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Overview of this Deliverable

One important di�erence of conventional data and Semantic Web data lies in the ability of RDF and
similar knowledge representation formalisms suggested for the Semantic Web to express purely existential
(but unnamed) data.

¿ough this is a discriminating and o en used feature of Semantic Web data, query answering in
presence of existential information has received little attention. ¿is issue becomes particularly interesting
when considered in combination with rules, where existential information may not only occur in the base
(extensional, factual) data, but may also be inferred (in technical terms: occur in rule heads).

In this deliverable, we propose the �rst complete treatment of RDF’s existential information approach,
called blank nodes, over the whole range of (logic-based) query languages traditionally used in databases.

In addition to the theoretical results presented in this deliverable, we have also created an operational
semantics of blank nodes in rule heads (cf. Chapter 6). ¿is operational semantics has been implemented
in a �rst prototype, which is available from http://rdflog.com. ¿ere we will continuously update the
prototype as well as provide experimental results (preliminary results indicate, that the approach is, though
much more expressive, very competitive with existing SPARQL engines).

In the future, we plan on integrating the discussed technology in the versatile Xcerpt query language
(cf. http://xcerpt.org).

1

http://rdflog.com
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Chapter 1

Introduction

1.1 Motivation

Naming people, concepts, or things is a problem as old as language. We need names to refer to entities
when we exchange data. ¿is is true also for the Web, where RDF has become the W3C data interchange
standard. However, “good” names are notoriously di�cult: they must be unique and shared (or translated).
¿erefore we o en talk about things by its properties and relations rather than by its name. RDF o�ers
anonymous or “blank” nodes for just this purpose. ¿is facility is, arguably, one of the main novelties
of RDF. Its use is rather common, in particular for representing complex structures such as lists, sets,
sequences, n-ary relations, or rei�ed statements.

For the most part, we can safely think of RDF as relational data or, in terms of logic, as ground facts.
Blank nodes, however, introduce merely existential knowledge: We might know that “there is an edict
signed in Nantes by some French king” without knowing the actual identity of the edict or the king. At
�rst, such an addition may look fairly harmless. However, the presence of blank nodes raises a number of
questions that do not occur when considering only named nodes (or, indeed, relational data): What if
there are two blank nodes with the same properties (as statements 1 and 2 in Figure 1)? What if there is a
named node with the same (or more) properties than a blank node? What if there are two blank nodes
with overlapping but not identical properties?

All of these questions are in essence about what constitutes identity in presence of blank nodes or,
more practically, when is a given blank node a duplicate of another node and thus redundant. Blank nodes
are RDF’s answer to the long discussed question of value-based or extensional identity (as in the relational
model) versus surrogate or object identity: Named nodes in RDF have a surrogate identity by way of
their associated URI: there can be two nodes with the same properties but di�erent identity. Blank nodes,
in contrast, have an extensional identity: if they have the same properties they are considered identical
([Note: this is somewhat imprecise, since it does not mention properties referring to other blank nodes]) .
RDF puts its own twist on the issue as it considers also a blank node with a subset of properties of another
node as redundant.

At �rst glance, this treatment of blank nodes in RDF may seem arbitrary. However, it turns out that,
if we consider blank nodes as existential variables and RDF triples as logical atoms, we arrive at a view

3



Figure 1 RDF graph on the ‘Edict of Nantes’
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of RDF data as formulas (possibly in�nite formulas with in�nite variables but restricted to conjunction
and existential quanti�cation). Our �rst contribution, is a semantics for simple RDF that is fully aligned
with the RDF model theory but based on this observation. ¿e main advantage of this semantics is that it
clari�es the meaning of blank nodes in terms familiar from standard logics. Also, our semantics is entirely
transformational, in contrast to and previous logic- or graph-based approaches we do not need any special
forms of interpretation, model, or entailment.

Given a clear semantics, we can start tackling the e�ect of blank nodes on querying: Say we want to
�nd out where French edicts revoking rights of religious tolerance have been signed. From the data, we
know that “some edict was signed in Nantes”. We also know that “some French edict is about religious
tolerance”. It is possible that in both cases we are speaking about the same edict, but we cannot be certain of
that—indeed, the latter statement is about the Edict of Fontainbleau. In RDF querying and the remainder
of this article, we only consider certain answers (in contrast to possible answers). ¿e second e�ect occurs
when considering also views or rules. We might, e.g., know that “each edict signed in France during
absolutism must be signed by some French king” without knowing exactly which king (e.g., since we are
lacking exact dates for the edict or for the reign of the various kings). When we query for all edicts signed
by some French king, this information su�ces to return also all French edicts signed during the times of
absolutism. In this way, inferred existential information (or blank nodes in rule heads) allows us to match
existential queries. We might also be interested in the actual kings, which brings us to the �nal issue: blank
nodes in answers (or intermediary answers). Let us, for the moment assume, that an answer is again an
RDF graph, for instance, the graph containing signatories of French edicts connected to the edicts they
signed. For the data of Figure 1, we obtain two signatories for the “edict signed in Nantes”. However, all the
information about the unnamed (blank node) signatory is already implied by the information about Henry
IV. Returning such redundant information in answers serves no purpose. Worse, a naïve computation of
redundant answers in presence of blank nodes in rule heads can easily lead to in�nite answers where a
non-redundant answer is �nite.

To answer the �rst two issues,

1. we extendDatalog with blank nodes (in other words: existential quanti�ers in facts and rule heads)
and call that extension, restricted to RDF data, RDFLog;

2. we de�ne a closed and generic denotational semantics for RDFLog (i.e., a semantics where input
and output of a query program are RDF graphs and which is oblivious to consistent renaming

4



of resource identi�ers, the constants of RDF) based on RDF entailment. ¿e semantics is fully
aligned with the RDF semantics (in particular, for two equivalent input graphs, equivalent results
are returned);

3. we de�ne a (two-way) transformation from RDFLog programs to logic programs without blank
nodes and show that this transformation yields a sound and complete operational semantics for
RDFLog. ¿e �rst transformation is a Skolemisation. ¿e second transformation is a novel form of
un-Skolemisation, which has desirable properties symmetric properties to those of Skolemisation;

4. we de�ne a hierarchy of language restrictions for RDFLog and relate these restrictions, again using
the above transformation, to restrictions for universal logic programs. ¿is yields a hierarchy of
increasingly more expressive languages together with their complexity;

5. beyond the theoretical results, the approach demonstrates how we can realize these di�erent levels
using existing technology for universal logic programs (e.g., SQL, Datalog or Prolog engines).
Experimental evaluation validates that the presented approach is clearly competitive with existing
special purpose RDF engines. ¿e transformation overhead is, as expected, very small and, in most
cases, negligible;

6. �nally we de�ne a notion of redundancy free answers called lean answers. We show that these kinds
of answers are computationally more expensive than non-lean answers and give an operational
optimisation.

5
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Chapter 2

Logic

In this deliverable we use logics for three purposes:

(a) as an abstraction of RDF

(b) as the syntax of the RDF query language RDFLog we propose,

(c) to formulate a semantics for RDFLog.

We show in the next chapter that logic is well suited as an abstraction for RDF. It is possible to translate
an RDF graph to logic in such a way that both validity and entailment are preserved. ¿e second point
is motivated as we want to use techniques from logic programming to query RDF. It is common to use
variants of logical syntaxes for logic programming language. ¿e third point might be more controversial.
It is desirable for query languages to produce output in the same formalism as the input (this is referred to
as closure). ¿is is a common approach for database languages which are not Turing complete.

With Turing complete languages the problem arises that the semantics of programs might be in�nite.
To avoid in�nite formulas the semantics of logic programming is described in terms of models. ¿erfore
one could state that logic programming is not closed. Nonetheless, as there is a direct correspondence
betweenHerbrandmodels and formulas: AHerbrandModel is usually characterised by a (possibly in�nite)
set of atomic formulas.

In the case of query languages for RDF the situation is more complicated. ¿e abstraction of RDF
presented in Chapter 3 modes blank nodes as existential variables. As the same blank node may occur in
many (possibly even in�nitely many) atomic RDF statements, the scope of an existential quanti�er might
range over an in�nite number of atomic formulas. ¿erfore we consider formulas of in�nite length in this
work.

It should be pointed out that there is also the possibility to model the semantics of RDFLog in terms
of models. We provide a translation from formulas to interpretations in Chapter 3. Any reader with
ontological considerations is therefore friendly advised to think of in�nite models instead of in�nite
formulas.

9



2.1 Terms and Formulas

Like in formal language theory [45, 39] a logical language are de�ned over a set called alphabet.

De�nition 1 (Logical Symbols, Alphabet). ¿e logical symbols is the set consisting of the following symbols:

• a countably in�nite set Var of variables,

• the symbols¬ for negation ,⋀ for conjunction, ∃ for existential quanti�cation, ( and ) as parentheses,
and

• a set A called alphabet consisting of the disjoint sets PredA and FunkA called predicate symbols and
constant symbols. Each symbol s in an alphabet is associated with a natural number n ≥ 0 called the
arity of s. If a function symbol has arity 0 then it is called a constant symbol.

¿ere is a conceptual distinction in logic between entities with meaning and entities with truth [67, 66].
¿e entities which have meaning are called ‘terms’ and the entities with truth are called formulas.

De�nition 2 (Term). If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.
If f is 0-ary then we omit the brackets and say that f is a constant. We call f the function symbol of the
term f(t1, . . . , tn).

To de�ne the syntax of formulas we need some notation. We denote the sequence [x1,x2, . . .] by x̄.
We sometimes treat sequences as sets when it is convenient. For example we write x ∈ x̄ to denote that x is
an element in the sequence x̄. We do not always specify the length of a sequence. In general a sequence
may also be empty. If f is a function and x̄ = [x1,x2, . . .] is a sequence then f(x̄) denotes the sequence
[f(x1), f(x2), . . .].

De�nition 3 (Formula). A formula is de�ned by a �nite application of the following rules:

• If p is an n-ary predicate symbol and t1, . . . , tn are terms then p(t1, . . . , tn) is a (atomic-) formula.

• If φ is a formula then ¬(φ) is a formula.

• IfΦ is a possibly in�nite set of formulas then ⋀φ∈Φφ is a formula.

• If φ is a formula and x̄ is a possibly in�nite sequence of variables then ∃x̄(φ) is a formula.

We use the following abbreviations: We write ⋁ψ∈Φψ for ¬⋀ψ∈Φ¬ψ. If Φ = {ψ1, . . . ,ψn} is �nite we
write ψ1 ∧ . . .∧ψn instead of⋀ψ∈Φψ and ψ1 ∨ . . .∨ψn instead of⋁ψ∈Φψ. We sometimes write⋀Φ (⋁Φ)
instead of ⋀φ∈Φφ (⋁φ∈Φφ). A universal quanti�er ∀may be used to write ∀x̄(φ) for ¬∃x̄(¬φ).

Finally, we use the following precedences to avoid brackets: ¬ binds stronger than ⋀,⋁,∧ and ∨,
which in turn bind stronger than the quanti�ers ∀ and ∃. A scope of a quanti�er is as small as possible,
unless the quanti�er is followed by a dot, in which case the scope is as large as possible.

10



2.2 Interpretations and Models

¿e notion of interpretation is used assign a meaning to terms and a truth value to formulas. If a formula
φ is true in an interpretationI then I is called amodel of φ.

De�nition 4 (Interpretation). An interpretation I is a triple (D, i,β) where D is a set called domain of
I and i is a mapping from every n-ary function symbol f (predicate symbol p) to an n-ary function
fi ∶ Dn → D (an n-ary relation pi ⊆ Dn) and β ∶ Var → D is a variable assignment.

¿roughout this deliverable we sometimes identify functions with their graphs. ¿is allows us to
extend functions in a simple way. We also sometimes treat sequences as sets when the order is irrelevant.

Let I = (D, i,β) is an interpretation, x a variable and d ∈ D. ¿en we denote by I dx the interpretation
de�ned by (D, I,β ∪ {(x,d)}).
De�nition 5 (Validity). Let I = (D, i,β) be an interpretation. ¿e interpretation I(t) of a term t is de�ned
as:

• If t ≡ f(t1, . . . , tn) then I(t) = fi(I(t1), . . . , I(tn)).
A formula φ is called valid in an interpretation I (denoted I ∣= φ) if the following is true:

• If φ ≡ p(t1, . . . , tn) then (I(t1), . . . , I(tn)) ∈ pi.
• If φ ≡ ¬ψ then it does not holds that I ∣= ψ.
• If φ ≡ ⋀ψ∈Φψ then it holds for all ψ ∈ Φ that I ∣= ψ.

• if φ ≡ ∃x̄ψ then there exists a total variable assignment β ∶ x̄ → D such that I β(x̄)x̄ ∣= ψ.
¿e basic relation between formulas is entailment.

De�nition 6 (Entailment). We say that a formula φ entails a formula ψ (denoted φ ∣= ψ) if every model
of φ is also a model of ψ. ¿is de�nition is extended to sets of formulas in the obvious way.

2.3 Normal Forms and Basic Results

¿is section contains some notions used in the following chapters.

De�nition 7 (Prenex Normal Form). A formula is in prenex normal form if all quanti�ers are le of the
le most predicate.

We call a formula universal if it is in prenex normal form and contains only universal quanti�ers.
We o en make use of the substitution Lemma. We ommit the easy proof by induction as it can be

found in many basic books on logic such as [28]

Lemma 1 (Substitution Lemma). Let Φ be a set of sentences and φ a formula and {x̄/t̄} a substitution.
¿en it holds that

I
I(t̄)
x̄
⊧ φ ⇔ I ⊧ φ{x̄/t̄}

11
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Chapter 3

RDF

¿e Resource Description Framework [54, 57] has been developed by the W3C as a simple data and meta-
data representation language. Together with XML and URIs it is expected to form the basis of the Semantic
Web. ¿e basic modelling concept of RDF is strikingly simple: statements are formed of triples consisting
of a subject, a predicate and an object. Subjects, predicates and objects are drawn from the in�nite sets
of URIs (U), literals (L), and blank nodes (B). URIs are used in RDF to uniquely identify an object or
concept. In contrast, literals are merely values without object identity. Using a blank node amounts to a
statement that something exists, and that it full �lls the relations given by the triples in which it occurs. A
collection of such triples forms an RDF graph. An RDF graph can be seen both as a set of triples or as a
logical formula.

In this chapter we �rst recall the de�nition of the RDF syntax and semantics given by the W3C in the
standardising documents [53, 40]. ¿ese documents de�ne RDF to be a labelled graph. In addition to these
graphs a notion of interpretations and validity is de�ned. We discuss the advantages and shortcomings of
these de�nitions. As we want to use logic programming to query RDF we show how an RDF graph can
be translated to a logical formula and a RDF interpretation to a logic interpretation such that validity is
preserved. We also dicuss how RDF graphs themselves may be modelled as interpretations. Such a view is
commonplace in database theory. We show how this view allows to reduce RDF entailment to validity
using Hayes’ interpolation lemma [40]. We �nally discuss a notion called leanness which is a form of
redundancy freeness.

3.1 RDF Syntax and Semantics

In this section we recall the syntax of RDF graphs as de�ned in [53]. In Section 3.2 and Section 3.3 we will
give an equivalent de�nition of an RDF graph as a formula or an interpretation.

¿e nodes of an RDF graph are elements of the following sets.

De�nition 8 (URI Reference, Literal, Bank Node [53]). A URI reference is a string that would produce a
valid URI. We denote the set of URI references by U.

An RDF literal is a string. A literal may have a language tag (again a string) or a datatype URI (a URI
reference) associated with it. We denote the set of literal by L.
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A blank node is an element of some in�nite set B. We assume that U, L and B are disjoint. ¿e set
U ∪ L is called a vocabulary.

An atomic statement in RDF is called a triple. A set of such triples is an RDF graph.

De�nition 9 (RDF Triple, RDF Graph [53]). An RDF triple is a triple

(s, p,o) ∈ (U ∪ B) ×U × (U ∪ L∪ B)
An RDF graph is a set of RDF triples.

