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1 GoPubMed: Ontology-based literature search

1.1 Introduction

Which techniques use the Prominin-1 (CD133) marker? Which proteins are related to
Alzheimer’s disease? Which hormone is Autistic Disorder associated with? Is apoptosis a hot
topic? Which are leading centers and scientists for liver transplantation? Where is the main
research done for dengue and leprosy? What treatments does the web discuss for Alzheimer?

The scientific literature and the web hold answers to all of these questions, but it is difficult
to obtain them with classical search engines, as they merely present possibly long lists of
search results. In contrast, ontologybased search engines can use their hierarchical background
knowledge to provide an intelligent filing system, which categorizes results. The categorization
gives an overview over large result sets and can be used to answer questions. For example to
find the techniques associated with CD133, a query for CD133 will return many documents as
a long list in a classical search engine. In contrast, a search engine with ontological background
knowledge will identify flow cytometry as a technique and categorize the documents accordingly.
The user can then use this hierarchical filing system to select the few articles mentioning
techniques and even fewer ones mentioning flow cytometry.

Key to this new search paradigm is the background knowledge, which is used to categorize
documents. With efforts such as the GeneOntology[Ashburner et al., 2000] and MeSH, the
needed knowledge is readily available. MeSH contains for instance the fact that flow cytometry
is a technique and the GeneOntology contains that apoptosis is also known as programmed cell
death and that caspases are part of the apoptotic programme.

The central problem of ontologybased search is the mapping of ontology terms to text,
this task, known as term extraction, is difficult, as authors do not write their abstracts with
an ontology in mind. For instance the mapping must be flexible and map the ontology term
”transcription factor binding” to the text “. . . a transcription that binds . . . ”, although it does
not appear literally.

In the remainder of this chapter we give a brief introduction into ontologies, finding ontology
terms and entity recognition in text. We show how GoPubMed.org, a search engine which
uses the GeneOntology and MeSH to index PubMed, can answer the introductory questions
and more. Furthermore we present GoWeb an application using the GoPubMed features to
introduce an ontological knowledge base for web search. We conclude by comparing several
other search engines, including other PubMed search engines and ontology-based search engines.

1.2 Ontology-based Text Mining

1.2.1 Ontologies

A fundamental aspect for the work of researchers is the need to share knowledge. In the
beginning this was often done without the help of a controlled vocabulary or nomenclature.
This is in particular applicable for the biomedical area and life sciences. There are many
genes and proteins that have multiple names or identifier. An example is Hnrpa1 which is also
known as Tis, Fli-2, heterogeneous nuclear ribonucleoprotein A1, helix-destabilizing protein,
single-strand-binding protein, hnRNP core protein A1, HDP-1, and topoisomerase-inhibitor
suppressed.

More over there seems to be also in some cases a competition for creative gene names like
Cleopatra, Ariadne, groucho, lost in space, brokenheart, hairy, superman and many more. Of

1



course there have also been efforts to standardize names or at least to reach a consensus for
naming. For instance in the context of yeast research and for human genes there are widely
used standards, even if they are not always adhered to in literature.

Similar issues arise, if the task is to annotate genes and their function within the categories
biomedical process, molecular function, and cellular components. You can find that

• Cellulose 1,4-beta-cellobiosidase is also known as exoglucanase,

• superoxide-generating NADPH oxidase as cytochrome B-245,

• thiamin as vitamin B1,

• pyrexia as fever,

• heme as haem, and

• Apoptosis as cell death.

The aim of ontologies is to reduce this problem. They include concepts, synonyms and their
relation ships.

One prominent example for a widely used ontology is the GeneOntology
[Ashburner et al., 2000]. In the beginning it was developed for the annotation of the
fruitfly genome. Later the GeneOntology was adapted and expanded for mouse and other
genomes and covers now biomedical processes, molecular functions, and cellular components.
It uses two kinds of relationships to model the dependencies between the concepts: isa and
partof. Today the GeneOntology is part of the Open Biomedical Ontology (OBO) effort,
which houses over 60 ontologies covering many areas of interests. This includes anatomy,
chemical compounds, development, experimental conditions, phenotype, taxonomy and more.

The second example are the Medical Subject Headings (MeSH). The MeSH thesaurus is
developed by the U.S. National Library of Medicine (NLM). Its main purpose is to provide an
index for the articles, books and other media in the National Library of Medicine. It tries to
cover all relevant topics for the medical area this includes disease, anatomy but also others like
geographic locations and experimental techniques.

There are other medical ontologies, e.g. GALEN, SNOMED and UMLS [Bodenreider, 2004].
An overview of all presented Ontologies is available in Table 2. The Unified Medical Language
System (UMLS) has a different approach. It tries to integrate as much relevant ontology as
possible. The UMLS consists of three parts: a metathesaurus, a semantic network and the
specialist lexicon. Whereas the metathesaurus represents the concepts including the synonyms,
the semantic network corresponds to categories and the specialist lexicon acts as a kind of index.

A non-trivial aspect is the design and later on the evolution of ontologies. With many
thousands concepts and definitions how does one keep it all including the relations consistent.
Although this starts with question: How is consistence defined in the first place? The GeneOn-
tology follows an informal approach. The transitive closure still has to hold. This means, if
a concept A is-a B and B is-a C then A is-a C has to be true. These inferred redundant
relationships are not kept directly in the ontology. This helps to ease the maintenance of the
ontology as corrections, modifications and additions only need to check if their direct relations
are still valid.

Even though this consistency definition is a pragmatic solution there are more formal ap-
proaches. One such idea is the usage of description logics to formally define concepts and
their relations. This was used for instance in the GALEN and SNOWMED ontologies. The

2



advantage of the formal definitions is the chance to automatically check for inconsistencies in
the ontology. Imagine that one adds the new fact heparin is-a glycosaminoglycan, but it was
not yet stated that heparin biosynthesis is-a glycosaminoglycan biosynthesis. Because of the
formally defined relations and concepts, this additional relation can be inferred with this new
fact in the knowledge base.

1.2.2 Finding Ontology Terms in Text

The ontologies presented above have been designed to annotate data or to be used as classi-
fication schemes. But they were not designed for the purpose to build novel search engines.
Therefore the identification of ontology entities in free text remains a challenging task. For
instance, a recent assessment for extracting GeneOntology terms revealed performances around
20% success rate only [Ehrler et al., 2005]. The difficulties of automating manual annotation
is evident from the fact that only as few as 15% of manually annotated terms appear literally
in the associated abstracts. Biomedical text mining uses various techniques and algorithms,
e.g. natural language processing, information retrieval and machine learning, to identify the
relevant entities [Jensen et al., 2006] and have to deal with groups of problems.

Ad-hoc Variations of Names To begin with, terms in vocabularies and labels of concepts
in ontologies appear in many, slight or severe, variations in natural language texts.

• orthographic: IFN gamma, Ifn-γ

• morphological: Fas ligand, Fas ligands

• lexical: hepatitic leukaemia, liver leukemia

• structural: cancer in humans, human cancers

• acronyms/abbreviations: MS, Nf2

• synonyms: neoplasm, tumor, cancer, carcinoma

• paragrammatical phenomena/typographical errors: cerevisae, nucleotid

Some of the terms encountered in texts are rather ad-hoc creations, which cannot be found in
any term lists.

Synonymity of Ontological Terms As mentioned before, terms in a vocabulary or ontology
might not appear literally in a text, but authors rather use synonyms for the same concept. First
of all, this complicates proper searches: When searching for “digestive vacuole”, results should
also contain texts that mention ”phagolysosome”; mentionings of “ligand” refer to the concept
”binding”; an “entry into host” might occur as an “invasion of host”. In the Plant ontology
for example, many synonyms exist for the same structure in different species. “Inflorescence”
is referred to as “panicle” in rice, and as ”cob” in sorghum, and “spike” in wheat, for instance.
We note that there are also intra-ontology synonymities: “eye” in AnoBase can refer to the eye
spot or the adult compound eye.
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Ambiguity of Ontological Terms Terms can have a very specific meaning in biomedical
research, but mean other things in other contexts. Examples are “development”, “envelope”,
“spindle”, “transport”, and “host”. Protein names such as “Ken and Barbie”, “multiple sclero-
sis” or “the” that resemble common names, diseases, or common English words are especially
hard to disambiguate. The same problems arise from drug names like “Trial” or “Act”.

Stemming and Missing Words Some aspects for finding terms in text refer to the actual
processing of natural language and appear rather technical. Very often, words will appear in
different forms, such as “binding” and “binds”. These refer to the same concept, which can
be solved by resolving words to their stem (“bind”). However, the analogous reduction of
“dimerisation” to “dimer” is more questionable. The former talks about the process, the latter
about the result. A similar example is “organization”, where a transformation into “organ” is
invalid.

Texts contain additional words that are missing in the ontological term. This happens, for
instance, when a text contains further explanations that describe findings in more detail. An
example is “tyrosine phosphorylation of a recently identified STAT family member” that should
match the ontology term “tyrosine phosphorylation of STAT protein.” In general, matching is
allowed to ignore words such as “of”, “a”, “that”, “activity”, but obviously not “STAT”.

Additional background information on term variations is needed to know that a “family
member” can refer to a protein. Formatting of terms represents another source for potential
matching errors. Terms in ontologies contain commas, dashes, brackets, etc., which require
special treatment. For “thioredoxindisulfide” the dash can be dropped, for “hydrolase activity,
acting on ester bonds” the clause after the comma is important, but unlikely to appear as such
in text. Terms containing additions such as ”(sensu Insecta)” may have important contextual
information, but are also less likely to appear in text.

Ontology Specific Issues

Term overlaps — some concepts can overlap in their labels or synonyms: in many cases
there is a difference between what authors write and what they actually mean to express.
Unfortunately, researchers do not have strict and formal ontologies or nomenclatures in
their minds when composing a scientific article; in most of the cases they might use parent
terms to refer to a child term, or viceversa. For example, many people are treating the
MeSH terms ‘cardiovascular disease’ and ‘coronary artery disease (CHD, CAD)’ the same,
although the latter is a child of the first.

Descriptive labels — in most of the cases, the labels in an annotation ontology cannot be
used directly for text mining, often due to their explanatory nature. For example, it is un-
likely that the Gene Ontology term “cell wall (sensu Gramnegative bacteria)” will appear
as such in text. Terms like “positive regulation of nucleobase, nucleoside, nucleotide and
nucleic acid metabolism” and “dosage compensation, by inactivation of X chromosome”
are almost complete sentences and are also unlikely to be found as such in text.

Ambiguity — results either from identical abbreviations for different terms, or, in general,
tokens that can refer to terms that might or may not be of our interest. An example of
an ambiguous abbreviation is “CAM” that can stand for “constitutively active mutants”,
“cell adhesion molecule”, or “complementary alternative medicine”. The second category
of ambiguities — and the most difficult to handle — is that of terms that (in the context

4



of anatomy) can refer to different species. An example of such ambiguities is “embryo”,
which can be a chicken, mouse, human, or even zebrafish embryo.

1.2.3 Entity Recognition

Although finding ontological concepts in free text is important, there are many more relevant
things to find in the text for instance:

• proteins,

• genes,

• species, or

• mutations.

The task to find these entities is called entity recognition. The identification of ontology terms
can be seen as a sub species of the more general task of entity recognition. As a conse-
quence many of the techniques and problems described above are also valid for entity recog-
nition. But for instance for protein and gene name identification there some other difficulties
[Finkel et al., 2005].

One challenge is the increased ambiguity and synonymity of names. Often the gene name
and the protein are used by the authors as synonyms or a gene has the same name in different
organisms. Another task is to deal with the number of entities one can find. As an example,
the UniProtKB/TrEMBL protein database contains over 4,500,000 entries. The real number to
match is even higher as one has to integrate all the synonyms and variants of the protein names
and genes. For the case of identification on which species an article talks about, a reoccurring
problem is, that the species is sometimes never mentioned in the text. For mentionings of point
mutations one has to recognize the mutations and the related proteins to have a useable result
[Lee et al., 2007, Baker and Witte, 2006]. Moreover many cases of ambiguities and missing
concepts can only be resolved if one tries to use any information available from the text. For
example if a gene name was found, that lists several possible proteins. To reduce the list of
candidates, one can try to find the species or a point mutation in the text and than verify if
they match with any of candidate proteins.

he importance of entity recognition and their relations has been acknowledged by the scien-
tific community. There have been efforts to establish benchmarks and competions to advance the
research. Examples for this are the “bioentity recognition task at JNLPBA” [Kim et al., 2004]
or the “Critical Assessment of Information Extraction in Molecular Biology” (BioCreAtIvE)
[Hirschman et al., 2005]. In the BioCreAtIvE II for the gene mention task the best systems
[Hakenberg et al., 2007] could achieve a precision of 78.9% and a recall of 83.3% as an example
for the current state of the art.

