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tional algebra (and can, in fact, be implemented in standard SQL), but a novel data structure in�uenced
by Xcerpt’s memoization matrix and the complete answer aggregates approach allows for exponentially
more succinct storage of intermediate results for the tree core of a query. Together with a set of opera-
tors on this data structure, called sequence map, this enables CIQCAG to evaluate almost-tree queries with
nearly polynomial time limiting the degradation in performance to non-tree parts of the query.
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Chapter 1

Principles and Motivation

1.1 Introduction

We assignmeaning to things by enumerating their features (or properties or attributes) and placing them
in relation with other things. ¿is enables us to distinguish, classify, and, eventually, act upon such things.
¿e same applies to digital data items: to �nd, analyse, classify, and, eventually, use as basis for actions
we need to place data items in relation to other data items: A book to its author, a bank transaction to the
bank, the source and the target of the transaction, a patient to its treatment history, its doctor, etc.

How we describe these relations between data items (as well as their features) is the purview of data
models. Recently the relational data model, tailored to relations of arbitrary shape, has been comple-
mented by semi-structured data models tailored to Web data. What sets these data models apart from
relational data is an even greater focus on relations or links while delegating features or attributes to
second-class citizens or dropping them entirely, as in RDF. At the same time most of these data mod-
els share a strong hierarchical bias: XML is most o en considered tree data.1 RDF and other ontology
languages allow arbitrary graphs but ontologies o en have dominantly hierarchical “backbones”, formed,
e.g., by subclass or part-of relations. To summarize, structure is a central property of data and datamodels
determine what shape those structures may take.

When we want to actually do something with the data represented in any of these data models, we
use queries. Again, exploiting the relations among sought-for data items is essential: to �nd all authors
of books on a given topic, to �nd the bank with the highest transaction count, to identify an illness by
analysing patterns in a patient’s health records. ¿us queries mirror the structure of the sought-for data,
though o en with a richer vocabulary, allowing, e.g., for recursive relation traversal or don’t-care parts:
a patient is chronically ill if there is some illness (we don’t care which illness) that recurs regularly in
that patient’s health records. Queries may contain additional derived (i.e.., not explicitly represented
or “extensional”) relations—such as equalities or order between the value of data items. ¿e shape of a
query is, thus, not limited to the shape of the data but may contain additional relations. Only if we limit
a query to extensional relations must the shape of the query mirror (a substructure) of the shape of the
data. For instance, when querying tree data queries may take the only the shape of trees, if we allow only

1¿ough ID-links justify a more graph-like view of XML.
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extensional relations2, but may have arbitrary shape if we allow derived relations. To summarize, as for
data, structure is a central feature of queries and mirrors the structure of the sought-for data. However,
the structure of a query is linked to the structure of the query only if we consider exclusively extensional
relations in the query.

¿e reason we should care about the shape of the data or queries we are working with is a growing
canon of approaches that obtain better complexity and performance for query evaluation if certain limits
are imposed on the shape of data, queries, or both.

If we consider arbitrary data, we have little reliable means for compacting relation information. On
tree data, in contrast, we can use any number of encodings, e.g., interval encodings [16, 15], hierarchical
or path-based labeling [47], or schemes based on structural summaries [54]. In essence, these encodings
exploit the observation that structural relations in trees follow certain rules, e.g., each node has a unique
parent, the descendants of each node are contained in the descendants of all its ancestors, each node has
a unique following and preceeding sibling, etc. Interval encodings on trees, e.g., allow us to compact
closure relations quadratic in the tree size into a linear size interval encoding.

For queries, we can make a similar observation: if we allow arbitrary “links” in a query, we need to
manage relations between bindings for all nodes in the query at once. However, the relations between
the nodes may be limited, e.g., if the query is tree shaped, bindings for each node are directly related only
to bindings of its “parent”. In fact, if we consider the answers to a query as a relation with the nodes as
columns, answers of a tree-shaped query always exhibit multivalued dependencies [18]: In fact, we can
normalize or decompose such a relation for a query with nnodes into n−1 separate relations that together
faithfully represent the original relation (lossless-join decomposition to binary relations over each pair of
adjacent variables in the query). ¿is allows us to compact an otherwise potentially exponential answer
(in the data size) into a polynomial representation.

Neither observation is particularly new: acyclic or tree queries on relational data as interesting polynomial-
time subclass have been studied, e.g., in [55] and [26]. More recently, the increasing popularity of Web
data such as XML triggered renewed interest and reinvestigation of tree data and tree queries as interest-
ing restrictions of general relational structures and queries. Several novel techniques tailored toXMLdata
and XPath or similar tree queries have shown the bene�t of exploiting the hierarchical nature of the data
for e�cient query evaluation: polynomial twig joins [8]; XPath evaluation [24]; polynomial evaluation
of tree queries against XML streams [4, 45, 44], linear tree labeling schemes [29, 54] allowing constant
time access to structural closure relations such as descendant or following; and path indices [12] enabling
constant time evaluation of path queries.

As stated, these techniques have received considerable attentionwhendata andqueries are tree shaped.
However, data o en contains some non-tree aspects, even if the tree aspects are dominant, e.g., id-links in
XML or many ontologies (such as the GeneOntology [17]). Practical queries (such as XQuery or Xcerpt)
o en go beyond tree queries, e.g., to express value or identity joins, even if they contain a majority of
structural conditions. Driven by such considerations, interest in adapting above techniques beyond trees
is growing (e.g., labeling and reachability for graph data [53, 52] or hypertree decomposition for polyno-
mial queries beyond trees [25]).

¿erefore, we explore in this workmeans of building on the abovementioned techniques but pushing

2Even allowing transitive closure on extensional relations allows already for queries where there are, e.g., two paths between
two query nodes. However, as shown in [46] for XPath and in [43] for the general case of tree queries, such graph shaped queries
can always be reduced to sets of tree-shaped queries—though potentially for the cost of an exponential increase in query size.
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them beyond trees. We orient this exploration along the following two questions:
(1) Can we �nd an interesting and practically relevant class of (data) graphs that is a proper superset

of trees, yet towhich algorithms such as twig joins [8], so far limited to trees orDAGs [11], can be extended
without a�ecting (time and space) complexity?

(2) Second, we observe that data and, particularly, queries are o en mostly trees with only limited
non-tree parts. However, any non-tree partmakesmost of the techniques discussed above for tree queries
inapplicable. Can we integrate the above technologies in the processing of general graph queries in such
a way that (o en signi�cant) hierarchical components can be evaluated using polynomial algorithms,
limiting the degradation of query complexity to non-tree parts of the query?

In the following, we answer both questions essentially positive by introducing a novel algebra, called
CIQCAG, the compositional, interval-based query and composition algebra for graphs. CIQCAG is a fully
algebraic approach to querying Web data (be it in XML, RDF, or other semi-structured shape) that is
build around two central contributions:

(1) a novel characterization of (data) graphs admissible to interval-based compaction. For this new
class of data, called continuous-image graphs (or cigs for short), we can provide linear-space and
almost linear-time algorithms for evaluating tree queries rivaling the best known algorithms for
tree data.

(2) An algebra for a two-phase evaluation of queries separating a tree core of the query from the re-
maining non-tree constraints. ¿e operations of the algebra closely mirror relational algebra (and
can, in fact, be implemented in standard SQL), but (a) a novel data structure in�uenced by Xcerpt’s
memoization matrix [49, 10] and the complete answer aggregates approach [41] allows for expo-
nentially more succinct storage of intermediate results for the tree core of a query. Together with
a set of operators on this data structure, called sequence map, this enables CIQCAG to (b) evaluate
almost-tree queries with nearly polynomial time limiting the degradation in performance to non-
tree parts of the query. (c) Finally, the algebra is tailored to be agnostic of the actual realization of
the used relations. ¿is makes it particularly easy to integrate approaches for arbitrary derived re-
lations and indices in addition to extensional relations, reachability indices such as interval labeling
[28] for tree data or [52] for graph data and path indices such as DataGuides [22] or [12] for tree
data.

In the following chapters, we focus on the basic query and construction algebra which covers non-
recursive, single-rule Xcerpt as well as non-compositional XQuery (as de�ned in [39]), see . However,
in Section 3.9 we brie�y discuss an extension of this algebra with an iteration operator. ¿is extension
allows the evaluation of full Xcerpt and a considerably larger fragment of XQuery than currently covered.

