
I5-D7

Completion of the prototype scenario

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R/P (report and prototype)
Dissemination level: PU (public)
Document number: IST506779/Lisbon/I5-D7/D/PU/a1
Responsible editors: José Júlio Alferes
Reviewers: Wolfgang May
Contributing participants: Göttingen, Lisbon, Munich
Contributing workpackages: I5
Contractual date of deliverable: 28 February 2007
Actual submission date: 16 March 2007

Abstract
This report presents the refinements made in the prototypes described in the previous deliv-
erable (deliverable I5-D5 – “A first prototype on evolution and behaviour at the XML level”),
and their usage in use-case scenarios. In particular, the use-case scenarios have been chosen ac-
cording to the sketch of use-cases designed in the deliverable I5-D2&3 – “Use-cases on evolution
and reactivity”. Besides this report, the deliverable consists also of the prototypes themselves,
which are all freely available online from http://rewerse.net/I5.

Keyword List
ECA rules, Reactivity, Evolution and updates of data, Language and data heterogeneity

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2007.

ii

Completion of the prototype scenario

José Júlio Alferes1, Ricardo Amador1, Erik Behrends2, François Bry3, Michael
Eckert3, Tiago Franco1, Oliver Fritzen2, Hendrik Grallert3, Tobias Knabke2,

Ludwig Krippahl1, Wolfgang May2, Paula Lavinia Pătrânjan3, Franz Schenk2,
Daniel Schubert2

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
2 Institut für Informatik, Universität Göttingen

3 Institut für Informatik, Ludwig-Maximilians-Universität München

16 March 2007

Abstract
This report presents the refinements made in the prototypes described in the previous deliv-
erable (deliverable I5-D5 – “A first prototype on evolution and behaviour at the XML level”),
and their usage in use-case scenarios. In particular, the use-case scenarios have been chosen ac-
cording to the sketch of use-cases designed in the deliverable I5-D2&3 – “Use-cases on evolution
and reactivity”. Besides this report, the deliverable consists also of the prototypes themselves,
which are all freely available online from http://rewerse.net/I5.

Keyword List
ECA rules, Reactivity, Evolution and updates of data, Language and data heterogeneity

iv

Contents

1 Introduction 1

2 r3-based Bio Domain Broker 3
2.1 ECA Prototype - r3 v0.12 . 4

2.1.1 Introduction . 4
2.1.1.1 What is r3? . 5
2.1.1.2 Why Resourceful? . 5

2.1.2 Resourceful reactive engines . 6
2.1.2.1 Resourceful reactive rules . 7
2.1.2.2 Messages and loading reactive rules 14
2.1.2.3 Evaluating reactive rules . 16
2.1.2.4 Dealing with language heterogeneity 17
2.1.2.5 Additional details . 25

2.1.3 On the way to full r3, growing up... 26
2.1.3.1 From childhood (v0.0x)... 26
2.1.3.2 Through adolescence (v0.1x)... 27
2.1.3.3 Keeping in good company... 33
2.1.3.4 Towards maturity (v0.20)... 37

2.2 Use-Case Scenario . 37
2.2.1 Scenario overview . 37
2.2.2 Use-Cases overview . 39

2.3 Current state . 39
2.3.1 Available prototype, quick start . 39
2.3.2 Description . 40
2.3.3 Coverage of E&R Use-Cases . 42
2.3.4 Interoperability with other WGI5 Prototypes 42
2.3.5 Future work . 42

3 XChange for the Eighteenth Century Studies Society 49
3.1 XChange Language and Prototype . 49

3.1.1 An overview of XChange . 50
3.1.2 Queries as Patterns . 51
3.1.3 Event Queries . 51
3.1.4 Web Queries . 52
3.1.5 Actions: Updates and Raising New Events 52

v

3.2 Use-Case Scenario . 52

A Component Engines. Examples and implementation in r3 63
A.1 HTTP Engine . 63
A.2 Prova Engine . 64
A.3 Xcerpt Engine . 65
A.4 XChange Engine . 66
A.5 XQuery Engine . 68

vi

Chapter 1

Introduction

In our deliverable of the first year I5-D2&3 – “Use-cases on evolution and reactivity” we have
sketched three use-case scenarios for experimenting and illustrating with evolution and reactiv-
ity on the Semantic Web. Namely:

Project Portal. In this scenario, a portal for a project, just like Rewerse was imagined, for:
exchanging and collecting information about the project, its participants, and its results;
and for presenting and providing information about the project on the (Semantic) Web.

Travels domain. This scenario was concerned with planning travels based on information
gathered in the web, and acting on the web for the organization of such travels (e.g. by
buying train tickets, booking flights online, etc). The issue of reacting to happenings that
influence the initial plan, and re-planning accordingly, was also taken in consideration in
this scenario.

Bioinformatics data sources. In the bioinformatics domain there are many publicly acces-
sible data sources, which are often mirrored locally and integrated with other data.
The bioinformatics use case discusses four specific data sources, PubMed, a database
of 12.000.000 biomedical literature abstracts, GeneOntology, an ontology for molecular
biology, with 19.000 concepts, PDB, a database with some 25.000 protein structures, and
SCOP, the Structure Classification of Proteins, which groups PDB structures according
to their evolutionary relationships. The scenario was concerned with mirroring these data
sources locally, keeping them consistent and integrating them, and provide a level of ser-
vice an infra-structure by which researchers may define their own personalized mirrors of
PDB.

In our deliverable of 6 month ago, I5-D5 – “A first prototype on evolution and behaviour
at the XML level”, we reported on the state of the first prototype implementations of the
General Framework for Evolution and Reactivity in the Semantic Web and of the language
XChange. These two sets of implementations reflect the two approaches that are investigated
in this working group, both based on the paradigm of Event-Condition-Action (ECA) Rules:
one is a General Framework for Evolution and Reactivity in the Semantic Web that supports
ECA Rules over heterogeneous component languages, i.e., integrates arbitrary event formalisms,
query languages and action languages. The other is the Xcerpt/XChange approach whose goal

1

is an homogeneous ECA language. Both designs have been described in depth in the previous
deliverable [2].

Regarding the implementation of the General Framework, two prototypes were mentioned in
the previous deliverable: one being developed in Göttingen, of a Modular Active Rules for the
Semantic Web – MARS; the implementation of Resourceful Reactive Rules – r3, being mainly
developed in Lisbon. The first of these two prototypes was more advanced at that stage, and
thus was presented with many details, whilst the latter was less detailed. For this reason, the r3

prototype, that has made significant advances in this last period, is described with much more
detail in this report (in Section 2.1). The prototypical implementation of XChange, developed
in Munich, has been described in our previous deliverable in sufficient detail too.

With prototypes in place, and with use-case scenarios designed, the time was up to experi-
ment the prototypes with the scenarios. This is what was done in this last period, and is partly
reported in this report.

All the three scenarios were approached, each by each of the three existing prototypes1. The
scenario of Bioinformatics was experimented in Lisbon and implemented with r3, in collabo-
ration with colleagues from the A2 work-package also of Lisbon, and is detailed in Chapter 2.
The scenario of the project portal was experimented in Munich, implemented using XChange,
and is detailed in Chapter 3. Regarding the travel domain, in the context of a MSc. Thesis in
Göttingen a basic architecture for a domain broker for the MARS prototype was implemented,
using fragments of the travel scenario for illustration. More about the details of the MARS pro-
totype can be found on the companion deliverable I5-D6 – “Reactive rule ontology: RDF/OWL
level”. To avoid repetitions we don’t include it in this report.

1Notably, each of the main developers group of a prototype implemented a use-case proposed by another
group.

2

Chapter 2

r3-based Bio Domain Broker

Resourceful Reactive Rules (r3) is a prototype of a (Semantic) Web Rule Engine for (Semantic)
Reactive Rules. r3 is implemented by the CENTRIA research centre at the New University of
Lisbon.

At the heart of the r3 prototype is the decision to fully base its implementation on an RDF
model, embracing Semantic Web technologies and standards by taking an ontology/resource-
based perspective on reactive rules (to the extent allowed by the actual availability of “stable”
prototypes1). Every resource that matters to an r3 engine (e.g. rules) is to be kept in this
RDF model and described in terms of an OWL-DL foundational ontology, the r3 ontology.
The different components of each reactive rule are specified (and composed) using different
component languages. Each of those languages is to be implemented by specific expression
sub-engines, all of them, languages and engines, also described using the terminology provided
by the r3 ontology. For an r3 engine, everything is a resource, even rule and rule component
evaluation instances are to be represented as resources (for these an adequate extension of the
r3 ontology is being defined). Naturally, openness and flexibility (as opposed to efficiency and
optimization) are the main drivers for the technical choices behind r3.

The Bioinformatics Domain Broker (B-Domain), in its current state, provides/manages per-
sonalized mirrors of the protein databank (PDB), i.e. tertiary bioinformatics data sources (cf.
the use-case scenario “Updates and evolution in bioinformatics data sources” described in [5]).
Extension of B-Domain to other bioinformatics specific functionalities is far from excluded (e.g.
a Personalization Service for the Personal Reader framework is currently under consideration).

r3 provides a Java development library intended to help in the development of (generic
or domain/application specific) language engines. This library abstracts many of the details
needed to realize an engine conforming to the General ECA framework detailed in [2] (e.g. com-
munication/protocols, RDF/XML manipulation, binding variables, joining substitution sets).

B-Domain uses the r3 library to implement a bioinformatics specific language2 that currently
includes three atomic constructs. An atomic event that signals the addition of new structures
to PDB (occurs every time a new structure is added and returns the PDBID of the added
structure). An atomic condition that checks if a specific PDBID satisfies a criterion specified
using domain specific concepts. An atomic action that stores a PDBID in a personal repository

1Integration with Semantic Web Services was attempted but had to be postponed. Nevertheless by using a
literal SOAP body conforming to an RDF/XML serialization r3 tries to keep an open perspective for the future.

2http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/b-domain.owl

3

http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/b-domain.owl

of structures. Using this language, the maintenance of the personalized PDB mirrors is achieved
by a set of reactive rules generated and loaded to an r3 ECA engine by B-Domain, once again,
using the r3 development library.

2.1 ECA Prototype - r3 v0.12

Resources provide the foundation for the Semantic Web. Ultimately, in the Semantic Web
everything will be described in resource terms (RDF). For rules to be first class citizens in
the Semantic Web, they should also be described at the RDF level. This approach allows the
manipulation of rules as pure semantic objects, (re-)using other Semantic Web technologies, not
only to define rules, but, more importantly, to reason about rules, leading to a truly adaptive
Semantic Web.

Based on previous work, where we have proposed an ontology approach for describing re-
active (ECA) rules, in this section we provide additional details about the current results of
ongoing work on implementing a prototype for an ECA-based reactive rule engine (r3) using
that approach. The current prototype “talks” at the semantic (conceptual) level, relying on an
open and collaborative architecture (that provides a framework for extensible reactive behav-
ior), and as such it avoids imposing a particular (concrete) syntax for ECA rules (or, for that
matter, on any of its event, query/condition and update/action sub-languages), using instead
a foundational ontology which is also detailed here (at least its current state, since it is object
of ongoing work).

2.1.1 Introduction

The Semantic Web architecture, since its inception [14] to current proposals [15], has always
included rules as one of its upper layers. In this architecture the Rules layer is presented as
based upon the Ontology layer. Despite this, existing rule engines (including Semantic Web
engines like [59]) rely heavily upon concrete XML markups (e.g. [16]) or proprietary languages
for communicating rules. This reality restricts the level of integration with other Semantic Web
tools and technologies wrt. rules themselves. Also, this way rule languages do not build upon
a truly re-usable and extensible model (as the one offered by the ontology layer).

Semantic Web rules and rule engines should go semantic all the way. Rule engines have
to embrace the ontology layer, even when designing their interface, quite similarly to (or even
better, applying if possible) the results achieved by the Semantic Web Services community.
Furthermore, the ontology layer should also be used to describe the internal state of rule engines;
allowing, for instance, to check the consistency of different representations for the same resource
(e.g. different instances of the “same” rule, as ”held” by different rule engines). The ultimate
goal would be to realize the concept of Reliable (Reactive) Rules. Defining a foundational
ontology and realizing Resourceful Reactive Rules is just a first step in a long way yet to be
trailed towards that final goal.

Also, rule engines cannot aim at doing everything by themselves, they have to become
really Web oriented, taking an open and collaborative perspective when evaluating different
rule components (in cases where such different components exist, like the case of the reactive
ECA rules considered in this work). The incompleteness concept is core to the Semantic Web
and it applies not only to data but also to behavior. Rule engines must focus on providing
the inference mechanisms, evaluating (different types of) rules, towards drawing conclusions

4

(or performing actions) based on given conditions (or event occurrences), regardless of what
the specific rule components (conditions, events, conclusions or actions) really are/mean. The
semantic interpretation of rule components must be an open matter, for which a main rule
engine relies on other sub-engines. In most cases these “sub-engines” will be domain/application
specific, but generic inference engines, rule-based or not, are not to be excluded.

2.1.1.1 What is r3?

r3 stands for ”Resourceful Reactive Rules”, it is a Rewerse WGI53 sub-project [53] being
developed by CENTRIA in Lisbon, and aims at building a functional research prototype im-
plementing the concepts originally proposed in [4], thus trying to fulfill (and at the same time
evaluate and experiment) the reactive approach to evolution on the Semantic Web as stated in
the goals of Rewerse WGI5 (and initially outlined in [31]).

Two major requirements were previously identified in order to realize this open/semantic
perspective on reactivity and evolution for the Web: taking an ontology/resource-based per-
spective (as detailed in [30]), and dealing with language heterogeneity at the rule component
level (as explained in [29]). These requirements led to the specification of a model [2] for a
general framework that r3 aims to bring to life.

In more concrete terms, r3 is a prototype of a (Semantic) Web Rule Engine for (Semantic)
Reactive Rules. Reactive rules have the general form ”on Event if Condition do Action”, and
are also known as: ECA rules, triggers, or active rules. They are intuitively easy to understand,
viz. when an event (atomic or composite) occurs, evaluate a condition, and if the condition is
satisfied then execute an (atomic or complex) action. This prototype is capable of dealing with
reactive rules that use different languages either at the rule component level (event, condition,
action), or within each component (by algebraic composition, based also on different algebraic
languages).

Component languages may range from general purpose languages (with high flexibility, but
limited semantic transparency/value), to domain or application specific languages (with much
richer semantic value). For instance, if a language specific to the currency trading domain exists,
an event stating that ”the exchange rate between Euro and US$ has changed” may be
specified using exactly these terms; for sure in any such language, the precise meaning of this
statement is well known. Otherwise, if no such domain specific language is available, a general
purpose language like XChange [17] (viz. XChangeEQ [18]) may be used instead, namely
by specifying: an XML pattern to be applied to every incoming event message originated from
the addresses of the International Monetary Fund or of the Federal Reserve Bank of New York
(assuming these addresses and the actual XML markups used are all known). Of course, in
the latter case, one would have to ensure (manually in the rule itself) that such a low level
specification is (and will be kept) consistent with the currency market common sense; whereas
in the former case, the semantic consistency of the rule is intrinsic to the domain specific
language used.

2.1.1.2 Why Resourceful?

r3 fully embraces the Semantic Web by taking an ontology/resource-based perspective on reac-
tive rules. At the heart of the r3 prototype is the decision to fully base its implementation on

3http://rewerse.net/I5/

5

http://rewerse.net/I5/

an RDF [54] model. Every resource that matters to an r3 engine (e.g. rules) is to be described
in terms of an OWL-DL foundational ontology: the r3 ontology.

r3 sees Rules as First Class Citizens of the Semantic Web, allowing research results from
other areas, related to the Semantic Web, to be applied also to rules. For instance, it becomes
possible to reason about rules by defining rule ontologies and by stating rules about rules,
eventually leading to rule evaluation policies and adaptive behaviour.

The different components of each reactive rule are specified (and composed) using different
component languages. Each of those languages is to be implemented by specific expression
sub-engines (all of them, languages and engines, also described using the terminology provided
by the r3 ontology). For an r3 engine, everything is a resource, even rule and rule component
evaluation instances are to be represented as resources (for these an adequate extension of the
r3 ontology is being defined).

Natively r3 “talks” RDF/XML [55] (using HTTP POST for communication, SOAP [58]
wrapped or not), but any other XML serialization (concrete markup) of an RDF model is
acceptable, provided an appropriate (bi-directional) translator is available. Any request received
by an r3 engine is expected to be translated into an RDF model based on the r3 ontology. This
model is then added to an internal ontology that includes every resource known to a particular
r3 engine. This internal ontology must also be dynamically completed by means of automatic
searching and fetching missing pieces of information (resource representations) directly from
the (Semantic) Web (already identified, in [15], as an important issue, yet to be supported by
r3).

Notice that besides adding resources/models to this internal ontology (e.g. loading rules),
which already introduces consistency matters, it is also possible to remove resources/models
(e.g. unloading rules), which clearly involves non-monotonic matters. Also when we talk about
merging ontologies that contain rules, this merging may lead to updating rules and evolving
rule-bases. At the current stage of r3 these issues are (almost) ignored, but they are expected
to be considered at a later stage.

If it is true that this fully resource-based (or down-to-earth, resource-full) approach used
by r3 opens many research issues (some of them yet untouched in what concerns the Semantic
Web), it is also true that every research issue opened by r3 (given its modular architecture)
constitutes an opportunity for scientific cooperation with other research communities, paving
the way to more Resourceful solutions.

2.1.2 Resourceful reactive engines

In this section, we present the current state of the foundational ontology used by r3 including
the abstract API of r3 engines, trying to clarify what we mean by reactive rules and rule engines
going semantic all the way. We start by describing the ontology top level that deals with the
operations supported by a reactive rule engine (and consequently with the generic concepts of
reactive rules and rule sets, described in section 2.1.2.1); namely operations to load (section
2.1.2.2) and evaluate (section 2.1.2.3) reactive rules. In section 2.1.2.4 we detail the lower levels
of the ontology that provide the support for dealing with language heterogeneity at the rule
component level. For the sake of completeness of the presented ontology, in section 2.1.2.5,
additional details (some more concerned with the actual implementation of the prototype) are
briefly introduced.

For the sake of readability, we have chosen here to completely define the current state of
the r3 ontology using UML 2.0 [34] diagrams, in figures 2.1 to 2.8, and to illustrate it with

6

examples written using N3 [13] notation4. Nonetheless, the normative definition used by r3

is an OWL-DL [50] ontology (http://rewerse.net/I5/NS/r3/2005), and currently r3 only
supports XML-based serializations (e.g. RDF/XML [55]).

The r3 prototype is actually formed by an abstract network (physically distributed or not)
of r3 Engines that cooperate towards evaluating ECA rules. The entry point into this network
is an r3 main Engine (or ECAEngine, as depicted in figure 2.1) providing a Load operation
that allows an external Client to activate a RulePackage. A RulePackage is either a single Rule
or a RuleSet (as shown in figure 2.2), where the latter recursively contains other RulePackages.

The ECAEngine interfaces with r3 Language specific sub-engines (called LanguageEngines),
e.g. sub-engines for detecting events, for querying Web data, for testing conditions, etc. One
such r3 LanguageEngine implements one or more Languages, where each Language defines a set
of parametric LanguageConstructs5. Each LanguageConstruct actually provides the semantics
of any CodingElement Construction that is defined by it. BrokerEngines may also be used in
cases where an appropriate LanguageEngine is not known.

The API of r3 Engines is defined at a conceptual level based on an ontology of concepts
(instantiated into RDF resources, thus being resource-full), fostering the use of other Semantic
Web technologies (thus becoming resourceful). This resource-based approach is present in every
operation supported by an r3 Engine and consistently carried across the concepts of RuleSets
and Rules, introducing rule components that are heterogeneous Language Expressions. These
Expressions are Evaluated by ExpressionEngines (which are Language specific) providing the
implementation of the semantics of all the ExpressionConstructs that a Language defines.

ExpressionConstructs allow both the specification of atomic Expressions (e.g. events or
actions) using either generic or domain/application specific Languages (that some, e.g., Event-
Detector or ActionProcessor implements), and also the specification of composite Expressions
using algebraic Operators, of some (e.g. event or process) algebra provided by AlgebraEngines
that recursively Evaluate the OperatorArguments using other r3 ExpressionEngines.

2.1.2.1 Resourceful reactive rules

As proposed by previous work [29], ECARules are formed by several distinct components (fur-
ther partitioned here between antecedents and consequents), namely: an event component (spec-
ifying the event occurrences that trigger the activation of the ReactiveRule), an optional condi-
tion part formed by several components (that, based on an actual event occurrence, gather/query
additional information and define/test the applicability of the rule under consideration), and
an action component (stating the consequent actions to execute whenever the ActiveRule is
applicable, given its antecedents). It is worth noting that this abstract component structure
could also be used to accommodate other kinds of rules (as depicted in figure 2.3).

