hence this is also
the only place that must be changed in order to switch between various API implementations. All other
parts of the code remain the same, when the end user decides to switch to another API implementation.

3.3.4.2 Creating XcerptProgram and XcerptQuery instances

A er an XcerptFactory instance is created for a speci�c API implementation, the programmer can start
creating XcerptProgram and XcerptQuery instances. ¿e XcerptFactory provides various factory methods
for creating those instances, corresponding to various usage modi. Each of the usage modi has di�erent
purposes, as is demonstrated in the following.
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Usage Mode: XcerptProgram In this usage mode an ordinary Xcerpt program is executed by the
underlying Xcerpt engine. ¿is is done using the XcerptProgram interface, which provides means for
executing the program and obtaining the results of the execution. ¿e following listing demonstrates
how an XcerptProgram instance can be created and executed and how the results of the execution can be
obtained.

Listing 3.31: Creation of an XcerptProgram
String programString = xcerptProgramString();

2XcerptProgram xcerptProgram = factory.createProgram(programString);
xcerptProgram.execute();

4ResultSequence constructedResults = xcerptProgram.getResultSequence();

UsageMode: XcerptProgramandVariables In this usagemode an ordinary Xcerpt program is executed
by the underlying Xcerpt engine, and substitution sets are obtained, which are found by the engine for the
goals inside the program. Similar to the previous usage mode, in this mode the XcerptProgram interface is
used. In contrast to the �rst mode however, this usage mode yields substitution sets. Whereas in the �rst
mode a a ResultSequence instance is obtained, which can be used to iterate over the results constructed
by every goal in the program, now a SubstitutionSet instance is obtained for a particular goal. ¿e API
end user can provide a list of variable names, for which he wants to obtain the substitution sets. ¿is is
demonstrated by the following listing.

Listing 3.32: Creation of an XcerptProgram and variables
String programString = xcerptProgramString();

2String[] varnames = new String[] {"X","Y","Z"};

4XcerptProgram xcerptProgram = factory.createProgram(programString, vars);
xcerptProgram.execute();

6

int goalNr = 1;
8SubstitutionSet substSet = xcerptProgram.getSubstitutionSet(goalNr);

Usage Mode: XcerptQuery and Variables In contrast to the previous two usage modi, the usage mode
described next does not execute an Xcerpt program, but executes a standalone Xcerpt query. For this
purpose the API provides the XcerptQuery interface, for which an instance can be created by using the
XcerptFactory. In this mode, an XcerptQuery instance is created for any ordinary Xcerpt query, which
contains one or more input resource speci�cations. ¿e query is meant to query the input resources
speci�ed inside the query. Because a standalone query does not yield constructed data, the execution of
an XcerptQuery instance yields substitution sets only (no result sequence can be obtained), and the API
end user can provide a list of variable names, for which he wants to obtain the substitutions resulting from
the execution of the query. ¿e following listing demonstrates this usage mode.

Listing 3.33: Creation of an XcerptQuery with variables
String queryString = xcerptQueryString();

2String[] varnames = new String[] {"X","Y","Z"};

4XcerptQuery xcerptQuery = factory.createQuery(queryString, varnames);
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xcerptQuery.execute();
6

SubstitutionSet substSet = xcerptQuery.getSubstitutionSet();

Usage Mode: XcerptQuery, XcerptProgram and Variables ¿is usage mode is a combination of the
previous two usage modi. Again, an Xcerpt query is executed in this mode. ¿is time however, the query
is not meant to query input data speci�ed with input resource speci�cations inside the query. Rather
the query queries data that is constructed as a result of executing an Xcerpt program. Hence, in this
usage mode, the API end user provides both, an Xcerpt program and an Xcerpt query. ¿e XcerptFactory
takes both and creates an XcerptQuery instance, that can be executed as before. ¿e following listing
demonstrates this usage mode.

Listing 3.34: Creation of an XcerptQuery with an XcerptProgram and variables
1String queryString = xcerptQueryString();

String programString = xcerptProgramString();
3String[] varnames = new String[] {"X","Y","Z"};

5XcerptQuery xcerptQuery = factory.createQuery(
queryString, programString, varnames);

7xcerptQuery.execute();

9SubstitutionSet substSet = xcerptQuery.getSubstitutionSet();

3.3.4.3 Defining Input Resource Specification

¿e Xcerpt API supports two ways of specifying input resources in an Xcerpt program (or query). ¿e
�rst one is the regular input resource speci�cation of Xcerpt as is shown in Listing 3.35.

Listing 3.35: Regular input resource de�nition
1in {

resource [ <uri>, <format> ],
3<Xcerpt query>

}

Input resources that are speci�ed this way are �rst obtained and copied by the API. A er that, the Xcerpt
program is executed in the underlying engine using the copy of the input resource. ¿e regular input
resource speci�cations in Xcerpt support any URI, but some API implementations may not support
every protocol due to engine limitations. In either case the API implementation takes care that the “http”
protocol (for input resources in the WEB) and the “�le” protocol (for local �les) can be used, regardless of
whether the underlying engine supports them or not. Support for further protocols is implementation
dependant.

¿e second way of specifying an input resource is provided by the API and is not available in regular
Xcerpt programs. Input resource speci�cations may contain an URI with the apiin “protocol”. ¿e
advantage of introducing this protocol is that more than one input resources can be speci�ed in an Xcerpt
program in a �exible manner as it is provided by the Xcerpt engine so far. A further convenience of this
approach is that the user can specify input resources even if he has no connection to the internet (is needed
if the http protocol is used) or has no rights for reading from �les (is needed if the �le protocol is used) on
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the operating system where the API application runs. ¿e following listing shows the usage of the apiin
“protocol”.

in {
2resource [ "apiin:someIdentifier", <format> ],

<Xcerpt query>
4}

Input resources speci�ed this way allow the programmer to set input data in a more API wise manner, by
using setInputData()methods provided by the API. ¿e following listing shows a short code fragment
using such an input resource speci�cation.

Listing 3.36: API speci�c input resource speci�cation
String query = "in {"

2+ " resource [ ’apiin:id’, <format> ],"
+ " desc b [ var X ]"

4+ "}";
String data = "a { b {1}, b {2} }";

6

XcerptQuery xq = factory.createQuery(query, ...);
8xq.setInputData(data, "id");

xq.execute();
10...

In this code fragment, two strings are created representing a query and the data to be queried. Note that
the query contains an apiin input resource speci�cation. A er obtaining the XcerptQuery instance, the
input resource data is set by invoking its setInputData(data, “id”) method. ¿is links the apiin:id
input resource speci�cation in the query with the given data.

3.3.4.4 Result Handling

¿is section describes how the API end user can handle the results of the execution of an Xcerpt program
or query. A er the execution of an Xcerpt program the API end user can obtain constructed results
and substitution sets, which are represented by the interfaces ResultSequence and SubstitutionSet. In the
following �rst the ResultSequence interface is explained, and a er that the SubstitutionSet interface is
explained.

A ResultSequence works with a cursor, enabling iterative access to the results. If the underlying Xcerpt
engine supports it, the results can thus be retrieved in a very e�cient way “on demand”. ¿eResultSequence
interface provides many methods for moving the cursor in the sequence of results and for retrieving the
actual result. For example, the following listing shows how one can iterate through all results in the result
sequence.

Listing 3.37: Usage of ResultSequence
xcerptProgram.execute();

2

ResultSequence results = xcerptProgram.getResultSequence();
4

while (results.next()) {
6Node result = resSequence.getResult();
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processResult(result);
8}

¿e SubstitutionSet interface represents substitution sets retrieved as result of query (or program)
execution. ¿is interface provides methods for accessing particular substitutions in the substitution set.
¿e following listing demonstrates the usage of the SubstitutionSet interface.

Listing 3.38: Usage of SubstitutionSet
xcerptQuery.execute();

2

SubstitutionSet subs = xcerptQuery.getSubstitutionSet();
4

for (Substitution sub : subs) {
6Iterator<String> it = sub.variableNamesIterator();

8while (it.hasNext()) {
String varName = it.next();

10Node binding = sub.getBinding(varName);

12process(varName, binding);
}

14}

3.4 API Implementation for the Xcerpt Prototype Engine

In this chapter an implementation of the Xcerpt API for a concrete Xcerpt engine (Haskell prototype
engine) is provided. ¿is section describes the API implementation and how the API architecture (cf.
Section 3.3.2) is realized in it. ¿e API implementation supports the Xcerpt prototype engine [66], and is
written in the Java programming language [1].

¿e Xcerpt API is not limited to the Java programming language, as it can be implemented in any
other object oriented programming language. Although only one implementation of the API in the Java
programming language is given in this chapter, the translation of this implementation to other object
oriented programming languages should be straight forward. Using Java in this chapter is not an arbitrary
decision, as Java is a modern, platform independent object oriented programming language providing
a huge range of various APIs. We believe that the Xcerpt API end user bene�ts the most from an API
implementation in Java.

¿e Xcerpt prototype engine [66], the Xcerpt API is implemented for, is a proof-of-concept imple-
mentation of Xcerpt. A better engine implementation using an abstract machine [31] is currently being
developed but was not available at the time this chapter was written. ¿e prototype engine has some
shortcomings, which are to be dealt with by the API implementation, as is described in the following
sections.

¿e API implementation follows closely the abstract architecture (cf. Section 3.3.2), which de�nes
three execution phases, namely preprocessing phase, execution phase and postprocessing phase. Figure 3.6
shows how this architecture is realized in the concrete implementation. ¿e preprocessing phase of the
abstract architecture is mainly realized by the so-called ProgramParser, which preprocesses the Xcerpt
input programs provided by the end user. ¿e ProgramParser and the preprocessing of Xcerpt programs
is explained in Section 3.4.1. It is followed by Section 3.4.2, which describes the execution phase. Finally,
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the postprocessing phase is realized by the ResultParser, which processes the results provided by the
prototype engine, as is discussed in Section 3.4.3. ¿e focus of Section 3.4.4 is, how the representation and
the handling of the results of an Xcerpt program execution are implemented in the implementation of the
Xcerpt API.

3.4.1 Preprocessing Phase: Program Parser

¿e preprocessing phase of the Xcerpt API architecture is realized mainly by the ProgramParser in the
concrete API implementation for the prototype engine. ¿e ProgramParser is a Java class with the function
of rewriting Xcerpt programs, which are provided by the API end user, without changing their semantics.
¿e rewriting of the Xcerpt programs is needed for several reasons. First, input resources speci�ed in the
Xcerpt program have to be copied by the API (as it is demanded by the abstract architecture speci�cation).
Also input resource speci�cations containing apiin “protocols” have to be replaced by ordinary resource
speci�cations, because apiin is no standard protocol supported by the Xcerpt prototype engine. Another
reason for the rewriting of Xcerpt programs is the necessity of receiving substitution sets obtained for
goals in the Xcerpt program. Finally, the Xcerpt API allows the execution of single Xcerpt queries, not just
Xcerpt programs. In order to execute such queries in the Xcerpt prototype engine, the queries must be
rewritten into ordinary Xcerpt programs. All of this is explained in further detail in the following.

3.4.1.1 Replacing Input Resource Specifications

As it is demanded by the Xcerpt API architecture speci�cation, input resources have to be copied be-
fore an Xcerpt program is executed. ¿e ProgramParser does this for several supported input resource
speci�cations.

¿e copying of input resources has the advantage that speci�c protocols can be used by the API end
user, which are normally not supported by the underlying Xcerpt prototype engine. For example, the
prototype engine does not support the HTTP protocol, though the API end user can use the HTTP
protocol for input resource speci�cations. ¿e ProgramParser copies all input resources and saves them to
temporary local �les. ¿e ProgramParser further replaces all input resource speci�cations in the Xcerpt
program, such that the new resource speci�cations point to the temporary local �les.

Also input resource speci�cations containing the non-standard apiin protocol are replaced this way.
¿e ProgramParser replaces all apiin input resource speci�cations in the Xcerpt program, such that the
new resource speci�cations point to a temporary local �le, which contains the input resource data provided
by the API end user by invoking the setInputData()method of XcerptProgram or XcerptQuery objects.

3.4.1.2 Wrapping of Construct Terms

As speci�ed by the abstract API architecture, the execution of an Xcerpt program shall yield two di�erent
kinds of results. ¿e �rst kind of result is the data constructed by the construct terms inside goals of the
Xcerpt program. ¿e second kind of result is the substitution sets that are found for variables inside the
query of each goal of the Xcerpt program. ¿e Xcerpt prototype engine only returns the data constructed
by construct terms inside goals, but does not return the substitution sets that are found for those goals. ¿e
API extends the Haskell prototype engine to allow substitution sets, by wrapping construct terms around
the original construct terms inside goals of the Xcerpt program. ¿e following two listings demonstrate
the rewriting of construct terms inside Xcerpt goals, Listing 3.39 shows the original Xcerpt goal and Listing
3.40 shows the rewritten Xcerpt goal.
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Listing 3.39: Original Xcerpt Rule
GOAL

out {
resource { "stdout:", "xml" },
<CONSTRUCT TERM>
}

FROM
<QUERY TERM>

END

Listing 3.40: Rewritten Xcerpt Rule
GOAL

out {
resource { "stdout:", "xcerpt" },

resultsAndSubs [
result [

<CONSTRUCT TERM>
],

subs [
all sub [

map [ "X1", var X1 ],
....

map [ "Xn", var Xn ]
]

]
]

}
FROM

<QUERY TERM>
END

As one can see, the rewriting inserts terms of the form map [ ‘‘X’’, var X ] into the construct term of
the goal. ¿ese insertions are done for every variable X appearing inside the query term of the goal. ¿e
terms are wrapped inside sub terms, which are preceded by the grouping construct all. ¿is way a sub term
is constructed for each possible substitution. ¿e original construct term is put as a subterm inside the
result term. ¿is rewriting is later undone in the postprocessing phase, which extracts the data constructed
by the original construct term and the substitution set constructed by the new construct terms.

3.4.1.3 Rewriting Xcerpt Queries into Xcerpt Programs

¿e Xcerpt API speci�cation de�nes the XcerptQuery interface, which allows the end users to execute
simple Xcerpt queries against the same set of rules without creating a speci�c program for each of
the queries. ¿e execution of a standalone query does not yield the construction of results but yields
substitution sets only. ¿e Xcerpt prototype engine however does not support the execution of standalone
queries. ¿is limitation is worked around in the API implementation by automatically rewriting the Xcerpt
queries into Xcerpt programs.

Internally, a simple Xcerpt goal is wrapped around the query and instances of the XcerptQuery
interface create instances of the XcerptProgram interface. ¿is way all functionalities can be delegated to
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the internal XcerptProgram instance. ¿e execution of an XcerptQuery instance is realized by executing
the internal XcerptProgram instance, which then yields both, the construction of result data (which is a
dummy result in this case) and the substitution set for the single goal in the program. ¿e XcerptQuery
instance only returns the substitution set and ignores the constructed dummy result.

