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Overview of this Deliverable

In this deliverable, we introduce as a formal foundation for Web queries against any data format, CIQLog,
a rule-based query language tailored to semi-structured queries. CIQLog is a slightly modi�ed variant of
datalog¬new, i.e., datalog extended with negation and value invention, which ismost prominently represented
by ILOG [42]. CIQLog is used as a tool to map most major Web query languages, viz. XPath, XQuery,
Xcerpt, and SPARQL, into the same formal framework in Chapters 3 to 5.

¿e common data model and query language CIQLog and the translations from these languages into
CIQLog yield

(1) a purely logical semantics for XPath, XQuery, Xcerpt, and SPARQL. For XQuery and SPARQL, this
is the �rst purely logical semantics to the best of our knowledge.

(2) a better understanding of commonalities and di�erences between these languages. In particular, the
step from XPath to (composition-free) XQuery illustrates how only a small number of additional
features dramatically a�ects the semantics and evaluation of XQuery.

(3) together with the CIQCAG algebra (and the translation from CIQLog to CIQCAG in [34]), we obtain

(a) a space optimal implementation of navigational XPathwith space complexityO(q ⋅d) and time
complexityO(q ⋅ n) where q is the query, n the data size, and d the depth of the tree data.
(b) the �rst implementation for SPARQL with polynomial-time complexity for tree queries on arbi-
trary graphs and linear complexity on tree and certain graph data (see below).

(c) e�cient implementations forXcerpt andXQuery that scale over di�erent data andquery shapes,
i.e., that provide on each restricted class time and space complexity rivaling the best known ap-
proaches limited to that class.

(4) a foundation for the integration of queries from several of these languages (with additional CIQLog
interface rules to properly expose data from queries in one language to queries of another lan-
guage).
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Chapter 1

Data Model—Relations over Trees and
Graphs

1.1 Introduction

As abstraction of the query cores for most Web query languages we introduce in Chapter 2 CIQLog which
is used in Chapters 3 to 5 as target for the translation from XQuery, Xcerpt, and SPARQL and compiled
into CIQCAG algebra expressions in [34]. Before we can introduce CIQLog, however, we need to establish the
employed data model in this chapter.

We choose binary relational structures as formal datamodel for CIQLog and CIQCAG. However, to bridge
the gap to XML and RDF query languages such as XQuery or SPARQL, we �rst introduce a common view
of Web data as node and edge labeled graphs and mappings from XML and RDF into such graphs. ¿ese
mappings are, for the most part, simple and intuitive. On these data graphs, we de�ne a set of relations
for querying the structure of the graph (Section 1.6.4), the relative position of edges and labels in that
graph (Section 1.6.5, the labels of edges and nodes (Section 1.6.3), and edge and nodes equivalent wrt.
label, position, or structure (Section 1.6.6. ¿ese relations are closely related to XPath’s axes and other
formalizations of relations on XML data, but exhibit a number of distinct features to properly address
arbitrary shapes of the underlying data graphs and the e�ect of edge labels (see, e.g., the de�nition of
child- and descendant-like traversal relations in Section 1.6.4).

1.2 Data Graphs

From the perspective of their datamodel, manyWeb representation formats such asXML, RDF, andTopic
Maps have a lot of commonalities: the data is semi-structured, tree- or graph-shaped, and sometimes
ordered, sometimes not (XML elements vs. XML attributes, RDF sequence containers vs. bag containers).
We choose (�nite unranked) labeled ordered directed graphs as common data model for Web data:

De�nition 1.1 (Data graph). A query is evaluated against a data graph D over �nite label alphabets ΣE

3



for edges and ΣN for nodes. D is a 6-tuple

(N,E,R,L,O),

where N is the set of nodes of the graph, E ⊂ N × N → N the set of edges, R ⊂ N the set of root
vertices, L ∶ (N → ΣN)∪(E → ΣE) the labeling function on nodes and edges, and the order speci�cation
O ⊂ N × ΣE. For simplicity, we assume N ∩ E = ∅ and that L is total on edges, but may be partial
on nodes. Note, that an edge (n, i,m) maps a pair of a (source) node n and an edge position i to a
(sink) node m, thus there are no two distinct edges with the same source and order number. As usual,
degn = ∣{(n, i,n′) ∈ E}∣ denotes the degree of a node, i.e., the number of outgoing edges.

D is an ordered graph, i.e., the order of the children of a node is signi�cant. Since the order is relative to
the parent and a childmay occur under several parents (in fact, it may occur several times under the same
parent), the order is associated with the edge rather than with the child node. ¿e order speci�cationON

allows both ordered and unordered data (e.g., unorderedXML attributes and orderedXML sub-elements,
RDF bag and sequence containers) in the same graph: the order among the λ-labeled outgoing edges of
a node n is signi�cant only if (n, λ) ∈ ON. We choose to record the position of a λ-labeled edge even if
(n, λ) /∈ ON. ¿is allows for bag-like data with duplicates represented by multiple edges between same
nodes and a consistent signature of edges.

D’s nodes may be labeled by virtue of the single (partial) node labeling function LN. For sake of con-
ciseness, we choose a single labeling function. In practice, there might be cases where di�erent labeling
functions are advisable, e.g., one for element labels and one for string values in XML data, or one for
resource URIs and one for literals in RDF data.

Edge labels from ΣE are used to distinguish di�erent relations among nodes in N. For an edge e =
(p, i, c) with L(e) = λ, we call c a λ-child or simply a child of p. In the following, we use the edge labels
CHILD and VALUE to model (element) containment and string value in an XML document. ¿e former
represent the XML element hierarchy, the latter associate text nodes with element nodes. In case of RDF
data, the respective property URI is used as edge label.

¿e de�nition allowsmultiple root nodes, e.g., if there are several connected components in the graph.
Any node may be a root node, in particular root nodes may, in contrast to usual rooted graph models,
have parents. Intuitively, root nodes are simply highlighted “entrance” points into the graph that can be
chosen arbitrarily when de�ning the data graph: If the data graph is a single XML document there will
be a single such root node, however this formalization also covers collections of XML documents (as in
XQuery) and RDF graphs where, e.g., each subject node can be considered a root node. In the following,
we assume that each node in a data graph is part of a rooted connected component, i.e., is either a root node
itself or reachable from a root node.

Following Codd’s surrogate extension [22] for the relational data model, we choose surrogate or object
identity for nodes and edges, i.e., nodes and edges have identity separate from their “value” or structure.
¿is contrasts with the basic relational data model that uses extensional identity (i.e., the value of a data
item de�nes its identity, and thus two data items with same value necessarily have the same identity). Sur-
rogate identity allows an intuitive and clean semantics for querying cyclic data instances, whereas cyclic
data instances under extensional identity lead to in�nite regular trees (cf. [24]) which have questionable
properties for certain classes of queries, most prominently occurrence queries. Furthermore, [2] shows
that graphs with object identity can, up to identity, be seen as �nite representations of in�nite regular

4
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trees. In this respect, data graphs are similar to object-oriented data models. XQuery’s data model [31]
also uses node identities separate from node values, but limits the data to trees.

Figure 1 shows a data graph depicting roman emperors of the Nervan-Antonine dynasty and some
of their ruled provinces. Labels are depicted in sans-serif close to the labeled node, edges are decorated
with their position index (e.g., 2 ) and label (e.g., son ), a root node is indicated by a sink-only edge (like

2 ). ¿e data graph contains two kinds of edges, son edges (colored in dark red), and ruler edges
(colored in blue). For referencing, nodes are numbered and we refer, e.g., to the node with label Nerva as
d2 (for second data graph node).

Formally, Figure 1 depicts the data graph D = (N,E,R,L,O) with
N = {d1, . . . ,d18} R = {d2,d14}
E = {(d1, 1,d4),(d2, 1,d4),(d3, 1,d7),(d4, 1,d15),(d4,2,d16),(d4, 3,d17),

(d4,4,d7),(d5, 1,d8),(d6, 1,d10),(d7, 1,d16),(d7,2,d17),(d7, 3,d10),
(d7,4,d8), . . .}

L = {d1 → M. Ulpius Trai.,d2 → Nerva,d3 → P. Aur. Hadr. Afer,d4 → Trajan, . . . ,

(d1, 1,d4)→ son,(d2, 1,d4)→ son,(d3, 1,d7)→ son,

(d4, 1,d15)→ ruler,(d4,2,d16)→ ruler,(d4, 3,d17)→ ruler,

(d4,4,d7)→ son, . . .}
O = ∅

In the following sections, we brie�y outline, how XML documents, RDF graphs, and Xcerpt data
terms can all be faithfully mapped to data graphs.

1.3 XML: Essentials and Formal Representation

XML [13] is, by now, certainly the foremost data representation format for theWeb and for semi-structured
data in general. It has been adopted in a stupendous number of application domains, ranging from
document markup (XHTML, Docbook [72]) over video annotation (MPEG 7 [53]) and music libraries
(iTunes1) to preference �les (Apple’s property lists [5]), build scripts (ApacheAnt2), andXSLT [44] stylesheets.
XML is also frequently adopted for serialization of (semantically) richer data representation formats such
as RDF or TopicMaps.

¿e following presentation of and mapping for XML documents is oriented along the XML Infoset
[25] which describes the information content of an XML document. ¿e XQuery data model [31] is, for
the most parts, closely aligned with this view of XML documents.

Following the XML Infoset, we provide a graph shaped view of XML data containing valid id/idref
links. ¿is contrasts with the XQuery data model, where such links are not resolved. In the following,
id/idref links are distinguished from the parent/child links expressed by the element hierarchy in accor-
dance to the XML Infoset speci�cation. For many applications this separation is unnecessary and even
harmful which motivates us to brie�y discuss an alternative mapping of id/idref links to data graphs in
Section 1.3.3.

1http://www.apple.com/itunes/
2http://ant.apache.org/
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1.3.1 XML in 500 Words

¿ecore provision of XML is a syntax for representing hierarchical data. Data items are called elements in
XMLand enclosed in start and end tags, both carrying the same tag names or labels. <author>...</author>
is an example of such an element. For . . . , we can write other elements or character data as children of
that element. ¿e following listing shows a small XML fragment that illustrates elements and element
nesting:

<conference xmlns:dc="http://purl.org/dc/elements/1.1/"

2 dc:title="Storage Media">

<dc:date>44 B.C.</dc:date>

4 <paper title="Wax Tablets" id="p1" cites="p2">

<author>Cicero<!−− incomplete! −−></author>
6 </paper>

<paper id="p2" cites="p1">

8 <author>Hirtius</author>

</paper>

10 <pc><member>Cicero</member>

<member>Atticus</member></pc>

12 </conference>

In addition, we can observe attributes (name, value pairs associated with start tags) that are essen-
tially like elements but may only contain character data, no other nested attributes or elements. Also, by
de�nition, element order is signi�cant, attribute order is not. For instance

<pc><member>Atticus</member><member>Cicero</member></pc>

represents di�erent information than the pc element in lines 10–11, but

<paper cites="p1"id="p2"><author>Hirtius</author></paper>

represents the same element information item (inter-element white space is ignored) as lines 7–9.
Elements, attributes, and character data are XML’s most common information types. In addition,

XML documents may also contain comments (line 5), processing instructions (name-value pair with spe-
ci�c semantics that can be placed anywhere an element can be placed), document level information (such
as the XML or the document type declarations), entities, and notations. ¿e mapping easily provides for
these information types and their speci�cs, but details are omitted here for sake of conciseness.

On top of these information types, two additional facilities relevant to the mapping from XML to
data graphs are introduced in XML by subsequent speci�cations: Namespaces [12] and Base URIs [52].
Namespaces allow the partitioning of element labels used in a document into di�erent namespaces, iden-
ti�ed by a URI. ¿us, an element is no longer labeled with a single label but with a triple consisting of
the local name, the namespace pre�x, and the namespace URI. E.g., for the dc:date element in line 3,
the local name is date, the namespace pre�x is dc, and the namespace URI (called “name” in [25]) is
http://purl.org/dc/elements/1.1/. ¿e latter can be derived by looking for a namespace declaration
for the pre�x dc. Such a declaration is shown in line 1: xmlns:dc="http://. . . It associates the pre�x dc

with the given URI in the scope of the current element, i.e., for that element and all elements contained
within unless there is another nested declaration for dc, in which case that declaration takes precedence.
¿us, we can associate with each element a set of in-scope namespaces, i.e., of pairs namespace pre�x and

7
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Figure 2. Exemplary Data Graph: XML Conference Data

URI, that are valid in the scope of that element. Base URIs [52] are used to resolve relative URIs in an
XML document. ¿ey are associated with elements using xml:base="http://. . . and, as namespaces, are
inherited to contained elements unless a nested xml:base declaration takes precedence.

In the next section, we describe how we map the basic information items as well as derived and
heritable information such as namespaces and XML Base URIs to data graphs. It is worth highlighting
that themapping can be easily extended to cover additional information items (such as entities, notations,
and processing instructions or information items typed byXML Schema [30] types) as well as other forms
of heritable information.

1.3.2 Mapping XML to Data Graphs

In Figure 2, a data graph for the above XML document is shown: As before, edges are decorated with
their position index (e.g., 2 ) and label (e.g., child ), a root node is indicated by a sink-only edge (like

1 ). Nodes representing literal character content are di�erentiated using gray (like 4 ) instead of blue
color, their labels enclosed in single quotes. ¿e order speci�cation is not presented in the �gure. With
the order speci�cation O = N × {child, value, comment, ref}, i.e., order is signi�cant for all child,
value, comment, and ref edges, but not for attr, inscope, ns, prefix, and name edges, the graph
faithfully represents the XML information set corresponding with the above fragment. As in [25], the
children of an element are ordered and include element, comment, and character data children. Also, for
any attribute with type idref or idrefs, the attribute information item contains an ordered list of element
information items referenced by that attribute, here expressed using ref edges. ¿is, again, mirrors [25]
but deviates from the XQuery data model [31] and many other (purely tree-shaped) views of XML.

In Figure 2, we place attr, ns, and inscope edges a er child, comment, and value edges, however,
this is an arbitrary choice. As long as the order between edges of the latter kind is preserved, the order of
the position of the remaining edges is insigni�cant.
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Figure 3. Exemplary Data Graph: XML Conference Data with Transparent id/idref-links

1.3.3 Transparent Links

In the mapping scheme illustrated by Figure 2, we choose to represent id/idref-links as in [25]. However,
in many applications, a treatment of such links in the same way as parent/child-relations is preferable. In
this case, we place the linked elements, in order, at the beginning of the child list of the element containing
the attribute.

If an element contains no other information items (no attributes, elements, comments, etc.), we may
also choose to replace the element by the reference. ¿is allows arbitrary placement of id/idref-referenced
elements within the child list of a parent element. Furthermore, it allows the transparent resolution of
links expressed using reference elements such as XHTML’s a or Docbook’s Link.

1.4 RDF: Essentials and Formal Representation

In addition to RDF, we also demonstrate how to map RDF [51, 45, 39] graphs to datagraphs. RDF is,
though much less common than XML, a widespread choice for interchanging (meta-) data together with
descriptions of the schema of that data.

Following the recent SPARQL [65] proposal,We choose to support themapping of RDF graphs under
simple entailment as de�ned in [39]. In contrast to SPARQL, we omit typed literals and named graphs
[18], both optional features of RDF (or extensions thereof) for simplicity. Both can be easily added to the
described mapping, e.g., each named graph can be represented as a separate connected component, the
graph representatives distinguished as root nodes of the data graph.

1.4.1 RDF in 500 Words

RDF graphs contain simple statements about resources (or entities, objects, etc.). Statements are triples
consisting of subject, predicate, and object, all of which are resources. If we want to refer to a speci�c
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resource, we use (supposedly globally unique) URIs, if we want to refer to a resource for which we know
that it exists and maybe some of its properties, we use blank nodes which play the role of existential
quanti�ers in logic. However, blank nodes may not occur in predicate position. Finally, for convenience,
we can directly use literal values as objects.

RDFmay be serialized inmany formats, such as RDF/XML [7], an XML dialect for representing RDF,
or Turtle [6] which is also used in SPARQL. ¿e following Turtle data represents roughly the same data
as the XML document discussed in the previous section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

2 @prefix dct: <http://purl.org/dc/terms/> .

@prefix vcard: <http://www.w3.org/2001/vcard−rdf/3.0#> .

4 @prefix bib: <http://www.edutella.org/bibtex#> .

@prefix ulp: <http://example.org/roman/libraries/ulpia#> .

6 ulp:cicero-46-wt a bib:Article ; dc:title "Wax Tablets" ;

dc:creator [ a rdf:Seq ;

8 rdf:_1 ulp:cicero ; rdf:_2 ulp:tiro ] ;

ulp:cites ulp:hirtius-47-bc ;

10 dct:isPartOf ulp:conf-46-mutina .

ulp:cicero a bib:Person ; vcard:FN "M. T. Cicero" .

12 ulp:tiro a bib:Person ; vcard:FN "M. T. Tiro" .

ulp:hirtius-47-bc a bib:Article ;

14 ulp:cites ulp:cicero-46-wt ;

dct:isPartOf ulp:conf-46-mutina .

16 ulp:conf-46-mutina a bib:InProceedings ;

rdfs:label "Storage Media" .

Following the de�nition of namespace pre�xes used in the remainder of the Turtle document (omit-
ting common RDF namespaces), each line contains one or more statements separated by colon or semi-
colon. If separated by semi-colon, the subject of the previous statement is carried over. E.g., line 6 reads
as ulp:cicero-46-wt is a bib:Article and has dc:title “Wax Tablets”. Lines 7–9 show a blank node: the creator of
the article is neither Cicero nor Tiro, but some unnamed resource that is a sequence of those two authors.

RDF Interpretations are used to provide meaning to the elements of an RDF graph. URIs in subject or
object position are interpreted as arbitrary objects, such as people, trains or web pages. An URI in predi-
cate position is interpreted as a set of pairs of objects such as train connections, coauthor relationships or
links between webpages. ¿e set of entities that RDF graphs make statements about is called the domain
of the RDF graph.

Finally blank nodes are used to express existential knowledge or to group information in RDF graphs.
Each blank node is interpreted as a domain element but its interpretation is not �xed: An interpretation
is a model of an RDF graph i� there is an interpretation for the blank nodes such that for every triple,
the interpretation of the subject and object is an element of the interpretation of the predicate. An RDF
graph g is said to entail an RDF graph h if every model of g is also a model of h.

As the de�nition of an interpretation resembles the de�nition used in logic, it is possible to view an
RDF graph as a formula. ¿is formula has an atom for every triple. URIs and literals are represented by
constants, while blank nodes are represented by existential variables.
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Figure 4. Exemplary Data Graph: RDF Conference Data

1.4.2 Mapping RDF to Data Graphs

¿is RDF data is mapped to a data graph as shown in Figure 4. In the case of RDF the order of the edges
is mostly irrelevant, only for the sequence container ( 6 in Figure 4) we choose to order the rdf:_i edges.
¿is allows for a more convenient querying of elements in a sequence, cf. [43]. We choose to consider all
named resources, i.e., all resources with URI label (depicted as light blue round nodes in Figure 4), as
root nodes of the RDF graph. ¿is choice, however, does not a�ect the remainder of this article. Recall,
that root nodes are nothing more than speci�cally marked entrance points into the graph. Otherwise
they are unrestricted, in particular they may have incoming edges. ¿ere is a single node in the graph for
each named resource that occurs in the RDF data. Same literals may occur multiple times. Each blank
node is depicted as a rectangular node (e.g., 6 ). As in Turtle [6] and SPARQL, blank nodes are labeled
with local identi�ers pre�xed by _:. ¿ere is one node for each blank node in the RDF data.

¿is mapping faithfully represents the RDF graph (under simple entailment), but does not guaran-
tee that the representation is minimal in the sense that there is no other data graph that represents an
equivalent RDF graph. For an RDF graph containing blank nodes, there may be a more compact repre-
sentation that eliminates some of these blank nodes that express redundant information. E.g., if we add a
statement “there are two articles that cite each other” using two blank nodes for the involved article, this
information is redundant as it already follows from the original data (ulp:cicero-46-wt and ulp:hirtius-47-bc
cite each other). ¿e mapping from RDF graphs to data graphs maintains such redundancy. However,
the representation is minimal if the input RDF graph is minimal (or lean in the sense of [39]). For each
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RDF graph, an equivalent lean graph exists and its computation is DP-complete3.
Representing the actual input graph (and not an equivalent minimal one) is necessary to support

queries such as selecting the blank nodes in an RDF graph (as per SPARQL’s isBlank operator). Only
if we disallow queries that can distinguish blank nodes from named resources, the lean graph returns the
same answers for all queries as the original graph.

RDF provides a number of high-level modeling concepts such as collections (list), containers (bag,
sequences, and alternatives), rei�cation (the representation of a statement as a resource). ¿ere is no
need to support such concepts in the mapping to data graphs, however, as all of them are reduced to
certain conjunctions of basic RDF triples. E.g., lines 7–8 in the above data show the pattern for sequence
containers: A resource (o en unnamed, i.e., represented by a blank node) is typed as an rdf:Seq and the
elements of the sequence are connected using rdf:_i predicates. For details on the triple patterns for other
high-level modeling concepts, see [45].

1.5 Xcerpt Data Terms

We conclude our consideration of data graphs and their relation to data representation formats for the
Web with a brief look at Xcerpt data terms. ¿e formal description of the mapping is presented as part
of Chapter 3. Here, we illustrate the basic ideas and how they relate to the mappings for XML and RDF
data.

1.5.1 Xcerpt Data Terms in 500 Words

Recall, the general shape of Xcerpt data terms: they are hierarchical (i.e., tree shaped) representations
of graph-shaped, semi-structured data. To obtain a hierarchical representation of a graph, referable term
identi�ers and references are introduced that allow to express non-hierarchical relations. Term identi�ers
are like id attributes in XML (or blank node identi�ers in many RDF serializations) identi�ers for data
items that are unique in the context of a data collection (usually a document). References are similar
to idref attributes in XML but occur in place of elements (rather than as attributes of a special type)
and are transparently resolved, i.e., the case of a term containing a reference to another term can not be
distinguished from the case where the term contains the other term as a direct child.

¿e following Xcerpt data term yields the data graph from Figure 3:

1 declare ns-prefix dc = "http://purl.org/dc/elements/1.1/"

conference(dc:title="Storage Media") [

3 dc:date [ "44 B.C." ]

p1 @ paper(title="Wax Tablets") [

5 ^p2

author [ "Cicero"

7 xcerpt:comment{ "incomplete!"} ]

]

9 p2 @ paper [

^p1

11 author [ "Hirtius" ]

3Recall, thatDP is the class of all decision problems, that can be expressed as the intersection of anNP- and a co-NP-problem.
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]

13 pc[ member[ "Cicero" ]

member[ "Atticus" ] ]

15 ]

Note, that namespace declarations enclose the element (or element list) that are in the scope of that
declaration, i.e., that may use the de�ned pre�xes. Attributes are associated with term labels using paren-
theses, whereas the children of a term are contained in brackets or braces. Brackets indicate that the order
of the children is signi�cant, braces that it is not. ¿e above fragment only uses brackets to yield the same
data graph as an XML document where children are always ordered. However, we could just as well use
braces in the above data, if, e.g., the order of papers or the order of members in a program committee is
not signi�cant.

1.6 Relations on Data Graphs

As formal basis for the query language CIQLog and the algebra CIQCAG discussed in the following chap-
ters, we adopt (binary) relational structures. In fact, both can be used to query arbitrary binary rela-
tional structures. For the formalization and evaluation of Web query languages such as Xcerpt, XQuery,
and SPARQL, however, we choose a speci�c relational schema (de�ning the arity and names of avail-
able relations) and how to obtain instances for this schema (i.e., the actual relations) from data graphs
as described above. ¿is bridges between the notion of data graphs that is close to the intuitive shape of
semi-structured data on the Web as queried by Xcerpt, XQuery, or SPARQL, and the formal notation of
relational structures that is more convenient for the purpose of de�ning the semantics and evaluation of
CIQLog and CIQCAG.

¿e relations de�ned in the following are familiar from query languages such as XPath and their
formal treatments in, e.g., [57, 61, 37] with three major exceptions: (1) As we discuss graphs with labeled
edges, we provide relations for accessing both nodes and edges as well as their connections where most
other collections of relations on semi-structured trees or graphs either consider only nodes or only edges
as the domain of the relations. (2) Since edges are labeled, we extend classical structural relations such
as child and descendant in XPath to specify a set of edge labels to be traversed. ¿is allows, e.g., to limit
a descendant traversal to only nodes reachable by all child edges in Figure 2, excluding node reachable by
a mix of child and ref edges (the latter indicating the traversal of an id/idref link). ¿e same applies to
horizontal or positional relations such as following or following-sibling. (3) Following many object-oriented
query languages as well as Xcerpt andXQuery, we introduce a deep equality on nodes such that two nodes
are deep equal if the structures rooted at those nodes are, to some extent, compatible. “Compatible” may
be an isomorphism between the substructures or just simulation, for details see Section 1.6.6.

Note, that the domain of the attributes of these relations are either the nodes or the edges of the data
graph, or the set of integers. ¿e active domains are the same for nodes and edges, for integers, however,
the active domain is a �nite subset of all integers with a size bound by the maximum out-degree d of a
node in the data graph (and thus by the number of edges). In all cases, but pos, this set is {1, . . . ,d}. In
the case of pos, the size of the set is also bound by d, but the contained integers are arbitrary.
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1.6.1 Binary Relational Structures

First, we brie�y recall a (standard) de�nition, following [1], for relational structures but limited to binary
relations:

Both CIQLog and CIQCAG operate on a (slightly extended)4 relational structure D as data. D is de�ned
over a relational schemaΣ = (R1[U1], . . . ,Rk[Uk]) and a�nitedomainN of nodes (or objects or elements
or records) in the data graph. Each Ri[Ui] is a relation schema consisting in a relation name and a
nonempty set of attribute names, We assume an equality relation = on the nodes that relates each node
to itself only (identity). D is a tuple (RD

1 , . . . ,RD
k ,O). Each RD

i is a �nite, unary or binary relation over
N with name Ri. For a relation R, ar(R) denotes its arity. We extend D with an order mapping O that
associates with each (binary) Ri a total order on N such that all n ∈ rngRi are before all n′ ∈ N ∖ rngRi.
We denote with O(D) = {o ∶ ∃Ri ∈ D ∶ O(Ri) = o} the set of orders to which the relations in D are
mapped. ¿ese orders serve to represent the image of each node in a relation as one or more continuous
intervals over the order associated with that relation. Choosing an appropriate order for a relation is
discussed in [34].

1.6.2 A Relational Schema for Data Graphs

CIQLog and CIQCAG operate on arbitrary relational structures, though they pro�t from relational structures
where some or all relations are tree, forest, or cig shaped. In the following, we outline a particular re-
lational schema containing relations on data graphs (as introduced in Section 1.2) that is used to realize
Xcerpt, XQuery, and SPARQL queries in CIQLog (and thus CIQCAG).

Given a data graphD = (N,E,R,L,O) over node labels ΣN and edge labels ΣE, we choose as domain
N′
= N ∪ E ∪ {1, . . . ,max({i ∶ ∃n,n′ ∶ (n, i,n′) ∈ E}) ∪ ΣN ∪ ΣE, i.e., the union of the disjoint sets of

nodes, of edges, of integers from 1 to the maximum edge position, and of node and edge labels. Note,
that each of the sets and thus N′ is �nite. We add node and edge labels as well as (edge position) integers
to the set of nodes and edges to keep the relational schema for querying data graphs independent of the
actual graph.5

Table 1 gives a summary of the relations de�ned in the following together with their relation schema.
It is worth emphasizing that not all of these relations are used in the translation of each language. Rather,
for the most part we limit ourselves to speci�c label sets S (mostly, the singleton sets) and only consider a
small number of path relations. Furthermore, not all relations must be extensional. In fact, in Chapter 2,
we brie�y discuss a set of minimal set of extensional relations and show how to specify the remaining
relations as intensional rules on top of this minimal set in CIQLog.