The rule components that form an AbstractRule are Expressions (as depicted in figure 2.2)
defined using some Language (as detailed later in section 2.1.2.4), thus allowing the use of
different Languages for different components. The communication between these heterogeneous
components is achieved through the use of logical variables, bound to XML literals6.

4For the sake of simplicity, the included N3 examples omit most of the @prefix declarations, and they all
assume at least the declaration of @prefix : <http://rewerse.net/I5/NS/r3/2005#>.

5Notice that the UML diagram, in figure 2.1, does not prevent an ECAEngine from being at the same time
a LanguageEngine.

6Currently these literals are opaque to an r3 main engine, but nevertheless RDF references, serializations,
or typed data values are not excluded.

7

http://rewerse.net/I5/NS/r3/2005

+implements[*] : Language
Engine

Client

Register
(Definition)

RuleEngine

NativeEngine

ExpressionEngine
{o

ve
rla

pp
in

g,
 c

om
pl

et
e}

Install
(Native)

Evaluate
(Expression)

«definition»
EventDetector

«definition»
QueryProcessor

«definition»
ActionProcessor

{o
ve

rla
pp

in
g}

«definition»
AlgebraEngine

«definition»
TestEvaluator

Language

+implementation

+implements

+implements[1..*]
LanguageEngine

{overlapping, complete}

Load
(RulePackage)

«definition»
AsynchClient

EvaluateResponse

«definition»
EventComposer

{overlapping}

«definition»
QueryComposer

«definition»
TestComposer

«definition»
ActionComposer

Definition

ECAEngine

BrokerEngine

Terminated

Figure 2.1: Engines (v0.10)

8

+source[0..1] : Native
+/component[*] : Expression
+/antecedent[*] : Expression
+/consequent[*] : Expression

Rule

+contains[1..*] : RulePackage
RuleSet

Native

+s
ou

rc
e

Expression

Argument

+solve

+taking

RulePackage +/belongsTo

+contains

{com
plete}

+/component {union}

+/antecedent {union, subsets component}
+/consequent {union, subsets component}

Construction

{com
plete}

Parameter

+having

+is[1] : LanguageElement
CodingElement

{c
om

pl
et

e}

+name[0..1] : NCName
+implementation[*] : Engine
+defines[*] : LanguageElement

Language

+/in[1] : Language
LanguageElement

+/in

+defines

+is

LanguageConstruct

{com
plete}

ConstructParameter

OperatorArgument

+implements[*] : Language
Engine

+implementation
+implements

+/has {union}

ExpressionConstruct

+takes

NativeRuleConstruct

{c
om

pl
et

e}

Figure 2.2: Rule Sets (v0.12)

9

+event[1]
+query[*]
+test[*]
+action[1]

ECARule

+test {subsets antecedent}

+query {subsets antecedent}

+event[1..*]
+action[1..*]

«definition»
ActiveRule

+antecedent[1..*]
-consequent[0]
+denial[1..*]

«definition»
IntegrityRule

+condition[1..*]
+conclusion[1..*]

«definition»
DerivationRule

+if[1..*]
+then[1..*]

«definition»
ProductionRule

+e
ve

nt
 {s

ub
se

ts
 a

nt
ec

ed
en

t}

+a
ct

io
n

{s
ub

se
ts

 c
on

se
qu

en
t}

Expression

+c
on

di
tio

n
{s

ub
se

ts
 a

nt
ec

ed
en

t}

+c
on

cl
us

io
n

{s
ub

se
ts

 c
on

se
qu

en
t}

+v
al

id
 {s

ub
se

ts
 c

on
se

qu
en

t}

+antecedent[1..*]
+consequent[1..*]

ImplicationRule

{complete}

-antecedent[0]
+consequent[1..*]
+valid[1..*]

«definition»
FactualRule

+d
en

ia
l {

su
bs

et
s

an
te

ce
de

nt
}

-component[0]
+source[1]

«definition»
NativeRule

+source[0..1] : Native
+/component[*] : Expression
+/antecedent[*] : Expression
+/consequent[*] : Expression

Rule

{complete}

+component[1..*]
AbstractRule

+i
f {

su
bs

et
s

ev
en

t}

+t
he

n
{s

ub
se

ts
 a

ct
io

n}

Figure 2.3: Rules (v0.10)

10

Example 2.1 To illustrate, consider an ECARule notifying a teacher in case some adminis-
trative office processes a registration cancellation (ex:ev1), from a particular student to one
of the teacher’s lectures, provided that the student is considered a good student (according to
some departmental criteria). In this example several languages are in fact used, namely: a
language about people and notifying people (people:), an application/domain specific event
language particular to some administrative office (office:), another domain specific query and
test language (dept:), and a generic language for text manipulation (text:).

ex:ev1 a :Expression;

:is office:registration_cancelled;

:having [a :Parameter;

:is office:student; :boundTo "St"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"].

ex:qry1 a :Expression;

:is dept:lecture_teacher;

:having [a :Parameter;

:is dept:lecture; :boundTo "Lect"];

:having [a :Parameter;

:is dept:teacher; :boundTo "Prof"].

ex:tst1 a :Expression;

:is dept:good_student;

:having [a :Parameter;

:is dept:student; :boundTo "St"].

ex:r1 a :ECARule;

:event ex:ev1;

:query ex:qry1;

:test ex:tst1;

:action [a :Expression;

:is people:notify;

:having [a :Parameter;

:is people:person; :boundTo "Prof"];

:having [a :Parameter;

:is people:message; :boundTo "Msg"];

:with [a :Variable;

:name "Msg"; :mode :local;

:equals [a :Expression;

:is text:merge;

:with

[a :Variable; :mode :use;

:name "Prof" :rename "1"],

[a :Variable; :mode :use;

:name "Lect" :rename "3"],

[a :Variable; :mode :use;

:name "St" :rename "2"];

:having [a :Parameter;

:is text:pattern;

:literal """

Dear %1,

We are sorry to inform you that

student %2 has cancelled his

registration to your lecture %3."""

]]]].

11

As an example of using logical variables for communicating among these different languages,
consider example 2.1: a specific event occurrence provides a particular binding for variables St
and Lect (identifying, respectively, a student and a lecture), given this binding, Lect is used to
issue a query retrieving one or more bindings for variable Prof (the lecture professors, provided
the query succeeds), whereas St is tested in order to filter out all non-good students, and finally
the action is executed for all of the resulting substitutions (each containing all the previously
bound variables, viz. St, Lect and Prof, and also an auxiliary local variable Msg, which is in
fact a derived functional variable for each substitution).

Languages may be generic or application/domain specific. For instance, in example 2.1
instead of using ex:qry1 based on the domain specific query element dept:lecture_teacher
we could have used instead an XQuery [63] expression, this way re-using a generic language
with a generic (but opaque) semantics (resulting in the domain specific semantics being hidden
in :data and :literal opaque properties and so no longer available):

ex:r1 a :ECARule;

...

:query [a :Expression;

:boundTo "Prof";

:is xquery:opaque;

:having [a :Parameter;

:is xquery:base-uri;

:data "DEPT_LECTURES"];

:having [a :Parameter;

:is xquery:literal;

:literal """

for $t in doc($Lect)//teacher

return $t/@id;"""];

:with [a :Variable;

:name "Lect"; :mode :use]]

...

On the other hand, also in example 2.1, instead of using a generic element like text:merge
we could have used a domain specific language to build the Msg text, e.g.:

ex:r1 a :ECARule;

...

:with [a :Variable;

:name "Msg"; :mode :local;

:equals [a :Expression;

:is office:cancel_registration_warning;

:having [a :Parameter;

:is office:teacher; :boundTo "Prof"];

:having [a :Parameter;

:is office:student; :boundTo "St"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]

]]

...

The recursive nature of Expressions, depicted in figure 2.2, also allows the use of different
Languages in a single component through the composition of several Argument Expressions.
This composition is achieved using generic algebraic Languages (e.g. an event algebra like Snoop
[22, 6] or a process algebra like CCS [33, 11]) that may compose different application/domain
specific (or even generic) Languages, as long as they share a common algebraic domain. For
instance, by using an event algebra to define composite events, the event used in example 2.1
could be refined to trigger the rule only if if the teacher has previously confirmed the student
merit:

12

Example 2.2 The RuleSet below contains the AbstractRule already defined in example 2.1
and also a NativeRule for a DB2 trigger that shows how the firing event of the AbstractRule
(ex:ev1) could be generated from an existing DB2 database.

ex:rs1 a :RuleSet;

:includes ex:r1;

:includes [a :NativeRule; :source ex:ns1].

ex:ns1 a :Native;

:is officedb2:trigger;

:having [a :Parameter;

:is officedb2:schema;

:literal "office"];

:having [a :Parameter;

:is officedb2:user;

:literal "trigger_adm"];

:having [a :Parameter;

:is officedb2:passwd;

:literal "some_pwd"];

:having [a :Parameter;

:is officedb2:opaque;

:literal """

after delete on office.registration

referencing old as reg

for each row mode db2sql

begin atomic

values(raise_event(

"registration_cancelled",

reg.student, reg.lecture));

end"""].

ex:r1 a :ECARule;

:event [a :Expression;

:is snoop:sequence;

:taking [a :Argument;

:is snoop:first;

:solve [a Expression;

:is teacher:confirmed_student_merit

:having [a :Parameter;

:is teacher:id; :boundTo "Prof"]

:having [a :Parameter;

:is teacher:student; :boundTo "St"]];

:taking [a :Argument;

:is snoop:next;

:solve ex:ev1];

...

According to figure 2.3, a Rule may be either an AbstractRule (if it contains at least one
antecedent/consequent) or a NativeRule (if it has no known components, only a source). A
NativeRule (as illustrated in example 2.2) is thus formed by a Native source which (as detailed
later in figure 2.5) is a specific NativeRuleConstruct (of some Language), that digs an Opaque-
Parameter containing its literal specification (e.g. a DB2 [42] database trigger or an Outlook
mail routing rule).

NativeRules provide a minimal level of integration for legacy (or any other non-r3) sub-
systems, allowing a RuleSet to contain all the relevant rules. Ignoring the existence of Na-
tiveRules, and simply considering them as outcasts, can lead to unexpected inferences/actions.
Considering them, not only integrates these other sub-systems, but it also makes it explicit (in

13

the RuleSet description) that those NativeRules and their associated NativeEngines do have an
impact on the behavior of the global system.

Nonetheless, AbstractRules are the preferred form of a Rule and it should be noticed that
the NativeRule included in example 2.2 has an (intuitive) translation into an AbstractRule.
Extending the interface of NativeEngines to include also a Compile operation, although not
considered currently, may provide an higher level of integration whenever such a translation is
possible.

2.1.2.2 Messages and loading reactive rules

r3 abstract Messages provide the foundation for the r3 API, as defined in figure 2.4. Each
actual message is to be seen as a serialization of a Resource Description (as in RDF [54]) of
an r3 abstract Messsage, defining a (possibly incomplete) RDF graph (optionally including
references to external resources).

It is of particular relevance to clearly distinguish between the abstract concepts presented
in figure 2.4 and any actual messaging framework (abstract or not) that is used to support
them. The concepts presented here provide a conceptual view of Messages as required by r3

Engines. This conceptual view is to be supported by full-blown messaging frameworks and
(concrete) protocols, preferably standardized ones. Such supporting frameworks/protocols/s-
tandards must account for asynchronous communication; examples may include (and are not
restricted to): pure HTTP using a REST architectural style [24], FIPA [25], (Semantic) Web
Services, JMS [49].

Load ing a RuleSet (like ex:rs1 in example 2.2) into an ECAEngine (as introduced in figure
2.1) causes this Engine not only to activate the included AbstractRules (like ex:r1 in example
2.1) by resorting to the adequate ExpressionEngines to Evaluate their RuleComponents (as
further detailed in section 2.1.2.3), but also to deliver any NativeRules to the appropriate
NativeEngines where they must be natively embedded. For this purpose, r3 NativeEngines
must provide an Install operation for embedding a Native source (like ex:ns1 in example 2.2).

A Load (like any other) Request is sent by its issuer Client to the target of the appropriate
Interface that some Engine provides, as illustrated in example 2.3. The actual markup to be
used must be compatible with the one required by this Interface. This Request is then answered
by the Engine (using the same markup) providing at least a Response (possibly asynchronous
if dealing with an AsynchClient that provides a notifyTo Interface for this specific purpose).

The ECAEngine will return a Loaded Response as soon as the given RulePackage is acti-
vated, otherwise, if it is not able to activate it, a Terminated Response will be returned. In
the former case, the RulePackage will remain active until the Client sends a Terminate that
will result in a Terminated Response acknowledging that the RulePackage deactivation is under
way7.

A Load Request causes the ECAEngine to issue additional subordinated Requests targeted
to specific LanguageEngines. For instance, as a result of the Request included in example 2.3,

7An Engine may also send a TerminatedResponse at any point (provided the Client is an AsynchClient),
and not only after getting a Terminate from the Client, thus signalling that, from that moment on, there will
be no more Responses to the initial Request. An Engine may choose to do so either because all Responses were
already generated, or because it can no longer honor the initial Request due to some (probably unexpected)
circumstance. In any case, a TerminatedResponse is always the last Message that relatesTo a particular Request,
signalling that all the Engine’s resources associated with that Request are already released (or at least they must
be assumed as such). A Terminate of a Request trivially succeeds, if it is sent after a TerminatedResponse for
that same Request has been issued.

14

Example 2.3 The following illustrates the loading of the RuleSet ex:rs1 from example 2.2.
@prefix ecaeng: <http://engine.nop#>.

@prefix ecarls: <http://engine.nop/rules/>.

@prefix clireq: <http://client.nop/requests#>.

ecaeng: a :ECAEngine;

:provides ecaeng:interface;

:notifyTo ecaeng:interface.

ecaeng:interface a :Interface;

:target "http://engine.nop/service";

:markup "http://rewerse.net/I5/NS/r3/2005".

The Client wants to Load a RuleSet

clireq:rs1 a :Load;

:issuer [a :Client;

:notifyTo [a :Interface;

:target "http://client.nop/notify";

:markup "http://rewerse.net/I5/NS/r3/2005"

]];

:activate ex:rs1.

Rules have been activated, in this case the

Engine chooses to expose the Loaded rules

through the resource ecarls:rs1

[] a :Loaded; :relatesTo clireq:rs1;

:available ecarls:rs1.

Rules are active in the Engine and

the Client may retrieve the current

state of resource ecarls:rs1

The Client wants to deactivate

the previously Loaded rules

[] a :Terminate; :relatesTo clireq:rs1.

All rules relating to clireq:rs1 are

assumed as deactivated/unloaded and

any associated resources as released

[] a :Terminated; :relatesTo clireq:rs1.

15

Example 2.4 Installing the NativeRule ex:ns1 contained in ex:rs1 from example 2.2. These
Messages should be interleaved with the ones already included in example 2.3.
@prefix engdb2:

<http://office.nop/db2service#>.

@prefix ecareq:

<http://engine.nop/requests#>.

engdb2: a NativeEngine;

:provides [a :Interface;

:target "http://office.nop/db2service";

:markup "http://rewerse.net/I5/NS/r3/2005"

];

:implements officedb2:.

Requested Load clireq:rs1 and before

responding Loaded must Install ex:ns1

ecareq:ns1 a :Install;

:issuer ecaeng:;

:source ex:ns1.

[] a :Installed; :relatesTo ecareq:ns1.

The Loaded Response can now be sent

after knowing that ex:ns1 is Installed

Got Terminate for clireq:rs1, so

must also Terminate ecareq:ns1

[] a :Terminate; :relatesTo ecareq:ns1.

[] a :Terminated; :relatesTo ecareq:ns1.

Now clireq:rs1 can also be Terminated

the ECAEngine would submit an Install Request (as shown in example 2.4) to the target of a
NativeEngine that implements the officedb2: Language used in ex:ns1.

2.1.2.3 Evaluating reactive rules

Upon a Load Request, an ECAEngine, besides Install ing Native rules, as explained in section
2.1.2.2, also has to activate (viz. Evaluate) any AbstractRules (viz. ECARule components)
contained in the given RulePackage. To achieve this, it must interface with several Expressio-
nEngines (that actually provide the specific Evaluate implementation) according to the specific
LanguageConstructs involved in the different RuleComponents, namely: an event, an optional
query (or more than one), an optional test (or more), and an action. Since rule components
are Expressions and communicate with each other using logical variables, they are Evaluated
(by ExpressionEngines) using a context provided by several alternative Substitutions. Each
Substitution must be unique and must enumerate all (and only those) variables involved in
the Expression (possibly restricting some of them, by binding them to specific values or to
other variables, as further detailed in section 2.1.2.4). While Evaluating an expression using a
given context the ExpressionEngine returns all possible Results, or none if the expression fails
(meaning the Expression was Evaluated and returns no Results). Besides (optionally) using a
Substitution, any Result may also return a literal value that may be used as an Argument for
another Expression or boundTo a variable. The actual expression to Evaluate must be a Nor-
malizedExpression which is a restricted form of an Expression without (and also not boundTo)

16

any declared Variable (cf. figure 2.6).
As an illustrative example consider the activation of the ECARule ex:r1 of example 2.1.

When an ECAEngine receives a Load Request for a RulePackage containing this rule (as
clireq:rs1 in example 2.3), it must activate the rule by issuing a subordinated Evaluate Re-
quest for the rule event (ex:ev1) to the EventDetector Engine that implements the (office:)
Language (as shown in example 2.5).

This EventDetector will then signal back (asynchronously) each occurrence (of ex:ev1) it
detects, by sending an Evaluating Response that returns the Result associated with the detected
event. Note that if, at any point, the EventDetector concludes that the event can no longer
occur (e.g. because deadline for registration cancellations has expired), it may send an Evaluated
Response (depicted in figure 2.4) meaning that the event expression has no additional solutions
and so the Evaluate Request is Terminated.

For each Result of Evaluating the event component, the ECAEngine will create a rule
instance using the Substitution it returns8. For this rule instance, query and test components are
then taken into consideration by issuing Evaluate Requests to the appropriate QueryProcessors
and TestEvaluators, as shown in example 2.6.

Assuming no optimizations, first the query is Evaluated, extending the original Substitution
with bindings for additional variables (possibly multiple ones, generating alternative Substitu-
tions as in example 2.6), and if it succeeds, then the test is Evaluated. Both test and query
may possibly filter out some of the Substitutions.9.

Given the set of Substitutions for which all query and test components succeed, the action
component is finally executed by an ActionProcessor, as partially shown in example 2.7.

For the action component, it is of particular relevance to ensure that all (distinct) Substitu-
tions (for the variables involved in the Expression) are included in a single Evaluate Request, in
order to account for any possible transactional behavior (associated with the LanguageConstruct
defining the actual operational semantics of the action).

2.1.2.4 Dealing with language heterogeneity

A Language defines a set of LanguageElements. For such a Language, at least one Engine im-
plements the operational semantics specific to each LanguageConstruct, as previously depicted
in figure 2.1. Figure 2.5 provides additional detail about the different LanguageElements (viz.
LanguageConstructs, ConstructParameters and OperatorArguments), and defines how they are
used to build the different kinds of Language specific Constructions (viz. Native rules and
Expressions).

The semantics of a Construction having a set of Parameters is defined by a LanguageCon-
struct that has a set of ConstructParameters, and so the semantics of a Parameter is defined
by the associated ConstructParameter. A ConstructParameter may be either a FunctionalPa-
rameter, that uses a value, or a LogicalParameter that binds a variable. A functional Parameter
must have a literal value (at least a default one, if a literal value is not present), unless it is
boundTo a variable (in which case the LanguageConstruct semantics remains undefined until
the variable is bound to a literal value). Logical Parameters may be (explicitly) present or

8The literal value is to be discarded unless the event Expression is boundTo a variable, as detailed later in
section 2.1.2.4, in which case this variable binding must be added to the Substitution.

9Notice that an Expression succeeds if it returns at least one Result, even an empty one like the test Evaluated
in example 2.6.

17

Example 2.5 Activating the ECARule ex:r1 contained in ex:rs1 from example 2.2. These
Messages should be interleaved with the ones already included in examples 2.3 and 2.4.

Requested Load clireq:rs1 and before

responding Loaded must launch Evaluate

for ex:ev1 used in ex:r1

ecareq:ev1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "St"],

[a :Variable; :name "Lect"]];

:solve ex:ev1.

[] a :Evaluating; :relatesTo ecareq:ev1.