3.4.1.4 Implementation of the ProgramParser

¿e ProgramParser class is basically an LL(1) parser, parsing the Xcerpt programs provided by the API
end user. ¿e purpose of the parser is not to build an abstract syntax tree for the Xcerpt program, but to
rewrite speci�c parts inside the program only.

For this reason the parser also does not need to accept the Xcerpt language, it is su�cient if the parser
accepts a more general superset of this language. ¿e ProgramParsermainly checks the “well-formedness”
of the Xcerpt program (regarding correct bracketing) and determines parts in the program that have to be
rewritten (such as input resource speci�cations and the wrapping of construct terms inside goals).

Parsing only a superset of the Xcerpt language does not allow the end user to provide wrong Xcerpt
programs (programs with syntax errors), because the underlying Xcerpt engine still performs its syntax
checks on the rewritten Xcerpt program. If the end user writes programs with syntax errors, these errors
remain in the rewritten program and the underlying engine reports a failure, which is then forwarded to
the end user through the API.

As already mentioned, the ProgramParser is an LL(1) parser. It is generated using a parser generator for
the Java language. ¿e parser generator JavaCC [27] is chosen for this purpose. It is capable of generating
e�cient LL(k) parsers for any lookahead k (k is 1 in this case), and uses the predictive recursive descent
technique for implementing the parser to be generated. Together with the facts that only a simple bracketed
language is parsed (superset of Xcerpt) and no abstract syntax tree is built, this yields a very e�cient way
of rewriting Xcerpt programs.

3.4.2 Execution Phase: Executing the Underlying Engine

¿is section describes how the execution phase is solved in the Xcerpt API implementation and gives
demonstrating code examples. ¿e execution phase is intended to execute the Xcerpt program in the
underlying engine. ¿e Xcerpt prototype engine provides an executable binary �le for the execution,
which is not a Java binary �le. Hence a “foreign” process must be executed in the API implementation,
what can be done in several ways.

Execution of “foreign” processes in Java can be done with the Java Native Interface (JNI). JNI is used
when platform-speci�c features are not supported by the Java API or when an application is to be executed
that is written in a foreign programming language. JNI is a very powerful Java technology but has a very
severe disadvantage: using JNI in an API implementation explicitely forces the API end user to deal with
platform dependant JNI libraries. ¿e inclusion of JNI libraries is a non-trivial task for most end users,
and hence using explicite JNI in the API implementation is contradictive to the simplicity requirement
demanded by the abstract API speci�cation (cf. Section 3.3.1).

A more simple solution is to use the Java class Process instead. ¿is class implicitely deals with the
platform dependencies (it uses JNI internally). ¿e advantage of Process is that the end user does not have
to deal with the JNI libraries explicitely. ¿e necessary JNI libraries are automatically provided by every
Java Virtual Machine installation and thereby preserving the platform independence at the end user level.

¿e following listing shows a fragment of the execute()method of the XcerptProgram interface (the
execute()method of interface XcerptQuery delegates to this too).
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Listing 3.41: Execution of the prototype engine via the Process class

File program = getProgramFile();
2Process p = Runtime.getRuntime().exec(

new String[] { "xcerpt",
4"−f", "−o", "xcerpt",

"−p", program.getPath() });
6InputStream in = p.getInputStream();

An instance of the Process class is obtained for the executable binary xcerpt (the binary must be availabe
in the system) and some command line arguments. Note that the output format for constructed results is
set to “xcerpt” by the command line argument -f -o xcerpt. ¿is overrides output formats of output
resource speci�cations inside the Xcerpt program. ¿e API implementation expects the output formats
to always be “xcerpt”, as the ResultParser parses this format only. If the API end user wants the results
to be in another format, he must use one of the provided transformators. A er executing a process and
obtaining the Process object, an input stream can be obtained by calling the getInputStream()method.
¿is input stream delivers all data that the process writes in its standard output stream. Hence, the API
implementation receives the results of the Xcerpt program execution via this input stream.

3.4.3 Postprocessing Phase: Result Parser

¿e postprocessing phase is realized by the ResultParser class in the concrete API implementation. ¿e
ResultParser is intended to process the results of the execution of the underlying Xcerpt engine. ¿is
is accomplished by “undoing” the rewriting of the ProgramParser in the preprocessing phase, that is it
separates the constructed results from the substitution sets. Its main purpose however is to parse the data
terms and to build an object structure that uses the Node class hierarchy (cf. Section 3.3.3.2).

3.4.3.1 Unwrapping the Results and Substitution Sets

As described in Section 3.4.1, the user provided Xcerpt programs get rewritten in the preprocessing phase.
¿e wrapping that is done around the construct terms of each goal has to be “undone” in order to preserve
the original results and separates them from the substitution sets. ¿e ResultParser class was written for
this purpose. It separates results and substitution sets of each goal, such that the Xcerpt API end user can
receive them in an API wise manner by using appropriate getter methods of the interfaces XcerptProgram
and XcerptQuery.

3.4.3.2 Building the Node Object Structure

¿emain purpose of the ResultParser is to build an object structure for constructed results and substitution
sets. ¿e object structure follows the Node class hierarchy of the Xcerpt API, which simulates Xcerpt
data term graphs. ¿e main di�culty of building the object structure is that the graphs must be built by
dereferencing all references appearing inside the textual results constructed by the Xcerpt engine.

Several object graph structures are built during the parsing of the textual output obtained from the
underlying Xcerpt engine. One graph is built for every constructed result for each goal inside the executed
Xcerpt program. Furthermore one graph is built for every binding of a variable appearing inside the
substitution sets obtained as results for each goal.
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3.4.3.3 Implementation of the ResultParser

¿e implementation of the ResultParser is done similar to the implementation of the ProgramParser:
the parser generator JavaCC is used for generating an LL(1) parser. However the result parser has much
more work to do than the program parser has. Whereas the program parser’s only purpose was the
rewriting of a “simple” bracketed language, the result parser must parse full Xcerpt data terms and built an
appropriate object structure for them.

¿e result parser parses the data term results for every goal and forwards the built object graph and
substitution sets to the corresponding XcerptProgam or XcerptQuery instances, which provide methods
for the API end user for retrieving them. It is worth considering not to parse the results of a goal, if the
API end user does not request them. ¿e parsing of such results could be done lazily at the time the results
are requested by the end user. ¿is would contribute to the e�ciency of the API implementation, as there
may be situations in which the end user is not interested in the results of every goal.

3.4.4 Result Representation and Handling

¿is section describes the implementation of the classes which deal with the representation and handling
of Xcerpt results. Section 3.4.4.1 explains the internal representation of ResultSequences that store all pos-
sible results of an Xcerpt program. ¿e next section describes the implementation of the SubstitutionSet
and Substitution interfaces, which represent the variable bindings resulting from the execution of an
Xcerpt program. Section 3.4.4.3 explains how the result transformers are implemented.

3.4.4.1 ResultSequence

Each XcerptProgram instance has a property in which the constructed results for that program are stored
a er its execution. ¿e type of this property is ResultSequence and it is accessible via a getter method.
¿e ResultSequence is implemented by using the Java standard type List internally, more precisely a
parameterized List⟨Node⟩ is used.

¿e size of the internal list is at most equal to the number of goals appearing inside the Xcerpt program,
because some of the goals may not construct any results.

As described in 3.3.3.1 each result in the ResultSequence can be accessed by a cursor. ¿is cursor
is implemented in a straight forward manner using an integer pointer to a position in the internal List.
Although the abstract Xcerpt API speci�cation requires a more e�cient iterative implementation, this is
not done in this concrete API implementation because the underlying engine does not support accessing
results in an iterative manner.

3.4.4.2 Substitution Set

A SubstitutionSet represents all possible substitutions of one goal in an Xcerpt program a er its execu-
tion. It is implemented by using a parameterized standard Java Set⟨Substitution⟩ type.

¿e elements in a SubstitutionSet are Substitution objects. A Substitution represents a variable
binding and is implemented by the parameterized Java standard typeHashMap⟨String, Node⟩. ¿e key
represents the name of the variable and the value represents the Node object the variable is binded to.

Again, a more e�cient implementation would be desirable, which constructs the substitutions on
demand, but this is not realized here because of the missing feature of the Xcerpt engine to support iterative
result construction.
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3.4.4.3 Transformer

¿eXcerptAPI provides various result representations that are achieved by variousTransformers (XcerptToXMLStream,
XcerptToXcerptStream, XcerptToSAX, XcerptToDOM). For the implementation of the Transformers a de-
sign pattern called theVisitor design pattern as already described in Section 3.3.3.1 is used. EachTransformer,
of the provided four Transformers, implements theNodeVisitor interface and de�nes the required methods.

3.5 Use Case: Web Application

As proof-of-concept of the Xcerpt API speci�cation and implementation, this section describes the web
application use case. 7 In fact, the web application is both, a use case and a demonstration tool for applying
the Xcerpt use cases. ¿e web application provides only a fragment of the functionality of the Xcerpt API
and serves mostly demonstration purposes.

Section 3.5.1 explains the implementation of the web application. Section 3.5.2 the usage describes the
web application as a web service and as a web interface. At last Section 3.5.3 demonstrates the four usage
modi, provided by the Xcerpt API with Xcerpt use cases.

3.5.1 Implementation

¿eWeb application runs on the Apache Tomcat Server 6.0 [3]. ¿eWeb application is implemented by
using the Xcerpt API and is based on JSP (Java Server Pages) [73, 40, 5]. JSP is an alternative to implement
a web application by servlets. In fact JSP is internally transformed into a Java Servlet, so it can be seen
as an extension of the Servlet API. ¿e main di�erence between the two approaches is that Servlets use
an embedded HTML code within Java code, and JSP uses embedded Java code within HTML code. ¿e
JSP approach is chosen for our purpose. Java Beans [71] is used in context with JSP. Java Beans can be
seen as an instance of a class with properties. ¿e access to these properties is achieved by conventional
methods, as getter and setter methods. In the following the class QueryBean is presented that ful�lls the
Java Beans criteria and also shows how the Xcerpt API can be used in a program. Further, the technologies
from [35, 44, 11] are used for the implementation of the web application.

QueryBean ¿is part demonstrates the twomost interestingmethods of the classQueryBean, namely the
getSubstitutionSet() and the getConstructedData(). All other method implementations of the class
QueryBean are straight forward, they are “usual” getter and setter methods, and are not further described
here. ¿e two methods are used by the web application to get the substitutions and the constructed data
for representing them in the browser(web interface) or to forward them to another so ware program(web
service).

Listing 3.42 demonstrates these two methods using the Xcerpt API. Lines 10, 13 and 25 demonstrate
the creation methods of the XcerptFactory class for the creation of Xcerpt queries and Xcerpt program.
¿e setInputDatamethod, invoked in lines 17 and 28, speci�es the input data for the Xcerpt program
(or query). ¿is method is invoked only if input data is provided by the user of the web application. Due
to simplicity reasons, only one input data can be provided by the user of the web application, hence the
identi�er for the input data is always the same (id=1).

As can be seen from the code, the usage of the API is easy and very concise.

Listing 3.42: QueryBean methods for using the Xcerpt API
public SubstitutionSet getSubstitutionSet()

7http://en.wikipedia.org/wiki/Web_application
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2{
if (this.vars == null) {

4this.vars = new String[0];
}

6

if (!queryNull()) {
8final XcerptQuery q;

if (!programNull()) {
10q = Utils.XF.createQuery(new StringReader(this.query),

new StringReader(this.program), this.vars);
12} else {

q = Utils.XF.createQuery(this.query, this.vars);
14}

16if (!dataNull()) {
q.setInputData(this.data, "1");

18}
q.execute();

20

return q.getSubstitutionSet();
22}

24if (!programNull()) {
this.xcerptProgram = Utils.XF.createProgram(new StringReader(

26this.program), this.vars);
if (!dataNull()) {

28this.xcerptProgram.setInputData(this.data, "1");
}

30this.xcerptProgram.execute();
return this.xcerptProgram.getSubstitutionSet();

32}

34return null;
}

36//method getConstructedData():

38public String[] getConstructedData()
{

40if (this.xcerptProgram == null) {
return new String[0];

42}

44final ResultSequence rs = this.xcerptProgram.getResultSequence();
final String[] buf = new String[rs.count()];

46

int i = 0;
48while (rs.next()) {
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final Node n = rs.getResult();
50final String res = Utils.transform(n);

buf[i] = res;
52i += 1;

}
54

return buf;
56}

3.5.2 Usage

As can be seen in Figure 3.7 the web application provides text areas for entering an Xcerpt program,
Xcerpt query, variables and input data to be queried. ¿e �eld for the variables expects only the variable
names, separated by commas, without the keyword var. ¿e substitutions can be obtained for variables
appearing in the Query �eld or for the �rst goal of the Xcerpt program, entered in the area Program. ¿is
is a limitation of the web application for the sake of simplicity. Of course the API provides possibilities to
achieve any substitutions for any variables in any goals of an Xcerpt program.

As the web application serves demonstration purposes, there is de�ned only one data input area, which
is speci�ed by the Xcerpt API apiin protocol. Due to simplicity reasons the id for the input data is set to 1.
So if the apiin protocol is to be used, apiin:1 has to be written in the input resource speci�cation part of
Xcerpt queries.

For testing the Xcerpt API with concrete Xcerpt use cases, some examples are built in the web applica-
tion, which can be selected by the drop-down menu Examples. ¿ere are provided four use cases, one for
each of the possible usage styles of the Xcerpt API.

¿e substitutions for the requested variables are presented in tables as can be seen in Figure 3.9. Each
column represents a substitution for a speci�c variable.

In two of the usage modi of the Xcerpt API constructed results are also represented. ¿is is the case
if an Xcerpt program is executed. ¿e web application returns, besides the substitutions for variables, if
requested, the representation of the constructed results.

At time of writing this chapter, only the Xcerpt representation of the results is available for the web
application since the web application shall demonstrate only a core functionality of the Xcerpt API. Besides
the Xcerpt representation, the Xcerpt API also o�ers the representation of results as XML and DOM
representations and as a SAX stream.

According to the de�nitions in Sections 3.5.2.1 and 3.5.2.2 our web application is a web interface as well
as a web service.

98



3.5.2.1 Web Service

Generally spoken a web service is Client-Server architecture that supports machine-to-machine interac-
tions and is accessible via Uniform Resource Identi�er (URI).8 9 A service consumer requests a provider
(service request) and gets a service response. ¿e communication between client and server takes place by
XML based protocols that follow the SOAP standard.

¿eXcerpt WebService implementation provides only a fragment of the possibilities of the Xcerpt API.
¿e web service can be used by any programming language, but the programmer must have knowledge in
the �eld of HTTP requests and responses.

3.5.2.2 Web Interface

Aweb interface communicates with a so ware system via HTTP protocols. Mostly a web interface is a GUI
(Graphical User Interface) that interacts with the so ware system by a web browser. Since web browsers are
provided by almost all network-compatible operating systems, the web interface is platform-independent.
In contrast to web services, web interfaces are meant to be used by human users.

¿e Xcerpt WebInterface is a tool for supporting the users to learn the language Xcerpt quickly. It can
be also used for demonstrating Xcerpt speci�c use cases as described in Section 3.5.3.