All of the above problems mean that extracting entities from literature will not be errorfree.
However, despite all of these problems, ontologybased literature with text mining can answer
questions as posed in the introduction. Next, we introduce GoPubMed and illustrate how they
help to answer questions.

1.3 Question Answering with GoPubMed

Traditional keyword based searching gives a possible very long list of results. But finding the
relevant documents is only the start; the user has to check if the results are relevant to him.
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Often there is a question behind query. GoPubMed can answer all the introductory questions,
as it uses the ontological background knowledge, namely the GeneOntology and MeSH to index
search results. This allows GoPubMed to categorize the search results, identify relevant terms
in the result set and to summarize trends for a topic. This topic can either be a term and its
children or the result set of a query. For ontology enhanced web search the GoWeb systems is
available. Figure 1.4 shows a screen shot of GoPubMed. The main panel contains the search
results and the panel on the left the relevant categories from the ontologies in a summary and
as a tree.

Now let us consider the questions and more importantly the answers in detail. Please
consider that these questions were answered with GoPubMed in July 2007, due to the increasing
number of publications the results may vary in the future.

Question: Which techniques use the Prominin-1 (CD133) marker?

Answer: Search in GoPubMed for “CD133” and open Techniques and Equipment in “top five
& more” on the left. Listed as first is “Flow Cytometry”. If you hover with the mouse
above this term, you will see the description in a tool tip. The listed articles for flow
cytometry contain statements like:

“CD133+ and CD34+ cells were analyzed by flow cytometry to assess expression of
cell division antigens” (Denner L. et al., Cell Prolif., 2007).

Other interesting terms are “Cell Separation” and “Immunohistochemistry” There you
can find a statement like:

“Microarray screening, single and dual-label immunocytochemistry and RT-PCR
were performed to detect embryonic and neuronal stem cell markers, such as Oct3/4,
Nanog, CD133, and Musashi-1.” (Seigel GM et al., Mol. Vis., 2007).

A follow up question might be “Which types of cells are often targeted with these tech-
niques?” The answer is already present “Stem Cells”; it is the top term for the query.

Question: Which proteins are related to Alzheimer’s disease?

Answer: Type in Alzheimer and open chemicals and drugs in ”top five & more” on the
left. Among others there are “Amyloid”, ”Amyloid beta-Protein” and “Cholinesterase
Inhibitors” listed as related proteins. By clicking on Amyloid beta-Protein, we can re-
duce from 1000 to 60 relevant articles and get the following definition:

“A 4-kDa protein, 39-43 amino acids long, expressed by a gene located on chro-
mosome 21. It is the major protein subunit of the vascular and plaque amyloid
filaments in individuals with Alzheimer’s disease and in aged individuals with tri-
somy 21 (DOWN SYNDROME). The protein is found predominantly in the nervous
system, but there have been reports of its presence in non-neural tissue.”

The article with from Ohyagi Y et al. from 2007 mentions e.g. ”Inhibition of aggregation
of amyloid pprotein (AP) . . . are known as potent therapeutic tools for Alzheimer’s
disease (AD).” Another article (Chiarini A. et al., Ital J. Anat. Embryol., 2006) states
“Reportedly, betaamyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative
changes of Alzheimer’s disease (AD) . . . ”.

Question: Was Abeta42 already used in a clinical setting?
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Answer: Enter “Abeta42 drug” into the GoPubMed system and go on the result page to
hierarchy of content on the lower left. Open first the category ”Chemicals and Drugs”
and than “Organic Chemicals”. By clicking on “hydrocarbons” you reduce the result set
to only 41 articles. A quick skimming over of the abstracts reveals statements like

• “. . . minocycline treatment did not alter the cerebral deposition of Abeta . . . ” (Fan
R et al., J Neurosci, 2007), or

• “. . . naproxen that do not lower Abeta42 . . . ” (Cole GM. et al., Ann. NY Acad.
Sci., 2004).

Select the next category “Carboxylic Acids”, this will display 36 articles. On top of the
results you can find again the definition of the term but also a link the Wikipedia article
about carboxylic acids. The list of articles includes statements such as

• “. . . ibuprofen possess preferential Abeta42-lowering activity . . . ” (Leuchtenberger
S. et al., Curr. Pharm. Des., 2006).

The GoPubMed system provides also links for mentioned protein names in an article, e.g.
APP. This links opens the EBISwissprot database showing a list of all proteins related to
APP.

Question: Which hormone is Autistic Disorder associated with?

Answer: Submit Autistic Disorder as query in GoPubMed. In ”hierarchy of content” open
“Chemicals and Drugs”, then “Hormones, Hormone Substitutes and Hormone Antago-
nists”, and then select “Hormones”, which reduces the number of relevant articles to 49.
For more details on special hormones you can browser in the “Gonadal Hormones” cate-
gory which also has the term “Testosterone”. Selecting testosterone, the result now shows
5 articles, with sentences like

• “. . . that high fetal testosterone levels could play a role in the aetiology of autism.”
(de Bruin EI. et al., Dev. Med. Child Neurol., 2006),

• “Fetal testosterone and sex differences in typical social development and in autism”
(Knickmeyer RC. et al., J Child Neurol, 21 (10): 825-45, 2006), or

• “. . . high levels of testosterone influences some autistic traits and that hormonal
factors may be involved in vulnerability to autism.” (Knickmeyer R. et al., Horm.
Behav., 2006)

For more example questions and answers have look at Table 2.

1.3.1 Hot Topics

Despite the overall growth of literature, some topics are hot and take-off while others are stag-
nant or are in a cool down phase. Bibliometric analyses aim to shed light on such developments
and help to identify emerging trends. Such analyses data back to the 1960s [de Solla Price, 1965]
and typically focused on research topics [Garfield and Melino, 1997], specific journals
[Boyack, 2004], or the researchers themselves [de Solla Price, 1965, Newman, 2004]. The Hot
topic feature of GoPubMed features views on ontology terms from the knowledge base. It
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considers a term and all its children as one topic. For each topic a bibliometric analysis is
provided.

The hot topic page for an ontology term includes two graphs showing the absolute number
of publications per year for a topic. The second graph shows the relative share compared to the
total number of publications per year in PubMed. An increase in the share indicates that the
topic is growing faster than overall number of publications. Both graphs can be used to check
whether the publication activity in a topic is decreasing, stagnant, or growing. In addition the
publication count you can find a list of the most active authors, the list of journals with the
most publications for this topic and a list of cities and countries with the most publications. To
visualize coauthorship, which author publishes together with which other authors, we provide
a coauthor network image. Publications between authors are denoted as edges between the
author nodes. If no edge exists then the authors did not yet publish together, according to the
publications listed in PubMed for this topic. The last feature is a world map where red dots
indicate where all the publications are located for the current topic. All these features of the
hot topics page are precalculated using the list of authors and affiliation of an article and the
annotations from the GoPubMed system for all 16 Million PubMed articles.

To check the hot topics in GoPubMed for a term there are two options. The first way is to
just search for the term in the normal search field and select the link from the list after “Show
statistics for term:”. Or second option, one can directly use the “Hot Topics” mode by selecting
it in top bar. There you could also choose to use the advanced search, use the help page, a
contact form or see the content of your clipboard.

Question: Is apoptosis a hot topic?

Answer: Use the hot topics to search for apoptosis. There are two apoptosis entries available,
one from the GeneOntology and the other from MeSH. Select one of them by clicking on
it. To answers the questions about trends have a look at the two graphs in Publications
over time. They both reveal that the topic has been growing since the early 1990’s. This
is in line with Garfield and Melino’s [Garfield and Melino, 1997] investigation of the field.
But the second graph with the relative research interest shows also, that in the last 3
years the growth was not faster than the average growth of the whole PubMed literature.

Question: Which are leading centers and scientists for liver transplantation?

Answer: Query GoPubMed for “liver transplantation” and open the hot topics statistics for
this term (see also Figure 1.4). Among the top authors is ”Neuhaus P” and among the top
cities is “Berlin”. Prof. Peter Neuhaus works at the Charité Hospital Berlin, Germany.
He is a leading specialist in the field. A look in the coauthor graph reveals with whom
Peter Neuhaus has worked and published with.

Question: Where is the main research done for dengue and leprosy?

Answer: Retrieve the term statistics for Dengue. You will find that in the list of top cities
there are Bangkok and Rio de Janeiro as the two top cities. In the top countries Brazil,
Thailand and India are in the top 4.

For the term Leprosy you will find in the countries section India is the top country. This
is also reflected in the list of important cities, where one can find several cities located in
India. Both terms show that the local occurrence of diseases can be shown in GoPubMed.
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All the examples for the usage of hot topics where based on the precomputed statistics using
the ontology terms from the knowledge base as topics. But the result set of a given query may
also be seen as a topic. This dynamic hot topics feature of GoPubMed offers you a bibliometric
analysis of any result set of a query. This analysis contains the graphs about the publications
over time, the lists of top authors, journals, cities and countries. It also includes the world map
for the visualization of the geographic locations.

The dynamic hot topics can of course also be used to answer questions, for instance:

Question: Who are the top authors for Abeta42 Protein?

Answer: Use the GoPubMed site to search for “Abeta42”. This query finds currently 767
articles. In the query summary field above the articles there is a link saying “Show
statistics for these 767 articles”. Clicking on this link will lead to the dynamically created
hot topics. After the two graphs for the publications over time, there is the list of top
authors. Listed there you can find for instance “Bennow K” as top author. The number
of shown authors can be increased by clicking on the “more” link below the table. The
publications for the author can be retrieved by using the provided link with the author
name from the table.

Question: Who publishes most at the Max Planck Institute of Molecular Cell Biology and
Genetics, Dresden (MPI-CBG)?

Answer: Search for “Dresden[AD] Planck[AD] Genetics[AD]” and click on the link “show
statistics for these 305 articles”. Currently the top author is Kai Simons with 41 pub-
lications, but this will probably change when new articles are published. In addition to
the people one can also easily retrieve all publications in the Science journal from the
MPI-CBG by clicking on the provided link “Science” in the top journals list.

This example can be extended to be used with any institution mentioned in the affiliations of
PubMed articles. One might also consider to use date ranges (e.g. years) to check for changes
in the publication profiles over time.

1.3.2 GoWeb

Sometimes the search with PubMed is not enough and the user wants to use normal general
purpose search engines like Google or Yahoo. With GoWeb (gopubmed.org/goweb/) we of-
fer internet search with ontological background knowledge. Some of the resources you can
search with are for instance full text articles not included in PubMed, nonscientific sources like
wikipedia or web based patent databases, commercial sites and vendors for equipment, special
interest sites like the alzforum.org, or even news sites.

GoWeb uses standard web search engines and categorizes the results with its annotation
algorithms. Normally web searches return not only the url but also the title and a short text
snippet from the result page containing your searched keywords. These texts are textmined and
the resulting terms are used in the same way as in GoPubMed to present the results of your
search. You can use the ontological background knowledge to answer questions and reduce the
result in a fast an efficient way without the need to read all the presented results. It includes,
if available, also wikipedia links and protein names. Some example questions and answers are:

Question: Are there antibodies for ADDL?
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Answer: GoPubMed can also search the web. Go to gopubmed.org/goweb and type ADDL
antibody. Open “Chemicals and Drugs” and click on “Antibodies, monoclonal”. The
search results are now reduced from 100 to 8. Besides many pages of the Alzforum,
there is the news that ”Acumen and Merck Enter Into Alzheimer’s Collaboration” which
talks about: ”. . . exclusive rights Acumen’s ADDL technology monoclonal antibodies . . .
million development approval milestones first antibody product is commercialized. . . . ”

Question: What treatments does the web discuss for Alzheimer?

Answer: Go to gopubmed.org/goweb and type ”Alzheimer treatment”. Go to “Chemicals and
Drugs” there you can find the term Memantine and also the term Vitamins. For more
information on Vitamins click on the term. This will reduce the result set from 100 to 2
documents. In the result snippets you can find a statement like: “. . . vitamin may also
be an ideal natural treatment for Alzheimer’s disease too. . . . Over the course of a small
study, researchers at the University of Wisconsin . . . ”

1.4 Comparison and Conclusion

Currently, there is a lot of interest in literature search as is evidenced by the recent engines such
as Google Scholar or Microsoft’s Windows Live Academic (see Table 1.4). This includes also
publishers like Elsevier with Scopus. These Engines offer a more comprehensive or different
document base, than the classical PubMed search does, but they currently do not include
intelligence to answer questions.