Figure 2 shows an RDF graph which describes co-author graph. ¿roughout this document literals are
depicted as rectangles, URIs and blank nodes have rounded corners, where URI references have a single
border and blank nodes have a double border. By misuse of notation we o en name URIs references and
blank nodes by strings instead of URIs if this does not lead to confusion.

Figure 2 A co-author graph in RDF
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won won won

won won

RDF graphs may be used to make statements about the world. ¿is statement is considered true, if
the world can be seen as an interpretation of the world. Hayes put it this way: ‘¿e basic intuition of
model-theoretic semantics is that asserting a sentence makes a claim about the world: it is another way of
saying that the world is, in fact, so arranged as to be an interpretation which makes the sentence true. In
other words, an assertion amounts to stating a constraint on the possible ways the world might be.’ [40]
¿ese interpretations are de�ned as follows.

De�nition 10 (Simple RDF Interpretation [40]). Let V be a vocabulary. A simple RDF interpretation I is
de�ned by a tuple (IR, IP, IEXT, IS, IL,LV) consisting of
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• a non-empty set IR of resources, called the domain or universe of I,

• a set IP, called the set of properties of I,

• a mapping IEXT from IP into the power-set of IR × IR,

• a mapping IS from URI references in V into IR ∪ IP,

• a mapping IL from typed literals in V into IR, and

• a distinguished subset LV of IR, called the set of literal values, which contains all the plain literals in
V.

¿e following de�nition resembles the de�nition of validity.

De�nition 11 (Semantic Conditions for Ground Graphs [40]). Let E be a literal, a URI reference, an
RDFtriple of an RDF graph. ¿en we de�ne

• if E is a plain literal ‘a’ in V then I(E) = a.
• if E is a plain literal ‘a’@t in V then I(E) = (a, t).
• if E is a typed literal in V then I(E) = IL(E).
• if E is a URI reference in V then I(E) = IS(E).
• if E is a ground triple (s, p,o) then I(E) = true if

– s, pand o are in V,

– I(p) is in IP, and

– (I(s), I(o)) is in IEXT(I(p)),
otherwise I(E) = false.

• if E is a ground RDF graph then I(E) = false if I(E′) = false for some triple E′ in E, otherwise
I(E) = true.

In the following validity for blank nodes is de�ned. Observe that an RDF graph containing a blank
node b is valid if there exists a mappingA ∶ B→ IR to interpret blank nodes. ¿is gives rise to the similarity
between blank nodes and existential variables.

De�nition 12 (Semantic conditions for blank nodes [40]). Let A be a mapping from B to the universe
IR of I, and de�ne [I+A] to be an extended interpretation which is like I except that it uses A to give the
interpretation of blank nodes. De�ne blank(E) to be the set of blank nodes in E. ¿en the above rules
can be extended by the following:

• If E is a blank node and A(E) is de�ned then [I+A](E) = A(E)
• If E is an RDFgraph then I(E) = true if [I+A′](E) = true for some mapping A′ from blank(E) to

IR, otherwise I(E) = false.
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Entailment between RDF graphs is de�ned as for logical formulas.

De�nition 13 (RDF Entailment [40]). I satis�es E if I(E) = true, and a set S of RDF graphs (simply) entails
a graph E if every interpretation which satis�es every member of S also satis�es E.

As there are an in�nite number of interpretations of an RDF graph, this de�nition does not directly
induce an computable algorithm. Such an algorithm is implied by the interpolation lemma [40] which
uses the notions of instance and subgraph:

De�nition 14 (Subgraph, Instance [40]). A subgraph of an RDF graph g = ∃x̄.⋀Φ is an RDF graph
∃ȳ.⋀Ψ where Ψ ⊆ Φ.

Let σ be a substitution. An instance of an RDF graph g is an RDF graph gσ. An instance of an RDF
graph g is a real instance if subsmaps a blank node in g to a constant.

Lemma 2 (Interpolation Lemma [40]). An RDF graph g entails an RDF graph h (g ∣= h) i� a subgraph of
g is an instance of rd fgrapht.

A direct consequence of the interpolation Lemma in [40] is the subgraph Lemma

Lemma 3. An RDF graph entails any of its subgraphs.

It has been shown that RDF entailment is NP complete [35] and that it is polynomial when the entailed
RDF graph is a tree [8]. ¿e same authors also show the equivalence between RDF entailment, graph
homomorphisms and constraint networks. ¿is makes results of the constraint satisfaction community,
such as hypertree decomposition [34], accessible for RDF entailment.

An interesting semantic notion in the context of RDF is the notion of a lean RDF graph. Leanness
captures in some sense that an RDF graph is free of redundancy. ¿e precise de�nition is

De�nition 15 (Lean). An RDF graph g is lean, if no instance of g is a subgraph of g.

¿is notion, indeed, captures the intuition that there may be no proper subgraph with the same
entailment as the following proposition states (which follows directly from interpolation and subgraph
lemma above).

Proposition 1. Let g be an RDF-graph and σ a substitution consistent with g. ¿en

g ⊇RDF gσ Ô⇒ gσ ⊧∣ g

Two RDF graphs are called isomorphic if they are equal up to renaming of blank nodes. Observe that
isomorphism implies bi-entailment, but not vice versa.

Observe that the RDF semantics de�nes two di�erent notions of the composition of RDF graph. ¿e
union of two RDF graphs is the union in a set theoretic sense. ¿emerge of two RDF g and h graphs is the
union of the RDF graphs g′ and h′ where g′ is isomorphic to g and h′ is isomorphic to h and g′ and h′

have no blank nodes in common.

3.2 RDF Graphs as Formulas

In this thesis we propose a query language for RDF based on logic programming. We want to consider
an RDF graph as the facts of such a program. We show in this chapter that this approach integrates well
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with the de�nition of the semantics of RDF: an RDF graph can be translated to a formula and an RDF
interpretation can be translated into a logic interpretation such that validity is preserved.

¿e translation of an RDF graph to a formula is straightforward. A URI or a literal is translated to a
constant. A blank node is translated to an existential variable. A triple is translated to an atomic formula.
An RDF graph g is translated to the conjunction of all atomic formulas representing triples in g.

When it comes to interpreting theses formulas using a logic interpretation a problem arises: In logic
one usually considers the sets of predicate symbols to be disjoint from the set of function symbols. ¿is is
not the case for RDF. To be able to use the standard de�nition of interpretation we pre�x all predicate
symbols in an RDF graph with ‘pred∶’ before the translation.

De�nition 16 (RDF Alphabet, Translation of an RDF Graph). ¿e RDF predicate symbols PredRDF is the
set {pred∶u ∣ u ∈ U}. ¿e RDF function symbols FunkRDF is the set U ∪ L. ¿e RDF alphabet ARDF is the
set PredRDF ∪ FunkRDF

Let g be an RDF graph. An existentially quanti�ed sentence φ is the translation of g i�

• there is a bijection f from the blank nodes in g to the variables occurring in φ

• g contains the triple (s, p,o) i� φ contains the conjunct pred ∶ p(s,o).
It is easy to see that the translation of an RDF graph to a formula is unique up to renaming of variables.

We therefore speak of the translation of an RDF graph. Observe that as an RDF graph may have an in�nite
number of triples. a translation of an RDF graph may have an in�nite number of conjuncts.

We now show how an RDF interpretation can be translated to a logic interpretation.

De�nition 17 (Translation of an RDF Interpretation). Let I = (IR, IP, IEXT, IS, IL,LV,A) be an RDF
interpretation. A logic interpretation J = (D, j,β) is the translation of I if

• D = IR,

• pj = IEXT(IS(p′)) where p= pred ∶ p′ and p ∈ PredRDF, and
• tj = I(t) if t ∈ FunkRDF.
• β = A

¿e following proposition stated that our translation preserves validity.
Proposition 2. Let gbe an RDF graph and let gtr be its translation to a formula. Let I be a RDF interpretation
and let Itr be its translation to a logic interpretation. ¿en it holds that I is a model of g i� Itr is a model of
gtr.

¿e easy proof by induction is omitted.

3.3 RDF Graphs as Interpretations

In this section we show that an RDF graph can also be seen as an interpretation. We will show that this
view admits to reformulate RDF entailment in model theoretic and logical terms. In addition we will see
that the semantics of a logic program is characterised by its minimal Herbrand model. ¿e semantics
of the language RDFLog is formulated in terms of RDF graphs. ¿e following translation allows us to
compare both semantics.
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De�nition 18. Let g = ∃x̄.⋀Φ be an rdf graph over alphabet A. Let T be the set of terms occurring in g.
An interpretation I = (D, I,β) over A is called related to g if

• there is a bijection f ∶ D→ T such that I(f(d)) = d for all d ∈ D.
• fi = f for all f ∈ FunkA.

• pi = {(d1,d2) ∈ D × D ∣ p(f(d1), f(d2)) is a conjunct in g}
Let I, J be two interpretations related to an RDF graph g. Observe that in this case I and J are

isomorphic and therefore elementary equivalent (they are models of exactly the same sentences, compare
[44]). ¿is allows us to speak of the interpretation related to an RDF graph gwhich we denote by Ig.

We now show how this view allows as to reformulate entailment in terms of validity.

Lemma 4. Let g,h be an RDF graphs. ¿en it holds that if the interpretation Ig related to g is a model of
h then g entails h.

Proof. Let h = ∃x̄ . ⋀ΦwhereΦ is a set of binary atomic formulas. Let D be the domain of Ig. As Ig ⊧ h
it holds that there is a mapping β ∶ x̄ → D such that Ig

β(x̄)
x̄ ⊧ ⋀Φ.

Let f be the bijection from D and to the set of terms T occurring in g. Observe that f(β(x̄)) is a
sequence of terms in g. As Ig(f(d)) = d it holds that Ig Ig(f(β(x̄)))x̄ ⊧ ⋀Φ and by the substitution Lemma
that 1 Ig ⊧ ⋀Φ{x̄/f(β(x̄))}.

We de�ne the substitution σ as {x̄/f(β(x̄))}. Let p(a,b) ∈ Φσ where a and b are terms. By Hayes
interpolation Lemma (Lemma 2) we need to show that p(a,b) is a conjunct of h. ¿is is the case as
Ih ⊧ p(a,b) i� (ai,bi) ∈ pi and this implies that p(a,b) is a conjunct of g by de�nition.

In addition state the following lemma which shows how RDF entailment relates to the substructure
relationship. ¿e proof is omited.

Proposition 3. Let g,h be RDF graphs and let Ig, Ih be the interpretations related to g and h. ¿en it holds
that g ∣= h i� there is a homomorphism from Ih to Ig.
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Chapter 4

Logic Programming

¿is section is not meant to be an introduction to logic programming. Comprehensive introductions to
logic programming and Prolog can be found in [73, 62, 56, 25]

Instead we compare logic programming to theorem proving and state why it is more e�cient in
terminating cases.

4.1 Logic Programming vs. Theorem Proving

4.1.1 The Logic Programming Problem

Logic programming can be seen as an instance of theorem proving. ¿e aim of theorem proving is to solve
the following problem e�ciently.

• Given a set of formulasΦ and a formula φ. Decide whetherΦ ∣= φ
¿ere are several systems to solve this problem [60, 6, 68]. Nonetheless theorem proving is highly

ine�cient in many cases and therefore not suitable as a programming language. ¿is justi�es the search
for a syntactical restriction of �rst order logic which is still Turing complete but which has a more e�cient
calculus in terminating cases. ¿e syntactical restriction used in logic programming is that bothΦ and φ
are Horn clauses.

De�nition 19 (Literal, Clause, Horn Clause). A literal is an atom or the negation of an atom. A clause is a
disjunction of literals. A Horn clause is a clause with at most one positive literal. A Horn clause is called
positive if it contains a positive literal and negative otherwise.

We usually denote the positive Horn clause ¬a1 ∨ . . .∨ ¬an ∨ a by a1 ∧ . . .∧ an → a. ¿is is justi�ed
because both formulas are equivalent.

¿e observation of logic programming is that ifΦ consists of Horn clauses, and φ is a closed formula of
the form ∃x̄.φ1∧ . . .∧φn where the φi are atoms, thenΦ ∣= φmay be decided e�ciently if the computation
terminates. We refer to this instance of the theorem proving problem to the logic programming problem. In
the following sections we discuss why this problem may be solved more e�ciently than theorem proving
in many cases.
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¿erefore we de�ne

De�nition 20 (Logic Program, Query). A logic program is a �nite set of universal positive Horn clauses.
A query is a universal negative Horn clause.

First observe that deciding entailment may be reduced to unsatis�ability: it holds that Φ ∣= φ i�
Φ∪ {¬φ} is unsatis�able. ¿erefore if we can decide unsatis�ability of a set of Horn clauses e�ciently, we
have obtained an e�cient procedure to decide the logic programming problem.

To decide un-satis�ability requires in the general case to check for every interpretation I that I is not a
model ofΦ∪ {¬φ}. As there is an in�nite number of interpretations for a given alphabet, this is surely
un-feasible.

4.1.2 Term Models

A construction of Henkin can be used to solve this problem. Henkin wanted to �nd an simpler proof for
Gödels proof of the completeness of �rst order logic with respect to his functional calculus [33]. Henkin
shows that

ifΦ is consistent, then it has a model. (⋆)

It can be easily seen that this statement implies the completeness of �rst order logic (see [28] Chapter V).
To show (⋆), Henkin �rst shows that every consistent set of �rst order sentencesΦ, which satis�es

certain properties with respect to negation (i) and existential quanti�cation (ii) has a model [41]. In
addition it is possible to extendΦ in such a way that the extension satis�es (i) and (ii). It should be noted
though that this extension adds a countably in�nite number of formulas toΦ.

We �rst show informally how to prove (⋆) for a setΦwhich satis�es (i) and (ii) and then argue how it
is possible to avoid the in�nite extension. We show (⋆) by constructing for a given set of formulasΦ a
model IΦ = (D, i,β). ¿e idea of the construction of IΦ is to interpret every term by itself and to interpret
an predicate p as true i�Φ ⊢ p (where ⊢ is some sound calculus for �rst order logic). Models of this kind
are referred to as term models.

It might be tempting to choose the domain D to be the set of ground terms. But, there is a problem
if Φ contains equality. Consider the case that t1 = t2 ∈ Φ for distinct terms t1, t2. As t1, t2 are distinct it
holds that IΦ(t1) = t1 ≠ t2 = IΦ(t2) and thus IΦ ∣=/ t1 = t2. ¿erefore IΦ is not a model ofΦ. ¿is can be
avoided by de�ning D to be the set of equivalence classes induced by the equivalence relation de�ned as
t1 ∼ t2 i�Φ ⊢ t1 = t2.

4.1.3 Herbrand Models

¿erefore, the �rst restriction we use is to assume that Φ does not contain equality. In this case every
equivalence class in the domain of IΦ consists of a single element. We identify the singleton equivalence
class [t]∼ with t and therefore term models simplify to Herbrand models

De�nition 21 (Herbrand Universe, Base, and Interpretation). Let Abe an alphabet. ¿eHerbrand universe
UA of A is the set of all ground terms build from symbols in A. ¿e Herbrand base BA of A is the set of all
ground atoms which can be formed from the symbols in A.
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An interpretation I = (D, i,β) over an alphabet A is an Herbrand interpretation if D ⊇ UA and ai = a
for all a ∈ A.

If P is a logic program over alphabet A, then we denote the Herbrand universe over A by UP and
Herbrand base over Aby BP.

Observe that the de�nition of an Herbrand model does not say anything about the interpretations of
predicate symbols. ¿us a Herbrand interpretation is �xed for some alphabet A if we �x the interpretation
for the predicate symbols. ¿erefore we o en identify an Herbrand interpretation I with the set of atoms
which are true in I.

¿e restriction to equality free formulas simpli�es the models we are interested in but it has no
advantages with respect to computability. We still need to extend the set of formulasΦ to an in�nite set to
compute a model. ¿e next Proposition shows that this is not necessary if we restrict Φ to universal Horn
clauses. We formulate it in a more general form than needed for logic programming as we shall need this
general form later on.