Before we begin the formal introduction of algebra in Chapters 2 and 3, the remainder of this chapter
serves to give a �rst intuition of the CIQCAG algebra. First, we brie�y (Section 1.2) introduce continuous-
image graphs as a class of graph data where the proposed algebra performs as well as the best approaches
for tree data. ¿is is achieved using the sequencemap data structure, a novel representation of intermedi-
ary results of tree queries (or tree cores of graph queries), introduced in Section 1.3. ¿is data structure is
embedded into the CIQCAG algebra in Section 1.4 where we give a �rst glance at the structure of the algebra
and its evaluation phases. We wrap up this introduction with a brief overview of complexity results for
the discussed algebra, as well as a �rst comparison with existing approaches in Section 1.5.

3
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Figure 1. Sharing: On the Limits of Continuous-image Graphs

1.2 Data Beyond Trees: Continuous-Image Graphs

Tree data, as argued above, allows us to represent relations on that data more compact, e.g., using various
interval-based labeling schemes. Here, we introduce a new class of graphs, called continuous-image graphs
(or cigs for short), that generalize features of tree data in such a way that we can evaluate (tree) queries
on cigs with the same time and space complexity as techniques such as twig joins [8] which are limited
to tree data only.

Continuous-image graphs are a proper superset of (ordered) trees where we require not that each
node has at most one parent, as we do for trees, but that we can �nd a single order on all nodes of the
graph such that the children of each parent form a continuous interval in that order. A formal de�nition
is given in Chapter 2. ¿is de�nition allows graphs where some or all children of two parents are “shared”
but limits the degree of sharing: Figure 1 shows two minimal graphs that are not cigs. Incidentally, both
graphs are acyclic and, if we take away any one edge in either graph, the resulting graph becomes a cig.
¿e second graph is actually the smallest (w.r.t. number of nodes and edges) graph that is not a cig.
¿e �rst is only edge minimal but illustrates an easy to grasp su�cient but not necessary condition for
violating the interval property: if a node has at least three parents and each of the parents has at least one
(other) child not shared by the others then the graph can not be a cig.

On continuous-image graphs we can exploit similar techniques for compacting structural relations
as on trees, most notably representing the nodes related to a given node as a single, continuous interval
and thus with constant space. ¿is applies also for derived relations such as closure (XPath’s descendant)
or order relations (XPath’s following-sibling) on cigs.

Moreover, whether a given graph is a cig (and in what order its node must be sorted to arrive at
continuous intervals for each parent’s children) is just another way of saying that its adjacency matrix
carries the consecutive ones property [19]. For the consecutive-ones problem [7] gives the �rst linear
time (in the size of the matrix) algorithm based on so called PQ-trees, a compact representation for
permutations of rows in a matrix. More recent re�nements in [31] and [35] show that simpler algorithms,
e.g., based on the PC-tree [34], can be achieved. We adapt these algorithms to obtain a linear time (in the
size of the adjacency matrix) algorithm for deciding whether a graph is a cig and computing a cig-order.

From a practical perspective, cigs are actually quite common, in particular, where time-related or
hierarchical data is involved: If relations, e.g., between Germany and kings, are time-related, it is quite
likely that there will be some overlapping, e.g., for periods where two persons were king of Germany
at the same time. Similarly, hierarchical data o en has some limited anomalies that make a modelling
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Figure 2. “¿e Five Good Emperors” (a er Edward Gibbon), their relations, and provinces.
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as strict tree data impossible. Figure 2 shows actual data3 on relations between the family (red nodes,
non-ruling member 1 , co-emperor or heir designate 10 , emperors 2 ) of the Roman emperors in
the time of the “Five Good Emperors” (Edward Gibbon) in the 2nd century. It also shows, for actual
emperors, which of the four new provinces ( I ) added to the roman empire in this period each emperor
ruled (the other provinces remained mostly unchanged and are therefore omitted). Arrows between
familymembers indicate, natural or adoptive, fathership4. Arrows between emperors and provinces show
rulership, di�erent colors are used to distinguish di�erent emperors. Despite the rather complicated shape
of the relations (they are obviously not tree-shaped and there is considerable overlapping, in particular
w.r.t. province rulership).

1.3 Sequence Map: Structure-aware Storage of Tree Core Results

When we evaluate tree queries, we can observe that for determining matches for a given query node only
the match for its parent and child in the query tree are relevant. Intuitively, this “locality” property holds
as in a tree there is at most one path between two nodes. To illustrate, consider, e.g., the XPath query
//a//b//c selecting c descendants of b descendants of a’s. Say there are n a’s in the data nested into each
other with m b’s nested inside the a’s and �nally inside the b’s (again nested in each other) l c’s. ¿en
a naive evaluation of the above query considers all triples (a,b, c) in the data, i.e., n × m × l triples.
However, whether a c is a descendant of a b is independent of whether a b is a descendant of an a. If a b is
a descendant of several a’s makes no di�erence for determining its c descendants. It su�ces to determine
in at most n×m time and space all b’s that are descendants of a, followed by a separate determination of
all c’s that are descendants of such b’s in at mostm × l time and space.

Indeed, if we consider the answer relation for a tree query, i.e., the relation with the complete bind-
ings as rows and the query’s nodes as columns, this relation always exhibits multivalue dependencies [18]:
We can normalize or decompose such a relation for a query with n nodes into n − 1 separate relations
that together faithfully represent the original relation (and fromwhich the original relation can be recon-
structed using n− 1 joins). ¿is allows us to compact an otherwise potentially exponential answer (in the
data size) into a polynomial representation.

¿is is the �rst principle of the sequence map: decompose the query into separate binding sequences
for each query node with “links” or pointers relating bindings of di�erent nodes. We thus obtain an expo-
nentially more succinct data structure for (intermediary) answers of tree queries than if using standard
(�at) relational algebra. In this sense, a sequence map can be considered a fully decomposed column store
for the answer relation.

3¿e name and status of the province between the wall of Hadrian and the wall of Antonius Pius in northern Britain is
controversial. For simplicity, we refer to it as “Caledonia”, though that actually denotes all land north of Hadrian’s wall.

4Note that all emperors of the Nervan-Antonian dynasty except Nerva and Commodus were adopted by their predecessor
and are therefore o en referred to as “Adoptive Emperors”.
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Imp-ID Type Name Son-ID Ruled-ID Ruled-Name

1 non-ruling Marcus Ulpius Traianus 4 – –
2 augustus Nerva 4 – –
3 non-ruling P. Aurelius Hadrianus Afer 6 – –
4 augustus Trajan 6 I Mesopotamia
4 augustus Trajan 6 II Arabia Petraea
4 augustus Trajan 6 III Dacia
5 non-ruling Titus Aurelius Fulvus 9 – –
6 augustus Hadrian 9 II Arabia Petraea
6 augustus Hadrian 10 II Arabia Petraea
6 augustus Hadrian 9 III Dacia
6 augustus Hadrian 10 III Dacia
7 non-ruling L. Ceionius Commodus Verus 10 – –
8 non-ruling M. Annius Verus 11 – –
9 augustus Antonius Pius 11 II Arabia Petraea
9 augustus Antonius Pius 12 II Arabia Petraea
9 augustus Antonius Pius 11 IIi Dacia
9 augustus Antonius Pius 12 III Dacia
9 augustus Antonius Pius 11 IV Caledonia
9 augustus Antonius Pius 12 IV Caledonia
10 caesar Lucius Aelius 12 – –
11 augustus Marcus Aurelius 13 II Arabia Petraea
11 augustus Marcus Aurelius 13 III Dacia
12 caesar Lucius Verus – – –
13 augustus Commodus – II Arabia Petraea
13 augustus Commodus – III Dacia
14 augustus Septimus Severus – II Arabia
14 augustus Septimus Severus – III Arabia
14 augustus Septimus Severus – IV Caledonia

Figure 4. Answers for query from Figure 3, single, �at relation.
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Imp-ID Type Name

1 non-ruling Marcus Ulpius Traianus
2 augustus Nerva
3 non-ruling P. Aurelius Hadrianus Afer
4 augustus Trajan
5 non-ruling Titus Aurelius Fulvus
6 augustus Hadrian
7 non-ruling L. Ceionius Commodus Verus
8 non-ruling M. Annius Verus
9 augustus Antonius Pius

10 caesar Lucius Aelius
11 augustus Marcus Aurelius
12 caesar Lucius Verus
13 augustus Commodus
14 augustus Septimus Severus

Imp-ID Son-ID

1 4
2 4
3 6
4 6
5 9
6 9
6 10
7 10
8 11
9 11
9 12

10 12
11 13

Imp-ID Prov-ID

4 I
4 II
4 III
6 II
6 III
9 II
9 III
9 IV
13 II
13 III
14 II
14 III
14 IV

Prov-ID Name

I Mesopotamia
II Arabia Petraea
III Dacia
IV Caledonia

Figure 5. Answers for query from Figure 3, multiple relations, normalized, no multivalue dependencies.