In the following, let Σ = ΣN ∪ ΣE be the set of node and edge labels and P(Σ) be the power set
over Σ. Furthermore on a domain D, we denote with R1 ○ R2 = {(n,m) ∈ D2

∶ ∃n′ ∈ D ∶ (n′,m) ∈
R1 ∧ (n,n′) ∈ R2} the composition of two binary relations R1 and R2 and generalise this de�nition to
Rk
= R ○ R ○ . . . ○ R´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

. For a binary relations R let R(n) = {m ∈ N ∪ E ∶ (n,m) ∈ R} be the “images” of n

under R.

4¿e deviation lies in the addition of order for each relation. Furthermore, we restrict ourselves to binary relations.
5Alternatively, we can use one (unary) position relation for each edge position and one (unary) label test relation for each

edge or node label in the data. Since both are �nite sets, the resulting relations still form a relational schema.
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node edge node-node node-edge edge-edge

identity ≐ ≐ ≐

structure pathSi,j,≗ ,

position @S @S, pos ≪
S,≪S

+
,≪S

∗
,◂S,◂S

+
,◂S

∗
≺
S,≺S

+
,≺S

∗
=
S
@

label L, LabS L, LabS ≅ ≅ ≅

arity indegS, outdegS

ordered O,OS

root root

Table 1. Summary of query relations (S is a set of labels from ΣN ∪ ΣE)

1.6.3 Properties of Nodes and Edges: Labels and Positions

Property relations test a certain “local” property of a node or edge without relating it to other nodes and
edges. Instead, they associate an edge or node, e.g., with its label or its position among siblings or, resp.,
edges with the same source.

Label relation. To obtain the label of a node or edge, we make the labeling function of a data graph
accessible as a unary label relation that identi�es all edges and nodes with their label:

L = {(t,σ) ∈ (N ∪ E) × Σ ∶ L(t) = σ}

For any �nite set of labels S ⊂ P(Σ), we provide as convenience the label test relation

LabS = {t ∈ N ∪ E ∶ L(t) ∈ S} = ⋃
σ∈S
{t ∈ N ∪ E ∶ Lab(t,σ)}

For brevity, we write for unary sets S = {λ} just Labλ and omit the index for S = Σ. Note, that Lab = LabΣ is
not necessarily N∪E since there may be nodes (though no edges) without label, i.e., LabΣE

= E, but LabΣN

is not necessarily N. For the translations discussed in following chapters, we only use label relations with
singleton label sets S. In this case, the number of label relations is bound by the size of ΣE ∪ ΣN.

Position relation. To test for the position of an edge among the edges with the same source or of a node
among its siblings, the position relation@S associates an edge ewith 1+ the number of edges with the same
source that (1) are ordered (i.e., have a label in O(n) where n is the common source), (2) have a label in
S ∈ P(Σ), and (3) have an edge position preceding the edge position of e. We increment the number of
edges by 1 to achieve node positions between 1 and degn where n is the source of an edge (rather than
0 and degn − 1). For nodes, @S associates a node n with whatever any edge with n as sink is associated

15



with under @S:

@S
= {(e, i + 1) ∈ E ×N ∶ e = (n, k,m) ∧ L(e) ∈ O(n)

∧ ∣{e′ = (n, l,m′) ∈ E ∶ L(e′) ∈ S ∩O(n) ∧ l < k}∣ = i}
∪ {(n, i) ∈ N ×N ∶ ∃e ∈ E ∶ e = (n′, k,n) ∧@S(e, i)}

Notice, that an edge in @S is not itself required to be labeled with a label in S. Rather, this can be achieved
by an additional label relation on the edge. Note, that @S is a function (for each S) on edges, but for a
node there may, in general, be several positions associated with it: ¿is is the case for any node with
multiple incoming edges. On tree data, @S is a function also on nodes. Again we use only λ for unary
sets S = {λ} and omit the index S for S = Σ. For the translations discussed in the following chapters,
we only use position relations with singleton label sets S. In this case, the number of position relations is
bound by the size of ΣE ∪ ΣN.

For nodes, we also provide a relation to retrieve the actual edge position:

pos = {(e, i) ∈ E ×N ∶ ∃n,n′ ∈ N ∶ e = (n, i,n′)}

Degree relations. To test for the number of in- or out-edges of a node, there are, for each S ∈ P(Σ), in-
and out-degree relations indegS and outdegS that associate each node with its in- resp. out-degree, counting
only edges labeled from S:

indegS = {(c, i) ∈ N ×N} ∶ ∣{e = (p, j, c) ∈ E ∶ L(e) ∈ S}∣ = i}
outdegS = {(p, i) ∈ N ×N} ∶ ∣{e = (p, j, c) ∈ E ∶ L(e) ∈ S}∣ = i}

Notice, that the degree is de�ned over the number of edges labeled from S, not the number of child nodes
reached over edges labeled from S. If the graph is simple, i.e., contains no multi-edges, both de�nitions
are equivalent. But in the presence ofmulti-edges the given de�nition leads tomore intuitive (and higher)
degrees than a de�nition based on child nodes. ¿e same abbreviations as above for unary sets and S = Σ
are used.

Ordered relation. For any �nite set of labels S ⊂ P(Σ), we provide as convenience the order speci�cation
test relation

O
S
= {n ∈ N ∶ ∀σ ∈ S ∶ O(n, s)}

¿e order speci�cationO is exposed directly.

Root relation. Finally, there is a root node relation root = R ⊂ N that identi�es all root nodes in the data
graph.

1.6.4 Structural Relations

¿eprimitives for traversing the structure of the graph data are relations that connect nodes with incident
edges or nodes with other nodes reachable via (arbitrary or �xed length) paths.
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Source and sink relations. Traversal from edge to node and vice versa is achieved using the source and
sink relations.

= {(n, e) ∈ N × E ∶ ∃i ∈ N,n′ ∈ N ∶ (n,n′, i) = e}
= {(n, e) ∈ N × E ∶ ∃i ∈ N,n′ ∈ N ∶ (n′,n, i) = e}

and relate a node to all its in- resp. out-edges. To retrieve only one particular edge, e.g., the
i-th out-edge, a combination of and @ can be used. To retrieve edges with a speci�c edge label
can be combined with Lab.

Path relations. Structural node-node relations relate nodes that are connected by �xed length or ar-
bitrary length paths (i.e., sequences of edges). For any S ∈ P(Σ), i, j ∈ N ∪ {∞} we de�ne the path
relation

pathSi,j = {(n,m) ∈ N2
∶ ∃i ≤ k ≤ j, e1, . . . , ek ∈ E,n1, . . . ,nk−1 ∈ N ∶

S(n, e1) ∧ S(m, ek) ∧ LabS(ek)∧
k−1
⋀
l=1
( S(nl , el) ∧ S(nl , el+1) ∧ LabS(el))}

Intuitively, two nodes are in pathSi,j relation, if there is a path with length between i and j that connects
the two nodes. For i = j = 1, this renders the direct edge (or child) relation between nodes. On XML
data represented as in Figure 2 this renders, for i = 0, j=∞ and S = {child,comment,value}, XPath’s
descendant-or-self, for i = 1, j=∞, XPath’s descendant or Xcerpt’s desc. For the translations discussed in the
following chapters, we only use those three types of path (child, descendant, and descendant-or-self).

If i = j= 1, we omit the interval index, if i = 0, j= ∞ we use ∗, if i = 1, j= ∞ we use + as index. If
S = ΣE we omit the label index, if S = {λ} we write λi,j for path{λ}i,j .

1.6.5 Order Relations

¿e following relations are successor and order relations on edges and nodes based on the relative position
of the edges or nodes under a common parent or ancestor. For each type, there is a (non-transitive)
successor relation and a transitive order relation. ¿e order relations are proper (strict partial) orders
only for edges, for nodes (due to multi-edges, i.e., several edges with same source and sink but di�erent
edge position) the relations are strict preorders, i.e., not anti-symmetric. E.g., if a is connected by the �rst
and sixth edge to b and by the third edge to c, c is both a following sibling (b≪+ c) of b and a preceding
sibling (c≪+ b).

Order relations on edges. Since graphs may carry order, we can compare two edges wrt. their relative
position within the out-edges of a common parent. For all S ∈ P(Σ), we de�ne the direct ≺S, the transitive
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≺
S
+
, and the transitive re�exive edge sibling relation ≺S

∗
:

≺
S
= {(e, e′) ∈ E2

∶ (n, e) ∧ (n, e′) ∧ LabS(e) ∧ LabS(e′)∧
@S(e, i) ∧@S(e′, i + 1)}

≺
S
+
= {(e, e′) ∈ E2

∶ (n, e) ∧ (n, e′) ∧ LabS(e) ∧ LabS(e′)∧
@S(e, i) ∧@S(e′, j) ∧ i < j}

≺
S
∗
= {(e, e′) ∈ E2

∶ (n, e) ∧ (n, e′) ∧ LabS(e) ∧ LabS(e′)∧
@S(e, i) ∧@S(e′, j) ∧ i ≤ j}

Intuitively, ≺S relates (under the common parent node) each edge to its immediate successors among the
edges with label in S∩O(n). It is an injective function even in presence of multi-edges. ≺S

+
relates (under

a common parent node p) each node to all following edges outgoing from pwith label in S ∩O(n). As
in the case of @S, the labels S are only used to limit the considered edges.

Order relations on nodes. ¿ere are two types of positional relations on nodes: those relating siblings
under a common parent and their generalization to the entire graph, i.e., positional relations relating
arbitrary nodes in a given graph.

For any S ∈ P(Σ), there is a direct≪S, a transitive≪S
+
, and a transitive re�exive node sibling relation

≪
S
∗
.

≪
S
= {(n,m) ∈ N2

∶ (n, e) ∧ (m, e′) ∧ e ≺S e′}
≪

S
+
= {(n,m) ∈ N2

∶ (n, e) ∧ (m, e′) ∧ e ≺S
+
e′}

≪
S
∗
= {(n,m) ∈ N2

∶ (n, e) ∧ (m, e′) ∧ e ≺S
∗
e′}

It follows from the de�nition of ≺S, that two nodes in≪S must have a common parent. On nodes,≪S is
a function only on trees. Again the same abbreviations as above for unary sets and S = Σ are used.

For all S ∈ P(Σ), there is also a transitive ◂S
+
, a transitive re�exive ◂S

∗
, and a direct following relation

◂
S on nodes.

◂
S
+
= {(n,m) ∈ N2

∶ n′ ≪S
+
m′

∧ pathS
∗
(n′,n) ∧ pathS

∗
(m′,m)}

◂
S
∗
= {(n,m) ∈ N2

∶ n′ ≪S
∗
m′

∧ pathS
∗
(n′,n) ∧ pathS

∗
(m′,m)}

◂
S
= {(n,m) ∈ N2

∶ n ◂S
+
m ∧ ∄n′ ∈ N ∶ n ◂S

+
n′ ∧ n′ ◂S

+
m ∨ pathS

∗
(n′,n)}

Intuitively, ◂S
+
relates n to all nodes m that follow n within the subgraph induced by all edges with label

in S. Notice that, ◂S
+
(x, y) Ô⇒ ∃y′ ◂S (x, y′) only if ◂S

+
is acyclic and thus irre�exive. If ◂S

+
is cyclic,

there is no direct following for all nodes on the cycle.
On XML data represented as in Figure 2, ≪child

+
represents XPath’s following-sibling, ◂child

+
XPath’s

following axis.

1.6.6 Equivalence Relations

¿e previous binary relations relate nodes and edges based on how they are connected in the data graph.
Equally important is the ability to relate two nodes based on their local properties, e.g., their label, struc-
ture, or arity. In this section, we introduce several equivalence relations based on such properties.
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Label equivalence relation. ¿e label equivalence relation ≅ relates all nodes or edges that have the same
label.

≅ = {(t1, t2) ∈ (N ∪ E)2 ∶ ∃λ ∈ Σ ∶ L(t1) = λ = L(t2)}

Identity equivalence relation. ¿e identity equivalence relation ≐ relates each node or edge to itself and
itself only.

≅ = {(t, t) ∈ (N ∪ E)2}

Position equivalence relation. For any S ∈ P(Σ), the position equivalence relation =S@ relates all edges
that occur at the same position among their respective source’s out-edges.

=
S
@= {(e, e′) ∈ E2

∶ ∃i ∈ N ∶ @S(e, i) ∧@S(e′, i)}

Again we use only λ for unary sets S = {λ} and omit the index S for S = Σ.

Structural equivalence relation. As the label equivalence relation stand to the label relation, structural
equivalence relations stand to edge and position relations. ¿ey relate nodes not based on the equivalence
of their local properties, but on the equivalence of their structure, i.e., of the subgraph rooted at the
respective node. Unfortunately, since they are dealing in equivalence not between atomic values like label
equivalence relations but between structured values, their semantics and evaluation is considerably more
complex. In the following, we introduce a �exible structural equivalence relation, referred to following
common notation as deep equal. ¿e introduced relation is �exible enough to cover a large set of existing
or desirable speci�c structural equivalence relations:

XQuery, e.g., provides the deep-equal function that identi�es pairs of nodes with a structure that is
equivalent w.r.t. the XQuery data model (thus, e.g., disregarding attribute ordering and in-scope names-
paces). [47] shows that the presence of deep-equal does not a�ect the complexity of composition-free
XQuery. Recall, that composition-free XQuery is a restriction of XQuery similar to the algebra discussed
in this work, where the domain of all query operators is limited to the input document. However, XQuery
operates only on ordered tree data, where deep-equal (i.e., ordered tree isomorphism) is linear [4]. ¿e
generalization of XQuery’s deep-equal to general unordered graphs, however, subsumes to graph isomor-
phism which is believed not to be in P and which exhibits, for the general case, only exponential-time
deterministic algorithms [46]. However, there exist e�cient algorithm for rather large classes of graphs,
e.g., planar graphs [41].

Moreover di�erent queries might require di�erent notions of deep join: order may be signi�cant or
insigni�cant, certain edges or nodes (e.g., representing comments in XML) may be entirely ignored, and
non-injective mappings may be acceptable to establish equivalence. From what occurs in practical XML
and RDF query languages, these variances can be classi�ed in three dimensions:

(1) What should be mapped bijective? In some cases, two nodes are considered equal already
if all the structural information from one node occurs in some form in the other and vice versa. It is
not required that multiple occurrences of same information is carried over. ¿is roughly corresponds to
simulation [59] as equivalence relation. On the other extreme, one might consider two nodes equivalent
only when they are fully isomorph. ¿is is, e.g., the semantics of XQuery’s deep-equal.
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Figure 5. deep equal: e�ect of injectivity
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(b) Cycle length

Figure 6. deep equal: e�ect of cover for equivalence mapping

Whatmakes these cases di�erent is whether themapping between the two nodes and their respective sub-
structures is bijective or not. More precisely, one can distinguish deep equals by the “degree” of bijectivity
required:
(a) Type cover: ¿e �rst choice lies in whether we demand that the mapping is (i) not bijective at all,

(ii) bijective only on edges, (iii) bijective only on nodes, or (iv) bijective on both. On trees, case (ii) to
(iv) are obviously equivalent, but in presence of multi-edges or cycles di�erences emerge. Figure 5
illustrates the di�erences between the di�erent forms.

(b) Structural cover: Aside from the question which types are covered by the mapping, a further vari-
ance lies in the structural extent of the cover: either (i) the entire (reachable) subgraphs rooted at the
two nodes, (ii) only adjacent edges and nodes, or (iii) only outgoing edges and children. In trees all
three forms are equivalent, but in graphs the latter two are less restrictive than the �rst: Figure (a)
shows an example of two graphs that are equivalent under (iii), but not under (i) or (ii). In general,
(iii) can not distinguish DAGs from trees in all cases. Figure (b) shows a case where (ii) considers the
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ndsL ∶N → ℘(N) = {(n,Nn) ∣ n ∈ N ∧ Nn = {n′ ∈ N ∶ ∃λ ∈ L ∶ λ(n,n′)} ∪ {n}}
ndsL
∗
∶N → ℘(N) = {(n,Nn) ∣ n ∈ N ∧ Nn = {n′ ∈ N ∶ ∃λ ∈ L ∶ λ+(n,n′)} ∪ {n}}

edsL ∶N → ℘(N) = {(n,En) ∣ n ∈ N ∧ En = {(n, i) ∈ N ×N ∶ ∃n′ ∈ nds ∶ (n,n′, i) ∈ E}}
edsL
∗
∶N → ℘(N) = {(n,En) ∣ n ∈ N ∧ En = {(n′, i) ∈ N ×N ∶ ∃n′,n′′ ∈ nds∗ ∶ (n′,n′′, i) ∈ E}}

∼
L,LO={(n,m, f, g,≗) ∣ ∀cn ∈ N, i ∈ N ∶ e = (n, cn, i) ∈ E ∧ L(e) ∈ L Ô⇒

∃i′ ∈ N ∶ g(n, i) = (m, i′) ∧ e′ = (m, f(cn), i′) ∈ E∧ ≅ (e, e′)∧ ≗L,LO (cn, f(cn))
∧ (λ ∈ LO ∩ON(n) Ô⇒ ∀λ′ ∈ LO ∩ON(n), k ∈ N ∶

e′′ = (n, f(cn), k) ∈ E ∧ L(e′′) = λ′ ∧ k ≤ i Ô⇒ ∃k′ ∶ g(n, k) = (m, k′) ∧ k′ ≤ i′}
≗
L,LO= {(n,m) ∈ N2 ∣ =label (n,m) ∧ON(n) = ON(m) ∧ (∃f ∶ ndsL(n)→ ndsL(m), f′ ∶ ndsL(m)→ ndsL(n),

g ∶ edsL(n)→ edsL(m), g′ ∶ edsL(m)→ edsL(n) ∶ ∧ ∼L,LO (n,m, f, g,≗)∧ ∼L,LO (m,n, f′, g′,≗))}
≗
L,LO
bij = {(n,m) ∈ N2 ∣ =label (n,m) ∧ON(n) = ON(m) ∧ (∃f ∶ ndsL(n)→ ndsL(m), g ∶ edsL(n)→ edsL(m) ∶

f, g bijective∧ ∼L,LO (n,m, f, g,≗bij)∧ ∼L,LO (m,n, f−1, g−1,≗bij))}
≗
L,LO
∗
= {(n,m) ∈ N2 ∣ ≅ (n,m) ∧ON(n) = ON(m) ∧ (∃f ∶ ndsL

∗
(n)→ ndsL

∗
(m), g ∶ edsL

∗
(n)→ edsL

∗
(m) ∶

∧ ∼
L,LO (n,m, f, g,≗∗)∧ ∼L,LO (m,n, f−1, g−1,≗∗))}

≗
L,LO
∗,bij = {(n,m) ∈ N2 ∣ ≅ (n,m) ∧ON(n) = ON(m) ∧ (∃f ∶ ndsL

∗
(n)→ ndsL

∗
(m), g ∶ edsL

∗
(n)→ edsL

∗
(m) ∶

f, g bijective∧ ∼L,LO (n,m, f, g,≗∗,bij)∧ ∼L,LO (m,n, f−1, g−1,≗∗,bij))}

Figure 7. deep equal (LO ⊂ L ⊂ ΣE)

two graphs equivalent, but (i) does not. In general, (ii) fails to distinguish graphs with cycles di�ering
only in cycle length.

(2) What should be mapped at all? Some parts of the structure may be excluded, e.g., comments
in XML data or annotation properties (such as rdfs:seeAlso or rdfs:label) in RD data. ¿e deep equal pre-
sented below allows to limit the mapping to certain given edge labels L.

(3) What should be mapped in order? In some cases, one might be interested in preserving the
order of the data (if it is ordered at all). However, in other cases (in particular for non-bijectivemappings)
the order may be irrelevant. As in the previous case, the deep equal presented here allows to limit the
order-respecting edge labels LO ⊂ L.

Figure 7 shows the formal de�nition of the generalized deep equal relation ≗ (omitting analogous
variant 2b): We de�ne four variants of ≗ that di�er, as explained above, in what nodes and edges are
mapped and whether the mapping is bijective. ¿e basic case, ≗, maps only adjacent nodes and edges
(more precisely, eds are edge positions in the context of each node). Its bijective variant, ≗bij, also only
maps adjacent nodes and edges, but does so using a bijective mapping. Analog variants, ≗∗ and ≗∗,bij,
exist for the case where all nodes and edges in the subgraph are mapped. Again, if L and LO are ΣE we
omit the superscript.

All de�nitions use ∼ to express �rst that each L-child of the �rst node must be mapped to a corre-
sponding child of the second node such that the two children are deep equal. Second, the de�nition
ensures that the order of edges, where they are ordered in the �rst place and covered in LO, is preserved
by the mapping. ¿e de�nition takes care that the order speci�cation of the data takes precedence over
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LO, i.e., membership in LO preserves order of respective edges only if the edges are considered ordered
in the data.

1.6.7 Inverse and Complement

We conclude the set of relations on data graphs by inverse and complement relations for each of the
previously de�ned ones.

Complement Relations. For each of the basic binary relations R on nodes and/or edges (but not on
integers), we introduce the complement relation

∁R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N ∪ E)2 ∖ R if R ⊂ N ∪ E label or identity equivalence relation

N2
∖ R if R ⊂ N2 structural equiv., path, or node order rel.

E2
∖ R if R ⊂ E2 edge order

(N × E) ∖ R if R ⊂ N × E source or sink relation

N ∖ R if R ⊂ N root relation

N ∪ E ∖ R if R ⊂ N ∪ E and not R ⊂ N label relation

In CIQLog and the CIQCAG algebra these relations are not strictly needed and can be simulated by a negation
of the original relation.

Inverse Relations. For each of the basic binary relations R, we also introduce the inverse relation R =
{(x, y) ∈ (N ∪ E)2 ∶ R(y,x)}. ¿ough these relations do not add to the expressiveness of conjunctive
queries as de�ned here (cf., e.g., [61]) they can be exploited to rewrite certain classes of graph queries to
tree queries as described in [60]. Consider, e.g., the graph queryQ(m)→ child(v1,v2)∧child(v3,v2)∧
child(v2,v4). ¿is can be rewritten to Q′(m) → child(v1,v2) ∧ child(v2,v3) ∧ child(v2,v4), where
the relation between v3 and v2 is inverted making the query tree-shaped.

1.6.8 Example relations

We conclude the discussion of relations on data graphs by looking back to the data from Figure 1. For
that data, Table 2 gives some of the relations derived from the data graph in accordance to the above
de�nitions.

1.7 Conclusion

¿e data model, an ordered, semi-structure data graph with node and edge labels, for CIQLog and CIQCAG

is an abstraction of data models for common Web query languages. As such, it provides a rich set of
relations on data graphs, discussed in Section 1.6, for CIQLog enabling CIQLog to be the target of for the
translate of large fragments of Xcerpt, XQuery, and SPARQL, see Chapters 3 to 5. ¿e data model also
proves to be su�ciently expressive to capture both XML and RDF data, as well as Xcerpt data terms
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Labattr = {(d4, 3,d5),(d4,2,d10),(d11,2,d14),(d1, 5,d20)}
Labpaper = {d4,d11} Lab‘Cicero’ = {d8,d17}
≅ = {(d7,d12),(d4,d11),(d8,d17),(d16,d18), . . .}
≐ = {(d1,d1),(d2,d2), . . . ,((d1, 1,d2),(d1, 1,d2)), . . .}
≗ = {(d8,d17)} ≗

{child,attr}
= {(d8,d17),(d4,d11),(d16,d18)}

= {(d1,(d1, 1,d2)),(d1,(d1,2,d4)), . . .} = {(d2,(d1, 1,d2)),(d4,(d1,2,d4)), . . .}
child = {(d1,d2),(d1,d4),(d1,d11),(d1,d15),(d4,d7), . . .}
child∗ = {(d1,d2),(d1,d4),(d1,d7),(d1,d11),(d1,d12), . . .}
pathchild,comment,value

∗
= {(d1,d2),(d1,d3),(d1,d4),(d1,d7),(d1,d8),(d1,d9),(d1,d11), . . .}

@ = {(d11, 3),(d11, 1),((d1, 3,d11), 3),((d10, 1,d11), 1), . . .}
≪= {(d2,d4),(d4,d11),(d11,d15), . . .} ≪+= {(d2,d4),(d2,d11),(d2,d15), . . .}
◂ = {(d3,d4), . . . ,(d17,d18), . . .} ≪+= {(d3,d4),(d3,d5),(d3,d6), . . .}

Table 2. (Partial) instances for data graph relations on Figure 1

(which have, as XML, many di�erent types of data items structured rather freely into arbitrary graphs,
as in RDF). Before turning to the translation from XQuery, Xcerpt, and SPARQL, we outline CIQLog, our
formal query language on query data graphs in the following chapter.
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Chapter 2

Queries—CIQLog: Datalog¬ with
Complex Heads

2.1 Introduction

As formal foundation forWeb queries, we introduce CIQLog, a rule-based query language tailored to semi-
structured queries. CIQLog is a slightly modi�ed variant of datalog¬new, i.e., datalog extended with negation
and value invention, which is most prominently represented by ILOG [42]. We only consider binary
relations, but extend datalog¬new with a partial order on edges (in the spirit of IDLOG [69]) and some
(syntactic) conveniences such as conjunction in rule heads and disjunction in rule bodies. For most of
the translations in the following chapters and the translation to CIQCAG, we focus on the weakly recursive
fragment of CIQLog, denoted as CIQLogwR. Following [42], a CIQLog program is weakly recursive, if there is
no recursion through value invention.

Note, that CIQLog’s value invention is, as that of ILOG [42] or RDF query languages such as RDFLog
[15], based on the essential observation that the actual invented value (in our case node or edge) carries
no information whatsoever. Only its membership in relations is material. ¿e same applies for edge posi-
tions: We do not care how they are represented (though we usually choose integers) as long as they carry
the correct order relations. In particular, there is no requirement that the edge positions are consecutive
and thus no need for a successor relation.

2.2 CIQLog Syntax

In the following, we brie�y summarize syntax and semantics of CIQLog: A CIQLog rule R consists of a query
head and a query body. ¿e query body is a (quanti�er-free) formula over binary and unary atoms.
Each atom is a relation over query variables from the underlying relational structure D. ¿e domain of
the query variables is the domain of D. ¿e query head is mostly a conjunction of atoms over answer
variables and outlined in detail below in Section 2.2.1. All answer variables must occur also in the body
of the query. All other variables in the query body are existentially quanti�ed [1].
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⟨program⟩ ::= ⟨rule⟩*
⟨rule⟩ ::= ⟨head⟩ ‘←Ð’ ⟨expression⟩
⟨expression⟩ ::= ⟨atom⟩ | ⟨negation⟩ | ⟨conjunction⟩ | ⟨disjunction⟩
⟨atom⟩ ::= ⟨relation⟩ ‘(’ ⟨variable⟩ (‘,’ ⟨variable⟩ )? ‘)’
⟨negation⟩ ::= ¬ ⟨expression⟩
⟨conjunction⟩ ::= ‘(’⟨expression⟩ ‘∧’⟨expression⟩ ‘)’
⟨disjunction⟩ ::= ‘(’⟨expression⟩ ‘∨’⟨expression⟩ ‘)’

Table 3. CIQLog syntax (without heads)

Each variable must be either a node, edge, edge position, or label variable, i.e., the domain of each
variable is either node, edge, edge position, or label. If a rule contains a variable that occurs at the position
of two or more attributes with di�erent domains, this rule is invalid, otherwise it is valid.