Proposition 4. LetΦ be a consistent set of universal positive Horn clauses, Ψ a set of atomic formulas, and
x̄ all variables occurring in Ψ. Let IΦ = (D, i,β) be a Herbrand interpretation over A such that IΦ ∣= a i�
Φ ∣= a for all atoms a. ¿en the following is equivalent:

(a) Φ ∣= ∃x̄.⋀Ψ

(b) IΦ ∣= ∃x̄.⋀Ψ

(c) there is a sequence t̄ ∈ UP such thatΦ ∣= ⋀Ψ{x̄/t̄}.
Proof. ¿e proof is an extention of the proof for Proposition XI.2.7 in [28] It is trivial that (c) implies (a).
To see that (a) implies (b) observe that IΦ ∣= Φ (which is proved in [28] XI.2.4).

Finally to show that (b) implies (c) assume that (b) is true. As IΦ is a term model, there is a sequence t̄
of terms such that IΦ t̄

x̄ ∣= ⋀Ψ. As IΦ(t) = t for all terms t it follows from the substitution Lemma that
IΦ ∣= ⋀Ψ{x̄/t̄}. ¿erefore it holds that IΦ ∣= ψ{x̄/t̄} for all ψ ∈ Ψ. As ψ is atomic it follows from the
de�nition of IΦ that Φ ∣= ψ{x̄/t̄}. As this is true for every ψ ∈ Ψ it holds that Φ ∣= ⋀Ψ{x̄/t̄} for some
sequence of terms t̄.

¿is proposition is important for logic programming for two reasons: (1) to decide whether a formula
of the form ∃x̄.⋀Ψ is entailed by a logic program can be decided simply by checking whether ∃x̄.⋀Ψ is
true in IΦ (without extendingΦ). And (2) if such an entailment exists, then there are terms which may be
substituted for the variables in x̄.

¿erefore the logic programming problem can be decided by constructing amodel for a set of universal
Horn clauses. We now argue why, in the propositional case, models of horn clauses may be generated
e�ciently. We �rst consider the easier question of whether a model for a propositional formula exists.

4.2 Semantics of Logic Programs

4.2.1 Model Theoretic Semantics

Let us now turn from the logic programming problem to the problem of de�ning a semantics of a logic
program. As we just discussed, Herbrand models of logic programs can be constructed e�ciently. So why
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not de�ne the semantics of a logic program P to be the set of Herbrand models of P. Unfortunately even
simple logic programs have an in�nite number of Herbrand models

Example 4.1. Consider the logic program P

p(f(a))

¿e set of Herbrand models of P is

{{p(f(a))},{p(f(a)), p(f(f(a)))},{p(f(a)), p(f(f(f(f(a))))))}, . . .}

Fortunately, it holds that the intersection of two Herbrand models of a logic program P is also a
Herbrand model of P (proved in [55] 2.6.1). As each logic program has a Herbrand model (e.g BP) the set
of all Herbrand models is not empty. ¿erefore there is a models which is the intersection of all Herbrand
models of a logic program. ¿is model is called theminimal Herbrand model of P (denotedMP). Usually
the semantics of an logic program P is de�ned to be the least Herbrand model of P.

In this thesis we propose the query language RDFLog, which is a query language for RDF. We view
RDF as a logical formula. As we want RDFLog to be closed, i.e. the output of the query language is in the
same formalism as the input, we de�ne the semantics of RDFLog to be a logic formula. To show that the
semantics of RDFLog resembles the semantics of logic programming, we de�ne the semantics of logic
programming to be a logical formula.

De�nition 22 (Semantics of Logic Programming). We de�ne the semantics ⟦P⟧l of a logic program P to
be

⟦P⟧l ∶=⋀MP

Observe that, as the least Herbrand model of a logic program Pmay be in�nite, the semantics of a
logic program may be an in�nite conjunction of atoms.

4.2.2 Fixed Point Semantics

In this section we �nally show how Herbrand models of sets of universal Horn clauses may be constructed
e�ciently. First consider the problem of �nding a model for a set of propositional formulas (formulas,
in which every predicate symbol is 0-ary). It is easy to see that models for propositional formulas in
disjunctive normal form may be constructed in polynomial time, while it is still open whether this is
possible for formulas in conjunctive normal form. In fact, �nding a model of a propositional formula in
conjunctive normal form in polynomial time amount to solving the famous P = NP in a positive way!

As the models of a set of formulasΦ is equal to the models of⋀Φ, we are faced with a similar problem
here. ¿erefore even propositional logic programming seems not to be tractable. But again, the restriction
to Horn clauses helps. Deciding satis�ability for a set of propositional Horn clauses is in P:

• LetM be the empty Herbrand model.

• While there is a rule a← a1, . . . ,an in P such that a1, . . . ,an are true inM add a toM.

It is easy to see that a �xed point is reached a er O(∣P∣) iterations.
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¿e construction of models for non-propositional logic programs follows the same idea. We proceed
as follows: We �rst de�ne an operator for the general case of logic programming. ¿en we show that the
minimal Herbrand model of a logic program P is equal to the least �xed point of this operator. Finally we
show that this �xed point is reached in a countable number of iterations.

De�nition 23 (Consequence Operator). Let P be a logic program and M a set of ground atoms. Let
r = a← a1, . . . ,an be a horn clause. De�ne consr ∶ 2BA → 2BA as

consr(M) ∶=
⎧⎪⎪⎨⎪⎪⎩
M ∪ a if {a1, . . . ,an} ⊆ M
M otherwise

¿e immediate consequence operator TP ∶ 2UA → 2UA is de�ned as

TP(M) = ⋃
r∈gnd(P)

consr(M)

A �xed point of an operator F ∶ M → M is an element m ∈ M such that F(m) = m. IfM is partially
ordered, say by some ≺, then a �xed pointm of F is the least �xed point of F if for all �xed pointsm′ of F
it holds thatm ≺ m′. Observe that Herbrand models may be partially ordered wrt. the subset relation.

Models of a logic program P can be constructed by iterating the consequence operator of P beginning
from the empty set. As the least �xed point may not be reached a er a �nite number of steps, we de�ne
the iteration of the consequence operator for ordinal numbers.

T0
P = ∅

TαP = TP(Tα−1P ) if n is a successor ordinal

TαP =⋃{TβP ∣ β < α} if n is a limit ordinal

Van Emden and Kowalski showed that the minimal Herbrand model of a logic program is equal the
least �xed point of TP. ¿e proof uses a theorem due to Tarski. We do not give the proof here since it can
be found e.g. in [55]. In addition it can be shown that TP always has a �xed point and that this �xed point
is reached a er a countable number of iterations. ¿erefore we can state

Proposition 5. Let P be a logic program. ¿enMP = TωP .

¿is result shows that this �xed point iteration is useful as a computational procedure to compute
models of logic programs. ¿e following corrollary is also easy to show by trans�nite induction over the
number of iterations of the operator:

Corollary 4.2. Let P be a logic program. ¿en it holds that

P ∣= ⟦P⟧l

4.3 Backward Chaining

4.3.1 Why Backwards?

We discussed in the previous section that the semantics of a logic program might be in�nite. Consider the
logic program
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Listing 1. Parents are Humans

1 human(hans) ← .

human(Y) ← is_child_of(X, Y).

3 is_child_of(X,parent(X)) ← human(X) .

It is easy to see that the minimal Herbrand model of this program is in�nite. If we are only interested
in whether Hans’ father is human it is certainly not necessary to compute the whole model.

A di�erent possibility to answer the question ‘Is Hans’ parent human?’ would be to assume that the
answer is ‘no’. ¿en it follows from the second clause that nobody is a child of Hans’ parent. In particular
Hans is not a child of Hans’ parent. ¿erefore by the last clause it holds that Hans is hot human which
is a contradiction to the �rst clause. ¿erefore our �rst assumption must have been wrong and thus the
answer to the above question is ‘yes’.

So what is the bene�t so such sorts of arguments? Instead of �rst enumerating everything that enforced
to be true by a logic program we assumed the query to be wrong and found a refutation proof. ¿is
is exactly the idea of SLD-resolution: Given a set of universal positive Horn clauses Φ and a universal
negative Horn clause ∀x̄(� ← a1, . . . ,an) = ¬∃x̄ .a1, . . . ,an, show that Φ ∪ {¬∃x̄ .a1, . . . ,an} is not
satis�able. Observe thatΦ∪ {¬∃x̄ .a1, . . . ,an} is unsatis�able i�Φ ∣= ∃x̄ .a1, . . . ,an. By Proposition 4 it
holds that there is a sequence t̄ of terms such thatΦ ∣= a1, . . . ,an{x̄/t̄}.

Reconsider our example argumentation. In one step we argued that as nobody is Hans’ parents’ child in
particular Hans himself is not. Cast in logical terms this amounts to binding a term (Hans) to a universal
variable (somebody). In SLD-resolution, the bodies of rules are matched against the heads of rules. ¿e
matching consists in �nding a substitution σ such that if σ is applied to tow rules r1, r2, then the head of
r1σ is equal to some body atom in r2σ. It is desirable to compute most general uni�ers in order to obtain
as few answers as possible.

De�nition 24 (Uni�er). LetM be a set of atoms. A substitution σ is called a uni�er ifMσ is singleton. A
uni�er σ is calledmost general (denotedmgu) for a set of atomsM if for all uni�ers τ ofM it holds that
there is a substitution ρ such that σρ = τ.

¿e concept of uni�cation goes back to Herbrand [43] in 1930. It was reconsidered in 1963 by Robinson
[69] to reduce the size of the search space. Even though the size of a uni�cation is exponential in
general, there are algorithms which compute uni�cations in linear time [59, 58]. ¿is is done by e�ciently
representing the uni�cator.

4.3.2 SLD Resolution

A new assumption in the above refutation proofs is called a SLD resolvent.

De�nition 25 (SLD Resolvent). Let c = b ← b1, . . . ,bk be the clause, let q =← a1, . . . ,am, . . . ,an a
query, and let θ be the mgu of {am,b}. We assume that q and c have no variables in common (oth-
erwise we rename the variables of c). ¿en q′ is an SLD resolvent of q and c using θ if q′ is the query
← (a1, . . .am−1,b1, . . .bk,am+1, . . .an)θ.

A refutation proof is called a SLD derivation. Observe that there might be several such proofs.
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De�nition 26 (SLD Derivation). A SLD derivation of P ∪ {q} consists of a sequence q0,q1, . . . of queries
where q = q0, a sequence c1, c2, . . . of variants of program clauses of P and a sequence θ1,θ2, . . . of mgu’s
such that qi+1 is a resolvent from qi and ci+1 using θi+1. An SLD-refutation is a �nite SLD-derivation
which has the empty query as its last query.

Given a logic program P and a query q, the set of all possible refutation proofs may be represented as
a tree.

De�nition 27 (SLD Tree). An SLD tree T w.r.t. a program P and a query q is a labeled tree where every
node of T is a query and the root of T is q and if q is a node in T then q has a child q′ connected to q by
an edge labeled (c,θ) i� q′ is an SLD-resolvent of q and c using θ.

Let P be a de�nite program and q a de�nite query. A computed answer θ for P∪{q} is the substitution
obtained by restricting the composition of θ1, . . .θn to the variables occurring in q, where θ1, . . .θn is the
sequence of mgu’s used in an SLD-refutation of P ∪ {q}.

Observe that in each resolution step the selected literal am and the clause c are chosennon-deterministically.
We call a function that maps to each query one of its atoms a computation rule. ¿e following proposition
shows that the result of the refutation is independent of the literal selected in each step of the refutation.

Proposition 6 (Independence of the Computation Rule). [55] Let P be a de�nite Program and q be a
de�nite query. Suppose there is an SLD-refutation of P ∪ {q} with computed answer θ. ¿en, for any
computation rule R, there exists an SLD-refutation of P ∪ {q} using the atom selected by R as selected
atom in each step with computed answer θ′ such that qθ is a variant of qθ′.

¿e independence of the computation rule allows us to restrict the search space: As a refutation
corresponds to a branch of in an SLD-tree, to �nd all computed answers we need to search all branches
of the SLD-tree. ¿e independence of the computation rule allows us to restrict our search to branches
constructed using some (arbitrary) computation rule.

Example 4.3. Consider the logic program 2 with query q =← t(1,2):
Listing 2. Transitive Closure

1 t(x,y) ← e(x,y).

t(x,y) ← t(x,z), e(z,y).

3 e(1,2) ← .

e(2,1) ← .

5 e(2,3) ← .

← t(1,2) .

An SLD-tree for program 2 and q is shown in Figure 3. ¿e edges of the SLD tree are labeled with the
number of a rule instead of a rule. We denote by (n’) the rule obtained from rule n with each variable x is
replaced by x′.

4.3.3 Soundness and Completeness of SLD Resolution

To compare the operational semantics of a program P to its declarative semantics we de�ne a declarative
counterpart of an answer to a query to a program P. A correct answer for a program P and query q is a
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Figure 3 An SLD tree for program 2

← t(1,a)

← e(1,a′)

◻

((3),{a′/2})

((1′),{x′/1, y′/a})
← t(1, z′), e(z′,a)

← e(1, z′), e(z′,a)

← e(2,a)

◻

((4),{a/1})
◻

((5),{a/3})

((3),{z′/2})

((1′′),{x′′/1, y′′/z′})
← t(1, z′′), e(z′′, z′), e(z′, y′)

. . .

(. . .)
. . .

(. . .)

((2′′),{x′′/1, y′′/z′})

((2′),{x′/1, y′/a})

substitution σ such that ⟦P⟧l ∣= qσ. Using this notion we can de�ne the soundness and completeness of
logic programming.

Proposition 7 (Soundness and Completeness of Logic Programming). [55] Let P be a program and let q be
a query. ¿en it holds that

• every computed answer of P and q is a correct answer and

• for every correct answer σ of P and q there exists a computed answer θ such that θ is more general
that σ.

Observe that to �nd a computed answers of a program P and query q operationally one has to visit
the leaf of a �nite branch in the SLD-tree w.r.t. P and q. ¿e order in which we visit these nodes is not
determined by the de�nition of an SLD-refutation. We call such an order a search strategy. An SLD-
procedure is a deterministic algorithm which is an SLD-resolution constrained by a computation rule and
a search strategy.

As SLD-trees are in�nite in general, the completeness of an SLD-procedure depends on the search
strategy. To be complete, an SLD-procedure must visit every leaf of a �nite branch of an SLD-tree within
a �nite number of steps. A search strategy with this property is called fair. Obviously not every search
strategy is fair. For example the depth �rst search strategy used by Prolog is not fair. An example of a fair
search strategy is breath �rst search.

4.4 Tabling

4.4.1 The Idea

As stated in the previous section not every search strategy is complete. ¿is is due to the fact that an
SLD-tree is in�nite in general. As we only consider �nite programs, an SLD-tree may only be in�nite if it
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has an in�nite branch. As a branch in an SLD-tree corresponds to an SLD-derivation we denote a branch
as [q1,q2, . . .] where q1,q2 . . . are the queries of the corresponding derivation.

A branch B = [q1,q2, . . .] in an SLD-tree may be in�nite if there is a sub-sequence [qi1 ,qi2 , . . .] (ij < ik
if j< k) of B such that

• for all j, k ∈ N qij and qik contain an equal (up to renaming of variables) atom or

• for all j∈ N qij contains an atom which is a real instance of an atom in qij+1 .

Non-termination due to the �rst condition is addressed by a evaluation technique called tabling or
memorization. ¿e idea of tabling is the idea of dynamic programming: store intermediate results to be
able to look these results up instead of having to recompute them. In addition to the better termination
properties, performance is improved with this approach.

4.4.2 The Algorithm

¿e OLDT algorithm [75] is an extension of the SLD-resolution with a le to right computation rule. Like
SLD-resolution, it is de�ned as a non-deterministic algorithm.

A subset of the predicate symbols occurring in a program are classi�ed as table predicates. A query is
called a table query if its le most atom has a table predicate. Solutions to table queries are the intermediate
results that are stored. Table queries are classi�ed as either solution queries or look-up queries. ¿e intuition
is that a solution query ‘produces’ solutions while a look-up query looks up the solutions produced by an
appropriate solution query.