GoPubMed [Doms and Schroeder, 2005] indexes PubMed search results with ontological
background knowledge, such as GeneOntology and MeSH. As shown above, this novel approach
to search can help to answer questions. In particular the summary of important terms in “top
five & more” is a most helpful feature for answering questions or reducing the big initial result
to a smaller set of relevant articles in one click. With GoWeb the ontological background
knowledge can also be applied to normal web search and be able to nonPubMed sources to
answer questions.

GoPubMed’s hot topics feature additionally allows users to get an overview of research
trends, relevant journals, key authors and regional research interests. This feature is not pro-
vided by any of the other engines so far. GoPubMed is scalable and the system currently handles
a user’s search result up to 10.000 documents. It provides also additional useful features like
links to wikipedia pages and mentioned proteins in SwissProt.

As GoPubMed is not the only PubMed search engine we give here a brief comparison of
other tools (see also Table 1.4):

HubMed [Eaton, 2006] is direct front end to PubMed. It offers tools for the citation man-
agement of found PubMed articles. It also provides options for expanding the query or
clusters the results in categories. This is all based on the MeSH terms directly provided
by PubMed. If there are no MeSH concepts available for an article, than this features do
not work, because no term matching is done by HubMed itself. This is usually the case
the more recent articles. As an alternative they offer a tagging system where you can add
your own tags to an article.

iHOP [Hoffmann and Valencia, 2004] uses genes and proteins as hyperlinks between sentences
and abstracts. It converts the information in PubMed into one navigable resource.
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The navigation along the gene network allows for a stepwise and controlled exploration
of the information space. Each step through the network produces information about one
single gene and its interactions.

eTBLAST [Lewis et al., 2006] is quite different approach to search the PubMed articles. It
is based on text similarity and allows you to search for related articles using a relevancy
ranking different from PubMed. Input a paragraph/abstract which is relevant for your
search and eTBLAST returns a list of articles. For a search result one can list relevant
authors, journals and a timeline.

PubFinder [Goetz and der Lieth CW von, 2005] Simliar to eTBLAST it can find related arti-
cles from a set of abstracts. It derives a list of discriminating words, which is subsequently
used for scoring all defined PubMed abstracts for their probability of belonging to the
defined scientific topic.

Textpresso for C. elegans [Mller et al., 2004] has been developed as part of the Wormbase
effort. It offers currently about 100 concepts such allele, anatomy, association, charac-
terization, clone, comparison, consort, developmental stage, disease, drugs, effect, entity
feature, gene, involvement, life stages, mutants, nucleic acid, organism, pathway, pheno-
type, purpose, regulation, reporter gene, restriction enzyme, sex, spatial relation, strain,
time relation, transgene, transposon, vector and including also a subset of GeneOntol-
ogy concepts. It searches only abstracts and full text articles relevant for C. elegans.
Textpresso does not offer an ontology tree for the exploration of a result set.

Vivisimo ClusterMed does not use existing ontologies, but clusters documents hierarchi-
cally, although it distinguished between categories like title and abstract, authors, affilia-
tion, or publication date.

From document clusters, it derives representative terms. This automated hierarchy gen-
eration inevitable merges concepts of different nature, as the algorithm is only guided by
the given documents, thus missing a lot of background knowledge a human uses in the
creation of an ontology. Since Vivisimo clusters documents on the fly there is a limit to
its scalability.

XploreMed [Perez-Iratxeta et al., 2003] filters PubMed results by the eight main MeSH cat-
egories and then extracts topic keywords and their co-occurrences. Abstracts can be
retrieved for co-occurring keywords. The topic keywords are single words, usually oc-
curring with a high frequency. Thus multi word concepts such as “Stem Cell” are not
proposed as keyword. Currently XploreMed has a limited scalability and searches are
restricted to 500 documents.

The combination of text mining and ontology-based background knowledge holds the possi-
bility for intelligent search either in literature or in the web. With a new generation of emerging
search engines, biomedical researchers can answer questions and get an overview over a topic.
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Ontologies
geneontology.org Ontology with ≥ 20.000 terms on biomedical pro-

cesses, molecular functions and cellular compo-
nent

nlm.nih.gov/mesh Medical Subject Headings created by the U.S.
National Library of Medicine, taxonomy with
≥ 150.000 terms

opengalen.org formal medical ontology, with ≥ 70.000 terms
snomed.org commercial medical ontology, which contains ≥

350.000 terms
nlm.nih.gov/research/umls/ Unified Medical Language System created by the

U.S. National Library of Medicine, contains ≥
1.000.000 terms

obofoundry.org Open Biomedical Ontology, collection of over 60
specialized biomedical ontologies

Search engines
pubmed.org NIH’s literature search engine
hubmed.org “PubMed rewired”
invention.swmed.edu/etblast/ Text similarity: an alternative way to search

Medline
glycosciences.de/tools/PubFinder/ PubFinder
www-tsujii.is.s.u-tokyo.ac.jp/medie MEDIE answering questions
ihop-net.org iHOP, gene network for navigating the literature
scholar.google.com Google’s literature search engine
academic.live.com Microsoft’s literature search engine
scopus.com Elsevier’s literature search engine
clustermed.info Document clustering on the fly with Vivisimo
Ontology-based literature search engines
gopubmed.org Explore PubMed with ontological background

knowledge
textpresso.org Wormbase full texts with many ontologies
xploremed.org Classification with high-level MESH headings and

word co-occurrences

Table 1: URLs for ontologies, literature search engines and ontologybased literature search
engine.

Which diseases are associated with HIV?
Answer: Type “HIV” and wait for the tree on the left to appear. Go to “top five & more”
and click on “disease”. Among others hepatitis and tuberculosis are mentioned. Clicking on
tuberculosis retrieves the relevant articles including statements such as “HIV and parasitic
co-infections in tuberculosis patients”.
Which anatomical structure is affected by the bacterium helicobacter pylori?
Answer: Type “helicobacter pylori”, go to “top five & more” and open “anatomy” Among
the terms listed is “gastric mucosa”. Hovering the mouse over the term reveals an explanation,
which mentions that gastric mucosa is the lining of the stomach.
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Which biological process is the protein Rab5 involved in and where is located in the cell?
Answer: Type “rab5” and wait for the tree on the left to appear. Go to “top five & more”.
Click on biological process shows “endocytosis” and clicking on “cellular component” shows
“endosomes”. Hovering over the terms displays brief explanations of what endocytosis and
endosomes are.
In which organisms is toluene degradation studied?
Answer: Type “toluene degradation” and wait for the tree on the left to appear. Go to “top
five & more” and open “organisms”. The bacteria pseudomonas is listed first. A click retrieves
the relevant articles.
Which enzymes are inhibited by aspirin?
Answer: Type “aspirin” and wait for the tree on the left to appear. Go to “hierarchy of
content” and then “chemicals and drugs” and “enzymes and coenzymes”. From there always
click the top child until you reach “cyclooxygenase 1” and “cyclooxygenase 2”. Clicking reduces
the articles to a few which mention that aspirin inhibits cyclooxygenases.
Which enzymes are important for congenital muscular dystrophy?
Answer: Type “congenital muscular dystrophy” and wait for the tree on the left to appear.
Go to “hierarchy of content” and then “chemicals and drugs”, “enzymes and coenzymes”,
“enzymes”, “transferases”. There are a number of articles with statements such as “glycosyl-
transferases has revealed a novel mechanism for congenital muscular dystrophy.”
Which techniques are frequently used to study zebrafish development?
Answer: Search for “zebrafish development”. Under “top five & more” open “techniques and
equipment”. In situ hybridization is listed first. Clicking the term retrieves relevant articles.
Which process are osteoclasts involved in?
Answer: Search for “osteoclast”. Under “top five & more” open “biological process”. The
first entry is “bone resorption”.
What are common histone modifications?
Answer: Search for “histone modification”. Under “top five & more” open “biological sciences”
and find methylation and acetylation.
Which diseases are associated with wnt signalling?
Answer: Search for “wnt signalling”. Under “top five & more” open “disease” and find
“carcinoma” and many other cancer terms.
Were there clinical trails focusing on Abeta42 and were any side effects observed?
Answer: Search for “Abeta42 clinical trail”. In “top five & more” open Diseases and click on
“Meningoencephalitis”. The result now shows 4 articles, with titles like “Subacute meningoen-
cephalitis in a subset of patients with AD after Abeta42 immunization”. So, yes there where
clinical trials, but there were also severe side effects like brain inflammation.
Which molecular function is Autistic Disorder associated with?
Answer: Search for Autistic Disorder. Under “top five & more” open “Molecular Function”
and find “neurexin binding”.
Which disease is Autistic Disorder associated with?
Answer: Search for Autistic Disorder. Under “top five & more” open “Diseases” and find for
instance “Fragile X Syndrome” as a related disease.

Table 2: More example questions answered with GoPubMed
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Figure 1: Which proteins are related to Alzheimer’s disease?
GoPubMed uses its ontological background knowledge to index search results according to the
GeneOntology and MeSH. The interface consists of three parts. The top most part contains
the input field for the query, in this example it is “Alzheimer”. You can submit a query by
using the “find it!” button. The panel below comprises the results for the query and is split
into to a left and a right part. The left panel contains the ontological background knowledge
relevant to your query. A summary over all identified terms in your result is presented in “top
five & more”. If you open the category “Chemicals and Drugs” you can find also proteins. In
“hierarchy of content” the complete induced ontology tree is available for browsing all concepts
found.
On the right side, you can browser the found articles. The articles are shown with title, authors,
journal, abstract and affiliation, also Wikipedia links and links to proteins identified from the
text are offered if available. In the picture shown here is the abbreviated version for articles
for faster browsing. You may switch between the full and short variant with the provided
buttons. On top of the articles there is a summary with details for the query. This may include
a link to dynamic Hot Topics and if your query matched an ontological concept a link to the
corresponding term Hot Topics. There also links to export the results to citation mangers.
After selecting a term from the left side, here “Amyloid beta-Protein”, the result view is up-
dated. It shows now the articles containing the selected concept. This includes also all child
terms of the selected term. Please remark that the initial result set size of 1000 articles was
reduced down to 50 relevant articles in two clicks. In the summary field additionally there are
now the term description and term synonyms listed. In case of “Amyloid beta-Protein” there
are currently 10 synonyms listed. To select an interessiting article into the buildin clipboard
use the paper clip icon provided directly next to the each article. To export a single articled
you can use the export icon. To view the content of your clipboard select Clipboard link in the
top bar. There you can also find the link to Hot Topics, Advanced Search, Help and a contact
form.
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Figure 2: Hot topics for “Liver Transplantation”
The result page for a query to Hot Topics starts with a summary for the selected concept includ-
ing a description, synonyms or the number of all publications in PubMed. Under Publication
over time you can find two graphs. The first graph displays the number of publications related
to this term per year. The second graph visualizes the fraction of publications on the topic
over the total number of publications in that year. For “Liver Transplantation” the first graph
displays growing number of publication, but the second graph denotes over the last years stag-
nation in comparison to the overall publication growth in PubMed. The top authors, journals,
cities, and countries are presented as tables. All table entries are links and retrieve the related
articles. If you would click on ”Neuhaus P” you can retrieve all the publications which have
an author with this name. The coauthor graph shows which author did publish together with
whom. The more thick a line, the more articles contain their names as co-authors. The world
map shows the regional distribution of the articles.
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2 MousePubMed: Searching Biomedical Literature with
Anatomy Ontologies

2.1 Introduction

Ontologies and vocabularies such as the Gene Ontology [Ashburner et al., 2000], UMLS
[Bodenreider, 2004], Mesh1, OBO2, Snomed3 GALEN4 are widely used for annotation of
biomedical data. They typically contain thousands of terms and cover broad subject areas
of biomedical research. Additionally, many species specific vocabularies for anatomy have been
designed covering among others plant [Jaiswal et al., 2005], C. elegans [Altun and Hall, 2006],
drosophila [Grumbling and Strelets, 2006], mouse [Baldock et al., 2003, Bard et al., 1998], and
human [Rosse and Mejino, 2003] anatomy. These vocabularies are used to facilitate commu-
nication between scientists in different communities and inter-operability between databases.
Annotators, who are usually human, assign terms from such terminologies for example to
genes. These assignments are ideally based on direct evidence from literature. Therefore,
it is an important problem to automatically identify terms from ontologies in literature to
support and even partly automate the annotation process. However, if terms from on-
tologies can be found in text, then ontologies can serve directly in literature search. Re-
cently, a number of such knowledge-based search engines have emerged such as for ex-
ample Textpresso [Mller et al., 2004], XplorMed [Perez-Iratxeta et al., 2003], and GoPubMed
[Doms and Schroeder, 2005]. The ontological background knowledge can serve to answer ques-
tions with such tools. Consider for example a researcher interested in the Pax6 gene. He/she
might have the following questions:

• Which processes is Pax6 involved in?