Answer variables are variables that occur in the head outside of the condition of a conditional ex-
pression. ¿e usual safety restrictions [1] for datalog apply to ensure that all rules are range-restricted: For
each negation, all answer variables must occur also in a positive expression in the rule body. For each
disjunction, all nested expressions have the same answer variables. Finally, each answer variable must
also occur in the body.

2.2.1 Complex Heads

CIQLog di�ers notably from standard datalog in the shape of rule heads, as speci�ed in Table 4:
(1) Value and order invention: CIQLog allows terms over answer variables for rule and order in-

vention where datalog¬ allows only constants and variables. Value invention is the same as in datalog¬new
though we use a term notation as in datalog¬obj: A value invention term is a term over the invention vari-
ables with functor new parametrized by an equivalence relation and an identi�er. ¿e identi�er allows
multiple value invention statements in the same head each returning a distinct set of new values. ¿e
equivalence relation is used to determine when two binding tuples for the invention variables are con-
sidered equivalent (and thus yield the same new value). Otherwise, a value invention term is interpreted
as any other function term on nodes or edges and maps to either a node, edge, or edge position (but not
a label as new labels can not be invented). As for variables in the body, value invention terms may oc-
cur either at the position of node-, edge-, or edge position-valued attributes. If the same value invention
term occurs at the position of two or more attributes with di�erent domains, that rule is invalid. In the
following, we only consider valid CIQLog rules.
Order invention terms are similar but map to integer values (rather than nodes and edges). Further-
more, they are parametrized by order relations rather than equivalence relations. An order term t1 =
order<N(g,o, x⃗) is a term over the order term g of the super-group, the o�set owithin the group, and a set
of pairs of order invention variables and their mappings. It maps to an edge position (i.e., an integer) such
that, for any order term t2 = order<(g2,o2, x⃗2), t1 < t2 if g = g2 ∧ (x⃗ <N x⃗2 ∨ x⃗ = y⃗∧ o < o2)) or if t′1 < t′2
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⟨head⟩ ::= ⟨hexpression⟩
⟨hexpression⟩ ::= ⟨hatom⟩ | ⟨hconjunction⟩ | ⟨conditional⟩ | ‘()’
⟨hatom⟩ ::= ⟨hrelation⟩ ‘(’ ⟨hterm⟩ (‘,’ ⟨hterm⟩ )? ‘)’
⟨hterm⟩ ::= ⟨variable⟩ | ⟨invention⟩ | ⟨order⟩ | ⟨aggregation⟩
⟨invention⟩ ::= new⟨identifier⟩⟨equivalence-rel⟩(‘(’ ⟨variable⟩+ ‘)’)?
⟨aggregation⟩ ::= (sum| max| avg(’ ⟨variable⟩ ‘)’
⟨order⟩ ::= order⟨order-rel⟩‘(’ ⟨order⟩?, ⟨o�set⟩, ⟨variable⟩* ‘)’ | ⟨integer⟩
⟨hconjunction⟩ ::= ‘(’ ⟨hexpression⟩ ‘∧’ ⟨hexpression⟩ ‘)’
⟨conditional⟩ ::= ‘if’ ⟨condition⟩ ‘then’ ⟨hexpression⟩ ‘else’ ⟨hexpression⟩
⟨condition⟩ ::= ⟨variable⟩ (‘=’ | ‘≠’) ‘nil’
⟨o�set⟩ ::= ⟨integer⟩

Table 4. Heads of CIQLog rules

with t′1 ∈ t1 and t′2 ∈ t2 and no two t′1 ∈ t′′1 ∈ t1 or t′2 ∈ t′′2 ∈ t2 exist. Let ⊺ be the “empty” order term that is
neither smaller or larger than any other term (but used to complete top-level order terms) and equal only
to itself. Order terms contain ⊺ or other order terms as order terms for their super group in a grouping
expression with nested but ordered groupings. ¿e nesting is only on the �rst argument and thus linear.
¿e latter part of the de�nition makes two ordered terms stand in < relation, if they contain nested order
terms (at arbitrary level) that themselves stand in < relation (and thus, eventually, have a common super
group and either preceding bindings for the same grouping variables or same bindings and preceding
order number). x⃗ and y⃗may be empty. ¿e empty tuple is equal only to itself and stands in <N relation
to no other tuple. Order invention terms may only occur in place of edge position-valued attributes. <N
is an order relation on (named) tuples of nodes or edges. A typical example of <N is the component-wise
lexical order <lex on the label of those nodes or edges: E.g., ⟨a ∶ x1,b ∶ x2⟩ <lex ⟨a ∶ y1,b ∶ y2⟩ if L(x1) is
in lexical order before L(y1) or both labels are the same and L(x1) is in lexical order before L(y1). For
further examples of order terms see Chapters 3 and 4.

(2) Conditional construction: For convenience, we allow conditional construction in the head:
some part of the head depends on a condition on an answer variable (viz., that variable being nil or not).
Conditional construction h ∧ if X = nil then hc1 else hc2 ←Ð b, can be rewritten to rules without
conditional constructions as follows:

h ∧ hc1 ←Ð b ∧ X = nil

2 h ∧ hc2 ←Ð b ∧ X ≠ nil

(3) Aggregation: As ILOG, CIQLog extends rule heads with aggregation on integers in the spirit of
[48]. Aggregation has no further e�ect on expressiveness and complexity in presence of value invention.

Adapting the notation of [42], we call an invention atom an expression containing either new or order
terms. ¿e relation name of that atom is called an invention relation name. A rule is a non-invention
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rule, if it contains no invention atom in the head, otherwise it is an invention rule. A weakly recursive
CIQLog program (or CIQLogwR program) is a CIQLog program where no invention rule depends (directly or
indirectly) on another invention rule. We say that a program P has cascading value invention, if there are
two invention rules R,R′ such that R depends on R′.

Only the �rst extension has an e�ect on the expressive power of CIQLog. It makes CIQLog essentially an
ILOG [42] variant extended with (partial) order on edges (though no successor relation as in IDLOG).

For value invention terms, wemostly omit the equivalence relation in the following assuming identity
≐.

2.3 CIQLog Semantics

We characterize the semantics of CIQLog in three ways in the following:

(1) ¿e intuitive semantics of a CIQLog program is that of a logic programwith aggregates [40] where we
replace all occurrences of new and order in the result by unique new nodes, edges, or edge positions.
¿e last operation is similar to un-Skolemization [26, 15].

(2) Together with the observation, that new and order are thus nothing else but Skolem terms with
implicit relations on the results of order that can, as well, be expressed by additional CIQLog rules,
we notice that the semantics of CIQLog can be de�ned by reduction of ILOG [42] whose semantics
is based on Skolem terms and logic programming with aggregates.

(3) Finally, we give an algebraic semantics based on �xpoint and relational algebra operations that
is useful both for the translations in the following chapters and for the equivalence to the CIQCAG

algebra.

In the following, we assume that disjunction in the body and conditional construction in the head is
removed as outlined above.

De�nition 2.1 (Logic-based Semantics of CIQLog). Let P be a valid, range-restricted CIQLog program. ¿en
let S be the semantic of P considered as a logic program (with aggregates). If S is in�nite, the semantics
of P is unde�ned. Otherwise, we replace each value invention terms in S with a new node, edge, or edge
position (depending on the domain of the attribute it occurs in; recall that if P is valid, it occurs in only
one of these three types of attributes). Order invention terms are replaced with edge positions such that
the order constraints between order invention terms are preserved1.

2.3.1 Expressiveness and Complexity

¿is characterization gives an intuitive and easy semantics for CIQLog. To judge expressiveness, complexity,
and completeness properties of CIQLog the second, equivalent, characterization of the semantic of CIQLog
programs by means of ILOG is more helpful. ¿e following theorem establishes that CIQLog is essentially
a variant of ILOG:

1¿is can be achieved by determining some partial order on the order invention terms and assigning edge positions (integers)
in accordance to that partial order.
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¿eorem 2.1. CIQLog has the same expressiveness, complexity, and completeness properties as ILOG [42].

Proof. Each ILOG program containing only binary relations is a CIQLog program if we replace each in-
vention symbol with a new (with new identi�er) over all non-invention variables of the invention atom.
For ILOG programs with n-ary relations we construct a binary decomposition of the n-ary relations as
in RDFLog [15].

On the other hand, each CIQLog without order terms can be transformed into an equivalent ILOG
program in the following way:

(1) For each invention term t, introduce a new creation rule containing a new predicate over the
invention variables of t and one invention symbol. In each rule using t, add an atom querying that rule
in the body and replace twith the variable bound to the attribute at the position of the invention symbol.
¿e resulting program is an ILOG program (contains only datalog rules and ILOG invention rules). Its
semantic is the same as that of the CIQLog program since invention symbols are replaced by Skolem terms
in the semantics of ILOG.

(2) Each order term can be transformed analogously, but introduce cascading value invention.
(3) Aggregates are also allowed in ILOG.

¿e result of the ILOG program is up to an isomorphism between new OIDs and node, edge, and edge
positions equivalent to the result of the CIQLog program. �

Corollary 2.1. From the reduction to ILOG, it follows that

(1) CIQLog expresses all computable queries modulo copy removal, cf. [42].

(2) CIQLog is (list) constructive complete (in the sense of [16]), cf. [17].

(3) CIQLog is not determinate complete (in the sense of [1]), cf. [16].

(4) already (negation) strati�ed CIQLog expresses all computable queries modulo copy removal, cf. [17].

In particular, if we limit recursion to non-invention rules, we can “postpone” value invention to the
very end of query evaluation:

Corollary 2.2. CIQLogwR has the same data and program complexity as datalog¬: in P, resp., NEXPTIME-
complete.

If recursion is prohibited entirely, value invention again has no e�ect on complexity:

Corollary 2.3. Non-recursive CIQLog, i.e., CIQLog where recursion is not allowed for any rule, has the same
data and program complexity as non-recursive datalog¬: in AC0, resp., PSPACE-complete.

2.3.2 Deep and Shallow Copies

In presence of value invention, the creation of shallow and deep copies of a data item are o en considered
essential facilities. For CIQLog we consider shallow and deep copy for nodes only (since edges and edge
positions have no “structure”). ¿e shallow copy of a node is a new node with the same label, if any, and
the same children as the original node. ¿e deep copy of a node n is a new node n′ such that n and n′

have the same label and for each out-going edge of n to a child cn there is an outgoing edge for n′ with
the same label and same edge position to a child cn′ such that cn and cn′ are themselves deep copies.
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Weadd shallow anddeep clone relations to CIQLogheads, denoted as deep-copy(X,Y) and shallow-copy(X,Y)
where Y is a new node and X is the original node. In full CIQLog, shallow and deep copy can be imple-
mented as the following rules:

L(Y,L)

2 ←Ð deep-copy(X,Y) ∧ L(X,L) ∧ ¬ (X, E).

L(Y,L) ∧ (Y,new1(X,Z)) ∧ (new2(X,Z),new1(X,Z)) ∧

4 pos(new1(X,Z),EPos) ∧ deep-copy(Z,new2(X,Z))
←Ð deep-copy(X, Y) ∧ L(X, L) ∧ (X, E) ∧ (Z, E) ∧ pos(E, EPos).

1 L(Y,L)

←Ð shallow-copy(X,Y) ∧ L(X,L) ∧ ¬ (X,E).

3 L(Y,L) ∧ (Y,new1(X,Z)) ∧ (Z,new1(X,Z)) ∧ pos(new1(X,Z),EPos)
←Ð shallow-copy(X,Y) ∧ L(X,L) ∧ (X,E) ∧ (Z,E) ∧ pos(E,EPos).

However, the resulting program has necessarily cascading value invention. Furthermore, the rule-
based realization is, in general, less e�cient than a specialized operator. To provide deep- and shallow-
copy also to CIQLogwR, we de�ne them as specialized operators with the above semantics. Note, that both
deep- and shallow-copy are linear time, constant additional space operations and run in O(∣N∣ + ∣E∣).
¿ey are considered value invention operators and, thus, may in CIQLogwR not occur in recursive rules.

2.3.3 Algebraic Semantics

A third characterization of the CIQLog semantics is given by a translation of CIQLog rules to relational alge-
bra expressions with value invention. Combined with a �xpoint operator, the resulting expressions yield
a semantics of CIQLog. ¿e target language is roughly whilenew of [1], but uses invention terms instead of
a dedicated invention relation. ¿e advantage of this characterization is that it yields a very compact se-
mantics closely based on relation algebra expressions, in particular, for CIQLogwR and non-recursive CIQLog.

In the following, we denote, for any sub-formula q of a rule R, with free(q) the variables in q that also
occur outside of q. For a set of attributes A = {a1, . . . ,an} let t ∈ DA be an ∣A∣-ary tuple ⟨a1 ∶ v1, . . . ,an ∶
vn⟩ over the domain D with t[ai] the value of t for attribute ai. We allow for partial relational structures
D where we denote that a set of tuples T over attributes U is an instance of a relation schema RN[U]
by RN ↦ T and consider a partial relational structure as a set of such mappings. A partial relational
structure is complete wrt. a relational schema S if it contains mappings for all relation schemas in S. We
call D′

= D1 ⊎ D2 the union of partial relational structures such that D′
= {RN ↦ T1 ∪ T2 ∶ RN ↦ T1 ∈

D1 ∧ RN↦ T2 ∈ D2} where RN↦ ∅ if there is no mapping of RN in a relational structure.
Using these de�nitions, Table 5 gives the algebraic semantics of a CIQLog rule. Recall, that all rules are

range-restricted. We use ~ �b to de�ne the semantics of the body of a rule, ~ �h that of a head. ¿e body of
a rule results in a single relation over the free variables of the query. ¿ehead of a rule is evaluated once for
each tuple resulting from the evaluation of the body of the query, each time replacing all the occurrences
of all query variables by their bindings. A deep copy operation is replaced by a relational structure D
containing yand a copy of all nodes reachable from x as well as their relations. A shallow copy operation
is replaced by a relational structure D containing y, the same label relation on y as exists on x, and all
nodes reachable from x (excluding x) and their relations as well as edges from y to all children of x. ¿e
result of ~ �h is a pre-instance in the sense of [42], i.e., it still contains value and order invention terms.
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rel(t1, . . . , tn) �h = {rel↦ {t1, . . . , tn}}
~ x = nil �h = true if x = nil, false otherwise

~ x ≠ nil �h = true if x ≠ nil, false otherwise�
deep-copy(x, y) �h = deep-copy(x, y)�
shallow-copy(x, y) �h = shallow-copy(x, y)

Table 5. Algebraic CIQLog Semantics (D the domain of the relational structure)

¿ese are replaced by new nodes, edges, and edge positions accordingly as described above. Computing
an instance from an pre-instance can be done by assembling the order invention terms in a partial order,
and then replacing them according to that order. Nested order terms do not pose a challenge, as we can
replace the nested terms by �rst ordering the depth 1 terms, then add the depth 2 (respecting the order
among the depth 1 terms contained in those depth 2 terms, etc. Together with the replacement of node
invention terms that computation is in O(o ⋅ log o) time using O(log o) additional space where o is the
size of the pre-instance, assuming in-place sorting. ¿us, the replacement of value and order invention
terms does not a�ect the overall complexity of evaluating a single rule in CIQLog (which is the complexity
of relational algebra, i.e., in L wrt. data complexity, PSPACE wrt. query complexity).

To obtain a semantics for full CIQLog we complement the above evaluation of a single rule (given
the current set of derived facts represented as a relational structure) by a standard �xpoint operator (or
iteration construct such as used in [1] for whilenew).

¿eorem 2.2. A single application of the �xpoint operator on the algebraic semantics yields an equivalent
result as a single application of the �xpoint operator on the logic-based semantics.

Proof. For simplicity, we assume strati�ed negation. Recall, from [17] that, in contrast to Datalog, the
restriction to negation strati�ed programs does not limit the expressiveness of ILOG and thus CIQLog.
Furthermore, we limit ourselves to rules without conjunction, conditional construction, and deep or
shallow copy in the head or disjunction in the body (all these features can be rewritten to equivalent
CIQLog programs beforehand).
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It is easy to very that the algebraic semantics given in Table 5 on rules without those features represents
all facts derivable from the given relational structure (representing the facts derived by the last application
of the �xpoint operator) by the rule. Note, that the result is a relational structure containing a non-empty
instance for exactly one relation, viz. the one of the head atom. �

¿is concludes our discussion of the CIQLog semantics. Before we put CIQLog to work in evaluating
Xcerpt, XQuery, and SPARQL in the following chapters, we discuss in the following, brie�y, the query-
ing of data graphs as introduced in Chapter 1, as well as the fragment of CIQLog used primarily for the
translations.

2.4 Data Graphs in CIQLog: Extensional and Intensional Relations

In CIQLog, only a small set of relations on data graphs need to be extensional, i.e., represented as sets of
tuples. ¿e remaining relations can be realized by intensional de�nitions as CIQLog rules on top of this set.

¿e basic, extensional relations are, unsurprisingly, , ,pos, root,L,Owhich together provide ac-
cess to all information in a data graph: about an edge, we know source, sink, edge position, and label,
about a node, label, whether it is a root, its incoming and outgoing edges.

¿e remaining relations from Chapter 1 can be realized on top of these �ve basic relations by a set of
CIQLog rules as shown in Figure 8. Rules for inverse and complement relations are de�ned as usual. Note,
that ∁R is only de�ned for relations R on nodes and/or edges (not on integers) both of which are �nite
domains that can be enumerated using , , and root. We only show rules for one case of deep equal,
the remaining cases are similar, though considerably more involved if bijective mappings are required as
we need to track the actual mapping to ensure bijectivity.

In Figure 8, we give rules for arbitrary label sets {λ1, . . . , λn} (line 1 �.) and path lengths (i, j in line
15–18). Both path lengths and label sets are size limited by the label alphabet, resp. the number of edges in
the data. However, we usually assume a much smaller number of such relations for any particular query
task. E.g., in Chapters 3 to 5 each of the discussed translation uses no at most ternary label sets and no
more than two or three path relations.

We use some abbreviations for common expressions over data graph relations in CIQLog heads: First,
instead of newid1

≐
(x1, . . . ,xn) we write simply id1(x1, . . . ,xn). Second, we use RN(n,m, i) for (n, id) ∧

(m, id)∧L(id,RN)∧pos(id, i)where id is a new value invention termnot used in the rest of the program.
¿ird, we use RN(n,m) for (n, id)∧ (m, id)∧L(id,RN)∧ pos(id, id′)where id and id′ are new value
invention terms not used in the rest of the program. In the latter case, we do not care about the actual
edge position and thus allow an arbitrary one. It should only be used if (n,RN) /∈ O.

2.5 Non-recursive CIQLog

Given these low numbers of actually used relations, the evaluation of CIQLog queries pro�ts from precom-
puting of or providing special access operators tomost or all of the derived relations discussed before. ¿is
allows us to de�ne the �nal sub-language of CIQLog, non-recursive or single-rule CIQLog. A non-recursive
CIQLog program consists in a single, non-recursive CIQLog rule (that may use any of the data graph rela-
tions). ¿us its semantics can, given special access operators or precomputation of all data graph relations,
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Lab{λ1 ,...,λn}(X)
2 ←Ð L(X,λ1) ∨ L(X,λ2) ∨ . . . ∨ L(X,λn).

4 O
{λ1 ,...,λn}(X)
←Ð O(X,λ1) ∨ O(X,λ2) ∨ . . . ∨ O(X,λn).

6

@S(E, count(EPos’)+1)
8 ←Ð pos(E,EPos) ∧ (N,E) ∧ (N,E’) ∧ LabS(E’) ∧ L(E’, EL) ∧

O(N, EL) ∧ pos(E’,EPos’) ∧ EPos < EPos’.

10 @S(N,EPos)

←Ð (N,E) ∧ @S(E,EPos).

12

indegS(N,count(E)) ←Ð (N,E) ∧ LabS(E).
14 outdegS(N,count(E)) ←Ð (N,E) ∧ LabS(E).

16 pathSi,j(N,N’)

←Ð i < j∧ ¬(N ≐ N’) ∧ (N,E1) ∧ LabS(E1) ∧
18 (N1,E1) ∧ pathSmax(0,i−1),j−1(N1,N’))

pathS0,j(N,N) ←Ð 0 ≤ j.
20

≺
S(E,E’) ←Ð @S(E,EPos) ∧ @S(E’,EPos+1).

22 ≺
S
+(E,E’) ←Ð @S(E,EPos) ∧ @S(E’,EPos’) ∧ EPos < EPos’.

≺
S
∗(E,E’) ←Ð @S(E,EPos) ∧ @S(E’,EPos’) ∧ EPos ≤ EPos’.

24 ≪
S(N,N’) ←Ð (N,E) ∧ (N’,E’) ∧ E ≺S E’.

≪
S
+(N,N’) ←Ð (N,E) ∧ (N’,E’) ∧ E ≺S+ E’.

26 ≪
S
∗(N,N’) ←Ð (N,E) ∧ (N’,E’) ∧ E ≺S∗ E’.

28 ◂
S
+(N,N’) ←Ð pathS

∗
(N,M) ∧ pathS

∗
(N’,M’) ∧ M ≪S

+ M’.

◂
S
∗(N,N’) ←Ð pathS

∗
(N,M) ∧ pathS

∗
(N’,M’) ∧ M ≪S

∗ M’.

30 ◂
S(N,N’) ←Ð N ◂

S
+ N’ ∧ ¬(N ◂

S
+ M ∧ M ◂

S
+ N’ ∨ pathS

∗
(M,N’)).

32 ≅(X,X’) ←Ð L(X,L) ∧ L(X’,L).

≐(N,N) ←Ð (N,E) ∨ (N,E) ∨ root(N).

34 ≐(E,E) ←Ð (N,E).

=
S
@(E,E’) ←Ð @S(E,EPos) ∧ @S(E’,EPos).

36

≗(N,N’) ←Ð N ≐ N’.

38 ≗(N,N’)

←Ð N ≅ N’ ∧ ¬( (N,E) ∧ (M,E) ∧

40 ¬( (N’,E’) ∧ (M’,E’) ∧ M ≗ M’)).

Figure 8. CIQLog rules for intensional data graph relations
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be speci�ed without use of a �xpoint or similar recursion construct as shown in Table 5. Yet such pro-
grams are equivalent to CIQLogwR programs comprised of the single rule of the original program and the
rules from Figure 8 for the derived data graph relations. Note, that for non-recursive CIQLog the restric-
tion to a single-rule has no e�ect on expressiveness due to disjunction in rule bodies and conditional
construction in the head. Single-rule CIQLog considerably simpli�es the correctness proofs in Chapters 3
to 5 as well as the transformation to CIQCAG.

We assume in the following that the head of a single-rule CIQLog program is not matched against its
body. ¿is can be achieved by adding a root node to the head of that rule with a label that is not matched
by an added root node test in the body (and connections between that root node and all nodes and edges
in the query). In the following, we omit these parts of a CIQLog rule when talking about non-recursive
CIQLog.

Precomputing these relations is acceptable for unary or integer-valued relations such as Lab, @ or indeg.
However, for node-node or edge-edge relations such as path relations, order relations or equivalence
relations, the space cost may be prohibitive and thus specialized operators might be preferable.

Using the approaches outlined in the following sections, we obtain for all CIQLog relations (except
deep equal) constant membership test at a space cost of onlyO(∣D∣) = O(∣N∣+ ∣E∣). On tree data, this is
obviouslyO(∣N∣).

2.5.1 Reachability in Data Graphs

Order and path relations can be seen as variants of reachability on the underlying base relations. For
tree data, membership in closure relations can be tested in constant or almost constant time (e.g., using
interval encodings [27] or other labeling schemes such as [74]). However, for graph data this is not so
obvious. Fortunately, there has been considerable research on reachability or closure relations and their
indexing in arbitrary graph data in recent years. Table 7 summarizes the most relevant approaches for
our work. ¿eoretically, we can obtain constant time for themembership test if we store the full transitive
closure matrix. However, for large graphs this is clearly infeasible. ¿erefore, two classes of approaches
have been developed that allow with signi�cantly lower space to obtain sub-linear time for membership
test.

¿e �rst class are based on the idea of a 2-hop cover [23]: Instead of storing a full transitive closure,
we allow that reachable nodes are reached via at most one other node (i.e., in two “hops”). More precisely,
each node n is labeled with two connection sets, in(n) and out(n). in(n) contains a set of nodes that
can reach n, out(n) a set of nodes that are reachable from n. Both sets are assigned in such a way, that a
node m is reachable from n i� out(n) ∪ in(m) ≠ ∅. Unfortunately, computing the optimal 2-hop cover
is NP-hard and even improved approximation algorithms [68] have still rather high complexity.

A di�erent approach [3, 20, 73, 71] is to use interval encoding for labeling a tree core and treating the
remaining non-tree edges separately. ¿is allows for sublinear or even constant membership test, though
constant membership test incurs lower but still considerable indexing cost, e.g., in Dual Labeling [73]
where a full transitive closure over the non-tree edges is build. GRIPP [71] and SSPI [20] use a di�erent
trade-o� by attaching additional interval labels to non-tree edges. ¿is leads to linear index size and time
at the cost of increased query time.

For a specialized reachability test operator in CIQLog we can choose any of the approaches. For the
following, we assume constant time membership, since that is easily achieved on trees and feasible with
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approach characteristics query time index time index size

Shortest path [62] no index O(n + e) – –

Transitive closure full reachability matrix O(1) O(n3) O(n2)
2-Hop [23] 2-hop covera O(√e) ≤ O(n) O(n4) O(n ⋅ √e)
HOPI [68] 2-hop cover, improved approximation al-

gorithm

O(√e) ≤ O(n) O(n3) O(n ⋅ √e)

Graph labeling [3] interval-based tree labeling and propaga-

tion of intervals of non-tree descendants.

O(n)b O(n3) O(n2)c

SSPI [20] interval-based tree labeling and recursive

traversal of non-tree edges

O(e − n) O(n + e) O(n + e)

Dual labeling [73] interval-based tree labeling and transitive

closure over non-tree edges

O(1)d O(n + e + e3g) O(n + e2g)

GRIPP [71] interval-based tree labeling plus addi-

tional interval labels for edges with in-

coming non-tree edges

O(e − n) O(n + e) O(n + e)

aIndex time for approximation algorithm in [23].
bMore precisely, the number of intervals per node. E.g., in a bipartite graph this can be up to n, but in most (sparse) graphs this is likely considerably lower

than n.
cMore precisely, the total number of interval labels.
d[73] introduces also a variant of dual labeling withO(log eg) query time using a, in practical cases, considerably smaller index. However, worst case index

size remains unchanged.

Table 7. Cost of Membership Test for Closure Relations. n, e: number of nodes, edges in the data, eg: number of non-tree
edges, i.e., if T(D) is a spanning tree for D with edges ET(D), then eg = ∣ED ∖ ET(D)∣.

approaches such as Dual Labeling even for graphs.

2.5.2 Equivalence in Data Graphs

Most of the equivalence relations can, again, be easily computed from unary base relations such as L.
However, this is not the case for deep equality. Indeed, the deep equal comes at a considerable higher
cost than, e.g., label equality, in particular if the data is unordered. First, if the data is fully ordered and
LO = L then deep equal is inO(j(∣E∣))where E are the edges of the data graph. ¿e same applies if either
edge or node labels are keys, i.e., partition the child nodes of each node in the data in singleton sets. A
straightforward parallel traversal of the two subgraphs su�ces to test equivalence. In case of XML data,
e.g., the data is ordered except for attributes. Attributes, however, are keys and thus do not need to be
ordered for linear time complexity.

If the data is tree shaped but unordered, deep equal reduces to general tree isomorphism which can
still be solved in linear time due to [41]. Moreover, for composition-free languages such as non-recursive
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CIQLogwR or single-rule CIQLog where invented nodes are never queried and thus node invention can be
seen as a post-processing step, deep equal does not add to the expressiveness of the query language if the
data is tree shaped (cf. [47] on composition-free XQuery).