Evaluate for ex:ev1 accepted, actual

Results will be communicated later

The Loaded Response can now be sent

Later whenever an event occurrence is

detected the literal event is returned

together with the substitution

[] a :Evaluating; :relatesTo ecareq:ev1;

:returns [a Result;

:literal """

<offc:registration_cancelled

xmlns:offc="http://office.nop/events#"

offc:docid=

"http://office.nop?did=DRC20062395"

/>""";

:using [a Substitution;

:binding

[a :Variable; :name "St"

:literal "S4521"],

[a :Variable; :name "Lect"

:literal "L144"]]].

Got Terminate for clireq:rs1, so

must also Terminate ecareq:ev1

[] a :Terminate; :relatesTo ecareq:ev1.

[] a :Terminated; :relatesTo ecareq:ev1.

Now clireq:rs1 can also be Terminated

18

Example 2.6 Considering an ECARule instance, originated by the event occurrence returned
in example 2.5.

ecareq:qry1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "Prof"];

[a :Variable; :name "Lect"

:literal "L144"]];

:solve [a :Expression;

:is dept:lecture_teacher;

:having [a :Parameter;

:is dept:lecture; :boundTo "Lect"];

:having [a :Parameter;

:is dept:teacher; :boundTo "Prof"]].

[] a :Evaluated; :relatesTo ecareq:qry1;

:returns

[a Result; :using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T57"],

[a :Variable; :name "Lect"

:literal "L144"]]],

[a Result; :using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T01"],

[a :Variable; :name "Lect"

:literal "L144"]]].

ecareq:tst1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "St"

:literal "S4521"]];

:solve [a :Expression;

:is dept:good_student;

:having [a :Parameter;

:is dept:student; :boundTo "St"]];

[] a :Evaluated; :relatesTo ecareq:tst1;

:returns [a Result]

19

Example 2.7 Executing an ECARule instance, with the extended (or filtered) Substitutions
resulting after consideration of the rule conditions in example 2.6.

{Prof=T57, Lect=L144, St=S4521}

ecareq:ex1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "Prof";

:rename "1"; :literal "T57"],

[a :Variable; :name "Lect";

:rename "3"; :literal "L144"],

[a :Variable; :name "St";

:rename "2"; :literal "S4521"]];

:solve [a :Expression;

:is text:merge;

:literal # simplified

"%1, %2 not attending %3."

]].

[] a :Evaluated; :relatesTo ecareq:ex1;

:returns [a Result;

:literal "T57, S4521 not attending L144."].

{Prof=T01, Lect=L144, St=S4521}

... omitted ...

ecareq:act1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T57"],

[a :Variable; :name "Msg"

:literal

"T57, S4521 not attending L144."]];

:using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T01"],

[a :Variable; :name "Msg"

:literal

"T01, S4521 not attending L144."]];

:solve [a :Expression;

:is people:notify;

:having [a :Parameter;

:is people:person; :boundTo "Prof"];

:having [a :Parameter;

:is people:message; :boundTo "Msg"]].

[] a :Evaluated; :relatesTo ecareq:act1;

:returns [a Result]

20

omitted in a Construction, and if present they may be boundTo a variable or restricted to have
a particular literal value.

A LanguageConstruct uses several FunctionalParameters, binds several LogicalParameters,
and digs at most one OpaqueParameter. An OpaqueParameter is a FunctionalParameter but
it cannot have a default value. As such an opaque Parameter must always be included in a
Construction if it is a LanguageConstruct that digs an OpaqueParameter. The literal value
of an opaque Parameter (or of the variable boundTo it) is to be parsed and interpreted by
the implementation of the LanguageConstruct that actually digs it. Without this value, the
semantics of the LanguageConstruct is incomplete. Furthermore, even when this value is known,
the semantics of the Construction, although completely defined, remains opaque and unknown
until actually submitted to an appropriate LanguageEngine.

As said before, there are two different kinds of Constructions, viz. Natives and Expres-
sions. At rule level, the semantics of a Native source (of a NativeRule, as previously described
in section 2.1.2.1) is defined by a NativeRuleConstruct that digs an opaque Parameter and
optionally uses additional functional Parameters. At rule component level, the semantics of
an Expression is defined by an ExpressionConstruct. An Expression (as shown in figure 2.6)
is either an AbstractExpression (viz. a Term, an Aggregation), or a Formula), or an Opaque
Expression. Contrary to an AbstractExpression, the actual semantics of an Opaque Expression
is only partially defined by its parametric OpaqueConstruct. In order to fully express the actual
semantics of an Opaque Expression a non-transparent literal Parameter must also be provided,
since an OpaqueConstruct always digs an OpaqueParameter.

A Native Construction is Installed in a NativeEngine (as explained in section 2.1.2.2),
whereas an Expression is Evaluated by an ExpressionEngine. As described in section 2.1.2.3,
the Evaluate of an Expression (or, more precisely, the NormalizedExpression to solve using
several distinct input Substitutions) returns several Results. Each Result may provide a literal
value using a Substitution. Usually the returned Substitution is subsumed by one of the input
Substitutions, but it may instead actually subsume several input Substitutions (by omitting
some of the involved Variables, to be considered as unbound). An empty Result Substitution
(subsuming all input Substitutions) may be omitted altogether. The literal value of a Result
is required to be present if the Expression is boundTo a Variable or used as an Argument of
an algebraic Operator. If the Expression is boundTo a Variable a binding for this Variable
is to be created (using the returned literal value) and joined with the returned Substitution.
The Substitution resulting from this join is additionally joined with all the input Substitutions,
yielding the actual set of output Substitutions associated with that Result (this set must not
be empty). Given this, a Result may actually stand for several Results, all sharing the same
literal value (if there is one). The Evaluate of the Expression is said to succeed if it outputs at
least a Result.

The Evaluate of an Aggregation is expected to aggregate the values of a set of Variables
(contained in the input Substitutions) optionally groupedBy a set of other Variables (also con-
tained in the input Substitutions). As such, the Results of an Aggregation are further restricted:
their Substitutions cannot contain any binding for the aggregated Variables (unless explicitly
included as groupedBy at the same time10), and they must always include the aggregated value
as the literal Result value. An Aggregation returns at most a single Result for each set of
distinct values of the groupedBy Variables. The actual Aggregation to be performed is defined
by parametric Aggregators like util:count or xcerpt:eval in example 2.9.

10If an Aggregation is groupedBy on the same set of variables it aggregates, it becomes a simple function that
returns a single composed value for each set of distinct values of the given variables.

21

Example 2.8 The following further illustrates the concept of Languages showing a possible
definition for the Languages used in examples 2.1, 2.2 and 2.9.

office:language a :Language;

:defines office:registration_cancelled,

office:student, office:lecture,

office:registration, office:state.

office:registration_cancelled a :Functor;

:binds office:student, office:lecture.

office:registration a :Functor;

:binds office:student, office:lecture,

office:state.

dept:language a :Language;

:defines

dept:term_completed,

dept:course_lecture, dept:lecture_teacher,

dept:course, dept:lecture, dept:teacher,

dept:good_student, dept:student.

dept:term_completed a :Functor;

:binds dept:course.

dept:course_manager a :Functor;

:binds dept:course, dept:teacher.

dept:course_lecture a :Functor;

:binds dept:course, dept:lecture.

dept:lecture_teacher a :Functor;

:binds dept:lecture, dept:teacher.

dept:good_student a :Functor;

:uses dept:student.

people:language a :Language;

:defines people:notify,

people:person, people:format,

people:message.

people:notify a :Functor;

:uses people:person, people:format,

people:message.

people:format a :FunctionalParameter;

:default "plain".

text:language a :Language;

:defines text:merge, text:pattern.

text:merge a :OpaqueConstruct;

:digs text:pattern.

officedb2:language a :Language;

:defines officedb2:trigger,

officedb2:schema,

officedb2:user, officedb2:passwd.

officedb2:trigger a :NativeRuleConstruct;

:uses officedb2:schema,

officedb2:user, officedb2:passwd;

:digs officedb2:trigger.

util:language a :Language;

:defines util:count.

util:count a :Aggregator;

:binds office:student, office:lecture.

xcerpt:language a :Language;

:defines xcerpt:eval, xcerpt:construct.

util:count a :Aggregator;

:uses xcerpt:construct. 22

Example 2.9 To illustrate the use of Aggregations the following specifies an ECARule
(ex:r2) that sends a map of all registration cancellations for a given course at the end of
every term (re-using ex:qry1 from example 2.1). Notice that the action uses only two vari-
ables (Mngr and CourseMsg) and so it sends a message for each distinct pair of values of these
variables.

ex:r2 a :ECARule;

:event [a :Expression;

:is dept:term_completed;

:having [a :Parameter;

:is dept:course; :boundTo "Course"]];

:query [a :Expression;

:is dept:course_manager;

:having [a :Parameter;

:is dept:course; :boundTo "Course"];

:having [a :Parameter;

:is dept:teacher; :boundTo "Mngr"]];

:query [a :Expression;

:is dept:course_lecture;

:having [a :Parameter;

:is dept:course; :boundTo "Course"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]];

:query ex:qry1;

:query [a :Expression;

:is office:registration;

:having [a :Parameter;

:is office:state; :literal "cancelled"];

:having [a :Parameter;

:is office:student; :boundTo "St"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]];

:query [a :Expression; :boundTo "Num";

:is util:count; :aggregate "St";

:groupedBy "Course", "Lect"];

:action [a :Expression;

:is people:notify;

:having [a :Parameter;

:is people:person; :boundTo "Mngr"];

:having [a :Parameter;

:is people:format; :literal "html"];

:having [a :Parameter;

:is people:message; :boundTo "CourseMsg"];

:with [a :Variable;

:name "CourseMsg"; :mode :local;

:equals [a :Expression;

:is xcerpt:eval;

:aggregate "Lect", "Num", "Prof";

:groupedBy "Course";

:having [a :Parameter;

:is xcerpt:construct; :literal """

html { body {

h1 { var Course },

table {

tr {

th { "Lecture" },

th { "Cancellations" },

th { "Teachers" } },

all tr {

td { var Lect },

td { var Num },

td { ul {

all li { var Prof } } }

} } } }"""]]]].

23

Every input Substitution must explicitly include all (and only those) Variables involved in
the Expression to Evaluate. If there is a single empty input Substitution (no variables involved)
it may be omitted. The set of Variables involved in an Expression includes the ones boundTo its
Parameters or Argument Expressions. If there is a Variable boundTo the whole Expression, it is
also included in this set. Additionally, for an Aggregation, groupedBy and aggregate Variables are
also included. Besides these implicitly involved Variables, an Expression may also be specified
with several explicit Variable declarations11 (explicitly declaring also any Variables boundTo
those). The set of all involved Variables must be fully included in every input Substitution
(regardless if they are bound or unbound, thus allowing all the with declarations to be omitted
in a NormalizedExpression).

An Opaque Expression must be specified together with all the Variables non-transparently
referenced by its literal part. An Opaque may also rename its Variables according to the naming
conventions used by its literal part12 (as shown in example 2.1).

For each Expression, either a single Evaluate Request is issued using all the distinct input
Substitutions (this is mandatory for action components, as said before, and also for Aggrega-
tions); or several individual Requests may be issued (e.g. one for each Substitution, or one for
each set of distinct values for FunctionalParameters).

As usual, the scope of a Variable is the Rule that contains the Expression, unless its mode is
declared as local in a particular Expression. The scope of such local Variables is the Expression
where they are explicitly declared, and they are usually used to hold literal functional Results
(e.g. to be used as Parameters, like Msg in example 2.1) or to express local join conditions
between Expression Arguments.

All Variables are assumed to have a bind mode, unless they are explicitly declared otherwise
(with a use or local mode) or implicitly enforced to have a use mode by the context in which they
are involved (viz. groupedBy, aggregate, boundTo a FunctionalParameter, or boundTo another
used Variable). An Evaluate Request can only be issued for a specific Expression if all the
Variables the Expression uses are actually bound to literal values13. The Variables with a bind
or local mode may be unbound at the time of the Evaluate Request. The mode of a Variable
poses no restriction on the Results of an Evaluate (for instance, a bind Variable may be bound
in a Result but is not required to be so).

An explicit Variable declaration may also include restrictions to the domain of the Variable,
namely: it may be restricted to having a specific literal value (which may be understood as a
simple binding), or it may be declared that its value always equals one (or more) Expressions (as
shown in example 2.1 for Variable Msg). Declaring that a Variable equals several Expressions
defines the domain of the Variable as the intersection of the sets of literal values that each
Expression returns. Notice that equals (and test component) Expressions can only produce
new bindings for local Variables, as such, the Evaluate Request for these Expressions can only
be issued when all Variables they use or bind are actually bound to literal values.

11For an AbstractExpression, these explicit declarations are restricted to the Variables already implicitly
involved in it or in one of its Argument Expressions. This restriction stems from the fact that the full se-
mantics of AbstractExpressions is to be defined by their parametric ExpressionConstructs (together with any
OperatorArguments, in case of algebraic Operators).

12Notice that this rename information is not to be used to perform any form of blind textual replacement in
the literal text before an Evaluate. Instead, this rename information is to be included in the Substitutions used
when issuing the Evaluate Request (as illustrated in example 2.7).

13Notice that, actually, the Variables used by different Expressions define a partial evaluation order among
them (most relevant when there are multiple conditions in a rule).

24

2.1.2.5 Additional details

For the sake of completeness of the presented r3 ontology, it is worth mentioning some additional
details that, although not fully supported by the current prototype, are also included in the
current version of the ontology.

Figures 2.1 and 2.4 include a Register operation that may be used to supply Definitions of
Languages and Engines (usually to an AlgebraEngine, a RuleEngine, or a BrokerEngine). This
operation is in fact supported by the current prototype, but disregarding any inconsistency
matters that it may introduce.

Additionally, the r3 ontology also includes a form of macro substitution (as defined in figure
2.7) for literal values using data constants. The XQuery variation of example 2.1 illustrates the
use of a data constant. This concepts are not supported by the current prototype and in fact
they may be dropped in future versions.

Furthermore, if an Engine creates or updates resources, as a result of a Request, these
resources may be included in any Response. In doing so, the Engine makes those resources
available to the Client, as shown in figure 2.8, and so they become AvailableResources (and
SharedResources as any public resource in the Semantic Web). For instance, during a Load
conversation (as the one in example 2.3), chances are that the Engine will keep a materialized
copy of the Loaded RulePackage (like ecarls:rs1) and the ECAEngine may choose to share
that copy with the Client by means of an AvailableRulePackage.

Often these AvailableResources will be persistent ones (with an associated URI), at least
while the Request is not Terminated. These resources may even have a dynamic (evolving)
nature (for instance ecarls:rs1 may include information about the current state of evaluation
of the different rules by including any active RuleInstances) and the Client may retrieve up-
dated descriptions, whenever he wishes to. These AvailableResources are released (and usually
their representation becomes unavailable) when the Request is Terminated. Currently, the r3

prototype does not expose any AvailableResources, but internally it already relies upon Rule-
Instances to keep the evaluation state of reactive rules (viz. using Assertions to stand for test
components).

Notice that figure 2.4 does not include any functionality regarding consulting resources
(and their representations). Nonetheless, consulting resources is not only needed to retrieve
AvailableResources, it is also core to the r3 API, since, as said before, a Message may be an
incomplete RDF graph containing references to external resources. This means that in order to
fully understand a Request (or a Response) an Engine (or Client) may have to retrieve additional
resource representations14. Such functionality (of retrieving resource representations) is core to
the (Semantic) Web itself and not specific to rule engines.

Since version v0.12 (see figure 2.8), the ontology also includes an incomplete set of special-
izations of Interface and Expression to be refined in future versions. These specializations are
currently used for some minor implementation details (viz. ECA-ML integration), but are not
yet consistently used throughout the ontology.

As a final note, it should be noticed that, the r3 ontology (although focused on reactive
rules) addresses the general concept of a rule (viz. figure 2.3). Future developments will require
at least a model for deductive rules (e.g. for specifying higher level events, queries or actions).
In fact the current implementation already allows deductive rules (viz. Prova, XChange and
Xcerpt) but only in a Native form. As such, upcoming versions of the presented ontology must

14How (and to what extent) this is actually done is up to the receiver, as long as it manages to understand
the Message (correctly).

25

be compared and validated against results achieved by more general projects (not focused on
reactive rules), both at the ontology level (e.g. SBVR [35], WRL [8, 23]), and at the language
level (e.g. R2ML [52], RuleML [16], SWRL [26], SWSL [9, 10]). Naturally, any results achieved
by the W3C RIF [56] Working Group may also prove relevant in this regard.

2.1.3 On the way to full r3, growing up...

In this section, after a brief historic introduction (in section 2.1.3.1) regarding the evolution that
led to the current r3 ontology (v0.10), we summarize the current state (v0.12) of the prototype
(in section 2.1.3.2) including its relationship to other Rewerse prototypes (in section 2.1.3.3),
and we terminate by sketching future developments of the r3 ontology (in section 2.1.3.4).

Additionally, several examples and Java excerpts of the implementation of some r3 language
engines are included (in appendix A). UML diagrams for other versions (past and future) of
r3 can be found at r3 site), together with some notes on the changes between the different
versions.

r3 is an ongoing research project: the previous incarnation (version 0.10) was included as
part of the I5-D5 deliverable [3] (A first prototype on evolution and behaviour at the XML level
- M30), and was refined (version 0.12) towards the present deliverable I5-D7 (Completion of
the prototype scenario - M30..36).

Within Rewerse, the final goal of r3 is I5-D9 (Prototype on the RDF/OWL level - M36..42).
As such, the r3 ontology (version 0.20) constituted a valuable starting point for I5-D6 (Reactive
rule ontology: RDF/OWL level - M30..36). Furthermore, work on B-Domain, based on r3,
has already started in close cooperation with WGA2 towards I5-D8 (Realistic information
integration application - M36..42).

Beyond Rewerse, it is worth mentioning our goal of taking a WIDER (Web Integrated
Development tools for Evolution and Reactivity) perspective upon evolution and reactivity on
the Semantic Web (cf. [7]). Since the beginning, WIDER has constituted a major driving force
for r3, as it shares and builds upon r3 goals, and further aims to capture and demonstrate the
functionality needed in a development environment (and the support that must be built into
the related execution model), in order to make Semantic Web application building, based on
reactive rule-based models, viable (and as simple as possible).

All this makes r3 an actual moving target. In fact, the r3 prototype is expected to be
updated to support version v0.2x of the r3 ontology in the (very) near future (backward com-
patibility is desirable but not mandatory). The most up-to-date information about r3 is to be
found online (viz. [53]).

2.1.3.1 From childhood (v0.0x)...

The original motivation for using an OWL-DL ontology definition as the foundation for r3

instead of an XML markup (viz. ECA-ML [2]) was that the heterogeneous approach made it
quite difficult to fully formalize the XML markup. The level of expressiveness of the available
standards (viz. DTD or XML Schema) was not enough. Instead of pushing these standards to
the limit (or defining a new abstract syntax) it seemed only natural to resort to an adequate
standard like OWL-DL (re-using already defined abstract syntaxes, e.g. RDF, and related
concrete markups, e.g. RDF/XML). The last r3 preview version (v0.00)15 clearly shows this
origin by even sketching a set of transformation rules from the ontology to ECA-ML.

15See http://rewerse.et/I5/r3/ for further details on this and other versions.

26

The first r3 pre-release version to include an OWL-DL definition (and not only UML dia-
grams) was version v0.01. This version had a very brief life and was made public only to allow
work on [6] to start. It was quickly replaced by version v0.02. This version was the base of quite
useful discussions with WGI1 participants at the 2006 Rewerse Annual Meeting regarding the
use of UML to define XML markups and OWL-DL ontologies.

Version v0.03 was the first full-blown version actually committed to the ontology level (and
also the first to include Language definitions). Before this version, the “legacy” of ECA-ML
was always present and language elements (operators, parameters or arguments) were identified
by local names in a global language namespace and were not actual RDF resources (eventually
identified by a global URI).

For what is worth, the interested reader may find the UML diagrams for all these versions
at the r3 site (viz. http://rewerse.net/I5/r3/DOC/index.html).

2.1.3.2 Through adolescence (v0.1x)...

Prototype: Available implementation. The r3 prototype is implemented as a Java 5
Servlet [47], with minimal use of JavaServer Pages [46] for the prototype frontend. The r3

Servlet provides an HTTP POST interface (embedding also Apache Axis [40] 1.3, for SOAP
1.1 support), and is packaged as a WAR16 file, thus allowing easy installation under any servlet
container17.

The core of the r3 ECA rule engine relies heavily upon Jena [48] 2.4 for RDF support
(wrapped in Jastor-like [45, 27] Java classes). Nevertheless, the core of this engine is imple-
mented using Prova (version 1.9, commit 1418, patched19). The use of Prova embedded in a
Servlet required the development of an extension to the Java/Prova integration mechanisms.
The extended/patched version of Prova 1.9 is also included in the WAR package.