3.5.3 Demonstration of Xcerpt Use Cases

¿is section describes the usage of the web application by demonstrating the four usage possibilities of the
Xcerpt API with concrete Xcerpt use case scenarios. First the Xcerpt use case scenarios are introduced in
each mode. ¿en the response of the web application is shown in �gures.

3.5.3.1 Usage Mode: XcerptProgram

¿is mode is used just to execute an Xcerpt program by the speci�ed engine.
¿e use case considers interpretations for boolean bindings of the symbols p and q. ¿e aim of the

program below is to �nd all models for p<=> q with the variable P bound to p and Q bound to q.

Listing 3.43: Program for "Usage Mode: Xcerpt Program"
GOAL

2results {
all result {

4value { "Value for P: ", var P },
value { "Value for Q: ", var Q }

6}
}

8FROM
value [

10EQU[symbol["p"], symbol["q"] ],
interpretation {

12binding[ symbol["p"], var P],
binding[ symbol["q"], var Q]

14},

8http://en.wikipedia.org/wiki/Web_service
9http://www.w3.org/TR/ws-arch

99



"true"
16]

END
18

CONSTRUCT
20interpretations {

interpretation {
22binding[ symbol["p"], "true"],

binding[ symbol["q"], "true"]
24},

interpretation {
26binding[ symbol["p"], "true"],

binding[ symbol["q"], "false"]
28},

interpretation {
30binding[ symbol["p"], "false"],

binding[ symbol["q"], "true"]
32},

interpretation {
34binding[ symbol["p"], "false"],

binding[ symbol["q"], "false"]
36}

}
38END

40CONSTRUCT
value["true", var Interpret, "true"]

42FROM
interpretations {{

44var Interpret →interpretation {{ }}
}}

46END

48CONSTRUCT
value["false", var Interpret, "false"]

50FROM
interpretations {{

52var Interpret →interpretation {{ }}
}}

54END

56CONSTRUCT
value[symbol[var P], var Interpret, var Binding]

58FROM
interpretations {{

60var Interpret →interpretation {{ binding [symbol[var P], var Binding] }}
}}
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62END

64CONSTRUCT
value[NEG[var X1],var Interp,"false"]

66FROM
value[var X1,var Interp,"true"]

68END

70CONSTRUCT
value[NEG[var X7],var Interp,"true"]

72FROM
value[var X7,var Interp,"false"]

74END

76CONSTRUCT
value[OR[var X2, var Y2], var Interp, var Z2]

78FROM
value[NEG[AND[NEG[var X2], NEG[var Y2] ] ], var Interp, var Z2 ]

80END

82CONSTRUCT
value[IMP[var X3, var Y3], var Interp, var Z3]

84FROM
value[NEG[AND[var X3, NEG[var Y3] ] ], var Interp, var Z3]

86END

88CONSTRUCT
value[EQU[var X4, var Y4], var Interp, var Z4]

90FROM
value[AND[IMP[var X4, var Y4], IMP[var Y4, var X4] ], var Interp, var Z4]

92END

94CONSTRUCT
value[NEQU[var X5, var Y5], var Interp, var Z5]

96FROM
value[NEG[EQU[var X5, var Y5] ], var Interp, var Z5]

98END

100CONSTRUCT
value[AND[var X0, var Y0],var Interp, "true"]

102FROM
and {

104value[var X0,var Interp,"true"],
value[var Y0,var Interp,"true"]

106}
END

108
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CONSTRUCT
110value[AND[var X6, var Y6],var Interp,"false"]

FROM
112or {

value[var X6,var Interp,"false"],
114value[var Y6,var Interp,"false"]

}
116END

¿e result of this use case can be seen in Figure 3.10

3.5.3.2 Usage Mode: XcerptProgram and Variables

¿ismode is used to execute the given XcerptProgram and retrieve substitutions for the speci�ed variables.
¿e scenario is a task from the use case XMP of the XML Query Use Cases [23] (query 11). It considers

a bookstore that represents its data in an XML database. ¿e bookstore stores information about title,
authors, price and publisher.

In this use case the substitutions for the variable Book are to be returned. ¿e result of this query are
substitutions for each book with an author, the book with its title and authors. And the substitutions for
each book with an editor, the reference with the book title and the editor’s a�liation.

Listing 3.44: Program for "Usage Mode: XcerptProgram and Variables"
GOAL

2out {
resource { "stdout:", "html" },

4results [ all var Book ]
}

6FROM
or {

8var Book →book {{}},
var Book →reference {{}}

10}
END

12

CONSTRUCT
14book [

var Title,
16all var Author

]
18FROM

in {
20resource { "http://...", "xml" },

bib [[
22book [[

var Title →title {{}},
24var Author →author {{}}

]]
26]]
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}
28END

30CONSTRUCT
reference [

32var Title,
affiliation [ var Affiliation ]

34]
FROM

36in {
resource { "http://.../xmp−bib.xml", "xml" },

38bib [[
book [[

40var Title →title {{}},
editor [[

42affiliation [[ var Affiliation ]]
]]

44]]
]]

46}
END

¿e result of this use case is shown in Figure 3.11.

3.5.3.3 Usage Mode: XcerptQuery, XcerptProgram and Variables

¿is mode is used to query the XcerptQuery against the XcerptProgram and retrieve the variable bindings
for the speci�ed variables.

¿is scenario is a task from the use case SGML of the XML Query Use Cases [23] (query 1). It considers
a document with sections, sections, paragraphs and so on.

¿e use case aims to get substitutions for the variable C, which is bound to the results element, which
is constructed in Listing 3.46. ¿e constructed results element groups all possible instances of the para
element resulting from di�erent variable bindings as children of the para element.

Listing 3.45: Query for "Usage Mode: XcerptQuery XcerptProgram and Variables"
1var C →results {{}}

Listing 3.46: Program for "Usage Mode: XcerptQuery XcerptProgram and Variables"
1CONSTRUCT

results [
3all var Para

]
5FROM

in {
7resource { "http://...", "xml" },

desc var Para →para {{}}
9}
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11END

¿e result of this use case is shown in Figure 3.12.

3.5.3.4 Usage Mode: XcerptQuery and Variables

¿is mode is used to execute an XcerptQuery and retrieve the variable bindings for the speci�ed variables.
An input resource speci�cation(cf. 3.3.4.3) must be de�ned in the XcerptQuery.

¿is use case considers a small database of persons, which store their names and their age. In this use
case the substitutions for the variables X and Y are to be returned. Variable X is bound to the content of
the name element and variable Y is bound to the content of the age element as can be seen in the lines four
and �ve of Listing 3.47

Listing 3.47: Query for "Usage Mode: XcerptQuery and Variables"
in {

2resource {"apiin:1" },
desc person [

4name[var X],
age[var Y]

6]
}

Listing 3.48: Data for "Usage Mode: XcerptQuery and Variables"
1persons [

person [
3name ["john"],

age [12]
5],

person [
7name ["jack"],

age [50]
9],

person [
11name ["jane"],

age [5]
13]

]

¿e result of this use case is shown in Figure 3.9.

3.6 Tests

¿is section describes classes for testing concrete Xcerpt API implementations. ¿e tests can be grouped
into two categories, namely conformance and performance. ¿e two classes are implemented independent
from a concrete implementation of the Xcerpt API. ¿ey can be used for any concrete implementation
of the API just by creating an XcerptFactory instance with the particular engine implementation. In the
following sections these classes are explained in more detail and are illustrated with some concrete tests
for the Xcerpt API implementation for the Xcerpt prototype engine.
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3.6.1 Conformance Test

¿e purpose of conformance tests is to demonstrate that the Xcerpt API correctly transforms the results.
¿e conformance test is illustrated in Figure 3.13. An Xcerpt result, presented by a Node in the Xcerpt
API, can be transformed into four di�erent representations (Xcerpt stream, XML stream, DOM, SAX).
Since the Xcerpt engine cannot deal with DOM representation or SAX events, these two transformations
must be serialized into XML representations. A er this serialization the result, represented as Xcerpt or
XML stream, can be used as input for an ID transformation. ¿e ID transformation is done by the concrete
Xcerpt engine. ¿e result of this transformation is Xcerpt Node’. Finally the original Xcerpt result (Xcerpt
Node) and the transformed one (Xcerpt Node’) have to be tested on equality.

For analyzing the conformance behavior of the concrete Xcerpt API implementation for the Xcerpt
prototype engine, this test is made for tree structured data (ordered and unordered) and graph structured
data. ¿e transformers of the Xcerpt API implementation for the Haskell prototype engine are correctly
implemented for tree structured data (ordered and unordered). Since the Xcerpt prototype engine cannot
correctly deal with graph structured data, the correct transformation for graph structured data cannot be
tested for this implementation of the Haskell prototype engine.
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3.6.2 Performance Test

¿is section deals with the performance of the Xcerpt API.
¿e tests are made for increasing input data size (1KB to 1MB) and can be classi�ed into two groups.

¿e �rst one handles a query that achieves constantly one result, and the second one analyzes a query that
achieves an increasing amount of results depending on the size of the input data.

Figure 3.14 demonstrates the relation between the performance of the Xcerpt API and the Xcerpt
Haskell engine executing a query, which achieves constantly one result for increasing size of the input data.

As can be seen in Figure 3.15 in the worst case the Xcerpt API execution takes 2.5 times more than the
Xcerpt Haskell engine execution. For smaller input sizes the overhead of the Xcerpt API is the largest, and
for bigger input sizes (greater than 512KB) the overhead is negligible.

Figures 3.16 and 3.17 show the relation of the execution time of the Xcerpt API and the Xcerpt Haskell
engine for a query, which yields results that increase with the size of the input data.

As can be seen the overhead increases with the size of the results.
¿e results of the performance tests indicate that the overhead of the Xcerpt API is mostly caused

by the ResultParser and that the overhead caused by the ProgramParser is negligible.¿is has also be
shown by further Performance tests, which demonstrate the time of the di�erent phases of the Xcerpt API
execution. ¿ese results are as expected: ¿e ProgramParser only touches the input program, not the input
data and therefore depends in run-time only on the size of the input program. ¿e ResultParser, on the
other hand, needs to extract variable bindings, a task which requires that the entire result is considered at
least once. ¿erefore, a linear overhead in the size of the output is to be expected.

3.7 Conclusion

3.7.1 Summary

¿is chapter constitutes a signi�cant contribution to the success of the query language Xcerpt. By providing
a well designed API, it is easier to convince the broad mass of Xcerpt users, no matter whether the user
just wants to learn the language or whether he wants to write a complex so ware that makes use of Xcerpt.

¿e challenge of specifying a good API is to establish requirements for the API, as Simplicity, Flexibility,
Extensibility and E�ciency, and to design the provided interfaces, classes, and methods in such a way that
the established requirements can be maintained. ¿e abstract architecture of the API must be carefully
designed, such that concrete implementations of the API can be provided easily for many di�erent target
platforms, programming languages and Xcerpt engines. A very important aspect of APIs is furthermore a
well written and complete documentation, a feature that is desired bymost programmers but unfortunately
not always provided.

Besides the abstract speci�cation of the API, another goal of this chapter is to provide a concrete
implementation of the API for the Xcerpt prototype engine, which placed many obstacles that are to
be overcome. As proof-of-concept a web application is implemented using the Xcerpt API. ¿e web
application serves several purposes. It is a use case for the usage of the Xcerpt API, it can be used as a web
service or an web interface for learning and playing with the Xcerpt query language. ¿e web application
is further used for demonstrating various Xcerpt use cases.

Finally, several tests are provided in this chapter, which document the correctness of some parts of
the Xcerpt API and show that the overhead, caused by the Xcerpt API, is acceptable within the expected
margins and, for many cases.
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3.7.2 Concluding Remarks and Future Work

¿e Xcerpt API, as speci�ed in this chapter, ful�lls the criteria of a well designed API, and the main
goal of easing the use of Xcerpt is achieved. However there are many possibilities of improving the API
speci�cation and some room for future work is le . For example the API can be further improved by
adding interfaces representing discrete Xcerpt rules, and the possibility of combining such rules to form
Xcerpt programs.

Furthermore, one big point of improvement is providing a concrete implementation of the Xcerpt
API for a more powerful Xcerpt engine (i.e. the Amaxos abstract machine). ¿is would allow for more
sophisticated features to be implemented, such as the precompilation of Xcerpt programs (or queries) and
the on-demand creation of results, which would contribute to a more e�cient Xcerpt engine and a better
experience for Xcerpt users.
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Figure 3.1: ¿e DOM interface hierarchy
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Figure 3.2: ¿e DOM tree for the XML document in Listing 3.24
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Figure 3.3: ¿e architecture of the Xcerpt API

Figure 3.4: Xcerpt API Core
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Figure 3.5: ¿e Xcerpt API node interface hierarchy
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Figure 3.6: ¿e architecture of the concrete implementation of the Xcerpt API
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Figure 3.7: ¿eWeb Application presentation in a browser
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Figure 3.8: Selecting an example in the Web Application

Figure 3.9: Representation of variable substitutions in the Web Application
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Figure 3.10: Result of use case 1
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Figure 3.11: Result of use case 2

Figure 3.12: Result of use case 3
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Figure 3.14: Achieving one result
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Figure 3.15: Correlation between Xcerpt API and Haskell engine for one result
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Figure 3.16: Achieving more results
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Figure 3.17: Correlation between Xcerpt API and Haskell engine for more results
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Chapter 4

Towards Xcerpt 2.0—Principles of the
Next-Generation Prototype

4.1 Introduction

E�cient evaluation of Web query languages such as XQuery, XSLT, or SPARQL has received considerable
attention from both academia and industry over recent years. Xcerpt is a novel breed of Web query
language that aims to overcome the split between traditional Web formats such as XML and Semantic
Web data formats such as RDF and Topic Maps. ¿us it avoids the impedance mismatch of using di�erent
languages to develop applications that enrich conventional Web applications with semantics and reasoning
based on RDF, Topic Maps, or similar emerging formats.

However, so far Xcerpt lacks a scalable, e�cient and easily deployable implementation. In this article,
we propose principles and architecture of such an implementation. ¿e proposed implementation deviates
quite notably from conventional wisdom on the implementation of query languages: it is based on an
abstract (or virtual1) machine that executes (interprets) low-level code generated from high-level query
programs speci�ed in Xcerpt.

¿e choice of an abstract machine for implementing a query language might at the �rst glance seem
puzzling. And indeed abstract machines have only very seldom been considered in the past for the
implementation of query languages (the most notable exception being [55]). ¿is is partially due to the
perceived performance overhead introduced by the abstraction/virtualization layer. However, traditional
query processors already separate between query compilation, where a high-level query is translated
into a low-level physical query plan, and query execution, where the query is evaluated according to
that query plan. From this point on the leap to an abstract machine that fully separates compilation and
execution seems small. In traditional DBMS settings it has, however, never occurred due to the way
query compilation is linked with query execution: cost-based optimizers consider extensively (statistical)
information about the data instances, e.g., for selectivity estimates, and about actual access paths to these
data instances. ¿is information is available as the DBMS has full, central control over the data including
its storage.