If the deep equal is not injective, but the data graph-shaped the complexity becomes polynomial as
the problem essentially reduces to bisimulation [28]. However, on unordered graphs testing injective deep
join of two nodes subsumes to graph isomorphism and thus is commonly believed to exhibit no poly-
nomial algorithm (regardless of whether we consider the full subgraph or only the children or adjacent
nodes for injectivity). However, even for this general case there exist reasonably fast algorithms, e.g.,
[56, 33].

¿us in presence of deep equal we either have to accept that membership tests for deep equal induce
considerable, in most cases exponential additional cost, or we have to reconcile to precomputation of
deep equal (which can be done once at a cost of O(∣N∣2 ⋅ ∣E∣∣E∣) time). Obviously this relation can be
precomputed in O(n2

× n) for tree data. Using subtree isomorphism algorithms, we can further reduce
the time complexity by a linear factor. Whether there is a better algorithm for precomputing this relation
in the general case, remains an open problem.

As a closing remark on deep equals over graphs, notice that the precomputation does not subsume to
subgraph isomorphism. ¿is is due to the fact, that deep equal considers only two nodes together with
all their respective descendants. General subgraph isomorphism considers any node induced subgraph
of the target graph (or any connected subgraph for connected subgraph isomorphism).

2.5.3 Examples

To illustrate, that the restriction to non-recursive CIQLog (with all data graph relations) still yields many
interesting queries, we discuss a few examples of non-recursive CIQLog queries and, in a preview of Chap-
ters 3 to 5, show counterparts in Xcerpt or XQuery.

Let us �rst consider only the bodies of CIQLog rules. Figure 9 shows graphical representations for four
such CIQLog rule bodies (or queries) against the data from Figure 2. ¿is common, intuitive representation
of queries as graphs is used throughout this paper: Query variables are represented as nodes with labels
and values, as well as root nodes represented as in data graphs. Edges annotated with relation names
represent atoms connecting query variables. Answer variables are marked by a darker rectangles whereas
normal variables are indicated by lighter circles.

¿e �rst query (Figure (a)) selects paper authors that are also members (of the pc) at a named confer-
ence. Although the visual representation is already graph-, rather than tree-shaped, this query can still
be expressed in XPath (using abbreviated syntax for closure axis), which, if we disregard functions and
equality, only expresses tree-shaped queries.

/conference//paper/author[text() =

2 /conference[@title]/member/text()]

¿e following gives the textual representation of the query as a CIQLog rule body (assuming only v3 occurs
in the head and is thus the only answer variable):

←Ð L(v1,conference) ∧ child+(v1,v2) ∧
2 L(v2,paper) ∧ child(v2,v3) ∧ L(v3,author) ∧ value(v3,v4) ∧

L(v5,conference) ∧ attr(v5,v8) ∧ L(v8,title) ∧ child+(v5,v6) ∧
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Figure 9. Exemplary Query Graphs
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4 L(v6,member) ∧ value(v6, v7) ∧ ≅(v4, v7).

Path relations are abbreviated here since the label sets are singleton in all cases.
On the other hand, the second query (Figure (a)), though still unary, already requires a language with

multiple variables such as XQuery or Xcerpt. Intuitively, this is the case so as to be able to express that
matched bindings for v4 and v6 are connected to the same binding for v1. In XQuery, e.g., Qb

1 can be
expressed as

for $c in /conference[@title], $a in $c//paper/author

2 where $c/member = $a

return $a

It selects an author only if he is also a (pc) member at the same conference. Where the di�erence between
the two queries is quite large in XQuery, CIQLog uses nearly the same queries omitting the label test for
the second conference node and connecting all its children to v1:

1 ←Ð L(v1,conference) ∧ attr(v1,v7) ∧ L(v7,title) ∧ child+(v1,v2) ∧
L(v2,paper) ∧ child(v2,v3) ∧ L(v3,author) ∧ value(v3,v4) ∧

3 child+(v1,v5) ∧ L(v5,member) ∧ value(v5, v6) ∧ ≅(v4, v6).

Finally, the two queriesQa
2 andQb

2 show how the same query intent (viz., to select papers that are cited
in two di�erent papers at the same conference together with the name of that conference) can be expressed
di�erently: Qa

2 uses a negated equality condition between to ensure that its two di�erent papers, Qb
2 uses

order to ensure the same. However, the two queries are only equivalent if (a) child edges outgoing from
conferences are ordered and (b) if there are no multi-edges between conferences and papers (which is
always the case if the data is tree shaped). Otherwise,≪+ is no longer necessarily anti-re�exive.

Both queries can be expressed only in languages with multiple variables. ¿e following Xcerpt query
term is equivalent (up to representation of id/idref links to query Qa

2 :

1 conference{{

paper{{ cite{{

3 var Paper → idvar cited @ paper{{ }} }} }}

paper{{ cite{{

5 idvar cited @ paper{{ }} }} }}

name{{ var Name }} }}

Notice, that the anti-join is not expressed explicitly, but rather guaranteed by Xcerpt’s injective mapping
for sibling nodes (cf. [67] and 3). In CIQLog, we obtain:

←Ð L(v1,conference) ∧ child(v1,v2) ∧ child(v1,v5) ∧
2 L(v2,paper) ∧ attr(v2,v3) ∧ L(v3,cite) ∧ ref(v3,v4) ∧ L(v4,paper) ∧

L(v5,paper) ∧ attr(v5, v6) ∧ L(v6,cite) ∧ ref(v6,v7) ∧ L(v7,paper) ∧
4 ≐(v4, v7) ∧ ¬( ≅(v2,v5) ) ∧ attr(v1,v8) ∧ L(v8,title).

Finally, Qb
2 can be expressed in XQuery as follows:

for $c in /conference, $n in $c/name, $p1 in $c/paper,

2 $cited = $p1/@cite->paper

where (some $p2 in $c/paper satisfies $p1 << $p2 and

4 (some $cited2 in $p2/@cite->paper
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satisfies $cited is $cited2))

6 return ($cited, $name)

For CIQLog, the textual form ismostly asQa
2 , but uses in line 4≪+ instead of a negated identity equivalence.

In CIQLog, the child relation between v1 and v5 is implied by the order relation between v2 and v5 and may
be omitted (this can be achieved in XQuery by using the optional following axis).

←Ð L(v1,conference) ∧ child(v1,v2) ∧ child(v1,v5) ∧
2 L(v2,paper) ∧ attr(v2,v3) ∧ L(v3,cite) ∧ ref(v3,v4) ∧ L(v4,paper) ∧

L(v5,paper) ∧ attr(v5, v6) ∧ L(v6,cite) ∧ ref(v6,v7) ∧ L(v7,paper) ∧
4 ≐(v4, v7) ∧ ≪+(v2, v5) ∧ attr(v1,v8) ∧ L(v8,title).
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Chapter 3

Translating Xcerpt 2.0

3.1 Introduction

In [35] we have introduced Xcerpt 2.0 as an example of a versatile Web query language and argued that
versatility is increasingly becoming an essential requirement for Web queries. With CIQLog we have the
formal foundation to demonstrate how to translate queries in di�erent languages and on di�erent data
formats into the same formal framework that can be evaluated using the CIQCAG algebra introduced in
[34].

¿e following discussion of the translation ofXcerpt 2.0 startswith a fragment only, viz. non-recursive,
single-rule Core Xcerpt which can be translated into a single non-recursive CIQLog rule (and thus be eval-
uated by a single CIQCAG expression). We �rst de�ne that fragment and its syntax in Section 3.2, then
illustrate its semantics along examples in Section 3.3. ¿e semantics is fully aligned with full Xcerpt.
¿e actual translation of non-recursive, single-rule Xcerpt is covered in Section 3.4 and concluded by an
outlook towards the translation of full Xcerpt in Section 3.5.

3.2 Non-recursive, Single-Rule Core Xcerpt

We choose a fragment of the rule-based, Web and Semantic Web query language Xcerpt [67]. Before
we characterize the language fragment, this chapter gives a brief recall of some of Xcerpt’s most relevant
features in the context of this translation. For a proper introduction please see [67].

An Xcerpt program consists of a �nite set of Xcerpt rules. ¿e rules of a program are used to derive
new, or transform existing, data from existing data (i.e. the data being queried). Construct rules are used
to produce intermediate results while goal rules form the output of programs.

While Xcerpt works directly on XML or RDF data, it has its own data format for modeling XML
documents or RDF graphs, viz. Xcerpt data terms. For example, the XML snippet <book><title>White
Mughals</title></book> corresponds to the data term book [ title [ "White Mughals"] ]. ¿e data
term syntax makes it easy to reference XML document structures in queries and extends XML slightly,
most notably by allowing unordered data and making references �rst class citizens (thus moving from a
tree to a proper graph data model).
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For instance, in the following query the construct rule de�nes data about books and their authors
which is then queried by the goal. Intuitively, the rules can be read as deductive rules (like in, say, Datalog):
if the body (a er FROM) holds, then the head (following CONSTRUCT or GOAL) holds. A rule with an empty
body is interpreted as a fact, i.e., the head always holds.

GOAL

2 authors [ var X ]

FROM

4 book [[ author [ var X ] ]]

END

6

CONSTRUCT book [ title [ "White Mughals" ],

8 author [ "William Dalrymple" ] ] END

Xcerpt query terms are used for querying data terms and intuitively describe patterns of data terms.
Query terms are used with a pattern matching technique1 to match data terms. Query terms can be
con�gured to take partiality and/or ordering of the underlying data terms into account during matching
(indicated by di�erent types of brackets). Query termsmay also contain (logic) variables. If so, successful
matching with data terms results in variable bindings used by Xcerpt rules for deriving new data terms.
Matching, for instance, against the XML snippet above the query term book [ title [ var X ] ] with
results in the variable binding {X/"White Mughals"}. In addition to the query term types discussed in
[66], we also consider non-injective ordered and unordered query terms indicated by three braces or
brackets, respectively.

Construct terms are essentially data terms with variables. ¿e variable binding produced via query
terms in the body of a rule can be applied to the construct term in the head of the rule in order to derive
newdata terms. For the example abovewe obtain the data term authors [ "William Dalrymple"] as result.

De�nition 3.1 (Non-recursive Single-rule Xcerpt). Let P be an Xcerpt program. ¿en, P is a non-
recursive, single-rule Xcerpt program, if it consists of a single GOAL rule and arbitrary many data terms.

In other words, there is a single rule whose body is evaluated a given set of data terms. If the body
matches, the head is then evaluated given the bindings generated by the body.

3.2.1 Formal Syntax

In the following, we omit some of Xcerpt’s more advanced features to allow for a translation that is rea-
sonably compact and easy to follow. ¿e most prominent omitted features are query terms involving
optional or except and construct terms with some, first, declare blocks, order speci�cations, and con-
ditions. Most of these limitations are purely for presentation reasons. ¿is is, however, not the case for
except which is not supported by non-recursive, single-rule CIQLog as it requires composition, i.e., �rst
the sub-terms excluded by except are removed from a surrounding sub-graph binding, then that bind-
ing is used in the remainder of the query (e.g., for deep equality). ¿is can be realized by multiple CIQLog
rules, but not in non-recursive, single-rule CIQLog as de�ned in Chapter 2.4.

We call the resulting language fragment non-recursive, single-ruleCoreXcerpt, abbreviated asXcerptcore,NR,SR

and specify its full grammar in Figure 10 (using common EBNF-like notation).
1Called simulation uni�cation. For details of this technique, please refer to [66].
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⟨rule⟩ ::= ‘GOAL’ ⟨cterm⟩ ‘FROM’ ⟨query⟩ ‘END’
⟨cterm⟩ ::= (⟨identi�er⟩ ‘@’)? ⟨label⟩ ⟨hchildren⟩ | ‘"’ ⟨string⟩ ‘"’

| ⟨reference⟩ | ⟨id-variable⟩ | ⟨variable⟩
| ⟨grouping⟩

⟨grouping⟩ ::= ‘all’ ⟨cterm⟩ ‘group-by’ ‘(’ ⟨variable⟩+ ‘)’
⟨hchildren⟩ ::= ‘{’ ⟨cterm⟩* ‘}’ | ‘[’ ⟨cterm⟩* ‘]’
⟨query⟩ ::= ‘and’ ‘(’ ⟨query⟩‘,’? ⟨query⟩ ‘)’

| ‘or’ ‘(’ ⟨query⟩‘,’? ⟨query⟩ ‘)’
| ‘not’ ‘(’ ⟨query⟩ ‘)’
| ⟨qterm⟩

⟨qterm⟩ ::= ⟨term-id⟩? ⟨position⟩? ⟨label⟩ ⟨qchildren⟩ | ‘"’ ⟨string⟩ ‘"’
| ⟨reference⟩
| ⟨variable⟩ (‘→’⟨qterm⟩)?
| (‘desc’ | ‘without’) ⟨qterm⟩

⟨term-id⟩ ::= (⟨identi�er⟩ | ⟨id-variable⟩) ‘@’
⟨reference⟩ ::= ‘^’ ⟨identi�er⟩
⟨position⟩ ::= ‘position’ (⟨number⟩ | ⟨variable⟩)
⟨children⟩ ::= ‘{’ ⟨term⟩* ‘}’ | ‘[’ ⟨term⟩* ‘]’

| ‘{{’ ⟨term⟩* ‘}}’ | ‘[[’ ⟨term⟩* ‘]]’
| ‘{{{’ ⟨term⟩* ‘}}}’ | ‘[[[’ ⟨term⟩* ‘]]]’

⟨variable⟩ ::= ‘var’ ⟨identi�er⟩
⟨id-variable⟩ ::= ‘idvar’ ⟨identi�er⟩
⟨label⟩ ::= ⟨variable⟩ | ⟨identi�er⟩ | ‘*’

Figure 10. Syntax of non-recursive, single-rule Core Xcerpt
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conference [

2 title [ "Storage Media" ] date [ "44 B.C." ]

p1 @ paper [ title [ "Wax Tablets" ]

4 ^p2 author [ "Cicero" ]

]

6 p2 @ paper [

^p1 author [ "Hirtius" ]

8 ]

pc[ member[ "Cicero" ] member[ "Atticus" ] ]

10 ]

Figure 11. Xcerptcore,NR,SR dataterm on conferences and papers

¿e usual semantic restriction for Xcerpt rules apply, e.g., range restriction (each variable occurring
in the head must also occur positively in each body disjunct where both not and without are considered
as negative expressions); withoutmay not occur in total query terms; an identity variable can only occur
with idvar, a label variable only in label and termposition, but not with→, idvar, or position, a position
variable only with position; without and positionmay not occur for top-level terms; each referenced
term identi�er is de�ned somewhere; no term identi�er is de�ned twice.

In the following, we assume a few additional restrictions to allow for a concise and easy to follow
description of the translation: (1)We do not consider nested grouping lists as in

all a[var X, all (var Y, d)]

(2)We consider node injectivity instead of position injectivity for matching injective term speci�cations
such as a{{b, var X}} or a{b, var X} where b and var Xmust be connected by edges with di�erent edge
positions to a in standard Xcerpt, where we consider that var X binds only to di�erent nodes than b.
(3) We consider * as abbreviation for the Xcerpt regular expression /.*/ that indicates that the label
of a query term may be arbitrary. (4) We omit XML speci�cities present in full Xcerpt terms for such
as comments, processing-instructions, attributes, namespaces. (5) We normalize grouping expressions
(all . . . group-by) such that all free variables in each grouping expression are listed in the group-by clause
of that grouping. In full Xcerpt, this is not necessary but possible and yields a grouping expression with
the same semantics.

Before we turn to a more detailed examination of the semantics of Xcerpt query and construct terms
in the following section, we give a �rst intuition by the following two examples on a slight simpli�ca-
tion of the data introduced in Section 1.5. Figure 11 shows a Core Xcerpt data term where namespaces
and comments are removed and attributes are changed to elements, if compared to the data term from
Section 1.5.

On that data term, the Xcerptcore,NR,SR rule in Figure 12 selects papers containing “Cicero” as author and
“puts them in a shelf”.

To illustrate the di�erence between references and copies of query terms consider the �nal two rules
and their query terms shown in Figure 13: the le query term returns all papers such that there is another
paper with at least one (structurally) same author, the right hand returns only papers where the identical

44



GOAL

2 shelf{ all var X group-by(var X) }

FROM

4 conference{{

var X → paper{{

6 desc author{{

"Cicero"

8 }}

}} }}

10 END

Figure 12. Xcerptcore,NR,SR rule to extract Cicero’s papers to a shelf

GOAL

2 shelf{ all var X group-by(var X) }

FROM

4 conference{{

var X → paper{{

6 author{{

var Y

8 }} }}

paper{{ author{{ var Y }} }} }}

10 END

GOAL

2 shelf{ all var X group-by(var X) }

FROM

4 conference{{

var X → paper{{

6 idvar A @ author{{

var Y

8 }} }}

paper{{ idvar A @ author }} }}

10 END

Figure 13. Structural versus identity equivalence in Xcerpt

author term is used in both cases (rather than just a structurally equivalent one).

3.3 Xcerpt Semantics by Example

An Xcerpt term is essentially a labeled list of children. In addition to the label, we also record whether a
term is ordered and, if it is a query term, if it is total or partial injective or partial non-injective. Recall, that
a query term speci�es a query by exemplifying (think QBE [75]) the shape of the matched data terms.
However, to be e�ective, we leave out certain parts of that shape and focus only on the parts relevant to
the query intent. Leaving out certain parts is achieved by various forms of incompleteness: regarding
the structural relations by moving from child to descendant relations (indicated by the desc keyword),
regarding how complete the list of given children is using the three latter properties above: If a query term
is total, there may be no children of a matching query term in addition to the ones matched by each of the
query term’s children. If partial, there may be additional ones. If the query term is in addition injective,
each of its children is mapped to a unique child of a matching data term. We denote ordered query terms
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with square brackets, otherwise we use curly braces. For total terms we use single such brackets, for
partial injective double, for partial non-injective triple.

¿e data term on conferences in Figure 11 serves as an example for total terms since data (and con-
struct) terms only contain this term type. Query terms also contain partial terms as evidenced by the
query examples in Figures 12 and 13.

Query term Data terms

T1 a{ } ≼ a{ }; a[ ]
/≼ b{ }

T2 a[ ] ≼ a[ ]
/≼ b{ }; a{ }

T3 a{ b } ≼ a{ b }
/≼ a{ b, b }

T4 a{ b, b } ≼ a{ b, b }
/≼ a{ b }; a{ b, b, b }

P1 a{{ b }} ≼ a{ b }; a{ c, b, d }; a{ b, b }
/≼ a{ };

P2 a[[ b, c ]] ≼ a[ b, c ]; a[ d, b, e, c ]
/≼ a[ c, b ]; a{ b, c }

I1 a{{{ b, b }}} ≼ a[ b ]; a{ c, b, d }; a{ b, b }
/≼ a[ ]; a{ }

I2 a[[[ b, b, d ]]] ≼ a[ b, d ]; a[ c, b, d ];
/≼ a[ d, b ]; a{ }

D1 a{ desc b } ≼ a[ b ]; a[ c{ b, e } ];
/≼ a{ d, c{ b } };

D2 a{ desc b, desc c } ≼ a[ b, e[ c ] ];
/≼ a{ b, c, d }; a{ e[b, c] };

D3 a{{ desc b, desc c }} ≼ a[ b, e[ c ] ]; a{ b, c, d };
/≼ a{ e[b, c] };

D4 a{{{ desc b, desc c }}} ≼ a[b,e[c]]; a{b,c,d}; a{e[b,c]};

W1 a{{ b, without( c ), d }} ≼ a[ b, d ];
/≼ a{ b, c, d }; a{ c, b, d };

W2 a[[ b, without( c ), d ]] ≼ a[ b, d ]; a[ c, b, d ];
/≼ a[ b, c, d ];

W3 a[[ b, without( c, d ), ≼ a[ b, e ]; a[ b, c, e ];
e ]] /≼ a[ b, c, d, e ];

W4 a[[ b, without( c ), ≼ a[ b, e ];
without( d ), e ]] /≼ a[ b, c, e ]; a[ b, c, d, e ];

Table 9. Query terms and matching data (; separates di�erent data terms)
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Matching query terms. Table 9 illustrates how these properties a�ect the matching of query terms
against data terms by example. For space reasons, we omit in query terms empty double braces and
in data term empty single braces, i.e., c reads c{{ }} in a query term and c{ } in a data term. We denote
matching using ≼ (simulation uni�cation from in [66], but here we consider only data terms on the right
hand), non matching with /≼.

¿e �rst examples T1–T4 illustrate matching of ordered and unordered total query terms. Note, that
unordered query terms match against ordered data terms (since the use of the curly braces indicates only
that we do not care about the order). In total query terms both terms have exactly the same number of
children in all cases. ¿is is what sets partial query terms (P1–P2, I1–I2) apart from total query terms.
Here, we may have additional query terms in the data that are ignored. For partial non-injective query
terms (I1–I2), two children of the query may even match to the same data term.

¿e remaining examples of Table 9 illustrate the two query term modi�ers, desc and without. ¿e
former allows matching at any depth (cf. D1–D4). Totality and injectivity are still enforced between the
children of a matching data term (observe the di�erence between D2, D3, and D4). ¿e latter forbids
the existence of a data term matching its enclosed query terms, cf. W1–W4. It may even take a list of
query terms, in which case (W3) the query fails, if the entire list (and not just some subset of it) fails. ¿is
contrasts with the use of multiple withouts as in W4.

Query term Data terms Bindings

V1 a{ var X } ≼ a[ b ]; {X/b}
/≼ a{ }; a[ b, c ]

V2 a{{ var X }} ≼ a[ b, c ]; {X/b,X/c}
/≼ a{ };

V3 a{{ var X, var X }} ≼ a[ b, b ]; a{ c, b, b, d } {X/b1,X/b2}
/≼ a{ b, c }; a{ b }

V4 a{{{ var X, var X }}} ≼ a[ b, b ]; a{ c, b, b, d } {X/b1,X/b2}
≼ a{ b } {X/b}
/≼ a{ b, c };

V5 a{ var X{ var X } } ≼ a[ b{ "b"} ]; {X/“b”}
/≼ a{ b, c };

V6 a{ var X → c, var X } ≼ a[ c, c ]; {X/b}
/≼ a{ b, b };

V7 a{ desc var X } ≼ a[ c{ b, e[ f ] } ]; {X/c{...},X/b, X/e[...],X/f}
/≼ a{ d, c{ b } };

V8 a{{var X, without(var X)}} ≼ a[ b ]; a[ b, c ]; {X/b}
/≼ a{ b, b }; a[ b, b ];

Table 11. Query terms containing variables and their bindings

¿e last remaining feature of query terms are variables, the e�ect of which on term matching is il-
lustrated in Table 11: Essentially, a variable matches any single term (or label, or position, or node, if so
placed), but matches are recorded in the bindings of the query. If a variable occurs multiple times (V3),
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Construct term Result data

C1 a{ b, c }
E
Ð→ a{ b, c }

C2 a{ id @ b, ^id }
E
Ð→ a{ id’ @ b, ^id’ }

C3 a{ var X }
E
Ð→ a{ b1 }

C4 a{ var X, var Y }
E
Ð→ a{ b1, c1 }

G1 a{ all var X group-by(var X)}
E
Ð→ a{ b1, b2, b3[e, f] }

G2 all a{ var X group-by(var X)}
E
Ð→ a{ b1 }, a{ b2 }, a{ b3[e, f] }

G3 all a{ all var X group-by(var X),
E
Ð→ a{ b1, b2, b3[e, f], c1 },

var Y } group-by(var Y) a{ b1, b3[e, f], c2 }

G4 all a{ } group-by(var Y)
E
Ð→ a{ }, a{ }

Table 13. Construct terms and their instantiation

the matched query terms must be structurally equivalent (deep equal, cf. Section 1.6.6). A variable may
occur as a label (V5), in which case it is bound to the value of the label and can only match with other
labels or character data (as the “b” in V5). A variable may occur as in a term restriction before→ (V6), in
which case the right hand query term restricts the matching bindings for X. Finally, it can be combined
with desc and without with the expected result (V7, V8).

Instantiating construct terms. Once the body of a rule is matched against the input data, the bindings
for the answer variables can be used to instantiate the construct term of an Xcerptcore,NR,SR rule. Again, we
illustrate the semantics of construct terms along a number of examples, cf. Table 13, using the following
binding tuples for answer variables X and Y:

B = {{X/b1,Y/c1},{X/b2,Y/c1},{X/b3[e, f],Y/c1},
{X/b1,Y/c2},{X/b3[e, f],Y/c2}}

If a construct term contains no variables (C1–C2), the only resulting data term has the exact same
shape, possibly renaming local identi�ers for references (C2). If it contains variables outside grouping
expressions (C3, C4) these are instantiated by some of their bindings (we choose here the �rst binding).
Grouping expressions iterate over the bindings of their grouping variables and instantiate their contained
construct term once for each binding tuple of the grouping variables. ¿e scope of the grouping expres-
sion de�nes, in this case which parts of the construct term are repeated (G1, G2). It is not necessary that
the contained construct terms actually contain the occurrences of the grouping variables (G4), though
that is usually the case. Employing nested grouping terms as in G3, we can create complex nestings of
related bindings, here, e.g., for each binding of Y the corresponding bindings of X are grouped as siblings.
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3.4 Translating Non-recursive Core Xcerpt

With the syntax and intuitive semantics of Xcerptcore,NR,SR established, we can turn to the actual transla-
tion. ¿e translation is split in three parts, the translation of construct terms to CIQLog rule heads, the
translation of query terms to CIQLog rule bodies, and the “glue”, the translation of Xcerptcore,NR,SR rules to
CIQLog rules. We start o� with the translation of rules and a “grand example” that illustrates the principles
of the translations. ¿e details of construct and query term translation are discussed in the remainder of
this section.

3.4.1 Rules

Recall, that a Xcerptcore,NR,SR program consists of a single Core Xcerpt GOAL rule. Such a rule is translated
by the trXcerpt translation function: as follows:

trXcerpt⟨GOAL head FROM query END⟩ = C ←Ð Q where (E ,Q) = tq⟨body⟩
C = tc(E)⟨head⟩

It translates the body �rst, redirecting the resulting environment containing associations of Xcerpt
(answer) variables to CIQLog variables to the translation of the head of the input rule. Finally, the transla-
tion of the body and head are combined into the translation of the full rule. ¿e translation functions for
head and body, tc and tq, are de�ned below in Sections 3.4.2 and Section 3.4.3. Here and in the following,
we denote the set of common edge labels with L = {child,comment,value}.

Examples. Before turning to the precise de�nitions of those translation functions, let us return to the
example data and rule from Figures 11 and 12.

Xcerpt data terms can be translated to CIQLog (thus giving a formal de�nition for the mapping de-
scribed in Section 1.5) by the translation function for Xcerpt rule heads using an empty environment as
input. ¿e environment can be empty since it is responsible only for passing Xcerpt to CIQLog variable
mappings and data terms contain no Xcerpt variables.