• Which diseases is Pax6 involved in?

• At which developmental stages is Pax6 active in mice?

Literature holds answers to these questions, but a classical literature search cannot answer
the questions directly, as articles will not mention terms like gene, disease or process, but
rather specific instances such as Pax6, Aniridia, or eye development. Since ontologies contain
knowledge that e.g. Pax6 is a gene, Aniridia is a disease, and eye development is a process,
they can help to answer questions.

Here, we will show how ontology-based literature search with GoPubMed can answer ques-
tions as the ones above. To accommodate the specifics of anatomy we will also discuss the
use of specialised background knowledge. In particular, we will devise an algorithm and a
system, called MousePubMed, to work with genes, tissues, and developmental stages as used
in the Edinburgh Mouse Atlas [Baldock et al., 2003]. We evaluate MousePubMed’s automated
annotation on PubMed abstracts with the handcurated annotations of the Edinburgh Mouse
Atlas. Before we go into the details of ontology-based literature search we will discuss the
general problem of identifying ontology terms in text with a specific emphasis on anatomical
and developmental terminology.

1nlm.nih.gov/mesh
2obo.sourceforge.net
3snomed.org
4opengalen.org

16



2.2 Databases and text mining

Curating Databases The large amount of species-specific databases today helps researchers
to easily access various kinds of information on many organisms. Most such databases are
manually curated by domain experts and constantly improved in terms of quantity and quality
with input from the respective research communities. This manual curation process guarantees
high quality and degree of reliability of the data. Annotations, for instance of genes and gene
products, are stored in structured manners (associated functions, phenotypes, etc.), so that
they can easily be queried by a researcher. Controlled vocabularies and ontologies designed for
specific types of annotations reduce the amount of ambiguity for both curation and later access.

Database curators constantly scan the relevant literature to find evidence for new anno-
tations related to their domain. These annotations are standardised terms from controlled
vocabularies, often referred to as ontologies. For genes and gene products, annotations re-
flecting functions, locations, and processes are sought [Ashburner et al., 2000]. For drugs, it
is interesting to find known digestive pathways and respective (desired and undesired) targets.
Such facts often are reported in the literature, spread over a large variety of journals and other
publication formats.

Ontologies as semantic frameworks for cross-database queries Efforts are under
way to design ontologies suited not only for a single species, but rather a range of or-
ganisms. Some of these ontologies have already reached advanced stages and are widely
used for annotations by many databases. One example is the Gene Ontology (GO), a hi-
erarchy of concepts related to biological processes, molecular functions, and cellular com-
ponents of genes and gene products. Many of the databases curating data on genes and
proteins use GO for their annotations such as UniProt and EntrezGene. Another example
is the Plant Ontology, a controlled vocabulary reflecting plant structures and developmen-
tal stages [Jaiswal et al., 2005]. It is used by the TAIR, Gramene, MaizeGDB, and other
databases [Berardini et al., 2004, Jaiswal et al., 2006, Vincent et al., 2003]. The use of such
common ontologies that are applicable to disparate databases, which may be species-centred
like SGD or gene-centred like EntrezGene, alleviates cross-database queries. An example is a
query across multiple species to find similarly annotated genes, possibly restricted to a common
type of tissue. The proper design of exhaustive ontologies and/or controlled vocabularies to
annotate, for instance, genes and gene products with structures, functions, processes, stages, or
phenotypes, and their installment in relevant databases present major tasks towards facilitating
comprehensive annotations and queries.

Databases vs. literature Queries across disparate databases are quite useful. However, a
lot of data are not yet stored in such a structured form. This is due to two main reasons. For one,
there is no immediate interest for researchers to submit their findings to (one or more) relevant
databases, as scientific publications function as the main instrument for making information
accessible and gaining reputation. The second reason comes with the necessary process of
manual curation of database entries and annotation to maintain a certain quality standard.
Another resource of data are aforementioned scientific publications themselves. Fairly often,
these provide insight into more recent findings than databases. In addition, more background
information, descriptions of experimental settings, etc. can be found in texts, showing broader
context as well as in-depth details. Natural language often is more suitable to express facts than
the structured form of any database. Moreover, many annotations in databases come in the
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form of free text, for instance functions and diseases in UniProt, or phenotypes in MGI. This
shows that scientific publications and other textual descriptions present important resources to
be considered when searching for certain information. So, how can ontological terms be found
in text?

Text mining In biomedical text mining, researchers use techniques from natural language
processing, information retrieval, and machine learning to extract desired information from
text [Jensen et al., 2006]. Even when the concepts to extract are available in a structured
form, such as a controlled vocabulary or ontology, finding them in free text is not always
an easy task. For instance, a recent assessment for extracting Gene Ontology terms revealed
performances around 20% success rate only [Ehrler et al., 2005]. The difficulty of automating
manual annotation is evident from the fact that only as few as 15% of manually annotated
terms appear literally in the associated abstracts.

Ad-hoc variations of names To begin with, terms in vocabularies and labels of concepts
in ontologies appear in many, slight or severe, variations in natural language texts.

• orthographic: IFN gamma, Ifn-γ

• morphological: Fas ligand, Fas ligands

• lexical: hepatitic leukaemia, liver leukemia

• structural: cancer in humans, human cancers

• acronyms/abbreviations: MS, Nf2

• synonyms: neoplasm, tumor, cancer, carcinoma

• paragrammatical phenomena/typographical errors: cerevisae, nucleotide

Some of the terms encountered in texts are rather ad-hoc creations, which cannot be found in
any term lists.

Synonymity of ontological terms As mentioned before, terms in a vocabulary or ontology
might not appear literally in a text, but authors use synonyms for the same concept. First of
all, this complicates proper searches: When searching for “digestive vacuole”, results should
also contain texts that mention “phagolysosome”; mentionings of “ligand” refer to the concept
“binding”; an “entry into host” might occur as an “invasion of host”. In the Plant ontology
for example, many synonyms exist for the same structure in different species. “Inflorescence”
is referred to as “panicle” in rice, and as “cob” in sorghum, and “spike” in wheat, for instance.
We note that there are also intra-ontology synonymities: “eye” in AnoBase can refer to the eye
spot or the adult compound eye. In a similar manner, the Edinburgh Mouse Atlas contains
unspecific mentions such as “cavity” or “body” for the mouse.
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Table 3: Some anatomical terms that have other meanings in different domains. Some mis-
interpretations occur only when certain spelling variations are allowed, for instance, ignored
capitalisation or plural forms.

Term Other meaning

rod common English
iris species: plant; common English
axis species: deer; common English
chin common English
beak common English
pons protein: Serum paraoxonase/arylesterase 1 (PON)
penis protein: Penicillinase repressor (penI)
sigma common English
patella species: limpet
cicatrix disease: scar
nephrons drug: bronchodilator (Nephron)
hemocytes drug: iron supplement (Hemocyte)
chondrocytes drug: cartilage cells for implantation
hippocampus species: seahorse

Ambiguity of ontological terms Terms can have a very specific meaning in biomedical
research, but mean other things in other contexts. Examples are “development”, “envelope”,
“spindle”, “transport”, and “host”. Protein names such as “Ken and Barbie”, “multiple sclero-
sis” or “the” that resemble common names, diseases, or common English words are especially
hard to disambiguate. The same problems arise from drug names like “Trial” or “Act”. Ta-
ble 3 lists some anatomical terms that have other meanings in different domains. Especially
where cross-ontology or cross-database queries are needed, one has to consider ambiguity, for
instance when applied to different organisms: “gametogenesis” (sexual reproduction) in plants
is different from “gametogenesis” in metazoans.

Stemming and missing words Some aspects for finding terms in text refer to the actual
processing of natural language and appear rather technical. Very often, words will appear in
different forms, such as “binding” and “binds”. These refer to the same concept, which can
be solved by resolving words to their stem (“bind”). However, the analogous reduction of
“dimerisation” to “dimer” is more questionable. The former talks about the process, the latter
about the result. A similar example is “organisation”, where a transformation into “organ” is
invalid.

Texts contain additional words that are missing in the ontological term. This happens, for
instance, when a text contains further explanations that describe findings in more detail. An
example is “tyrosine phosphorylation of a recently identified STAT family member” that should
match the ontology term “tyrosine phosphorylation of STAT protein.” In general, matching is
allowed to ignore words such as “of”, “a”, “that”, “activity”, but obviously not “STAT”. Ad-
ditional background information on term variations is needed to know that a “family member”
can refer to a protein.

Formatting of terms represents another source for potential matching errors. Terms in
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an ontology contain commas, dashes, brackets, etc., which require special treatment. For
“thioredoxin-disulfide” the dash can be dropped, for “hydrolase activity, acting on ester bonds”
the clause after the comma is important, but unlikely to appear as such in text. Terms con-
taining additions such as “(sensu Insecta)” contain important contextual information, but are
also less likely to appear in text.

2.3 Ontologies and text mining

Three main key dimensions of ontologies have been defined by Uschold: formality, purpose, and
subject matter [Uschold, 1996]. The degree of formality by which a vocabulary is created and
meaning is specified varies among different ontologies. The purpose refers to the indented use
of an ontology. Domain ontologies (such as medicine or anatomy), problem solving ontologies,
and representation ontologies comprise examples for different subject matters an ontology is
characterising.

In contrast to ontologies designed primarily for annotating biological objects, there is a
clear distinction to ontologies designed for text mining. We will describe this distinction and its
impact on text mining strategies as well as on the redesign of dedicated ontologies. In the case of
a text mining ontology, there must be some compromises on the relationships and on the labels
used. The ontology should be easily used by the search engine in order to locate in the text
important ontological terms/parts but also be easily used and edited by the domain experts.
Therefore, it must not be very formal in terms of containing many different relationships between
terms (such as ‘derives from’, ‘causes’, ‘part of’, etc.) or of distinguishing between ‘classes’ and
‘instances’. It should rather be a structured vocabulary containing only ‘is a’ relationships
between terms (only child-parent relationships). In this way, any search engine can identify
each class in the biomedical literature. In general, there has to be a compromise to obtain a
correct ontology with valid relations and still get the best possible results from text mining.
The most prominent topics considering ontologies designed for text mining are the following.

• Term overlaps — some concepts can overlap in their labels or synonyms: in many cases
there is a difference between what authors write and what they actually mean to express.
Unfortunately, researchers do not have strict and formal ontologies or nomenclatures in
their minds when composing a scientific article; in most of the cases they might use parent
terms to refer to a child term, or vice-versa. For example, many people are treating the
MeSH terms ‘cardiovascular disease’ and ‘coronary artery disease (CHD, CAD)’ the same,
although the latter is a child of the first.

• Descriptive labels — in most of the cases, the labels in an annotation ontology cannot be
used for text mining, usually due to their explanatory nature. For example, it is unlikely
that the Gene Ontology term “cell wall (sensu Gram-negative bacteria)” will appear as
such in text. Terms like “positive regulation of nucleobase, nucleoside, nucleotide and
nucleic acid metabolism” and “dosage compensation, by inactivation of X chromosome”
are almost complete sentences and are also unlikely to be found as such in text.

• Ambiguity — results either from identical abbreviations for different terms, or, in general,
tokens that can refer to terms that might or may not be of our interest. An example of
an ambiguous abbreviation is “CAM” that can stand for “constitutively active mutants” ,
“cell adhesion molecule” , or “complementary alternative medicine” . The second category
of ambiguities — and the most difficult to handle — is that of terms that (in the context
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of anatomy) can refer to different species. An example of such ambiguities is “embryo”,
which can be a chicken, mouse, human, or even zebrafish embryo. Therefore, if we are
interested in the different developmental stages of the mouse embryo nervous system, we
need to retrieve articles focusing on studies on mouse embryos and not on any other study
organism. If the term “embryo” is inserted in the Mouse Anatomy ontology as such, then
the search engine will return articles on all kinds of embryos. If the term “mouse embryo”
is inserted in the ontology, the number of articles retrieved will not be the real number
of articles mentioning the term “mouse embryo”, since not all of them will mention the
term as such. A similar example is that of organs/tissues common to different species,
such as “eye” or “lens”.