1Little substantial di�erence is made in the literature between “abstract” and “virtual” machines. Some authors de�ne
virtual machines as abstract machines with interpreters in contrast to abstract machines such as Turing machines that are purely
theoretical thought models. However this distinction is not widely adopted. In recent years, the term “virtual” machine seems to
dominate outside of logic programming literature.
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When implementing a Web query language such as Xcerpt, one is however faced with a quite di�erent
setting: In memory processing of queries against XML, RDF, or other Web data that may be local and
persistent (e.g., an XML database or local XML documents), but just as well may have to be accessed
remotely (e.g., a remote XML document) or may be volatile (e.g., in case of SOAP messages or Web
Service access). In other words, it is assumed that most of the queried data is not under (central) control
of a query execution environment like in a traditional DBMS setting, but rather that the queried data
is o en distributed or volatile. ¿is, naturally, hinders the application of conventional indexing and
predictive optimization techniques, that rely on local management of data and statistic knowledge about
that managed data. But, it alsomakes separate compilation and execution possible as the query compilation
is already mostly independent of data storage and instances as information about these is not available at
compilation and execution time but only becomes available at query execution.

To some extent, this setting is comparable to data stream processing where also little is known about
the actual data instances that are to be encountered during query evaluation. ¿e e�cient data stream
systems (such as [7,2,16]) compile therefore queries into some form of (�nite state or push-down) automata
that is used to continuously evaluate the query against the incoming data.

AMaχoS, the abstractmachine for Xcerpt on semi-structured data, can be seen as an amalgamation
of techniques from these three areas: query optimization and execution from traditional databases and
data stream systems, and compilation and execution of general programs based on abstract or virtual
machines.

AMaχoS is designed around a small number of core principles:

1. “Compile once”—compilation and execution is separated in AMaχoS thus allowing (a) di�erent
levels of optimization for di�erent purposes and settings and (b) the distribution of compiled
query programs among query nodes making light-weight query nodes possible. For details see
Section 4.4.2.

2. “Execute anywhere”—once compiled, AMaχoS code can be evaluated by any AMaχoS query node.
It is not �xed to the compiling node. In particular, parts of a compiled program can be distributed
to di�erent query nodes. For details see Section 4.4.1.

3. “Optimize all the time”—not only are queries optimized predictively during query compilation, but
also adaptively during execution. For details see Section 4.4.4.

As a corollary of these three principles AMaχoS employs a novel query evaluation framework for the
uni�ed execution of path, tree, and graph queries against both tree- and graph-shaped semi-structured
data (details of this framework are discussed in Section 4.4.3 and [18]).

Following a brief look at the history of abstract and virtual machines for program and query execution
(Section 4.2) and an introduction into Xcerpt (Section 4.3), the versatile Web query language that is
implemented by the AMaχoS abstract machine, we focus in the course of this article �rst (Section 4.4) on
a discussion of the principles of this abstract machine that also serves as a further motivation of the setting.
¿e second part (Section 4.5) of the paper discusses the proposed architecture of AMaχoS and how this
architecture realizes the principles discussed in the �rst part.

4.2 A Brief History of Abstract Machines

Abstract and virtual machines have been employed over the last few decades, aside from theoretical
abstract machines as thought models for computing, in mostly three areas:
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Hardware virtualization. Abstract machines in this class provide a layer of virtual hardware on top of
the actual hardware of a computer. ¿is provides the programs directly operating on the virtual hardware
(mostly operating systems, device drivers, and performance intensive applications) with a seemingly
uniform view of the provided computing resources. ¿ough this has been a focus of considerable research
as early as 1970, cf. [37] only recent years have seen commercially viable implementations of virtual
machines as hardware virtualization layers, most recently Apple’s Rosetta2 technology that provides an
adaptive, just-in-time compiled virtualization layer for PowerPC applications on Intel processors. Currently,
research in this area focuses on providing scalability, fault tolerance [22] and trusted computing [34] by
employing virtual machines, as well as on on-chip support for virtualization.

Operating system-level virtualization A slightly higher level of abstraction or virtualization is provided
by operating system-level virtual machines that virtualize operating system functions. Again, this technol-
ogy has just recently become viable in the form of, e.g., Wine3, a Windows virtualization layer for Unix
operating systems.

High-level language virtual machines From the perspective of AMaχoS the most relevant research
has been on virtual machines for the implementation of high-level languages. Again �rst research dates
back to the 1970s [58], but wider interest in abstract machines for high-level languages has been focused
on two waves: First, in the 1980s a number of abstract machines for Pascal (p-Machine, [59]), Ada [39],
Prolog [80], and functional programming languages (G-machine, [46]) have been proposed that focused
on providing platform neutrality and portability as well as precise speci�cations of the operational semantics
of the languages. Early abstract machines for imperative and object-oriented programming languages
have not been highly successful, mostly due to the perceived performance penalty. However, research on
abstract machines for logic and functional programming languages has continued mostly uninterrupted
up to recent developments such as the tabling abstract machine [65] for XSB Prolog.

Recently, the �eld has seen a reinvigoration, cf. [64], triggered both by advances in hardware virtual-
ization and a second wave of abstract machines for high-level programming languages focused this time
on imperative, object-oriented programming languages like Java and C♯. Here, isolation and security are
added to the core arguments for the use of an abstract machine: Each instance of an abstract machine is
isolated from others and from other programs on the host system. Furthermore analysis of the abstract
machine byte code to ensure, e.g., safety or security properties proves easier than analysis of nativemachine
code.

¿e most prominent examples of this latest wave are, of course, Sun’s Java virtual machine [49]
and Microso ’s common language infrastructure [43] (CLI). ¿e latter is adding the claim of “language
independence” to the arguments for the deployment of an abstract machine. And indeed quite a number
of object-oriented and functional languages have been compiled to CLI code. With this second wave,
design and principles of abstract machines are starting to be investigated more rigorously, e.g., in [28]
and [70] that compare stack- with register-based virtual machines.

Closest in spirit and aim to the work presented in this paper and to the best knowledge of the authors’
the only other work on abstract machines for Web query languages is [55] that presents a virtual machine
for XSLT part of recent versions of the Oracle database. However, this virtual machine is focused on a
centralized query processing scenario where a single query engine has control over all data and thus can
employ knowledge about data instances and access paths for optimization and execution.

2http://www.apple.com/rosetta/
3http://www.winehq.com/
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4.3 Xcerpt: A Versatile Web Query Language

Xcerpt is a query language designed a er principles given in [17] for querying both data on the standard
Web and data on the Semantic Web. More information, including a prototype implementation, is available
at http://xcerpt.org.

4.3.1 Data as Terms

Xcerpt uses terms to represent semi-structured data. Data terms represent XML documents, RDF graphs,
and other semi-structured data items. Notice that subterms (corresponding to, e.g., child elements)
may either be “ordered” (as in an XHTML document or in RDF sequence containers), i.e., the order of
occurrence is relevant, or “unordered”, i.e., the order of occurrence is irrelevant and may be ignored (as in
the case of RDF statements).

4.3.2 Queries as Enriched Terms

Following the “Query-by-Example” paradigm, queries are merely examples or patterns of the queried
data and thus also terms, annotated with additional language constructs. Xcerpt separates querying and
construction strictly.

Query terms are (possibly incomplete) patterns matched against Web resources represented by data
terms. In many ways, they are like forms or examples for the queried data, but also may be incomplete in
breadth, i.e., contain ‘partial’ as well as ‘total’ term speci�cations. Query terms may further be augmented
by variables for selecting data items.

Construct terms serve to reassemble variables (the bindings of which are gained from the evaluation of
query terms) so as to construct new data terms. Again, they are similar to the latter, but augmented by
variables (acting as place holders for data selected in a query) and grouping constructs (which serve to
collect all or some instances that result from di�erent variable bindings).

4.3.3 Programs as Sets of Rules

Query and construct terms are related in rules which themselves are part of Xcerpt programs. Rules have
the form:

CONSTRUCT construct-term
FROM and { query-term or { query-term ... } ... } END

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the construct
term by evaluating the query against Web resources (e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form complex query programs,
i.e., rules may query the results of other rules. More details on the Xcerpt language and its syntax can be
found in [67, 68].

4.4 Architecture: Principles

¿e abstract machine for Xcerpt, in the following always referred to as AMaχoS, and its architecture are
organized around �ve guiding principles:
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4.4.1 “Execute Anywhere”—Unified Query Execution Environment

As discussed above, possibly the strongest reason to develop virtual machines for high-level languages
is the provision of a uni�ed execution environment for programs in that high-level language. In the
case of Xcerpt, AMaχoS aims to provide such a uni�ed execution environment. In our case, a uni�ed
execution environment brings a number of unique advantages: (1)¿e distributed execution of queries
and query programs requires that the language implementations are highly interoperable down to the
level of answer representation and execution strategies. A high degree of interoperability allows, e.g., the
distribution of partial queries among query nodes (see below). An abstract machine is an exceptionally
well suited mechanism to ensure implementation interoperability as its operations are fairly �ne granular
and well-speci�ed allowing the controlling query node �ne granular control over the query execution
at other (“slave”) nodes. (2) A rigid de�nition of the operational semantics as provided by an abstract
machine allows not only a better understanding and communication of the evaluation algorithms, it
also makes query execution more predictable, i.e., once compiled a query should behave in a predictable
behavior on all implementations. ¿is is an increasingly important property as it eases query authoring
and allows better error handling for distributed query evaluation. (3) Finally, a uni�ed query execution
environment makes the transmission and distribution of compiled queries and even parts of compiled
queries among query nodes feasible, enabling easy adaptation to changes in the network of available query
nodes, cf. Section 4.4.5.

4.4.2 “Compile Once”—Separation of Compilation and Execution

In the introduction, the setting for the AMaχoS abstract machine has been illustrated and motivated: In
memory processing of queries against XML, RDF, or other Web data that may be local and persistent (e.g.,
an XML database or local XML documents), but just as well may have to be accessed remotely (e.g., a
remote XML document) or may be volatile (e.g., in case of SOAP messages or Web Service access). In
other words, it is assumed that most of the queried data is not under (central) control of a query execution
environment like in a traditional database setting, but rather that the queried data is o en distributed
or volatile. ¿is, naturally, limits the application of traditional indexing and predictive optimization
techniques, that rely on local management of data and statistic knowledge about that managed data.

Nevertheless algebraic optimization techniques (that rely solely on knowledge about the query and
possible the schema of the data, but not on knowledge about the actual instance of data to be queried) and
ad-hoc indices that are created during execution time still have their place under this circumstances.

In particular, such a setting allows for a clean separation of compilation and execution: ¿e high-level
Xcerpt program is translated into AMaχoS code separately from its execution. ¿e translation may be
separated by time (at another time) and space (at another query node) from the actual execution of the
query. ¿is is essential to enable the distribution of pre-compiled, globally optimized AMaχoS programs
evaluating (parts of) queries over distributed query nodes.

4.4.2.1 Extensive static optimization.

¿is separation also makes more extensive static optimization feasible than traditionally applied in an
in-memory setting (e.g., in XSLT processors such as Saxon4 or Xalan5). Section 4.5.2 and Figure 4.5 present
a more detailed view of the query compiler and optimizer employed in the AMaχoS virtual machine. To
be applicable to di�erent scenarios, a control API for the query compilation stage allows the con�guration

4http://www.saxonica.com/
5http://xml.apache.org/xalan-j/
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Figure 4.1: Sample Query and Memoization Matrix

of strategy and extent used for optimizing a query during the compilation from high-level Xcerpt programs
to low-level AMaχoS code.

Aside of traditional tasks such as dead (or tautological) branch elimination, detection of unsatis�able
queries, operator order optimization and selection between di�erent realizations for the same high-level
query constructs, the AMaχoS query compiler has another essential task: the classi�cation of each query
in the query program by its features, e.g., whether a query is a path, tree, or graph query (cf. [56, 18]) or
which parts of the data are relevant for the query evaluation. ¿is information is encoded either directly in
the AMaχoS code of the corresponding construct-query rule or in a special hint section in the AMaχoS
program. ¿at hint section is later used by the query engine (the AMaχoS core) to tune the evaluation
algorithm.

4.4.3 “Compile, Classify, Execute”—Unified Evaluation Algorithm

A single evaluation algorithm is used in AMaχoS for evaluating a large set of diverse queries and data. At
the core of this algorithm stands the “memoization matrix,” a data structure �rst proposed in [67] and
re�ned to guarantee polynomial size in [18]), that allows an e�cient representation of intermediary results
during the evaluation of an Xcerpt query (or more generally an n-ary conjunctive query over graph data).
A sample query and corresponding memoization matrix are shown in Figure 4.1: ¿e query selects the
names of conferences with PC members together with their authors (i.e., it is a binary query). ¿e right
hand of Figure 4.1 shows a possible con�guration of the memoization matrix for evaluating that query: d2
is some conference for which we have found multiple bindings for v4, i.e., the query node matching papers
of the selected conference. ¿e matrix also shows that sub-matrices are shared if the same query node
matches the same data node under di�erent constellations of the remaining query nodes. ¿is sharing is
possible both in tree and graph queries, but in the case of graph queries the memoization matrix represents
only a potential match in which only a spanning tree over the relations in the query is enforced. ¿e
remaining relations must be checked on an unfolding of the matrix. ¿is last step induces exponential
worst-case complexity (unsurprisingly as graph queries are NP-complete already if evaluated against tree
data as shown in [38]), but is in many practical cases of little in�uence.

How to use the memoization matrix to obtain an evaluation algorithm for arbitrary n-ary conjunctive
queries over graphs (that form the core of Xcerpt query evaluation), is shown in [18]. It is shown that the
resulting algorithms are competitive with the best known approaches that can handle only tree data and
that the introduction of graph data has little e�ect on complexity and practical performance.
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¿ememoizationmatrix forms the core of the query evaluation inAMaχoS. As brie�y outlined in [18],
the method can be parameterized with di�erent algorithms for populating and consuming the matrix.
¿ereby it is possible to adopt the algorithm both to di�erent conditions for the query evaluation (e.g., is
an e�cient label or keyword index for the data available or not) and to di�erent requirements (e.g., are
just variable bindings needed or full transformation queries). ¿e �rst aspect is automatically adapted
by the query engine (cf. Section 4.5.1), the second must be controlled by the execution control API, cf.
Section 4.5.

4.4.4 “Optimize All the Time”—Adaptive Code Optimization

As argued above in Section 4.4.2 a separation of compilation/optimization from execution is an essential
property of the AMaχoS virtual machine that allows it to be used for distributed query evaluation and
Web querying where control over the queried data is not centralized.

¿is separation can be achieved partially by providing a uni�ed evaluation algorithm (Section 4.4.3)
that tunes itself, with the help of hints from the static optimization, to the available access methods and
answer requirements.

However, separate compilation precludes optimizations based on intricate knowledge about the actual
instances of the data to be queried (e.g., statistical information about selectivity, precise access paths,
data clustering, etc.). ¿is can, to some extent, be o�set by adaptive code optimization. Adaptive query
optimization is a technique sometimes employed in continuous query systems, where also the characteristic
of the data instances to be queried is not known a priori, cf. [6].