The prototype frontend allows to browse through different Use-Case scenarios formed by
Groups of Examples, inspecting the actual requests that would be posted. Installed on an
application server, it allows the actual posting of requests to that same server and the inspection
of the synchronous responses. It is also possible to unpack the WAR file and browse the files
offline. This offline configuration has weaker security restrictions and allows the posting of
requests to any application server that you are aware of (just by redirecting the URL of the r3

Server in the frontend). Currently the Use-Case scenarios available are B-Domain related and
an ad-hoc collection of development tests.

Prototype: Communication details. Founding the r3 API on an abstract messaging
layer, like the one introduced in section 2.1.2.2, provides an architecture where other more
specific layers may be semantically plugged providing support for: many concrete syntaxes (or
serializations), alternative protocols, and even ontology reasoners. All that is assumed is that
any message, at the time it gets delivered to the core of an r3 Engine, is a fully materialized
resource description of a Message (detailed in figure 2.4), and so the rule engine can focus on

16r3.war: including r3.jar with sources, released under the Apache License - version 2.0.
17Just copy the r3.war file to the webapps directory of your Apache Tomcat installation (tested with version

5.5.12).
18Regretfully, support for Prova 1.9 was dropped (before final release, cf. http://prova.ws/forum/viewtopic.php?

t=160), in favor of the new upcoming version 2.0 (which includes a major rewriting of the inference engine and
has not yet been released). The available Prova version (1.8) is more than 2 years old and does not constitute
a viable alternative.

19http://prova.ws/forum/viewtopic.php?t=149

27

http://rewerse.net/I5/r3/DOC/index.html
http://prova.ws/forum/viewtopic.php?t=160
http://prova.ws/forum/viewtopic.php?t=160
http://prova.ws/forum/viewtopic.php?t=149

what constitutes its true added value (realizing reactive behavior), and rely on (re-using) other
Semantic Web technologies for the rest.

For sure, a prototype like r3, in order to provide some actual functionality, must make some
choices and eventually commit to concrete syntaxes and protocols, and for that it must include
specific code to support its choices, but if the internal architecture of the prototype conforms to
the abstract messaging layer keeping a clean separation between these external layers and the
core of the engine, the latter will be a re-usable “abstract” library (that actually implements
the behavior of reactive rules).

Currently in r3 we have chosen to implement an external layer (as said before, using a Java
Servlet based on Axis 1.3) supporting simultaneously a SOAP 1.1 and a pure HTTP REST [24]
style interface. The body of an HTTP POST request (SOAP wrapped or not) may be an ECA-
ML [2] XML document (viz. the restricted ECA-ML subset defined in http://rewerse.net/
I5/r3/DOC/2005/eval.xsd) or any of the XML based RDF serializations supported by Jena
2.4. Supporting N3 and other non-XML serializations (e.g. using CDATA XML nodes) would
require a more involved architecture given the XML Element orientation of Axis (probably the
recently released Axis2 [41] would be the best choice to achieve this).

A preliminary WSDL 1.1 [61] specification (http://rewerse.net/I5/r3/DOC/2005/r3.
wsdl) defines the actual SOAP [58] 1.1 binding (document style - not rpc - with a literal
body - not encoded). This specification is based on an XML Schema [62] (http://rewerse.
net/I5/NS/r3/2005/r3.xsd) that defines a markup based on RDF/XML for the r3 ontology.
This XML Schema is obtained automatically from the OWL-DL definition of the r3 ontology,
using a generation tool still under development (which is not the focus of our work but that
may prove relevant as a proof-of-concept for other Rewerse Working Groups, viz. WGI1).

It is worth noting that both the protocol and the markup could contribute to the actual
serialization of Messages. For instance, one could use WS-Addressing [60] in the SOAP header,
identifying a Request - wsa:MessageID - Message (to which a Terminate - wsa:RelatesTo - or
Response - wsa:ReplyTo - relatesTo), and the specific subclass - wsa:Action - of the Message,
reserving the SOAP body for providing the serialization of other properties of the Message (like
parameters, for instance). Similar results may be achieved by introducing proprietary HTTP
headers. The external (concrete) layers would be responsible for mapping all this information
into a materialized resource description of a Message.

Also, these external layers may be capable of reasoning (this is something that is currently
being considered for the r3 prototype) improving their Semantic (Web) potential. For instance,
once obtained the explicit RDF graph contained in a message, it is possible to scan that graph
for any resources used only as objects of tuples (excluding those that are also used as subjects),
and go grab their representation from the Web, thus building an extended graph (that would
for instance include ontology information), and right before submitting it to the core of the
engine (with the help of an ontology reasoner, like Pellet [51]) materialize also derived tuples.

Finally, the external layers can even be made adaptive by extending the Interface class with
properties describing the actual markup and protocol supported. Currently the r3 ontology
only allows the specification of a markup URI, but a richer definition (e.g. introducing a new
Markup class, instead of the markup property) must be considered in the future, eventually
including markup transformations (e.g. XSLT [65]). The current r3 implementation supports,
in its external layers, a limited form of adaptive functionality by recognizing two different
markups (viz. http://rewerse.net/I5/NS/r3/2005 for RDF/XML serializations; and http:
//www.semwebtech.org/eca/2006/eca-ml for ECA-ML); and by issuing local (in-memory)
calls to Install and Evaluate (avoiding the overhead of remote calls) for locally supported

28

http://rewerse.net/I5/r3/DOC/2005/eval.xsd
http://rewerse.net/I5/r3/DOC/2005/eval.xsd
http://rewerse.net/I5/r3/DOC/2005/r3.wsdl
http://rewerse.net/I5/r3/DOC/2005/r3.wsdl
http://rewerse.net/I5/NS/r3/2005/r3.xsd
http://rewerse.net/I5/NS/r3/2005/r3.xsd
http://rewerse.net/I5/NS/r3/2005
http://www.semwebtech.org/eca/2006/eca-ml
http://www.semwebtech.org/eca/2006/eca-ml

component Languages.

Prototype: Component Languages. The r3 prototype includes, not only the main ECA
rule engine, but also, several expression sub-engines supporting some particular rule component
Languages. All these languages have been integrated using the r3 development library (included
also in the prototype). The most relevant Languages are the ones that integrate the Prova,
XChange and Xcerpt languages.

An expression engine for (a demonstrative subset of) the SNOOP [22] event algebra also
exists [6]. This Language was implemented using a previous r3 version (v0.02) and still has to
be upgraded to the current r3 version.

It is also worth noting that, besides the component Languages included in r3, the Göttingen
prototype [12] (with which the r3 prototype integrates, eventually restricted to the formalized
subset of ECA-ML) also includes several component languages, as further detailed in section
2.1.3.3.

The definition of all the component Languages currently integrated in the prototype (viz.20

http, prova, xcerpt, xchange, xquery, xpath and util) is being revised and may change in
the near future. The OWL-DL ontologies21 (and Java classes22) that currently define (and
implement) these Languages are available online.

HTTP support. The http Language defines a set of Functors, viz. get, post, put and
delete. Any of these constructs uses an absolute request uri and binds a response status
and status-reason. Additionally each of put and post uses a literal body. Only textual (viz.
text/*) and XML application (viz. application/xml, application/*+xml) response content-
types are supported and the response body is returned after being converted into an XML
fragment according to the actual content-type (e.g. text/plain yields an XML text node).
Any other response content-type is taken as an error, pretty much like failing to establish a
connection or getting an HTTP response status not in the ok (2xx) range (with the exception
of “Not Found”/404 and “Gone”/410 that are considered a failure, returning an empty set of
results). The extension of these Functors so that each of them binds a set of parameters relating
to (the most common) HTTP headers, is being considered23.

For any of the above constructs, exists a similar OpaqueConstruct (with the same name
prefixed with a ‘v’) that, instead of using a uri, digs a vuri. For these OpaqueConstructs,
variables may also be used as URI query parameters24 (if renamed to properly URI encoded
strings prefixed with a non-encoded ‘=’, variable values must not be encoded); or bound to
request/response HTTP headers25 (if renamed to strings that are valid HTTP headers with the
addition of a ‘:’ prefix).

Also available is an opaque construct that digs a literal HTTP request26 and binds a

20http://rewerse.net/I5/NS/r3/2005/eval/〈name〉#〈name〉
21http://rewerse.net/I5/NS/r3/2005/eval/〈name〉
22net.rewerse.i5.r3.eval.〈name〉.Evaluator
23Actually, e.g., post already binds a soapaction.
24Unbound query parameters are included in the query without the equal character.
25Unbound headers are omitted in the request, and bound if present in the response. Bound headers are

included in the request and checked (if present) in the response. Beware when using bound general headers
(or entity headers in a POST) since these relate to a specific HTTP message (or entity body) and may have
different values in the request and in the response causing the construct to fail.

26Any included HTTP version is ignored.

29

http://rewerse.net/I5/NS/r3/2005/eval/<name>#<name>
http://rewerse.net/I5/NS/r3/2005/eval/<name>
net.rewerse.i5.r3.eval.<name>.Evaluator

response status, status-reason and status-class27. This construct does not deal with any
redirections (3xx), it succeeds for any response status (contrary to the others that only succeed
for 2xx response status) and fails if it is not possible to establish a connection or if an invalid
response content-type is returned. It uses variables in the same way the other OpaqueConstructs
do.

Under consideration is a transform Operator that takes a source body (instead of a literal
body), having a behaviour similar to the post and put constructs (to distinguish between them
it uses a method parameter: POST, by omission, or PUT). Additionally, a modified uri event
(with an optional poll interval) and a modified-since test are also being considered.

In appendix A.1 excerpts from the Java implementation of this HTTP engine are included
together with some Request examples.

Prova support. The prova Language included in the r3 prototype defines a native
construct that digs a literal Prova rule; and an opaque construct that digs a literal Prova
goal and generates all the possible bindings (for the involved variables) satisfying the given
goal (variable values are represented as string values28 or XML elements/documents, when
appropriate). Any of these prova constructs uses a rulesdb that identifies a particular rulebase
(viz. Prova shell) to be used (empty by omission, denoting a default one; if given, it may be an
URL to be retrieved for initialization of the rulebase).

No asynchronous functionality is currently provided, but Functors for rcvMsg and sendMsg
are under consideration29.

In appendix A.2 excerpts from the Java implementation of this Prova engine are included
together with some Request examples.

Xcerpt support. The xcerpt component Language defines a native construct that digs
a literal Xcerpt rule; and an opaque construct that digs a literal Xcerpt query (trivially
succeeds, if empty) producing several variable bindings. Any of these constructs uses a rulesdb
that identifies a particular rulebase to be used (empty by omission, denoting a default one; if
given, it may be an URL to be retrieved for initialization of the rulebase).

Additionally opaque uses an Xcerpt construct term to build and return a result for each
produced tuple (empty by omission, in which case nothing is returned).

Two additional Functors are also available to obtain the Xcerpt term or program corre-
sponding to a given XML document.

Finally, two other constructs are currently under consideration: an eval Aggregator that
uses an Xcerpt construct term to build the aggregated result based on the involved variables (if
omitted, a tupleset of tuples with the aggregated variables could be returned, for each group);
and a transform Operator similar to the opaque construct, but that instead of evaluating a
literal query against a rulebase, takes a source Argument and uses an Xcerpt match pattern
to filter it (trivially succeeding, if empty) and possibly produce additional variable bindings (an
Xcerpt construct term may also be provided to specify a transformation of the source to be
returned, defaults to identity).

27status-class is the first digit of status.
28For what is worth, it should be mentioned that several problems remain unresolved relating to the repre-

sentation of numbers vs. strings, and also that quotes (single or double) in Prova strings must be balanced and
have no escape mechanism.

29Actually Functors rcvMsg and sendMsg are implemented but restricted to using the Prova self protocol
(which does not allow remote messages).

30

Excerpts of the Java implementation of this Xcerpt engine are included in appendix A.3
together with some Request examples.

XChange support. The xchange component Language defines a native construct that
digs a literal XChange rule; a detect OpaqueConstruct that digs an XChange event query
and signals any events matching it; a raise Functor that uses a recipient and an event
body to generate an XChange event (if recipient is omitted it generates a local event); and
an execute OpaqueConstruct that digs an XChange transaction and executes it.30

It should be stressed that all these ExpressionConstructs (even if they are only action
related, e.g. execute) return their results asynchronously, and so any xchange Client must
always provide a notifyTo Interface in order to receive any possible results.

Excerpts of the Java implementation of this XChange engine are included in appendix A.4
together with some Request examples.

Xcerpt and XChange TCP servers. The LanguageEngines that support Xcerpt and
XChange languages are mainly wrappers around the existing TCP servers for both languages,
so in order to use these languages the appropriate TCP servers must be running (the XChange
wrapper requires also the Xcerpt TCP server).

Currently the set of TCP ports used for integrating with r3 is fixed. The Xcerpt and
XChange TCP servers must be started with the appropriate parameters, viz. ‘xcerptd 15003’
and ‘xchange -p4711 -nhttp://localhost:4711’. The available implementations for Xcerpt
and XChange TCP servers are research prototypes (just like r3), so versioning is a bit elusive.
Both prototypes are developed using Haskell [44], and binary versions may not be available for
all platforms, or if available they might be a bit outdated.

The current version of the r3 wrappers requires the use of the most recent version of the
sources (as of September 2006) for both prototypes. For a Windows (32 bits) platform the
compiled binaries31 are available for both servers (compiled using GHC [43] 6.4). Beware
nevertheless that there seems to exist some issue preventing the XChange server from writing
to disk (a Permission Denied error occurs). Otherwise, e.g. for a Unix platform, you may check
the respective Xcerpt and XChange sites for a compatible compiled version for your preferred
platform (which is not yet available at the time of this writing, at least not with the required
changes). If an adequate binary is not yet available, you may have to compile it yourself.

Currently, to compile a compatible binary of any of the prototypes, you will have to grab the
latest development snapshots available in the respective Subversion repositories. The current
r3 version was tested with revision 10 of XChange (available in the XChange repository, but
you may need to contact the XChange team in order to get access). Regarding Xcerpt, the r3

wrapper requires revision 595 (available in the Xcerpt repository, anonymous access is allowed),
but beware that you will need to compile an updated version of XcerptDaemon.hs32 (already
approved, but not yet committed, by the Xcerpt team).

30Alternatively, mainly for compatibility with ECA-ML, it is also available an opaque construct that digs a
literal. This literal may stand for a detect, raise or execute using for this purpose a syntax similar to
XChange rules (starting with a line containing ON, RAISE or TRANSACTION, respectively; containing the appropriate
XChange term; and ending with a line containing END).

31http://rewerse.net/I5/r3/TST/install/xc.zip
32http://rewerse.net/I5/r3/TST/install/XcerptDaemon.hs.txt

31

http://rewerse.net/I5/r3/TST/install/xc.zip
http://rewerse.net/I5/r3/TST/install/XcerptDaemon.hs.txt

XQuery and XPath support. The r3 prototype also supports XQuery and XPath as
component Languages. For each of the two Languages (viz. xquery and xpath) it implements,
based on Saxon 8.7 [57], an opaque construct that digs a literal XQuery or XPath query.

This construct returns the XML literal results of evaluating the opaque query for all the
input Substitutions. XQuery external variable declarations (for all the variables included in the
input Substitutions) are added if needed33. Additionally it is also possible to specify a base-uri
or a context document34.

By default a raw format is used and literal results are returned as string values or XML ele-
ments (when appropriate); unless one explicitly uses a wrap format. In the latter case, each re-
sult is always wrapped with Saxon elements (e.g. result:sequence / element / attribute
/ atomic-value) providing details of its type and value.

In appendix A.5 excerpts of the Java implementation of this XQuery engine are included
together with some Request examples.

Basic utilities support. The r3 prototype further includes the util Language that
defines an introspective bound Functor with a LogicalParameter value. This Functor succeeds
if the value parameter is bound, returning its alternative values35.

Also available is a replace-all Functor with three FunctionalParameters (viz. text,
pattern and replacement) for regular expression text replacement (based on java.util.regex
package36).

Furthermore another introspective OpaqueConstruct is currently under consideration (viz.
opaque that digs a literal RDF/XML serialization of an r3 Message, viz. a Request/Terminate
is to be issued and the synchronous Response returned, and a Response is to be validated and
“echoed”37).

The util Language may be extended in the future (if needed38). Some useful Aggregators
may be added (e.g. sum, avg, min, max, count). Also some basic comparison Functors (e.g.
eq, neq, lt, lte, gt, gte) and some basic Operators (e.g. and/and-then, or/or-then, not, select-
when-otherwise/if-then-else) may be added.

Building Component Engines using Java. Since the beginning of the work on the r3

ontology and the r3 prototype, it became clear that there was a considerable amount of code

33In xpath, generated variable declarations are always added, whereas in xquery, these are added only if a
related error occurs during compilation of the XQuery expression.

34In xpath, any namespace prefix used in the context document is added to the set of static namespace prefixes
available.

35Given :getW a :Expression; :is util:bound; :having [a :Parameter; :is util:value; :boundTo "W"], notice
that [a :Variable; :name "X"; :boundTo "W"] is equivalent to [a :Variable :name "X"; :equals :getW] (provided
W is bound). But beware that [a :Expression; :is :op; :takes [a :Argument; :is :oparg; :solve :expr]] is
not equivalent to [a :Expression; :is :op; :with [a :Variable :name "W"; :mode :local; :equals :expr]; :takes

[a :Argument; :is :oparg; :solve :getW]]; in the former :op may consider non distinct values returned by :expr,
whereas the latter uses a variable (and variables retain only distinct values).

36Beware of \ and $ occurrences in the replacement, particularly if this parameter is boundTo a vari-
able, you may need to escape them. You may be better of using the (less powerful, but safer) Functor
util:replace(util:text, util:old-text, util:new-text) which is also available for literal text replacement.

37Eventually, echoing a Response seems to be the only functionality that cannot be achieved using the http

Language.
38The non-introspective util constructs under consideration must be carefully considered, since most of them

may not be needed if the xquery and xpath Languages are extended to export also their functions and operators
[64].

32

that would be shared by r3 main rule engines and the different r3 expression sub-engines
(hopefully to be developed for an unlimited set of component Languages).

To some extent, this sharing of code, may be solved by an adequate distributed component-
based architecture. This is the case for the requirement to evaluate expression arguments (which
is not trivial) that is common to all algebraic languages and shared by the main engines (given
precisely the algebraic nature of those languages). This requirement may be solved/shared by
the introduction of BrokerEngines to be used both by the main rule engines and any algebraic
engines. Nevertheless, other (not so minor) details like actually invoking a broker engine (or,
e.g., dealing with variables and unification, and joining substitution sets) are hardly solved by
distributed architectures.

Eventually, all fully compliant r3 expression engines will share an enormous amount of code
that is already part of an r3 main engine. In order to minimize this issue and ease, as much
as possible, the process of implementing and testing new expression engines, r3 facilitates a
Java library that abstracts away matters like communication protocols (HTTP, SOAP); binding
variables and generating alternative solutions; or even the r3 ontology itself (and dealing with
the Jena RDF models).

The final goal is to allow developers of expression engines to focus on the specificities of the
languages to implement; freeing them from r3 details which are to be abstracted by tailored
evaluation context components (under development at the time of this writing).

Currently, the functionality of the r3 development library is still limited, nevertheless you
may use it if you are willing to do so. It provides, e.g., a net.rewerse.i5.r3.test.Tester
class for offline testing (without requiring the use of a Java application server) and even a
net.rewerse.i5.r3.test.dumpster Engine for receiving asynchronous Responses. Actually
this library is being used to develop all the, previously described, component Languages included
in the r3 prototype (as illustrated by the excerpts of Java code included in appendix A). Beware
though, the r3 development library is being revised. Documentation will be made available as
soon as it becomes a bit more stable. At the time of this writing, both the prototype and the
development library are included in a single downloadable package39, but that will change in
the near future. Meanwhile, please contact us if you plan to use this library to develop any
component language. We will do our best to fully support you!

2.1.3.3 Keeping in good company...

In the following, we try to outline what r3 is, and what r3 is not, by relating it to the work
being developed by other Rewerse (viz. WGI5) participants, trying to evidentiate the com-
plementary nature of r3, and also at the same time trying to identify some of the research
areas to which r3 reaches out (without aiming at solving the related issues). Regarding these
research areas/issues, and related work, r3 takes a cooperative stand; hoping to become a useful
Use-Case scenario where external results (either within or outside Rewerse) may be integrated
and experimented.