¿e data term D in Figure 11 is translated by tc(∅)⟨D⟩ into the following CIQLog rule:
root(id1) ∧ L(id1, conference) ∧ OL(id1) ∧ child(id1, id2, order(⊺,1)) ∧ child(id1, id3, order(⊺,2)) ∧ child(id1,

id4, order(⊺,3)) ∧ child(id1, id5, order(⊺,4)) ∧ child(id1, id6, order(⊺,5)) ∧

2 L(id2, title) ∧ OL(id2) ∧ value(id2, id21, order(⊺,1)) ∧ L(id21, "Storage Media") ∧

L(id3, date) ∧ OL(id3) ∧ value(id3, id31, order(⊺,1)) ∧ L(id31, "44 B.C.") ∧

4 L(id4, paper) ∧ OL(id4) ∧ child(id4, id41, order(⊺,1)) ∧ child(id4, id5, order(⊺,2)) ∧ child(id4, id42,
order(⊺,3)) ∧

L(id41, title) ∧ OL(id41) ∧ value(id41, id411, order(⊺,1)) ∧ L(id411, "Wax Tablets") ∧

6 L(id42, author) ∧ OL(id42) ∧ value(id42, id421, order(⊺,1)) ∧ L(id421, "Cicero") ∧

L(id5, paper) ∧ OL(id5) ∧ child(id5, id4, order(⊺,1)) ∧ child(id5, id51, order(⊺,2)) ∧

8 L(id51, author) ∧ OL(id51) ∧ value(id51, id511, order(⊺,1)) ∧ L(id511, "Hirtius") ∧

L(id6, pc) ∧ OL(id6) ∧ child(id6, id61, order(⊺,1)) ∧ child(id6, id62, order(⊺,2)) ∧

10 L(id61, member) ∧ OL(id61) ∧ value(id61, id611, order(⊺,1)) ∧ L(id611, "Cicero") ∧

L(id62, member) ∧ OL(id62) ∧ value(id62, id621, order(⊺,1)) ∧ L(id621, "Atticus") ←Ð true.

¿e relations are all ordered as the data term is deliberately similar to the XML fragment from Section 1.3
and thus contains only ordered terms. However, in general, Xcerpt data termsmay also contain unordered
terms.
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Figure 14. Resulting CIQLog rule

Here, and in the following we use two abbreviations for head formulas:

1 child(id1(x⃗1),id2(x⃗2),o)

where o is some order term and x⃗1, x⃗2 are variable lists, abstracts the edge construction necessary in CIQLog
and thus is an abbreviation for (with idN a new identi�er):

1 source(id1(x⃗1),idN(x⃗2)),, sink(id2(x⃗2),idN(x⃗2)),, position(idN(x⃗2),order(⊺,0))

In the same way, child(id1(x⃗1),id2(x⃗2)) is an abbreviation for ((with idN, idM new identi�ers):

source(id1(x⃗1),idN(x⃗2)),, sink(id2(x⃗2),idN(x⃗2)),, position(idN(x⃗2),idM(x⃗2))

To illustrate the full translation, �rst consider the following very simple Xcerpt rule selecting all au-
thors of papers and grouping them under a new root authors:

1 GOAL

authors{ all var X group-by(var X) }

3 FROM

conference{{ desc paper{{ var X → author }} }}

5 END

If we translate this Xcerpt rule to CIQLogwe obtain the query visualized in Figure 14 (using the visualization
from Chapter 2 and additionally depicting the scope of a grouping variable by red rectangles as well as
query variables used in the head by directed connections ).

1 root(id1) ∧ L(id1, authors) ∧ child(id1, id2(v3)) ∧ deep-copy(v3, id2(v3))
←Ð root(v1) ∧ L(v1, conference) ∧ child+(v1, v2) ∧ L(v2, paper) ∧ child(v2, v3) ∧ L(v3, author).

Finally, we reconsider the example rule fromFigure 12, anXcerpt rule querying that data and selecting
all papers with author “Cicero” and “puts them on a shelf ”. Applying trXcerpt to that rule yields the CIQLog
program depicted in Figure 15 and given in textual form in the following:

root(id1) ∧ L(id1, shelf) ∧ child(id1, id2(v2)) ∧ deep-copy(v2, id2(v2))
2 ←Ð root(v1) ∧ L(v1, conference) ∧ child(v1, v2) ∧ L(v2, paper) ∧ child+(v2, v3) ∧ L(v3, author) ∧ value

(v3, v4), L(v4, "Cicero").
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Figure 15. CIQLog rule for Xcerpt program from Figure 12

3.4.2 Construct Terms

With the intuition from the above examples, the translation of construct terms using tc can be discussed
in more detail. ¿e full speci�cation of tc and its helper functions tcterm, for translating actual construct
terms, and tclabel, for translating labels of construct terms, is given in Table 16. We normalize construct
terms such that there are no variables outside (all) grouping terms. If there are such variables we wrap
an all around the entire construct termwith the all variables outside any other all as grouping variables.
For instance, a{var X} becomes all a{var X} group-by(var X).

tc adds a root atom and then delegates the translation to tcterm. ¿is allows us to translate all query
terms in the same way, yet yields the necessary root atom for top-level query terms. tcterm is called with
the environment E as only parameter which is passed to tc by trXcerpt and contains the mappings form
Xcerpt variables to CIQLog query variables in the translation of the rule body. We write E ++ (X,v) to add a
mapping from the Xcerpt variable X to the CIQLog variable v into E . In addition to those mappings, we let
the environment contain the current grouping (or iteration) variables, a sequence accessed as E .iter. We
use list concatenation (○) to append variables to E .iter. tcterm returns a pair (C,v) where C is the CIQLog
formula resulting from the translation of the passed Xcerpt expression and v the variable associated with
the top-level node in the translation of the expression.

For each kind of construct term, there is a matching rule for tcterm in Table 16. ¿e translation of
most cases is fairly straightforward. ¿e most involved cases are the structure terms (the �rst two cases)
where we distinguish ordered and unordered terms. For both, we translate the child terms and connect
their top-level variables to the variable of the current term by either child or value. ¿e label is trans-
lated using the helper function tclabel (which distinguishes between the translation of plain labels and of
variables). Strings are translated like terms with empty, unordered term lists (case 3); references (like the
term identi�er part of a structured term) by retrieving an existing CIQLog variable for the Xcerpt identi�er
tid or creating a new one and storing that mapping in the environment E (case 4). Standard variables
are translated using deep-copy, id-variables by simply retrieving the mapped query variable (recall that
rules are range restricted and thus such a binding always exists), case 5–6. Finally, grouping terms are
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functionterm = CIQLog expression

tc(E)⟨cterm⟩ = root(v)∧C where (E ′,C,v) = tcterm(E)⟨cterm⟩

tcterm(E)⟨tid @ label{t1, . . . , tk}⟩ = (Ek, r1(v,n1) ∧ . . .∧ rk(v,nk) ∧ L∧ C1 ∧ . . .∧ Ck,v)
where v = E(tid) if defined, otherwise v = id(E .iter) with id new identifier

L = tclabel(E ,v)⟨label⟩
ri = VALUE if ti is "string", ri = CHILD otherwise
E0 = E ++ (tid,v) (Ei,Ci,ni) = tcterm(Ei−1)⟨ti⟩

tcterm(E)⟨tid @ label[t1, . . . , tk]⟩ = (Ek, r1(v,n1,order(⊺, 1,E .iter)) ∧ . . . ∧ rk(v,nk,order(⊺, k,E .iter)) ∧
O(v, CHILD) ∧ L∧ C1 ∧ . . .∧ Ck,v)
where v = E(tid) if defined, otherwise v = id(E .iter) with id new identifier

ri = VALUE if ti is "string", ri = CHILD otherwise
L = tclabel(E ,v)⟨label⟩
E0 = E ++ (tid,v) (Ei,Ci,ni) = tcterm(Ei−1)⟨ti⟩

tcterm(E)⟨"string"⟩ = (E ,L,v) where v = id(E .iter) with id new identifier
L = tclabel(E ,v)⟨string⟩

tcterm(E)⟨^tid⟩ = (E ++ (tid,v),⊺,v),v) where v = E(tid) if defined, otherwise
v = id(E .iter) with id new identifier

tcterm(E)⟨var X⟩ = (E , deep-copy(E(X),v),v) where v = id(E .iter) and id new identifier

tcterm(E)⟨idvar X⟩ = (E ,⊺,E(X))
tcterm(E)⟨all t group-by(X1,. . .,Xn)⟩ = tcterm(E ′)⟨t⟩ where E ′ = E with E ′.iter = E .iter ○ [E(X1), . . . ,E(Xn)]

tclabel(E ,v)⟨label⟩ = L(v, label)
tclabel(E ,v)⟨var X⟩ = ≅ (v,E(X))

Table 16. Translating Xcerpt construct terms

translated by adding the grouping variables to the sequence of iteration variables used for the translation
of all contained construct terms, case 7.

Examples. We conclude the illustration of the translation function for construct terms by a collection
of construct terms from Table 13 together with their CIQLog translation. Table 18 shows the translation to
CIQLog for some of these construct terms. For convenience, we use X and Y to denote the query variables
mapped to X andY in a given environment E , i.e., E(X) and E(Y). Recall, that the result is an expression
containing some query variables that are replaced with their bindings for each binding tuple in turn.
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Construct term CIQLog expression

C1 a{ b, c }
tc
Ð→

root(id1) ∧ L(id1,a) ∧ child(id1,id2) ∧
L(id2,b) ∧ child(id1,id3) ∧ L(id3,c)

C2 a[ id @ b, ^id ]
tc
Ð→

root(id1) ∧ L(id1,a) ∧ OL(id1)
child(id1,id2,order(⊺,1)) ∧ L(id2,b) ∧
child(id1,id2,order(⊺,2))

C3 a{ var X }
tc
Ð→ normalized to G2.

G1 a{ all var X group-by(var X)}
tc
Ð→

root(id1) ∧ L(id1,a) ∧ child(id1,id2(X)) ∧
deep-copy(X, id2(X))

G2 all a{ var X group-by(var X)}
tc
Ð→

root(id1(X)) ∧ L(id1(X),a) ∧
child(id1(X),id2(X)) ∧ deep-copy(X, id2(X))

G3 all a{ all var X group-by(var X),

var Y } group-by(var Y)

tc
Ð→

root(id1(Y)) ∧ L(id1(Y),a) ∧
child(id1(Y),id2(Y, X)) ∧ deep-copy(X, id2(Y, X)) ∧
child(id1(Y),id3(Y)) ∧ deep-copy(Y, id3(Y))

G4 all a{ } group-by(var Y)
tc
Ð→ root(id1(Y)) ∧ L(id1(Y),a)

Table 18. Construct terms and their CIQLog translations

3.4.3 Queries and Query Terms

Bodies of Xcerpt rules are translated using tq. Again, we us an environment E to record already estab-
lished mappings between Xcerpt and CIQLog variables. For queries we do not record iteration or grouping
variables as there are no grouping expression in queries. ¿e environment additionally contains isLabel(X)
and isTerm(X,v) terms for Xcerpt variables X and CIQLog variables v. ¿e former indicates that X is known
to have occurred as a label variable. ¿e latter that X has occurred in term position and is represented
by y in the CIQLog expression. ¿ese are used to establish proper variable occurrences in label and term
position. As before, we use ++ to add these terms to a given environment E . We do use an additional
helper structure for the translation of query terms, viz. V = (v↑,V←,V→, r↑, r←, r→), and denote each
component by V .V←, etc. and with () the empty V . V holds the CIQLog variable for the parent term of the
term to be translated (v↑), the variables for le and right siblings of that term (V← and V→, respectively)
and the relations to these variables (r↑ for parent, r← for le siblings, r→ for right siblings).

An Xcerpt rule body is �rst translated using tq which takes care of all top-level disjunction, conjunc-
tion, or negations. Note, that for disjunctions and conjunctions we propagate the environment return by
the translation of the �rst operand (E1 in case 2 and 3) to the translation of the second operand. ¿us
Xcerpt variables occurring in both disjuncts are mapped to the same CIQLog variable. ¿is assumes that,
as usual, non-answer variables are standardized apart for each disjunct. A er translating any top-level
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functionterm = CIQLog expression

tq⟨query⟩ = tq(∅)⟨query⟩
tq(E)⟨and(t1, t2)⟩ = (E2,(Q1∧Q2)) where (E1,Q) = tq(E)⟨t1⟩ (E2,Q) = tq(E1)⟨t2⟩
tq(E)⟨or(t1, t2)⟩ = (E2,(Q1∨Q2)) where (E1,Q) = tq(E)⟨t1⟩ (E2,Q) = tq(E1)⟨t2⟩
tq(E)⟨not(t)⟩ = (E ′,¬(Q)) where (E ′,Q) = tq(E)⟨t⟩
tq(E)⟨qterm⟩ = (E ′,root(r)∧Q) where (E ′, r,Q) = tqterm(E ,�,())⟨qterm⟩

tqterm(E ,v,V)⟨tid @ t⟩ = (E ′,{v},Q) where v = E(tid) if defined otherwise, if v = �, v new variable
(E ′,V ,Q) = tqterm(E ++ (tid,v),v,V)⟨t⟩

tqterm(E ,v,V)⟨idvar X @ t⟩ = (E ′′,{v},E∧Q) where v = E(tid) if defined otherwise, if v = �, v new variable
(E ′,E) = tqvar(E ,v,≐)⟨X⟩
(E ′′,V ,Q) = tqterm(E ′,v,V)⟨t⟩

tqterm(E ,v,V)⟨position num @ t⟩ = (E ′,{v},@L(v, num)∧Q where if v = �, v new variable
(E ′,V ,Q) = tqterm(E ,v,V)⟨t⟩

tqterm(E ,v,V)⟨position var X @ t⟩ = (E ′′,{v},E∧Q where if v = �, v new variable
(E ′,E) = tqvar(E ,v,=@)⟨X⟩
(E ′′,V ,Q) = tqterm(E ′,v,V)⟨t⟩

tqterm(E ,v,V)⟨var X → t⟩ = (E ′′′,{v},E′∧Q where if v = �, v new variable
(E ′,E) = tqvar(E ,v,≗)⟨X⟩
if isLabel(X) ∈ E , E′ = E ∧ outdeg(v,0) otherwise

E′ = E and E ′′ = E ′ ++ {isTerm(X,v)}
(E ′′′,V ,Q) = tqterm(E ′′,V)⟨t⟩

tqterm(E ,v,V)⟨desc t⟩ = (E ′′,{v},Fstruct∧Q where if v = �, v new variable
Fstruct = tqstruct(v,V)
(E ′′,V ,Q) = tqterm(E ,�,(v,∅,∅, pathL

∗
,⊺,⊺))⟨t⟩

tqterm(E ,v,V)⟨label children⟩ = (E2,v,F1∧F2∧Fstruct) where if v = �, v new variable
(E1,F1) = tqlabel(E ,v)⟨label⟩
(E2,F2) = tqchild(E1,v)⟨children⟩
Fstruct = tqstruct(v,V)

tqterm(E ,v,V)⟨"string"⟩ = (E ′,v,F∧Fstruct) where if v = �, v new variable
(E ′,F) = tqlabel(E ,v)⟨string⟩
Fstruct = tqstruct(v,V)

tqterm(E ,v,V)⟨^tid⟩ = (E ++ (tid,v),v,Fstruct) where v = E(tid) if defined, otherwise v new variable
Fstruct = tqstruct(v,V)

tqterm(E ,v,V)⟨var X⟩ = (E ′,v,E∧Fstruct) where if v = �, v new variable
(E ′,E) = tqvar(E ,v,≗)⟨X⟩
Fstruct = tqstruct(v,V)

tqterm(E ,v,V)⟨without tlist⟩ = tqtlist(E ,V)⟨tlist⟩

Table 20. Translating Xcerpt query terms: queries and query terms
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expressions, we turn to the evaluation of the top-level query terms which we root and translate using
tqterm (case 5 of trXcerpt). tqterm carries, in addition to the Xcerpt term to be translated, three parameters:
the environment E , a CIQLog variable for the current term (which may be � indicating that no variable
has been allocated for the term yet), and the context variables V . Initially, there is no CIQLog variable for
the current term yet (and thus the second parameter is �) and also no context variables V as a top-level
Xcerpt term has no parent or sibling terms.

As for tcterm, tqterm is speci�ed by one case for each of the possible query terms. Cases 1–6 cover “pre-
�xes” of full query terms, e.g., term identi�ers, term restrictions, position speci�cations, or descendant
modi�ers. Cases 7–10 cover the four basic query term kinds, structured (case 7), character data (case 8),
reference (case 9), and variable (case 10). Finally, case 11 covers without with may contain an entire term
list and is thus a bit of the “odd man out” in the translation of query terms.

For tqterm, we use �ve helper functions depicted in Table 22. (1) Bottom up, tqstruct creates a CIQLog
expression for all the relations in a given V with a given current variable vcurr. It is used for the translation
of each of the base term kinds (case 7–10 of tqterm). (2) tqvar turns a Xcerpt variable into a CIQLog variable
using the speci�ed equivalence relation eq. If the Xcerpt variable is already de�ned in the current envi-
ronment the stored CIQLog variable is retrieved and an equivalence atom is emitted, otherwise we simply
record a new mapping from the given Xcerpt X variable to the CIQLog variable v. A special treatment of
label variables as in the translation of construct terms is provided. (3) tqlabel translates just the label of
a structured term: if it is the wildcard *, no relation is added (any node ful�lls that restriction), if it is a
proper label a corresponding label relation is omitted, if it is variable a similar translation as for tqvar takes
place but wemark the variable by isLabel in the environment to ensure that other occurrences of that vari-
able are connected using ≅ and no other equivalence relation. (4) tqchild translates child lists of a structure
term selected by the CIQLog variable v↑. Basically, it distinguishes the six term list types (total, partial in-
jective, partial non-injective, each combined with order or unorder) and calls for each tqtlist with di�erent
parameters. ¿e relation to the parent variable is always pathL where L = {child,comment,value} as
stated above. But between the siblings, the relations vary: In the unordered, partial, non-injective case,
there are no such relations at all (indicated by ⊺), in the case of partial, but injective terms we add comple-
mented identity join, in the case of total termswe add a limitation on the out-degree of the parent (case 3).
When combined with order, we obtain transitive-re�exive sibling order for partial, non-injective, tran-
sitive sibling order for partial, injective, and, again, an additional out-degree constraint for the total case
(cases 4–6). (5)¿eactual formula of the relations between the variables is de�ned in tqtlist which is called
whenever translating lists of query terms (i.e., in tqchild and in the without case of tqterm). tqtlist does not
merely translate the given lists in the given order, but delays the translation of negative sub-terms until
all positive ones are translated. ¿is is necessary to allow the relations between negative and positive
sub-terms (even ones a er the negative sub-term) to be contained in the scope of the ¬. Otherwise, we
demand the existence of such a relation rather than demand its non-existence. Nevertheless we ensure
that all relations are enforced by gathering the CIQLog variables returned by the translation of all positive
sub-terms to the right of a negative one in that sub-terms Vright

i .
To illustrate tqtlist consider the Xcept query term

a[[ b, without( c, without( d ) ), without( e ), f ]]

It is necessary to ensure that in the resulting CIQLog expression all references to a CIQLog variable for the
translation of, e.g., c are within a negation. ¿is includes sibling relations to, e.g., the translation of f.
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Otherwise we would, falsely, require that there has to be a (following) sibling relation to f-labeled node,
instead of requiring that there is no c with such a relation.

Returning to tqterm in Table 20, we see that all the “pre�xes” of a query term (case 1–6) are translated
along the same scheme: if necessary, we take a new variable and add some relations on that variable to the
output of the translation of the contained query term. For the identi�er case (case 1) we only modify the
term environment. Identity variables (case 2), position variables (case 4), and term restrictions (case 5) are
translated using appropriate ≐, =@, and ≗, respectively, between the involved CIQLog variables. Descendant
sub-terms are a bit like the translation of a singleton term list using tqtlist: we do not need to establish any
relations to le or right siblings (as there are none) but can directly translate the single child, but using
the transitive closure pathL

∗
instead of pathL as relation between parent and child variable. ¿e translation

of the basic terms (case 7–10) is fairly straightforward: we translated label parts, if there are any, then
children, if there are any, and �nally establish structural relations between the parent and sibling variables
using tqstruct.

Examples. To illustrate the translation of query terms, we once again turn back to the examples from
Section 3.3, in this case the example query terms in Tables 9 and 11. Tables 24 and 26 show the translation
to CIQLog for some of these query terms as well as the environment passed to the translation of a corre-
sponding rule head. If these query terms occur as top-level query terms, we have to add a root relation
on the top-level CIQLog variable that we omit in the following for space reasons.
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functionterm = CIQLog expression

tqtlist(E ,V)⟨t1, . . . , tn⟩ = (En,⋃V+i ,⋀ti positive Fi ∧ ¬ (⋀ti negative Fi)
where E0 = E , V0 = V .V←

ti positive: V+i = Vi, V−i = ∅, V left
i = ⋃j<i V

+

j , V right
i = V .V→

ti negative: V+i = ∅, V−i = Vi, V left
i = ⋃j<i Vj, V right

i = ⋃j>i V
+

j ∪ V .V→
(Ei,Vi,Fi) = tqterm(Ei−1,�,(V .v↑,V left

i ,V right
i ,V .r↑,V .r←,V .r→))

tqchild(E ,v↑)⟨{{{ tlist}}}⟩ = (E ,F) where (E ,V ,F) = tqtlist(E ,(v↑,∅,∅, pathL,⊺,⊺))⟨tlist⟩
tqchild(E ,v↑)⟨{{ tlist}}⟩ = (E ,F) where (E ,V ,F) = tqtlist(E ,(v↑,∅,∅, pathL,∁≐,∁≐))⟨tlist⟩
tqchild(E ,v↑)⟨{ tlist}⟩ = (E ,outdegL(v↑,n) ∧ F)

where (E ,V ,F) = tqtlist(E ,(v↑,∅,∅, pathL,∁≐,∁≐))⟨tlist⟩
n number of terms in tlist

tqchild(E ,v↑)⟨[[[ tlist]]]⟩ = (E ,OL(vp)∧F) where (E ,V ,F) = tqtlist(E ,(v↑,∅,∅, pathL,≪L
∗,≪L

∗))⟨tlist⟩
tqchild(E ,v↑)⟨[[ tlist]]⟩ = (E ,OL(vp)∧F) where (E ,V ,F) = tqtlist(E ,(v↑,∅,∅, pathL,≪L

+,≪L
+))⟨tlist⟩

tqchild(E ,v↑)⟨[ tlist]⟩ = (E ,outdegL(v↑,n) ∧OL(vp) ∧ F)
where (E ,V ,F) = tqtlist(E ,(v↑,∅,∅, pathL,≪L

+,≪L
+))⟨tlist⟩

n number of terms in tlist

tqlabel(E ,v)⟨*⟩ = (E ,⊺)
tqlabel(E ,v)⟨label⟩ = (E ,L(v, label))

tqlabel(E ,v)⟨var X⟩ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(E ++ isLabel(X),≅ (v,E(X) ∧ F)) if ∃v′ ∶ (X,v′) ∈ E and
F = ⋀isTerm(X,v)∈E outdeg(v,0)

(E ++ (X,v) ++ isLabel(X),⊺) otherwise

tqvar(E ,v, eq)⟨X⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(E ,v ≅ E(X)) if ∃v′ ∶ isLabel(X) ∈ E ∧ (X,v′) ∈ E
(E ,v eq E(X)) if ∃v′ ∶ isLabel(X) /∈ E ∧ (X,v′) ∈ E
(E ++ (X,v),⊺) otherwise

tqstruct(vcurr,V) = r↑(v↑,vcurr) ∧ ⋀
vl∈V←

r←(vl ,vcurr) ∧ ⋀
vr∈V→

r→(vr,vcurr)

tqstruct(vcurr,V) = r↑(v↑,vcurr) if r→ = r← = ⊺

Table 22. Translating Xcerpt query terms: term lists, variables, and labels
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Query term CIQLog expression E

T1 a{ }
tqterm
ÐÐ→ L(v1,a) ∧ outdegL(v1,0) ∅

T2 a[ ]
tqterm
ÐÐ→ L(v1,a) ∧ outdegL(v1,0) ∧ OL(v1) ∅

T3 a{ b }
tqterm
ÐÐ→ L(v1,a) ∧ outdegL(v1,1) ∧ child(v1,v2) ∧ L(v2,b) ∅

T4 a{ b, b }
tqterm
ÐÐ→

L(v1,a) ∧ outdegL(v1,2) ∧ child(v1,v2) ∧ L(v2,b) ∧
child(v1,v3) ∧ L(v3,b) ∧ v2 ∁≐ v3

∅

P1 a{{ b }}
tqterm
ÐÐ→ L(v1,a) ∧ child(v1,v2) ∧ L(v2,b) ∅

P2 a[[ b, c ]]
tqterm
ÐÐ→

L(v1,a) ∧ O
L(v1) ∧ child(v1,v2) ∧ L(v2,b) ∧

child(v1,v3) ∧ L(v3,c) ∧ v2 ≪+ v3
∅

I1 a{{{ b, b }}}
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ L(v2,b) ∧
child(v1,v3) ∧ L(v3,b)

∅

I2 a[[[ b, b, d ]]]
tqterm
ÐÐ→

L(v1,a) ∧ O
L(v1) ∧ child(v1,v2) ∧ L(v2,b) ∧

child(v1,v3) ∧ L(v3,b) ∧ child(v1,v4) ∧ L(v4,d) ∧
v2 ≪∗ v3 ∧ v2 ≪∗ v4 ∧ v3 ≪∗ v4

∅

D1 a{ desc b }
tqterm
ÐÐ→

L(v1,a) ∧ outdegL(v1,1) ∧ child(v1,v2) ∧
child∗(v2,v3) ∧ L(v3, b)

∅

D2 a{ desc b, desc c }
tqterm
ÐÐ→

L(v1,a) ∧ outdegL(v1,2) ∧ child(v1,v2) ∧
child(v1,v3) ∧ v2 ∁≐ v3 ∧ child∗(v2,v4) ∧
L(v4,b) ∧ child∗(v3,v5) ∧ L(v5,c)

∅

D3 a{{ desc b, desc c }}
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧
child(v1,v3) ∧ v2 ∁≐ v3 ∧ child∗(v2,v4) ∧
L(v4,b) ∧ child∗(v3,v5) ∧ L(v5,c)

∅

D4 a{{{ desc b, desc c }}}
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ child(v1,v3) ∧
child∗(v2,v4) ∧ L(v4,b) ∧ child∗(v3,v5) ∧ L(v5,c)

∅

W1 a{{ b, without( c ), d }}
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ L(v2,b) ∧ child(v1,v3) ∧
L(v3,d) ∧ v2 ∁≐ v3 ∧

¬(child(v1,v4) ∧ L(v4,c) ∧ v2 ∁≐ v4 ∧ v3 ∁≐ v4)
∅

W2 a[[ b, without( c ), d ]]
tqterm
ÐÐ→

L(v1,a) ∧ O
L(v1) ∧ child(v1,v2) ∧ L(v2,b) ∧

child(v1,v3) ∧ L(v3,d) ∧ v2 ≪+ v3 ∧

¬(child(v1,v4) ∧ L(v4,c) ∧ v2 ≪+ v4 ∧ v4 ≪+ v3)
∅

Table 24. Query terms and their CIQLog translation58



Notice in Table 24 in particular the subtle, but essential di�erences in the translations for total (T1–
T2), partial, but injective (P1–P2), and partial and non-injective (I1–I2) query terms. I2 is an example
where more than necessary sibling relations are generated. ¿is is the case for all order relations between
siblings as the translation above does not exploit their transitivity. ¿is can be easily recognized and
removed in a post-processing step. Alternatively, one can adapt the translation to handle ordered and
unordered term lists di�erently. D1, D4 show that when translating desc we always generate an inter-
mediate child step to express sibling relations on that child step. However, if there are no such relations
(because it is the only sub-term or because we are in a partial, non-injective term) we can avoid the child
step and use pathL

+
instead of pathL followed by pathL

∗
. Again this is a general equivalence for CIQLog queries

on data graph relations and can be optimized in a post-processing.