In theAMaχoS virtual machine we go a step further: Not only can the physical query plan expressed in
theAMaχoS code continuously be adapted, but the result of the adaptation can be stored (and transmitted
to other query nodes) as an AMaχoS program for further executions of the same query. Obviously,
such adaptive code optimization is not for free and will most likely be useful in cases where the query is
expected to be evaluated many times (e.g., when querying SOAP messages) or the amount of data is large
enough that some slow-down for observation and adaption in the �rst part of the evaluation is o�set by
performance gains in later parts.

4.4.5 “Distribute Any Part”—Partial Query Evaluation

Once compilation and execution are separate, the possibility exists that one query node compiles the
high-level Xcerpt program to AMaχoS code using knowledge about the query and possibly the schema of
the data to optimize (globally) the query plan expressed in theAMaχoS code. ¿e result of this translation
can than be distributed among several query nodes, e.g., if these nodes have more e�cient means to access
the resources involved in the query.

Indeed, once at the level of AMaχoS code it is not only possible to distribute say entire rules or sets of
rules, but even parts of rules (e.g., query conjuncts) or even smaller units. Figure 4.2 illustrates such a
distributed query processing scenario with AMaχoS: Applications use one of the control APIs (obtaining,
e.g., entire XML documents or separate variable bindings) to execute a query at a given Xcerpt node.
¿is implementation of Xcerpt transforms the query into AMaχoS code and hands this code over to
its own AMaχoS engine. Depending on additional information about the data accessed in the query,
this AMaχoS node might decide to evaluate only some parts of the query locally (e.g., those operating
exclusively on local data and those joining data from di�erent sources) and send all the remaining query
parts to other AMaχoS nodes that are likely to have more e�cient access to the relevant data.

In contrast to distribution on the level of a high-level query language such as Xcerpt, distribution on
the level of AMaχoS has two main advantages: the distributed query parts can be of �ner granularity and

129



AMAχOS Node

Local Data Source
—e.g. document
—e.g. database

Remote Data Source
—e.g. Web service

Application
control API (Java)

Application
Web Service API

Application
command-line  interface

Xcerpt Node

  Query Compiler

Xcerpt Program
rule 1: 
   c1 ← q1,1 ∧ q1,2 ∧ … ∧ q1,k1

rule 2: 
   c2 ← q2,1 ∧ q2,2 ∧ … ∧ q2,k2

rule 3:
   c3 ← q3,1 ∨ q3,2 ∨ … ∧ q3,k3

…

rule 1
rule 2

rule n

AMAχOS Code

Hint Segment

Dependency 
Segment

Code Segment

…

rule 1

rule 2

rule n

AMAχOS Node

AMAχOS Node

Local Data Source
—e.g. document
—e.g. database

AMAχOS NodeAMAχOS Node

Local Data Source
—e.g. document
—e.g. database

AMAχOS Node

Remote Data Source
—e.g. Web service

rule 1

query 
conjunct q1,1

query 
conjunct q1,2

rule 2

query 
conjunct q2,1

query 
conjunct q2,2

Figure 4.2: Query Node Network

the “controlling” node can have, by means of code transformation and hint sections, better control of the
“slave” nodes.

Notice, that AMaχoS enables such query distribution, but does not by itself provide the necessary
infrastructure (e.g., for registration andmanagement of query nodes). It is assumed that this infrastructure
is provided by outside means.

4.5 Architecture: Overview

¿e previous section illustrates the guiding principles in the development of AMaχoS. ¿e remainder of
this article focuses on how these principles are realized in its architecture and discusses several design
choices regarding the architecture.

Notice, that only a small part of the fullAMaχoS architecture as described here has been implemented
so far. We have concentrated in the implementation on the execution and optimization layer, that are also
described in more detail in Sections 4.5.1 and 4.5.2.

Figure 4.3 shows a high-level overview of AMaχoS and its components. ¿e architecture separates
the components in three planes:

Control Plane. ¿e control plane enables outside control of the compilation, execution, and answer
construction. Furthermore, it is responsible for observation and adaptive feedback during execution.

Program Plane. ¿e program plane contains the core components of the architecture: the compilation
and execution layer. It combines all processing that an Xcerpt program partakes when evaluated by
an AMaχoS virtual machine. ¿e �rst step is, naturally, parsing, veri�cation, normalization, module
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Figure 4.3: Overview of AMaχoS Components

expansion etc. ¿ese are realized as transformations on the layer of the Xcerpt language and the resulting
normalized, veri�ed, and expanded Xcerpt program can be accessed via the compilation API. However,
usually the result becomes input for the compilation layer where the actual transformation into AMaχoS
code takes place. ¿e details of this layer are discussed below in Section 4.5.2. In the architecture overview,
we chose to draw the compilation and execution layer as directly connected. However, it is also possible to
access the resulting program (again via the compilation API) and execute it at a later time and even at a
later place. Indeed, compilation and execution are properly separated with only one interface between
them: the AMaχoS program containing aside of the expressions realizing individual rules in the Xcerpt
program also supporting code segments that provide hints for the program execution and dependency
information used in the rule dispatcher, cf. Section 4.5.1.

Data Plane. ¿e architecture is completed by the data plane, wherein all access to data and schema of the
data is encapsulated. During compilation, if at all, only the schema of the data is assumed to be available.

It is used for typical schema-based optimization such as the elimination of tautological (always true)
query parts, the detection of erroneous (always false) queries, the unfolding of arbitrary length path
traversals if the length of the paths is known from the schema and small, etc. Furthermore, it is essential
for the dependency analysis later used in the execution layer, that gives information about which conjuncts
in rule bodies are compatible with which rule heads. In the data access layer the actual access to queried
data takes place at execution time. Where possible, data is accessed incrementally and only those portions
of the data are delivered from the data access layer to the execution layer that may actually a�ect the query
outcome (similar to document projection in [52]). ¿e AMaχoS program can contain execution hints
that advise the employment or ad-hoc creation of indices, e.g., to accelerate certain o en used constructs
or sub-queries. Finally the serialization layer is responsible for creating a sequential representation of the
result of a query. For XML it follows closely [47], for other Web formats appropriate serialization support
is provided as well. Again the form of the serialization can be parameterized both in the AMaχoS code
and via the execution control API.

4.5.1 AMAχOS Core

¿e core of theAMaχoS virtual machine is formed by the query execution layer, orAMaχoS proper. Here,
an AMaχoS program (generated separately in the compilation layer, cf. Section 4.5.2) is evaluated against
data provided by the runtime data access layer resulting in answers that are serialized by the serialization
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T (Q), and a data graph D with nodes N , a memoization
matrix for the evaluation of Q against D is a recursive data
structure representing all possible bindings of query vari-
ables in Q to nodes from D. The memoization matrix is
a relation containing for each qs ∈ SourceVars(T (Q)) and
each possible binding n ∈ N for qs that satisfies all prop-
erty relations on qs one triple (qs, n, M ′) with M ′ a sub-
set of the memoization sub-matrix for Q\SourceVars(T (Q))
such that for each tuple (q′, n′, M ′′) ∈ M ′ and each atom
rel(qs, q

′) ∈ T (Q), it holds that (n, n′) ∈ !rel "D.

Intuitively, this definition requires that the bindings for
source variables in a sub-matrix M ′ are structurally com-
patible with the binding of the source variable in the corre-
sponding tuple of M .

Notice that only the spanning tree of Q, denoted by T (Q),
is considered in the memoization matrix. The memoization
matrix ensures only consistency in respect of relations within
T (Q). It does not ensure that the valuations are consistent
w.r.t. relations outside T (Q). Exploiting the tree shape
of T (Q), thus makes a local evaluation of relations possi-
ble: A full-match can be incrementally computed from local
matches that consider parent and child variables in the tree
query in isolation.

To avoid multiple computations of matches in the case
of queries where the same data node can be a match for a
variable under different constellations of the remaining vari-
ables, the memoization matrix shares tuples where possible:
Each tuple (q, n, M) exists only once and is referenced if
the same tuple may occur in different sub-matrices. Notice,
that sharing of tuples only occurs between sub-matrices at
the same level (i.e., sub-matrices of the same common super-
matrix). The following sections show how this property can
be ensured during the construction of the memoization ma-
trix. Notice once more that this property relies on the tree
structure of the relations checked in the memoization ma-
trix.

It is furthermore assumed that the matrix is clustered by
variables allowing linear access to all entries relating to a
variable.

Figure 3 shows the memoization matrix for the evaluation
of the query from Figure 4 against the sample data graph
from Figure 1.

The algorithms for matrix population discussed in the fol-
lowing section guarantee a population of the matrix for a
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given n-ary conjunctive query Q against a data graph D
takes at most O(|Vars(Q)| · |N | · |E|) time, where |Vars(Q)|
denotes the number of variables in Q, |N | the number of
nodes, and |E| the number of edges in the data graph D.
Note that in the special case of tree-shaped data, |E| = |N |−
1, so that the worst case complexity becomes O(|Vars(Q)| ·
|N |2). The size of the memoization matrix is in O(Vars(Q) ·
|N |2) independently from the used algorithm, just by assum-
ing sharing of submatrices, as demonstrated in the following.

Lemma 1 (Size of Memoization Matrix). The size
of the memoization matrix M for a query Q and a data
graph D with nodes N is bounded by (2q − 1) · v2, where
q = |V ars(Q)|, and v = |N |.

Proof. By structural induction over T (Q).
Query leaves: It holds that q = 1, and obviously the number
of valuations for a single variable is bounded by v. The size
of the memoization matrix is q · v ≤ (2q − 1) · v2.
Inner query nodes: Let the inner query node i have c chil-
dren. It holds that the sum of nodes of all child queries is
equal to q − 1 =

Pc
j=1 qj (i). There are again at most v

valuations of i. As tuples are shared over parent matrices,
there is at most one tuple for each such valuation. The size
of the sub-matrix contained in the tuple itself is bounded by
c ·v, as each child has at most v assignments. The size of all
tuples for the inner node i (i.e. of the complete sub-matrix
of i) is hence c · v2. The overall matrix size is, using the
induction hypothesis,

cX

j=1

(2qi−1) ·v2 + c ·v2 (i)
= (2(q−1)− c+ c) ·v2 ≤ (2q−1) ·v2.

Based on the populated matrix, the algorithms discussed
in Section 5 traverse the memoization matrix, enforce the
remaining (non-hierarchical) relations, if there are any, and
create the output according to the query semantics intro-
duced above.

4. MATRIX POPULATION
The compact memoization matrix introduced in the last

section can be produced bottom-up (Match↑, Section 4.1)
or top-down (Match↓, Section 4.2), that is, starting with
the root variable and the root data node or with the leaf
variables and all data nodes. While both algorithms have
the same worst case complexity, experimental evaluation in
Section 7 shows that an in-memory implementation of the
bottom-up algorithm has an experimental runtime close to
the worst case complexity, while the top-down approach dis-
plays far better runtime behavior in realistic cases.
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API.
As shown in Figure 4.4, the query execution layer is divided in four main components: the rule engine,

the construction engine, the static function library, and the storage manager. Once a program containing
AMaχoS code is parsed information from the hint segment is used to parameterize storage manager and
rule engine. ¿ese parameters address, e.g., the classi�cation of the contained queries (tree vs. graph
queries), the selection of access paths, �lter expressions for document projection, the choice of in-memory
representation (e.g., fast traversal vs. small memory footprint), etc. ¿e rule dependency information is
provided to the rule dispatcher who is responsible for combining the results of di�erent rules and matching
query conjuncts with rule heads. Each rule has a separate segment in the AMaχoS program containing
code for patternmatching and for result construction. Intermediary result construction is avoided as much
as possible, partially by rule unfolding, partially by propagating constraints on variables from rule heads
into rule bodies. Only when aggregation or complex grouping expressions are involved, full intermediary
construction is performed by the construction engine. ¿e rule dispatcher uses the pattern matching engine
for the actual evaluation of Xcerpt queries compiled into AMaχoS code. ¿e pattern matching engine
uses variants of the algorithms described in [18] that are based on thememoization matrix for storage and
access to intermediary results. ¿e rule engine also detects calls to external functions or Web services
and routes such calls to the static function library, that provides a similar set of functions as [51] which are
implemented directly in the host machine and not as AMaχoS code.

For each goal rule in the AMaχoS programs the resulting substitution sets are handed over to the
construction engine (possibly incremental) which applies any construction expressions that apply for that
goal and itself hands the result over to the serialization layer or to the answer API.

¿e most notable feature of the AMaχoS query engine is the separation in three core engines: the
construction, the pattern matching, and the rule engine. Where the rule engine essentially glues the
pattern matching and the construction engine together, these two are both very much separate. Indeed, at
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Figure 5: Exemplary Join and Projection Specifica-
tion

sub-matrices of a given level share the same structure, each
kind of cartesian product is performed several times for each
sub-matrix.

Of course, these additional selections should be applied
as soon as possible (i.e., pushed down) to keep intermedi-
ate results small. Since existentially quantified variables in-
volved in join conditions must be kept until these joins are
performed, it is furthermore necessary to infer the position
at which each existentially quantified join variable can be
projected away. Hence, a join and projection specification
!−Π−spec is associated with each variable. This specifica-
tion defines which joins and which projections can be per-
formed when outputting the results for x. It furthermore
determines the ordering of joins and projections.

Since join order optimization is out of the scope of this
paper, the output algorithm abstracts from these topics by
assuming the existence of a specification !−Π−spec for each
variable, and of a function that applies these join specifi-
cation to a set of valuation sets. Using a set of valuations
instead of a canonical cartesian product allows to use joins
instead of selections, increasing the performance of the out-
put algorithm considerably. The join and projection specifi-
cation is typically created by the query planner and can be
executed by a conventional relational query engine.

Figure 5 shows an example of a join and projection specifi-
cation. Recall, that JoinVars(Q) is the set of join variables,
i.e., the set of variables that are existentially quantified (no
answer variables) and occur in at least one binary relation
that is not part of T (Q).

Algorithm 4 OutputG(x, n, M)

1: if ρ(x, n) defined then
2: return ρ(M)
3: if x ∈ FreeVars(Q) ∪ JoinVars(Q) then
4: AS ← {{[x : n]}}
5: else
6: AS ← {{[]}}
7: for all x′ ∈ π1(M) do
8: Ax′ ← ∅
9: for all n′, M ′ : (x′, n′, M ′) ∈ M do

10: Ax′ ← Ax′ ∪ OutputT (x′, n′, M ′)
11: AS ← AS ∪ {Ax′}
12: A ←apply !−Π−spec(x) to AS

13: ρ(x, n) ← A
14: return A

The new algorithm however exhibits exponential worst

case runtime in that it may perform at worst q−3 cartesian
products without any selection based on non-tree edges (q
being again q = |V ars(Q)|). In this case, the size and time
complexity are both in O(|N |q), as the output algorithm
keeps the set of valuations in memory.