• Generic and specific labels — when using the ontology for text mining in a specific biomed-
ical sub-domain (anatomy, disease, glucose metabolism, etc.), the ontological concepts
must be specific for that domain. The articles retrieved must be anatomy-specific or
disease-specific or glucose-metabolism-specific. Therefore, we need a vocabulary specific
enough to distinguish between relevant and irrelevant articles, but general enough to not
exclude potentially relevant articles. If the concepts are too generic, they could be re-
ferring to many other domains. For example, during the design of a glucose-metabolism
ontology, we might need to include information on kinetics. “Kinetics” as such is too
generic to be used as a term, as it can refer to different kinds of kinetics (kinetics of phase
transition, hydrolysis kinetics, kinetics of equilibrium reactions). On the other hand, the
term “glucose kinetics” might be too specific, as it might seldom appear as such in a text.
The decision on which terms should be used in the ontology ideally should only be made
after exhaustive searches with different variations of terms.

We can derive some simple rules from all these observations, which can be used for (re-
)design of ontologies when they should serve as resources for text mining applications.

• Avoid descriptive labels and synonyms: they should be likely to appear in texts as such
– avoid “and”, “of” and the like;

• Avoid improper spelling variations: capitalisation, noun plural forms, verb flexions;

• Use common names as labels or include them as synonyms;

• Add structural and lexical variations wherever possible;

• Keep the nomenclature consistent, precede terms with superstructure name;

• Use different representations of a concept in the ontology.

For a proper extraction of terms and subsequent term disambiguation in case of homonyms,
the occurrence of parents helps to decide on the exact term. As, especially in anatomical on-
tologies, terms can have multiple representations, such multiple hierarchies should also reflected
by the ontology. Examples are spatial and systemic representations of a tissue — “lung” is a
“body part”, and also a specific “organ system”. Depending on the context in which “brain”
is found, parent terms below “head” might not be found in the text at all, but rather terms
related to “organ system.” An ontology should therefore cover at least the most likely paths to
subsume a tissue.

All of the above problems mean that extracting terms from literature will not be error-free.
However, despite all of these problems, ontology-based literature with text mining can answer
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questions as posed in the introduction. Next, we introduce three such engines, GoPubMed,
MeshPubMed, and MousePubMed and illustrate how they answer questions.

2.4 GoPubMed and MeshPubMed

GoPubMed [Doms and Schroeder, 2005], MeshPubMed and MousePubMed, which is discussed
in the next section, index articles provided by PubMed with ontology terms from GO, Mesh,
and Mouse anatomy/development respectively. As an example consider Fig. 3, which shows a
screenshot of MeshPubMed when queried for Pax6. The key difference to a classical search are
the relevant ontology terms on the left. They list frequently occurring terms and the complete
hierarchy of relevant terms found in any document mentioning the given keywords. Clicking on
any of these terms reduces the result set and allows users to quickly filter large result sets to
the necessary documents needed to answer their question.

Let us consider the three questions about Pax6 from the introduction:

• Which processes is Pax6 involved in? A query in GoPubMed for Pax6 shows that the most
frequent process mentioned is development. Opening the development branch furthermore
reveals the processes of brain and eye development as well as organ morphogenesis includ-
ing pancreas development. And indeed the corresponding articles support this essential
role of Pax6 as transcription factor and master control gene in development of eye, brain
and pancreas [Kleinjan et al., 2006].

• Which diseases is Pax6 involved in? A query in MeshPubMed for Pax6 shows that the
most frequent disease mentioned is aniridia. Hovering the mouse over the term gives an
explanation that it is “a congenital abnormality in which there is only a rudimentary iris.
This is due to the failure of the optic cup to grow. Aniridia also occurs in a hereditary
form, usually autosomal dominant.” A click on aniridia shows articles mentioning both
the disease and the gene such as for example [Brinckmann et al., 2006], which confirm the
answer.

• At which developmental stages is Pax6 active in mice? A query in MousePubMed for
Pax6 shows that Theiler stages up to 14 (9 dpc, days post conception) are frequently
mentioned supporting Pax6 role in early development. Clicking on a stage reveals e.g.
the statement “In the early development of the vertebrate eye, Pax6 is required for...” in
[Azuma et al., 2005]

Indeed, Pax6 is the most researched gene of the family of Pax genes and appears throughout
the literature as a ‘master control’ gene for the development of eyes and is of medical importance
because heterozygous mutants produce a wide spectrum of ocular defects such as aniridia in
humans. We can now further check in MeshPubMed whether aniridia is a ‘hot topic’ and who
the most active authors publishing on aniridia are. Consider Fig. 4. It turns out that V.
van Heyningen is the number one publishing author having the most collaborations, especially
together with A. Seawright, as shown on the co-authorship network in Fig. 4.

2.5 MousePubMed

To use ontology-based literature search for developmental biology, we built MousePubMed
using vocabularies for mouse anatomy (EMAP), human anatomy (EHDA), mouse genes
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Figure 3: MeshPubMed query for “Pax6”. On the left, the five frequent terms, frequent terms
by category and all relevant terms are shown. The most frequently mentioned disease is aniridia.
Clicking the term and retrieving the articles mentioning aniridia confirms that Pax6 is involved
in aniridia

Figure 4: Part of the co-authorship network for “aniridia” in MeshPubMed showing V. van
Heyningen and A. Seawright as the authors active in this area.
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(from EMAP), and mouse developmental stages (Theiler) as resources. To demonstrate
MousePubMed’s usefulness, we evaluate it against tissue and developmental stage annotations
in the edinburgh Mouse Atlas. Before we discuss this evaluation, we introduce the matching
algorithm developed.

2.5.1 Extracting gene names, anatomy terms and developmental stages

Ontology based text mining is not restricted to finding words or word groups in texts. The
structure of the ontology can be used to state the relation between a term and a document by
finding the children of the term. This task is reasonably well solvable for the Gene Ontology
where its term labels are self descriptive. Many terms in GO are contained in their children
terms [Ogren et al., 2004]. As an example, the term “envelope” is refined into “organelle enve-
lope” and further to “organelle envelope lumen”. The ontology for the Abstract Mouse contains
anatomical concepts in the mouse embryo at different embryonic developmental stages. The
vocabulary is used to annotate images of mouse embryos. It unifies the vocabulary needed to
describe the different parts throughout 26 Theiler stages. Concepts like organs or body parts
are further refined into tissue types, unspecific loci such as “cavities”, “left”, “upper”, as well
as general terms such as “node” or “skin”. Ontologically spoken the Abstract Mouse ontol-
ogy defines specific individuals rather than general classes. It contains taxonomic relationships
between specific anatomical entities which cannot be generalised at the level of classes. For ex-
ample, “chorion” has the children “mesoderm”, “ectoderm” and “mesenchyme”. “Amnion” and
“yolk sac” have children sharing the same labels. Searching for documents related to “chorion”
will retrieve very similar document sets to searching for “amnion”, only because the documents
mention “mesoderm”, in this case with meaning “mesoderm specific to amnion”. Different
anatomical concepts share the same term label. For instance, there exist 171 individuals with
label “epithelium”. These all refer to different body parts at a specific stage in development.

Ontology based text mining relies on the assumption that unique or similar types of directed
non-cyclic relationships exist which can be unified in the hierarchical relationships creating a
taxonomy. For the Abstract Mouse ontology this assumption does not hold. There does not
always exist a path to the common root supported by only one type of hierarchical relation-
ships. Therefor in our analysis, a document is annotated with a term from the Abstract Mouse
ontology, only taking the term label and its synonymous labels into account. In the Abstract
Mouse Ontology the term labels follow various creation patterns. Sometimes a child term con-
tains information of the parent term (for example, “cavities” has the child “amniotic cavity”).
In other cases a term like “umbilical vein” has the children “left” and “right”, rather than “left
umbilical vein” and “right umbilical vein”, respectively. These short and common sense labels
make the text annotations arbitrary.

For our experiments we slightly adapted the ontology. For the terms “left”, “right”, “upper”,
“lower”, “common”, “anterior” and “posterior” we expanded the term labels with its parents
labels. “Eyelids” thus became “upper eyelids” and “lower eyelids”, for instance, and we removed
the children terms “upper” and “lower” accordingly. To distinguish between common terms
such as “skin” occurring — for instance, for different organs — the matching algorithm took
text annotations for ancestor terms into account. Terms with the same label were grouped
according to the number of text annotations for their ancestors in the same document. Only
annotations of the top ranked group were confirmed. Figure 5 shows an example for the term
“skin”. There were multiple possibilities to resolve this term to a specific tissue. Only when a
parental term (shoulder, upper arm, etc.) was found, the text was annotated with the specific
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Figure 5: Excerpt from the anatomy ontology, for different types of skin. Occurrences of the
term “skin” (yellow concept nodes) in a text were resolved using the hierarchical dependencies.
Only when a parental node was also found, for instance, “shoulder”, we annotated the text
with “skin.”

skin.
Finding gene names in documents is done using exact matching against gene names con-

tained in EMAP. We enriched this set using additional names and synonyms for each gene taken
from the MGI database5. We tested all 1437 genes mentioned in EMAP for their annotations
with tissues and Theiler stages in PubMed.

We analysed 123,074 abstracts retrieved from PubMed with the query “mouse AND devel-
opment”. This amounted for approximately 0.7% of all documents listed in PubMed. Based
on the document annotations with ontology terms we issued in total 36,358 statements on rela-
tions between genes, tissue and developmental stages, which we extracted from EMAP. Cases
with multiple Theiler stages from EMAP were split into separate statements. We evaluated
the tissues mentioned using EMAP’s Abstract Mouse ontology and the anatomy part or MeSH.
For path descriptions like “embryo.ectoderm” in EMAP we required the matching document
to be annotated with the terms “embryo” and “ectoderm”. For MeSH, as in MeshPubMed, we
also included descending terms. A document was annotated with the term “embryo” if anno-
tations for its descendants, for example, “germ layers” or its children “ectoderm”, “endoderm”
or “mesoderm” were found.

To find mentions of Theiler stages in texts, it was not enough to search for them directly,
as they seldom occur as such in abstracts (“Theiler stage 12”, “TS12”, etc.). We therefore
compiled a set of regular expressions based on two main notions, the mentioning of embryonic
days (E) and of days post coitum (dpc). These expression had to capture occurrences like

• “embryonic day 10.5”,

5See http://www.informatics.jax.org
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• “day 9 mouse embryos”,

• “between E3.5 (E = embryonic day) and E8.5”,

• “12.5 days post coitum”, and also

• “7.5-13.5 days post-conception.”

As mentionings of Theiler stages do not often occur, but rather general time spans are given
(“early embryonic development”), we decided to assign Theiler stages one to 14 to “early
development”, and stages 20 to 27 to “late development,” respectively. Every mention of an
“early developmental stage” thus was treated as a match for stages one through 14. Both
assignment were based on statements found in PubMed relating days to general time spans.

2.5.2 Experiment designs

To assess the potential of ontology-based literature searches, we designed to experimental sce-
narios. For the first, we manually collected two sets of queries and detailed answers. For the
second scenario, we evaluated the complete EMAP data. Using the methodology described in
the previous section, we tried to find textual evidences for all sets in PubMed. This means that
we searched PubMed for abstracts that shared annotations for each collected triple consisting
of a gene, tissue, and Theiler stage.

Manually curated test set We first selected set of questions manually to study results
in detail. The idea was to send simple keyword queries to MousePubMed, asking for mouse
abstracts that discuss a certain tissue and embryonic day. MousePubMed should then identify
all genes mentioned in the top-ranking abstracts. Questions and retrieved answers were as
follows.

• Which genes play a role in the development of the nervous system in Theiler stage 14? A
query for “mouse development nervous system 9 dpc” finds the genes Adamts9, Hoxb4,
Otx3, and EphA4 within the first eight abstracts6. In addition, the genes EphA2, A3,
A7, B1, B2, and B4 are found, which are not yet annotated in the EMAP database.