Query term CIQLog expression E

V1 a{ var X }
tqterm
ÐÐ→ L(v1,a) ∧ outdegL(v1,1) ∧ child(v1,v2) {(X,v2)}

V2 a{{ var X }}
tqterm
ÐÐ→ L(v1,a) ∧ child(v1,v2) {(X,v2)}

V3 a{{ var X, var X }}
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ child(v1,v3) ∧
v2 ∁≐ v3 ∧ v2 ≗ v3

{(X,v2)}

V4 a{{{ var X, var X }}}
tqterm
ÐÐ→ L(v1,a) ∧ child(v1,v2) ∧ child(v1,v3) ∧ v2 ≗ v3 {(X,v2)}

V5 a{ var X{ var X } }
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ child(v2,v3) ∧
outdegL(v3,0) ∧ v2 ≅ v3

{(X,v2),
isLabel(X)}

V6 a{ var X → c, var X }
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ L(v2, c) ∧ child(v1,v3) ∧
v2 ≗ v3

{(X,v2)}

V7 a{ desc var X }
tqterm
ÐÐ→

L(v1,a) ∧ outdegL(v1,1) ∧ child(v1,v2) ∧
child∗(v2,v3)

{(X,v3)}

V8 a{{var X, without(var X)}}
tqterm
ÐÐ→

L(v1,a) ∧ child(v1,v2) ∧ ¬(child(v1,v3) ∧
v2 ∁≐ v3 ∧ v2 ≗ v3) {(X,v2)}

Table 26. Query terms containing variables and their CIQLog translation

Query terms with variables are considered in Table 26. Notice, in particular V3 and V6 that illustrate
multiple occurrences of the same variable in a total or partial, injective query term: here we demand that
matches for the two terms are not the same node (i.e., in the complement relation of ≐) but have the
same label and structure (i.e., stand in ≗ relation). In V5, the e�ect of a label occurrence of a variable is
illustrated.
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3.5 From Non-recursive, single-rule Core Xcerpt to Full Xcerpt

In the previous sections, we focus onXcerptcore,NR,SR, i.e., the non-recursive, single-rule fragment of Xcerpt.
Notice, however, that the above translation generates a CIQLog rule from a Core Xcerpt rule and is appli-
cable whether there are only one or many rules in a translated Xcerpt program.

¿us, for translating full Core Xcerpt, i.e., possibly recursive, multi-rule Xcerpt but with the restric-
tions from Section 3.2 wrt. each rule, we can use the above translation unchanged. Some improvements
of the resulting CIQLog program can be achieved by exploiting that Xcerpt programs are grouping and
negation strati�ed. Before the translation, we select one such strati�cation and rewrite the program to
introduce root terms with unique labels for each stratum. ¿is allows for easier recognition of said strata
a er the translation to CIQLog, where we only have to consider the root variable and its label to limit rule
chaining to each stratum.

Moving from Core Xcerpt to full Xcerpt is less obvious. Aside from numerous, but essentially easy
speci�cities such as namespaces, attributes, comments, processing-instructions etc. there are a few con-
structs that merit a closer consideration. Among them are:
(1) optional terms: Optional query terms can be rewritten to combinations of without and or but

require speci�c treatment in heads.2 For that CIQLog provides conditional construction which pre-
cisely addresses optional construct terms.

(2) order-by clauses: order-by clauses in Xcerpt allow for di�erent lists of order variables than group-
ing variables whereas Xcerptcore,NR,SR always assumes that both lists are identical. ¿is is supported
by CIQLog (the variable lists in order do not have to coincide with the ones in new) and can be easily
added to the translation by a new E .order sequence of variables.

(3) Grouping over term lists instead of single terms yields results not expressible in Xcerptcore,NR,SR:
a[b, all(var X, var Y), d] yields

a[b, x1, y1, x2, y2, . . ., xn, yn, d]

where xi is the binding for X in the i-th binding tuple, i.e., bindings for X and Y are paired wrt.
term order. ¿is can be accommodated in the translation by nesting order expressions as in the
translation of XQuery (cf. Chapter 4).

(4) Additional grouping expressions such as some and first groupings are to some extent express-
ible using aggregation operators in CIQLog. However, in general, some is not expressible in CIQLog as
its result is non-deterministic and CIQLog expresses only deterministic queries (up to isomorphisms
on invented values).

(5) Conditions in Xcerpt query terms can be translated to CIQLog if appropriate relations or func-
tions are available (or added) to CIQLog.

2¿is is the case, as we can not always split the Xcerpt rule in two rules on the Xcerpt level due to grouping expressions.
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Chapter 4

Translating XQuery

4.1 Introduction

Among XML query languages, XPath and, increasingly, XQuery play the dominant role to such an extent
thatmotivating their use in this work has become super�uous. XPath’s properties, evaluation, complexity,
containment, etc. have been studied extensively in recent years, for a survey see [9]. For XQuery, most
research still focuses on implementation and evaluation aspects, e.g., [32, 55, 11]. In the following, we
present a novel semantics for XPath and XQuery by translation to CIQLog that also serves as foundation
for the evaluation of XPath and XQuery with the CIQCAG algebra de�ned in [34]. Together with the CIQCAG

algebra, we achieve the �rst implementation of XQuery that scales from tree queries to graph queries,
from tree data to graph data. Its time and space complexity is as good as or better than the complexities
of previous systems limited to, e.g., tree queries on tree data (for details on the complexity see [34]).

¿e translation of XPath and XQuery to CIQLog is the focus of this chapter. For the most part, we
use navigational XPath (introduced in [38]) and composition-free Core XQuery1 (introduced in [47]),
two important and convenient fragments of XPath and XQuery that can be translated to non-recursive
CIQLog. ¿e extension to full XQuery is only brie�y outlined in Section 4.4. ¿e essential limitation of
both fragments compared to the full languages is that all relations in the query are only on nodes of the
input tree but not on nodes by the query itself. ¿is limitation is similar to the limitation to Xcerptcore,NR,SR

in Chapter 3.

In addition to providing a path for implementingXPath andXQuery using CIQCAG, the translation also
gives a purely logical semantics for both languages where previous semantics for XQuery are functional
or algebraic (see also Table 31). ¿is sheds new light on some of the di�erences between composition-free
XQuery on the one hand and XPath on the other hand, in particular, on the e�ect of nested for loops
and element construction in XQuery.

1In the following, we omit the “Core” where no confusion is possible.
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4 – May 31, 2004

then the last step selects nodes of any kind that are among the descendants of the top

element “book” and have a “citation” child element. Previous examples are all abso-

lute XPath expressions (since they involve a leading “/”). The general meaning of an

expression is defined relatively to a context node in the tree. Starting from a particu-

lar context node in the tree, every other nodes can be reached. This is because XPath

defines powerful navigational capabilities, including a full set of axes, as captured on

figure 1. For more informal details on the complete XPath language, the reader can refer

to the specification [6].

self

an
ces
tor

descendant

p
re
ce
d
in
g

fo
llo
w
in
g

following-sibling

preceding-sibling

child

parent

Fig. 1. Axes: partitions of document nodes from a particular context node.

Abstract syntax: a compositional fragment. For the remaining part of the paper, we

focus on a restricted but significant fragment of XPath, composed of all XPath axes.

The abstract syntax of the fragment is given on figure 2. In order to make the XPath

syntax fully compositional, two variants are included: the void path ⊥ and the explicit
root node ∧ (respectively proposed in [18] and [19]). An other extension concerning

qualifiers is the inclusion constraint p1 " p2 over set of nodes selected by p1 and p2.

First defined in [19], the authors believe that this feature brings useful expressive power

without increasing cost of formal treatment (however this will be verified along our on-

going work on path containment). Note that it turns the construct p1[p2] into a syntactic

sugar for p1[not (p2 " ⊥)]. Although the XPath fragment we consider already covers
a significant range of real world use cases, our intent is to extend it to cover the XPath

standard as much as possible.

Figure 16. XPath axis (from [36])

4.2 Translating XPath

Unary selection of XML elements is, by now, almost always done using XPath or some variant of XPath
(such as XPointer). XPath provides an elegant and compact way of describing “paths” in an XML docu-
ment (represented similar to Chapter 1.3 but without resolution of id/idref links). Paths are made up of
“steps” each specifying a direction, called axis, in which to navigate through the document, e.g., child, fol-
lowing, or ancestor, cf. Figure 16 for the full set of axes. Together with the axis, a step contains a restriction
on the type or label of the data items to be selected, called node test. Node tests may be labels of element
or attribute nodes, node kind wildcards such as * (any node with some label), element(), node(), text(), or
comment(). Any step may be adorned by one or more quali�ers each expressing additional restrictions on
the selected nodes. Compared to languages such as XQuery, Xcerpt, or even SPARQL, the most distinc-
tive feature of XPath is the lack of explicit variables. ¿is makes it impossible to express n-ary queries
and limits XPath, for the most part, to two-variable logic [54, 10].

For instance, the XPath expression /descendant::paper/child::author consists of two steps, the �rst
selecting paper elements that are descendants of the root (“of the root” is indicated by the leading slash),
the second selecting author children of such paper elements. More interesting queries can be expressed
by exploiting XPath’s quali�ers, e.g., the following XPath expression that selects all authors that are also
PC members of a conference (more precisely that have node children with the same label):

/child::conference/descendant::paper/child::author[child::node() =

2 /child::conference/child::member/child::node()]

In addition to the strict axis plus node test notation, XPath uses also an abbreviated syntax where child
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axis may be omitted, descendant is (roughly) abbreviated by // etc. In the following, we only use the full
syntax. We also limit ourselves to the core feature of XPath as discussed here and thus present a view
of XPath similar to Navigational XPath of [37] and [9]. Due to [61], we also limit ourselves to forward
axes such as child and following, rewriting expressions with reverse axes such as parent, ancestor, or preceding
where necessary.

4.2.1 Syntax and Semantics

Following [9], we de�ne the semantics of XPath over a relational structure as introduced in Section 1.6.1:
AnXML-tree is considered a relational structureT over the schema ((Labλ)λ∈Σ,Rchild,Rnest-sibling, relRoot).
¿e nodes of this tree are labeled using the symbols from σ which are queried using Lλ (note, that λ is a
single label not a label set as in the graph relations of Chapter 1). ¿eparent-child relations are represented
by Rchild. ¿e order between siblings is represented by Rnest-sibling. ¿e root node of the tree is identi�ed by
root. It is easy to see that this view of XML trees (which is as in [9] or [47]), makes an XML-tree a speci�c
instance of a CIQLog data graph, cf. Chapter 1. ¿ere are some additional derived relations, viz. Rdescendant,
the transitive, Rdescendant-or-self the transitive re�exive closure of Rchild, Rfollowing-sibling, the transitive closure of
Rnext-sibling, Rself relating each node to itself, and Rfollowing the composition of R−1descendant-or-self ○ Rfollowing-sibling ○

Rdescendant-or-self. Finally, we can compare nodes based on their label using ≅which contains all pairs of nodes
with same label.

¿e syntax of navigational XPath is de�ned as follows (again following [37] and [9]):

⟨path⟩ ::= ⟨step⟩ | ⟨step⟩ ‘/’ ⟨path⟩ | ⟨path⟩ ‘∪’⟨path⟩ | ‘/’ ⟨path⟩
⟨step⟩ ::= ⟨axis⟩ ‘::’ ⟨node-test⟩ | ⟨step⟩‘[’⟨quali�er⟩‘]’
⟨axis⟩ ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’

| ‘next-sibling’ | ‘following-sibling’ | ‘following’

⟨node-test⟩ ::= ⟨label⟩ | ‘node()’
⟨quali�er⟩ ::= ⟨path⟩ | ⟨path⟩ ‘∧’⟨path⟩ | ⟨path⟩ ‘∨’⟨path⟩ | ‘¬’⟨path⟩

| ‘lab()’ ‘=’ ‘λ’
| ⟨path⟩ ‘=’ ⟨path⟩

¿e semantics of a navigational XPath expression over a relational structure T representing an XML
tree (as de�ned above) is de�ned inTable 27 bymeans of ~ �Nodes (n)where n is a node, called context node.
~ �Nodes (n) associates each XPath expression and context node with a set of nodes that constitutes the
semantics of that expression if evaluated with the given context node. It uses ~ �Bool (n) for the semantics
of quali�ers under a context node n.

For details on the semantics as well as di�erences to full XPath see [9].

4.2.2 Translation

Consider again the above examples. ¿e �rst (/descendant::paper/child::author) is translated to the
following CIQLog rule:

ans(v3) ←Ð root(v1) ∧ child+(v1,v2) ∧ L(v2,paper) ∧
2 child(v2,v3) ∧ L(v3,author)
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~ axis �Nodes (n) = {(n′ ∶ Raxis(n,n′)}�
λ
�

Nodes (n) = {(n′ ∶ Labλ(n′)}
~ node() �Nodes (n) = Nodes(T)�
axis::nt[qual]

�
Nodes (n) = {n′ ∶ n′ ∈ ~ axis �Nodes ∧ n′ ∈ ~nt �Nodes ∧

�
qual
�

Bool (n′)}�
step/path

�
Nodes (n) = {n′′ ∶ n′ ∈ � step �Nodes (n) ∧ n′′ ∈

�
path
�

Nodes (n′)}�
path1 ∪ path2

�
Nodes
(n) =

�
path1

�
Nodes
(n) ∪

�
path2

�
Nodes
(n)

�
path
�

Bool (n) =
�
path
�

Nodes (n) ≠ ∅�
path1 ∧ path2

�
Bool
(n) =

�
path1

�
Bool
(n) ∧

�
path2

�
Bool
(n)�

path1 ∨ path2
�

Bool
(n) =

�
path1

�
Bool
(n) ∨

�
path2

�
Bool
(n)�

¬path
�

Bool (n) = ¬
�
path
�

Bool (n)�
lab() = λ

�
Bool (n) = Labλ(n)�

path1 = path2
�

Bool
(n) = ∃n′,n′′ ∶ n′ ∈

�
path1

�
Nodes
(n) ∧ n′′ ∈

�
path2

�
Nodes
(n)

∧ ≅ (n′,n′′)

Table 27. Semantics for navigational XPath (following [9])

Weuse ans as the canonical answer predicate containing the (single) answer variable whose bindings rep-
resent the results of an XPath expression. Just as the original expression, the body of the CIQLog rule selects
descendants of the root with label paper and of those the author children. ¿e latter are propagated to
the head of the rule.

¿e second example is as follows

/child::conference/descendant::paper/child::author[child::node() =

2 /child::conference/child::member/child::node()]

and translated similarly but illustrates quali�ers and nested queries:

ans(v4) ←Ð root(v1) ∧ child(v1,v2) ∧ L(v2,conference) ∧
2 child+(v2,v3) ∧ L(v3,paper) ∧ child(v3,v4) ∧ L(v4,author) ∧

child(v4,v5) ∧ ≅(v5,w4) ∧ root(w1) ∧ child(w1,w2) ∧
4 L(w2,conference) ∧ child(w2,w3) ∧ L(w3, member) ∧ child(w3,w4)

In general, we translate a navigational XPath expression using the trXPath speci�ed in Table 29. trXPath

returns a CIQLog formula that realizes the given XPath expression as well as an answer variable. We wrap
(Q,w) = trXPath(�,�) where � is an arbitrary variable into a CIQLog rule ans(w) ←Ð Q.
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functionXPath expression = CIQLog expression

trXPath(v,v′)⟨axis⟩ = (relation(axis)(v,v′),v′)

trXPath(v,v′)⟨λ⟩ = (L(v′, λ),v′)

trXPath(v,v′)⟨node()⟩ = (⊺,v′)

trXPath(v,v′)⟨axis::node-test[qualifier]⟩ = (trXPath(v,v′)⟨axis⟩ ∧ trXPath(v,v′)⟨node-test⟩ ∧ trXPath(v′,v′′)⟨qualifier⟩,v′)
where v′′ is a new variable

trXPath(v,v′)⟨step/path⟩ = (trXPath(v,v′)⟨step⟩∧F,w) where v′′ is a new variable
(F,w) = trXPath(v′,v′′)⟨path⟩

trXPath(v,v′)⟨/path⟩ = (root(v′′)∧F,w) where v′′,v′′′ are new variables
(F,w) = trXPath(v′′,v′′′)⟨path⟩

trXPath(v,v′)⟨path1 ∪ path2⟩ = ((F1 ∨ F2) ∧ (w ≐ w1 ∨w ≐ w1),w)
wherew is a new variable

(F1,w1) = trXPath(v,v′)⟨path1⟩ (F2,w2) = trXPath(v,v′)⟨path2⟩

trXPath(v,v′)⟨path1 ∨ path2⟩ = ((F1∨F2),w1) where (F1,w1) = trXPath(v,v′)⟨path1⟩
(F2,w2) = trXPath(v,v′)⟨path2⟩

trXPath(v,v′)⟨path1 ∧ path2⟩ = (F1∧F2,w1) where (F1,w1) = trXPath(v,v′)⟨path1⟩
(F2,w2) = trXPath(v,v′)⟨path2⟩

trXPath(v,v′)⟨¬path⟩ = (¬(F),w) where (F,w) = trXPath(v,v′)⟨¬path⟩

trXPath(v,v′)⟨lab() = λ⟩ = (L(v, λ),v)

trXPath(v,v′)⟨path1 = path2⟩ = (F1 ∧ F2 ∧w1 ≅ w2,w1)
where (F1,w1) = trXPath(v,v′)⟨path1⟩ (F2,w2) = trXPath(v,v′)⟨path2⟩

Table 29. Translating navigational XPath

¿e translation in Table 29 is fairly straightforward. In a slight abuse of notation, we allow the di-
rect use trXPath in a formula. In this case we ignore the second return value (i.e., the answer variable).
¿e translation is parametrized by the parent variable v and the current variable v′. Axis are mapped
to corresponding relations using the helper function relation(axis)), as are label node-steps (cases 1–3).
relation(axis) is de�ned in the obvious way:

relation(child) = child relation(descendant) = child+
relation(descendant-or-self) = child∗ relation(next-sibling) =≪child

relation(following-sibling) =≪child
+

relation(following) = ◂child
+
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Steps are translated by translating axis, node-test, and quali�er separately. For the translation of the
quali�er a new variable is created and the quali�er is translated with the old current variable as parent
and the new variable as current variable. Notice, how we ignore the answer variable returned by the
quali�er. ¿is small di�erence to the translation of a path outside a quali�er implements the existential
semantics of XPath quali�ers. Together with the path operator / (cases 5–6), the quali�er is the only
context-changing expression where we move from one query variable to the next one. ¿e inner path
operator (case 5) translates the le most step and then continues with the translation of the remainder
of the path using a new current variable. Absolute XPath expressions (expressions starting with /) are
translated in case 7 where we use fresh variables rather than v and v′. ¿us, the only possible link between
nested absolute expressions is the answer variable (which is used, e.g., for unions or joins). In unions,
conjunctions, disjunctions, and joins (cases 7–9, 12) we translate each operand separately but combine the
result di�erently, most notably for conjunction, disjunction, and join (cases 8, 9, 12) we do not care about
the answer variable (they only occur in quali�ers where, as described above, we drop answer variables
anyway). Finally, label equality (case 11) is translated just like a labeled node test (case 2), but on the
parent variable instead of the current variable due to the “context” switch of the quali�er.

¿eorem 4.1. Let P be a navigational XPath expression and (Q,w) = trXPath(�,�)⟨P⟩. ¿en the relation
ans de�ned by ans(w) ←Ð Q is ~P �Nodes.

Proof (Sketch). First, consider only path expression without quali�ers. It is easy to see that, given appro-
priate base relations, the resulting CIQLog expressions express the same query as the XPath expressions.
Note, that the answer variable is by translation the variable for the last step, as in XPath. With quali�ers,
the same observation holds (as answer variables returned by paths in quali�ers are ignored by de�nition,
see case 4). Note that the join in case 12 is a label join (as in the semantics of navigational XPath). In full
XPath = is a join on the string value of a node, which is a notion covered neither in navigational XPath
as de�ned in [9] nor by the CIQLog translation. �

4.3 From XPath to Composition-Free XQuery

Turning fromXPath to a larger fragment of XQuery that is amenable to translation into CIQLog, we choose
non-compositional XQuery as de�ned in [47] (though we follow more closely the variant in [8]).

4.3.1 Composition-Free XQuery in 1000 Words

¿ough not nearly as common as XPath, XQuery has nevertheless achieved the status of predominant
XML query language, at least as far as database products and research are concerned (in total, XSLT [21]
is probably still more widely supported and used). XQuery is essentially an extension of XPath (though
some of its axis are only optional in XQuery), but most of XPath becomes syntactic sugar in XQuery. ¿is
is particularly true for XPath quali�ers which can be reduced to where or if clauses in XQuery. Indeed,
the XQuery standard is accompanied [29] by a normalization of XQuery to a core dialect of the language.

Here, we consider �rst an important, if somewhat academic fragment of XQuery, viz. composition-
free XQuery as de�ned in [47] and [8]. It is slightly academic as we restrict the syntax far more than
necessary tominimize the constructs to be consider for the formal semantics of composition-free XQuery
aswell as for the translation to CIQLog. However,many of the restrictions to the syntax can be dropped (e.g.,

66



we could integrate full navigational XPath as discussed in Section 4.2) without a�ecting expressiveness
and complexity, see also [8]. ¿e only real restriction of composition-free XQuery in comparison to full
XQuery is that it disallows any querying of constructed nodes, i.e., the domain of all relations is limited
to the input nodes. ¿is limitation clearly does not hold for full XQuery (even if we do not consider
user-de�ned functions) and its e�ect on expressiveness and complexity is discussed in detail in [47].

(Composition-free) XQuery is built around controlled iterations over nodes of the input tree, ex-
pressed using for expressions. Controlled iteration is important for XQuery as it founded on sequences
of nodes rather than sets of nodes (as XPath 1.0 and CIQLog). In this respect it is more similar to languages
such as DAPLEX [70] or OQL [19] than to XPath or Xcerpt. (For) loops use XPath expressions for navi-
gation and XML-look-a-likes for element construction all of which can be, essentially, freely nested. ¿e
following query gives an example of XQuery expressions. It creates a paperlist containing one author el-
ement for each author in the input XML tree (bound here and in the following to the canonical input
variable $inp). For each such author, the nested for loop creates a list of all its papers. ¿e latter expres-
sion can be more elegantly expressed in full XQuery using XPath quali�ers or where clauses but here it is
shown in the “normalized” syntax of composition-free XQuery a er [47].

<paperlist>

2 for $a in $inp/descendant::author return

<author> for $p in $inp/descendant::paper return

4 if some $x in $p/child::author satisfies deep-equal($x, $a)

then $p

6 </author>

</paperlist>

4.3.2 Syntax

A full de�nition of the syntax of composition-free XQuery as used here is given in Table 30. It deviates
only marginally from [47] and [8]. In addition to the speci�cation in Table 30, the usual semantic restric-
tions apply, e.g., the label of the start and end tags must be the same, variables must be de�ned (using
for) before use, etc. As stated, there is one exception from the latter, viz. the canonical input variable
$inp which is always bound to the input XML tree.

In Table 30, we use a general equality. XQuery provides in fact three kinds of equality, viz. node,
atomic (or value), and deep equality which correspond roughly to ≐, ≅, and ≗bij of CIQLog data graphs. For
all forms of equality the productions of Table 30 apply.

Again, compared to full XQuery the principle omission is the ability to query constructed nodes or
values. In the syntax, this leads most prominently to the restriction of expressions following in in a for,
i.e., expressions that provide bindings for variables, to XPath steps with variables. ¿is way variables
are always bound only to nodes from the input tree (anything reachable from $inp using XPath expres-
sions). Another important omission is the absence of let clauses, which provide set-valued variables to
XQuery. Conditional expressions are normalized to if clauses, where XQuery o�ers XPath quali�ers,
where clauses, and if clauses.

¿ough order-by clauses are omitted, the result of an XQuery expression is always an ordered tree
and the order of node constructionmust be precisely preserved (as given by the iteration of the for clauses
which iterated over their respective node sequences mostly in document order).

67



⟨query⟩ ::= ⟨query⟩ ⟨query⟩ | ⟨element⟩ | ⟨variable⟩
| ⟨step⟩ | ⟨iteration⟩ | ⟨conditional⟩

⟨element⟩ ::= ‘<’ ⟨label⟩ ‘>’ ⟨query⟩ ‘<’ ⟨/label⟩ ‘>’
| ‘<’ ‘lab(’ ⟨variable⟩ ’)>’ ⟨query⟩ ‘</’ ‘lab(’ ⟨variable⟩ ‘)>’

⟨step⟩ ::= ⟨variable⟩ ‘/’ ⟨axis⟩ ‘::’ ⟨node-test⟩
⟨iteration⟩ ::= ‘for’ ⟨variable⟩ ‘in’ ⟨step⟩ ‘return’ ⟨query⟩
⟨conditional⟩ ::= ‘if’ ⟨condition⟩ ‘then’ ⟨query⟩
⟨condition⟩ ::= ⟨variable⟩ ‘=’ ⟨variable⟩ | ⟨variable⟩ ‘=’ ‘<’ ⟨label⟩ ‘/>’ | ‘true’

| ‘some’ ⟨variable⟩ ‘in’ ⟨step⟩ ‘satisfies’ ⟨condition⟩
| ⟨condition⟩ ‘and’ ⟨condition⟩ | ⟨condition⟩ ‘or’ ⟨condition⟩ | ‘not’ ⟨condition⟩

⟨axis⟩ ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ | ‘following’

⟨node-test⟩ ::= ⟨label⟩ | ‘node()’
⟨variable⟩ ::= ‘$’⟨identi�er⟩

Table 30. Syntax of composition-free XQuery

4.3.3 Semantics

¿e formal semantics for composition-free XQuery is, for the most part, closely aligned with the one
for XPath discussed above. Again we considered an XML tree a relational structure T over the schema
((Labλ)λ∈Σ,Rchild,Rnest-sibling, root). ¿e nodes of this tree are labeled using the symbols from σ which are
queried using Lλ (note, that λ is a single label not a label set as in the graph relations of Chapter 1). ¿e
parent-child relations are represented by Rchild. ¿e order between siblings is represented by Rnest-sibling.
¿e root node of the tree is identi�ed by root. It is easy to see that this view of XML trees (which is as in
[9] or [47]), makes an XML-tree a speci�c instance of a CIQLog data graph, cf. Chapter 1. ¿ere are some
additional derived relations, viz. Rdescendant, the transitive, Rdescendant-or-self the transitive re�exive closure of
Rchild, Rfollowing-sibling, the transitive closure of Rnext-sibling, Rself relating each node to itself, and Rfollowing the
composition of R−1descendant-or-self ○Rfollowing-sibling ○Rdescendant-or-self. Finally, we can compare nodes based on their
label using ≅which contains all pairs of nodes with same label. In addition to the XPath relations, XQuery
also considers two more forms of equality: one based on node identity, =nodes which relates each node to
itself, and deep equality =deep which holds for two nodes if there exists an isomorphism between their
respective sub-trees.

For example, the XML document <a>1 <b/>2 <c>3<c/>4</c> </a> (denoting node id’s by integer sub-
scripts) is represented asT = (Laba

= {1}, Labb
= {2}, Labc

= {3,4},Rchild = {(1,2),(1, 3),(3,4)},Rnest-sibling =

{(2, 3)}, root = {1}) over the label alphabet {a,b, c}. All other relations can be derived from this de�ni-
tion, see also Chapter 2.