Currently, much work in the research field of reactivity in the Semantic Web tends to follow
a vertical approach designing specific reactive languages addressing particular issues (e.g. [36]
for detecting events in - and updating - RDF documents, or [32] for triggers at OWL level).
We believe that in order to achieve full reactivity at the global scale of the Semantic Web
a complementary horizontal approach (like the one used by r3) is required. Such approach
actually promotes separation of concerns which may prove to be quite effective in such a broad

39http://rewerse.net/I5/r3/TST/install/r3.jar

33

http://rewerse.net/I5/r3/TST/install/r3.jar

research area. Particularly by separating the research on reactive behavior from the research
about its different specificities like, for instance: how to propagate and detect events in the
Semantic Web (that is an exclusive matter for EventDetectors, e.g. [6] or [18]); what is a
good set of algebraic operators for composing events or actions (which is a matter for the
appropriate AlgebraEngines, e.g. [6] or [11]); how to support transactions in the Semantic
Web (that is first of all a matter for ActionProcessors but eventually will present additional
requirements on reactive engines); and defining XML and RDF update languages and events
(confined to ActionProcessors and EventDetectors, respectively).

For most of these specific matters, the vertical approach is gradually providing answers that
must be verified and experimented from a global point of view, actually leading to a whole
that is more than the simple sum of the parts. Frameworks using this horizontal approach are
particularly convenient for this purpose, bringing together and validating other more specific
research results. Also, these frameworks provide an important foundation to investigate other
issues of an higher level (e.g. user-oriented issues like collaborative and distributed integrated
development environments for reactivity [7]) that are also required to realize the vision of a
reactive Semantic Web. To achieve this latter goal, integration among the existing frameworks
is also important and something that we plan to pursue taking the r3 perspective (most sig-
nificantly [12], which is an XML based prototype based on the same general ECA framework,
and to some extent [17] or even [59]).

GAU Göttingen, Informatik: Databases and Information Systems Group. The
first public prototype (presented in [12]) trying to realize the objectives of the General ECA
framework (detailed in [2]) was developed in Göttingen by the Databases and Information
Systems Group. This prototype, pretty much like r3, is an ongoing WGI5 research project.

Since its first incarnation, this prototype has been fully based on the ECA-ML markup and
among its main concerns includes: supporting languages/engines both framework aware and
unaware, and defining/optimizing an all encompassing architecture including also event prop-
agation/detection in the Semantic Web. The r3 prototype takes a complementary approach,
where concrete markups, optimization and detailed architecture are not core concerns (e.g. all
r3 sub-engines which are not framework aware are required to be wrapped by r3 compatible
semantic layers), but instead expressiveness and semantic integration take the lead. Addition-
ally, the more conservative approach taken by the Göttingen team (e.g. being markup based,
starting only with opaque components, and grow from there one step at a time) has produced
some quite interesting results on the level of specific component languages (viz. [32] and [11]).
The decision to take a sematic approach in r3, already having in mind the future goals of WGI5
(namely I5-D9), was only possible thanks to the early results achieved by the Göttingen team,
and we are quite confident that both prototypes will benefit from this early bilateral approach.

The r3 approach tries to maximize separation of concerns and focus as much as possi-
ble on a model for reactive rule evaluation, taking into consideration (but not focusing on)
the specificities of the different component languages. For instance, matters like event detec-
tion/propagation in the Semantic Web do not have a direct impact on r3, besides requiring
the ability to deal with asynchronous evaluations (an event specification is just an expression
that will produce asynchronous results when submitted for evaluation to an appropriate event
engine). Semantic Web event detection/propagation is a concern for event engines (viz. atomic
event detectors/matchers, event brokers or algebraic event composers); as much as Seman-
tic Web transactions are a concern for action engines. r3 is expected to work with different
event (and action) engines (like [6]), regardless of the specific event detection/propagation (and

34

transaction management) algorithms/architectures they use. r3 is not expected to enforce any
particular algorithm/architecture at this level, which, of course, also means that r3 does not
propose any particular solution for these research issues. r3 simply does not try to solve these
issues. Instead, r3 tries to integrate external research results, by defining how they should work
together and by providing an adequate environment for testing these results. By focusing on
this integration level, r3 aims at defining an abstract (parametric) model for reactive behav-
iour that may also constitute a good platform for higher level models leading, for instance, to
WIDER [7] perspectives on evolution and reactivity on the Semantic Web.

The fact that r3 is semantically based, and as such not enforcing a particular concrete
syntax/markup, allowed the easy integration of the two prototypes (reduced to a matter of
translation between a concrete XML markup - ECA-ML - and the abstract RDF model/syntax
of r3). This translation was implemented for the formalized subset of ECA-ML. In fact, r3

already formalizes at an abstract/semantic level matters that become harder to fully formalize
at the concrete/syntactical level of ECA-ML (e.g. how to represent non-opaque expressions,
which currently ECA-ML defines mainly by using a set of guidelines).

It is worth noting that, the preliminary results of this integration seem to suggest that, given
the ontological description of rule component languages based on the r3 ontology, an automatic
bi-directional translation could be achieved for the full ECA-ML (with the possible exception
of some quirks contained in ECA-ML that stem from its syntactical nature, like marking up
variables using non-XML constructs - ’$’ prefixes - within opaque texts). If such a reliable
automatic translation could be achieved, ECA-ML could be fully formalized based on the r3

ontology.
Currently, the Göttingen prototype is growing closer to the semantic level of r3, and the

first ontologies describing Languages, Services and LSR (Languages and Services Registry) can
be found on the companion deliverable I5-D6 – “Reactive rule ontology: RDF/OWL level”.
The integration with the r3 ontology seems more than natural, and is to be pursued in the
next period. In fact, these ontologies extend concepts already present in the r3 ontology, which
means that just by making explicit this extension their expressivity would grow immediately.

H Skövde, IKI: Software Systems Research Group. RuleCore is an industry product
that since its beginning, as an open-source project, is being developed in close cooperation with
the Software Systems Research Group at Skövde.

Besides providing a graphical editor for reactive rules with some integrated testing and
monitoring capabilities, RuleCore (being an industry product) has some interesting features
related to engine startup, shutdown, crash and recovery. These features may prove relevant in
the context of r3.

At the rule engine level, probably its main focus (and power) lies in its highly flexible
complex event detector. Full integration (both at the atomic and algebraic level) between
RuleCore event detector and r3 seems possible40 and is to be pursued in the next months.

LMU München, Informatik: Programming and Modelling Languages Unit. The
XChange language and prototype is being developed by the Programming and Modelling Lan-
guages Unit at Munich, and takes yet another perspective on reactive evolution for the Semantic
Web. It differs from the other WGI5 prototypes by trying to maximize the benefits of having a
single uniform language for ECA rules. Despite this mono-language perspective, the XChange

40With the possible exception of RuleCore States that have to be carefully considered.

35

work is not only complementary but also quite relevant to r3 and to the general ECA framework
both at the rule component level and at the rule level.

At the rule component level XChange is currently integrated in r3 as an event and action
language. Indirectly it is also integrated as a query/condition language through the Xcerpt
language (since the condition component of an XChange rule is no different from an Xcerpt
query). Currently the definition of both rule component languages is formed only of atomic (and
opaque) constructs, yet both languages contain algebraic operators (for any of the components:
events, queries and actions), and these should be modelled as such. The current expression
engines for both languages are simple wrappers around the existing Haskell TCP servers and
do not allow the level of integration that would be required for these algebraic operators.
Also, separating the event algebra (by far the most promising XChange sub-language with
an algebraic nature), could disrupt the homogeneity of the language and hinder the vision of
XChange as a single and unified language for reactivity. Such possibility is open, and the r3

team is ready to cooperate, if at any point the XChange team wants to research the global
applicability of XChange event query composition operators as algebraic operators to compose
other event languages.

Still at the rule component level, raising implicit events upon concrete actions, and dealing
with transactions, are still open issues in XChange. Regarding these issues, current XChange
concerns are related to evolution at the XML level. Although r3 concerns regarding these
matters are at a more abstract level, any results achieved by XChange may prove relevant to
r3.

Also relevant to r3 are results achieved by XChange at the rule level, particularly those
that could lead to higher or different levels of synergy/integration between the different rule
components. Any such results would probably question the structural model or the integration
model used by r3, leading to adequate extensions. Currently, for any XChange rule it is possible
to write a fully equivalent r3 rule using the available rule component languages. Nevertheless,
the latest results achieved by the XChange team (summarized in [21]) already identify possible
extensions to the language. Some of those extensions are already present in r3, other confirm
the the need for a richer r3 ECA model already induced by Prova contextual reactive rules.

TU Dresden: Biotechnological Centre (Biotec). The Biotechnological Centre (Biotec)
at Dresden uses the general-purpose open source programming language Prova (originally pre-
sented in [28]). The Prova language aims at integrating three programming paradigms, viz.
logic (Prolog), imperative (Java) and reactive (based on event-driven goals/rules).

Prova has been chosen as the programming language for the core of the main r3 engine, and a
rule component language is also available allowing Prova to be used to build query components
(datalog-like) and also as an action language. The r3 team has been following closely the
development of Prova and actively cooperating for more than a year with the Prova team
towards the release of Prova 1.9. As a result of this work some extensions to the mechanisms
of integration between Prova and Java have been proposed.

Prova is by itself a reactive language and Prova reactive rules include also a form of contex-
tual reactive rules (born out of actual development requirements) that provide a declarative way
to selectively activate specific reactive rules in a particular context. This concept of contextual
reactive rules is not present in the r3 model and is an open issue.

36

2.1.3.4 Towards maturity (v0.20)...

Version v0.20 will have a new namespace (viz. http://rewerse.net/I5/NS/2006/r3#) and
compatibility with v0.12 will not be mandatory.

This will be the first version to model rule languages (and not only rule component lan-
guages), allowing for instance the definition of contextual rules. Some other relevant changes
to be considered in this version include:

• rule variables will be re-introduced and ground resources removed; macro substitution only
seems to make the prototype more complex, and appropriate restriction of rule variables
(as originally intended) may yield similar results;

• the result of an evaluation may group a set of substitutions for each value, and this
grouping must be considered for event results when creating ECA rule instances (only one
per group); as a motivating example consider the re-use of ex:ev1 (included in example
2.1) to define a rule that, instead of reacting to a single cancellation (like ex:r1), collects
all cancellations since office:registration open until dept:term terminated;

• solutions may be considered as an informative alternative extending (and thus always
including) the normative substitutions currently used when evaluating an expression;

• opaque constructs should not be restricted to a single opaque parameter and should be
allowed to take arguments;

• the introduction of type information may also be considered.

2.2 Use-Case Scenario

The use-case scenario considered for testing the r3 prototype is based on the scenario Updates
and evolution in bioinformatics data sources described in [5].

2.2.1 Scenario overview

In bioinformatics there are many publicly accessible data sources, which are often mirrored
locally and integrated with other data. The bioinformatics use case discusses four specific data
sources: PubMed, a database of 12.000.000 biomedical literature abstracts, GeneOntology, an
ontology for molecular biology, with 19.000 concepts, PDB, a database with some 25.000 protein
structures, and SCOP, the Structure Classification of Proteins, which groups PDB structures
according to their evolutionary relationships. The scenario is concerned with mirroring these
data sources locally, keeping them consistent and integrating them, and its relation and use-
fulness to the work being developed in working group A2 is clear. These public bioinformatic
data sources can be classified as primary and secondary (i.e. derived from one or more primary
data sources, e.g. SCOP or Astral41). The scenario, besides the four specific data sources,
also considers online applications that integrate them, viz. (Gene)Ontology-based Literature
search, GoPubMed, which given the appropriate interfaces may also be considered as secondary
data sources. Users of such data sources (final users or applications) keep local copies of these
primary and secondary databases and often derive tertiary data sources. Keeping local and

41The ASTRAL Compendium for Sequence and Structure Analysis, http://astral.berkeley.edu/

37

http://rewerse.net/I5/NS/2006/r3#
http://astral.berkeley.edu/

remote databases in sync and consistent is an important problem, which requires techniques to
deal with evolution and reactivity.

PubMed PubMed, http://www.pubmed.gov/, the main biomedical literature database ref-
erences over 12.000.000 abstracts. It has grown by some 500.000 in 2003 alone. Besides biology
it covers fields such as medicine, nursing, dentistry, veterinary medicine, the health care sys-
tem, and the preclinical sciences. PubMed contains bibliographic citations and author abstracts
from more than 4,600 biomedical journals published in 70 countries. Abstracts date back to
the mid-1960’s. Coverage is worldwide, but most records are from English-language sources or
have English abstracts. PubMed is available in XML.

PDB Another source, which is widely used in the A2 group, is PDB, http://www.rcsb.org/
pdb/, the protein databank. PDB is a repository of the atomic coordinates of proteins and
nucleic acids. PDB entries contain among others, besides the coordinates, the resolution at
which the coordinates have been obtained, the authors (who submitted the data), literature
references (some recorded in PubMed), the species the data is coming from. PDB is updated
every week and is available as XML and flat file.

SCOP Also widely used in the A2 group, SCOP, http://scop.mrc-lmb.cam.ac.uk/scop/,
classifies PDB structures according to their evolution. SCOP contains four main structural
classes, which are refined into some 1000 structural families of proteins. SCOP is updated
every 6 months and is available as flat file. Inconsistencies introduced by PDB updates, given
their weekly update rate, are a possibility not to be discarded lightly.

GeneOntology GeneOntology (GO), http://www.geneontology.org/, is a controlled, hi-
erarchical vocabulary. GO has been designed for the annotation of genes. It comprises over
19.000 terms organized in three sub-ontologies for cellular location, molecular function and bio-
logical process. GO was initially created to reflect gene function of fruitflies, but has expanded
to encompass many other genomes as well as sequence and structure databases. The hierarchi-
cal nature of GO allows one to quickly navigate from an overview to very detailed terms. As an
example, there are maximally 16 terms from the root of the ontology to the deepest and most
refined leave concept in GO. GO is available in free text, XML and as database. The XML
version is updated on a monthly basis. The deliverable A2-D2 contains further details on GO.

GoPubMed GoPubMed, http://www.gopubmed.org/, a tool developed by TU Dresden in
the A2 group, uses GO to structure large amounts of relevant literature to realize the con-
cept of Ontology-based Literature search42. GoPubMed submits keywords to PubMed, extracts
GO-terms from the retrieved abstracts, and presents the relevant sub-ontology for browsing.
GoPubMed has a number of advantages, e.g. users get a high-level overview of the whole search
result and are not forced to view multi-dimensional and thus often incomparable articles in a
one-dimensional list. The latest versions of GoPubMed also integrate with Wikipedia.

42MeshPubMed, http://www.meshpubmed.org/, also based on PubMed and developed by TU Dresden, realizes the
same concept of Ontology-based Literature search using the hierarchical vocabulary “Medical Subject Headings”,
MeSH, http://www.nlm.nih.gov/mesh/.

38

http://www.pubmed.gov/
http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.geneontology.org/
http://www.gopubmed.org/
http://www.meshpubmed.org/
http://www.nlm.nih.gov/mesh/

2.2.2 Use-Cases overview

This scenario, cf. [5], includes the following two specific use-cases.

Use Case 2.2.1 (Caching and Actuality of data in GoPubMed, PubMed, and GO)
GoPubMed is a distributed application: A query entered in GoPubMed is submitted on-the-fly
to the remote PubMed site, which returns relevant articles. These are then annotated by GoP-
ubMed with relevant terms from the GO, a local copy of which is residing at the GoPubMed
site. To integrate the three sources, the GoPubMed application needs to exhibit reactive behav-
iour. On the event of a user query, a request is sent to PubMed. On the event of an answer
from PubMed, a local cache is consulted. If the abstracts are not cached, then GoPubMed sends
another message to PubMed requesting the abstracts. On receipt of them, they are annotated.
Finally, the results are compiled an presented to the user. Overall, there are different distributed
data sources, which are communicating with each other using event-condition-action rules.

Use Case 2.2.2 (Mirroring, Actuality, and Consistency of data in SCOP and PDB)
The original SCOP data is published on a website hosted in Cambridge. A researcher may have
a copy of SCOP on his laptop besides a copy hosted at his university. The copy on the laptop
is not up-to-date, so that the researcher usually uses the remote database, but when offline he
is forced to use the local laptop copy. The researcher wants to transparently access SCOP and
this access needs to handle the preference of the remote SCOP copy over the local SCOP copy.

A reactive agent acts as a wrapper of the original SCOP site and data and upon the event
of a new release it informs a local agent, who updates the local SCOP copy.

Updates of PDB can lead to inconsistencies as SCOP is derived from PDB and as PDB is
updated weekly, while SCOP is only updated every six months. If a PDB entry gets withdrawn
between two SCOP releases, then the constraint is violated that every SCOP entry should have
a PDB entry it is derived from. The constraint can be satisfied if we know which PDB entry
replaces a withdrawn PDB entry. Then the local SCOP copy can be updated accordingly.

Relationship to I5-D8: Realistic information integration application These use cases
constitute the starting point for the upcoming WGI5 I5-D8 deliverable (due at month 42) ded-
icated to the development of realistic information integration application in bioinformatics in
collaboration with working group A2. The work on B-Domain, reported here, is a first attempt
towards integrating the different components needed to realize these use-cases, eventually iden-
tifying and anticipating future needs/limitations.

2.3 Current state

The current implementation of B-Domain is available online and allows the user to monitor new
PDB structures. Given a criterion specified at the level of the advanced query functionality
available at the PDB site, a storage (viz. a personalized PDB mirror) is created to keep all the
new structures that satisfy that criterion.

2.3.1 Available prototype, quick start

B-Domain Site: http://di150.di.fct.unl.pt:15080/b-domain/.

r3 Site: http://rewerse.net/I5/r3/.

39

http://di150.di.fct.unl.pt:15080/b-domain/
http://rewerse.net/I5/r3/

r3 Download: http://rewerse.net/r3/TST/install/.

r3 Prototype: http://di150.di.fct.unl.pt:15080/r3/TST/.

Check the storyboard available at http://di150.di.fct.unl.pt:15080/b-domain/demo, or
try it yourself at http://di150.di.fct.unl.pt:15080/b-domain/monitor form.jsp:

• Define the monitor criterion43 that new PDB entries must satisfy in order to be included
in your personal mirror;

• Submit and B-Domain will create a storage for your own personal mirror and will also
load the appropriate ECA rules that will ensure the appropriate monitoring of new PDB
entries cf. the provided criterion;

• Bookmark the returned URL for the created storage;

• You may see the ECA rules responsible for the actual update of your storage in the r3

ECA engine model (http://di150.di.fct.unl.pt:15080/r3/service), or by analyzing
the latest logged requests in the r3 dumpster (http://di150.di.fct.unl.pt:15080/r3/
service/dumpster);

• Visit the bookmarked URL periodically to see the new PDB entries conforming to your cri-
terion (you will have to wait for the next PDB release44 - updated every Tuesday/Wednes-
day - actually containing new structures that fit your monitor criterion).

2.3.2 Description

PDB provides an advanced query facility (http://www.rcsb.org/pdb/search/advSearch.do)
which is commonly used by bioinformatic researchers to locate relevant structures. Also, every
week the new structures added to PDB are listed in an RSS feed (http://www.rcsb.org/pdb/
rss/LastLoad). B-Domain combines these two functionalities providing an infra-structure by
which researchers may define their own personalized mirrors of PDB. These personalized mirrors
should contain all the new structures relevant for each researcher, and for each new structure
(depending on its “kind”) mirror the relevant information (either from PDB or other sources,
e.g. PubMed).

The current implementation allows a researcher to create a storage (viz. personalized mirror)
by specifying a criterion to filter the relevant new structures. This criterion is currently specified
by an XML document (cf. http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/
criteria.xsd) and mimics some of the PDB advanced query parameters. Upon submission
of a criterion, an URL is returned. The researcher may later use this URL to browse to its
personalized mirror.

The currently available set of PDB advanced query parameters is only a restricted set of the
full set available at PDB, and is meant primarily as a proof-of-concept. Nevertheless a complete
survey of the existing parameters has been conducted and work is on the way towards defining
an OWL ontology to be used as a model for defining the criteria instead of the current XML
Schema. The final goal is not to develop a B-Domain front-end for the PDB advanced query

43An example of a monitor criterion is available at http://di150.di.fct.unl.pt:15080/b-domain/schemas/examples/

criteriaExample2.xml.
44RCSB Protein Data Bank - This week’s new structures: http://www.rcsb.org/pdb/rss/LastLoad.