An OLDT-structure (T,TS,TL) consists of an SLD-tree T and two tables, the solution table TS and
the look-up table TL. ¿e solution table TS is a set of pairs (a,TS(a)) where a is an atom and TS(a) is a
list of instances of a called the solutions of a. ¿e look-up table TL is a set of pairs (a,TL(a)) where a is an
atom and p is a pointer pointing to an element of TS(a′) where a is an instance of a′. TL contains one
pair (a,TL(a)) for an atom a occurring as a le most atom of a query in T.

¿e extension of an OLDT structure (T,TS,TL) consists of three steps:

1. a resolution step,

2. a classi�cation step, and

3. a table update step.

In the resolution step a new query is added to the OLDT-tree, in the classi�cation step this new query
is classi�ed as either non-tabled query or solution query or look-up query and in the table update step
the solution table and the update table are updated. While step one is equal for non-tabled and solution
queries, step two and three are equal for tabled nodes while there is nothing to do in these steps for
non-tabled nodes.

Let (T,TS,TL) be an OLDT structure and q =← a1, . . . ,an a query in T. If q is a non-tabled query or
a solution query then in the resolution step a new query q′ is added to T which is connected to q with an
edge labeled (c,θ) where q′ is the SLD-resolvent of q and c using θ. If q is a look-up node then in the
resolution step the new node q′ is added to T with an edge labeled (a←,θ) where a is the atom in the
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solution table that the pointer TL(a1) points to and the substitution θ is the mgu of a and a1. Finally the
pointer TL(a1) is set to point to the next element of the list it points to.

In the classi�cation step the new query q′ is classi�ed as a non-table query if its le most atom is not a
table predicate and a table query otherwise. If q′ is a table query then q′ is classi�ed as a look-up node if
there is a pair (a,TS(a)) in the solution table and a is more general than the le most atom a′ of q′. In
this case a new pair (a′, p) is added to the look-up table and ppoints to the �rst element of TS(a). If q′ is
not classi�ed as a look-up node then it is classi�ed as a solution node and a new pair (a′, []) is added to
the solution table.

In the table update step new solutions are added to the solution table. Recall that the problem we
want to tackle here is the recurrent evaluation of equal (up to renaming of variables) atoms in queries.
¿erefore the ‘solutions’ we want to store in the solution table are answers to an atom in a query.

In SLD-resolution the term answer is de�ned only for queries. ¿is notion can be extended to atoms
in queries in the following way. OLDT-resolution uses a le to right computation rule. If the derivation
of a query q =← a1, . . . ,an is �nite, then there is a �nite number n of resolution steps such that the nth
resolvent qn on q is← a2, . . . ,an. We call the sequence [q1, . . . ,qn] a unit sub-refutation of a1 and the
restriction of θ1 . . .θn to the variables occurring in a1 is called an answer for a1.

Now if the query q produced in the resolution step is the last query of a unit sub-refutation of a with
answer θ then the update step consists in adding θ to the list TS(a).

4.4.3 An Example

Example 4.4. Reconsider the program from Example 4.3

Listing 3. Transitive Closure

t(x,y) ← e(x,y) .

2 t(x,y) ← t(x,z), e(z,y) .

e(1,2) ← .

4 e(2,1) ← .

e(2,3) ← .

6 ← t(1,2) .

A er a sequence of OLDT-resolutions of solution queries or non-tabled queries the OLDT-tree in
Figure 4 is constructed. To indicate which nodes are solution nodes and which are look-up nodes we
pre�x solution nodes with ‘S:’ and look-up nodes with ‘L:’.

As the le branch is a unit sub-refutation of t(1,a) with solution {a/2} the entry t(1,2) is added to
the solution table. As t(1,a) is more general than the le most atom of the query t(1, z′), e(z′,a) this
query is classi�ed as a look-up node. Instead of using resolution to compute answers for the �rst atom of
this query we use the solutions stored in the solution table. ¿e �nal OLDT-tree is depicted in 5:

Observe that the program of example 4.4 does not terminate with SLD-resolution while it does
terminate with OLDT-resolution. ¿e following example shows that OLDT-resolution is not complete in
general.

Example 4.5. Consider the program 4 and query q =← p(x)
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Figure 4 An intermediary OLDT tree for program 3

S:← t(1,a)

← e(1,a)

◻

((3),{a/2})

((1′),{x′/1, y′/a})
L:← t(1, z′), e(z′,a)
((2′),{x′/1, y′/a})

TS(t(1,a)) = [t(1,2)]
TL(t(1, z′)) =

Figure 5¿e �nal OLDT tree for program 3

S:← t(1,a)

← e(1,a′)

◻

((3),{a′/2})

((1′),{x′/1, y′/a})
L:← t(1, z′), e(z′,a)

← e(2,a)

◻

((4),{a/1})
◻

((5),{a/3})

(t(1,2)←,{z′/2})

((2′),{x′/1, y′/a})

TS(t(1,a)) = [t(1,2), t(1, 1), t(1, 3), []]
TL(t(1, z′)) =

Listing 4. Program for which OLDT resolution is incomplete

p(x) ← q(x), r .

2 q(s(x)) ← q(x) .

q(a) ← .

4 r ← .

← p(x) .

A er a sequence of OLDT-resolution steps the OLDT-tree in Figure 6 is constructed
In the next step the solution q(a) can be used to generate the solution q(s(a)) (see Figure 7).
It is easy to see that if reduction steps are only applied to the node L:← q(x′), r then no solutions for

p(x) will be produced in �nite time. ¿erefore OLDT is not complete in general.

¿is problem was addressed by the authors of OLDT.¿ey speci�ed a search strategy calledmultistage
depth-�rst strategy for which they showed that OLDT becomes complete if this search strategy is used. ¿e

29



Figure 6 An intermediary OLDT tree for program 4

S:← p(x)

S:← q(x), r

L:← q(x′), r
((2′),{x/s(x′)})

← r

◻

((4),{})

((3),{x/a})

((1′),{x′/x})

TS(p(x)) = []
TS(q(x)) = [q(a)]
TL(q(x′)) =

idea of this search strategy is to order the nodes in the OLDT-tree and to apply OLDT-resolution-steps to
the nodes in this order. If the node that is the biggest node with respect to that ordering is reduced then a
stage is complete and a new stage starts where reduction is applied to the smallest node again. ¿erefore it
is not possible to apply OLDT-steps twice in a row if there are other nodes in the tree which are resolvable.

In the above example it would therefore not be possible to repeatedly apply reductions to the node
L:← q(x′), r without reducing the node← r which yields a solution for p(x).
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Figure 7 An intermediary OLDT tree for program 4

S:← p(x)

S:← q(x), r

L:← q(x′), r

← r

((2′′),{x′/s(x′′)})

((2′),{x/s(x′)})
← r

◻

((4),{})

((3),{x/a})

((1′),{x′/x})

TS(p(x)) = []
TS(q(x)) = [q(a),q(s(a))]
TL(q(x′)) =
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Part II

RDFLog
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Chapter 5

Syntax and Examples

In this section we introduce the language RDFLog. We show using example how RDFLog can be used
to query RDF graphs with blank nodes. In Section 5.2 we demonstrate the construction and grouping
capabilities of RDFLog. Finally in Section 5.3 we de�ne the syntax of RDFLog programs. ¿e de�nition of
RDFLog is deferred until the next Chapter.

5.1 RDF querying with RDFLog

Recall the example RDF graph from Section 3.1 depicted in Figure 8.
RDFLog allows to extract subgraphs from an RDF graph using an RDFLog query.

De�nition 28 (RDFLog Query, Answer, Answer Graph). An RDFLog query is an RDF graph, possibly
containing blank nodes. Given an RDF graph g and an RDFLog query q, an answer of q and g is an RDF
graph which is an instance of q and a subgraph of g. ¿e answer graph for g and q is the union of the
answers of g and q without renaming of blank nodes (simply called union in the RDF semantics [40]).

For example the consider the RDFLog query q asking for the direct co-authors of Erdös.

Erdös x
co-authored

¿e answer graph for q is

Erdös Tarski

x3 x4

co-authored co-authored

co-authored

Observe that even though the co-author graph is lean, the answer graph of q is not: it is equivalent to its
subgraph consisting only of the nodes representing Erdös and Tarski. Nonetheless as the co-author graph

35



Figure 8 A co-author graph in RDF

Freud Einstein Curie

TarskiErdösChomski

x1 Nobel Prize

Wolf Prize AMS Cole Prize

x2 x3 x4

co-authored co-authored

co-authored

co-authored

co-authored

co-authored co-authored

co-authored

won won won

won won

is lean it is guaranteed under a closed world assumption that the nodes labeled x3, x4 do not represent the
same entity as the node labeled Tarski: While x4 co-authored with Einstein, Tarski did not. ¿is shows
that it might be useful to extend the notion of answers to concise bounded descriptions: whenever there
is a blank node in an answer and there is an edge between this blank node and another node then this
edge is added to the answer. Again the concise bounded answer graph is the union of all concise bounded
answers.

De�nition 29 (Concise Bounded Description, Concise Bounded Answer, Concise Bounded Answer
Graph). Let g be an RDF graph and b a blank node. ¿e concise bounded description of b in g is the
subgraph of g consisting of all nodes which may be reached from b or may reach b by a path containing
only blank nodes.

¿e concise bounded answer of an RDFLog query q and g is the union of the answers for q and g and
all concise bounded descriptions of blank nodes occurring in this answer. ¿e concise bounded answer
graph is the union of all concise bounded answers of q and g.

¿e concise bounded answer graph for the co-author graph and the afro-mentioned query is:
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Erdös TarskiChomski

Einsteinx2 x3 x4

co-authored co-authored

co-authored

co-authored

co-authored co-authored

5.2 Construction with RDFLog

RDFLog can be seen as a rule extension of RDF. Cast in the language of deductive databases, an RDF graph
represents an extensional databases, which may be augmented by RDFLog rules to de�ne an intentional
database. As an RDF triple can be modelled as an RDFLog rule with an empty body, an RDFLog program
can be considered as a set of RDFLog rules.

RDFLog rules are similar to Datalog rules. ¿e di�erence is that in contrast to Datalog, existential
variables may occur in the head. ¿ese existential variables are needed to construct new blank nodes. As
both existential and universal variables may occur in a rule, it is necessary to explicitly quantify theses
rules. ¿e semantics of an RDFLog rule depends on the order of the quanti�ers.

Instead of giving a de�nition of the intentional database de�ned by a set of RDFLog rules, in this
section we provide an intuition and show some examples. ¿e exact semantics is de�ned in Section 7.
Given an RDF graph g and a set P of RDFLog rules, the head of a rule r in P is added to g if the body
of rmatches against g. A fresh blank node y is constructed for every binding of universal variables with
quanti�ers to the le of the quanti�er of y. ¿is speci�cation mimics the semantics of quanti�ers in both
natural language and logics.

Consider for example the statement, that whenever someone has won a prize, then there is someone
who respects him (for example the guy awarding the prize). In RDFLog this can be formulated by the
following rule.

1 ∀ res prz ∃ res’ . won(res,prz) →

respects(res’,res)

Now it is possible to pose queries against the intentional database. ¿e following query selects all
edges of the RDF graph in Figure 8 stating that someone respects Erdös.

Erdös x
respects

¿e answer graph to the above query and the RDFLog program consisting of the above rule and the
co-author graph is

Erdös

u1 u2

respects respects
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Observe that as Erdös won two prizes there, RDFLog creates two new blank nodes. ¿is is precisely
how the above rule reads: for every pair of researcher and prize there is someone who respects the prize
winner. It should be noted that blank nodes in the head of an RDFLog rule have to be renamed, as a rule
may be used more than once.

Assume we want to group researchers by prize. For example one could state that for every prize, there
is a web page listing all the prize winners. ¿is could be formulated in RDFLog by the following rule:

∀ prz ∃ page ∀ res . won(res,prz) → lists(page,res)

We can now query for all listings of Erdös and a Nobel prize winners with the following query.

x1 x2 Nobel Prize

Erdösx3

lists won

lists

¿e answer graph for this query is

Nobel Prize

Einstein Curie

x1 x3x2

Erdös

won won

lists listslists lists

It is easy to see that the researchers are grouped by the prizes they one.

5.3 Syntax of RDFLog

In this section we de�ne the syntax of RDFLog. ¿e syntax we use is a restricted form of �rst order logic.
¿e reason for this is that the semantics of RDFLog is inspired from logics. Formulas are not suited as a
programming language for various reasons. It would therefore be tempting to develop a more user friendly
syntax for RDFLog. As the topic of this deliverable is to investigate the properties of the semantics of
RDFLog, this is le as future work.

De�nition 30 (RDFLog Rule, RDFLog Scope, RDFLog Program). An RDFLog rule is a formula of the
form

a1 ∧ . . .∧ an → b1 ∧ . . .∧ bm
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An RDFLog scope is a formula of the form

∀x̄1∃ȳ1 . . .∀x̄k∃ȳk . r1 ∧ . . .∧ rl

where r1, . . . , rl are RDFLog rules. Observe that n,m, l, k and the sequences ocurring in the de�nition
are �nite. An RDFLog program is a �nite conjunction of RDFLog scopes.

We o en ommit the conjunction symbol between rules and denote the conjunction symbol within a
rule by ‘,’. Observe that an RDFLog program is a �nite formula.
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Chapter 6

Evaluating RDFLog

6.1 Skolemisation and Back

In this section we introduce the Skolemisations and the un-Skolemisation. ¿eses are our main tools for
the reduction of RDFLog programs to logic programs. ¿e Skolemisation is a well known mapping from
formulas to universal formulas. We need to adapt the de�nition of Skolemisation to the in�nite formulas
de�ned in Section 2. We show that this extention has the same properties as the well known de�nition for
�nite formulas. We then de�ne a new notion of un-Skolemisation, again for in�nite formulas. We show
that the our de�nition of un-Skolemisation enjoys properties symmetric to those of Skolemisation.

6.1.1 Skolemisation

A Skolemisation is a function that maps a formula φ to a formula ψ such that

• ψ ∣= φ and
• if φ is satis�able then so is ψ and

• ψ contains no existential variables.

In this section we de�ne the Skolemisation and its inverse function, the un-Skolemisation. We show that
the un-Skolemisation has properties symmetric to those of the Skolemisation.

Example 6.1. We use the following RDFLog program P as a running example throughout this section:

∃y1∀x1x2∃y2 . p(a, y1) ∧ p(x1,x2)→ q(x2, y2)
A Skolemisation replaces each existential variable y in a formula φ by a term t such that t does unify

with any other term in φ and t contains exactly the universal variables preceding y in the pre�x of φ.
As we can consider RDFLog programs formulas we can apply Skolemisation to RDFLog programs. For
example if s is a Skolemisation which replaces y1 by the constant c and y2 by the term f(x1,x2), then the
application of s to P yields

∀x1x2 . p(a, c) ∧ p(x1,x2)→ q(x2, f(x1,x2))

41



¿eminimal Herbrand model of this logic program is

{p(a, c),q(c, f(a, c))}.

We now de�ne the Skolemisation. To avoid confusion recall that we de�ned the function symbol of a
term f(t1, . . . , tn) to be f and that sequences may be empty.

De�nition 31 (Skolemisation). A Skolemisation s is a mapping from formulas to formulas. It is de�ned by
a sequence [s1, . . . , sn] of mappings from variables to terms. ¿e set of function symbols of terms in the
range of s1 ∪ . . .∪ sn is denoted by S.

¿e empty Skolemisation [] is applicable to any formula. A Skolemisation s = [s1, . . . , sn] is applicable
to a formula φ = ∀x̄∃ȳψ over alphabet A if (1) Aand S are disjoint, (2) if t, t′ ∈ ran(s1 ∪ . . .∪ sn) and t ≠ t′
then t and t′ do not unify, (3) the domain of s1 is a superset of ȳ, (4) all terms in the range of s1 contain
exactly the variables x̄ and (5) [s2, . . . , sn] is applicable to [s1](φ).