• Which genes play a role in sex differentiation during murine embryo development? A
corresponding query for “mouse sex 10 dpc” results in a set of eight genes within the first
fifteen abstracts: Fgf9, Asx11, Sry, Sox9, Usp9x, Maestro/Mro, Wt1, Amh1 and Fra17.
Only half of the genes can be found in EMAP so far.

• Which genes play a role in the development of the murine embryonic liver? A query for
“mouse ‘liver development’” results in a set of several genes, most of which can be found
in EMAP as well: Shc, Pxn, Grb2, PEST/Pcnp, GATA6, HNF4a, Foxa1/2, Zhx2, HNF6,
Mtf1, SEK1, Nfkb1, c-Jun, Itih-4, and Hex. To answer this question exactly, however,
too few abstracts mention particular Theiler stages or days post congestion. They rather
refer to “early stages of development”, and the exact time span might be presented in the
full text article only.

6Important for answering this query are returned PubMedIDs 12736215, 12055180, 11403717.
7Important are PubMedIDs 16540514, 16412590, 14978045, 14684990, 14516667, 12889070, 9879712, 9115712.
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All the results, in particular where genes and exact Theiler stages are concerned, are highly
dependent on the ordering of abstracts as provided by PubMed. Whenever a new publica-
tion appears containing the same search keywords, it will displace abstracts potentially more
informative regarding the original question. Abstracts answering the original question might
not appear among the first few and be immediately present to the user. However, text mining
methods will still extract all the data, even from older publications, and still the right set of
articles can easily be found.

The abstracts resulting from a keyword search occur in the same ordering as provided by
PubMed. That is, in general, the most recent articles occur first. However, querying for species,
tissues, and stages still returns the abstracts that discuss the interesting genes. Although
corresponding expression patterns might first have been described in older publications, even
in recent publications the desired genes reappear quite often.

Reconstructing outcomes of large-scale screening Thut et al. provided a list of 62
genes found expressed during eye development in mice, together with developmental stage and
substructure [Thut et al., 2001]. Of the 62 genes, 26 were not previously reported (as of 2001);
to 16 genes, novel valuable information could be added; 20 genes were fully reported before.
Expression patterns were summarised for E12.5, E13.5, E14.5, E16.5, E18.5 and P2. Using
MousePubMed, we tried to reconstruct the result of this large-scale screen of 1000 genes.

As Table 4 shows, nine PubMed abstracts contained the full information as stated by Thut
et al., mentioning gene, tissue, and specific stages (days). For most cases, however, not all data
were contained in one single abstract. In three cases, we were not able to automatically spot
the gene name (left column), in all cases this was due to synonyms lacking in EMAP and MGI.
Note that the assessment of recognising genes was based only on genes mentioned in EMAP.
The tissue could be found in almost all of the cases; from most abstracts, even the specific part
of the eye could be extracted.

Complete EMAP test set To evaluate capabilities of automated searches against the com-
plete EMAP data, the experimental setting was as follows. Genes in EMAP have annotated
tissues, in which they were detected at various stages of embryo development. Thus, we
queried MousePubMed with each gene and checked which tissues were mentioned in the re-
sulting PubMed abstracts. This was based on co-occurrence of the gene considering, a tissue,
and a Theiler stage (day) in the same abstract. Currently, there are 1437 genes in the EMAP
database annotated with (sometimes multiple) tissues and stages. All in all, we identified 18,179
such triples — gene, tissue, and stage — in EMAP. Many of the annotations consist of general
annotations for tissue, like “mouse”, “embryo”, “left”, “female”, “node”. We removed such
trivial instances, because they would very frequently found. 12,782 triples referred to specific
tissues, and we tried to find these triples using the aforementioned term extraction (also see
Table 5).

As Table 6 shows, we were able to reconstruct 31% of the gene-tissue associations in EMAP
using PubMed abstracts. Only 13% of the full information (gene, tissue, exact stage) was
contained in abstracts. All in all, the data recovered from PubMed included information on
about 37% of the EMAP genes. We noted that in many cases, abstracts do not mention specific
time points during development. Sometimes, “early” and “late development” are mentioned,
which we resolved as described previously in this section. On the other hand, mentions like “in
early liver development” could not be resolved to specific overall-stages without background
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Table 4: Expression patterns identified by MousePubMed in articles derived from
[Thut et al., 2001]. Often, an abstract does not mention a (specific) developmental stage; —:
MousePubMed did not find this particular fact; otherwise: facts as identified by MousePubMed.
Given are only tissues related to the murine eye.

Gene Tissue Stage PubMedID

Sparc retina, RPE, eye E4.5, E5, E10, E14, E17 9367648
Sparc lens embryonic day (E)14 16303962
Stat3 retina, RPE, eye -no specific stage- 12634107
Stat3 lens E10.5 14978477
Pedf RPE -no specific stage- 7623128
Pedf retina E14.5, 18.5 12447163

Runx1 inner retina embryonic day 13.5 16026391
Col15a1 conjunctiva, cornea E10.5-18.5 14752666
Otx2 outer retina -no specific stage- 15978261
Edn1 retina -no stage- 11413193
IGF-II eye, cornea, retina, scleral cells E14 2560708
Wnt7b anterior eye, cornea, optic cup, iris -no specific stage- 16258938
CDH2 — -no stage- 9210582

— lens -no stage- 9211469
Col9a1 eye, lens vesicle, neural retina, 13.5, 8305707

ciliary epithelial cells, cornea 16.5-18.5 d.p.c.
Tgfb2 cornea, lens, stroma -no specific stage- 11784073
Thra retina -no specific stage- 9412494
BMP4 retina E5 17050724
Bmp4 optic vesicle, lens -no specific stage- 15558471
BMP4 lens, optic vesicle -no specific stage- 9851982

— eyes N/A 15902435
Sox1/2 lens -no stage- 15902435

— retina, eye axis E2, E3, E5 15113840
Notch1 eye -no specific stage- 11731257
Notch2 eye -no specific stage- 11171333

Table 5: Types of information and quantity contained in EMAP.

Type of information Amount of data

Genes with tissues, stages 1437
Genes with at least one non-trivial tissue, stages 1346
Triples of gene, tissue, stage 18,179
Triples of gene, non-trivial tissue, stage 12,782
Tuples of gene, non-trivial tissue 8653
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Table 6: Number of tuples/triples consisting of gene and tissue or gene, tissue and stage found
in PubMed abstracts retrieved by the query “mouse AND development.”

Type of information Amount of data

Triples of gene, non-trivial tissue, stage 1637 (12.8%)
Tuples of gene, non-trivial tissue 2667 (30.8%)
Genes with at least one tissue and stage 537 (37.4%)

information. Cross-checks revealed that indeed much of the necessary information was only
mentioned in the full text of references annotated by EMAP for a specific association.

2.6 Conclusion

Ontologies are widely used for annotation. They are also useful for literature search, but the
extraction of terms from text is a difficult problem due to the complexity of natural language.
Here, we demonstrated the use of the ontology-based literature engines GoPubMed, Mesh-
PubMed, and MousePubMed to answer questions in the context of development. We discussed
the specific extraction algorithms needed for MousePubMed and evaluated them small scale
on examples relating to eye development and large scale on gene-tissue-stage triple from the
Edinburgh Mouse Atlas. We were able to reconstruct 37% of genes, 31% of gene-tissue asso-
ciations and 13% of gene-tissue-stage associations from PubMed abstracts. These figures are
encouraging as only abstracts are used.
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3 Ontology design for text-mining: guidelines and auto-
matic term recognition in the lipoprotein metabolism
domain

3.1 Introduction

The engineering of ontologies is still a new research field. There does not yet exist a well-
defined theory and technology for ontology construction. This means that many of the ontology
design steps remain manual and a kind of “art” and intuition ([Soldatova and King, 2005];
[Sowa, 2000]; [Castro et al., 2006]). There exists a variety of different ontologies, constructed
for different purposes and projects.

As far as the biomedical ontologies are concerned, during the last years there have
been major efforts in the biological community for organizing biological concepts in the
form of controlled terminologies or ontologies ([Cantor et al., 2005]; [Ashburner et al., 2000],
[Evsikov et al., 2004]). There have also been developed tools to provide interoperability among
different ontologies ([Bodenreider, 2004]; [Cantor et al., 2005]) in order to provide a common
frame of reference among the different research communities. Examples of ontologies are the
Gene Ontology ([Ashburner et al., 2000]) that provides a controlled vocabulary to describe gene
and gene products in any organism, the Mouse Anatomy (MA) ([Evsikov et al., 2004]), the Cell
Ontology (CL) ([Bard et al., 2005]) and SNOMED ([Spackman, 2004]). The Open Biological
Ontologies (OBO)8 consortium hosts over 50 open source ontologies associated with pheno-
typic and biomolecular information. Baker et al. ([Baker et al., 1999]) give an overview on
biomedical ontologies.

Semantic meta-information provided in the form of ontologies has proven useful in order to
search ([Doms and Schroeder, 2005]) or index large collections of documents (e.g. MeSH for
indexing MEDLINE). Meta-information found for text documents is often general (keyword
list) or still too complex for an automated evaluation (article abstract). Finding terms of
controlled vocabularies in text overcomes this shortage, while relations between terms provide
the necessary navigation structures.

Ontological background knowledge can serve to answer questions with knowledge-based
search engines ([Mller et al., 2004]; [Perez-Iratxeta et al., 2003]; [Doms and Schroeder, 2005]).
In the domain of lipoprotein metabolism, for example, a search for ”analphalipoproteinemia”
will retrieve articles for Tangier’s disease, which is actually a synonym. In case of a syndrome,
such as the “metabolic syndrome”, in a properly designed ontology the articles retrieved will
contain symptoms and other characteristics for it (e.g. type II diabetes, hypertension, insulin
resistant, low HDL, hypertension, all of them being parts of the metabolic syndrome). Re-
searchers explore literature on different parameters that can affect the lipoprotein metabolism,
such as the phenotype, genotype and age of the patients/animals tested, environmental factors
and lifestyle, specific lipoprotein and enzyme concentrations and others. Questions like:

• What is the activity of cholesterol ester transfer protein in diabetes?

• Which cells/tissues is apoE expressed in?

• What is the impact of a fish oil diet on metabolic syndrome individuals?

• Which genes/proteins/metabolites are hypertension-specific?
8http://obo.sourceforge.net/
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can be answered with the use of a well designed ontology on lipoprotein metabolism, containing
terminology found in literature with semantically interconnected terms.

The GoPubMed search engine ([Doms and Schroeder, 2005]) allows users to explore
PubMed search results with the Gene Ontology (GO) ([Ashburner et al., 2000]) and Medical
Subject Headings (MeSH, [Bodenreider, 2004]). GoPubMed/MeshPubMed retrieves PubMed
abstracts for a search query, detects terms from the GO and MeSH in the abstracts, displays the
subset of GO and MeSH relevant to the keywords and allows for browsing the ontologies and
displaying only articles containing specific GO and MeSH terms. The search engine is developed
in a way that any ontology (e.g. a Lipoprotein Metabolism Ontology) can be easily integrated
and used for a domain-specific literature search. One of the benefits of such an ontology-based
literature search is the categorization of abstracts according to a specific ontology, allowing
users to quickly navigate through the abstracts by category and providing an overview of the
literature. It can also automatically show general ontology terms related to the original query,
which often do not even appear directly in the abstract.

In this paper, we introduce design principles for ontologies used for textmining. A key prob-
lem in this context is the generation of terms, which is corroborated by ([Castro et al., 2006]),
who compared different ontology design methods and tools all of which lacked automated term
recognition. The paper is organized as follows. We first introduce the design principles followed
when designing the lipid metabolism ontology and turn to the question how to automate the
generation of terms. We introduce two methods to identify terms and evaluate them together
with two existing tools for this task.

3.2 Ontology design principles

Three main key dimensions of ontologies have been defined by Uschold: formality, purpose and
subject matter ([Uschold, 1996]). The degree of formality describes whether the ontology is
expressed loosely, in a more structured/restricted form of a natural language or in an artificial
formally defined language. The purpose refers to the intended use of an ontology which can be
communication between people (sharing a common structured vocabulary to understand each
other and making decisions), inter-operability among systems (used as an interchange format
to translate between different modelling methods, languages and software tools) and systems
engineering benefits (re-usability, automation of consistency checking), etc. An ontology can
be generic or specific, depending on its purpose and the level of detail it contains. The more
generic, the more applicable it can be and the higher its re-usability. Finally, domain ontologies,
problem solving ontologies and representation ontologies comprise examples for different subject
matters an ontology is characterizing.