Furthermore, the cost of value-based joins that are as-
sessed with a cost function j(|N |) must be considered. The
worst case estimation is as follows: as every variable can
be involved in a join, there are at most q − 1 value-based
joins (as equality is transitive, a query with more than q−1
joins can be transformed into an equivalent query with q−1
joins). Furthermore, every tuple of an exponential sized in-
termediate result is joined with each value-based join. As
the application of a join reduces the result size by a factor at
least linear in |N |, the overall runtime can be aproximated
as O(

Pq
i=2 j(|N |) · |N |i) = O(j(|N |) · |N |q).

Proposition 2 (Complexity of OutputG). The al-
gorithm OutputG has O(j(|N |) · |N |q) time complexity and
O(|N |q) space complexity.

Creating a structural tree query from a graph query is
unfavorable for this worst case complexity, since it is ex-
ponential in the number of variables and the corresponding
structural tree query with value joins for a graph query has
up to twice the number of variables as the graph query.
For realistic cases however, this is a technique to transform
tree-relation join conditions that are not verifiable in con-
stant time into identity joins. Alternatively, it is possible in
the match algorithms to create (in the top-down approach
reasonably small) on-the-fly indexes for the non-tree struc-
tural relations, assuring a fast verification of these relations
in Output. The quadratic increase of the exponential factor
can hence be avoided.

5.3 Incremental Matrix Consumption for Trees
and Graphs

The previous two algorithms are tailored to provide an
in-memory representation of all answers of a query and are
thus both in time and space complexity bound by the out-
put size. An in-memory representation of the answers is
useful to perform further processing based on the answers,
e.g., for structural grouping, aggregation, or ordering. How-
ever, in many cases an incremental output of the answers
is preferable, in particular if further processing can also be
realized in an incremental manner. Incremental answer gen-
eration can be realized using the algorithm OutputNLJ , a
slightly modified incremental nested loop join over the me-
moization matrix. The algorithm uses the structure of the
matrix instead of join attributes, but is otherwise – leaving
aside partitioning issues – a standard nested loop join and
therefore omitted here for space reasons.

Proposition 3 (Complexity of OutputNLJ).
The algorithm OutputNLJ has time complexity O(|N |q) and
space complexity O(q · n2) on tree queries, on graph queries
time complexity O(j(|N |) · |N |q) and space complexity O(q ·
n2).

The advantage of OutputNLP is the low space complexity
that is essentially bound by the size of the memoization ma-
trix. However, this advantage is paid for by an exponential
time complexity in almost all cases. Furthermore, this expo-
nential time complexity is reached in many practical cases,
making this algorithm suitable only for cases where space
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Figure 4.5: Architecture of Query Compiler for AMaχoS

least on the level of AMaχoS code even programs containing only queries (i.e., expressions handled by
the pattern matching engine) are allowed and can be executed by this architecture (the rule dispatcher
and construction engine, in this case, merely forwarding their input).

4.5.2 Query Compiler

Aside of the execution engine, the query compilation layer deserves a closer look. Here, an Xcerpt
program—represented by an abstract-syntax tree annotated with type information—is transformed into
AMaχoS code. It is assumed that the Xcerpt program is already veri�ed, normalized, modules are
expanded, and type information is added in the prior parsing layer. ¿e query compilation is essentially
divided in three steps: logical optimization, physical plan generation, and code generation.

Logical optimization is similar as in traditional database systems but additionally has to consider rules
and rule dependencies: Xcerpt programs get translated into a logical algebra based on n-ary conjunctive
queries over semi-structured graphs [18]. Expressions in this algebra are then optimized using various
rewriting rules, including dead and tautological query part elimination, join placement optimization,
and query compaction. Furthermore, where reasonable, rules are unfolded to avoid the construction of
intermediary results during execution.

In contrast, physical plan generation di�ers notably, as the role of indices and storage model is inverted:
In traditional databases these are given, whereas in the case of AMaχoS the query compiler generates
code in the hint section indicating to execution engine and storage manager which storage model and
indices (if any) to use. Essential for execution is also the classi�cation of queries based on shape of the
query and (static) selectivity estimates. E.g., a query with highly selective leaves but low selectivity in inner
nodes is better evaluated in a bottom-up fashion, whereas a query with high selectivity in inner nodes
pro�ts most likely from a top-down evaluation strategy. Operator selection is rather basic, except that it is
intended to implement also holistic operators for structural relations where entire paths or even sub-trees
in the query are considered as parameter for a single holistic operator, cf., e.g., [15, 57].

An AMaχoS program can, in many respects, be considered a serialization of a physical query plan
for an Xcerpt program. Notice, however that it provides only local operator sequencing, as rules are kept
separate and only at run-time the sequencing of rule applications is performed by the rule dispatcher, cf.
Section 4.5.1.
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¿erefore, the code generator is rather simple, performing only basic serialization tasks and simple
code optimizations such as motion of invariant code [48].

To conclude, the query compilation layer employs a mixture of traditional database and program
compilation techniques to obtain an AMaχoS program from the Xcerpt input that implements the Xcerpt
program and is, given the limited knowledge about the actual data instances, likely to perform well during
execution. ¿e compilation process is rather involved and expected to be time expensive if all stages
are considered. A control API is provided to control the extent of the optimization and guide it, where
possible. We belief that in many cases an extensive optimization is called for, as the query program can be
reused and, in particular if remote data is accessed, query execution dominates by far query compilation.

4.6 Conclusion and Outlook

We present a brief overview over the principles and architecture of a novel kind of abstract or virtual
machine, the AMaχoS virtual machine, designed for the e�cient, distributed evaluation of Xcerpt query
programs against Web data.

In particular, we show how the Web setting a�ects traditional assumptions about query compilation
and execution and forces a rethinking of the conclusions drawn from these assumptions. ¿e proposed
principles and architecture re�ect these changing assumptions

1. by emphasizing the importance of a coherent and clearly speci�ed execution environment in form of
an abstract machine for distributed query evaluation,

2. by separating query compilation from query execution (as in general programming language execu-
tion),

3. by employing a uni�ed query evaluation algorithm for path, tree, and graph queries against tree and
graph data, and

4. by emphasizing adaptive optimization as a means to ameliorate the loss of quality in predictive
optimization due to lack of knowledge about remote or volatile data instances.

Implementation of the proposed architecture is still underway, �rst results on the implementation
of the query engine have been reported in [18] and in [9], demonstrating the promise of the discussed
method and architecture.
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Chapter 5

Towards Xcerpt 2.0—Functions and
Primitive Types

5.1 Introduction

In Xcerpt 1.0, we provide only a very limited set of prede�ned functions and primitive types. For Xcerpt
2.0, we have developed a �exible framework for adding new (primitive) types and their functions. ¿is
framework is, as a prototype, implemented in Java and provides means for adding new types, adding
functions, converting between types etc. without need for recompiling the Xcerpt prototype. Details on
the use of the framework are presented in Section 5.2.5. A basic set of types and functions for numerical
types is discussed as an example in Section 5.3. We are currently working on extending this basic set and
integrating the implementation into the Xcerpt 2.0 prototype.

5.2 Implementation

5.2.1 General Information

¿e prototype implementation of our types and functions framework is written in Java. It consists of
three classes, namely XcerptType, XcerptFunction, and XcerptValue which all depend on each others
functionality in order to create a complete type system and set of functions on the de�ned types.

Both XcerptType and XcerptFunction are abstract classes and serve to represent tangible objects as
well as to organise those objects by using static attributes and methods. For these organisational features
a registration mechanism is used. ¿is means that in order to create “usable” instances of those classes,
instances have to be registered a er construction. XcerptValue is a simple container class and has no
such limitations.

5.2.2 The XcerptType class

As its name suggests the XcerptType class is responsible for single type instances and all organisational
information about those (e.g. supertypes, disjoint types, conversions). For each type there exists a unique
instance of XcerptType which a er registration holds all immediately characteristic information. ¿is
type information consists of three attributes: a unique identi�er, super-types and disjointness with other
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types. While the former two are an essential part of registration, the latter has to be set explicitly. If not set
(by the setDisjointmethod) it defaults to no disjointness with other types at all. A er registration this
information is immutable but can be read by external classes.

¿eunique identi�er is required by the framework as types (and functions as well) have to be accessible
globally from anonymous inner classes. ¿e other information is necessary for implicit type conversion and
several additional attributes are �lled with implicit type conversion information as soon as speci�cmethods
are called. conversions contains all direct conversion possibilities obtained by calls of the addConversion
method during function registrations (more on that in the following section). transitiveConversions
contains all transitive conversion possibilities (ordered by path length) obtained by calculating the transitive
hull of the relation induced by the conversions attribute. ¿is calculation is performed as part of the type
system �nalization (triggered by the finishmethod) in order to guarantee completeness. Each instance
of XcerptType has a convertmethod which with the help of the gathered information allows (to try) to
convert a given value from the type it is called on to a value of a given (usually an other) given type.

¿e global type system information is stored in static attributes that can be accessed via getter methods.
¿ose attributes are modi�ed every time a new type is registered.

5.2.3 The XcerptFunction class

¿e XcerptFunction class is quite similar to the XcerptType class in turns of organisation. Instances of
this class represent unique functions on priorly registered types. In order to de�ne a function a subclass
of XcerptFunction has to be instanciated, which is done most conveniently by taking advantage of
anonymous classes. ¿is subclass has to implement the abstract applymethod which should contain the
actual function implementation.

A function here is characterised by its identi�er, its expected parameter types and its result. ¿e
identi�er is not unique but the signature (identi�er and parameter types) is. ¿is information has to
be supplied upon registration and cannot be modi�ed. Integrated in the registration process is the
identi�cation of conversion functions by a naming convention. In our framework a function is a conversion
function if and only if

• its identi�er is equal to the identi�er of a type A,

• its result type is A and

• it only takes one parameter.

Also there may not exist a function which full�lls the �rst two of the above requirements but violates the
last. So for types A and B a conversion function always has the following form.

A ∶ B→ A

A er a function has been identi�ed as a conversion function it is added to the function’s parameter type
as a conversion to the function’s result type by using the addConversionmethod. In our example from
above we would call it on the type B.

Now in order to retrieve instances of XcerptFunction globally, we o�er two methods, namely getAll,
which returns all functions which share a given identi�er, and get, which returns a single function by
supplying an exact signature. Global information (i.e. the list of functions) is handled the same way as
global type system information is in the XcerptType class.
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5.2.4 The XcerptValue class

¿e XcerptValue class serves no other purpose than representing an actual value in our type and function
framework by supplying a Java object with type (as instance of XcerptType) information. Hence its
attributes are type and boxedValue, the latter being a Java Object, which are both immutably set upon
construction and can be accesed by getter methods.

For convenience sake there exists an additional constructor, which doesn’t take an actual instance of
XcerptType but a type identi�er as one of its parameters, and a convertmethod, which simply forwards
calls to the convertmethod of the XcerptType class.

5.2.5 Usage

For a programmer who wants to extend Xcerpt with new types and functions it is important to know how
to interact with the provided interfaces. Hence this section contains a usage guide for our implementation
brie�y introduced above.

¿ere are three basic elements: types, functions, and values. Types are used to de�ne a set of values.
Each type has either one ore no direct supertype. If a type does not have a direct supertype it is considered
the default type and no other type in the type system must have no direct supertype. Functions may
have zero or more parameters and a single result. Overloading is possible so that a function is uniquely
identi�able by its signature which consists of its identi�er and its parameter types. Values are used for
function parameters and results. ¿ey always consist of a type and a boxed value (i.e. a Java Object) which
can only be read.

Before a type system for Xcerpt can be built with the here provided framework, the following require-
ments and recommendations have to be considered:

1. Every type system needs a default type, which is a global supertype for all types in the type sys-
tem. ¿is means that there has to exist a transitive conversibility relationship (regarding implicit
conversion) for every other type in the system.

2. Implicit conversion should always maintain information (i.e. implicit conversion may fail but
not both succeed and lose information, at least not within a big tolerance) and conversions to a
(transitive) supertype should never fail.

3. Static type checking will only be possible if information about type disjointness is given, dynamic
type checking is always possible (e.g. via trial-and-error conversion).

What follows is a detailed explanation of the steps that have to be performed in order to create types
and functions.

5.2.5.1 Adding types

To add a type to the type system an instance of XcerptType has to be created and registered a erwards.
¿e �rst type to be added to the type system is the default type. Supposing this type should actually be
named default, the following code snippet shows how to add it.

Listing 5.1: Adding the default type
XcerptType defaultType = new XcerptType() {};

2defaultType.register("default");
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By not providing any parameters but its identi�er when the register method is called defaultType
becomes the default type. ¿e existence of additional parameters would mean that default has supertypes
and thus couldn’t be a default type. Together with the forced existence of at least one supertype for every
non-default type this means, that in every type system, the �rst succesfully registerable type is the default
type.

Something not yet discussed is the fact, that XcerptType is an abstract class (thus the curly braces). By
using an abstract class we allow abstract customization method to be added later as the framework evolves
(e.g. a method to parse literals of the speci�ed type) like the apply method is used in the XcerptType
class.

Usually a type system does not consist of only a single type but adding additional types is only slightly
more complicated than adding the default type. ¿e �rst new thing that has to be taken into consideration
are supertypes. In the following example types a, b and c are added.

Listing 5.2: Adding additional types
XcerptType aType = new XcerptType() {};

4aType.register("a", defaultType);
XcerptType bType = new XcerptType() {};

6bType.register("b", defaultType);
XcerptType cType = new XcerptType() {};

8cType.register("c", bType);

Here a and b are both direct subtypes of the default type, c is a subtype of b and thus an indirect subtype
of the default type. Several supertypes can be given a er the identi�er as variable parameter length is used
here.

We still do not now if any of those types are de�nitely not convertible into one another. So in order to
perform static type checking additional information about the relation between types has to be provided.
¿e following short example shows how to tell the type system which types are disjoint.

Listing 5.3: Setting disjointness
aType.setDisjointTypes(b);

Now a and b are considered disjoint, c is a subtype of b and “inherits” all properties form its supertype.
¿us a and c are also disjoint. Like the registermethod does, the setDisjointTypesmethod can accept
more than one parameter in order to set disjointness for multiple types at once.

5.2.5.2 Adding functions

In the steps above the basic type system structure has been de�ned. To complete this structure with
information about general convertibility we �rst need to implement and register conversion functions.
For each pair of subtype and its supertype there has to exist a registered conversion function from subtype
to supertype and a registered conversion function from supertype to subtype. Concerning implemen-
tation and registration conversion functions are treated the same as normal functions and can only be
distinguished if they adhere to the naming convention already described earlier.

Listing 5.4: Adding a conversion function
10new XcerptFunction() {
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public XcerptValue apply(XcerptValue... parameters) {
12// Insert implementation here

}
14}.register("default", defaultType, bType);

Except for the fact that there is no real implementation, which would depend on the values of b and
default and is not discussed in detail here, the example shows how to create and register a conversion
function from b to default. Of course in order to have a valid type systemwewould needmore conversion
functions as described above (in the requirements). Besides the required conversion functions we can
register additional conversions for example from default to c. ¿ese would be taken into consideration
when transitive conversions are calculated.