In the following, we also allow unions of such structures, i.e., XML “forests”. ¿e semantics of a
composition-free XQuery expression is then de�ned, following [8], using ~ � over a given such forest
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and a list of nodes from that forest e⃗ = [e1, . . . , en] that represent bindings for variables x1, . . . ,xn. For
that, we assume that all variables are �rst renamed to xi such that i is the number of variables in whose
scope xi is declared and assuming that $inp is scoped over the entire query. E.g., the query

for $x in $inp/child::a return

2 for $y in $x/child::b return $x

for $z in $inp/child::c return

4 for $v in $inp/child::d return $v

becomes

for $2 in $1/child::a return

2 for $3 in $2/child::b return $2

for $2 in $1/child::c return

4 for $3 in $1/child::d return $3

In the following, we assume that queries are in the latter form.
Table 31 speci�es the semantics of composition-free XQuery on an XML forest F and a binding vector

e⃗ = [e1, . . . , en] which is initially of length 1 containing bindings for $inp, i.e., usually one (or more, if
querying XML collections) root node(s).

¿e semantics uses three auxiliary notions. (1) ⊎ is the union on pairs of XML forests and binding
vectors such that (F1, e⃗1) ⊎ (F2, e⃗2) = (F1 ∪ F2, e⃗1 ○ e⃗2) where ○ is list (or vector) concatenation and the
union of XML forests is de�ned component by component. (2) ? is the intersection on pairs of XML
forests and binding vectors such that (F1, e⃗1) ? (F2, e⃗2) = (F1, [ei ∈ e⃗1 ∶ ei ∈ e⃗2]). Note, that we only
preserve F1 (and thus ? is not associative). However, for the purpose of the semantics the choice of the
XML forest is arbitrary as ? is only used for the semantics of conditions for which only the existence
or non existence (and not their actual value) of bindings is relevant for the semantics of the full query.
(3) construct(l,(F, [w1, . . . ,wn])) denotes construction of a new tree where l is a label, F is an XML forest
and [w1, . . . ,wn] is a vector of nodes in F. It returns a pair (F ∪ T′, [root(T′)]) where T′ is a tree over a
new set of nodes whose root root(T′) is labeled with l and with the i-th subtree of root(T′) isomorphic
to the sub-tree rooted at wi in F. Furthermore construct is assumed to return a tree with a distinct set of
nodes each time it is called. ¿is corresponds to value invention in CIQLog.

Using these de�nitions, the semantics is fairly straightforward. In [8], Benedikt and Koch point out
that most of the condition expressions (cases 10, 12–16) can be reduced to other XQuery expressions and
thus do not need to be addressed in the semantics. We choose to give their de�nitions directly as the
resulting expressions are no longer in composition-free XQuery.

¿e crucial parts of the semantics are cases 2 and 3, that illustrate element construction, case 7 that
illustrates iteration, and case 8, the semantics of conditionals. ¿e other cases are very similar to XPath
and mostly just return appropriate binding vectors but leave F unchanged. Element construction (case 2
and 3) is achieved using the aforementioned construct function and returns a forest containing the newly
constructed tree and bindings pointing to that tree’s root node. Iteration using for has almost exactly
the same semantics as the path separator / in XPath: the return expression is evaluated in the context
of the in part, just like the subordinate path is evaluated in the context of the superordinate one. Indeed,
the XQuery normalization transforms path expressions consisting of multiple steps to for loops as in
composition-free XQuery. ¿e di�erence is, of course, that the semantics of the return may be nodes

69



~ () � (F, e⃗) = (F, [])�
<l> q </l>

� (F, e⃗) = construct(l,� q � (F, e⃗))�
<lab($xi)> q </lab($xi>

� (F, [e1, . . . , en])
= construct(lab(ei),� q � (F, [e1, . . . , en]))

~ $xi � (F, [e1, . . . , en]) = (F, [ei])�
$xi/axis::l

� (F, [e1, . . . , en]) = (F, [d ∶ Raxis(ei,d) ∧ Labl(d)]�
q1 q2

�
(F, e⃗) =

�
query1

�
(F, e⃗) ⊎

�
query1

�
(F, e⃗)�

for $xi in s return q
� (F, e⃗) =⊎

l∈ l⃗

�
q
� (F, e⃗ ⋅ l) where (F, l⃗) = ~ s � (F, e⃗)

�
if cond then q

� (F, e⃗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
query

� (F, e⃗) if π2(~ cond � (F, e⃗)) ≠ []
(F, []) otherwise

~ $xi/axis::node() � (F, [e1, . . . , en]) = (F, [d ∶ Raxis(ei,d)])
~ some $xi in s satisfies c � (F, e⃗) = ~ for $xi in s return c � (F, e⃗)
�
$xi = $xj

�
(F, [e1, . . . , en]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(F, [ei]) if ei = ej

(F, []) otherwise

�
$xi = <l/>

� (F, [e1, . . . , en]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(F, [ei]) if = atomic equal and Labl(ei)
(F, [ei]) if = deep equal, Labl(ei),

and /∃ d ∶ Rchild(ei,d)
(F, []) otherwise

~ c1 or c2 � (F, e⃗) = ~ c1 � (F, e⃗) ⊎ ~ c2 � (F, e⃗)
~ c1 and c2 � (F, e⃗) = ~ c1 � (F, e⃗) ? ~ c2 � (F, e⃗)

~ not c � (F, e⃗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(F, [root(F)]) if (F′, []) = ~ c � (F, E⃗)
(F, []) otherwise

~ true � (F, e⃗) = (F, [root(F)])

Table 31. Semantics for composition-free XQuery (following [8])
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from a newly constructed tree. It is crucial that this is the case only for the semantics of the return ex-
pression, not for that of the in expressionwhich nevermodi�es the given XML forest. In full XQuery, this
does not hold, the in is followed by an arbitrary expression. Finally, conditionals are (again reminiscent
of quali�ers in XPath) translated using a non-empty test on the bindings returned by the condition.

Note that the relations of the input forest are never changed. We may add new forests, but those do not
have any relations to the input forest.

It is worth noting, that the semantics is uniform for boolean-valued conditions and for node-valued
expressions (in contrast to the XPath case in Section 4.2). ¿is follows [8] and allows a more compact
de�nition of the semantics, at the cost of slightly surprising de�nitions for boolean operations and true

in the latter part of the semantics. In the translation, we separate boolean-valued conditions from other
expressions by a separate translation function as in the XPath case.

4.3.4 Translation

For the translation of composition-free XQuery, the main challenge lies in the “constructive” part of
composition-free XQuery not in the selection part. In fact, compared to XPath, the selection part is en-
riched by only three signi�cant features: the ability to use variables and thus to refer back to previously
established bindings, the presence of deep-equal, and the ability to sequence expressions and thus their
results. Moreover, the latter is the only feature that is challenging for the translation as it requires some-
what more sophisticated management of sibling order than in the translation for XPath. In a sense, this is
already part of the constructive part, i.e., element construction and the translation of the results of queries
contained in element construction. ¿is is what ends up in the head of a CIQLog rule (which in the XPath
case above is always a single atom over the unary answer variable).

Consider again the XQuery example from above:

<paperlist>

2 for $a in $inp/descendant::author return

<author> for $p in $inp/descendant::paper return

4 if some $x in $p/child::author satisfies deep-equal($x, $a)

then $p

6 </author>

</paperlist>

What is the result of this query, if there is no author in the document? What if there is an author with no
paper? In XPath, if any part of a path (disregarding or for the moment) has no match the entire query has
no match. In XQuery, this is not the case. ¿e above example always yields at least a paperlist element.
It may be empty, if there are no authors in the document but it may never be absent. ¿e some for the
inner loop: ¿e author element is constructed and included in the result for any author in the input even
if there is no paper for an author. Of course, we change this behavior by placing additional if clauses.
But in general, an XQuery expression may always return an empty set of nodes, but never causes other
expressions not contained in it to fail.

Translation example. Continuing with this example, how can we express the same query as a CIQLog (in
fact, CIQLogNR) rule? ¿e following CIQLog rule shows the answer to that question:
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1 root(id1(i)) ∧ O(id1(i),child) ∧
child(id1(i),id2(i),order(⊺,0)) ∧ L(id2(i),paperlist) ∧ O(id2(i),child) ∧

3 if v1 ≠ nil then (
child(id2(i),id3(i,v1),order(order(⊺,0),0,v1)) ∧ L(id3(i,v1), author) ∧

5 if v2 ≠ nil then (

if v3 ≠ nil then (

7 child(id3(i,v1), id4(i,v1,v2),order(order(⊺,0),0,v2)) ∧
deep-copy(id4(i,v1,v2),v2) ) ) )

9 ←Ð root(i) ∧ (child+(i, v1) ∧ L(v1, author) ∧

(child+(i, v2) ∧ L(v2, paper) ∧

11 (child(v2, v3) ∧ L(v3, author) ∧ v3 ≗bij v1
∨ v3 = nil)

13 ∨ v2 = nil)
∨ v1 = nil)

¿e same abbreviations of head formulas as in the translation of Xcerpt in Chapter 3 are used:

child(id1(x⃗1),id2(x⃗2),o)
abstracts the edge construction necessary in CIQLog and thus is an abbrevation for

1 (id1(x⃗1),idN(x⃗2)) ∧ (id2(x⃗2),idN(x⃗2)) ∧ pos(idN(x⃗2),order(⊺,0))
Wealso implicitly omit the document order≺ as parameter for all order terms. ¿at is, twobinding vectors
for the same query variables are ordered by looking at the bindings of the query variables in sequence
and considering their relative position in document order ≺ (which is provided, e.g., by child+(n,n′)∨
◂
child
+
(n,n′), i.e., n is before n′ if it is a ancestor of n′ or before n′ in ◂child

+
.

¿e most notable di�erence to the translations for XPath or even Xcerpt is the extraordinary amount
of conditional construction (and corresponding ∨v = nil for some variable v). As discussed above, this
is due to the nature of XQuery expressions where non matching sub-expression o en do not a�ect the
matching of their superordinate expressions. Each of the conditionals “guards” one sub-expression and
ensures that it is omitted from the result if there are no bindings for the guard variable (but without
a�ecting the remainder of the head construction).

¿e other striking feature of the translation are the unusually (and at �rst glance, unnecessarily) com-
plex order terms (e.g., line 4 and line 7). ¿ey are necessary to allow arbitrary occurrences of for loops
(and thus arbitrarily long sequences of constructed elements) to occur in arbitrary positions in sequences
of XQuery expressions within the same element constructor. First, notice, that the order terms in line 4
and 7 are the same. ¿is is possibly since order is only relevant between edges with the same source
and these order terms are on edges with di�erent source. In the translation below this is re�ected by
“resetting” the nesting of order terms at any element construction (cases 2, 3 in Table 34).

To further illustrate the need for nested order terms, let’s add another XQuery expression before the
outer for loop but within the paperlist element:

1 <paperlist>

<abc>()</abc>

3 for $a in $inp/descendant::author return

<author> for $p in $inp/descendant::paper return

5 if some $x in $p/child::author satisfies deep-equal($x, $a)

72



then $p

7 </author>

</paperlist>

¿e body of the resulting CIQLog rule is unchanged, but in the head we have to construct the new element,
but also to adapt the order terms (omitting the unchanged body):

root(id1(i)) ∧ O(id1(i),child) ∧
2 child(id1(i),id2(i),order(⊺,0)) ∧ L(id2(i),paperlist) ∧ O(id2(i),child) ∧

child(id2(i),idn(i),order(⊺,0)) ∧ L(idn(i),abc) ∧ O(idn(i),child) ∧
4 if v1 ≠ nil then (

child(id2(i),id3(i,v1),order(order(⊺,1),0,v1)) ∧ L(id3(i,v1), author) ∧

6 if v2 ≠ nil then (

if v3 ≠ nil then (

8 child(id3(i,v1), id4(i,v1,v2),order(order(⊺,0),0,v2)) ∧
deep-copy(id4(i,v1,v2),v2) ) ) )

In line 5, we no longer use o�set 0 but o�set 1. ¿at is t1 = order(⊺,0), the order term for the new abc, is al-
ways smaller (wrt. the order onorder invention termsde�ned in Section 2.2.1) than t2 = order(order(⊺, 1),0,v1))
regardless of the binding for v1. Here, that is the case as the parent order term of t2 is the same as t1 up to
the o�set which is higher and thus t1 < t2.

Similar changes occur if the added element is at the end or a for loop (in which case the parent order
terms of the elements created by the original and by the new for loop are the same, except for the o�set).

Instead of adding abc before the loop, we might also want to add it within the loop:

1 <paperlist>

for $a in $inp/descendant::author return

3 <abc>()</abc>

<author> for $p in $inp/descendant::paper return

5 if some $x in $p/child::author satisfies deep-equal($x, $a)

then $p

7 </author>

</paperlist>

Again, this can be addressed by adapting the order terms, in this case the new element shares the same
order term as the author element contained in the loop, but with a smaller o�set:

root(id1(i)) ∧ O(id1(i),child) ∧
2 child(id1(i),id2(i),order(⊺,0)) ∧ L(id2(i),paperlist) ∧ O(id2(i),child) ∧

if v1 ≠ nil then (
4 child(id2(i),idn(i,v1),order(order(⊺,0),0,v1)) ∧ L(idn(i,v1),abc) ∧

O(idn(i,v1),child) ∧
6 child(id2(i),id3(i,v1),order(order(⊺,0),1,v1)) ∧ L(id3(i,v1), author) ∧

if v2 ≠ nil then (

8 if v3 ≠ nil then (

child(id3(i,v1), id4(i,v1,v2),order(order(⊺,0),0,v2)) ∧
10 deep-copy(id4(i,v1,v2),v2) ) ) )
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¿e nesting level of order terms increases only if for loops are contained within each other without
intermediate element construction as in the �nal example (where we delete the author around the inner
loop).

<paperlist>

2 for $a in $inp/descendant::author return

<abc>()</abc>

4 for $p in $inp/descendant::paper return

if some $x in $p/child::author satisfies deep-equal($x, $a)

6 then $p

</paperlist>

Now the order terms for the elements created by the inner loop depend on the order terms for the
outer loop. It is still ensured, that the order term for the abc is before the order terms of all the elements
in the inner loop since it is the same as their parent order term except for the o�set which is smaller.

1 root(id1(i)) ∧ O(id1(i),child) ∧
child(id1(i),id2(i),order(⊺,0)) ∧ L(id2(i),paperlist) ∧ O(id2(i),child) ∧

3 if v1 ≠ nil then (
child(id2(i),idn(i,v1),order(order(⊺,0),0,v1)) ∧ L(idn(i,v1),abc) ∧ O(idn(i,v1),child) ∧

5 if v2 ≠ nil then (

if v3 ≠ nil then (

7 child(id2(i), id3(i,v1,v2),order(order(order(⊺,0),1,v1),0,v2)) ∧
deep-copy(id3(i,v1,v2),v2) ) ) )

Translation function. ¿e actual translation of composition-free XQuery expressions to CIQLog is spec-
i�ed by trXQuery. As for the translation of Xcerpt, we use an environment E containing mappings from
XQuery variables to CIQLog variables and the list of current iteration variables. In addition, we use O to
hold information about the current order term. O is a triple ⟨g ∶ term,o ∶ o�set, i ∶ order vars⟩ where g
is the current parent order term, o the current o�set, and i the list of order variables. We use O.g, O.o,
andO.i to refer to each of the components. If there is no parent order term, we use the canonical empty
order term ⊺ from Section 2.2.1. Finally, we write order(O) as abbreviation for order(O.g,O.o,O.i).

Given an XQuery expression P, trXQuery computes a corresponding CIQLog expression as follows:

trXQuery⟨P⟩ = root(rc) ∧OCHILD(rc) ∧ C ←Ð root(rq) ∧Q
where rq be a new variable, rc = id(rq) with id a new identifier

(C,Q) = trXQuery(E ,(⊺,0, []), rc)⟨P⟩ with
(inp, rq) ∈ E and E .iter = [rq].

As for Xcerpt, this is mainly a wrapper adding root restrictions and root construction around the
result of the actual translation which is computed by trXQuery with a new environment initialized to contain
amapping for the canonical XQuery input variable $inp to the root of theXMLdocument and an iteration
sequence containing only the CIQLog variable corresponding to $inp. ¿us, for each root node of the input
document (of which there is exactly one, if the input is an XML tree, but may be several if we allow XML
forests) a (distinct) result for P is computed. ¿e order environment O is initialized with (⊺,0, []), i.e.,
the empty order term, o�set 0, and no iteration variables. Finally, we also pass rc the parent construct
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variable to trXQuery

functionXQuery = CIQLog expression

trXQuery(E ,O, p)⟨()⟩ = (⊺,⊺)

trXQuery(E ,O, p)⟨<l> q </l>⟩ = (L(v, l) ∧ CHILD(p,v,order(O)) ∧OCHILD(v) ∧ C,Q)
where v = id(E .iter) and id a new identifier

(C,Q) = trXQuery(E ,(⊺,0, []), p)⟨q⟩

trXQuery(E ,O, p)⟨<lab($xi)> q </lab($xi>⟩ = (≅ (E(xi),v) ∧ CHILD(p,v,order(O)) ∧OCHILD(v) ∧ C,Q)
where v = id(E .iter) and id a new identifier

(C,Q) = trXQuery(E ,(⊺,0, []), p)⟨q⟩

trXQuery(E ,O, p)⟨$xi⟩ = (deep-copy(E(xi),v) ∧ CHILD(p,v,order(O)),⊺)
where v = id(E .iter) and id a new identifier

trXQuery(E ,O, p)⟨$xi/step⟩ = (if r ≠ nilthendeep-copy(r,v)∧ CHILD(p,v,order(O)),(Qs∨ r = nil))
where (Qs, r) = tqc(E ′)⟨$xi/step⟩ with E ′ = E but E ′.iter = E .iter ○ r

v = id(E .iter ○ r) and id a new identifier

trXQuery(E ,O, p)⟨q1 q2⟩ = (C1∧C2,Q1∧Q2) where (C1,Q1) = trXQuery(E ,O, p)⟨q1⟩
(C2,Q2) = trXQuery(E ,(O.g,O.o+ 1,O.i), p)⟨q2⟩
query sequence is left-associative, i.e., q1 no sequence

trXQuery(E ,O, p)⟨for $xi in s return q⟩ = ( if r ≠ nil then C,(Qs ∧Q ∨ r = nil))
where (Qs, r) = tqc(E)⟨s⟩ with E ′ = E but E ′.iter = E .iter ○ r

(C,Q) = trXQuery(E ′ ++ (xi, r),(order(O),0, r), p)⟨q⟩

trXQuery(E ,O, p)⟨if cond then q⟩ = ( if r ≠ nil then C,(Qc ∧Q ∨ r = nil))
where (Qc, r) = tqc(E)⟨cond⟩

(C,Q) = trXQuery(E ,O, p)⟨q⟩

Table 34. Translating composition-free XQuery

¿e trXQuery(E ,O, p) is speci�ed in full in Table 34. As stated, it takes an environment E , an order envi-
ronmentO, a parent construct variable, and, of course, the XQuery expression as parameter. It returns a
pair (C,Q) of CIQLog formulas,C a conjunction of head atoms,Q a body formula. ¿e intuitive semantics
of trXQuery is that the result of C applied to the bindings provided by Q (i.e., C ←Ð Q) is isomorphic to the
result of the XQuery expression under the given E , O, and parent construct variable (resp. its XQuery
counterpart).

¿e translation uses a helper function tqc for the translation of XQuery conditions which is given
in Table 36. Before turning to tqc, note the structural similarities between trXQuery and the above seman-
tics for composition-free XQuery (which is due to [47, 8]). In contrast to that semantics, however, the
translation has to split up the XQuery expression into a speci�cation of the construction (for the CIQLog
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rule head) and a CIQLog query expressing relations on the nodes of the input tree. ¿is split makes the
nature of XQuery expressions, whether they are mainly about querying the input nodes or about creating
output, eminently visible in trXQuery. E.g., element construction (cases 2–3) does not a�ect the query (the
Q part), but only the construction. On the other hand, all the conditions (in Table 36) used, e.g., for
the in expression of for loops (case 7) only result in query formula and have in�uence on the construc-
tion. Regarding, the order environment O and its management, it is worth pointing out, that element
construction resets that environment (cases 2–3) by using a (⊺,0, []) for the translation of contained ex-
pressions. In contrast, iteration (case 7) adds to the nesting depth of order terms of contained expressions
by using (order(order(O),o, r) as order environment for the translation of nested expressions. Finally,
a sequence of queries (case 6) translates the �rst query with the given order environment, but increases
the o�set for each following query. For case 6, we assume that query sequence operator is le -associative,
i.e., q1 does not consist in a sequence of two other queries.

As stated, conditions are translated using tqc speci�ed in Table 36, which also takes an environment E
in addition to the condition to be translated and returns pairs of CIQLog body formulas and query variables.
¿e returned query variable identi�es a newly created variable, if there is any. It uses the same helper
function relation(axis) as the translation of XPath, see Section 4.2.2.

In one aspect, we deviate slightly fromXQuery and the above semantics for composition-freeXQuery:
we always construct new forest whereas XQuery expressions may return simply lists of bindings into the
existing data. In other words, we implicitly assume a root element around any XQuery expression to be
translated. Without this assumption the result computed by our translation is only correct up to node
identity wrt. the above semantics. ¿is can be addressed by distinguishing between expressions within
(at least one) element constructors and those outside of any element constructors. For the latter, we use,
instead of deep-copy, direct references to variables and their bindings in the head.

Order Example. We conclude with a further illustration of the role of order terms in XQuery. Consider
the following XQuery program that generates a list of a, b,c, and d tags under a common root r, but the
order and number of those tags depends on the number of bindings for $inp/descendant::*:

<r>

2 for $x in $inp/descendant::* return

<a>()</a>

4 for $y in $inp/descendant::* return

for $z in $inp/descendant::* return

6 <b>()</b> <c>()</c>

<d>()</d>

8 </r>

Assuming, for instance, that $inp/descendant::*: matches exactly two nodes in the input, the result-
ing XML document looks as follows:

<r>

2 <a />

<b /> <c /> <b /> <c /> <b /> <c /> <b /> <c />

4 <d />

<a />

6 <b /> <c /> <b /> <c /> <b /> <c /> <b /> <c />
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functionXQuery = CIQLog expression

tqc(E)⟨$xi/axis::l⟩ = (relation(axis)(E(xi),v) ∧ L(v, l),v)
where v = id(E .iter) and id new identifier

tqc(E)⟨$xi/axis::node()⟩ = (relation(axis)(E(xi),v) where v = id(E .iter) and id a new identifier

tqc(E)⟨$xi = $xj⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(E(xi) ≐ E(xj),E(xi)) if = is node equal

(E(xi) ≅ E(xj),E(xi)) if = is atomic equal

(E(xi) ≗bij E(xj),E(xi)) if = is deep equal

tqc(E)⟨$xi = <l/>⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(false, r) if = is node equal and r new var.

(L(E(xi), l),E(xi)) if = is atomic equal

(L(E(xi), l) ∧ outdeg(E(xi),0),E(xi)) if = is deep equal

tqc(E)⟨q1 and q2⟩ = (Q1 ∧Q2 ∧ r = (r1 ≠ nil ∧ r2 ≠ nil), r)
where r is a new variable

(Q1, r1) = tqc(E)⟨q1⟩
(Q2, r2) = tqc(E)⟨q2⟩

tqc(E)⟨q1 or q2⟩ = ((Q1 ∨Q2) ∧ r = (r1 ≠ nil ∨ r2 ≠ nil), r)
where r is a new variable

(Q1, r1) = tqc(E)⟨q1⟩
(Q2, r2) = tqc(E)⟨q2⟩

tqc(E)⟨not q⟩ = (¬(Q), r) where (Q, r) = tqc(E)⟨q⟩

tqc(E)⟨true⟩ = (r = true, r) where r is a new variable (true arbitrary not-nil value)

tqc(E)⟨some $xi in s satisfies c⟩ = ((Qs ∧Q ∨ r = nil), r′)
where (Qs, r) = tqc(E)⟨s⟩ with E ′ = E but E ′.iter = E .iter ○ r

(Q, r′) = tqc(E ′ ++ (xi, r))⟨c⟩

Table 36. Translating composition-free XQuery: conditions
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<d />

8 </r>

¿e query returns as many sequences of a and d elements surrounding sequences of b and c elements as
there are matches for $inp/descendant::*.¿e inner sequence of b’s and c’s is also repeated once for each
match. In CIQLog, we use node invention terms with appropriate grouping variables to obtain asmany new
nodes as there are matches, and order (invention) terms to ensure that their order is correct. Applying
trXQuery to the above program yields:

root(id1(i)) ∧ O(id1(i),child) ∧
2 child(id1(i),id2(i),order(⊺,0)) ∧ L(id2(i),r) ∧ O(id2(i),child) ∧

if v1 ≠ nil then (
4 child(id2(i),id3(i,v1),order(order(⊺,0),0,v1)) ∧ L(id3(i,v1), a) ∧

if v2 ≠ nil then ( if v3 ≠ nil then (

6 child(id2(i),id4(i,v1,v2,v3),order(order(order(⊺,0),1,v1),0,v2,v3)) ∧
L(id4(i,v1,v2), b) ∧

8 child(id2(i),id5(i,v1,v2,v3),order(order(order(⊺,0),1,v1),1,v2,v3)) ∧
L(id5(i,v1,v2), c) ) ) ∧

10 child(id2(i),id6(i,v1),order(order(⊺,0),2,v1)) ∧ L(id6(i,v1), d) )
←Ð root(i) ∧ (child+(i, v1) ∧

12 (child+(i, v2) ∧
(child(v2, v3) ∧

14 ∨ v3 = nil)
∨ v2 = nil)

16 ∨ v1 = nil)

Notice, how the order terms for the construction of b and c elements have the same parent order term
which in turn is between the order term of the a and of the d children of r.

With this example, we conclude the illustration of the translation function for composition-freeXQuery
expressions to CIQLog. Before a brief outlook on an extension of that translation to a larger fragment of
XQuery, the next section discusses the equivalence between the translation function and the above se-
mantics for composition-free XQuery from [8].

4.3.5 Equivalence

To establish equivalence between the semantics of composition-free XQuery a er [8] given in Table 31
and the semantic of a CIQLog rule generated by trXQuery for a given composition-free XQuery expression P,
�rst consider that XML forests as used in the semantics are merely a special case of CIQLog data graphs
(under the mapping from axis to data graph relations given by relation in Section 4.2.2.

¿us, we have to establish that the data graph constructed by the CIQLog rule resulting from a transla-
tion of P is isomorphic to the XML forest F returned by Table 31 on P if restricted to the sub-trees rooted
at the binding nodes e⃗.

For simplicity, we assume in the following that P is wrapped in some root element root. ¿is avoids
having to consider multiple binding nodes (and thus forests instead of trees). It also addresses that above
remark, that the CIQLog semantics is always a new tree, whereas Table 31 allows fragments of an original
tree to be returned. However, up to node identity the two forms are equivalent.
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¿eorem 4.2. ¿e semantics of the CIQLog expression returned by trXQuery for a given XQuery expression P is
equivalent to the semantics of P under Table 31 up to node identity.

Proof (Sketch). ¿e proof is by structural induction over the shape of an XQuery expression.
For case 1 (()), both semantics do not change the bindings of any variables and do not add any con-

struction. In particular, if <root>()</root> is the entire program both semantics are obviously equiv-
alent (both return a tree with single, empty node root (cf. the trXcerpt wrapper above and case 2 in both
semantics).

For case 2 and 3, element construction, add a root node with given label around the bindings returned
by the evaluation of their child expressions. ¿e iteration is on bindings in e⃗, resp. iteration variables in
E .iter which are in all cases unchanged from the call of the semantics function to nested calls except for
the iteration case (case 7), where they are extended in both semantics in the same way, see below.

For case 4, observe that both semantics construct a tree isomorphic to the one rooted at a binding ei
for xi. However, ~ � returns directly (F, [ei]), whereas trXQuery returns a deep-copy of the subtree rooted
at ei. If we disregard node identity, however, the two subtrees are equivalent.