To illustrate this, consider the query in Figure 3 on the data of Figure 2. ¿e query selects sons and
ruled provinces of members of the imperial family. We also record type and name of the family member
andnameof the province to easier talk about the retrieved data. ¿e answers for such a query, if expressed,
e.g., in relational algebra or any language using standard, �at relations to represent n-ary answers, against
the data from Figure 2 yields the �at relation represented in Figure 4. As argued above, we can detectmul-
tivalue dependencies and thus redundancies, e.g., from emperor to province, from province to province
name, from emperor (Imp-ID) to type and name.

To avoid these redundancies, we �rst decompose or normalize this relation along the multivalue de-
pendencies as in Figure 5. For the sequence map, we use always a full decomposition, i.e., we would also
partition type and name into separate tables as in a column store.

1.3.1 Sequence Map for Trees and Continuous-Image Graphs

Once we have partitioned the answer relation into what subsumes to only link tables as in column stores,
we can observe even more regularities (and thus possibilities for compaction) if the underlying data is a
tree or continuous-image graph. Look again at the data in Figure 2 and the resulting answer represen-
tation in Figure 5: Most emperors have not only ruled one of the new provinces Mesopotamia, Arabia
Petraea, Dacia, and Caledonia but several. However, since the data is a continuous-image graph there is
an order (indeed, the order of the province IDs if interpreted as roman numerals) on the provinces such
that the provinces ruled by each emperor form a continuous interval w.r.t. that order. ¿us we can actu-
ally represent the same information much more compact using interval pointers or links as in Figure 6
where we do the same also for the father-son relation (although there is far less gain since most emperors
already have only a single son).

Instead of a single relation spanning 28 rows and 6 columns (168 cells), we have thus reduced the
information to 5 ⋅ 2 + 11 ⋅ 2 + 14 ⋅ 3 = 74 cells. ¿is compaction increases exponentially if there are longer
paths in a tree query (e.g., if the provinces would be connected to further information not related to
the emperors). It increases quadratically if with the increasing size of the tables, e.g., if we added the
remaining n provinces of the Roman empire ruled by all emperors in our data we would end up with 7 ⋅n
additional rows of 6 columns in the �rst case (each of the 7 emperors in our data ruled all these provinces),
but only n ⋅ 2 additional cells when using multiple relations and interval pointers. A detailed study of the
space complexity of sequence maps is given in Section 2.4 and summarized below in Section 1.5.

Formally, we introduce the sequence map SM
D Q

on a relational structure D and a query Q in Chapter 2
as amapping from a set of query nodesV to sequences of matches for that query node. Amatch for query
node v in itself is the actual data node or edge v is matched with and a set of pairs of child nodes of v to
start and end positions. Intuitively, it connects the match for v to matches of its child nodes in the tree
query. We obtain in this way a data structure as shown in Figure 7 for a query selecting roman emperors
with their names and ruled provinces on the data of Figure 2.

Note, that we allow for each child node of v multiple intervals. If the data is a cig, it is guaranteed
that only a single interval is needed and thus the overall space complexity of a sequence map is linear in
the data size. However, we can also employ a sequence map for non-cig graphs. In this case, we o en
still bene�t from the interval pointers, but in worst-case we might need ∣N ∪ E∣ many interval pointers
to relate to all bindings of a child variable. Overall, a sequence map for non-cig graphs thus may use up
to quadratic space in the data size.

8



Imp-ID Son Range

1 4
2 4
3 6
4 6
5 9
6 9–10
7 10
8 11
9 11–12
10 12
11 13

Imp-ID Prov Range

4 I–III
6 II–III
9 II–IV

13 II–III
14 II–IV

Figure 6. Answers for query from Figure 3, multiple relations, interval pointers. ¿e �rst table from Figure 5 remains
unchanged.

Trajan

Hadrian

Antonius P.

M. Aurelius

Commodus

Septimus S.

Name

4N

point1 P st
ar

t 1 en
d 3

6N

point2 P st
ar

t 2 en
d 3

9N

point3 P st
ar

t 2 en
d 4

11N

point4 P st
ar

t 2 en
d 3

13N

point5 P st
ar

t 2 en
d 3

14N

point6 P st
ar

t 2 en
d 4

Emperor

Mesopotamia

Arabia

Dacia

Caledonia

Province

Figure 7. Sequence Map: Example. For a query selecting roman emperors together with their name and ruled provinces on
the data of Figure 2.
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1.3.2 Sequence Maps for Diamond-Free DAG Queries

Beyond tree queries, the sequence map data structure can also be used, with a slight modi�cation, for
diamond-free DAG queries. Diamond-free DAG queries are queries in the shape of a DAG where there
are no two distinct paths between two nodes (and thus no diamond-shaped sub-graph). Diamond-free
DAG queries are also used in [45, 42] (there named single-join DAG queries).

If we consider diamond-free DAG queries, there may be nodes in the query that have multiple par-
ents. However, as for tree queries only the parent and child nodes are relevant to decide whether a data
item is a match for a query node. ¿e multiple parents, however, may be connected using di�erent rela-
tions, e.g., XPath’s child, descendant, and following relations. Above, we only demand that for each relation
the continuous-image property of the data graph holds. If we have DAG queries this might lead to di�er-
ent, possibly incompatible orders for the image relations (e.g., child needs a breadth-�rst order to obtain
continuous-images vs. depth-�rst order for descendant). However, we do not need to “strengthen” the cig
property for diamond-free DAG queries. Rather, a node with multiple parents carries a separate “order”
number for each di�erent incoming relation with incompatible orders and interval pointers are resolved
as range queries over the appropriate order number. ¿ough this increases the space need this is justi�ed
by the accompanying increase in query size. For details, see Section 1.3.2.

1.3.3 Representing intermediary results: A Comparison

As stated above, the sequencemap is heavily in�uenced by previous data structures for representing inter-
mediary answers of tree queries. Figure 8 shows the most relevant in�uences. Complexity and supported
data shapes are compared in Section 1.5 below a er discussing the actual evaluation of tree queries using
the sequence map data structure. Here, we illustrate that the above discussed choices when designing a
data structure for intermediary answers of tree queries are actually present in many related systems: We
can �nd systems such as Xcerpt 1.0 [49], many early XPath processors (according to [23]), and tree al-
gebras such as TAX [37] that use exponential size for storing all combinations of matches for each query
node explicitly. [23] shows that XPath queries can in fact be evaluated in polynomial time and space,
which is independently veri�ed in SPEX [44], the �rst streaming processor for navigational XPath with
all structural axes. Like SPEX and CIQCAG, complete answer aggregates [40] use interval compaction for
relating matches between di�erent nodes in a tree query. CAAs are also most closely related to CIQCAG

w.r.t. the decomposition of the answer relation: fully decomposed without multivalue dependencies. In
contrast, Path�nder [6] uses standard relational algebra but for the evaluation of structural joins a novel
staircase join [30] is employed that exploits the same interval principles used in CAAs and CIQCAG.

Streaming or cursor-based approaches such as twig join approaches [8, 11] consider the data in a cer-
tain order rather than all at once. In such amodel, it is possible and desirable to skip irrelevant portions of
the input stream (or relations) and to prune partial answers as soon as it is clear that we can not complete
such answers. Recent versions of SPEX [9, 44] contain as most twig join approaches, mechanisms to skip
over parts of the stream (at least for some query nodes) if there can not be a match (e.g., because there is
no match for a parent node and we know that matches for parent nodes must come before matches for
child nodes). Both twig joins and SPEX also prune results as soon as possible. However, twig joins are
limited to vertical relations (child and descendant) whereas SPEX and CIQCAG can evaluate all XPath axes,
though only on tree data. In Section 3.9 we discuss brie�y a cursor interface for the CIQCAG algebra that
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Figure 8. Data structures for intermediary results (of a tree query)

iterates over the basic relations in order (of storage or cig property). In general graphs, however, skip-
ping and pruning is impossible, since we can never be sure that there are no more related matches. ¿e
cig property is also too weak to ensure that we can skip and prune as match as on tree data. However,
in Section 3.9.1 we give a condition on the cig-order of parent and child nodes in a tree query that, if it
holds, ensures that these orders are “compatible” enough to allow as much skipping and pruning as in
twig join approaches. ¿is condition is more general than basic tree data, but more restrictive than the
cig property discussed above.