¿e procedure to add “normal”, non-conversion functions only di�ers in naming the function (and of
course in implementation).

Listing 5.5: Adding a “normal” function
new XcerptFunction() {

16public XcerptValue apply(XcerptValue... parameters) {
// Insert implementation here

18}
}.register("doSomething", aType, aType, cType);

Here registration also makes use of variable parameter length. First the identi�er, then the result type and
a er that an arbitrary amount of parameter types. ¿e example results in the following function.

doSomething ∶ a × c→ a

5.2.5.3 Finalization and resetting

A er everything has been set up the type and function de�nitions have to be �nalized. ¿is is only two
lines of code but itis necessary for infering conversions from the registered functions etc.

Listing 5.6: Finalization
20XcerptFunction.finish();

XcerptType.finish();

Note: ¿is would actually fail because of some missing conversion functions. But assuming we added
those earlier �nalization will suceed.

Although it probably will not occur very o en, there still could be a reason for starting over again. For
this case everything can be reset, which is as short as �nalization.

Listing 5.7: Resetting
22XcerptFunction.reset();

XcerptType.reset();

In Figure 3 the example type system created (or at least intended to be created) here is visualized.
¿e Venn diagramm on the le side shows the types and their relationships to each other de�ned by
registration and disjointness settings, the hierarchy in the middle matches the type system de�ned in this
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section and the hierarchy on the right side shows the same type systemminimally enhanced by conversion
functions in order to make it �nalizable.

5.3 A pragmatic set of base types and functions

To show that our type and function framework can actually be used to extend Xcerpt reasonably, a
pragmatic set of base types and functions will be presented in this section. Of course a complete and
maybe complex set as well as detailled function implementations are not a part of this documentation.
Instead the focus of this document is to explain ideas and this section in particular only contains a basic
prototypical type system with basic functions.

5.3.1 Base type system

Figure 4 shows our base type hierarchy, where the part enclosed in parantheses has not been implemented
yet and is to be seen as a motivational idea for further extension of this type system. ¿ey are a direct copy
o� of a branch of the hierarchy presented in the W3C Recommendation “XML Schema Part 2: Datatypes
Second Edition” (http://www.w3.org/TR/xmlschema-2/)

So in fact there are only �ve types present at the moment:

• string, simple strings (e.g. Hello world!, Xcerpt, document)

• rational, rational numbers (e.g. 3.6, 2, -127.2)

• integer, integer numbers (e.g. 4, -10)

• boolean, boolean values (true, false)

• IRI, Internationalized Resource Identi�ers (e.g. http://127.0.0.1/index.htm)
Still those are enough types for de�ning interesting functions that demonstrate our approach. At �rst it
might appear strange to consider rational a subtype of string and integer a subtype of rational, but the
former relationship can be explained as input from an XML �le is, if not otherwise de�ned (for example
with XMLSchema), text at �rst.

¿e following Venn diagram visualization is not surprising as in this type system there are hardly
any non-empty type value intersections (maybe with the exception of IRI and token, but the latter is not
really taken into consideration now anyway).

5.3.2 Conversion functions

string ∶ rational → string conversion from rational to string
string ∶ boolean → string conversion from boolean to string
string ∶ IRI → string conversion from IRI to string
rational ∶ string → rational conversion from string to rational
rational ∶ integer → rational conversion from integer to rational
integer ∶ rational → integer conversion from rational to integer
boolean ∶ string → boolean conversion from string to boolean
IRI ∶ string → IRI conversion from string to IRI
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5.3.3 Base functions

5.3.3.1 string functions

concat ∶ string× string → string concatenation of two strings
substr ∶ string× integer → string extracts substring from string
substr ∶ string× integer × integer → string ...with given length
lowerCase ∶ string → string converts string to lower case
upperCase ∶ string → string converts string to upper case
invCase ∶ string → string inverts case of a string
trim ∶ string → string trims string
find ∶ string× string → integer �nds search string inside of a string
find ∶ string× string× integer → integer ...with given start position
replace ∶ string× string× string → string replaces search string inside of a string
replace ∶ string× string× string× integer → string ...with given start position for search
replaceAll ∶ string× string× string → string ...with all occurences being replaced
tokenize ∶ string× string× integer → string string tokenization

5.3.3.2 rational functions

abs ∶ rational → rational calculates the absolute value of a given number
sign ∶ rational → rational calculates the sign of a given number
inv ∶ rational → rational calculates the (additive) inverse of a given number
add ∶ rational × rational → rational addition of two numbers
sub ∶ rational × rational → rational subtraction of two numbers
mul ∶ rational × rational → rational multiplication of two numbers
div ∶ rational × rational → rational (rational) divison of two numbers
pow ∶ rational × rational → rational exponentiation of number
sqrt ∶ rational → rational calculates the square root of a number
round ∶ rational → integer rounds a number (explicit, lossful conversion to integer)

5.3.3.3 integer functions

abs ∶ integer → integer calculates the absolute value of a given number
sign ∶ integer → integer calculates the sign of a given number
inv ∶ integer → integer calculates the (additive) inverse of a given number
add ∶ integer × integer → integer addition of two numbers
sub ∶ integer × integer → integer subtraction of two numbers
mul ∶ integer × integer → integer multiplication of two numbers
intDiv ∶ integer × integer → integer integer divison of two numbers
mod ∶ integer × integer → integer calculates the remainder of an integer division
pow ∶ integer × integer → integer exponentiation of number
intSqrt ∶ integer → integer calculates the square root of a number
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5.3.3.4 boolean functions

and ∶ boolean × boolean → boolean logical conjunction of two boolean values
or ∶ boolean × boolean → boolean logical disjunction of two boolean values
not ∶ boolean → boolean logical negation of a boolean value
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XcerptType

- registeredTypes: HashMap<String, XcerptType> 

- identifier: String
- disjointTypes: HashSet<XcerptType>
- conversions: HashMap<XcerptType, XcerptFunction>
- transitiveConversions: HashMap<XcerptType, XcerptFunction[][]>

+ get(identifier: String): XcerptType

+ register(identifier: String, supertypes: XcerptType...): void
+ setDisjoint(disjointTypes: XcerptType...): void
+ getIdentifier(): String;
+ getSupertypes(): XcerptType[]
+ isRegistered(): boolean
+ isDisjointType(type: XcerptType): boolean
+ addConversion(conversion: XcerptFunction): XcerptFunction
- calculatePaths(type: XcerptType, visitedTypes: HashSet<XcerptType>):

ArrayList<ArrayList<XcerptType>>
- calculateTransitiveConversions(): void
+ convert(value: XcerptValue, type: XcerptType): XcerptValue

XcerptFunction

- registeredFunctions: HashMap<String,
HashMap<ArrayHashKey<XcerptType>, XcerptFunction>> 

- identifier: String]

+ reset(): void
+ isFinished(): boolean
+ getAll(identifier: String): XcerptFunction[]
+ get(identifier: String, parameterTypes: XcerptType): XcerptFunction
+ finish(): void

+ register(identifier: String, resultType: XcerptType,
parameterTypes: XcerptType...): void

+ getResultType(): XcerptType
+ getParameterTypes(): XcerptType[]
+ isRegistered(): boolean

+ apply(parameters: XcerptValue...): XcerptValue

XcerptValue

- boxedValue: Object

+ XcerptValue(type: XcerptType, boxedValue: Object)
+ XcerptValue(typeIdentifier:String, boxedValue: Object)

+ getType(): XcerptType
+ getBoxedValue(): Object
+ convertTo(type: XcerptType): XcerptValue

1..* supertypes

*

1 resultType

1 type

* disjointTypes

*

1..* parameterType

Figure 5.1: UML diagramm
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Chapter 6

Towards Xcerpt 2.0—Enabling
Component-Reuse from Rules to Stores

6.1 Introduction

As the amount and diversity of data available on the Web is constantly increasing, querying this great
abundance of information is becoming more and more important. In fact, it is becoming less important
to possess certain knowledge, but more important to know how to acquire it—know how to formulate a
precise query to �nd the desired information. Query languages for di�erent purposes are emerging in
multitude. [8] surveys some existing query and transformation languages for Web and Semantic Web data,
identifying 14 textual XML query languages and 24 for RDF metadata.

Yet, most of these languages provide very little support to the user to cope with the dramatic increase
in information size and diversity. Increasing information diversity results in increase of query size and
complexity, which can weigh down even experienced query programmers. It must be easy for users to
partition (both conceptually and from an evaluation point of view) query programs and to make such
partitioning �exible enough to allow for reuse in di�erent contexts. ¿is is not the case unless the query
language provides some means to separate large and complex queries into smaller, properly isolated, and
reusable fragments—modules. Such modules allow to “localize” the e�ect of the introduction of additional
data sources or query tasks in query programs.

¿us, modules allow a separation of concern not just on the basis of single rules but on the basis of
larger conceptual units of a query program. For example, one part of a Web application is o en concerned
with extracting data from a set of sources, such as a set of Web pages. At the next step, the data might have
to be syndicated into a common view and format. From this syndicated data, some new implicit data could
possibly be derived. Finally, the resulting data set should be displayed in an appropriate human-readable
form, for example, by being displayed in a well-structured Web page (see Section 6.3 for an example).
¿ese di�erent steps taken by the application have to do with di�erent concerns of the overall realization,
such as data extraction, data management and data display. Furthermore, each of the concerns deals
with di�erent schemata, but the knowledge of the schemata can be hidden and encapsulated within each
concern – within each module. In contrast, exposing all these concerns in one monolithic query program
not only becomes very hard to understand, but is also impossible to manage as a change in some part may
a�ect any other part.

¿is work is based on ideas from [41,4] where we propose a �exible approach for augmenting arbitrary
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languages with new levels of abstractions, and new constructs for authoring reusable entities. ¿e only
requirement we put on the newly introduced constructs is that their realization is already expressible in
the original language, i.e., that they have a reduction semantics. In doing this we take advantage of existing
so ware composition techniques1 to realize the added reuse abstractions [41]. However, in this paper we
do not focus on the details of composition systems, but show an application of the ideas to a concrete
query language, viz. Xcerpt [68].

For that language, we propose a module system that (a) demonstrates how Web query languages
can pro�t from modules by partitioning the query program as well as its execution; (b) provides an
easy, yet powerful module extension for Xcerpt that shows how well-suited rule-based languages are
for component-based reuse; (c) is based on a single new concept, viz. “stores”; and (d) uses a reduction
semantics exploiting the power of a language with views. ¿is semantics enables the reuse of the existing
query engine making the design of the module system easier and its deployment less time consuming.

¿e rest of this paper is organized around these contributions: Following a brief introduction to Xcerpt
we demonstrate the need for modules or similar reuse and partitioning mechanisms by a use case on
integrating (Semantic and plain old) music data on the Web. ¿en we introduce the module extension
for Xcerpt by implementing part of the aforementioned use case. We conclude with a discussion of the
semantics and realization of the module extension.

6.2 Introducing Xcerpt

We choose to demonstrate our ideas using the rule-based, Web and Semantic Web query language
Xcerpt [68], which has been co-developed by some of the authors and is particularly well-suited for reuse
due to its rule-based nature. ¿is chapter is not intended as a full introduction to Xcerpt but merely recalls
some of its most relevant features for this article. For a proper introduction please see [68].

An Xcerpt program consists of a �nite set of Xcerpt rules. ¿e rules of a program are used to derive
new, or transform existing, XML data from existing data (i.e. the data being queried). Construct rules are
used to produce intermediate results while goal rules form the output of programs.

While Xcerpt works directly on XML or RDF data, it has its own data format for modeling XML
documents or RDF graphs, viz. Xcerpt data terms. For example, the XML snippet <book><title>White
Mughals</title></book> corresponds to the data term book [ title [ "White Mughals" ] ]. ¿e
data term syntax makes it easy to reference XML document structures in queries and extends XML slightly,
most notably by also allowing unordered data.

For instance, in the following query the construct rule de�nes data about books and their authors
which is then queried by the goal. Intuitively, the rules can be read as deductive rules (like in, say, Datalog):
if the body (a er FROM) holds, then the head (following CONSTRUCT or GOAL) holds. A rule with an empty
body is interpreted as a fact, i.e., the head always holds.

GOAL
2authors [ var X ]

FROM
4book [[ author [ var X ] ]]

END
6

CONSTRUCT book [ title [ "White Mughals" ], author [ "William Dalrymple" ] ] END

1Developed within the Reuseware Composition Framework (http://reuseware.org).
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Xcerpt query terms are used for querying data terms and intuitively describe patterns of data terms.
Query terms are used with a pattern matching technique2 to match data terms. Query terms can be
con�gured to take partiality and/or ordering of the underlying data terms into account during matching
(indicated by di�erent types of brackets).

Query terms may also contain logic variables. If so, successful matching with data terms results in
variable bindings used by Xcerpt rules for deriving new data terms. Matching, for instance, the query term
book [ title [ var X ] ] with the XML snippet above results in the variable binding {X / "White
Mughals" }.

Construct terms are essentially data terms with variables. ¿e variable binding produced via query
terms in the body of a rule can be applied to the construct term in the head of the rule in order to derive
new data terms. For the example above we obtain the data term authors [ "William Dalrymple" ] as
result.

6.3 Use case: Music aggregation with the Web Music Library

Jimi Hendrix Experience
Are You Experienced?

Amazon CD Cover
Image Extractor

Track
list

Data display layer

Data inference layer

Data extraction layer

Information
Web Crawler

Discogs
Artist Information

Rock

Grunge

Music Ontology

Album  Mashup
Creator

iTunes Purchase 
Links Extractor 

Audioscrobbler
Recommenations

Modules Data

(X)HTML
Webpages

RDF(S)
Inference Engine

Music Collection
Framework Interface

Query: “Collect info on album 
‘Are You Experienced?’”

Album

Result: <?xml ...?> ...

New Albums
RSS Feed

Figure 6.1: Many query languages only allowwritingmonolithic queries, whilemodular query development
greatly increases reuse and ease of programming.

¿e use case illustrated in Figure 6.1 presents a library (called MusicLibrary) of functionality useful for
coping with music and information about music found on the (Semantic) Web. At an (arguably) lower
layer, information is extracted from various established Web sites like amazon.com or discogs.org. ¿e
extraction has to be handled di�erently for every web site, but is valuable for many users and applications.
For example, many of the currently established desktop music players exploit the album or CD images
of Amazon to display cover art while playing back music. Encapsulating reusable queries dealing with
a particular information source allow for �exible maintenance and propagation to a larger user base.
¿e legacy information as found on external Web sites is then converted to an internal representation

2Called simulation uni�cation. For details of this technique, please refer to [67].
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loosely based on the Music Ontology [36]. Music Ontology is an RDFS-based standard, hence knowledge
inference and reasoning on—possibly incomplete—Music Ontology data can be achieved using an RDFS
reasoner. Since such a reasoner is usable in many di�erent �elds of applications, it is implemented and
provided as an Xcerpt module and included in the main library, hence allowing for its reuse. Perhaps more
interesting to the end user, various modules providing pleasant visualizations of gathered information or
prede�ned query skeletons can be provided in the library. Such modules can also be provided by third
parties or, last but not least, as part of an application using the Web Music Library.