For case 5, the same observation holds. In addition to case 4, both semantics add restrictions to the
returned bindings, as expressed by the path expression. In the case of trXQuery this is achieved by the call to
tqc. For ~ � we also need to consider case 9.

For case 6, the sequence of two queries, both semantics delegate the translation to recursive calls on
the operands and combine the result using union resp. conjunction. Note, that the involved order terms
of trXQuery are covered in ~ � simply by concatenating the bindings returned by the second query a er the
end of the bindings of the �rst query (see de�nition of ⊎ in Section 4.3.3.

For case 7, we observe that both semantics delegate the translation, though trXQuery uses tqc for the in
expression. ¿is is nevertheless equivalent, as an in expression in composition-free XQuery may only
contain a step. ¿is is not true of XQuery where exactly this case can not always be translated to a single
CIQLog rule. ¿e iteration variables are in both cases extended in the same way (by the single variable
bound in the in expression).

Analog observations hold for case 8.
If one remembers that cases 10–15 of ~ � handle expressions that only occur in conditions (but not in

general query contexts), it is easy to verify that they are equivalent to the corresponding cases of tqc. �

4.4 Beyond Composition-free XQuery

In the previous sections, we have considered two important fragments of XQuery, viz. navigational XPath
and composition-free XQuery, and shown ho to translate them into CIQLogNR.

We have chosen composition-free XQuery as it limits all relations to nodes of the input tree, just
like in CIQLogNR. However, in full CIQLog we can also query invented nodes resulting from a previous rule
application. We can exploit this to translate a larger fragment of query, viz. XQuery without user-de�ned
functions. Intuitively, each expression is partitioned into a sequence of rules such that a following rule
depends only on preceding ones. Whenever we construct data, that is then queried, we introduce a new
rule.

Incidentally, this approach is used and described in more detail in [49] where a translation from
XQuery to Xcerpt is de�ned. In fact, we can use that translation to �rst create an Xcerpt program for a
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given XQuery expression and then translate that Xcerpt program to CIQLog as described in Section 4.
In both cases, the resulting CIQLog program is non-recursive since each rule depends only on rules

generated from nested XQuery expressions. ¿is coincides with results from [47] where it is shown that
XQuerywithout user-de�ned functions and deep-equal hasNEXPTIME-complete query complexity, just
as non-recursive CIQLog (recall that non-recursive CIQLog has the same complexity as non-recursive logic
programming).

Finally, for full XQuery we have to consider user-de�ned, possibly recursive functions and the full
operator library of XQuery [50]. ¿e prior can be translated by the same scheme as above, but now a rule
may depend also on the results of itself or rules generated from superordinate expressions. ¿e latter can
be provided as prede�ned relations or, where possible, implemented as CIQLog rules, and does not add to
the expressiveness of full CIQLog.

4.5 Conclusion

CIQLog is designed as an abstraction of the core aspects ofWebquery languages. Its non-recursive fragment
CIQLogNR is well-suited to specify and implement diverse query languages without query composition. In
this chapter, we show how navigational XPath and a large fragment of XQuery, composition-free XQuery
as de�ned in [47], can be translated to CIQLog while preserving the standard semantics.

¿e translation also highlights one of the core di�erences betweenXPath (and, to some extent, Xcerpt)
and XQuery: Where we can consider navigational XPath without caring about the precise iteration order
and consider the semantics of XPath-expressions as sets of nodes, XQuery provides a much greater con-
trol over the iteration order on binding nodes and the order of constructed elements in the result. ¿ough
this certainly is bene�cial in some cases, there are many queries for which such precise control is point-
less. ¿is has been recognized in the design of XQuery through the addition of the unordered operator
which, essentially, switches from sequence- to (multi-) set-based semantics. Xcerpt takes the dual ap-
proach: We assume that in most cases the query author is not all that much concerned about the order of
result elements. If that is the case, a grouping expression may be adorned by an explicit order-by clause.
Another reason for the more involved order terms in the translation of XQuery is that we speci�cally
disallow lists of terms in Xcerpt grouping expressions in Chapter 3. If we allow such expressions as in,
e.g., r[a, all(b, c)group-by(var X), d], we arrive at similarly involved order terms as in the translation
presented here.

Together with the CIQCAG algebra the above translation gives as an e�cient and in many cases optimal
evaluation of composition-free XQuery (and navigational XPath). For composition-free XQuery on tree,
forest, or even cig data, we obtainO(q⋅n) time and space bounds if the query is tree shaped andO(nqg

+

q ⋅ n) where q is the size of the query, n the size of the data and qg the number of answer variables or
variables with non-tree edges in the query. On XML data, the space bound is evenO(q ⋅d). ¿e detailed
complexities of CIQCAG are discussed in [34].
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Chapter 5

Translating SPARQL

5.1 Introduction

Compared with XML, the �eld of RDF query languages is less mature and has not received as much at-
tention from research. Recently, the W3C has started to derive a standard RDF query language, called
SPARQL [65], that is, visibly in�uenced by languages such as RDQL [58], RQL[43], and SeRQL[14], aim-
ing to create a stable foundation for use, implementation, and research on RDF databases and query
languages. Fundamentally, SPARQL is a fairly simple, �rst-order-style query language in the spirit of
SQL or OQL. However, the speci�cs of RDF have lead to a number of unusual features that, arguably,
make SPARQLmore suited to RDF querying than previous approaches such as RDQL [58]. However, the
price is a more involved semantics complemented by a tendency in [65] to rede�ne or ignore established
notions from relational and XML query languages rather than build upon them.

Nevertheless, SPARQL is expected to become the “lingua franca” of RDF querying and thus well
worth further investigation. In the following sections, we �rst brie�y introduce into SPARQL and its
semantics (based on [63] and [64] but extended to full SPARQL queries rather than only patterns). From
the discussion of the semantics, we turn to the translation from SPARQL to CIQLogNR which turns out to
be closely aligned with the semantics of [63]. ¿e translation is also the �rst purely logical semantics for
SPARQL which illustrates how to integrate SPARQL with rule-based reasoning approaches proli�c on
the Semantic Web. We brie�y discuss along one such approach, viz. RDFLog, the e�ects of extending
SPARQL with rules on the translation to CIQLog.

5.2 SPARQL Syntax and Semantics in 1000 Words

Example. In Section 1.4, we introduce RDF and its data model together with a mapping to CIQLog data
graphs. Recall, the sample data used there, which is depicted again in Figure 17 and represents articles in
a given conference and their authors.

¿e following SPARQL query selects from that graph all articles created by someone with the full-
name “M. T. Cicero” and returns a new graph where the dc:creator relation of the original graph is inverted
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Figure 17. Exemplary Data Graph: RDF Conference Data (simpli�cation of Figure 4 omitting the sequence container
and edge positions)

to my:published.1

CONSTRUCT { ?p my:published ?a }

2 WHERE { ?a rdf:type bib:Article AND ?a dc:creator ?p

AND ?p vcard:FN ‘M. T. Cicero’ }

¿e query illustrates SPARQLs fundamental query construct: a pattern (s, p,o) for RDF triples (whose
components are usually thought of as subject, predicate, object). Any RDF triple is also a triple pattern,
but triple patterns allow variables for each component. Furthermore, SPARQL also allows literals in
subject position, anticipating the same change also in RDF itself. We use the variant syntax for SPARQL
discussed in [63] to ease the de�nition of syntax and semantics of the language. For instance, standard
SPARQL, uses . instead of AND for triple conjunction. We consider two forms of SPARQL queries, viz.
SELECT queries that return list of variable bindings and CONSTRUCT queries that return new RDF graphs.
Triple patterns contained in a CONSTRUCT clause (or “template”) are instantiatedwith the variable bindings
provided by the evaluation of the triple pattern in the WHERE clause. We omit named graphs and assume
that all queries are on the single input graph. An extension of the discussion to named graphs is easy (and
partially demonstrated in [64]) but only distracts from the salient points of the discussion.

¿e full grammar of SPARQL queries as considered here (extending [63] by CONSTRUCT queries) is as
follows:

⟨query⟩ ::= ‘CONSTRUCT’ ⟨template⟩ ‘WHERE’ ⟨pattern⟩
| ‘SELECT’ ⟨variable⟩+ ‘WHERE’ ⟨pattern⟩

1Here, and in the following we use namespace pre�xes to abbreviate IRIs. ¿e usual IRIs are assumed for rdf, rdfs, dc (dublin
core), foaf (friend-of-a-friend), vcard vocabularies. my is a pre�x bound to an arbitrary IRI.
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⟨template⟩ ::= ⟨triple⟩ | ⟨template⟩ ‘AND’ ⟨template⟩ | ‘{’ template ‘}’
⟨triple⟩ ::= ‘(’ ⟨resource⟩‘,’ ⟨predicate⟩‘,’ ⟨resource⟩ ‘)’
⟨resource⟩ ::= ⟨iri⟩ | ⟨variable⟩ | ⟨literal⟩ | ⟨blank⟩
⟨predicate⟩ ::= ⟨iri⟩ | ⟨variable⟩
⟨variable⟩ ::= ‘?’ ⟨identi�er⟩
⟨pattern⟩ ::= ⟨triple⟩ | ‘{’ ⟨pattern⟩ ‘}’

| ⟨pattern⟩ ‘FILTER’ ‘(’ ⟨condition⟩ ‘)’ |
| ⟨pattern⟩ ‘AND’ ⟨pattern⟩ | ⟨pattern⟩ ‘UNION’ ⟨pattern⟩
| ⟨pattern⟩ ‘MINUS’ ⟨pattern⟩ | ⟨pattern⟩ ‘OPT’ ⟨pattern⟩

⟨condition⟩ ::= ⟨variable⟩ ‘=’ ⟨variable⟩ | ⟨variable⟩ ‘=’ (⟨literal⟩|⟨iri⟩)
| ‘BOUND(’ ⟨variable⟩ ‘)’ | ‘isBLANK(’ ⟨variable⟩ ‘)’
| ‘isLITERAL(’ ⟨variable⟩ ‘)’ | ‘isIRI(’ ⟨variable⟩ ‘)’
| ⟨negation⟩ | ⟨conjunction⟩ | ⟨disjunction⟩

⟨negation⟩ ::= ‘¬’⟨condition⟩
⟨conjunction⟩ ::= ⟨condition⟩ ‘∧’ ⟨condition⟩
⟨disjunction⟩ ::= ⟨condition⟩ ‘∨’ ⟨condition⟩

We pose some additional syntactic restrictions: SPARQL queries are range-restricted, i.e., all variables
in the “head” (CONSTRUCT or SELECT clause) also occurs in the “body” (WHERE clause) of the query. We
assume error-free SPARQL expressions (in contrast to [63] and [64]), i.e., for each FILTER expression all
variables occurring in the (right-hand) condition must also occur in the (le -hand) pattern.

Finally, we allow only valid RDF constructions in CONSTRUCT clauses, i.e., no literal may occur as a
subject, all variables occurring in subject position are never bound to literals, and all variables occurring
in predicate position are only ever bound to IRIs (but not to literals or blank nodes). ¿e �rst condition
can be enforced statically, the others by adding appropriate isIRI or negated isLITERAL �lters to the query
body.

Following [64], we de�ne the semantics of SPARQL queries based on substitutions. A substitution
θ = ⟨v1,n1, . . . ,vk ∶ nk⟩ with vi ∈ Vars(Q) ∧ ni ∈ nodes(D)} for a query Q over a data graph D (as in
Section 1.4) maps some variables from Q to nodes in D. For a substitution θ we denote with dom(θ) the
variables mapped by θ. Given a triple pattern t = (s, p,o), we denote with tθ the application of θ to t
replacing all occurrences of variables mapped in θ by their mapping in t. For a triple (s, p,o) containing
no variables, we say (s, p,o) ∈ D if there is a p labeled edge between s and o labeled nodes in D.

On sets of substitutions the usual relational operations&,∪, and∖ apply. We de�ne the (le ) semi-join
R X S = (R & S) ∪ (R ∖ S).

Finally, given a template t, i.e., a conjunction of triple patterns, std(t) returns t but replacing each
blank node identi�er (i.e., strings of the form _:identi�er) with a new blank node identi�er not occurring
in D and not created by a prior application of std. Intuitively, std(t) creates a new instance of t such that
the blank nodes of two instances (and any instance with the input graph) do not overlap.

Using these de�nitions, Table 37 gives the semantics of SPARQL SELECT and CONSTRUCT queries by
means of ~ �D. ~ �D translates the WHERE clause using ~ �DSubst and a CONSTRUCT clause, if present, using
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� (s, p,o) �DSubst = {θ ∶ dom(θ) = Vars((s, p,o)) ∧ tθ ∈ D}�
pattern1 AND pattern2

�D
Subst

=
�
pattern1

�D
Subst

&

�
pattern2

�D
Subst�

pattern1 UNION pattern2

�D
Subst

=
�
pattern1

�D
Subst

∪

�
pattern2

�D
Subst�

pattern1 MINUS pattern2

�D
Subst

=
�
pattern1

�D
Subst

∖

�
pattern2

�D
Subst�

pattern1 OPT pattern2

�D
Subst

=
�
pattern1

�D
Subst
X
�
pattern2

�D
Subst�

pattern FILTER condition
�D

Subst = {θ ∈ � pattern �DSubst ∶ Vars(condition) ⊂ dom(θ)
∧ ~ condition �DBool (θ)}

~ condition1 ∧ condition2 �
D
Bool (θ) = ~ condition1 �

D
Bool (θ) ∧ ~ condition2 �

D
Bool (θ)

~ condition1 ∨ condition2 �
D
Bool (θ) = ~ condition1 �

D
Bool (θ) ∨ ~ condition2 �

D
Bool (θ)

~¬condition �DBool (θ) = ¬ ~ condition �DBool (θ)�
BOUND(?v) �DBool (θ) = vθ ≠ nil�
isLITERAL(?v) �DBool (θ) = vθ ∈ L�
isIRI(?v) �DBool (θ) = vθ ∈ I�
isBLANK(?v) �DBool (θ) = vθ ∈ B

~ ?v = literal �DBool (θ) = vθ = literal

~ ?u = ?v �DBool (θ) = uθ = vθ ∧ uθ ≠ nil

�
triple

�D
Graph (θ) = tripleθ if ∀v ∈ Vars(triple) ∶ vθ ≠ nil, ⊺ otherwise�

template1 AND template2
�D

Graph
(θ) =

�
template1

�D
Graph
(θ) ∪

�
template2

�D
Graph
(θ)�

CONSTRUCT t WHERE p
�D =⋃θ∈~ P �D

Subst

�
std(t) �DGraph (θ)�

SELECTV WHERE p
�D = πV(~P �DSubst)

Table 37. Semantics for SPARQL
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~ �DGraph. For a SELECT query, we project the set of substitutions returned by ~ �
D
Subst to the set of answer

variables V. For a CONSTRUCT query we apply each substitution θ ∈ ~P �DSubst to a new instance of the
template t contained in the CONSTRUCT clause created using std. Applying a substitutions is straightforward
except that triples containing one or more variables that bound to nil by θ are omitted entirely.

¿e semantics of a SPARQL pattern P contained in the WHERE clause is given by ~P �D and produces
a set of substitutions (or bindings) for variables in P. Triple patterns t (case 1) are evaluated to the set
of substitutions θ such that the tθ contains no more variables and falls in D. Pattern compositions AND,
UNION, MINUS, and OPT are reduced to the appropriate operations on sets of substitutions (cases 2–4).
FILTER expressions (case 5) are again evaluated straightforwardly, as restrictions on the substitutions
returned by the (le -hand) pattern with the boolean formula that is provided by ~ �DBool for the condition
of the �lter expression. Vars(condition) ⊂ dom(θ) is not strictly necessary as it merely restates that we
only consider error-free SPARQL queries.

5.3 Translating SPARQL Queries

Translating SPARQL to CIQLog is, for the most part, a direct mirror of the semantics in Table 37. ¿emain
di�erence is when translating CONSTRUCT clauses. Here, we create value invention terms for each resource
in the template that depend on all variables in the CONSTRUCT clause. ¿is implements std in the above
semantics, i.e., the instantiation of the blank nodes for each substitution (i.e., binding tuple). ¿is implies,
however, that the result is not the data graph representation of an RDF graph in the sense of Section 1.4
since it may contain several nodes with the same (IRI or literal) label. he translation of WHERE clauses,
though, does not use repeated variable occurrences in the body but separate variables for each subject,
predicate, or object and label variables for common occurrences of the same SPARQL variable. ¿us it
can not distinguish between a graph with several nodes with the same label (each carrying some but not
all properties of the named resource) and one where all these nodes are collapsed. Nevertheless, we may
want to create a proper data graph representation by collapsing all such nodes. ¿is can be achieved in
CIQLog by a simple graph transformation on all nodes with the same label that exploits that value invention
in CIQLog can be parametrized with an equivalence relation. Usually, we assume node equality ≐, but in
this case we employ label equality ≅ and thus create only one node in the transformed graph per unique
node or edge label in the input graph.

Translation examples. To illustrate this point and the general translation more closely, consider again
the above SPARQL example:

1 CONSTRUCT { ?p my:published ?a }

WHERE { ?a rdf:type bib:Article AND ?a dc:creator ?p

3 AND ?p vcard:FN ‘M. T. Cicero’ }

In CIQLog, we can express the same query constructing a new graph with two nodes and one edge per
binding tuple for p and a. Here and in the following examples we omit conditionals if all variables are
non-optional and use pre�x abbreviations also for CIQLog labels:

1 L(id1(A),vp) ∧ (id1(A),id2(A)) ∧ L(id2(A),my:published) ∧
(id3(A),id2(A)) ∧ L(id3(A),va)

3 ←Ð L(s1,va) ∧ (s1,p1) ∧ L(p1,rdf:type) ∧
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(o1, p1) ∧ L(o1,bib:Article) ∧
5 L(s2,va) ∧ (s2,p2) ∧ L(p2,dc:creator) ∧ (o2, p2) ∧ L(o2,vp) ∧

L(s3,vp) ∧ (s3,p3) ∧ L(p3,vcard:FN) ∧ (o3,p3) ∧
7 L(o3,‘M. T. Cicero’)

¿e above CIQLog rule illustrates the general translation scheme: each triple pattern in the body is sep-
arately translated using new variables for subject, predicate, and object. If any of those is a SPARQL
variable, we add a label restriction on the respective variable and a label variable that is the associated
CIQLog variable of that SPARQL variable. In the head, triple patterns are also translated independently,
but now label restrictions are established with query variables (line 2). All node value expressions in the
head are over all variables in the CONSTRUCT clause (abbreviated above as A = [va,vp]). ¿is includes
possible optional variables (see next example). As equivalence relation we use here equality on labels, not
node identity.

In contrast to Xcerpt, XPath, and XQuery, we do not include root relations though if desired appro-
priate relations (e.g., to each named resource) can be easily added.

¿e second example focuses on the e�ect of OPT clauses and blank nodes in the head:

1 CONSTRUCT { _:group my:member ?a AND ?a my:otherAuthor ?p2 }

WHERE { ?a rdf:type bib:Article AND ?a dc:creator ?p

3 AND ?p vcard:FN ‘M. T. Cicero’

OPT { ?a dc:creator ?p2 FILTER (¬ ?p = ?p2) } }

We select in addition any further creators of a paper authored by Cicero. We return a graph over the
article and the optional further creator. _:group is a blank node (with local identi�er group. In CIQLogwe
obtain the following rule for this SPARQL query (withA = [va,vp,vp2])
L(id1(A), _:id1(A)) ∧ (id1(A),id2(A)) ∧ L(id2(A),my:member) ∧

2 (id3(A),id2(A)) ∧ L(id3(A),va) ∧
if vp ≠ nil ∧ p2 ≠ nil then

4 L(id4(A),va) ∧ (id4(A),id5(A)) ∧ L(id5(A),my:otherAuthor) ∧
(id6(A),id5(A)) ∧ L(id6(A),vp2) ←Ð

6 L(s1,va) ∧ (s1,p1) ∧ L(p1,rdf:type) ∧ (o1, p1) ∧ L(o1,bib:Article) ∧
L(s2,va) ∧ (s2,p2) ∧ L(p2,dc:creator) ∧ (o2,p2) ∧ L(o2,vp) ∧

8 L(s3,vp) ∧ (s3,p3) ∧ L(p3,vcard:FN) ∧ (o3,p3) ∧ L(o3,‘M.T.Cicero’) ∧
(L(s4,va) ∧ (s4,p4) ∧ L(p4,dc:creator) ∧ (o4,p4) ∧

10 L(o4,vp2) ∧ ¬(vp ≠ vp2)) ∨ true

First, in the body the optional is realized by an disjunction with true, thus ensuring that the query never
fails due to the optional part. In the head, we add a conditional around all triple pattern containing
optional variables. Notice, how we use value invention to instantiate a new blank node for each binding
pair in line 1.

Translation function. Guided by these examples, we can turn to the translation function for SPARQL,
trSPARQL, as speci�ed in Table 39. It employs two helper functions, tsh for translating CONSTRUCT clauses
and tsp for translating WHERE clauses. As for the translation of Xcerpt and XQuery we use an environment
containing mapping from SPARQL variables to those of CIQLog and a list of iteration variables that is
always the set of all variables occurring in the CONSTRUCT clause (case 1 in Table 39).

86



functionSPARQL expression = CIQLog expression

trSPARQL⟨CONSTRUCT template WHERE pattern⟩ = C ←Ð Q where (C,v) = tsh(E ′)⟨template⟩
(E ,Q) = tsp(∅)⟨pattern⟩
E ′ = E with E ′.iter = Vars(template)

trSPARQL⟨SELECT v1, . . . ,vn WHERE pattern⟩ = ans(E(v1), . . . ,E(vn))←Ð Q
where (E ,Q) = tsp(∅)⟨pattern⟩

tsh(E)⟨literal⟩ = (Lab(v, ‘literal’),v) where v = id(E .iter) with id new identifier

tsh(E)⟨iri⟩ = (Lab(v, iri),v) where v = id(E .iter) with id new identifier

tsh(E)⟨?vid⟩ = (Lab(v,E(vid)),v) where v = id(E .iter) with id new identifier

tsh(E)⟨(s, p,o)⟩ = ( if C then Fs ∧ Fp∧ Fo ∧ (vs,vp) ∧ (vos,vp),vs)
whereC = (v1 ≠ nil ∧ . . .∧ vk ≠ nil) where {v1, . . . ,vk} = Vars((s, p,o))

(Fs,vs) = tsh(E)⟨s⟩ (Fp,vp) = tsh(Es)⟨p⟩
(Fo,vo) = tsh(Ep)⟨o⟩

tsh(E)⟨t1 AND t2⟩ = (F1∧F2,v2) where (F1,v1) = tsp(E)⟨t1⟩
(F2,v2) = tsp(E)⟨t2⟩

Table 39. Translating SPARQL queries and CONSTRUCT clauses
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functionSPARQL expression = CIQLog expression

tsr(E)⟨literal⟩ = (E , Lab(v, ‘literal’),v) where v is a new variable

tsr(E)⟨iri⟩ = (E , Lab(v, iri),v) where v is a new variable

tsr(E)⟨?vid⟩ = (E ++ {(vid, l)}, Lab(v, l),v)
where v is a new variable and l = E(vid) if defined, otherwise a new variable

tsp(E)⟨(s, p,o)⟩ = (Eo,Fs ∧ Fp∧ Fo ∧ (vs,vp) ∧ (vos,vp))
where (Es,Fs,vs) = tsr(E)⟨s⟩ (Ep,Fp,vp) = tsr(Es)⟨p⟩

(Eo,Fo,vo) = tsr(Ep)⟨o⟩

tsp(E)⟨p1 AND p2⟩ = (E2,F1∧F2) where (E1,F1) = tsp(E)⟨p1⟩
(E2,F2) = tsp(E1)⟨p2⟩

tsp(E)⟨p1 UNION p2⟩ = (E2,F1∨F2) where (E1,F1) = tsp(E)⟨p1⟩
(E2,F2) = tsp(E1)⟨p2⟩

tsp(E)⟨p1 MINUS p2⟩ = (E2,F1∧¬(F2)) where (E1,F1) = tsp(E)⟨p1⟩
(E2,F2) = tsp(E1)⟨p2⟩

tsp(E)⟨p1 OPT p2⟩ = (E2},F1∧(F2∨true) where (E1,F1) = tsp(E)⟨p1⟩
(E2,F2) = tsp(E1)⟨p2⟩

tsp(E)⟨p1 FILTER p2⟩ = (E1,F1∧tsc(E1)⟨p2⟩) where (E1,F1) = tsp(E)⟨p1⟩

tsc(E)⟨c1 ∧ c2⟩ = tsc(E)⟨c1⟩ ∧ tsc(E)⟨c2⟩

tsc(E)⟨c1 ∨ c2⟩ = tsc(E)⟨c1⟩ ∨ tsc(E)⟨c2⟩

tsc(E)⟨¬c⟩ = ¬(tsc(E)⟨c⟩)

tsc(E)⟨?vid1 = ?vid2⟩ = E(vid1) = E(vid2)

tsc(E)⟨?vid = literal⟩ = E(vid1) = ‘literal’

tsc(E)⟨?vid = iri⟩ = E(vid = iri)

tsc(E)⟨BOUND(?vid)⟩ = E(vid) ≠ nil

tsc(E)⟨isBLANK(?vid)⟩ = E(vid) = _:identifier

tsc(E)⟨isLITERAL(?vid)⟩ = E(vid) = ‘string’

tsc(E)⟨isIRI(?vid)⟩ = ¬(tsc(E)⟨isLiteral(?vid)⟩ or tsc(E)⟨isLiteral(?vid)⟩)

Table 41. Translating SPARQL patterns and conditions
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¿e translation of SPARQL construct patterns is fairly unremarkable. Notice that variables are trans-
lated by retrieving the related label variable from the environment.

SPARQL patterns are translated using tsp, speci�ed in Table 41, and its helpers tsr (for resources)
and tsc (for conditions). Subjects, predicates, and objects are translated by always creating new variables
and placing label restrictions on those variables. When translating SPARQL variables, we establish label
restrictions with the associated label variable of CIQLog (l in case 3 of Table 41). Otherwise the translation
is fairly straightforward.

We conclude the translation of SPARQL with the conjecture that the graph constructed by trSPARQLP
contains (in the sense de�ned above), up to consistent renaming of blank nodes, the same triples as ~P �D.

Conjecture 5.1. For a given SPARQL CONSTRUCT query P there is a mapping f on literals, IRIs, and blank
nodes, that is the identity on literals and IRIs, such a triple (s, p,o) ∈ T if and only if (f(s), f(p), f(o)) ∈
~P �D where T is in the graph obtained from the evaluation of trSPARQLP.

5.4 From SPARQL to Rules: RDFLog

SPARQL queries can be considered as non-recursive, single-rule expressions. ¿ere have been some
approaches to extending SPARQL with rules, e.g., [64], or to embed SPARQL queries in a rule-based
query language.

¿e above translation yields a single CIQLog rule for each SPARQL query. Obviously, we can allow a
program to contain many such rules which then can provide input to each other.

However, there are a number of challenges when adding rules to an RDF query language that are
better addressed in RDFLog [15]. Most notably, SPARQL’s heads always group over all answer variables
which limits the kind of queries that can be expressed signi�cantly (at no gain in complexity as shown in
[15].

5.5 Conclusion

Compared with the translations for XQuery and Xcerpt, SPARQL is an easy target for translation to
CIQLog. ¿e main di�culty lies in the graph construction not in the query patterns. We have employed a
translation scheme using label variables above. ¿is emphasizes that SPARQLs domain is actually better
thought of as IRIs, literals, and blank node identi�er rather than as nodes of an RDF graph (as the model
theory might suggest), as done also in the semantics for SPARQL above and in [64]. For the most part,
we could nevertheless also employ a node-based translation scheme but then the result construction
becomes far more involved.
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