¿e application of a skolemisation s = [s1, . . . , sn] to a formula φ = ∀x̄∃ȳψ is de�ned as

s(φ) ∶=
⎧⎪⎪⎨⎪⎪⎩
φ if s = []
s′(∀x̄.ψ{ȳ/s1(ȳ)}) otherwise

where s′ = [s2, . . . , sn]. ¿e set of terms in the domain of a skolemisation is called Skolem terms.

Example 6.2. Reconsider the Skolemisation from Example 6.1. We can now formalise this Skolemisation
as s = [s1, s2] where s1(y1) = c and s2(y2) = f(x1,x2).

¿e de�nition is a generalisation of the usual de�nition in that usually each existential variable is
replaced by a term with a unique function symbol. We use this more general form where it is only required
that terms in the domain of a Skolemisation do not unify with each other for reasons that will become
clear later. We �rst show that if terms in the range of s do unify then satis�ability is no preserved over
Skolemisation anymore. Consider the formula

∃x∀y∃z.¬p(a,x) ∧ p(y, z)

¿is formula is satis�able for example by an interpretation I with interprets pby {(a,b),(b,b)}. Now
assume we replace x by f(a) and z by f(y). We obtain the formula

∀y.¬p(a, f(a)) ∧ p(y, f(y))

which is not satis�able anymore.
One is o en interested in a Skolemisation that replaces all existential variables in a given formula. ¿is

is captured by the notion of an induced Skolemisation:

De�nition 32 (Induced Skolemisation). A Skolemisation which eliminates all existentially quanti�ed
variables in a formula φ is called an induced Skolemisation of φ.
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6.1.2 un-Skolemisation

We de�ne the un-Skolemisation such that it has the following properties: If φ is a formula and ψ is the
un-Skolemisation of φ then it holds that:

• φ ∣= ψ.

• If ψ is satis�able then so is φ.

• ¿e un-Skolemisation is the inverse of the Skolemisation and vice versa.

Observe that given a set of function symbols S and a �rst order formula φ it is not always possible to
return a formula ψ such that φ is the Skolemisation of ψ and such that φ is the Skolemisation of ψ (i.e. φ is
the un-Skolemisation of φ by the third requirement). Consider for example the formula

∀x1x2 . p(x1,x2, f(x1), g(x2))

It is not possible to replace all terms with function symbols f or g such that our requirement are ful�lled.
¿e formula states the value of the third argument of pdepends only and the value of the �rst argument
depends only on the second. Henkin introduced the so called Henkin quanti�ers [42] such that the
following is a formula.

( ∀x1 ∃y1
∀x2 ∃y2

) . p(x1,x2, y1, y2)

¿e semantics of this formula is exactly the semantics we are looking for. It was shown by Ehrenfeucht
that �rst order logic with Henkin quanti�ers are not expressible in �rst order logic, by showing that the
quanti�er ‘for in�nitely many x’ is expressible in such a language. Blass and Gurevich showed that this
logic captures existential second order logic [14]. Badia and Vansummern have recently showed how to
restrict Henkin quanti�ers in such a way that expressive power does not extend �rst order logic [7]. For
our purposes it is su�cient to restrict the formulas to which un-Skolemisation is applicable in such a way
that the result is alway a �rst order formula.

De�nition 33 (Un-Skolemisation). An un-Skolemisation u is a mapping from formulas to formulas. It is
de�ned by a sequence [u1, . . . ,un] of mappings from terms to variables. ¿e set of function symbols of
terms in the domain of u1 ∪ . . .∪ un is denoted by U.

¿e empty un-Skolemisation [] is applicable to any formula. An un-Skolemi-sation [u1, . . . ,un] is
applicable to a formulaφ = ∀x̄ψ over alphabetAif (1)AandU are disjoint (2) if t, t′ ∈ dom(s1∪. . .∪sn) then
t and t′ do not unify, (3) in all terms in the domain of u1 contain exactly the variables x̄, (4) [u2, . . . ,un]
is applicable to [u1](φ).

¿e application of an un-Skolemisation u = [u1, . . . ,un] to a formula φ = ∀x̄ψ is de�ned as

u(φ) ∶=
⎧⎪⎪⎨⎪⎪⎩
φ if s = []
u′(∀x̄∃ȳ.ψ{t̄/u1(t̄)}) otherwise

where t̄ = dom(u1) and u′ = [u2, . . . ,un].
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Observe that the same example as above can be used to show that satis�ability is not preserved if terms
in the domain of un-Skolemisations may unify with each other.

Example 6.3. Recall our Skolemised RDFLog program s(P) from Example 6.1

∀x1x2 . p(a, c) ∧ p(x1,x2)→ q(x2, f(x1,x2))
If we apply the un-Skolemisation u = [u1,u2] with u1(f(x1,x2)) = y2 and u2(c) = y1 to s(φ) we obtain
the formula u ○ s(P):

∃y1∀x1x2∃y2 . p(a, y1) ∧ p(x1,x2)→ q(x2, y2)
Observe that in this case s ○ u(P) = P.

6.1.3 Properties of Skolemisation and un-Skolemisation

We show that it holds on general that if we are given a Skolemisation s, we can de�ne an un-Skolemisation
u such that s ○ u(φ) = φ for any formula φ. We �rst show how we can obtain u from s and then show that
u is the inverse of s.

De�nition 34 (Un-Skolemisation of a Skolemisation). Let s = [s1, . . . , sn] be a Skolemisation. ¿en the
un-Skolemisation of s (denoted s−1) is the un-Skolemisation [s−1n , . . . s−11 ].

Let u = [u1, . . . ,un] be a un-Skolemisation. ¿en the Skolemisation of u for φ (denoted s−1) is the
Skolemisation de�ned by [u−1n , . . .u−11 ] if this is a Skolemisation.
Lemma 5 (Un-Skolemisation is the Inverse of Skolemisation). (a) Let s be a Skolemisation and u = s−1

its un Skolemisation. ¿en for all formulas φ to which s is applicable it holds that

u ○ s(φ) ⊧∣ φ.

(b) Symmetrically, if u is an un-Skolemisation and s = u−1 its un-Skolemisation. ¿en for all formulas
φ to which u is applicable it holds that

s ○ u(φ) ⊧∣ φ.
Proof. (a) Let s = [s1, . . . , sn] and u = [s−1m , . . . , s−11 ]. We show by induction on the length m of s that

[s−1m , . . . , s−11 ] ○ s(φ) = φ. If s is of length 0 the statement is trivial.
For the inductive step we �rst show that this claim holds if s is de�ned by a sequence of length
one. ¿us, let s = [s1], and s1 = {y1 ↦ t1, y2 ↦ t2, . . .} and let φ be a formula to which s is
applicable. ¿erefore φ is of the form ∀x̄∃ȳ.ψ where ψ does not start with an existential quanti�er
and ȳ = [y1, y2, . . .]. ¿e application of s to φ is

s(φ) = ∀x̄.ψ{y1/t1, y2/t1, . . .} (⋆)

It is easy to see that [s−11 ] = [{t1 ↦ y1, t2 ↦ y2, . . .}] applicable to (⋆) and by de�nition its
application yields

∀x̄∃ȳ.ψ{y1/t1, y2/t1, . . .}{t1/z1, t2/z1, . . .} (⋆⋆)
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It is easy to show that (⋆⋆) = φ. ¿erefore u(s(φ)) ⊧∣ φ if s is de�ned by a sequence of length one.
Let n be any �xed natural number. We now prove that

[s−1n , . . . , s−1i ] ○ [s1, . . . , sn](φ) ⊧∣ [s1, . . . , si−1](φ)

by induction over k = (n− i)+ 1. Observe that as we count downwards it holds that [s−1n , . . . , s−1n+1] =
[]. ¿en statement (a) follows for i = 1.

– k = 0: ¿us imust be n + 1. As [s−1n , . . . s−1n+1] = [], this case is trivial.
– k→ k + 1: ¿erefore we need to show i → i − 1.

[s−1n , . . . , s−1i−1] ○ [s1, . . . , sn](φ)
= [s−1i−1] ○ [s−1n , . . . , s−1i ] ○ [s1, . . . , sn](φ)
⊧∣ [s−1i−1] ○ [s1, . . . , si−1](φ) by hypothesis

= [s−1i−1] ○ [si−1] ○ [s1, . . . , si−2](φ)
⊧∣ [s1, . . . , si−2](φ) because ∣[si−1]∣ = 1

(b) analog

We are now able to prove the main result of this section which is that the Skolemisation preserves
satis�ability but models are preserved only in one direction. As we already noted the un-Skolemisation
has symmetric properties.

Proposition 8 (Skolemisation Lemma). Let φ be a formula over alphabet A∪U in prenex normal form
such that the pre�x of φ is �nite. Let S be a set of function symbols such that A,U and S are disjoint. Let s
be the induced Skolemisation on S of φ and u an un-Skolemisation on U which is applicable to φ. ¿en it
holds that

(a) s(φ) ∣= φ.
(b) φ ∣= u(φ)
(c) s(φ) is satis�able i� φ is satis�able.
(d) φ is satis�able i� u(φ) is satis�able.
Before we prove the Lemma, we �rst show that the proposition is true for our running example.

Example 6.4. Consider the entailment of s(P)

φ = ∀u1u2 . p(a, c) ∧ p(b,u2)
q(c, f(a, c)) ∧ q(u1, f(b,u1)).

An un-Skolemisation which is applicable to φ is

u = [{f(b,u1)↦ v3},{c↦ v1, f(a, c)↦ v2}]
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We show that the statement (b) is true for φ by showing that

u(φ) = ∃v1v2∀u1∃v3∀u2 . p(a,v1) ∧ p(b,u2)
q(v1,v2) ∧ q(u1,v3).

is entailed by φ.
¿erefore assume that I = (D, i,β) is a model of φ. As I is a model of φ it holds that for all β ∶

{u1} → D it holds that I β(u1)u1
∣= ψ where ψ = ∀u2.p(a, c) ∧ . . . ∧ q(u1, f(b,u1)). Let d ∈ D be such

that I β(u1)u1
(f(b,u1)) = d. By the substitution Lemma we can replace the term f(b,u1) in ψ by a fresh

variables v3 if we map v3 to d in I. Stated formally: For all β ∶ {u1}→ D there is a d ∈ D such that

I
β(u1)
u1

d
v3
∣= ψ{f(b,u2)/v3}

By de�nition it holds that this is equivalent to

I ∣= ∀u1∃v3∀u2. p(a, c) ∧ p(b,u2)
q(c, f(a, c)) ∧ q(u1,v3)

which is [{f(b,u1)↦ v3}](φ). A similar argument can bemade for the application of [{c↦ v1, f(a, c)↦
v2}] to [{f(b,u1)↦ v3}](φ).
Proof. of Proposition 8We �rst show (b) as (a) follows from (b) together with Lemma 5.

(b) Let I be a model of φ and let u = [u1, . . . ,u1]. We show the statement by induction on the length k
of the pre�x [u1, . . . ,uk] of u, which has already been applied to φ

– k = 0: trivial.

– k→ k+ 1: Assume that I is a model of [u1, . . . ,uk](φ) and that uk+1 = {t1 ↦ y1, . . . , tn ↦ yn}.
As u is applicable to φ it holds that φ is of the form ∀x̄.ψ and all the ti with 1 ≤ i ≤ n contain
exactly the variables x̄. ¿erefore for all β ∶ x̄ → D it holds that

I
β(x̄)
x̄
∣= ψ

Let t̄ = [t1, . . . , tn]. ¿en there is a sequence d̄ ∈ Dn such that I β(x̄)x̄ (t̄) = d̄. It follows from
the substitution lemma that

I
β(x̄)
x̄

d̄
ȳ
∣= ψ{t̄/ȳ}

and therefore that

I ∣= ∀x̄∃ȳψ{t̄/ȳ}.
¿e claim follows from the fact that ∀x̄∃ȳψ{t̄/ȳ} ⊧∣ [u1, . . . ,uk+1](φ).

(a) Let I be a model of s(φ) and let u′ = s−1. It follwos from (b) that I is a model of u′(s(φ)). By
Lemma 5 it holds that u′(s(φ)) ⊧∣ φ. ¿erefore I is a model of φ.
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Again, before showing (c) and (d) we consider our Examples.

Proof. of Proposition 8

(c) ¿e direction from le to right is immediate from (a). Let I be a model of φ. We �rst de�ne an
interpretation Is which is an extension of I on S and then show by induction that Is is a model of
s(φ).
Let T be the set of terms with a function symbol in S in the range of s1 ∪ . . . ∪ sn. For each
t = f(t1, . . . , tm) ∈ T we construct a function Ft in the following way:

Let y be the variable with s(y) = t. It holds that φ is of the form

∀x̄1∃ȳ1 . . .∀x̄i∃ȳi∃y.ψ

for some i ≥ 1 where ȳi might be empty. As I ∣= φ it therefore holds that for all βx̄1 there is a βȳ1 . . .
there is a βȳi and a βy such that

I
βx̄1
x̄1
⋯

βȳi
ȳi

βy
y
∣= ψ (⋆)

Let B be the set of all sequences b = [βx̄1 , . . . ,βȳi] for which (⋆) is true and denote by Ib the
interpretation I βx̄1(x̄1)x̄1

⋯
βȳi(ȳi)
ȳi

. Observe that by the de�nition of the Skolemisation, t contains
exactly the variables⋃ x̄1, . . . , x̄i. Asφhas a �nite pre�x it holds that this sequence is �nite. ¿erefore
we can de�ne Ft ∶ Dm → D as

Ft(Ib(t1), . . . , Ib(tn)) = βy(y) i� b ∈ B.

Observe that as it holds by the de�nition of the Skolemisation that no two Skolem terms unify. In
addition as all Skolem terms have a function symbol from U and A and U are disjoint it holds that
a Skolem term uni�es with no other term in φ. ¿erefore the function Ft is well de�ned.

We de�ne F′ = ⋃t∈T Ft and let F′′ be a function mapping any d̄ which is not in the domain of F′
some d ∈ D. Finally let F = F′ ∪ F′′. In this way we obtain a function F for every function symbol
f ∈ sym(s).
If I = (D, i,β), then we de�ne I′s = (D, I ∪ i′,β) where

fi
′

= F

We now show the other by induction over the size of sym(s) = {f1, . . . , fk} that Is is a model of
s(φ).

– k = 0: In this case smust be the empty Skolemisation [] and therefore the statement is trivial.
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– k − 1 → k: As I is a model of φ = ∀x̄1∃ȳ1.ψ it holds that for all βx̄1 ∶ x̄1 → D there is a
βȳ1 ∶ ȳ1 → D such that

I
βx̄1(x̄1)
x̄

βȳ1(ȳ1)
ȳ

∣= ψ.

As φ is �nite we can write ȳ1 = [x1, . . . ,xn] and ȳ1 = [y1, . . . , ym].
Let y ∈ ȳ1. ¿en it holds that s1(y) = t for some t ∈ T. By the de�nition of Is it holds that

Is
βx̄1(x̄)
x̄1

s1(ȳ1) = βȳ1(ȳ1).

for all βx̄1 . ¿erefore

Is
βx̄1(x̄1)
x̄1

Is
βx̄1(x̄1)
x̄1

s(ȳ1)
ȳ1

∣= ψ.

¿en it follows from the substitution lemma that

Is
βx̄1(x̄1)
x̄1

∣= ψ{ȳ1/s(ȳ1)}.

and therefore Is ∣= s(φ). As [s2, . . . , sk] is the skolemisation of [s1](φ) it follows from the
inductive hypothesis that Is is a model of [s2, . . . , sn]([s1](φ)) = s(φ).

(d) ¿e proof of (d) is symmetric to that of (a). Again, the direction from le to right follows directly
from (b). Let I be a model of u(φ) and let s′ = u−1. ¿en by (c) there is an interpretation Is′ which
is a model of s′(u(φ)). By Lemma 5 it holds that s′(u(φ)) ⊧∣ φ. ¿erefore Is′ is a model of φ.

¿e following corollary follows directly from the proof of Proposition 8.

Corollary 6.5. Let φ be a �nite formula over disjoint sets A∪U. Let u be an un-Skolemisation over U
which is applicable to φ. ¿en it holds that if I is an interpretation over Awhich is a model of u(φ) then
there is an extention Iu of I on U which is a model of φ.