To summarize, though CIQCAG’s sequence map is similar in its principles to several of the related ap-
proaches in Figure 8, it combines e�cient intermediary answer storage as in CAAs with fully algebraic
processing as in Path�nder and e�cient skipping and pruning as in twig joins.

Furthermore, wheremost of the related approaches are limited to tree data (with the notable exception
of Xcerpt), CIQCAG allows processing of many graphs, viz. cigs, as e�cient as previous approaches allow
for trees.

¿e sequence map data structure is exploited in the CIQCAG algebra for processing both tree and arbi-
trary graph queries. CIQCAG takes advantage of sequence maps to store intermediary results for the entire
or for the tree core of a query as described in the following section.

1.4 Queries Beyond Trees: Graphs with Tree Core

¿e sequence map enables us to store (intermediary) answers to tree queries e�ciently, in particular if
the data is cig-shaped. However, what if the query is not of tree shape?

Our answer to that question is the CIQCAG algebra. Instead of treating only tree queries (like the above
mentioned approaches for XML) or entirely dropping the advantages tree queries o�ers (as standard
relational algebra does), CIQCAG separates query processing in two phases: in the �rst phase we exploit
e�cient algorithms for tree queries evaluating a tree core of the original query. Any remaining parts of the
query, if any, are evaluated on top of the resulting sequence map from the tree core evaluation.
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CIQCAG is (1) designed around the sequence map data structure and, if used in conjunction with a se-
quencemap, achieves the same or better time and space complexity for cig data graphs as the best known
approaches for tree data. (2) immediately familiar to anyone with knowledge on the standard relational
algebra. In fact, the semantics of all CIQCAG operators is purely relational (can be expressed in terms of
standard relational algebra5). Using the sequence map and its associated algorithms provides an equiva-
lent yet more e�cient implementation of the CIQCAG operators. (3) able to process tree and graph queries
e�ciently by means of a three-stage evaluation: in the map construction stage a tree core of the query
is computed and speci�c operators allow the e�cient evaluation of that tree core. In the map expansion
stage the remaining non-tree relations are considered. Finally, there is a set of result construction oper-
ators that allow the construction of new data graphs (where the previous two stages operate exclusively
on the input data). (4) for most of the presentation, limited to composition-free queries (in the sense
of [39]), but in Section 3.9 we discuss the addition of iteration and recursion on top of the three stage
processing described here. (5) able to be combined with most approaches for indexing Web data such as
reachability indices [28, 52] or path indices [22, 12] as well as other “computed” or derived relations such
as computed closure relations, complex binary path expressions [5], etc. ¿is allows a great �exibility in
choosing how a relation is actually realized: extensional, using some index or labeling scheme, computed
ad-hoc, etc. (6) accompanied by a rich set of algebraic laws, many familiar from relational algebra, but
with some additions to handle new operators and the speci�city of the multi-stage evaluation.

Based on these principles, however, there are still a number of trade-o�s when realizing the CIQCAG

algebra, cf. Section 3.1 for details. Most are related to how the “links” between the decomposed relations
in a sequence map are realized. In the purely relational variant we use table with order numbers and
range queries. ¿ough theoretically only slightly more costly than the other variants (O(logn) instead of
O(1) for deciding whether two matches for parent-child query nodes are related), practical performance
of range queries is o en disappointing in current relational databases (cf. [29]). In [10], we proposed
a representation of the links by nesting (and sharing) of matches for child nodes within parent nodes

5With value invention, grouping, and ordering, if construction of new graphs is also considered.
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(similar to nested relational data but with sharing to avoid duplication). ¿ough this yields better lookup
time, we pay with quadratic space in worst-case even for tree and cig data. ¿e third variant uses ordered
relations (like SQL tables) and random access to rows in these ordered relations. ¿is allows for constant
lookup time and (in case of tree or cig data) linear space, but comes at the cost of slightly more involved
reorganization, cf. Section 3.

¿e above principles also make CIQCAG eminently suitable for implementing practical Web query lan-
guages. Indeed, in Part [20], we show how to translate (large subsets of) XQuery, Xcerpt, and SPARQL
into CIQLog, a high-level calculus for CIQCAG, which is then translated into CIQCAG expressions as illustrated
in Figure 9. CIQCAG is �exible enough to evaluate programs in any of these languages and to actually
mix them within the same query. It is worth noting, that both the translation from (composition-free)
XQuery to CIQLog and the equivalence of calculus and algebra are accompanied by formal proofs. CIQCAG

is, thus, one of the few formally correct algebras for (composition-free) XQuery.

1.4.1 Operator Overview

¿e main operators of the CIQCAG algebra are immediately familiar from relational algebra. However,
CIQCAG operator’s di�er in a few noteworthy points (the full details as well as the operators’ implemen-
tation on top of the sequence map are explained in Chapter 3): (1) ¿ere are three sets of operators, as
shown in Table 9, one for each stage of the query evaluation. Mostly identical to their relational counter-
part are the operators for map expansion (renaming ρ, join &, union ∪, di�erence −, projection π, and
duplicate elimination δ). However, we add an operator for accessing speci�c columns from a sequence
map computed in the previous stage as �at relation (). (2) For map construction, we also introduce a
new access operator µ that creates a sequence map from a given relation R. ¿e other operators closely
mirror relational operators and thus the operators of the map expansion phase, but there is one more
addition: the propagation operator. (3)When we restrict the values for a given column in a classical, �at
relation (e.g., by selection or join), we can omit tuples with values violating the selection or join crite-
rion in a single pass over the table. However, the sequence maps store the (so far) computed answers
like a column store. ¿ough this allows more e�cient storage in face of multivalue dependencies as in
tree queries, eliminating values in a single column no longer immediately a�ects other columns. Rather
when a value is eliminated in one column we have to propagate this fact to all related columns (and from
there on recursively). CIQCAG provides for this propagation an explicit operator. ¿is allows us to perform
several value restrictions on the same column before propagation all eliminated values at once, rather
than propagation a er each restriction. ¿e price is that a sequence map may, a er a restriction and
before the corresponding propagation, be in an inconsistent state, where values in one column link to
no longer valid values of another one. However, this price is clearly o�set by the gain in complexity and
performance: Implicit propagation at each restriction raises the worst-case complexity of query evalua-
tion by amultiplicative factor q (query size). Using explicit separate propagation, it su�ces to propagate
each column’s values to its parent columns once at the end of the map construction leading to an additive
factor of q × n. For more details on explicit propagation see Section 3. (4) Finally, result construction is
similar to other complex value algebras (cf. [29, 39] with operators for value invention ν, ordering (ω),
conditional construction, and graph construction.

To illustrate, how these operators play together to implement a typical Web query consider the query
in Figure 10 ( 4 indicates a answer node, all other nodes are existentially quanti�ed; ≠id indicates a anti-
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access join (conjunction) union difference

...µv,v′(D,Q), ...µv(D,Q,R) ...
&
(☇)
∩ ,

...
&
(☇), ...X(☇)(S,S′) ...

∪(S,S′) ...
∖(S,S′)

projection, rename selection propagation expansion

...πV(S), ...ρv1→v2(S)
...σ(☇)c (S) ...

ϖv(S), ...ϖv(S) V(S)
Table 9. Overview of sequence map operators in CIQCAG (all operators return a single sequence map S except  which

returns a (standard) relation)
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Figure 10. Selecting all sons of Roman emperors that have a double claim to the throne (two (distinct) fathers that
where both emperors).

join based on node identity). ¿is is a graph query, but a spanning tree covers almost the entire query.
¿e query is realized in CIQCAG by the following expression (we decide to treat the son edge from 2 to 4
as only non-tree edge6):

v2 ,v4( (
...µv1 ,v4(D,Q) ...&∩ ...πv1(

...µv1 ,v3(D,Q) ...&∩
...µv3(D,Q, ‘Emperor’)))

...
&∩

...µv1 ,v2(D,Q) ...&∩ ...πv2(
...µv2 ,v5(D,Q) ...&∩

...µv5(D,Q, ‘Emperor’)) )
Within the �atten operator, we �nd the expression responsible for evaluating the tree part of the query:

we join sequence maps for type and son edges as well as label restrictions for nodes 3 and 5. Since we are
not interested in the actual matches for 3 and 5 we use semi-joins instead of full joins. In the non-tree
part we grab v2 and v4 from the sequence map (v1 is not needed any more) and join them with the son
relation between v2 and v4. ¿e result is projected to v4 as this is the only answer node.