40

http://rewerse.net/r3/TST/install/
http://di150.di.fct.unl.pt:15080/r3/TST/
http://di150.di.fct.unl.pt:15080/b-domain/demo
http://di150.di.fct.unl.pt:15080/b-domain/monitor_form.jsp
http://di150.di.fct.unl.pt:15080/r3/service
http://di150.di.fct.unl.pt:15080/r3/service/dumpster
http://di150.di.fct.unl.pt:15080/r3/service/dumpster
http://www.rcsb.org/pdb/search/advSearch.do
http://www.rcsb.org/pdb/rss/LastLoad
http://www.rcsb.org/pdb/rss/LastLoad
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/examples/criteriaExample2.xml
http://di150.di.fct.unl.pt:15080/b-domain/schemas/examples/criteriaExample2.xml
http://www.rcsb.org/pdb/rss/LastLoad

Example 2.10 To illustrate the kind of plans that B-Domain may generate, consider the fol-
lowing very simple plan formed by two rules that use the B-Domain language and that are
chained together by an XChange event.

ex:r1 a :ECARule;

:event [a :Expression;

:is b-domain:newStructure;

:boundTo [a :Variable; ;name "PDBID"]];

:test [a :Expression;

:is b-domain:satisfies;

:having [a :Parameter;

:is b-domain:pdbId; :boundTo "PDBID"];

:having [a :Parameter;

:is b-domain:criteria; :boundTo "MyCriterion"]];

:action [a :Expression;

:is xchange:raise;

:having [a :Parameter;

:is xchange:event;

:literal """

newpdb {

id {var PDBID},

crit{var MyCriterion},

for{var MyStorage}

}"""]].

ex:r2 a :ECARule;

:event [a :Expression;

:is xchange:detect;

:having [a :Parameter;

:is xchange:event;

:literal "newpdb {{ id {var Id}, for{var St} }}"]];

:action [a :Expression;

:is b-domain:store;

:having [a :Parameter;

:is b-domain:storage; :boundTo "St"];

:having [a :Parameter;

:is b-domain:pdbId; :boundTo "Id"]].

functionality, but instead to make this functionality available to be used (at an RDF level) in
different front-ends allowing the creation (and browsing) of personalized mirrors. As possible
front-ends, two main options are currently under consideration, viz. the Chemera45 application
and the Personal Reader46 framework, both developed within Rewerse by members of WGA2
and WGA3, respectively).

The personalized mirrors are maintained through the use of appropriate reactive rules. For
this, B-Domain provides a domain specific language and generates reactive rules realizing a
(more or less) complex plan that is responsible for detecting relevant updates and retrieve the
relevant information to be stored/updated. Currently the plans generated by B-Domain are
far too simple (cf. example 2.10) for the intended use. They store a simple link for the PDB
page dedicated to the new structure. These plans are to be improved with actual replication of
information available not only at PDB but also at SCOP and PubMed.

45http://www.cqfb.fct.unl.pt/bioin/chemera/Chemera/Intro.html
46http://www.personal-reader.de/

41

http://www.cqfb.fct.unl.pt/bioin/chemera/Chemera/Intro.html
http://www.personal-reader.de/

2.3.3 Coverage of E&R Use-Cases

Regarding use-case 2.2.1, it embodies the concept of reactive querying where synchronicity
drives the use of reactive rules. Since reactive rules have an asynchronous nature, this use-
case must be considered very carefully and it is not clear at this point if a reactive model will
constitute an appropriate solution to support this use-case.

The current implementation is restricted to a proof-of-concept related to use-case 2.2.2.
A more comprehensive coverage of the mirroring concerns contained in this use-case is to be
expected in the upcoming moths, and if possible consistency concerns should also be addressed.

2.3.4 Interoperability with other WGI5 Prototypes

r3 component structure accounts for different serializations for requests and responses. Cur-
rently, r3 supports RDF/XML (fully materialized according to the r3 ontology, integration
with an OWL-DL reasoner is expected in the near future), and ECA-ML (to the extent formally
specified by MARS). Supporting other serializations is a matter of providing/implementing ap-
propriate bidirectional translators to/from the r3 ontology. This actually means that rules and
expressions can be submitted using any of the supported serializations (responses use the same
serialization of the respective requests).

Furthermore, the r3 ECA engine doubles as a broker engine for any language engine known
to it (viz. previously registered). These languages and engines have to be described according
to the r3 ontology (examples are available online for some of the MARS languages/engines).

Given all this, full interoperability with the MARS prototype, although not fully tested yet,
should not be an issue as long as the MARS prototype associates the r3 namespace with an r3

ECA engine (viz. MARS recognizes an r3 language supported by an r3 broker).
Interoperability with the XChange prototype is achieved by modelling XChange and Xcerpt

as component (and native rule) languages at an opaque level. Achieving interoperability at an
abstract level, e.g. allowing the composition of XChange and Xcerpt with other languages, is
possible.

Finally, it is worth stressing that interoperability is a top priority for r3 and that the r3 team
is fully committed towards providing the best support possible to anyone interested (within or
outside Rewerse). The actual integration of Prova as an opaque language, or the integration
of ruleCore at an abstract level (which is being pursued in close cooperation with the industry),
are examples of this commitment.

2.3.5 Future work

B-Domain criteria are to be taken to an ontology level and are to cover as much as possible
of the PDB advanced query parameters, considering also its extension to PubMed, SCOP and
GO parameters.

B-Domain generated plans are expected to retrieve and mirror information from PDB,
SCOP and PubMed. The extent of mirrored information is to be personalized. Personalization
depending on further criterion is desirable.

B-Domain personalized mirrors must be provided in an RDF/XML compatible markup
(according to an OWL ontology). Integration with RSS feeds is desirable.

Integration with Chemera application and the Personal Reader framework is to be pursued,
and submitted if possible to real use by bioinformatic researchers collecting feedback about the
actual applicability of the results.

42

Reactive query scenarios (viz. integration with GoPubMed, use-case 2.2.1) are to be further
researched, either realizing them or identifying the limitations that prevent the use of reactive
models in such query-based scenarios.

43

Message

+issuer[1] : Client
Request

{complete}

+relatesTo[1] : Request
+available[*] : AvailableResource

Response

+activate[1] : RulePackage
Load

{com
plete}

+relatesTo[1] : Load
Loaded

+source[1] : NormalizedNative
Install

+relatesTo[1] : Install
Installed

+using[*] : Substitution
+solve[1] : NormalizedExpression

Evaluate

Evaluating

+relatesTo[1] : Request
Terminate

+notifyTo[0..1] : Interface
Client

Engine

+fault[*] : Error
Terminated

{com
plete}

+issuer

Evaluated

+relatesTo

{c
om

pl
et

e}

{com
plete}

+relatesTo[1] : Evaluate
+returns[*] : Result

EvaluateResponse

TerminatedResponse

+target[1] : anyURI
+markup[1..*] : anyURI
+multiple[0..1] : boolean

Interface

+notifyTo {subsets provides}

+declare[1] : Definition
Register

+relatesTo[1] : Register
Registered

+provides[1..*] : Interface
Service

+notifyTo[1]

«definition»
AsynchClient

+provides

+msg[1] : string
+literal[0..1] : XMLLiteral

Error

+fault

RulePackage +activate

Definition +declare

Figure 2.4: Services and Messages (v0.12)

44

+/has[*] : ConstructParameter
+uses[*] : FunctionalParameter
+binds[*] : LogicalParameter
+digs[0..1] : OpaqueParameter

LanguageConstruct
+is[1] : LanguageConstruct
+having[*] : Parameter

Construction +is

OperatorArgument

ConstructParameter

+/has {union}

+is[1] : ConstructParameter
+boundTo[0..1] : NCName
+literal[0..1] : XMLLiteral

Parameter

+having

+is

Expression

+is

Argument

+solve

+i
s

+taking
+is[1] : NativeRuleConstruct

Native
+is

{c
om

pl
et

e}

+digs[1]
-binds[0]

NativeRuleConstruct

+takes[*] : OperatorArgument
ExpressionConstruct

-takes[0]
Aggregator

{com
plete}

{c
om

pl
et

e}

-takes[0]
Functor

+takes[1..*]
Operator

+digs[1]
OpaqueConstruct

{c
om

pl
et

e}

+default[0..1] : XMLLiteral
FunctionalParameter

LogicalParameter
{complete}

+binds {subsets has}
+uses {subsets has}

+default[0]
OpaqueParameter

+digs {subsets uses}

+has[1]
-takes[0]

LiteralConstruct

+takes

-digs[0]
AbstractConstruct

Figure 2.5: Languages (v0.12)

45

+is[1] : OperatorArgument
+solve[1] : Expression

Argument

+is[1] : Functor
-taking[0]

«definition»Term {com
plete}

+is[1] : Operator
+taking[1..*]

«definition»
Formula

+is[1] : ExpressionConstruct
+having[*] : Parameter
+with[*] : Variable
+boundTo[0..1] : NCName
+taking[*] : Argument

Expression
+solve

+taking

+is[1] : OpaqueConstruct
+having[1..*]

«definition»
Opaque

{complete}

local

bind
use

VariableMode

+name[1] : NCName
+mode[0..1] : VariableMode
+rename[0..1] : string
+boundTo[*] : NCName
+equals[*] : Expression
+literal[0..1] : XMLLiteral
+type[0..1] : anyURI

Variable

+equals

+m
od

e

+w
ith

+is[1] : Aggregator
+aggregate[1..*] : NCName
+groupedBy[*] : NCName
-taking[0]

«definition»
Aggregation

+equals[1..*] : GroundExpression
+literal[0..1] : XMLLiteral
+type[0..1] : anyURI

Assertion

+must[*] : Assertion
+binding[*] : Variable

Solution
+binding

+must

-must[0]
Tuple

+binding[*] : VariableBinding
Substitution

«definition»
GroundVariable

-mode[0]
-equals[0]

«definition»
VariableBinding

+binding

+literal[0..1] : XMLLiteral
+type[0..1] : anyURI
+using[0..1] : Substitution

Result

+using

«definition»
GroundExpression

-with[0]
-boundTo[0]

«definition»
NormalizedExpression

+is[1] : AbstractConstruct

«definition»
AbstractExpression

+is[1] : LiteralConstruct
+having[1]
-taking[0]

«definition»
LiteralExpression

Figure 2.6: Expressions (v0.12)

46

+replace[*] : DataConstant
+/belongsTo[*] : RuleSet

RulePackage

Variable

+equals[*] : GroundExpression
«definition»GroundVariable

Parameter

«definition»
GroundParameter

+literal[1]
-boundTo[0]

«definition»
ParameterLiteral

-literal[0]
+is[1] : LogicalParameter
+boundTo[0..1]

«definition»
ParameterVariable

{complete}
+with[*] : GroundVariable
+taking[*] : GroundArgument

«definition»
GroundExpression

+data[1]
-literal[0]

«definition»
ConstantHolder

+name[1] : NCName
+literal[0..1] : XMLLiteral

DataConstant

+r
ep

la
ce

+data[0..1] : NCName
+literal[0..1] : XMLLiteral

DataHolder

{complete}

-data[0]

«definition»
LiteralHolder

«definition»
GroundNative

Native

«definition»
VariableBinding

«definition»
NormalizedExpression

Expression

Argument

+solve[1] : GroundExpression

«definition»
GroundArgument

+having[*] : GroundParameter

«definition»
GroundConstruction

Construction

{com
plete} {com

plete}

Rule

RuleSet{com
plete}

+/component[*] : GroundConstruction

«definition»
GroundRule

+contains[*] : GroundRule

«definition»
GroundRuleSet

-replace[0]

«definition»
GroundRulePackage

{com
plete}

-literal[0]
+is[1] : FunctionalParameter

ParameterDefault

«definition»
NormalizedNative

Figure 2.7: Ground Resources (v0.10)

47

-event[0]
+literal[0..1] : XMLLiteral
+type[0..1] : anyURI
+query[*]
-test[0]
+possible[1..*]
+action[1..*]

ECARuleInstance

+relatesTo[1] : Request
+materializes[1] : SharedResource

AvailableResource

+availableResponse

+materializes[1] : Rule
+active[*] : RuleInstance

«definition»
AvailableRule

+contains[*] : AvailableRule

«definition»
AvailableRuleSet

{complete}

+materializes

Request
+relatesTo

SharedResource

{com
plete}

Definition

RulePackage

Construction

+possible[*] : Solution
RuleInstance

«definition»
GroundRulePackage

«definition»
GroundRuleSet

{complete}

«definition»
GroundRule

+active

+materializes[1] : RulePackage

«definition»
AvailableRulePackage

-possible[0]
-antecedent[0]
-consequent[0]
+source[1]

NativeRuleInstance

{complete}

Expression

Interface

TerminateInterface

Component

Event

Condition

Action

Query Test

Figure 2.8: Available Resources (v0.12)

48

Chapter 3

XChange for the Eighteenth
Century Studies Society

In this chapter we describe a demonstration of the XChange language in another of the scenar-
ios presented before in our deliverable [5], namely the Project’s information system and portal.
Instead of implementing directly over the Rewerse project portal, we demonstrate on a ficti-
tious scientific community of historians called the Eighteenth Century Studies Society (ECSS).
Further details on the XChange implementation can be found wither from this working group’s
site (http://rewerse.net/I5/) or directly at http://reactiveweb.org/

3.1 XChange Language and Prototype

The reactive, rule-based language XChange [20] has been developed to respond to the need for
both local (at a single Web node) and global (distributed over several Web nodes) evolution and
reactivity on the Web, and has been extensively reported in previoues deliverables. Borrowing
ideas from active database systems [39], XChange is a language of Event-Condition-Action
(ECA) rules. XChange is tailored for the distributed nature of the Web and for common Web
data formats by allowing event-based communication and by embedding the versatile Web query
language Xcerpt [38, 37].

The demonstration described in this chapter shows how XChange can be applied to pro-
gramming reactive Web sites where data evolves locally and, through mutual dependencies,
globally. The setting we consider are several distributed Web sites of a fictitious scientific com-
munity of historians called the Eighteenth Century Studies Society (ECSS), itself an adaptation
of the “Project’s information system and portal” usecase scenario described in our deliverable
[5]. As we shall see in more detail in section 3.2, ECSS is subdivided into participating uni-
versities, thematic working groups, and project management. Universities, working groups,
and project management have each their own Web site, which is maintained and administered
locally. The different Web sites are autonomous, but cooperate to evolve together and mirror
relevant changes from other Web sites. For example, Web sites maintain information about
personal data of members; a change of member data at a university entails further changes at
the Web sites of the management and some working groups.

49

3.1.1 An overview of XChange

We start with a very short overview of the language XChange emphasizing general ideas es-
pecially those related to distributed programming with ECA rules. The demo itself will be
described in the next section. The prototype of XcChange, which has been described in our
previous deliverable, can be found online at FALTA.

XChange provides the following benefits over conventional approaches based on general-
purpose programming languages to implement reactive behavior as needed in the demo:

(i) XChange reactive rules are highly declarative. They allow programming on a high
abstraction level and are easy to analyze for both humans and machines.

(ii) The various parts of a rule all follow the same paradigm of specifying patterns for XML
data, thus making XChange an elegant, easy to learn language.

(iii) Both atomic and composite events can be detected and relevant data extracted from
events. Composite events, temporal combinations of events, are an important requirement in
composing an application from different services.

(iv) XChange embeds an XML query language, Xcerpt, allowing to access and reason with
Web data.

(v) XChange provides an integrated XML update language for modifying Web data.
(vi) XChange reactive rules enforce a clear separation of persistent data (Web resources)

and volatile data (events). The distinction is important for programmers: the former relates to
state, while the latter reflects changes in state.

(vii) XChange’s high abstraction level and its powerful constructs allow for short and com-
pact code.

We give in this section a very short introduction to the language XChange emphasizing
general ideas especially those related to distributed programming with ECA rules. The demo
itself will be described in the next section.

An XChange program is located at one Web site and consists of one or more (re)active
rules of the form Event query — Web query — Action. Such an ECA rule has the following
meaning: When events answering the event query are received and the Web query is successfully
evaluated, the action is performed. Both event query and Web query can extract data through
variable bindings, which can then be used in the action. With this, we can see that both
event and Web queries serve a double purpose of detecting when to react and –through binding
variables– how to react. For querying data, as well as for updating data, XChange embeds and
extends the Web query language Xcerpt.

XChange programs at different Web sites can coordinate each other by sending and receiving
events. Events are communicated in a push-manner as XML messages. Push communication
has several advantages over pull communication: it allows faster reaction, avoids unnecessary
network traffic through periodic polling, and saves local resources.

Example The rule in Figure 3.1 runs at the management’s Web site and reacts to changes
in the working group affiliation of a member. The event query detects change-member events,
where the member is not part of the working group “Church and Reformation.” The Web query
then tests if this member has previously been a member of this working group. If this is the
case, an event message is sent to the working group’s Web site, requesting the member to be
deleted.

We now take a closer look at the individual parts of XChange rules and explain the example
in more detail, starting with how XML data of both events and Web resources is queried.

50

ON xchange : event {{
change−member {{

memberId { var ID } ,
newData {{
workingGroups {{

without wg {”Church and Reformation ”}
}} }} }} }}

FROM in { r e sou r c e {” http :// e c s s . org /members . xml”} ,
members {{

member {{
id { var ID } ,

desc wg {”Church and Reformation ”}
}} }} }

DO xchange : event {
xchange : r e c i p i e n t { ”http :// churchreform . net ” } ,

de l e t e−member {
memberId { var ID }

} }
END

Figure 3.1: ECA propagating the removal of a member from a working group

3.1.2 Queries as Patterns

Both event queries and Web queries are based on describing patterns for XML data. For
conciseness, query patterns as well as construction patterns and update patterns are represented
in a term-like syntax. In the term syntax, square brackets denote that the order of the children
of an XML element is relevant, curly braces denote that the order is not relevant.

Both partial (i.e., incomplete) or total (i.e., complete) query patterns can be specified. A
query term t using a partial specification (denoted by double brackets [[]] or braces {{ }}) for
its subterms matches with all such terms that (1) contain matching subterms for all subterms
of t and that (2) might contain further subterms without corresponding subterms in t. In
contrast, a query term t using a total specification (denoted by single brackets [] or braces { })
does not match with terms that contain additional subterms without corresponding subterms
in the query t.

Query terms contain variables for selecting subterms of data terms that are bound to the
variables. Accordingly, the result of a query are bindings for the free variables in that query.

More advanced constructs for describing query patterns are available, e.g., in our example
we use without to query the absence of subterms and desc to query for subterms that are
not immediate children of the parent term but descendants at arbitrary depth. Non-structural
conditions (e.g., comparisons on integer variables) can be specified by adding a where-clause to
queries.

3.1.3 Event Queries

Each Web site monitors the incoming event messages (XML representations of events) to check
if they match an event query of one of its XChange rules. Atomic event queries are single query
terms (as described above) and detect and react to single incoming event messages. In the
example rule, we have an atomic event query which binds the variable ID to the content of
the memberId-element.

Often, situations that require a reaction by a rule are not given by a single atomic event, but
a temporal combination of events. For this, XChange supports composite event queries [19],
which are built by combining event queries with composition operators like andthen (ordered

51

sequence of events), and (unordered conjunction of events), or without (absence of events) and
temporal restrictions like within (all events happen within a given length of time).

3.1.4 Web Queries

The condition part of XChange rules queries data from Web resources such as XML documents
or RDF documents. The keyword in together with resource is used to specify the URIs of the
documents that are queried.

Queries can be combined into conjunctions (and) and disjunctions (or), thus allowing to
access multiple documents and complex conditions. Also, negation (as failure) is supported
(not).

3.1.5 Actions: Updates and Raising New Events

The (re)action part of XChange rules has the following primitive actions: executing simple
updates to persistent Web data (such as the insertion of an XML element) and raising new
events (i.e., sending a new event message to a remote Web site or oneself). To specify more
complex actions, compound actions can be constructed as from the primitive actions.

Raising New Events Events to be raised are specified as a construction pattern for the
new event messages. Construction patterns (also called construct terms) are similar to query
patterns; however only complete patterns (single brackets/braces) can be used. Variables are
replaced by the bindings obtained previously in the event and Web queries.

Grouping and aggregation is supported through constructs like all ct group-by var X,
which will be “replaced” by one construction of ct for each binding of the variable X.

Construction patterns for events must contain an element xchange:recipient which spec-
ifies the recipient Web node’s URI. Note that this can be a variable.

Updates Updates to Web data are specified as so-called update terms. An update term
is a (possibly incomplete) query pattern for the data to be updated, augmented with the
desired update operations. An update term may contain different types of update operations:
An insertion operation specifies a construct term that is to be inserted, a deletion operation
specifies a query term for deleting all data terms matching it, and a replace operation specifies
a query term to determine data items to be modified and a construct term for their new value.

Complex Actions Actions can be combined with disjunctions and conjunctions. Disjunc-
tions specify alternatives, only one of the specified actions is to be performed successfully. (Note
that actions such as updates can be unsuccessful, i.e., fail). Conjunctions in turn specify that
all actions need to be performed. The combinations are indicated by the keywords or and and,
followed by a list of the actions enclosed in braces or brackets.

3.2 Use-Case Scenario

The ECA rule language XChange was applied to the scenario constituted by the distributed
Web data of ECSS. Data evolves locally and updates are propagated globally by means of event
messages. The Web sites of universities, working groups, and management are autonomous,
but cooperate to evolve together and mirror relevant changes from other Web sites.