6.2 Operational Semantics

6.2.1 A Motivating Example

Reconsider the program P from Example 6.1 in the last section.

∃y1∀x1x2∃y2. p(a, y1)
∧ p(x1,x2)→ q(x2, y2)
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An induced Skolemisation of this program is s = [{y1 ↦ c},{y2 ↦ f(x1,x2)}]. Observe that the elements
of the minimal Herbrand model of s(P)

{p(a, c),q(c, f(a, c))} (⋆)
are entailed by s(P) but not by P itself. To obtain formulas which is entailed by P we need to replace the
Skolem terms in these formulas by existential variables. As for example the Skolem terms c occurs in both
formulas, we �rst conjunct the formulas in the above set, to obtain a single formula. ¿en we can then
apply an un-Skolemisation to this formula. Observe that the un-Skolemisation

s−1 = [{f(x1,x2)↦ y2},{c↦ y1}]
of s is not suitable for this as variables in Skolem terms have been bound to terms during the evaluation of
s(P).

Observe that as an RDFLog program is range restricted it holds that the semantics of the Skolemisation
of an RDFLog program is ground. We therefore need to compute the ground instance of s−1:

gnd(s−1) = [{c↦ z1, f(a,a)↦ z2, f(a, c)↦ z3
f(c,a)↦ z4, f(c, c)↦ z5, f(f(a),a)↦ z6, . . .}]

If this Skolemisation is applied to the formula obtained from the conjunction of the formulas in (⋆)
we obtain

∃z1z3.p(a, c) ∧ q(c, f(a, c))
Observe that this formula is entailed by P. We now formally de�ne the ground instance of an un-

Skolemisation.

De�nition 35 (Ground Instance of an un-Skolemisation). First consider the following grounding operator
gnd on terms. Let t be a term. ¿en

gnd(t) = {t′ ∣ t′ is a ground instance of t}.
We extend gnd to sets in the usual way. Let u = [u1, . . . ,un] be an un-Skolemi-sation. Let {t1, . . . , tm} be
the set of ground instances of terms in the domain of u, i.e.

{t1, . . . , tm} = gnd(dom(u1)) ∪ . . .∪ dom(dom(un))
Finally let z1, . . . , zm be fresh variables. ¿en the ground instance of u is the un-Skolemisation

[{t1 ↦ z1, . . . , tm ↦ zm}]

6.2.2 Definition of the Operational Semantics

We can now de�ne the operational semantics of RDFLog.

De�nition 36 (Operational Semantics ofRDFLog). Let P be anRDFLog program. Let s be a Skolemisation
over S which is induced by P and such that S is disjoint with the RDF alphabet. ¿en operational semantics
of P is de�ned as

⟦P⟧o = {u(⟦s(P)⟧l) ∣ s is a Skolemisation of P and u = gnd(s−1)}.
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6.2.3 Why RDFLog Programs need to be Range Restricted

Having de�ned the operational semantics of RDFLog, it is now possible to accept

• why RDFLog programs need to be range restricted and

• why our de�nition of the Skolemisation does not replace existential variables by terms with distinct
function symbols.

¿e second point is easy to see. We want the inverse of un-Skolemisations to be Skolemisations. If we
do not use our more general de�nition, the inverse of ground instances of un-Skolemisations are no
Skolemisations.

¿e �rst point is connected to the second. If an RDFLog program P is not range restricted, then
the semantics of s(P) is not ground. Consider the following example of a non-range restricted RDFLog
program.

∀x1x2∃y1∀x3. p(a,x3)
∧ p(a,b)
∧ p(x1,x2)→ q(x1, y1)

¿e semantics of s(P) is

∀x. p(a,x) ∧ q(a, f(a,x)) ∧ q(a, f(a,b))

To un-Skolemise this formula we need replace both f(a,x) and f(a,b) by existential variables. But
as these two terms unify this operation is not an un-Skolemisation by our de�nition. As discussed in
the previous section, an operation which maps unifying terms to existential variables does not have the
properties of our un-Skolemisation. We need these properties in order to make our de�nition of the
denotational semantics hold. ¿is semantics will be de�ned in the next chapter.
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Chapter 7

Denotational Semantics

In this section we de�ne the denotational semantics of RDFLog. We �rst discuss some properties of the
operational semantics ⟦P⟧o of an RDFLog program P in Section 7.1). ¿ese properties are useful to de�ne
the denotational semantics ⟦P⟧d of P in Section 7.2. ¿is semantics characterises the operational semantics
up to logical equivalence. In Section 7.3 we present a semantics of P which is (i) minimal and (ii) unique
up to renaming of variables. Nonetheless we show these properties have a computational cost.

7.1 Properties of the Operational Semantics

In this section we show tree properties of the operational semantics ⟦P⟧o of an RDFLog program P.

(a) ¿e operational semantics ⟦P⟧o is entailed by P.
(b) Every RDF graph, which is entailed by P is also entailed by ⟦P⟧o.
(c) ¿e interpretation related to ⟦P⟧o is a model of P.

As a �rst approximation to a denotational semantics of RDFLog consider the set of all RDF graphs
which are entailed by a RDFLog program P.

{g ∈ RDF ∣ P ∣= g}

One could say that the property (a) is the soundness of RDFLog w.r.t. ground entailment and properties
(b) and (c) are both completeness properties. Nonetheless we can give a more precise characterisation of
the operational semantics. ¿e ground entailment is not even unique up to logical equivalence: the empty
RDF graph (which corresponds th the logical formula true) is in the ground entailment of every RDFLog
program. ¿ese properties are nonetheless useful: We show in the next section that the conjunction of (a)
and (b) and the conjunction of (a) and (c) characterise ⟦P⟧o up to logical equivalence.

7.1.1 Operational Semantics is not to Big

To show that the operational semantics of RDFLog has property (a) we need the following lemma.
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Lemma 6 (Entailment survives un-Skolemisation). Let φ and ψ be formulas over alphabet A∪U with A
and U disjoint where φ is �nite and ψ is ground. Let u be an un-Skolemisation on U which is applicable
to φ. Let u′ be the ground instance of u. ¿en it holds for any RDF graph g ∈ RDF that

φ ∣= ψ Ô⇒ u(φ) ∣= u′(ψ)

Proof. Let I be a model of u(φ). As φ is �nite, it holds by Corollary 6.5 that there is an extention Iu of I
onU which is a model of φ. By the assumption it holds that Iu is also a model of ψ. Observe that as u′ is a
ground instance of an Skolemisation on U, and ψ is ground, it holds that u′(ψ) contains no terms with a
function symbol in U. As Iu is an extention of I on U it therefore holds that Iu is a model of u′(ψ) i� I is
a model of u′(ψ). ¿erefore I is a model of u′(ψ).

We can now show statement (a).

Lemma 7. Let P be an RDFLog program and s a Skolemisation on S induced by P. Let u be an ground
instance of s−1. ¿en it holds that

P ∣= u(⟦s(P)⟧l)

Proof. As s(P) is a logic program, it follows from Lemma 4.2 that s(P) ∣= ⟦s(P)⟧l . As s(P) is �nite it
follows from Lemma 6 that u(s(P)) ∣= u(⟦s(P)⟧l). Finally by Lemma 5 it holds that P ⊧∣ u(s(P)) and
therefore P ∣= u(⟦s(P)⟧l).

7.1.2 Operational Semantics is not to Small

To show statement (b) we need the following Lemma.

Lemma 8. Let P be a logic program and g an RDF graph. ¿en it holds that

P ∣= g Ô⇒ ⟦P⟧l ∣= g

Proof. As ⟦P⟧l is de�ned to be the conjunction of all atomic formulas which are entailed by P it is clear
that the statement if true if g contains no existential variables.

Let x̄ be the blank nodes occurring in g. Observe that by proposition 4 it holds that there is a sequence
of terms t̄ ∈ UP such that P ∣= g{x̄/t̄}. As g{x̄/t̄} is entailed by P, it is a subformula of ⟦P⟧l . ¿erefore
⟦P⟧l ∣= g{x̄/t̄}. ¿e proposition follows from the fact that g{x̄/t̄} ∣= g.

We can now show (b).

Lemma 9. Let P be an RDFLog program. Let s be a Skolemisation over S which is induced by P and such
that S is disjoint with the RDF alphabet. Let u be an ground instance of s−1. ¿en it holds that

∀h ∈ RDF.P ∣= h Ô⇒ u(⟦s(P)⟧l) ∣= h

Proof. Assume that P ∣= h. As P is �nite, it follows from Lemma 8 that s(P) ∣= h and from Lemma 8
that ⟦s(P)⟧l ∣= h. As P is range restricted it holds that ⟦P⟧l is ground. ¿erefore we can use Lemma 6
to conclude that u(⟦s(P)⟧l) ∣= u(h). As h ∈ RDF and S is disjoint with the RDF alphabet it holds that
u(h) = h. ¿erefore u(⟦s(P)⟧l) ∣= h.
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7.1.3 Operational Semantics is a Model

Recall what we mean by an interpretation related to an RDF graph (Section 3.3). Using these notion we
can show statement (c).

Proposition 9. Let P be an RDFLog program and let I = I⟦P⟧o be the interpretation related to ⟦P⟧o. ¿en I
is a model of P.

Proof. Let s be a skolemisation of P. As s(P) is a logic program it holds that Ms(P) is a model of s(P).
As s(P) entails P (Proposition 8) it holds thatMs(P) is also a model of P. As no symbols from S occur
in P it holds that the restriction of Ms(P) to the symbols of A is a model of P. It is easy to see that this
interpretation is isomorphic to the interpretation related to I⟦P⟧o .

7.2 Charachterisation up to Equivalence

In this section we show that the three properties of an RDFLog program P

(a) the operational semantics ⟦P⟧o is entailed by P,
(b) every RDF graph, which is entailed by P is also entailed by ⟦P⟧o, and
(c) the interpretation associated with ⟦P⟧o is a model of P.

allow to characterise the operational semantics of RDFLog up to equivalence. To be precise we show
that the set M of RDF graphs which have both properties (a) and (b) is an equivalence class. We give
an example that shows that the set N of RDF graphs with properties (a) and (c) are no equivalence class.
Nonetheless if g and h are RDF graphs with properties (a) and (b) then they are equivalent. ¿is shows
that the set N is a subset ofM. We de�ne the denotational semantics of an RDFLog program to be N. We
show how the soundness and completeness of the operational semantics w.r.t this denotational semantics
follow from the results of the last Section. Properties (a) and (b) can be seen as a second characterisation
of the operational semantics up to equivalence.

7.2.1 Possible Characterisations

Lemma 10. ¿e setM

{g ∈ RDF ∣ P ∣= g∧ ∀h ∈ RDF .P ∣= g⇒ g ∣= h}
is an equivalence class.

Proof. Let g,h ∈ M. ¿erefore P ∣= g. From this it follows that h ∣= g. Now let g ∈ M and h ⊧∣ g. It follows
directly that h ∈ M.

Using Lemma 4 it is easy to show that the RDF graphs with properties (a) and (c) are equivalent.

Lemma 11. Let g,h be RDF graphs in the set N

{g ∈ RDF ∣ P ∣= g∧ Ig ⊧ P}.
¿en g ⊧∣ h.
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Proof. Let g,h ∈ N. As Ig ⊧ P and P ∣= h that Ig ⊧ h. It follows from Lemma 4 that g Ô⇒ h. Now let
g ∈ N and h ⊧∣ g.

Observe thought that the set N is not an equivalence class. Consider the following example

Example 7.1. Let P be the RDFLog program

1 p(a,b)

∀ x . p(a,x) → q(a,x)

Let g and h be RDF graphs where g = p(a,b)∧ q(a,b) and h = ∃x . p(a,x)∧ p(a,b)∧ q(a,b). It is easy
to see that g ⊧∣ h and that Ig ⊧ P. Observe that Ih = (D, i,∅) where D = {a,b,d} and

ai = a pi = {(a,b),(a,d)}
bi = b qi = {(a,b)}

It is easy to see that Ih ∣=/ P.
¿e previous example shows that the set N is a subset of the setM from Lemma 10. Nonetheless this is

still not a characterisation up to isomorphism: ¿e RDF graph ∃x . p(a,x) ∧ q(a,x) ∧ p(a,b) ∧ q(a,b)
is not isomorphic to g but is in the set N for the program from example 7.1.

7.2.2 Definition of the Denotational Semantics

¿ese results show that both sets, N andM, could be used as semantics for RDFLog. We choose N as it is
the smaller set.

De�nition 37 (Denotational Semantics of RDFLog). Let P be an RDFLog program. ¿e denotational
semantics of P is de�ned as

⟦P⟧d ∶= {g ∈ RDF ∣ P ∣= g∧ Ig ⊧ P}
where Ig is the interpretation related to g.

7.2.3 Soundness and Completeness of the Denotational Semantics

¿e soundness and completeness of RDFLog are immediate from the results we have obtained in the
previous sections.

Proposition 10 (Soundness and Completeness of RDFLog). Let P be an RDFLog program. ¿e operational
semantics ⟦P⟧d is sound and complete wrt. the operational semantics ⟦P⟧d.
Proof.

• SoundnessWe need to show that ⟦P⟧o is an element of ⟦P⟧d. ¿is is immediate from Lemma 7 and
Lemma 9.

• CompletenessWe need to show that any element of ⟦P⟧d is entailed by ⟦P⟧o. It follows from the fact
that ⟦P⟧d contains only equivalent RDF graphs (Lemma 11) and that ⟦P⟧o is an element of ⟦P⟧o
(Soundness of RDFLog) that ⟦P⟧o is equivalent to any element of ⟦P⟧d.
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Now consider the setM

{g ∈ RDF ∣ P ∣= g∧ ∀h ∈ RDF .P ∣= g⇒ g ∣= h}.

We showed that ⟦P⟧o is an element ofM in Lemma 9 and Lemma 9. In this section we showed that
M is an equivalence class (Lemma 10). ¿erefore M can be seen as a second characterisation of the
operational semantics of RDFLog up to equivalence.

Proposition 11. Let P be an RDFLog program. ¿en it holds that

⟦P⟧d ⊆ {g ∈ RDF ∣ P ∣= g∧ ∀h ∈ RDF .P ∣= g⇒ g ∣= h}.

7.3 Charachterisation up to Isomorphism

¿ede�nition of the denotational semantics in the last Section is somewhat unsatisfactory: ¿e operational
semantics is only characterised up to logical equivalence. Still any model of an RDFLog program P is an
element of the denotational semantics if its related RDF graph is entailed by P. It is desirable to have a
characterisation of the operational semantics up to isomorphism.

7.3.1 Minimal Semantics for RDFLog

Recall that there is a similar dilemma in logic programming: a logic program has an in�nite number
of models in the general case. ¿e dilemma is solved by choosing the minimal of these models. In this
section we discuss whether such an approach is suitable for a language like RDFLog.

Reconsider the properties of the operational semantics ⟦P⟧o of an RDFLog program Pmentioned in
the previous sections.

(a) P entails ⟦P⟧o,
(b) all RDF graphs which are entailed by P are also entailed by ⟦P⟧o, and
(c) the interpretation related to ⟦P⟧o is a model of P.

In this section, we check whether the set consisting of all minimal RDF graphs with one of these
properties also has the other properties. If this is not the case we consider this set as not suitable as a
de�nition of the semantics.

Lets start with property (a). It is easy to see that the empty RDF graph is entailed by any RDFLog
program P. On the other hand it is obvious that the empty RDF graph has neither property (b) nor
property (c) and is therefore not suited as a semantics of P.

Now consider property (c) as it is the one used in the de�nition of the semantics of logic programming.
¿e following example shows why the setM

min{g ∈ RDF ∣ Ig is a model of P}

is not suitable as a semantics for RDFLog:
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Example 7.2. Consider the RDFLog program P

∃ x . p(a,x) ∧ p(b,x).

2 p(a,c).

Observe that this is an example of an RDFLog program which is an RDF graph. A minimal model for
P is I = (D, i,β) where D = {a,b, c} and

ai = a bi = b

ci = c pi = {(a, c),(b, c)}
¿e RDF graph related to I is g = p(a, c) ∧ p(b, c). It is easy to see that g is not entailed by P.