1.4.2 Tree Cores and Hypertrees

As seen in the previous example, we have considerable leeway how to choose the tree core of a graph
query. In addition to usual considerations about selectivity and size of the involved relations, we have
in our case an additional guide: if at all possible the chosen relations should carry the cig property, i.e.,
exhibit an order on the data nodes such that the image of a node forms a continuous interval.

6¿e tree core of a query is not unique at all: We could also have chosen to consider also the ≠id as non-tree or to duplicate
node 4 and introduce a identity join between the original and the duplicated node in the map expansion phase.

14



For relational queries, it has been shown that acyclic or tree queries are not the largest class of poly-
nomial time queries. Rather queries with bounded tree- or hypertree-width [25] can still be evaluated in
polynomial time. Nevertheless, we choose a tree decomposition. Hypertree decompositions yield groups
of query nodes (variables) that are strongly connected in a query, but loosely connected with the rest
of the query. If there is a bound on the size of these groups, we can evaluate each group separately and
only expose the few connection points to the rest of the query. In contrast, for tree queries the groups
are always single query nodes. For our purpose, however, hypertree decompositions seem less attractive
than for standard relational queries for two reasons: (1) to treat multiple incoming edges (even if there
number is bound by some constant) the sequence map data structure needs to be extended considerably
and (2) the cig property also needs to be adapted to guarantee one order among all relations involved
in a hypertree node. In addition, the integration of techniques such as path indices and twig joins that
have been developed for tree queries with CIQCAG is almost free if we consider tree cores, but is less than
obvious if we consider hypertree decompositions.

However, for future work a closer inspection of hypertree decompositions (and, in particular, their
e�ect on the cig property) would be strongly desirable.

1.5 Complexity and Contributions

With a �rst intuition on the data structures and operations that form the CIQCAG algebra, we can turn to
investigate some of its properties. For a detailed analysis of the space complexity of the sequence map see
Section 2.4, the complexity of query evaluation with CIQCAG is analysed in Chapter 3.

Table 11 summarizes the complexity results for query evaluation with the CIQCAG algebra (using the
sequence map as data structure). It is worth highlighting data and query space complexity are both linear
for tree and cig data and tree queries. Also note, that there is no penalty at all to going from tree data to
cig data, but arbitrary graph data does incur a linear penalty (both in space and time). ¿e logarithmic
factor in the time complexity can be discarded, if we assume that all relations can be accessed in cig order.
¿is is possible, since the cig property is a static property of the data and does not depend on the query.
Otherwise, we need to sort relations to add them to the sequence map. For Table 11, we assume the latter.

One factor in the time complexity of CIQCAG is the cost of themembership test in a relation. For exten-
sional relations this is constant. However, as argued above, CIQCAG is also well suited to handle derived re-
lations such as descendantwith out without index. In this casesmmay in fact have signi�cant in�uence on
the query evaluation. For the evaluation of the Web query languages discussed in [20] (Xcerpt, XQuery,
SPARQL), extensional relations and structural closure relations (XPath’s descendant, following, etc.) su�ce.
As discussed in [20], for tree data, membership in closure relations can be tested in constant or almost
constant time (e.g., using interval encodings [16] or other labeling schemes such as [54]). However, for
graph data this is not so obvious. Fortunately, there has been considerable research on reachability or
closure relations and their indexing in arbitrary graph data in recent years. Table 13 summarizes the most
relevant approaches for our work. ¿eoretically, we can obtain constant time for the membership test
if we store the full transitive closure matrix. However, for large graphs this is clearly infeasible. ¿ere-
fore, two classes of approaches have been developed that allow with signi�cantly lower space to obtain
sub-linear time for membership test.

¿e �rst class are based on the idea of a 2-hop cover [13]: Instead of storing a full transitive closure, we
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data
queries

path queries tree queries graph queries

tree T = O(q ⋅ n) T = O(q ⋅ n) O(nqg
+ Ttree)

S = O(q ⋅ n) S = O(q ⋅ n) O(nqg
+ Stree)

CIG T = O(q ⋅ n) T = O(q ⋅ n) O(nqg
+ Ttree)

S = O(q ⋅ n) S = O(q ⋅ n) O(nqg
+ Stree)

graph T = O(q ⋅ n2
⋅m) T = O(q ⋅ n2

⋅m) O(nqg
+ Ttree)

S = O(q ⋅ n2) S = O(q ⋅ n2) O(nqg
+ Stree)

Table 11. Complexity of query evaluation with CIQCAG algebra (q query size, n data size,m complexity of membership
test—assumed constant for all tree, forest, or cig shaped relations, qg: number of “graph” variables, i.e.,
variables with multiple incoming query edges)

allow that reachable nodes are reached via at most one other node (i.e., in two “hops”). More precisely,
each node n is labeled with two connection sets, in(n) and out(n). in(n) contains a set of nodes that
can reach n, out(n) a set of nodes that are reachable from n. Both sets are assigned in such a way, that a
node m is reachable from n i� out(n) ∪ in(m) ≠ ∅. Unfortunately, computing the optimal 2-hop cover
is NP-hard and even improved approximation algorithms [50] have still rather high complexity.

A di�erent approach [1, 11, 53, 52] is to use interval encoding for labeling a tree core and treating the
remaining non-tree edges separately. ¿is allows for sublinear or even constant membership test, though
constant membership test incurs lower but still considerable indexing cost, e.g., in Dual Labeling [53]
where a full transitive closure over the non-tree edges is build. GRIPP [52] and SSPI [11] use a di�erent
trade-o� by attaching additional interval labels to non-tree edges. ¿is leads to linear index size and time
at the cost of increased query time.

For CIQCAG we can choose any of the approaches. For the following, we assume constant time mem-
bership, since that is easily achieved on trees and feasible with approaches such as Dual Labeling even for
graphs.

With this understanding about the complexity of query evaluation with CIQCAG, we can move to com-
pare CIQCAG with representative approaches forWeb querying developed in recent years (mostly for XML
data). Table 15 summarizes this comparison: It shows that CIQCAG rivals the best known approaches for
tree data (twig joins and SPEX), but in contrast to those approaches extends the same complexity to cig
data and can also, albeit at a cost, handle graph queries (like structural joins used in most other XML
or RDF algebras). Note, that in all cases we consider pointers of constant size (as done in [8], [44], and
[40]). In fact, all approaches need an additional logn multiplicative factor if pointer size is taken into
consideration.

To summarize, CIQCAG is a novel algebra for Web queries that

– is based on a novel data structure for e�cient storage of intermediary results of tree queries that is
exponentially more succinct than purely relational approaches.

– extends previous approaches for querying tree data to a larger class of data graphs, called continous-
image graphs. ¿e cig property can be tested in polynomial time and is independent of the query.

– rivals the best known approaches for tree query evaluation on tree data yet extends their properties
(complexity and skipping, cf. Section 3.9.1) to cig data.

– gracefully degrades with the increasing “graphness” of data and queries .

– allows for easy integration of derived relations and indices such as interval labeling, graph reacha-
bility indices, path indices, etc.

– provides a provable correct evaluation for large, relevant fragments of practical query languages,
viz. XQuery, Xcerpt, and SPARQL.

In the following three chapters, we illustrate CIQCAG and its properties in more details. Chapter 2
presents the sequencemap data structure, its formal de�nition, and properties (including space complex-
ity). Chapter 3 introduces the operators of the CIQCAG algebra together with purely relational semantics,
algorithms based for a realization using the sequence map data structure, and their complexity.

16



approach characteristics query time index time index size

Shortest path [48] no index O(n + e) – –

Transitive closure full reachability matrix O(1) O(n3) O(n2)
2-Hop [13] 2-hop covera O(√e) ≤ O(n) O(n4) O(n ⋅ √e)
HOPI [50] 2-hop cover, improved approximation al-

gorithm

O(√e) ≤ O(n) O(n3) O(n ⋅ √e)

Graph labeling [1] interval-based tree labeling and propaga-

tion of intervals of non-tree descendants.

O(n)b O(n3) O(n2)c

SSPI [11] interval-based tree labeling and recursive

traversal of non-tree edges

O(e − n) O(n + e) O(n + e)

Dual labeling [53] interval-based tree labeling and transitive

closure over non-tree edges

O(1)d O(n + e + e3g) O(n + e2g)

GRIPP [52] interval-based tree labeling plus addi-

tional interval labels for edges with in-

coming non-tree edges

O(e − n) O(n + e) O(n + e)

aIndex time for approximation algorithm in [13].
bMore precisely, the number of intervals per node. E.g., in a bipartite graph this can be up to n, but in most (sparse) graphs this is likely

considerably lower than n.
cMore precisely, the total number of interval labels.
d[53] introduces also a variant of dual labeling withO(log eg) query time using a, in practical cases, considerably smaller index. However,

worst case index size remains unchanged.