There are some basic steps that should be followed during the design of an ontology:

Identification of the range of intended users: people who will use the ontology for their
research projects, others who will use it as part of another ontology, knowledge engineers,
technical people, biomedical researchers, et al. The ontology must be easy for them to
understand and use.

Decision on the purpose and main research area of the ontology: take time to think
why you need this ontology and how sufficient is your knowledge on the specific domain.

Definition/prediction of further possible applications. Apart from its initial pur-
pose, it could also serve a different one. For example, the Gene Ontology
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(GO)[Ashburner et al., 2000] has also been used by the search engine GoPubMed9

[Doms and Schroeder, 2005] and by GoMiner10 for gene expression data evaluation.

Formulation of questions: construct motivating scenarios and define a complete set of com-
petency questions to express different reasoning problems. Examples of such questions
are: “What is the activity of enzyme A in disease B?”, “Which cells/tissues is protein X
expressed in?”, “What is the substrate specificity of Z?”, etc. Start with general questions
to insert general terms first.

Reuse existing ontologies that may cover to some extent the ontology under design. Be
aware that ontologies might differ in granularity, completeness, development stage and
format. There exist some ontology development tools like OntoMerge [Dou et al., 2002],
SAMBO [Lambrix and Tan, 2006] and others described by Duineveld et al., 1999
[Duineveld et al., 2000] and Lambrix and Edberg, 2003 [Lambrix and Edberg, 2003] that
can merge parts from two different ontologies.

Literature scanning for deciding on the basic concepts: you might need to consult sev-
eral corpora of knowledge. Do some brainstorming to come up with a list of relevant
concepts and try to group them into semantically similar categories.

Definition of the relationships between concepts: they can be simple is a and part of
relationships or even more complex ones. They can even be whole sentences, but at the
end this will be on expense of re-usability and applicability. The simpler the relationships
the easier to re-use the ontology.

item[Add a definition for each term:] either during editing or at the end, it is always im-
portant to keep the definitions in mind to come up with a well-structured, useful ontology.
The definition must not be cyclic, meaning that it must not contain the term itself (e.g.
GO:0050896 ’response to stimulus’ definition: A change in state or activity of a cell or
an organism . . . as a result of a stimulus, GO:0016788 ’hydrolase activity, acting on ester
bonds’: Catalysis of the hydrolysis of any ester bond); it must be very clear to other users
what the ontology term is about.

Decide on a label for each concept. This is one of the most crucial steps during the struc-
turing of the ontology. This task is difficult for humans as it requires good knowledge of
the domain of interest so as to group concepts on the hierarchy in a semantically mean-
ingful way. It is even more difficult for machines to do this automatically. There has been
previous work on automatic labeling of document clusters [Popescul and Ungar, 2000] by
using the most frequent and most predictive words in clusters of documents, but there
is still work to be done on that. One must firstly concentrate on the semantics of a
term, decide what is really needed to be expressed with that term and then choose the
appropriate name.

Last, but not least, and perhaps one of the very first steps of the designing procedure is
the selection of a suitable ontology editor. We used Protégé11 and CmapTools12. Ontology
visualization is crucial when the knowledge engineer and the domain expert are two different
persons and need to agree on the different versions of the ontology.

9http://gopubmed.org/
10http://discover.nci.nih.gov/gominer/
11http://protege.stanford.edu/
12http://cmap.ihmc.us/
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3.2.1 Further guidelines for the design of a text-mining ontology (best practice)

With GO we experienced some limitations for text-mining. For example, it is unlikely that a de-
scriptive label such as “cell wall (sensu Gram-negative bacteria)” will literally appear in text. A
comprehensive overview of such problems is provided by Smith et al. [Smith et al., 2004]. There
often exist ontology terms that are unlikely to appear as such in text but are rather of a struc-
turing nature. For example, the terms “hydrolase activity, acting on ester bonds” (GO:0016788)
or “hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds” (GO:0016810) in-
clude several different types of information: activity (hydrolase), type of bond affected (ester
or carbon-nitrogen) and exception (but not peptide) (see Figure 6).

Figure 6: Problematic terms – the hydrolase activity example. Terms like hydrolase,
hydrolase activity, bond, ester bond and relations between them (e.g. acts on) can be easily
found in text, whereas full GO terms such as “hydrolase activity, acting on ester bonds” are
unlikely to appear literally in an article.

These should be 3 different branches of the tree, combined with relations, therefore structur-
ing “logical formulas”. For example, in the case of the second term (GO:0016810), the exception
could be expressed as a certain condition: the protein has a hydrolase activity and is acting on
carbon nitrogen bonds, but not in all bonds (peptide bonds are excluded). Aranguren et al.,
2007 [Aranguren et al., 2007] provide a simple and indicative example of the problem: a Person
is a Man or a Woman, a Man has Testis, a Woman has no Testis, but what happens in the case
of a Eunuch (who is actually a man without Testis)? There is a need for distinguishing between
relations that are strict “always” rules and “normally” or “usually” relations that can also allow
for exceptions. Biomedical terms are usually connected with “usually” relations between them.
Another example is the definition of mammals: a simple definition13 can be “warm-blooded
vertebrate animals belonging to the class mammalia, including all that possess hair and suckle
their young”. Therefore, one can say that all mammals give birth to and suckle their young.
But there exists the exception of the monotremes, which are mammals that lay eggs instead of

13taken from http://www.biology-online.org/dictionary/Mammals
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bearing live young. The definition here would be “mammals are animals that normally bear
live young and suckle them” and the exception “monotremes are mammals that lay eggs”.

Compositional structure of terms is a major bottleneck for ontology design, especially when
it comes to text mining, as the relations between terms must be as simple as possible. Ogren
et al. [Ogren et al., 2004, Ogren et al., 2005] have performed an analysis of the term names
in the GO to investigate substring relations between terms and revealed that 65.3% of all GO
terms contain another GO term as a proper substring. These terms can be categorized into two
groups: GO terms that contain other GO terms as proper substrings (e.g. “hydrolase activity,
acting on acid sulfur-sulfur bonds” (GO: 0016828) and “hydrolase activity” (GO: 0016787))
and GO terms that contain strings that seem to recur frequently (e.g. “regulation of” in GO,
“predominance of” in the Lipoprotein Metabolism Ontology).

In contrast to ontologies designed primarily for annotating biological entities, there is a clear
distinction to ontologies designed for text mining: there have to be made some decisions and
compromises on the relationships and on the labels defined.

Decisions that need to be made during the ontology design

Keep or dismiss a term When using the ontology for text-mining over a specific biomed-
ical domain (e.g. disease, glucose metabolism, lipoprotein metabolism), the ontological concepts
must be specific for that domain. The articles retrieved must be disease-specific or glucose-
metabolism-specific or lipoprotein-metabolism-specific. For example, including information on
’kinetics’ during the design of a “glucose metabolism ontology” is crucial. But ’kinetics’ is too
general as a term, as the distinction between different kinds of kinetics is important (e.g. when
querying PubMed for ’kinetics’, there are retrieved articles referring to ’kinetics of phenols’ or
a ’reconstruction kinetics well’, irrelevant to the domain of interest). On the other hand, the
term ’glucose kinetics’ is too specific and documents mentioning it do not cover all essentials
known in glucose kinetics. Searches for “glucose kinetics”, “glucose” and “kinetics” and re-
trieval of relevant articles (e.g. PMID: 17003244 ’In the current investigation we studied the
effects of TZD treatment on insulin-stimulated fatty acid and glucose kinetics in . . . ’) lead to
the decision that the best term to use for ’glucose kinetics’ is the exact term. There already
exist previous efforts on automatic labeling of document clusters and identification of on-tology
components, based on Natural Language Processing techniques or hierarchical and suffix-tree
clustering [Stefanowski and Weiss, 2003, Lame, 2004, Popescul and Ungar, 2000].

Decide on ontology design/relations The ontology must not be very formal in terms
of containing many different relationships between terms (such as ’derives from’, ’causes’, ’part
of’, etc.) or of distinguishing between ’classes’ and ’instances’. It should rather be a structured
vocabulary containing only child-parent relationships.

Decide on synonyms researchers do not have strict and formal ontologies or nomen-
clatures in their minds when composing a scientific article and therefore use terminology of
differing granularity. They often use parent terms to refer to a child term, or vice-versa (e.g.
’coronary artery disease (CHD, CAD)’ is child of ’cardiovascular disease’, but in many cases
authors are treating them the same). Again literature scanning, for both child and parent term,
will help to clarify how researchers refer to different terms. Another problematic case is that of
the different lipoprotein subclasses (based on particle size, buoyant density, composition, etc.)
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where there do not exist clear limits between them. Depending on the way of measurement and
the difference in surface lipid content, they can be expressed in different ways. For example, in
the case of LDL, there are 5 different subclasses based on particle size (LDL I-V), but there are
also references such as ’small dense LDL’ or ’buoyant LDL’ that are very often found in text but
could contain a mixture of different subclasses. Since we need to keep only a simple hierarchy
with parent-child relationships, we do not incorporate any “compositional” information (e.g.
that ’small dense LDL’ consists of a mixture of LDLIII and LDLIV). In these cases, we put the
synonyms according to the authors’ definitions, for example ’small dense LDL’ as a synonym for
LDL III and ’buoy-ant LDL’ or ’large LDL’ as synonyms for LDL I [Berneis and Rizzo, 2004].
A similar example from the GO is that of ’transporters and carriers’. In every day language
’transporter and carrier’ is the same as ’transporters or carriers’, but logically they are different.

Compromises that need to be made, problems, inconsistencies There must be made
some compromises to retain a correct ontology (meaning that it contains valid relations) and
still get the best possible results from text-mining:

Ambiguities resulting either from identical abbreviations for different terms (e.g. ’CAM’
can stand for ’constitutively active mutants’, ’cell adhesion molecule’, or ’complementary
alternative medicine’), or, incomplete term labels (e.g. ’embryo’ can be referring to a
chicken, mouse, or human embryo, ’male’ can be referring to human patients or rats).
For example, we are only interested in experiments performed in human patients and
need to distinguish between human- and animal-referring articles. One option is to insert
into the ontology only human-specific terms, such as ’ex-perimentee’, ’patient’, ’man’,
’boy’, etc. ’Male’ cannot be in the ontology, since it could also be referring to animals.
Another op-tion is to maintain a list of human- and animal- specific words or expressions
and then transform the algorithm in a way that one could make a Boolean selection (e.g.
AND human, NOT animal) in the query and finally include or exclude the results for the
spe-cific selections.

Try to avoid any possible inconsistencies. To illustrate their ’reasoning’ nature, let us de-
scribe the following example: a researcher needs to build a ’lactose metabolism’ ontology
and is interested in the tolerance of different ethnic groups to lactose. He needs to know
the geographical location and the race/color of lactose tolerant/intolerant people, since
they are both important factors affecting lactose intolerance. Combination of geographical
information as well as racial information in one part of the ontology is, therefore, needed.
Many articles refer to “African-Americans” as “blacks”, so the term must be included
under ’ethnic group’. Then the following must be valid: define ’Caucasian’, ’African’ and
’Asian’ as ’ethnic group’, ’American’ is a ’Caucasian’, ’African-American’ is a ’African’,
’African-American’ is a ’American’, ’African-American’ is ’black’ (synonym), ’Caucasian’
is white (synonym) but ’African-American’ cannot be ’Caucasian’ or ’white’ (although he
is ’American’). This is similar to the case of mammals that lay eggs or the ’Man, Woman,
Eunuch’ example described earlier; people very often formulate rules such as “normally
is-a”, as there are always exceptions.

3.3 Results

The Lipoprotein Metabolism Ontology (LMO) was manually built in collaboration with domain
experts from Unilever for the purpose of document retrieval. It consists of 653 terms (including
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synonyms), with an average term length of 16 (2.2 tokens of 7.3 characters). For Automatic
Term Recognition (ATR), a ’lipoprotein metabolism’-specific corpus was created, consisting of
300 abstracts collected from PubMed. Five different ATR methods were tested on that corpus,
namely Text2Onto, OntoLearn, Termine [Cimiano and Vlker, 2005, Navigli and Velardi, 2004,
Frantzi et al., 2000] and two methods developed in-house, one considering the relative frequency
(RelFreq) of a term in the corpus and the other (TFIDF) additionally using the document
frequency derived from all phrases contained in NCBI’s PubMed database. OntoLearn was
excluded from further analysis, as it only generated a few terms so that a meaningful comparison
would be possible, see Table 7. We performed a bipartite analysis. We tried to automatically
reconstruct the manually created LMO terminology, compared the terms predicted by the four
methods to the current LMO terms and also evaluated manually the top 1000 retrieved terms.