Nonetheless g has property (b). ¿e following example shows that this is not always the case:

Example 7.3.

∃x1x2 . p(a,x1) ∧ q(a,x2).

In this case a minimal model for P is I = (D, i,β) where D = {a,d} and
ai = a pi = qi = {(a,d)}

Observe that the RDF graph g related to I is ∃x . p(a,x) ∧ q(a,x). ¿erefore property (b) does not hold:
As P is an RDF graph and it is entailed by itself it should be entailed by g. ¿is is clearly not the case. Even
though this example does have property (a) it is easy to construct an RDFLog program P such that the set
of minimal models of P has neither property (a) nor (b).

Lets �nally turn to property (c). It is actually not known to the author whether the set N of minimal
RDF graphs which entail all RDF graphs gwhich is entailed by an RDFLog program P is has properties
(a) and (c). We conjecture that this is true but leave it as an open question.

To sum up recall that we showed that the properties (a) and (b) are not strong enough to de�ne
a sensible minimal semantics for RDFLog. It is not known whether this is the case for property (c).
Nonetheless it is known from the last section that the set of RDF graphs with properties (a) and (b) is
an equivalence class. In addition it is known from the literature [35] that an equivalence class of RDF
graphs have a unique up to isomorphism representative: the lean graph. ¿is observation motivates our
de�nition of a semantics for an RDFLog program P which is minimal and unique up to isomorphism:

De�nition 38 (Denotational Lean Semantics of RDFLog). Let P be an RDFLog program. ¿en the
denotational lean semantics ⟦P⟧dlean of P is de�ned as

⟦P⟧dlean = {g ∈ RDF ∣ g has properties (a) and (b), and g is lean}

7.3.2 Naive Operational Lean Semantics

It is easy to see that the operational semantics of RDFLog is not an element of the lean semantics (simply
consider an RDFLog program consisting of a non-lean graph and no rules). Even worse an RDFLog
program may turn an lean graph into an non-lean one. Consider the following example:
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Example 7.4.

1 p(a,b).

q(a,c).

3 ∀ x ∃ y . p(a,x) → q(a,y)

Observe that the operational semantics of this program is the following RDF graph

b
a

y1

cp q

q

¿erefore we develop an operational semantics for the lean semantics. Recall that an RDF graph g is
lean i� there is no subgraph h of gwhich entails g. By the interpolation lemma this is equivalent to the
fact that there is no substitution σ for the existential variables in g such that gσ is a subgraph of h. ¿is
observation motivates the de�nition of the following operator

De�nition 39 (Lean Operator). Let g be an RDF graph and Σ a set of substitutions. ¿e lean operator is
de�ned as

leanerσ(g) ∶=
⎧⎪⎪⎨⎪⎪⎩
gσ if gσ ⊆ g
g otherwise

LΣ(g) ∶= min{leanerσ(g) ∣ σ ∈ Σ}

It follows from Proposition 1 that an RDF graph g is lean if g ∈ LΣ(g) and Σ is the set of all substitutions
from blank nodes in g to nodes in g. As the application L preserves logic equivalence it is easy to see that
its application also preserves properties (a) and (b). ¿erefore the naive lean semantics of RDFLog de�ned
below is sound and complete

De�nition 40 (Naive Lean Semantics of RDFLog). Let P be an RDFLog program and let Σ be the set of
all substitutions from blank nodes in ⟦P⟧o to nodes in ⟦P⟧o. ¿e naive operational lean Semantics ⟦P⟧olean
of P is de�ned as

⟦P⟧olean ∶= LΣ (⟦P⟧o)

7.3.3 Less Naive Operational Lean Semantics

¿ere are cases in which the operational semantics of RDFLog is in�nite while the lean semantics is �nite.
Consider for example the following program.

Example 7.5.

1 p(a,b).

∀ x ∃ y . p(a,x) → p(a,y)

Observe that the operational semantics of this program is in�nite. A subset is depicted below.
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¿e lean version of this graph has only one edge.

a

b

. . .

p

¿erefore it is desirable to make intermediate results lean. In the previous example the following
algorithm might be conceivable. A er every application of the consequence operator the resulting inter-
mediate result is made lean. Consider a sequence of RDF graphs g0, g1, . . . such that gn is the result of
n-fold application of a consequence and lean operator (which we de�ne below). In the previous example
in the �rst application of the consequence operator yields the set g0 = {p(a,b)}. Next, the operator L
is applied to g0. As g0 is lean this has no e�ect. In the next step the fact ∃x . p(a,x) is added, yielding
g1 = {∃x . p(a,b)∧ p(a,x)}. ¿is time g1 is not lean and L(g1) is {p(a,b)}. As this set is equal to g0 the
algorithm terminates.

We now give a precise de�nition of the algorithm. Recall that the consequence operator for logic
programs.

consr(M) ∶=
⎧⎪⎪⎨⎪⎪⎩
M ∪ {a} if r = a1 . . .an → a and {a1 . . .an} ⊆ M
M if r = a1 . . .an → a and {a1 . . .an} ⊈ M

TP(M) ∶= ⋃
r∈gnd(P)

consr(M)

where P is a logic program andM is a set of atoms.
We use this de�nition of cons to de�ne a lean consequence operator. We show that this operator

does not preserves completeness in the general case. ¿en we present a condition which ensures that
completeness is preserved.

De�nition 41 (Lean Consequence Operator). Let P be a Skolemised RDFLog program, Σ be a set of
substitutions andM a set of ground atoms. ¿en the lean consequence operator LTP,Σ is de�ned as

LTΣ,P(M) ∶= LΣ ○ TP(M)
We o en drop the subscript if it is clear or unimportant. ¿e iteration if LT is de�ned for ordinal

numbers as usual.

LT0
= ∅

LTα = LT(LTα−1) if n is a successor ordinal

LTα =⋃{LTβ ∣ β < α} if n is a limit ordinal
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As the foregoing example showed this operator needs to be iterated until a periodic �xed point is
reached, i.e. the smallest LTn with LTn = LTn−k for some k > 0.

¿e following example show that the iteration of LT does not preserve completeness.

Example 7.6.

P

p(a,b).

2 p(a,c).

q(d,b).

4 ∃ X ∀ Y . p(a,Y) → q(X,Y).

With this program P it holds that TP(∅) is

d
b

a
c

q

p p

As this graph is lean it holds that LΣ ○ TP(∅) = TP(∅). A er one further application of a TP the
following RDF graph is constructed:

d
b

a
c

sq q

p p

where s is the Skolem symbol that replaces X in the rule in line 4 of P. Observe that if the substitution
σ(s) = d is applied to the above graph then the result is g0. ¿erefore the above sketched algorithm
terminates. Nonetheless the operational semantics of the above program is the following graph gwhich is
not lean.

d
b

a
c

sq q q

p p

As the interpretation related to g0 is not a model of P the above sketched algorithm is incomplete w.r.t.
our de�nition of the denotational semantics.

We now give two su�cient conditions under which intermediary results may be made lean without
a�ecting completeness. We �rst give a Lemma without a proof. ¿e intuition is that if no edges are added
to an blank node in an RDF graph g then an gwill not become lean in the sequel.

Lemma 12. Let g be an RDF graph, r an RDFLog rule, and σ be a substitution from blank nodes to
terms in g. If no universal quanti�er appears in the scope of an existential quanti�er in r then leanerσ is
commutative with consr, i.e.

leanerσ ○ consr(g) = consr ○ leanerσ(g).
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Observe that the program in Example 7.6 does not satisfy this condition. We now work towards a
second su�cient condition for commutativity of leaner and cons.

Lemma 13. Let g = ⋀G be an skolemised RDF graph and let σ be a substitution. Let r = a1, . . . ,an → a
be a ground Skolemised RDFLog rule and A = {a1, . . . ,an}. If the terms in r and the domain of σ are
disjoint then it holds that

leanerσ ○ consr(g) = consr ○ leanerσ(g)

Proof.
We �rst show the statements (a) - (d) which we need in the rest of the proof.

(a) A⊆ Gσ⇒ A⊆ G: Let t ∈ A. ¿en it follows from the hypothesis that t ∈ Gσ. As t ∈ A⊆ T it holds
that tσ = t. ¿erefore it holds that t ∈ G.

(b) Gσ ⊆ G ⇒ (G ∪ {a})σ ⊆ G ∪ {a}: Let t ∈ (G ∪ {a})σ. If t ∈ Gσ then t ∈ G by hypothesis. Now
assume that t = aσ. As dom(σ) ∩ T = ∅ it holds that aσ = a. ¿erefore t = a.

(c) aσ = a: Follows directly from the hypothesis.

(d) A ⊆ G ⇒ A ⊆ Gσ: Let t ∈ A. By the hypothesis it follows that t ∈ G. As the terms in r and the
domain of σ are disjoint it holds that t ∈ Gσ.

We can now show the lemma.

• If A⊈ G and Gσ ⊈ G then it holds that leanerσ ○ consr(g) = g = consr ○ leanerσ(g).

• If A⊈ G andGσ ⊆ G then leanerσ ○ consr(g) = leanerσ(g) = gσ (a)
= consr(gσ) = consr ○ leanerσ(g).

• If A⊆ G and Gσ ⊈ G and

– if (G ∪ {a})σ ⊈ G ∪ {a} then it holds that leanerσ ○ consr(g) = leanerσ(g ∪ a) = g ∪ a =
consr(g) = consr ○ leanerσ(g) and otherwise

– if (G ∪ {a})σ ⊆ G ∪ {a} then it holds that leanerσ ○ consr(g) = leanerσ(g ∪ a) = (g ∪
a)σ

Proposition 1
⊧∣ g∪ a = consr(g) = consr ○ leanerσ(g).

• If A⊆ G andGσ ⊆ G then it holds that leanerσ○consr(g) = leanerσ(g∪a) (b)
= (g∪a)σ = gσ∪aσ (c)

=

gσ ∪ a (d)
= consr(gσ) = consr ○ leanerσ(g).

During a forward evaluation of a rule based program it is possible to distinguish rules that will not
be needed for the evaluation anymore. A simple example would be a rule with no variables in the head
which have already been used. It is possible to develop more elaborate conditions, but we do not address
this topic here. We assume that given a RDFLog program P there is a set of active rules which may still be
needed for evaluation.
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Proposition 12. Let P be an RDFLog program and let s be a Skolemisation of P. Let Σ be the set of all
substitutions σ such that the domain of σ contains no terms which are instances of Skolem terms in active
rules. ¿en it holds that the un-Skolemisation of any periodic �xed point of LTs(P),Σ is logically equivalent
to the naive lean semantics of RDFLog.

Proof. We need to show that if Σ is as above then a the un-Skolemisation of a periodic �xed point of
LTs(P),Σ is equal to LΓ (⟦P⟧o) where Γ is the set of all substitutions from blank nodes in ⟦P⟧o to nodes
in ⟦P⟧o. Recall that ⟦P⟧o is {u(⟦s(P)⟧l) ∣ s is a Skolemisation of P and u is a grounding of s−1} and that
⟦P⟧l is the conjuction of the atoms in least �xed point of TP.

Let g be an RDF graph and s a Skolemisation of g and u = s−1. First observe that LΓ ○u(g) = u○LΣ(g)
if Γ = {σu ∣ σ ∈ Σ}. ¿erefore it is su�cient to show that a periodic �xed point of LTs(P),Σ is logically
equivalent to LΓ(Tns(P)) where Tns(P) is the least �xed point of Ts(P).

We show this statement by induction on n. We denote Ts(P) by T, LΓ by L and LTs(P),Σ by LT.

• n = 0: We need to show that a periodic �xed point of LT is logically equivalent to L(T0) = L(∅) = ∅.
¿is is true because as T0 is a �xed point it holds that T(∅) = ∅. In addition it holds that L(∅) = ∅.
¿erefore (i) LT0

= ∅ = L(T0) and (ii) LT0 is a periodic �xed point with period 1.

• n → n + 1: By de�nition it holds that L(Tn+1) = L ○ T ○ T ○ . . . ○ T(∅). As L ○ L = L this is
equivalent to L ○ L ○ T ○ T ○ . . . ○ T(∅). It follows directly from Lemma 13 that this is equal to
L ○ T ○ L ○ T ○ . . . ○ T(∅) and this in LT ○ L ○ T ○ . . . ○ T(∅). By the hypothesis it follows that this
is equivalent to LTn. ¿e same argument as in the case where n = 0 shows that LTn is a periodic
�xed point with period 1.
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Chapter 8

Expressivity and Complexity

In this section, we extend the gained insight beyond RDFLog and summarize the gains (in expressiveness)
and the costs (in complexity) when adding b-nodes to an RDF query language. We introduce a hierarchy of
options for increasingly more expressive b-node support. For each of this options we study expressiveness
and complexity under combinations of lean semantics and recursion.

8.1 Lean semantics

Recall, the de�nition of lean semantics from De�nition 15 in Section 3.1. For our purpose, the most
important result is due to [30]:

¿eorem 1 (Complexity of lean answer semantics). Given an RDFLog query q and an RDF graph D,
computing the answer for q on D under lean answer semantics is dp-hard1 (i.e., both np-hard and
co-np-hard).

Proof. Follows by reduction from computing the core of a relational structure which is shown to be
dp-hard in [30]. co-np-hardness is also shown independently in [36].

Unfortunately, the complexity stays the same if D and q are lean (where we understand q to be lean if
there is an input graph D′ such that the answer for q on D′ is lean under standard answer semantics).

8.2 Recursion

Limiting recursion in a rule-based language such as RDFLog is a natural choice for a less expressive
sublanguage with better computational properties. ¿e essential observation when considering the e�ect
of recursion on RDFLog is that b-nodes can be used to simulate arbitrary terms if combined with recursive
rules.

Lemma 14. Let t be a ground term of standard �rst-order logic. ¿en there is a set of RDFLog rules that
constructs a list (in RDF terms: collection) representation of t.

1Recall, that dp is the class of all decision problems, that can be expressed as the intersection of an np- and a co-np-problem.
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b-
no

de
s

recursion no yes
lean semantics no yes no yes
none p — p-c. —

pspace-c. — exptime-c. —
only in facts p dp-c. p-c. dp-c.

pspace-c. pspace-c. exptime-c. exptime-c.
only independent p dp-c. p-c. dp-c.

pspace-c. pspace-c. exptime-c. exptime-c.
single-rule, dependent p dp-c. — —

pspace-c. pspace-c. — —
multi-rule, dependent p dp-c. r.e.-c. r.e.-c.

nexptime-c. nexptime-c. r.e.-c. r.e.-c.

Table 1. Combining b-nodes and recursion: Complexity for each class of b-node support the �rst line gives data
complexity, the second query complexity. ¿e ‘c.’ is a shorthand for ‘complete’

Sketch. If t is a constant c, we use (idtrepresentsc) as head of a single rule. If t is composite, let t =
f(t1, . . . , tn). ¿e list representation of t is [f, idt1 , . . . , idtn] where idt1 is the b-node identifying t1’s list
representation. ¿is list can be represented, e.g., as RDF collection.

Note, that for the construction of collections we need b-nodes in the scope of some universal variables.
Independent b-nodes, i.e., b-nodes outside the scope of any universal variable, do not su�ce.

From this lemma it follows directly that we can simulate a two-stack machine [46] in RDFLog. ¿us,
like full logic programming, RDFLog is r.e.-complete.

¿eorem 2 (Recursion and b-nodes). Let L be a rule-based RDF query language with recursion and
b-nodes such as RDFLog. ¿en L is r.e.-complete.

8.3 Classification of b-node support

Table 1 gives an overview of the di�erent classes of b-node support and their complexity in di�erent
combinations with lean semantics and recursion. In the following, we give brief summaries of the
di�erences between the classes.

8.3.1 Independent b-nodes

¿emost basic form of support for b-nodes is to allow them only to occur independent of any universal
variable. We call a b-node dependent of another variable, if it is in the scope of that variable. Otherwise
we call it independent. Finally, we call a b-node fully-dependent in a rule r if it depends on all universal
variables of r.