The different Web sites maintain XML data about members, publications, meetings, library
books, and newsletters. Data is often shared, for example a member’s personal data is present
at his home university, at the management node, and in the working groups he participates

52

r1: ON change member
DO update LMU data

r2: ON change member
DO forward to management

r3: ON change member
DO update management data

r4: ON change member (w/WG3)
IF was not member of WG3
DO send add member to WG3

r5: ON change member (w/o WG2)
IF was member of WG2
DO send remove member to WG2

r6: ON remove member
DO update WG2 data

r7: ON add member
DO update WG3 data

Figure 3.2: Changing a member’s personal data (including working group affiliation)

in. Such shared data needs to be kept consistent among different nodes; this is realized by
communicating changes as events between the different nodes using XChange ECA rules.

Events that occur in this community include changes in the personal data of members, keep-
ing track of the inventory of the community-owned library, or simply announcing information
from email newsletters to interested working groups. These events require reactions such as
updates, deletion, alteration, or propagation of data, which are implemented using XChange
rules. The rules run locally at the different Web nodes of the community, allowing for the
processing of local and remote events.

For a concrete example, consider changing a member’s personal data including his working
group affiliation. The information flow is depicted in Figure 3.2. The initial change is entered
by using a Web form at the member’s home university LMU. The form generates event message
m1. One ECA rule (r1) reacts to this event and locally updates the member’s data at LMU
accordingly. Another ECA rule (r2) forwards the change to the management node.

The management node has rules for updating its own local data about the member (r3)
and for propagating the change to the affected working groups (r4 for adding, r5 for deleting
a member). In the example, the member changes the working group affiliation from WG2 to
WG3. Accordingly, event m4 is sent to WG3 by rule r4 and m3 is sent to WG2 by r5.

The working groups finally each have rules reacting to deletion and insertion events (m2
and m3) to perform the requested updates (here: r6 at WG2 and r7 at WG3).

In this description we have restricted ourselves to this one example of changing member data.
The implemented scenario realizes full member management of the community, a community-
owned and distributed virtual library (e.g., lending books, monitions, reservations), meeting
organization (e.g., scheduling panel moderators), and newsletter distribution. These other tasks
are also implemented by ECA rules that are in place at the different nodes. For presentation
purposes, the prototype includes facilities for displaying the rules of each node and logging
received and sent events.

53

54

Bibliography

[1] José Júlio Alferes and Ricardo Amador. r3: Towards a foundational ontology for reactive
rules. Available at http://rewerse.net/I5/r3/DOC/2006/submission.pdf.

[2] José Júlio Alferes, Ricardo Amador, Erik Behrends, Mikael Berndtsson, François Bry,
Gihan Dawelbait, Andreas Doms, Michael Eckert, Oliver Fritzen, Wolfgang May, Paula-
Lavinia Pătrânjan, Loc Royer, Franz Schenk, and Michael Schroeder. Specification of a
Model, Language and Architecture for Reactivity and Evolution. deliverable I5-D4, Centro
de Inteligncia Artificial - CENTRIA, Universidade Nova de Lisboa, 2005.

[3] José Júlio Alferes, Ricardo Amador, Erik Behrends, Michael Eckert, Oliver Fritzen, Wolf-
gang May, Paula-Lavinia Pătrânjan, and Franz Schenk. A first prototype on evolution
and behaviour at the XML-Level. deliverable I5-D5, Centro de Inteligência Artificial -
CENTRIA, Universidade Nova de Lisboa, 2006.

[4] José Júlio Alferes, Ricardo Amador, and Wolfgang May. A general language for Evolu-
tion and Reactivity in the Semantic Web. In Principles and Practice of Semantic Web
Reasoning (PPSWR), volume 3703 of Lecture Notes on Computer Science, pages 101–115.
Springer, 2005.

[5] José Júlio Alferes, Mikael Berndtsson, François Bry, Michael Eckert, Nicola Henze, Wolf-
gang May, Paula-Lavinia Pătrânjan, and Michael Schroeder. Use-cases on evolution. de-
liverable I5-D2, Centro de Inteligncia Artificial - CENTRIA, Universidade Nova de Lisboa,
2005.

[6] José Júlio Alferes and Gastn E. Tagni. Implementation of a Complex Event Engine for
the Web. In Proceedings of First International Workshop on Event-driven Architecture,
Processing and Systems, Chicago, USA (18th September 2006), 2006.

[7] Ricardo Amador and José Júlio Alferes. Web Integrated Development tools for Evolution
and Reactivity (WIDER). http://www.ricardoamador.com/research/program.aspx,
2005. PhD Proposal.

[8] Jürgen Angele, Harold Boley, Jos de Bruijn, Dieter Fensel, Pascal Hitzler, Michael Kifer,
Reto Krummenacher, Holger Lausen, Axel Polleres, and Rudi Studer. Web Rule Language
(WRL). http://www.w3.org/Submission/2005/SUBM-WRL-20050909/.

[9] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof, Michael Gruninger,
Richard Hull, Michael Kifer, David Martin, Sheila McIlraith, Deborah McGuinness,

55

http://rewerse.net/I5/r3/DOC/2006/submission.pdf
http://www.ricardoamador.com/research/program.aspx
http://www.w3.org/Submission/2005/SUBM-WRL-20050909/

Jianwen Su, and Said Tabet. Semantic Web Services Language (SWSL) 1.0. http:
//www.daml.org/services/swsf/1.0/swsl/.

[10] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof, Michael Gruninger,
Richard Hull, Michael Kifer, David Martin, Sheila McIlraith, Deborah McGuinness,
Jianwen Su, and Said Tabet. Semantic Web Services Language (SWSL) 1.1. http:
//www.daml.org/services/swsf/1.1/swsl/.

[11] Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz Schenk. Combining ECA Rules
with Process Algebras for the Semantic Web. In Proceedings of Second International Con-
ference on Rules and Rule Markup Languages for the Semantic Web, Athens, Georgia,
USA (10th–11th November 2006), 2006.

[12] Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An ECA Engine for
Deploying Heterogeneous Component Languages in the Semantic Web. In Proceedings of
Workshop Reactivity on the Web, Munich, Germany (31st March 2006), LNCS, 2006.

[13] Tim Berners-Lee. Notation 3 (N3). http://www.w3.org/DesignIssues/Notation3.

[14] Tim Berners-Lee. Semantic Web - talk. http://www.w3.org/2000/Talks/
1206-xml2k-tbl/, December 2000.

[15] Tim Berners-Lee. Putting the Web back in Semantic Web - talk. http://www.w3.org/
2005/Talks/1110-iswc-tbl/, November 2005.

[16] Harold Boley, Benjamin Grosof, Michael Sintek, Said Tabet, and Gerd Wagner. RuleML
Design. RuleML Initiative, http://www.ruleml.org/, 2002.

[17] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications of the
Language XChange. In 20th ACM Symp. Applied Computing. ACM, 2005.

[18] François Bry and Michael Eckert. A High-Level Query Language for Events. In Proceedings
of First International Workshop on Event-driven Architecture, Processing and Systems,
Chicago, USA (18th September 2006), 2006.

[19] François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Querying composite events
for reactivity on the Web. In Proc. Intl. Workshop on XML Research and Applications,
number 3842 in LNCS, pages 38–47. Springer, 2006.

[20] François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Reactivity on the Web: Para-
digms and applications of the language XChange. Journal of Web Engineering, 5(1):3–24,
2006.

[21] François Bry, Michael Eckert, Paula-Lavinia Pătrânjan, and Inna Romanenko. Realizing
Business Processes with ECA Rules: Benefits, Challenges, Limits. In Proceedings of 4th
Workshop on Principles and Practice of Semantic Web Reasoning, Budva, Montenegro
(10th–11th June 2006), LNCS. REWERSE, 2006.

[22] Sharma Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases. Data & Knowledge Engineering, 14(1):1–26, 1994.

56

http://www.daml.org/services/swsf/1.0/swsl/
http://www.daml.org/services/swsf/1.0/swsl/
http://www.daml.org/services/swsf/1.1/swsl/
http://www.daml.org/services/swsf/1.1/swsl/
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://www.w3.org/2005/Talks/1110-iswc-tbl/
http://www.w3.org/2005/Talks/1110-iswc-tbl/

[23] Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The WSML rule languages
for the Semantic Web. In W3C Workshop on Rule Languages for Interoperability, 27-28
April 2005, Washington, D.C., USA, 2005.

[24] Roy Thomas Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[25] Foundation for Intelligent Physical Agents. FIPA ACL message structure specification.
Technical Report SC00061G, http://www.fipa.org, Dec. 2002.

[26] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[27] Aditya Kalyanpur, Daniel Pastor, Steve Battle, and Julian Padget. Automatic Mapping
of OWL Ontologies into Java. In Proceedings of Sixteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE), Banff, Canada, (20th–24th
June 2004), 2004.

[28] Alexander Kozlenkov and Michael Schroeder. PROVA: Rule-based Java-Scripting for a
Bioinformatics Semantic Web. In Proceedings of First International Workshop, DILS 2004,
Leipzig, Germany (March 25-26 2004), LNCS, 2004.

[29] Wolfgang May, José Júlio Alferes, and Ricardo Amador. Active rules in the Semantic
Web: Dealing with language heterogeneity. In International Conference on Rules and
Rule Markup Languages for the Semantic Web (RuleML), volume 3791 of Lecture Notes
on Computer Science, pages 30–44. Springer, 2005.

[30] Wolfgang May, José Júlio Alferes, and Ricardo Amador. An ontology- and resources-based
approach to evolution and reactivity in the Semantic Web. In Ontologies, DataBases, and
Applications of Semantics (ODBASE), volume 3761 of Lecture Notes on Computer Science,
pages 1553–1570. Springer, 2005.

[31] Wolfgang May, José Júlio Alferes, and François Bry. Towards generic query, update,
and event languages for the Semantic Web. In Principles and Practice of Semantic Web
Reasoning (PPSWR), volume 3208 of Lecture Notes on Computer Science, pages 19–33.
Springer, 2004.

[32] Wolfgang May, Franz Schenk, and Elke von Lienen. Extending an OWL Web Node with
Reactive Behavior. In Proceedings of 4th Workshop on Principles and Practice of Semantic
Web Reasoning, Budva, Montenegro (10th–11th June 2006), LNCS. REWERSE, 2006.

[33] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

[34] Object Management Group. Unified Modelling Language (UML) 2.0 Superstructure. OMG,
2004. http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

[35] Object Management Group. Semantics of Business Vocabulary and Business Rules
(SBVR). OMG, 2006. http://www.omg.org/cgi-bin/doc?dtc/2006-03-02.

57

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[36] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-condition-action
rules on RDF metadata in P2P environments. Elsevier Computer Networks journal, Oc-
tober 2006. To appear.

[37] S. Schaffert and F. Bry. A practical introduction to Xcerpt. In Int. Conf. Extreme Markup
Languages, 2004.

[38] Sebastian Schaffert and François Bry. Querying the Web reconsidered: A practical intro-
duction to Xcerpt. In Proc. of Extreme Markup Languages Conf., 2004.

[39] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and Rules
for Advanced Database Processing. Morgan Kaufmann, San Francisco, CA, USA, 1996.

[40] Apache Axis. http://ws.apache.org/axis/.

[41] Apache Axis2. http://ws.apache.org/axis2/.

[42] DB2 universal database. http://www.ibm.com/db2/.

[43] The Glasgow Haskell Compiler. http://haskell.org/ghc/.

[44] Haskell - A purely functional language. http://haskell.org/.

[45] Jastor - Typesafe, Ontology Driven RDF Access from Java. http://jastor.sourceforge.
net/.

[46] JavaServer Pages Technology. http://java.sun.com/products/jsp.

[47] Java Servlet Technology. http://java.sun.com/products/servlets.

[48] Jena Semantic Web framework for Java. http://jena.sourceforge.net/.

[49] Java message service (JMS). http://java.sun.com/products/jms/.

[50] Web ontology language (OWL). http://www.w3.org/2004/OWL/.

[51] Pellet OWL Reasoner. http://www.mindswap.org/2003/pellet/.

[52] The REWERSE I1 Rule Markup Language. http://oxygen.informatik.tu-cottbus.
de/rewerse-i1/?q=node/6.

[53] Resourceful Reactive Rules (r3). http://rewerse.net/I5/r3/. Centro de Inteligência
Artificial - CENTRIA, Universidade Nova de Lisboa.

[54] Resource description framework (RDF). http://www.w3.org/RDF/.

[55] RDF/XML syntax specification (revised). http://www.w3.org/TR/2004/
REC-rdf-syntax-grammar-20040210/.

[56] Rule Interchange Format (RIF) W3C Working Group. http://www.w3.org/2005/rules/.

[57] SAXON - The XSLT and XQuery Processor. http://saxon.sourceforge.net/.

[58] Simple object access protocol (SOAP). http://www.w3.org/TR/soap.

58

http://ws.apache.org/axis/
http://ws.apache.org/axis2/
http://www.ibm.com/db2/
http://haskell.org/ghc/
http://haskell.org/
http://jastor.sourceforge.net/
http://jastor.sourceforge.net/
http://java.sun.com/products/jsp
http://java.sun.com/products/servlets
http://jena.sourceforge.net/
http://java.sun.com/products/jms/
http://www.w3.org/2004/OWL/
http://www.mindswap.org/2003/pellet/
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/6
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/6
http://rewerse.net/I5/r3/
http://www.w3.org/RDF/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/2005/rules/
http://saxon.sourceforge.net/
http://www.w3.org/TR/soap

[59] SweetRules: Tools for Semantic Web rules and ontologies. http://sweetrules.projects.
semwebcentral.org/, 2006.

[60] Web services addressing (WS-Addressing). http://www.w3.org/Submission/
ws-addressing/.

[61] Web services description language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[62] XML Schema. http://www.w3.org/XML/Schema/.

[63] W3C XML query (XQuery). http://www.w3.org/XML/Query/.

[64] XQuery 1.0 and XPath 2.0 Functions and Operators. http://www.w3.org/TR/xpath-
functions/.

[65] XSL transformations (XSLT) 2.0. http://www.w3.org/TR/xslt20/.

59

http://sweetrules.projects.semwebcentral.org/
http://sweetrules.projects.semwebcentral.org/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema/
http://www.w3.org/XML/Query/
http://www.w3.org/TR/xslt20/

60

Acknowledgements

This research has been co-funded by the European Commission and by the Swiss Federal Of-
fice for Education and Science within the 6th Framework Programme project Rewerse num-
ber 506779 (cf. http://rewerse.net).

61

http://rewerse.net

62

Appendix A

Component Engines. Examples
and implementation in r3

The Java excerpts here presented are based
on version 0.12-rc and are bound to become
outdated very shortly. Nevertheless together
with the included XML examples they may
help the interested reader to get a better in-
sight on the expected features for the r3 li-
brary, for which full documentation is to be
postponed until a more stable version is reached.

A.1 HTTP Engine

Java Excerpts:
package net.rewerse.i5.r3.eval.http;

...

public class Evaluator extends ExprEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String op = ctx.opname();

boolean usevars = op.startsWith("v");

String puri = usevars ? "vuri" : "uri";

HTTPRequest req = new HTTPRequest(

ctx.text("method"), ctx.text(puri), ctx.text("body"));

String[] phs = null;

boolean trstatus;

if (op.equals("opaque")) {

usevars = true;

trstatus = false;

req.parse(ctx.text("literal"));

} else { // op.equals("get/post/put/delete/transform")

if (usevars) op = op.substring(1);

trstatus = true;

if (op.equals("transform")) {

if (!req.method.equals("POST") && !req.method.equals("PUT"))

throw new Exception(

"Operator http:transform requires http:method PUT or POST");

throw new Exception("Operator http:[v]transform not implemented");

// Naive view: req.body = ctx.opcomposite().arg-eval("source");

// TODO: implement AlgebraContext with multiple results,

// each with its set of ?distinct? tuples to join

} else {

req.method = op.toUpperCase();

}

phs = new String[] {

"soapaction", "content-type", "content-length"};

for (String hn: phs) {

String hv = ctx.text(hn);

if (hv != null) req.headers.add(hn+": "+hv);

}

}

URI u = new URI(req.uri);

String bqry = u.getRawQuery(), frag = u.getRawFragment();

for (Tuple t: ctx.getUsing()) {

String qry = bqry, charset = ctx.text("uri-query-values-encoding");

ArrayList<String> headers = new ArrayList<String>(req.headers);

Hashtable<String,String> vhs = new Hashtable<String,String>();

if (usevars) {

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

char c = r.charAt(0);

if (c != ’:’ && c != ’=’) continue;

r = r.substring(1);

String txt = v.getLiteral();

if (c == ’:’) {

if (txt != null) headers.add(r+": "+txt);

vhs.put(n, r.toLowerCase());

} else {

if (txt != null) txt = URLEncoder.encode(txt, charset);

qry = r+(txt==null ? "" : ("="+txt))+

(qry==null ? "" : ("&"+qry));

}

}

}

u = new URI(u.getScheme(), u.getUserInfo(),

u.getHost(), u.getPort(), u.getPath(), null, null);

String uri = u.toURL().toString();

if (qry != null) uri += "?"+qry;

if (frag != null) uri += "#"+frag;

R3Utils.URLStream us = new R3Utils.URLStream(

req.method, uri, headers, req.body, trstatus, true);

if (trstatus && !us.isok()) {

us.close();

if (us.isnotfound()) {

if (usevars) continue; else break; // fail

}

throw new Exception(

"Unexpected HTTP status "+us.status+ " "+us.reason);

}

ctx.startResult(usevars ? t : null);

if (usevars) {

for (String vn: vhs.keySet()) {

String h = us.headers.get(vhs.get(vn));

if (h != null) ctx.addBinding(vn, h);

}

}

if (phs != null) {

for (String hn: phs) {

String hv = us.headers.get(hn);

if (hv != null) ctx.output(hn, hv);

}

}

if (!trstatus)

ctx.output("status-class", ""+((int)(us.status/100)));

ctx.output("status", ""+us.status);

ctx.output("status-reason", us.reason);

ctx.finishResult(us.asString(true).trim());

if (!usevars) break;

}

}

63

...

}

Examples:
<Evaluate

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/http"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<issuer><Client/></issuer>

<solve><Expression><is rdf:resource="#opaque"/>

<having><Parameter>

<is rdf:resource="#status"/>

<boundTo>Status</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#status-class"/>

<boundTo>StatusClass</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#status-reason"/>

<boundTo>StatusReason</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#literal"/>

<literal rdf:parseType="Literal">

POST http://di150.di.fct.unl.pt:15080/r3/service/prova HTTP/1.1

content-type: text/xml

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<request xmlns=""

xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/ddd/solve</subject>

<opaque>a(X,Y)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X" />

<log:variable name="Y" />

</log:tuple>

</log:variable-bindings>

</request>

</soapenv:Body>

</soapenv:Envelope>

</literal>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable>

<name>SOAPAction</name><rename>:SOAPAction</rename>

<literal rdf:parseType="Literal"

>"http://rewerse.net/I5/NS/r3/2005#Evaluate"</literal>

</Variable></binding>

<binding><Variable>

<name>Type</name><rename>:Content-Type</rename>

</Variable></binding>

<binding><Variable>

<name>Length</name><rename>:Content-Length</rename>

</Variable></binding>

<binding><Variable><name>Status</name></Variable></binding>

<binding><Variable><name>StatusClass</name></Variable></binding>

<binding><Variable><name>StatusReason</name></Variable></binding>

</Substitution></using>

</Evaluate>

A.2 Prova Engine

Java Excerpts:
package net.rewerse.i5.r3.eval.prova;

...

public class Evaluator extends NativeEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String rules = normalize(ctx.text("rulesdb"));

String opn = ctx.opname();

if (opn.equals("opaque")) {

solve(ctx, rules, ctx.text("literal"));

} else if (opn.equals("sendMsg")) {

sendMsg(ctx, rules);

} else { // opn.equals("rcvMsg")

addRcvMsg(ctx, rules);

}

}

protected void solve(Context ctx, String rules, String goal)

throws Exception

{

// collect variables with a bad name

ArrayList<String> badv = new ArrayList<String>();

for (String n : ctx.vars())

if (!Character.isUpperCase(ctx.rename(n).charAt(0))) badv.add(n);

// if there are any bad variables

if (!badv.isEmpty()) {

// compute a conflict free prefix

String vpref = varPrefix(ctx, goal);

// and rename those bad variables

int vind = 0;

for (String bn : badv) ctx.rename(bn, vpref+(vind++));

}

// build list of goals to solve

String lgoals = "";

ArrayList<Object> lobjs = new ArrayList<Object>();

for (Tuple t : ctx.getUsing()) {

ArrayList<String> vns = new ArrayList<String>();

ArrayList<String> vvs = new ArrayList<String>();

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

Object o = asObject(v.getLiteral());

if (o != null) {

vns.add(r);

vvs.add("_"+lobjs.size());

lobjs.add(o);

}

}

lgoals += ":- solve(ctxderive("+vns.toString()+", "+

vvs.toString()+", "+goal+")).\n";

}

// solve goals

List lrs = null;

Communicator sh = provaShell(rules);

synchronized (sh) {

sh.consultSync(

"ctxderive(X,X,[P|As]) :- derive([P|As]).\n", "ctxderive", null);

lrs = sh.consultSync(

lgoals.toString(), "ctxderive", lobjs.toArray());

sh.unconsultSync("ctxderive");

}

// collect bindings

for(Iterator itrs = lrs.iterator(); itrs.hasNext();) {

ProvaResultSet rs = (ProvaResultSet)itrs.next();

Exception ex = rs.getException();

if (ex != null) throw ex;

for(Iterator itr = rs.iterator(); itr.hasNext();) {

org.mandarax.kernel.Result r =

(org.mandarax.kernel.Result)itr.next();

ctx.startResult();

Map m = r.getResults();

Set ks = m.keySet();

for (Object ko : ks) {

VariableTerm vk = (VariableTerm)ko;

Object vo = m.get(ko);

ConstantTerm c = (ConstantTerm)vo;

String vn = ctx.var(vk.getName());

if (vn == null || vn.startsWith("_"))

continue; // skip new or unnamed vars

ctx.addBinding(vn, asString(c.getObject()));

}

ctx.finishResult("");

}

}

}

...

protected void createNative(Context ctx, String id)

throws Exception

{

String rules = normalize(ctx.text("rulesdb"));

provaShell(rules).consultSync(ctx.text("literal"), id, null);

}

protected void freeId(Context ctx, String id) throws Exception {

String rules = normalize(ctx.text("rulesdb"));

boolean create = false;

provaShell(rules, create).unconsultSync(id);

}

...