Table 13. Cost of Membership Test for Closure Relations. n, e: number of nodes, edges in the data, eg: number of non-tree
edges, i.e., if T(D) is a spanning tree for D with edges ET(D), then eg = ∣ED ∖ ET(D)∣.
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query type time space

Structural Joins
decompose query; test each structural
constrain individually; join the results;

path queries path index:
(DataGuide [22], IndexFabric [14], [12])a

O(mpath) ∼ O(d) O(n);O(d ⋅ n) index
no path index, standard join [2, 28, 23])

O(nqa + q ⋅ n ⋅ log n ⋅m)b
O(nqa + q ⋅ n2)

no path index, structure-aware join, ([6];
tree data only)

O(nqa + q ⋅ n) O(nqa + q ⋅ n2)
tree queries with path index (tree/DAG data only)

O(nqa+b⋅n⋅log n⋅mpath)) O(nqa + b ⋅ n2)
no path index

O(nqa + q ⋅ n ⋅ log n ⋅m) O(nqa + q ⋅ n2)
graph queries O(nq) O(nq)

Twig or Stack Joins
holistic (single operator) [8]; partial an-
swers in q stacks; parent pointers con-
nect stack entries;

tree data O(q ⋅ n)c O(q ⋅ n + n ⋅ d)d

limited to only child/descendant relations
in trees and DAGs [11]; “longer” skip dis-
tance when using indices [Jiang];

graph data O(q ⋅ n2 + e)e O(q ⋅ n + e)f

SPEX (and similar streaming engines)
[45, 44]; similar to twig join but with a
single input stream and pointers realized
as conditions; additionally supports hori-
zontal axes; skipping added in [9];

O(q ⋅ n ⋅ d)g O(q ⋅ n)h

Complete Answer Aggregates
[40]; manages all answers as CIQCAG;
limited to tree data and structural rela-
tions (e.g., no value joins); similar to twig
join without stack management

w/o closure axes
O(q ⋅ n ⋅ log n ⋅ d)
O(q ⋅ n ⋅ log n)

O(q ⋅ n ⋅ d)
O(q ⋅ n)

CIQCAG

sequence map variant; skipping may
tree queries O(q ⋅ n)i

O(q ⋅ n2 ⋅m)
O(q ⋅ n)i

O(q ⋅ n2)
reduce average case graph queries O(nqg + q ⋅ n)i

O(nqg + q ⋅ n2 ⋅m)
O(nqg + q ⋅ n)i

O(nqg + q ⋅ n2)
alimited to unary path queries with only child/descendant relations against trees
bskipping reduces average case by using indices such as [28], XR-Tree [38], BIRD [54]
cMore precisely, O(q ⋅max(bi,d)) where bi is the average of bindings per query variable. Both bi and d are, in worst case, n. bi ≪ n

only if the selectivity of the node tests in the query is high.
dAnswers are progressively generated.
eMore precisely,O(q ⋅max(bi,d)2) where bi is the average of bindings per query variable. Both bi and d are, in worst case, n.
fAnswers are progressively generated.
gLower complexity for limited fragments, e.g.,O(q ⋅ n ⋅ d) if only horizontal axes are present.
hIn some fringe cases, complexity degenerates toO(q ⋅ n2), for details see [44]. Answers are progressively generated.
iFor tree and continuous-image graphs.

Table 15. Comparison of Related Approaches. n: number of nodes in the data, d: depth, resp. diameter of data; e: number
of edges; q: size of query, qa: number of result or answer variables; qg: number of “graph” variables, i.e., variables with
multiple incoming query edges; m maximum time complexity for relation membership test; mpath time complexity
for path index access.
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Chapter 2

Sequence Map

2.1 Introduction

As discussed in the previous section, the sequence map data structure stands at the core of the CIQCAG

algebra: It allows us the polynomial, in many cases even linear, storage of (intermediary) answers to
a tree core of a query. For tree queries all evaluation is done directly on the sequence map, for graph
queries we must evaluate the remaining non-tree relations separately, but still pro�t in most cases greatly
by reducing the size of the non-tree answers.

Let us brie�y recall, from the previous section, the main motivations for designing a new data struc-
ture:

(1) When we evaluate tree queries, we can observe that for determining matches for a given query
node only the match for its parent and child in the query tree are relevant.

(2) Indeed, if we consider the answer relation for a tree query, i.e., the relation with the complete
bindings as rows and the query’s nodes as columns, this relation always exhibits multivalued de-
pendencies [18].

(3) To avoid these dependencies, we fully decompose the answer relation as in a column store: binding
sequences for each query node with “links” or pointers relating bindings of di�erent nodes. ¿is
gives us an exponentially more succinct storage than a �at relation.

(4) Once we have partitioned the answer relation into what subsumes to only link tables as in column
stores, we can observe even more regularities (and thus possibilities for compaction) if the under-
lying data is a tree or continuous-image graph. ¿ese regularities allow us to represent the image
of a node under as a single, continuous interval and thus yield an even smaller representation of
the intermediary answers.

In the remainder of this section, we illustrate how these principles and observations are exploited in
the de�nition of the sequence map data structure to obtain a space optimal data structure for tree queries
on tree, forest, and cig data (linear space data complexity). ¿e same data structure can also be used
on arbitrary graph data where it is more compact, for most cases, than a decomposed relation without
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interval pointers, though its worst-case space complexity is the same. We start this illustration with the
formal de�nition of the sequencemap in Section 2.2, continue it by taking a closer look at the e�ect of data
shape on the interval representation of related answers in sequence maps (cf. Section 2.3, and conclude
with a study of the space complexity of the sequence map in Section 2.4. We also brie�y glance at some
variations of the basic sequence map that allow us to cover a slightly larger fragment of queries albeit at
a slight increase in the time complexity of most operations on the sequence map (which are discussed in
the next chapter).

2.2 Sequence Map: A Data-Structure for the Decomposed Representa-
tion of Intermediary Answers to Tree Queries

To hold intermediary results of tree cores of queries, we de�ne a compact data structure, called sequence
map. As sketched above, this data structure holds (intermediary) results of n-ary tree queries while avoid-
ing the multivalued dependencies that occur if �at relations are employed for this purpose. By avoiding
these dependencies and storing the results fully decomposed, we obtain an exponentially more succinct
data structure than a �at relation.

Additionally, we exploit the properties of the queried data: Where the data permits (as in the case of
trees and cigs), we compact the pointers (sometimes also called “links”, references, or foreign keys) be-
tween the decomposed representations for bindings of di�erent variables into intervals. For this, we store
bindings of each variable as a single sequence with interval points to related child variables associated to
each binding.

Formally, we de�ne a sequence map over the queried data and the (tree) query to be evaluated. As
data, we consider a (slightly extended)1 relational structure D. D is de�ned over a relational schema
Σ = (R1[U1], . . .Rk[Uk]) and a �nite domain N of nodes (or objects or elements or records) in the
data. Each Ri[Ui] is a relation schema consisting in a relation name and a nonempty set of attribute
names, We assume an equality relation = on the nodes that relates each node to itself only (identity).
D is a tuple (RD

1 , . . . ,RD
k ,O). Each RD

i is a �nite, unary or binary relation over N with name Ri. For
a relation R, ar(R) denotes its arity. We extend D with an order mapping O that associates with each
(binary) Ri a total order on N such that all n ∈ rngRi are before all n′ ∈ N ∖ rngRi. We denote with
O(D) = {o ∶ ∃Ri ∈ D ∶ O(Ri) = o} the set of orders to which the relations inD are mapped. ¿ese orders
serve to represent the image of each node in a relation as one or more continuous intervals over the order
associated with that relation. Choosing an appropriate order for a relation is discussed in Sections 2.3.1
(for tree data) and 2.3.2 (for cig data).

Note, that we do not assume that all relations in D are extensional. Rather some might be derived
(e.g., as closure) from other relations. See [20] for a discussion on relations to represent XML and RDF
documents and how to use these relations to translate XQuery andXcerpt queries into CIQCAG expressions.