Methods
TFIDF RelFreq Termine Text2Onto Ontolearn

1 x metabolic
syndrome

review x low-density
lipoprotein

x patient mutation

2 x HDL x metabolic
syndrome

x cardiovascular
disease

x disease fish oil

3 x athero-
sclerosis

x diabetes x metabolic
syndrome

risk hyper-
cholester-
olaemia

4 review x athero-
sclerosis

x risk factor effect serum

5 x LDL x HDL x cardiovascular
risk

study progression of
atherosclerosis

6 x cardiovascular
disease

x LDL x high-
density
lipoprotein

level apheresis

7 x diabetes x cardiovascular
disease

x low-density
lipoprotein
cholesterol

x athero-
sclerosis

omega-3

8 x dyslipidemia x cholesterol x high-
density
lipoprotein
cholesterol

x cholesterol treatment of
hypertriglyc-
eridemia

9 x high-
density
lipoprotein

type x fatty acid x lipoprotein reductase
inhibitor

10 x cholesterol article x coronary
heart dis-
ease

x statin triglyceride

11 x low-density
lipoprotein

x fatty acids x coronary
artery
disease

role adhesion
molecule

12 x cardiovascular
risk

x high-
density
lipoprotein

clinical trial syndrome evolution
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13 x fatty acids role x ldl choles-
terol

x diabetes purification
process

14 article x dyslipidemia x heart dis-
ease

x trial prescription
omega-3

15 x insulin re-
sistance

x low-density
lipoprotein

x diabetes
mellitus

protein omega-6

16 type x cardiovascular
risk

x omega-3
fatty acid

x risk factor hiv-infected

17 x statin x hypertension blood pres-
sure

treatment marker of in-
flammation

18 x hypertension combination x oxidative
stress

event strong evi-
dence

19 x inflammation x insulin re-
sistance

increased
risk

therapy attractive tar-
get

20 x VLDL protein density
lipoprotein

review accelerated
atherosclerosis

21 x lipid
metabolism

x disease x cardiovascular
risk factor

type internalization

22 combination studies coronary
artery

mechanism scenario

23 role x inflammation x statin ther-
apy

evidence protease in-
hibitor

24 x oxidative
stress

association x plant sterol development inflammatory
cell

25 x obesity x plasma x reverse
cholesterol
transport

use inflammatory
marker

Table 7: Top 25 predicted terms per method. Listing of the top 25 predictions for TFIDF,
RelFreq, Termine, Text2Onto and OntoLearn. Terms relevant to the lipoprotein metabolism
domain are marked with x.

3.3.1 Reconstruction of LMO terminology

Consider Table 8, which shows the percentage of terms that can be generated by the four
methods. The first table lists the results for LMO alone, the second for LMO and terms
considered relevant after manual inspection. Furthermore, we distinguish precision and average
precision. The latter takes the ranking of terms into account:

average precision =
∑N

r=1(P (r)× rel(r)
number of retrieved terms

with
rel(r) = − 2

N2
(r − 1) +

N

2
where r is the rank of retrieval and P (r) is the precision at a cut-off rank. For each of the
four methods we list the percentage of rele-vant terms for the top 50, top 200, and top 1000
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LMO
Precision Average Precision

Top TFIDF Termine Text2Onto RelFreq TFIDF Termine Text2Onto RelFreq
50 35% 19% 17% 35% 65% 54% 38% 54%
200 20% 10% 12% 22% 42% 28% 23% 37%
1000 8% 4% 5% 8% 21% 12% 12% 20%

LMO + Domain expert
Precision Average Precision

Top TFIDF Termine Text2Onto RelFreq TFIDF Termine Text2Onto RelFreq
50 75% 67% 33% 35% 86% 89% 52% 70%
200 55% 40% 46% 22% 74% 65% 38% 60%
1000 29% 20% 14% 8% 51% 40% 25% 45%

Table 8: Precision and Average Precision (rank dependent) for top 50 / 200 / 1000 predictions
for 4 methods (TFIDF, Relative Frequency, Termine, Text2Onto) in terms of coverage of LMO
and relevant vocabulary. The key finding is that Among the top 1000 predictions there are
up to 51% terms, which are in the LMO or considered good terms by expert, implying that
automated term recognition can play an important role in semi-automated ontology design.

LMO terminology predicted by TFIDF LMO terminology
1000 all literally contained

300 review abstracts for
“lipoprotein metabolism”

8.75% 15.23% 20.98%

3,066 abstracts for
“lipoprotein metabolism”

14.99% 38.25% 53.00%

50,000 abstracts contain-
ing “lipoprotein”

71.22%

Table 9: Coverage of LMO terminology in selected document sets. The table sets the upper
limit of terms that can be found with text-mining: Even a large text base with 50,000 documents
contains only 71% of LMO terms. TFIDF can predict up to 38% of LMO terms.
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predictions. The results show that the precision for the top 50 predictions for LMO ranges from
17-35% and 4-8% for the top 1000 predictions. Using LMO and the expert terms leads to better
results of up to 75% for the top 50 predictions and up to 29% for the top 1000. Considering
the average precision and thus the ranking of terms, results for the top 50 predictions go up to
89% and for the top 1000 up to 51%. Generally, Termine which favours long terms performs
well for the top 50, because long terms are a good indicator of a relevant term. However, there
are many short terms, which are relevant, too. The TFIDF and RelFreq method can pick up
these terms, as they include background knowledge, i.e. frequencies of terms in PubMed. By
and large, Text2Onto does not perform so well, as it neither includes background knowledge
nor the ranking persued by Termine. Overall, the results are encouraging, as they indicate that
a large part of the terminology can be generated automatically

Concerning recall, consider table 9. 3066 documents contain only 53% of the LMO terms
literally. TFIDF manages to predict up 39%, which is an encouraging result. Increasing the
document base to 50.000 only 71% of the LMO terms are included indicating possible upper
limit.

Figure 7: Overlap with manually curated LMO and manual evaluation.
Precision at a certain rank r represents each method’s capability to recognize domain relevant
terms within the top r retrieved terms. The chart shows the overlap within the top r predicted
terms with LMO and the manual evaluation (MANUAL). For example, from the top 50 pre-
dicted terms by Text2Onto, 20% are in LMO and 36% are correct according to the manual
evaluation.

Figure 7 provides an overview of the results we acquired from these comparisons. Figures 8
and 9 provide zoom-ins of Figure 7, describing the performance of each method in the top 50
predicted terms.
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Figure 8: Overlap with LMO.
Precision at a certain rank r represents each method’s capability to recognize domain relevant
terms within the top r retrieved terms. The chart shows the overlap within the top r predicted
terms with LMO. For example, from the top 10 predicted terms by Text2Onto, 40% are in
LMO.

3.4 Discussion

The low coverage of the LMO in the data sets calls in question the document set selected and
the suitability of the manually built LMO itself. The straightforward approach to select relevant
documents from PubMed (review articles in “lipoprotein metabolism”) did not return enough
documents to cover all of the LMO.

The LMO terms that were absent from the 50,000 PubMed ab-stracts were grouped in five
categories: rarely occurring terms, rarely occurring variants of terms, very long terms, combi-
nations of terms/variants and, finally, terms that should normally be easily found. Terms such
as ’experimentee’ (2) , ’obesive’ (2), ’test person’ (76) and ’central fatness’ (9) are LMO terms,
but rarely used by authors and, therefore, rarely appearing in PubMed. The second group con-
tains variants of terms that appear rarely in PubMed, such as ’Apo-F’ (14), ’apolipoprotein c-3’
(4), ’IDL I’ (1), ’VLDL chol’ (34), ’diabetis’ (37, instead of 270177 occurrences for ’dia-betes’),
’free chol’ (0, instead of 2622 for ’free cholesterol’), ’hypolipoproteinaemia’ (5, “ae” spelling
is rare), ’insuline resistant’ (0, instead of 3912 for ’insulin resistant’), ’slo syndrome’ (36) and
’sphingomyelinase deficiency disease’(0, MeSH synonym for ’Niemann-Pick Disease’). The third
category contains terms that are too long and, therefore, unlikely to appear as such in text:
’receptor-mediated extra-hepatic cellular uptake’ (0), ’macrophague cellular uptake’ (0), ’pre-
dominance of large low-density lipoprotein particles’ (0) and ’apob100 containing particles’ (2).
However, given the initial purpose of the LMO for document retrieval, these terms were included
to be recognized by the ontology-based text-mining methods [Doms and Schroeder, 2005]. The
fourth group is a combination of the previous two, i.e. LMO terms that are long terms and con-
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Figure 9: Overlap with controlled lipoprotein metabolism vocabulary and additional
manual evaluation (makes sense/makes no sense).
Precision at a certain rank r represents each method’s capability to recognize domain relevant
terms within the top r retrieved terms. The chart shows the overlap within the top r predicted
terms with the manual evaluation. For example, from the top 10 predicted terms by Termine,
100% are relevant to lipoprotein metabolism.
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tain rare variants of LMO terms, such as ’elevated plasma-tg level’ (0), ’increased total chol’ (0,
instead of 116 for ’increased total cholesterol’), ’long-lived test person’ (0), ’apoprotein b100 ki-
netics’ (0), ’elevated plasma tg concentrations’ (0), and ’decreased hdl-chol’ (4). The last group
contains LMO terms that appear often in PubMed and should normally be identified, but are
probably absent from the document set, due to its size or specificity. Such terms are ’diabetes
type I’ (126), ’acetyl-coa c-acyltransferase’ (430), ’apolipoprotein-c’ (1585), ’type-II diabetic’
(1132), ’long-lived population’ (23), ’middle-aged adult’ (81), ’human body composition’ (95),
and ’lipid poor HDL’ (12).

The third and fourth groups of terms belong to the same category as the hydrolase activity
example described earlier. Composite terms like ’receptor-mediated extra-hepatic cellular up-
take’ and ’predominance of large low-density lipoprotein particles’ could be easily broken into
several semantic parts (e.g. receptor-mediated/ extra-hepatic/ cellular uptake, or more) and
handled by an algorithm that could later compose them and still keep their semantics.

The terms that were predicted by most of the methods but were not in the LMO were
further examined and grouped. These were either wrongly predicted ones (e.g. ’review’, ’type’,
’article’, ’role’, ’event’, ’use’) or vocabulary that could extend the current ontology. This would
include disease-specific terms such as ’atherosclerosis’, ’cardiovascular risk’ and ’atherogenic
dyslipide-mia’, drugs or other chemicals such as ’statins’, ’ezetimibe’ and ’torcetrapib’, or even
method and therapy related terms like ’dose’ and ’lipid lowering therapy’.

3.5 Conclusion

As pointed out in [Castro et al., 2006], automated term recognition is missing from many on-
tology design methologies. In this paper, we manually created a ontology for lipid metabolism
with 653 terms, we derived design principles and systematically evaluated four methods for
automated term recognition.

Automated predictions of up to 1000 terms generate in the order of 40-50% useful terms.
Considering only the top 50 terms, the results improve up to 89%. This suggests that Automatic
Term Rec-ognition (ATR) methods can aid and speed up the process of ontology design by
providing lists of useful domain-specific terms, they cannot (yet) replace the manually designed
term lists. The key problem to further improve these results are composite terms which do
not appear literally in text, like GO’s ’hydrolase activity, acting on ester bonds’ or LMO’s
’receptor-mediated extra-hepatic cellular uptake’.

Overall, our results show that ontology design can be performed in a semi-automatic way.
The domain expert must have as initial input the output from an automatic term recognition
method and proceed with enriching the ontology by following the guidelines described. These
can serve as restrictions as well as decision points for including, excluding and reforming ontol-
ogy terms. Once the domain expert acquires the list of candidate terms, he/she needs to decide
on the relations between them. Formulation of questions is one of the most important steps in
the ontology design process, helping to step from a list to an ontology.

We proposed principles for development of an ontology with text-mining as intended use,
based on our personal experience from the manual development of the Lipoprotein Metabolism
Ontology and GoPubMed. We related these principles to the performance of four different
ATR methods and their agreement with the manually built LMO. To our knowledge, there
have not yet been proposed ontology development principles with text-mining in focus. Open
problems, relate to the choice of suitable text bodies for term recognition as well as generation
of composite terms from basic ones.
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