}

Examples:

<register>

<subject>http://dummy.nop/ddd/1</subject>

<opaque>

a(’1’,bbb).

a(2,aaa).

a(3,bbb).

64

</opaque>

</register>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/ddd/solve</subject>

<opaque>a(X,Y)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X" />

<log:variable name="Y" />

</log:tuple>

</log:variable-bindings>

</request>

<deregister>

<subject>http://dummy.nop/ddd/1</subject>

</deregister>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/ddd/solve</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/prova"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter>

<is rdf:resource="#rulesdb" />

<literal>http://rewerse.net/I5/r3/TST/templates.prova</literal>

</Parameter></having>

<having><Parameter>

<is rdf:resource="#literal" />

<literal>a(X)</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="X" />

</log:tuple>

</log:variable-bindings>

</request>

A.3 Xcerpt Engine

Java Excerpts:
package net.rewerse.i5.r3.eval.xcerpt;

...

public class Evaluator extends XcerptEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String opn = ctx.opname();

if (opn.equals("program")) {

// program(document)

ctx.finishResult(xcerptClient().convertProgramXML2Xcerpt(

ctx.literal("document")));

return;

} else if (opn.equals("term")) {

// term(document)

ctx.finishResult(xcerptClient().convertTermXML2Xcerpt(

ctx.literal("document")));

return;

} else if (opn.equals("eval")) {

// eval(?construct)+aggregate+groupedBy

throw new Exception("xcerpt:eval aggregator not implemented");

} else if (opn.equals("transform")) {

// transform(?construct, match)+takes(source)

throw new Exception("xcerpt:transform operator not implemented");

} else { // opn.equals("opaque")

// opaque(?rulesdb, ?construct, literal)

solve(ctx, ctx.text("rulesdb"));

}

}

void solve(Context ctx, String rules) throws Exception {

XcerptClient cli = xcerptClient();

rules = getRules(cli, rules);

String tupleset = "tupleset";

while (rules.contains(tupleset)) tupleset += "_";

String lresult = "result";

ArrayList<String> tpl = new ArrayList<String>();

for (String n : ctx.vars()) {

String r = ctx.rename(n);

if (lresult.equals(r)) lresult += "_";

tpl.add("optional "+r+" { var "+r+" }");

}

String frm = ""

+ " "+tupleset+" {{ tuple {\n"

+ " "+join(tpl, ",\n ")+"\n"

+ " } }}";

String query = notEmpty(ctx.text("literal"));

if (query != null) {

query = " and {\n"+frm+",\n\n "+query.trim()+"\n }";

} else {

query = frm;

}

String construct = notEmpty(ctx.text("construct"));

if (construct != null)

construct = lresult+" { "+construct+" }";

construct = ""

+ " out { resource { \"stdout:xml\" },\n"

+ " "+tupleset+" { all tuple {\n"

+ " "+join(construct, tpl, ",\n ")+"\n"

+ " } }"+"\n"

+ " }";

String goal = "\nGOAL\n"+construct+"\nFROM\n"+query+"\nEND\n";

String init = "\n"

+ "CONSTRUCT\n"

+ tupleset+" ["+join(getTuples(cli, ctx), ", ")+"\n"

+ "]\n"

+ "END\n";

String res = cli.evaluateProgram(goal+init+"\n"+rules);

if (!res.trim().equals(

"<xcerpt:error xmlns:xcerpt=\"http://xcerpt.org\">"+

"no results"+

"</xcerpt:error>"))

{

buildResult(res, lresult, ctx);

}

}

package net.rewerse.i5.r3.eval.xcerpt;

...

public class XcerptEvaluator extends NativeEvaluator {

...

protected Collection<String> getTuples(

XcerptClient cli, Context ctx) throws Exception

{

ArrayList<String> tsl = new ArrayList<String>();

ArrayList<String> tl = new ArrayList<String>();

for (Tuple t : ctx.getUsing()) {

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

String vs = v.getLiteral();

if (vs != null) {

if (vs.trim().length() == 0)

vs = r+" [\"\"]";

else

vs = cli.convertTermXML2Xcerpt("<"+r+">"+vs+"</"+r+">");

tl.add("\n "+vs);

}

}

tsl.add("\n tuple ["+join(tl, ", ")+"\n]");

tl.clear();

}

return tsl;

}

protected void buildResult(

String res, String lresult, Context ctx) throws Exception

{

Document tmpd = xmlBuilder().parse(

new ByteArrayInputStream(res.getBytes()));

Element el = tmpd.getDocumentElement();

NodeList lr = el.getChildNodes();

for (int i=0, szr=lr.getLength(); i<szr; i++) {

Node nr = lr.item(i);

if (nr.getNodeType() != Node.ELEMENT_NODE) continue;

ctx.startResult();

String r = null;

NodeList lt = nr.getChildNodes();

for (int j=0, szt=lt.getLength(); j<szt; j++) {

Node nt = lt.item(j);

if (nt.getNodeType() != Node.ELEMENT_NODE) continue;

String nm = nt.getLocalName();

String vl = asString(nt, true).trim();

if (nm.equals(lresult)) {

r = vl;

} else {

nm = ctx.var(nm);

if (nm != null) ctx.addBinding(nm, vl);

}

}

ctx.finishResult(r);

}

}

65

...

}

Examples:

<register>

<subject>http://dummy.nop/xcerpt/bib</subject>

<opaque>

CONSTRUCT

bib [

book [

title ["Dummy33"],

price ["33"]

],

book [

title ["Dummy44"],

price ["44"]

],

book [

title ["Dummy55"],

price ["55"]

]

]

END

</opaque>

</register>

<register>

<subject>http://dummy.nop/xcerpt/rev</subject>

<opaque>

CONSTRUCT

reviews [

entry [

title ["Dummy33"],

price ["66"]

]

]

END

</opaque>

</register>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=00</subject>

<opaque>

and {

bib {{

book {{

title { var T },

price { var Pa }

}}

}}

,

reviews {{

entry {{

title { var T },

price { var Pb }

}}

}}

}

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="T" />

<log:variable name="Pa" />

<log:variable name="Pb" />

</log:tuple>

</log:variable-bindings>

</request>

<deregister>

<subject>http://dummy.nop/xcerpt/bib</subject>

</deregister>

<deregister>

<subject>http://dummy.nop/xcerpt/rev</subject>

</deregister>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=01</subject>

<opaque>

in {

resource {"file:bib.xml"},

bib {{

book {{

title { var T },

price { var Pa }

}}

}}

}

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="T" />

<log:variable name="Pa" />

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=4</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xcerpt"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter>

<is rdf:resource="#rulesdb" />

<literal>http://rewerse.net/I5/r3/TST/templates.xcerpt</literal>

</Parameter></having>

<having><Parameter>

<is rdf:resource="#construct" />

<literal>

book [

title [var Title],

price-a [var PriceA],

optional price-b [var PriceB]

]

</literal>

</Parameter></having>

<having><Parameter>

<is rdf:resource="#literal" />

<literal>

or {

bib {{

book {{

title { var Title },

price { var PriceA }

}}

}}

,

books-with-prices [[

book-with-prices [

title [var Title],

price-a [var PriceA],

price-b [var PriceB]

]

]]

}

</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="Title" />

<log:variable name="PriceA" />

<log:variable name="PriceB" />

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=5</subject>

<opaque>

in {

resource {"http://rewerse.net/I5/r3/TST/templates.xml"},

templates {{

group {{

attributes {{ name { var G } }},

description { var GD },

template {{

attributes {{ name { var T } }},

description { var TD }

}}

}}

}}

}

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="G" />

<log:variable name="T" />

</log:tuple>

</log:variable-bindings>

</request>

A.4 XChange Engine

Java Excerpts:
package net.rewerse.i5.r3.eval.xchange;

66

...

public class Evaluator extends XcerptEvaluator

implements XChangeListener

{

...

protected void evaluate(Context ctx) throws Exception {

XChangeFullClient cli = xchangeClient();

String detect = null, action = null;

String opn = ctx.opname();

if (opn.equals("detect")) {

detect = notEmpty(ctx.text("query"));

} else if (opn.equals("execute")) {

action = notEmpty(ctx.text("transaction"));

} else if (opn.equals("raise")) {

String recipient = notEmpty(ctx.text("recipient"));

action = cli.buildEventRaise(recipient, notEmpty(ctx.text("event")));

} else { // opn.equals("opaque")

String txt = notEmpty(ctx.text("literal"));

if (txt == null)

throw new Exception("xchange:literal cannot be empty");

if (txt.endsWith("END")) {

int nl = txt.length()-"END".length();

txt = txt.substring(0, nl).trim();

if (txt.length() == nl)

// no space before END

txt = null;

} else {

txt = null;

}

if (txt == null)

throw new Exception("xchange:literal must terminate with ’END’");

boolean isqry = false;

String pref = null;

if (txt.startsWith("ON")) {

isqry = true;

pref = "ON";

} else if (txt.startsWith("TRANSACTION")) {

pref = "TRANSACTION";

} else if (txt.startsWith("RAISE")) {

pref = "RAISE";

}

if (pref != null) {

int nl = txt.length()-pref.length();

txt = notEmpty(txt.substring(pref.length()));

if (txt == null || txt.length() == nl)

// txt empty || no space after pref

pref = null;

}

if (pref == null)

throw new Exception(

"xchange:literal must start with ’ON’/’RAISE’/’TRANSACTION’");

if (isqry) detect = txt; else action = txt;

}

String tupleset = "tupleset";

String init = tupleset+" ["+

join(getTuples(cli.xcerptClient(), ctx), ", ")+"\n]";

ArrayList<String> tpl = new ArrayList<String>();

String lresult = "result";

for (String n : ctx.vars()) {

String r = ctx.rename(n);

tpl.add("optional \""+r+"\" { var "+r+" }");

if (lresult.equals(r)) lresult += "_";

}

String tuple = ""

+" "+join(tpl, ",\n ")+"\n";

String from = ""

+" "+tupleset+" {{ tuple {\n"

+tuple

+" } }}";

tuple = ""

+" tuple {\n"

+tuple

+" }";

String iid = ctx.incomplete();

String seed = cli.proxyEventMatch("id { \""+iid+"\" }, "+from);

String seedRaise = "id { \""+iid+"\" }, "+init;

ArrayList<String> rules = new ArrayList<String>();

if (detect != null) {

rules.add(""

+"RAISE\n"

+cli.proxyEventRaise("event { "+

"attributes { id { \""+iid+"\" } }, "+

"result { var "+lresult+" }, "+tuple+" }")+"\n"

+"ON\n"

+"andthen [\n"

+seed+",\n"

+"var "+lresult+" ->\n"

+detect+"\n"

+"]\n"

+"END\n");

} else { // action != null

rules.add(""

+"TRANSACTION\n"

+"or [\n"

+" and [\n"

+" "+action+",\n"

+cli.proxyEventRaise("done { "+

"attributes { id { \""+iid+"\" } }, "+

"result { \"\" }, "+tuple+" }")+"\n"

+"],\n"

+cli.proxyEventRaise("error { "+

"attributes { id { \""+iid+"\" } } }")+"\n"

+"]\n"

+"ON\n"+seed+"\n"

+"END\n");

}

cli.registerRules(iid, rules, seedRaise);

}

protected void createNative(Context ctx, String id)

throws Exception

{

xchangeClient().registerRule(id, ctx.text("literal"));

}

protected void freeId(Context ctx, String id) throws Exception {

xchangeClient().freeRules(id);

}

public void received(String msg) {

// public to be called by the xchangeClient() proxy

try {

Element el = getReceivedEvent(msg);

if (el == null) return;

String iid = el.getAttribute("id"), tp = el.getLocalName();

boolean islast = !tp.equals("event");

if (islast) xchangeClient().freeRules(iid);

NodeList l = el.getElementsByTagName("result");

int sz = l.getLength();

if (sz > 1) return;

Element result = sz == 1 ? (Element)l.item(0) : null;

l = el.getElementsByTagName("tuple");

sz = l.getLength();

if (sz > 1) return;

Element tuple = sz == 1 ? (Element)l.item(0) : null;

if (result == null && tuple != null) return;

if (tuple == null && result != null) return;

Context ctx = incompleteEvaluation(iid);

if (tuple != null) {

ctx.startResult();

try {

l = tuple.getChildNodes();

sz = l.getLength();

for (int i=0; i<sz; i++) {

Node nd = l.item(i);

if (nd.getNodeType() != Node.ELEMENT_NODE) continue;

String nm = nd.getLocalName();

nm = ctx.var(nm);

if (nm != null)

ctx.addBinding(nm, asString(nd, true).trim());

}

} catch (Exception ex) {

ctx.cancelResult();

throw new Exception("Result aborted", ex);

}

ctx.finishResult(asString(result, true).trim());

}

ctx.notifyResults(iid, islast);

} catch (Exception e) {}

}

...

}

Examples:

<register>

<subject>http://dummy.nop/xchange/1</subject>

<opaque>

RAISE

"xchange":event {{

"xchange":recipient { "http://localhost:4711" },

blablub { got { var X }, "in" { var Y } }

}}

ON

var Y -> "xchange":event {{

blablub { var X }

}}

END

</opaque>

</register>

67

<deregister>

<subject>http://dummy.nop/xchange/1</subject>

</deregister>

<Evaluate

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

rdf:about="http://dummy.nop/xchange?id=detect">

<solve><Expression><is rdf:resource="#detect" />

<having><Parameter><is rdf:resource="#query" />

<literal rdf:parseType="Literal">

"xchange":event {{

blablub {{ }}

}}

</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:8080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

<deregister>

<subject>http://dummy.nop/xchange?id=detect</subject>

</deregister>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xchange?id=detect2</subject>

<reply-to>http://localhost:8080/r3/service/dumpster</reply-to>

<opaque>

ON

andthen [

"xchange":event {{

var Ev1 -> blablub {{ }}

}},

"xchange":event {{

var Ev2 -> blablub {{ }}

}}

]

END

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="Ev1"/>

<log:variable name="Ev2"/>

</log:tuple>

</log:variable-bindings>

</request>

<deregister>

<subject>http://dummy.nop/xchange?id=detect2</subject>

</deregister>

<Evaluate

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

rdf:about="http://dummy.nop/xchange?id=theevent">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>blablub { "o tal do xxx" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:8080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

<Evaluate

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

rdf:about="http://dummy.nop/xchange?id=prxevent">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>blablub { "o tal do xxx" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:8080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xchange?id=mlevent</subject>

<reply-to>http://localhost:8080/r3/service/dumpster</reply-to>

<opaque>

RAISE

"xchange":event {{

"xchange":recipient { "http://localhost:4711" },

blablub { var X }

}}

END

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X">o tal do zzz</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xchange?id=upd</subject>

<reply-to>http://localhost:8080/r3/service/dumpster</reply-to>

<opaque>

TRANSACTION

or [

in { resource {"file:travel5.xml"},

travel {{

delete train {{ name{var X} }},

insert name{var X},

currency {"EUR" replaceby "DM"}

}}

},

in { resource {"file:travel5.xml"},

travel {{

delete name{var X},

insert train {{ name{var X} }},

currency {"DM" replaceby "EUR"}

}}

}

]

END

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X">t1</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

A.5 XQuery Engine

Java Excerpts:
package net.rewerse.i5.r3.eval.xquery;

...

public class Evaluator extends ExprEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String buri = notEmpty(ctx.text("base-uri"));

String xmldoc = notEmpty(ctx.literal("document"));

String query = ctx.literal("literal");

boolean wrap = !ctx.text("format").equals("raw");

XQueryEvaluator exp = new XQueryEvaluator(

autoDeclare(),

buri, xmldoc, query, ctx.renames());

LinkedList<String> pvars = new LinkedList<String>();

for (String vr: exp.getParameters()) {

String vn = ctx.var(vr);

if (vn != null) pvars.add(vn);

}

Iteratable<String> pars = new Iteratable<String>(pvars);

for (Tuple t : ctx.getUsing(pars)) {

QryEvaluation eval = exp.evaluate(wrap);

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

eval.setParameter(r, asObject(v.getLiteral()));

}

while (true) {

String res = eval.nextResult();

if (res == null) break;

ctx.addResult(t, res);

}

}

}

...

}

Examples:

68

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<opaque>

for $X in ("aaa", "bbb")

return <doc><xxx>{$X}</xxx><yyy>{$Y}</yyy></doc>

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="Y">ccc</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="Y">ddd</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="Y">eee</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<opaque>

fn:doc($W)/*:feed/*:entry/*:link/@href

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="W"

>http://code.google.com/feeds/updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="W"

>http://code.google.com/feeds/featured.xml</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xquery"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter><is rdf:resource="#format" />

<literal>wrap</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#base-uri" />

<literal>http://code.google.com/feeds/</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#document" />

<literal rdf:parseType="Literal">

<config xmlns="">

<mode>escaped</mode>

<entry>1</entry>

</config>

</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#literal" />

<literal>

xquery version "1.0";

declare namespace atom = "http://purl.org/atom/ns#";

declare variable $W external;

let $m := fn:string(config/mode), $i := fn:number(config/entry)

for $r in fn:doc($W)/atom:feed/atom:entry[$i]/atom:title[@mode=$m]

return (fn:string($r), $r/@type, $r)

</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="X">x1</log:variable>

<log:variable name="W">updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="X">x2</log:variable>

<log:variable name="W">updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="X"/>

<log:variable name="W">featured.xml</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/r3/2005#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xpath"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter><is rdf:resource="#format" />

<literal>raw</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#base-uri" />

<literal>http://code.google.com/feeds/</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#document" />

<literal rdf:parseType="Literal">

<config xmlns="" xmlns:atom="http://purl.org/atom/ns#">

<!-- using xpath -->

<!-- all namespace prefixes used here, get declared -->

<atom:entry>1</atom:entry>

</config>

</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#literal" />

<literal>

for $i in config/atom:entry

return fn:string(

fn:doc($W)/atom:feed/atom:entry[fn:number($i)]/atom:title)

</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="W">updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="W">featured.xml</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

69

	Introduction
	r3-based Bio Domain Broker
	ECA Prototype - r3 v0.12
	Introduction
	What is r3?
	Why Resourceful?

	Resourceful reactive engines
	Resourceful reactive rules
	Messages and loading reactive rules
	Evaluating reactive rules
	Dealing with language heterogeneity
	Additional details

	On the way to full r3, growing up...
	From childhood (v0.0x)...
	Through adolescence (v0.1x)...
	Keeping in good company...
	Towards maturity (v0.20)...

	Use-Case Scenario
	Scenario overview
	Use-Cases overview

	Current state
	Available prototype, quick start
	Description
	Coverage of E&R Use-Cases
	Interoperability with other WGI5 Prototypes
	Future work

	XChange for the Eighteenth Century Studies Society
	XChange Language and Prototype
	An overview of XChange
	Queries as Patterns
	Event Queries
	Web Queries
	Actions: Updates and Raising New Events

	Use-Case Scenario

	Component Engines. Examples and implementation in r3
	HTTP Engine
	Prova Engine
	Xcerpt Engine
	XChange Engine
	XQuery Engine