B-nodes only in facts, i.e., in RDF graphs, is a special case of this limitation, as facts are range-restricted
and thus contain no universal variables.
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In either case, this limitation is indeed computationally attractive: It guarantees that the number of
b-nodes is limited by the number of rules (and facts). ¿erefore, it has no e�ect on either expressiveness or
complexity (which remain the same as relational algebra, resp. Datalog, if recursion is present) unless we
are also interested in lean answer semantics. Under lean answer semantics, the data complexity increases
to dp-complete, see ¿eorem 1.

8.3.2 Non-recursive single-rules

At �rst surprising is the e�ect of limiting a language to single-rule programs. If we allow disjunction in
rule bodies, non-recursive, range restricted single-rule programs are equivalent to non-recursive, range
restricted multi-rule programs and thus to relational calculus if no b-nodes are allowed.

If dependent b-nodes are allowed, however, single-rule programs with disjunction are no longer
equivalent to multi-rule programs even if non-recursive and range restricted. ¿e reason is that multi-rule
programs allow repeated introduction of new dependent b-nodes. In particular, b-nodes may depend on
b-nodes introduced by another rule.

¿eorem 3. Non-recursive, range-restricted multi-rule programs are nexptime-complete wrt. query
complexity, whereas non-recursive, range-restricted single-rule programs are pspace-complete wrt. query
complexity.

Sketch. ¿e former follows by reduction from non-recursive logic programming. ¿e latter follows by
reduction from relational calculus with value invention which has the same complexity as relational
calculus without value invention [48].

SPARQL is, in fact, an example of a language restricted to single-rule programs but with dependent
b-nodes and thus is p-complete wrt. data and pspace-complete wrt. program complexity. ¿is reinforces
and extends independent complexity results in [63] where pspace-completeness is shown for SPARQL
patterns, i.e., SPARQL querieswithout graph construction in the head. Our results here show that SPARQL
remains pspace-complete even when considering full SPARQL queries instead of patterns only.

Another consequence of this result is that SPARQL could be extended from only fully-dependent
b-nodes to arbitrary (dependent) b-nodes in the head without sacri�cing complexity, but gaining the
ability to express additional grouping queries.

8.3.3 Dependent b-nodes

¿e next stronger class allows arbitrary dependent and independent b-nodes. Interestingly, this class’s
languages are in e�ect equivalent to rule-based languages with value invention as introduced, e.g., in [1].
Value invention is an extension of relational query languages for overcoming the expressiveness limitations
of Datalog and similar formalisms. ¿ough value invention does not increase the expressive power of
relational algebra or calculus [48] it does increase the expressive power if added to a Datalog-like language
such as RDFLog. Value invention in the sense of [1] corresponds to dependent b-nodes and has essentially
the same complexity and expressiveness as logic programming with function symbols (recall Lemma 14).

However, RDFLog with dependent b-nodes and recursion di�ers in one important point from Datalog
with value invention: An answer to an RDFLog query is a formula involving existential variables rather

65



than merely a conjunction of ground atoms as in standard logic programming and in [1]. Answers are
therefore inherently equivalent only up to an isomorphism on the existential variables.

For logic languages with value invention, the e�ect of value invention on genericity has been studied
extensively [1, 20]. Recall, that a query is called generic if its outcome is independent of the constants in
the domain that do not occur in the query.

Since the values invented by value invention operators in [1, 20] are treated like any other constant,
genericity is violated if such values occur in the result. ¿is has lead to the de�nition of restrictions on
logic languages with value invention that ensure that invented values are never part of a query answer [20].

An answer to an RDFLog query, however, distinguishes between proper constants (URIs in the RDF
sense) and existential variables (whichmay be “invented” during program evaluation). ¿is allowsRDFLog
queries to be generic without disallowing “invented” values, i.e., existential variables in the answer. ¿e
price RDFLog pays for this is the unskolemisation of answers needed a er the standard logic programming
evaluation. However, this price is, small, indeed, as unskolemisation is a linear operation in the size of
the answer. However, there is a second, less obvious price: Since RDFLog answers are formulas involving
existential quanti�ers equivalence (and thus answer minimization) is no longer a cheap operation but
subsumes to �nding the core of an RDFLog answer, a dp-complete operation. If we are interested in
minimal or lean answers, the data complexity of non-recursive RDFLog increases accordingly.
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Chapter 9

Related Work

In this chapter we investigate the blank node support of several RDF query languages. Further information
on this topic can be found in the survey papers [9, 32, 37].

9.1 RQL and SeRQL

RQL [50, 51] is an RDF query language for both RDF and RDF Schema, based on the syntax of OQL [2].
Its most distinguishing feature is its capability to smoothly combining shema and data querying.

RQL is a functional language: a set of basic queries and iterators, which may be used to build new ones
through functional composition. Answers are reported as variable bindings. Features supported by RQL
are typing, grouping, aggregation, and arithmetic. An interesting feature is the support for generalized
path expressions, which allows to navigate through an RDF graph. It should be noted that the semantics
of RQL is not completely compatible to the RDF semantics: a number of restrictions are placed on RDF
graphs.

¿e query language SeRQL [17, 18] is an RDF query language designed to gain from the experience
from languages such as RQL, RDQL [61, 71, 21] and Notation 3 [12]. ¿e authors of SeRQL propose
the following requirements for RDF query language: expressive power, schema awareness, to ease meta
programming, compositionality and to have a precis semantics. Strangely the authors do not consider
blank node construction to be necessary for an expressive RDF query language.

¿e result of an RQL query is a set of variable bindings. ¿erefore there is no construction of blank
nodes.

9.2 TRIPLE

TRIPLE [27, 72] is an rule based RDF query language based of Horn logic and F-logic [52]. Languages
on top of RDF, such as RDFS and Topic maps can be de�ned by TRIPLE rules. In addition TRIPLE
also provides access to external programs implementing e.g an DAML-OIL reasoner. TRIPLE has native
support for namespaces, abbreviation, rei�cation, rules with full �rst order bodies. Its syntax is inherited
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from F-logic. Like RQL and SeRQL it supports path expressions. It should be noted that the mapping
from RDF to TRIPLE is not lossless as blank nodes are made explicite.

TRIPLE has a language construct called rei�cation. ¿is construct is more similar to rei�cation in
logic programming, than to rei�cation in the context of RDF. An atom is rei�ed by constructing a term
representing this atom.

TRIPLE has no support for blank nodes. ¿e semantics of TRIPLE is de�ned by a translation to
Horn logic. ¿e authors refer to a future document where a model theoretic semantics based on minimal
Herbrand models will be provided.

9.3 Flora-2

FLORA-2 [81, 76, 77, 78] is a rule based, object oriented RDF query language based of HiLog [24, 23], F-
logic, and transaction logic [16, 15]. An Flora-2 program is a set of Flora-2 rules of the form Head :- Body,
where Head is an atom and body is any �rst order formula. ¿e semantics of Flora-2 is de�ned in [79].

Flora-2 supports constructions of blank nodes, but in a more restricted way than RDFlog. Blank
nodes may occur in the head of rules but their (implicit) quanti�ers are to the le of universal quanti�ers.
¿erefore Flora-2 corresponds a syntactical restriction of RDFLog.

Yang and Kifer present a �xed point semantics of an abstraction of FLORA-2, called F-logic [80]. ¿e
�xed point operator of a F-logic program P is equal to the �xed point operator of logic programming for
the skolemisation of P. ¿ey state that the least �xed point of their operator is a minimal model of an
F-logic program. ¿is result is somewhat surprising if one considers for example the F-logic programs
P consisting only of the facts p(a,b) and ∃x . p(x,b). In this case the minimal Herbrand model of the
Skolemisation of P has two atoms. It is easy to see that there is a smaller model of P.

¿e reason for this lies in the de�nition of a model in [80]. ¿is deviates from the de�nition of a
model in logic and in RDF in two ways: An interpretation I is a model of a formula φ in the sense of
[80] i� I is a model of the Skolemisation of φ in the sense of logics or RDF. ¿e second di�erence is that
the Skolem symbols need to be mapped to domain elements disjoint from the other symbols. Hence for
example p(a,b) does not imply ∃x . p(x,b) with this de�nition, while this is true under logical and RDF
entailment.

9.4 SPARQL

SPARQL [65] is a RDF query language based on SquishQL [61] and RDQL [71]. It is a W3C Candidate
Recommendation since the 17 of June 2007. Its syntax is based on Turtle [11].

Following [64] a SPARQL query consists of three parts: a pattern matching part with features like
optional matching, union, nesting, �ltering, and the possibility to query multiple data sources. Solution
modi�ers such as projection, distinct, order, limit and o�set. ¿irdly SPARQL supports four di�erent
output types: boolean answers, variable bindings, construction of RDF graphs, and descriptions. ¿e exact
semantics of descriptions is not de�ned in [65], but concise bounded descriptions [74] are referenced as a
reasonable choice. Variable bindings may be represented by a special XML document [10].

SPARQL has ample blank node support, but still more restricted than RDFLog, and sub-optimal with
respect to expressivity as we will show. In SPARQL blank nodes may occur in queries. ¿ese blank nodes
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correspond to universal variables in the body of a Datalog rule, which do not occur in the head.
Blank nodes may be constructed implicitly by using the special syntactic short hand notations like ‘(’

and ‘)’ for RDF collection construction: E.g. (1, ?x) is a shorthand notation for

_:b0 rdf:first 1 ;

rdf:rest _:b1 .

_:b1 rdf:first ?x ;

rdf:rest rdf:nil.

_:b0 :p ‘‘w’’

In addition, the describe keyword allows to extract concise bounded descriptions from RDF graphs.
Blank nodesmay also occur in a construct part of a SPARQL query. ¿is allows to explicitely construct

blank nodes. ¿ese blank nodes are ‘scoped to the template for each solution’ [65]. ¿erefore a SPARQL
program with blank nodes in the construction part corresponds to an RDFLog program who’s existential
quanti�ers are all to the le of the universal quanti�ers.

¿ere is also a lot of theoretical work done on the complexity and the Semantics of SPARQL: Perez et.
al. show in [64] that the evaluation of SPARQL graph patterns is PSPACE complete even for a SPARQL
patterns without �lters, RDF/S vocabulary and special treatment for literals. Cyganiak [26] models
SPARQL SELECT using relational algebra operators. Using a similar approach Harris [38] presents an
implementation of SPARQL queries in a relational database engine. Franconi and Tessaris [31] work on an
semantics for SPARQL as an ongoing work.
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Chapter 10

Summary

In this deliverable we investigated how blank nodes can be processed in rule based query languages for
RDF. We examine both operational and semantical aspects of such query languages. On the operational
side we show how RDF querying can be reduced to logic programming. ¿is makes the results if the
research on e�cient evaluation of logic programming accessible to RDF querying. On the other hand it is
desirable to have a denotational characterisation of the semantics of a programming language. We discuss
several possibilities to describe the operational semantics up to logical equivalence. ¿en we look for a
minimal, redundancy free semantics for RDFLog. We show that this semantics can only be computed at
certain computational costs. In addition we provide a commutativity result which allows to compute this
semantics more e�ciently.

In the �rst sections we introduce RDF from a logical perspective. We recall the de�nitions from the
de�ning documents [53, 40]. We show how these de�nitions correspond to logical terms: RDF graphs can
be seen as logical formulae and RDF interpretations as logic interpretations. We show that our translation
preserves models. Next we discuss a view on RDF which is motivated by research on databases: An RDF
graph can also be modelled as an interpretation. In similarity to [8] we show that this view allows for two
other characterisations of RDF entailment: as validity or as homomorphisms. In addiction we discuss a
notion of minimal equivalent RDF graphs, called lean RDF graphs.

We next recall several aspects from logic programming. We relate logic programming to theorem
proving. We argue that logic programming is a syntactical restriction of theorem proving which may be
evaluated more e�ciently than the general case. ¿is is motivated by the fact that the language RDFLog is
a syntactical extention of logic programming enjoying the computational properties of logic programming.
We shall later show that this comes at the cost that models generated by RDFLog are not minimal. We
�nally recall the de�nition of the semantics of logic programming in terms of minimal Herbrand models
and e�cient algorithms to compute these.

RDFLog is introduced by some examples. We show that both RDFLog queries and answers can be
modelled as RDF graphs. We show that the answer of a lean query to a lean RDF graph may be non lean.
Nonetheless, if the queried RDF graph is lean, it holds under a closed world assumption that all blank
nodes in the answer represent di�erent entities. ¿is motivates to deliver the proof for this fact to the user:
for every blank node in the answer the concise bounded description may be reported to the user. ¿is
gives rise to the concise bounded answer. Next we show now blank nodes in the heads of RDFLog rules
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may be used to construct new blank nodes and to group nodes in RDF graphs. Finally we de�ne a Syntax
for RDFLog.

In Chapter 6 we investigate how RDFLog may be evaluated operationally. ¿e key idea is the reduction
to logic programming: An RDFLog program is translated into a logic program by Skolemisation. ¿e
resulting program may be evaluated e�ciently. Finally the result of the evaluation must be un-Skolemised
to be a logical consequence of the program.

Finally we search for a suitable denotational characterisation of RDFLog. We show that the operational
semantics S of an RDFLog program P has the following properties: S is entailed by P, it can be seen as a
model of P and any RDF graph which is entailed by P is also entailed by S. We show how combinations of
these properties can be used to characterise the operational semantics up to equivalence. We then turn
to the problem of characterisation of the operational semantics up to equivalence. We provide such an
characterisation but show that the implementation is dp-hard.

¿e reduction of RDF querying to logic programming can also be used to obtain complexity and
expressivity results for RDF query languages. I particular it makes it easy to identify semantic restrictions of
RDFLog with good computational properties. ¿e main observation is that the construction of dependant
blank nodes corresponds to function symbols in logic programming. ¿erefore there are two staight
forward approaches to obtain decidable sublanguages of RDFLog: To disallow recursion or to disallow the
construction of blank nodes. But these restrictions might be to strong. Much work has been done in the
area of termination of logic programming [19, 4, 70]. It would surely be interesting to investigate which of
these restrictions are well suited in the context of RDF querying.
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Chapter 11

Outlook

Several questions around querying RDF with RDFLog remain open. In this chapter we discuss these open
questions and possible future work.

If RDFLog is seen as a practical query language for RDF a more user friendly syntax for RDFLog
would be necessary. As the perspective of this work is rather theoretical, and the aim of RDFLog is to
provide a tool to investigate querying RDF, this topic is not addressed here.

As blank nodes have similarities to null values in databases [22] it would also be interesting to compare
querying RDFwith querying incomplete databases [49, 3]. It might be possible to reuse e�cient algorithms
developed in the context of incomplete information in databases to querying RDF. A comparison with
modal logics [13, 29] and description logics [5, 47] could lead to decidable fragments of RDFLog.

A challenging task would be to build an e�cient system which uses backward chaining to evaluate
RDFLog. Skolemisation and un-Skolemisation could be integrated into the resolution. Especially the
combination with tabling would be tempting. Lazy Skolemisation could also increase e�ciency. Even
more challenging is the task of implementing a evaluator supporting the lean semantics.

In Chapter 7 we provide an su�cient condition for the commutativity of the consequence operator
and the lean operator. It is not known whether this condition is also necessary. A necessary condition
would ensure that if this condition dose not hold then the application of these operators do not commutate
anymore. Such a condition could be seen as optimal as in this case the (computationally expensive) lean
operator would not be applied too o en.

We have shown in Chapter 7 that there are examples where the semantics of an RDFLog program
is in�nite while the lean semantics is �nite. ¿erefore it would be interesting to investigate whether the
commutativity result of Chapter 7 has the property that any �nite lean semantics can be computed in �nite
space. If this is not the case one could investigate whether there is some other condition or a fragment of
RDFLog with this property.

Finally there are several unanswered questions around the de�nition of the semantics of RDFLog. Is
the lean semantics of RDFLog a model of RDFLog? And is the minimal set of RDF graphs which entail
every RDF graph, which is entailed by an RDFLog program isomorphic to the lean semantics? ¿ese
questions are more of theoretical interest, but could help the understanding of RDFLog and RDF querying.
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