For the example data in Figure 2, appropriate relations are the son-relation between members of the
imperial family, the ruled-relation between emperors and (newly constituted) provinces. For both relation
the node IDs in Figure 2 give a suitable associated order that allows the representation of the relation with
a single interval pointer per parent node as described in Section 2.3.1. We use unary relations to classify

1¿e deviation lies in the addition of order for each relation. Furthermore, we restrict ourselves to binary relations.
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Figure 11. Selecting all Roman emperors together with their name and ruled provinces.

nodes by type. In this case, we use type relations for imperial family members, emperors, co-emperors,
and provinces each. Furthermore, we explicitly represent names of provinces and family members at-
tached by a name relation.

A sequence map is used to store intermediate results for one speci�c tree query. A tree query, in our
context, is any tree over a set of variables (or query nodes or attributes of the result relation). Each node is a
query variable, each edge is labeledwith a relation thatmust hold between bindings for the query variables
connected by the edge. Formally, a query Q, over a relational schema Σ using the relation namesR1 for
unary relations and the relation namesR2 for binary relations, is a tree2 (V ,LV ,E = V ×V , r,LE). ¿e
set of variablesV serve as nodes of the tree with the root r and are labeled with (sets of) relation names by
LV ∶ V → 2R1 . Edges inE connect pairs of variables and are labeledwith the labeling functionL ∶ E →R2

connects each edge in Q with a relation name. For each variable (or node) v in Q, we denote (1) with
children(v) = {v′ ∈ V ∶ (v,v′) ∈ E} the child variables of v; (2) if n is not the root, with parent(v) = v′, if
(v′,v) ∈ E, the parent variable of v (3) if n is not the root, with rel(v) = L((parent(n),n)) the name of
the relation between the parent variable and v.

In the following, we assume that all relations used in a query Q are also de�ned in the relational
structure D the query is evaluated against.

Figure 11 illustrates an example query tree with the nodes {1,2, 3}, the edges {(1,2),(1, 3)}, the root
1, the edge labeling {(1,2)→ ruled,(1, 3)→ name}, and the node labeling {1→ Emperor}.

Bindings for variables are stored in the sequence map fully decomposed, one sequence per variable.

De�nition 2.1 (Sequence). A sequence S from some (�nite) set N is a �nite sequence on N, or more
formally a bijective function from {1, . . . , ∣N∣} to N. For a sequence S, the ith element of the sequence is
S(i) and is sometimes denoted as S[i] to emphasize that S is a sequence. i is referred to as index of S[i]
in S.

Note, that we allow only duplicate free sequences in this de�nition, i.e., a n ∈ N occurs at most once
in a sequence S. ¿erefore, we can denote with S−1(n) the index of n in S.

For a �nite setN, we de�ne the set of all subsequences, denoted SubSeq(N), as the set {S ∶ {1, . . . , k}→
N′ ∶ N′ ⊂ N ∧ k = ∣N′∣ ∧ S bijective}.

We call a sequence S ∈ SubSeq(N) consistent with an order <N over N if for all n1,n2 ∈ N it holds
that, if there are i, jwith S[i] = n1 and S[j] = n2, then n1 <N n2 implies i < j. If <N is total, n1 <N n2 i�
i < j.

Finally, any total order on N is naturally represented by a sequence over N and vice versa:

2In fact, sequence maps can be used for forest an diamond-free DAG queries, see Section 2.5.2. For clarity of presentation,
we limit ourselves here to tree queries.
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De�nition 2.2 (Induced sequence). Let < be a total order over some domain N. ¿en < induces a se-
quence S< overN with S<[i] = n ∈ N such that ∣{n′ ∈ N ∶ n′ < n}∣ = i. S< is, by de�nition, consistent with
<.

Obviously, computing the induced sequence is the same as sorting N w.r.t. < and thus hasΩ(n logn)
time complexity.

De�nition 2.3 (Sequence Map). A sequence map SM
D Q

on an (extended) relational structure D and a
(tree) query Q over D is a mapping from the set of variables Vars(Q) to sequences of bindings for these
variables to nodes in D. For each variable binding, we also record a set of intervals of related bindings
for each child variable. ¿is way, a binding b for a variable v (at index i) is associated with a set of triples
(v′, s, e) that indicates that all bindings b′ with index s ≤ j≤ e for the child variable v′ ∈ children(v) are
related to b.

Let Intervals = {(i, j) ∈ N2
∶ i ≤ j} be the set of all intervals of integers. ¿en, we obtain the following

signature for a sequence map:

SM
D Q

∶ Vars(Q)→ SubSeq(Nodes(D)→ 2Vars(Q)×Intervals)

Note, that in each sub-sequence each n ∈ Nodes(D) occurs at most once and is associated to a single set
of pairs of variables and intervals.

For any v ∈ V, we write SM
D Q(v) to indicate the sequence of bindings for v. With binding(SM

D Q(v)[i])
we denote the actual binding node in the i-th entry for v (or some distinct value � with � > n for all
n ∈ Nodes(D) if i > ∣SM

D Q(v)∣), with intervalsv′(SM
D Q(v)[i]) the set of intervals associated with v′ in the i-the

entry for v in the sequence map (or ∅ if i > ∣SM
D Q(v)∣). Finally, we write Nodesv′(SM

D Q(v)[i]) to indicate the
set of bindings for v′ covered by an interval in intervalsv′(SM

D Q(v)[i]).
In addition to the above signature, we place three further restrictions on any sequence map SM

D Q
:

(1) For each variable v and index i, the set of intervals intervalsv′(SM
D Q(v)[i]) is non-overlapping. A set

M of intervals is non-overlapping if, for each pair of intervals (s1, e1),(s2, e2) ∈ M, it holds that
s1 ≤ s2 i� e1 ≤ s1.

(2) For each variable v, child variable v′ of v, and index i, all intervals in intervalsv′(SM
D Q(v)[i]) are

grounded in SM
D Q

. An interval (s, e) ∈ intervalsv′(SM
D Q(v)[i]) is grounded in SM

D Q
if s ≤ e ≤ ∣SM

D Q(v′)∣.
(3) For each v ≠ root(Q), the sequence SM

D Q(v) is consistent with the order associated with rel(v)D in
D.

(4) Finally, we record for each sequence map, the set of edges inQ covered by that sequence map. ¿is
set of edges is denoted by edgeCover(SM

D Q) ⊂ (dom S)2 ∩ Edges(Q) ⊂ Vars(Q)2. A sequence map
may only contain references between bindings for variable pairs contained in its edge cover: For
each pair of variables v,v′ ∈ Vars(Q) with binding indices i ≤ ∣SM

D Q(v)∣ , i′ ≤ ∣SM
D Q(v′)∣ such that

SM
D Q(v′)[i′] ∈ Nodesv′(SM

D Q(v)[i]), it must hold that (v,v′) ∈ edgeCover(SM
D Q).

Together the two restrictions guarantee that, with each binding of a variable v, there are at most
associated ∣N∣ intervals over the bindings for v′ ∈ children(v) in a sequence map: ¿e set of associated
intervals does not contain duplicate intervals (since it is a set), each interval covers at least one index, no
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Figure 12. Sequence Map: Example. For the query from Figure 11 on the data of Figure 2.

two intervals overlap, and all intervals are grounded. ¿us we can, at most, have ∣SM
D Q(v′)∣ ≤ ∣N∣ intervals

each covering one of the bindings of v′ in the sequence map.
To illustrate the notion of sequence map consider again the query in Figure 11. ¿e sequence map

representing all answers to that query against the data in Figure 2 is illustrated in Figure 12: Frombindings
for “Emperors” (i.e., members of the unary type relation Emperor) we reference related bindings for name
and province (where we use the name of the province instead of the ID for ease of presentation). ¿e
relations are expressed as intervals associated with the abbreviated query variable (N for name, P for
province). Observe, that since the data is cig shaped and the bindings are ordered accordingly we need
always only single intervals. We abbreviate single element intervals as standard pointers.

It is worth emphasizing that we allow multiple intervals to represent the related bindings for a child
variable. ¿is is necessary to represent answers to queries on arbitrary graphs. As discussed in Sec-
tions 2.3.1 and 2.3.2, we can guarantee a single continuous interval for more restrictive shapes of data, viz.
trees, forest, and cigs. Even for arbitrary graphs the use of interval pointers is bene�cial in many cases,
cf. Section 2.3.3.2.