6.3.1 Realizing Musical Modules in Xcerpt

How can we today realize this application in Xcerpt? In the absence of modules we have to carefully cra 
a single query program with a considerable number of rules (well over three dozens if we follow the basic
design presented below) at each step taking great care that the rules do not, by chance, interfere with
each other. Furthermore, we have to update the whole query program as soon as any information source
changes, since this information is hard-coded in the program.

In the presence of a module extension, the task becomes a lot less daunting: Let us start from the
top with a user program that gathers information about Jimi Hendrix from all the sources described in
Figure 6.1. For that, it relies on a module called MusicLibrary (discussed above). ¿e library is not a mere
database, it is an interface to various ways of reasoning about musical information available on the Web.
To the user the complexity remains hidden. ¿e user just poses his query to the module without caring
whether the data is extensional or intensional and how it is obtained. ¿e module system ensures that,
regardless of the actual rules and their distribution between modules, there is no chance for interference
by rules of di�erent sub-modules used within MusicLibrary.

1IMPORT "MusicLibrary"

3GOAL
html [ body [

5h1 [ "Records by Jimi Hendrix" ],
table [ tr [ td [ "Record" ], td [ "Year" ] ],

7all tr [ td [ var R ], td [ var Y ] ] ]
] ]

9FROM
in "MusicLibrary" (

11desc record { artist [ "Jimi Hendrix" ],
title [ var R ], year[ var Y ] } )

13END

¿e MusicLibrary module itself is integrating data and knowledge of other modules the same way as
the user program. It has to provide the information, and only the desired information, to the user of the
module. Some rules may be necessary internally in the module to achieve the task, but should not be
directly visible to the user of the module. ¿e visible parts of the module are hence public, the others
(implicitly) private.

Apart from using knowledge of other modules, modules may also receive data provided by importing
modules. MusicLibrary accesses data extracted by a module gathering MusicBrainz metadata, feeds it to a
module for converting that data toMusic Ontology knowledge (Musicbrainz2MOFacts), and �nally injects that
knowledge to an RDFS reasoner (using the MO-Ontology-Reasoner module). It also accesses discogs.org
directly and feeds the acquired data into another instance of the MO-Ontology-Reasoner. To distinguish
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multiple instances of the reasoner, each instance is given an alias (using the @ construct), which can be
used the same way as the module identi�er when querying, or sending data to, a module. In this way,
modules also give rise to scoped reasoning where consequences only apply in a certain scope (or module),
but are not (automatically) propagated outside of that scope. In particular, knowledge in di�erent scopes
may, if considered globally, be inconsistent, but within each scope be consistent.

1MODULE "MusicLibrary"
IMPORT "MusicBrainz"

3IMPORT "Musicbrainz2MOFacts"
IMPORT "MO−Ontology−Reasoner" @ "reasoner−for−musicBrains"

5IMPORT "MO−Ontology−Reasoner" @ "reasoner−for−discogs"

7CONSTRUCT public var KNOWLEDGE
FROM in "reasoner−for−musicBrains" ( var KNOWLEDGE ) END

9

CONSTRUCT public var KNOWLEDGE
11FROM in "reasoner−for−discogs" ( var KNOWLEDGE ) END

13CONSTRUCT to "reasoner−for−musicBrains" ( var FACTS )
FROM in "Musicbrainz2MOFacts" ( var FACTS ) END

15

CONSTRUCT to "Musicbrainz2MOFacts" ( var METADATA )
17FROM in "MusicBrainz"( metadata [[ var METADATA ]] ) END

...
19CONSTRUCT discogs-document-for-crawler[ all HREF ]

FROM in document(iri="http://www.discogs.org") ( desc a [[ href [ var HREF ] ]] ) END

Finally, let us glance at the MO-Ontology-Reasoner module which is one of the modules that not only
extracts data but is injected with data to operate on (here: reason on). Hence, one of the queries is adorned
with the public keyword, indicating that chaining is to be performed against the rules of the importing
module that pass input data to the reasoner. ¿ose facts, together with the ontology de�nition (and any
domain dependent reasoning we would like to perform on the music ontology data) are sent to an RDFS
reasoner module, whose consequences are then made publicly available.

MODULE "MO−Ontology−Reasoner"
2IMPORT "RDFS−Reasoner"

4CONSTRUCT public var KNOWLEDGE
FROM in "RDFS−Reasoner" ( var KNOWLEDGE ) END

6

CONSTRUCT to "RDFS−Reasoner" ( var FACTS )
8FROM public var FACTS END

10CONSTRUCT to "RDFS−Reasoner" ( var MO )
FROM in document(type="xmlrdf" iri="http://purl.org/ontology/mo/") ( var MO ) END
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6.4 Modular Xcerpt—Requirements and Constructs

We have seen that modules can greatly ease the development of complex Web queries (as observed
increasingly) and how to apply them in examples. Before we discuss the principles of the semantics in
Section 6.5, let us �rst summarize the core concepts and constructs introduced. We divide the presentation
of the concepts in two parts: from the perspective of the module programmer and of the module user.

Module programmers need constructs for de�ning sets of rules and ways of declaring appropriate access
to the module—interfaces for proper encapsulation. To allow module authors to encapsulate modules,
visibility constructs are employed. For each rule of the module, the construct term and the query term
(if present) is associated with a visibility concept: public or private. Only public visibility is speci�cally
speci�ed, otherwise the default visibility private is used to encourage encapsulation.

Module declaration: We can group sets of rules into modules and give such a set an identi�er. ¿is
module can than be imported into other modules or programs.

⟨module⟩ ::= ‘MODULE’ ⟨module-id⟩ ⟨import⟩* ⟨rules⟩*
Module interfaces: We can declare allowed access points to a module to facilitate encapsulation and

proper interfaces. Any construct term can be annotated with public to indicate that it can be
queried by importing modules (see below).

⟨interface-out⟩ ::= ‘public’ ⟨construct-term⟩
Conversely, importing modules may provision data to an imported module (see ‘module provision’
below). ¿is data is exclusively queried by query termsmarked with public in the imported module.

⟨interface-in⟩ ::= ‘public’ ⟨query-term⟩
In other words, a module programmer de�nes the name and the in- and output interfaces of a module.

¿e input of a module is accessed or queried by public query terms, the output of a module is formed by
public construct terms. A module should also be complemented by documentation for the user describing
its task and interfaces.

Module users need to be able to (a) declare which modules they want to use in a program, to (b) query
the public interfaces of such modules, and to (c) provide data to such modules.

Module importation: We can import modules into other modules or programs. ¿e only e�ect of a
module is that the module identi�er (or its alias, if an alias is used) becomes available for use in
module querying or provision statements. In practice, module identi�ers are o en rather long and
complex URIs which makes the use of (short and easy to read) aliases advisable in most cases.

⟨import⟩ ::= ‘IMPORT’ ⟨module-id⟩ (‘@’ ⟨alias-id⟩)?
Module querying: We can query the consequences of the public construct terms of a module. ¿e given

query term is matched only against the results from public rules of the given module but neither
against those from that module’s private rules nor against other rules from the current module.

⟨module-access⟩ ::= ‘in’ ⟨module-id⟩ ‘(’ ⟨query-term⟩ ‘)’
Module provision: We can feed or provision data to the public query terms of a module. ¿e result of

a rule with such a construct term is only considered for public query terms in the given module,
not for query terms in the current module or for query terms from the given module that are not
marked public.
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⟨module-provision⟩ ::= ‘to’ ⟨module-id⟩ ‘(’ ⟨construct-term⟩ ‘)’
With only these three operations, amodule user can �exibly composemodules (evenmultiple instances

of the same module) while all the encapsulation is taken care of by the module system without further
user intervention.

So far, all module access is always explicitly scoped with the module identi�er. In a language with
views such as Xcerpt, this su�ces as we always can add a bridging rule (such as the �rst rule in the
MusicLibrary module from Section 6.3) that makes all data obtained from the public interface of an imported
module available to other rules in the importing module (without need for quali�cation). We provide two
additional variants of module import for convenience that cover this case. ¿ey only di�er in the way they
a�ect module cascading: ‘import public’ ⟨module-id⟩makes all data provided by the public interface of
modulemodule-id available to all unquali�ed rules in the importing module and also adds it to the public
interface of that module whereas ‘import private’ ⟨module-id⟩ only makes it available to the unquali�ed
rules.

6.5 Reducing Xcerpt Modules—Stores

¿e dual objectives of our approach are to (a) keep the module system simple and easy to use and to (b)
allow the reuse of existing language tools and engines without modi�cation. ¿ese two objectives actually
go hand in hand, as a reduction semantics for modules (i.e., a semantics that is based on the semantics of
the module-free language) proves to be elegant and easy to understand and naturally ful�lls the second
objective.

To allow users to truly think in terms of modules and make use of this abstraction, it is important to
ensure proper and valid module interactivity statically before applying the module-unaware query engine
to the involved rules. ¿us, only the intended rule dependencies must be present in the merged rules—we
have no way of enforcing rule separations during rule execution.

For the Xcerpt module system we ensure proper rule dependencies using the notion of stores. Intu-
itively, a store is a designated data area where data and queries are appropriately redirected to adhere to
the proper access of rules as speci�ed by the module programmer. A store is associated with an identi�er
and consists of a private, in and out part. Intuitively, the private part is intended for data access internal
to the module only and the in and out parts for input and output data of that module. ¿at is, data to
be processed by the module will be injected into the in part of the store and data constructed by the
module—upon request from another module—will reside in the out part of the store and can be queried
by an importing module.

Stores can already be simulated using the existing Xcerpt mechanisms. Let us �rst assume that for
each module we have one associated store that is identi�ed by the same (unique) identi�er. ¿e construct
terms and query terms of each rule in an imported module as well as rules using in or to for module
access or provision in an importing module are modi�ed such that the appropriate store is referenced:

in <module-id> ( <query> )→ store [ id [ <module-id> ], access [ "out"], <query> ]
to <module-id> ( <construct> )→ store [ id [ <module-id> ], access [ "in"], <construct> ]
CONSTRUCT <c> FROM <q> END→ CONSTRUCT store [ id [<module-id>], access["private"], <c>]

FROM store [ id [<module-id>], access["private"], <q> ] END

Some rules in the imported module are exempted from this transformation, viz. construct terms in
goals (producing results for the end user), query terms speci�cally referencing an external resource (such
as an XML document or other module) rather than the internal module store. Also, if the query term
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is a complex query it might be necessary to propagate the store speci�cation inside the query (e.g., over
disjunctions, negation, etc.). However, these details are omitted here for space reasons.3

6.5.1 Refining Stores: Instance Stores

¿e store concept described above ensures basic encapsulation capabilities for Xcerpt modules and is
attractive for its simplicity. However, there are certain situations where associating one store per module
is not su�cient. Consider the situation where two modules (A,B) imports a third one (C) and both A and B
injects data into the store associated with C. In such a case, a er module C has processed the data, module
Amay receive data initially injected by module B. As such, modules A and B are not kept separate violating
one of the core premises of our desire for modules. ¿is is not a limit of the store approach, but due to the
assumption of the existence of one store per module.

To address this problem, we associate stores not with a module but with a module import. ¿is can be
seen as instantiating a store for each module import with the identi�er of the importing module. We thus
end up with two stores C<A> and C<B>, due to two import operators. A similar case where this is needed is
when we use the same module but with di�erent “feeds” using aliases. ¿is is the case in the Music Library
module presented in Section 6.3 where aliases (using @) were used to force such separations.

Implementation.

Not only is it an advantage to reuse the query engine in executing the transformed and merged rules, it
is also bene�cial if existing technology can be used to realize the above-described transformations. To
achieve this, we realize themodule system via composition in the Reuseware Composition Framework [41].
¿e composition framework allows for the development of a light-weight composition system responsible
for handling the augmented constructs related to modules. ¿e composition framework allows both to
extend the Xcerpt language with the additional syntactic constructs and to handle the transformation
and merging of the involved rules in the manner described above to enforce encapsulation. ¿e details
of this implementation are le out for space reasons, but are available at http://www.reuseware.org/
modularxcerptexample.

6.6 Related work

Practical Web query languages need to provide support for some form of reuse and modules as evidenced
by (though somewhat limited) module support in languages such as XSLT and XQuery. Rule languages
for the Web, on the other hand, show an apparent lack of module support, despite considerable research
on module extensions for classical logic programming. One of the reasons that modules are still not in the
“standard repertoire” of rule languages may be the complexity of many previous approaches.

Representative and, arguably, the most comprehensive treatment of modules in logic programming is
presented in [13]. It is far more expressive than our approach but at the price of a complex semantics and
several operations with, in our opinion, little practical use (such as module intersection or renaming). We
believe that a single well-designed union (or combination) operation with well-de�ned interfaces together
with a strong reliance on views as an established and well-understood mechanism in rule languages is not
only easier to grasp but also easier to realize.

¿ough many rule languages for the Web fail to provide modules, this is not true for the two preemi-
nent Web query languages, XSLT and XQuery. XSLT [25] can be considered a rule language, however

3But available with examples at http://www.reuseware.org/modularxcerptexample.
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using precedence rather than union semantics for multiple applicable rules. Rule precedence is also the
dominating issue for XSLT’s module system which provides intricate mechanisms for determining the
precedence of rules from di�erent modules. Nevertheless, the resulting module system is considerably less
powerful (no scoped import, limited parameterization: apply-imports) yet needs a more complex semantics
than module-free XSLT, quite in contrast to our approach.

It is worth mentioning that XQuery [12] also provides a module system, however without parameteri-
zation, but as a function programming language requires explicit �ow control in all cases. ¿us, issues such
as private or public import (or the di�erence between import and include in XSLT) do not apply for XQuery.
SPARQL [60], �nally, the recently proposed RDF query language, has no concept of user de�ned program
units (such as rules, functions, procedures, etc.) and thus no use for a module concept in the sense of our
approach. However, rule-based extensions for SPARQL (in the spirit of Datalog) could certainly pro�t
from the module system illustrated here using Xcerpt.

6.7 Conclusions and Outlook

We argue that one ingredient to cope with size and diversity of information on the (Semantic) Web is
modular query authoring and execution. We show advantages along a concrete use case dealing with
music information aggregation on the Web. Furthermore, we demonstrate how it is possible to augment
existing query languages—here focused on the language Xcerpt—with new constructs while reusing
already developed semantics and query engines thanks to a reduction semantics approach. ¿e proposed
module system is simple to use (in contrast to many approaches from logic programming) yet provides
better encapsulation and more advanced features (such as scoping and paramterization) than module
systems for XSLT or XQuery.

¿eproposedmodule system has been formalized [4] and implemented using the Reuseware Composi-
tion Framework. Integration with upcoming revisions of Xcerpt is planned. Furthermore, we would like to
exploit existing techniques and tools such as Xcerpt’s type system [83] for improving module composition.
We are also investigating how similar techniques can be applied to add or improve module systems for
other (non-rule based) query languages (for example, the module system of XSLT).
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