A sequence map serves as a compact representation of an answer relation. ¿is relation can be re-
trieved from a sequence map as follows:

De�nition 2.4 (Induced relation). Let SM
D Q

be a sequence map with associated edge cover ec. Let U =
dom SM

D Q
= {v1, . . . ,vk} = {v ∈ Vars(Q) ∶ ∃n ∈ Nodes(D) ∶ n ∈ SM

D Q(v)}. ¿en SM
D Q

induces a relation RSM
D Q
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such that

RSM
D Q
={(b1, . . . ,bk) ∈ Nodes(D)k ∶ ∃k ∈ N ∶ SM

D Q(vi)[k] = bi∧
((vi,vj) ∈ ec Ô⇒ bj ∈ Nodesvj(SM

D Q(vi)[k]))}

Note, that this implies that for pairs of variables that are not in the edge cover of the sequence map
all combinations of bindings are included in the induced relation.

In Section 3.7, we introduce the sequence map extraction that allows to extract bindings of one or
more variables from a sequence map in form of a relation. If bindings for all variables in S are extracted,
this operation yields exactly the induced relation.

¿e empty relation is induced by the empty sequence map, denoted by SM
D Q

∅. It is also induced by a
sequence map where some of the “links” imposed by the query are missing, e.g., if for some child variable
all bindings of its parent variable include no interval pointers to bindings of the child variable. In this
sense, such a sequence map and the empty sequence map can be considered equivalent:

De�nition 2.5 (Equivalent sequence maps). Let SM
D Q

1 and SM
D Q

2 be two sequence maps. We call SM
D Q

1 and
SM
D Q

2 equivalent, if they induce the same relation. However, they may di�er, e.g., in the chosen order of
elements, the intervals used, etc.

Note, that a sequence map does not need to map all variables in Vars(Q). If some variables are not
mapped, the resulting answer is incomplete w.r.t. any constraints inQ involving the missing variables. In
other words, absent variables are ignored when considering the induced relation of a sequence map. In
the following section, we de�ne a class of sequence maps, called complete sequence maps, that represents
an answer relation to a full query rather than to only a part of a query.

2.2.1 Consistent and Inconsistent Sequence Maps

Sequencemaps store (intermediary) answers to tree queries decomposed. ¿ey are an exponentiallymore
succinct store than �at relations. On �at relations, if we restrict bindings of one variable we implicitly af-
fect bindings for all variables since each tuple in the answer relation represents one particular assignment
of bindings to query variables. Assume, e.g., we drop all tuples where the binding of v has a value ≤ 10.
A binding b′ for some other variable v′ may, however, only occur together with bindings for v that have
value ≤ 10. ¿us dropping the above tuples also drops all occurrences of b′.

On sequence maps, however, bindings are stored per variable (or column of the �at relation). ¿us,
when we modify bindings for one variable, bindings for other variables are not implicitly a�ected, rather
these changes must be explicitly propagated. Details of this propagation are discussed later in Section 3.
Intuitively, in the above case b′ remains among the bindings of v′ still pointing (assuming, for simplicity,
that v′ is the parent variable of v) to the now dropped bindings for v. However, b′ could be dropped with-
out loosing any proper answer (there is no way to extend b′ bindings for v′ to full answers). In a sense,
such a sequence map is inconsistent as there are bindings for v′ that refer to invalidated (or “bombed”)
bindings for v. We can address this in two ways: (1) Immediate propagation: All operations on a sequence
map that restrict variable bindings for one variable (or column) ensure before the conclusion of the op-
eration that those restrictions are propagated to all possibly a�ected variables. (2) Separate propagation
from (local) restriction: Operations on a sequence map may restrict bindings of one or more variables
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without immediately propagating the e�ect to other connected variables. ¿e advantage is that we can
perform a series of restrictions on one or even a subset of the query variables and only at the end of that
series propagate all changes at once. ¿e disadvantage is that we have to mark temporary inconsisten-
cies and must ensure that they are propagated at some point. However, we can simulate the �rst case by
following each operation on the sequence map immediately by a propagation to all related variables.

In the following, we adopt the second approach since it ismore �exible and requires, formany queries,
signi�cantly less propagation operation. To support this approach we introduce the concept of inconsis-
tent sequence map, i.e., sequence maps where some restrictions on variable bindings have not yet been
fully propagated.

To distinguish invalidated variable bindings, wemark each invalidated variable binding with a failure
marker ☇ from a (�nite) set of failure markers B3 with ∣B∣ ≤ ∣Nodes(D)∣. Furthermore, we extend the
signature of a sequence map to include failure markers:

SM
D Q

∶ Vars(Q)→ SubSeq((Nodes(D)→ 2Vars(Q)×Intervals) ∪ B)

We limit the number of failure markers by the number of nodes in D, since failed bindings only
result from invalidating existing bindings and a sequence map can, for a single variable, contain at most
∣Nodes(D)∣ bindings. Note also, that we do not need to record related bindings (for child variables) if a
binding is “bombed”. Also, by de�nition of the induced relation of a sequence map, failure markers do
not a�ect the induced relation as all bindings in a induced relation must be nodes from D.

Failuremarkers address the invalidation of entire bindings for a variable (e.g., due to additional unary
constraints). Another form of local restriction, however, is the removal of references to bindings of a child
variable in the bindings of a parent variable. E.g., the province of Mesopotamia in the sequence map of
Figure 12 is related only to emperor Trajan. If we remove the reference from Trajan to Mesopotamia, i.e.,
change the P interval of the emperor with ID 4 to 2− 3 instead of 1− 3. (or “bomb” Trajan), Mesopotamia
is not any more part of any full answer to the query and could thus be dropped. So, again, the sequence
map retains information that, if we propagate immediately, could be dropped. We call bindings such as
Mesopotamia dangling bindings. A dangling binding n is direct, if there is no binding for the immediate
parent variable with an interval pointer covering n. Otherwise it is indirect.

De�nition 2.6 (Consistent and inconsistent sequence maps). A sequence map SM
D Q

is called inconsistent,
if (1) it contains any “failed” bindings ☇ ∈ B, or (2) it contains any “dangling” binding, i.e., a binding
b ∈ SM

D Q(v) for some variable v such that v′ = parent(v), v′ ∈ dom SM
D Q

, and there is no i ∈ N such that
b ∈ Nodesv(SM

D Q(v′)[i]). Otherwise it is called consistent.

¿e notion of equivalent sequence maps immediately extends to inconsistent sequence maps (note
that the bindings in the induced relation are from Nodes(Q) excluding ☇). In Section 3.5.3 we introduce
an algorithm for e�ciently propagating changes in a sequence map. Using this algorithm, we obtain the
following result:

¿eorem 2.1. Let SM
D Q

be an inconsistent sequence map. ¿en there is a consistent sequence map SM
D Q

′ equiv-
alent to SM

D Q
. ¿is sequence map can be computed inO(q̃ ⋅ n ⋅ i) where q̃ = ∣dom SM

D Q∣, n = ∣Nodes(D)∣, and i
the maximum number of intervals per binding in S. For tree, forest, and cig data i = 1.

3For consistency, we use a set of failure markers to be able to continue to consider a sequence as duplicate free.
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Proof. See Section 3.5.3. �

Figure 13 illustrates amore complex sequencemap than the one from Figure 12. It is inconsistent since
there are some failure markers and binding d12 for variable v3 is dangling. Furthermore, if the failure
markers are propagated d3 for v1 is also dropped (there are no proper related bindings for v2 which in
consequence makes also d11 in v3 dangling.

Even if we consider only consistent sequence maps, there are multiple sequence maps with the same
induced relation: ¿ey contain the same bindings for each variable, but the interval pointers between
bindingsmay vary as long as they cover the same set of bindings. E.g., in one sequencemap a bindingmay
contain {(v, 1, 3)} to point to bindings of v, in another {(v, 1, 1),(v,2,2),(v, 3, 3)}, and in yet another
{(v, 1,2),(v, 3, 3)}. However, there is a unique minimal interval representation for the interval pointers
of each binding (here the one of the �rst sequence map):

De�nition 2.7 (Interval-minimal sequence map). A sequence map SM
D Q

is called interval-minimal, if the
set of interval pointers for any binding in SM

D Q
is minimal, i.e., there is no smaller set of interval pointers

that covers the same bindings for each child variable.

¿eorem 2.2. A interval-minimal, consistent sequence map is uniquely identi�ed by its induced relation,
i.e., there is no other interval-minimal, consistent sequence map with the same induced relation.

Proof. Let R be the induced relation of a given sequence map S. ¿en, (1) we can not add or remove a
binding for any variable v ∈ dom S: If we add a binding for a single variable, the binding is dangling and
the resulting sequence map is not consistent. If we add a binding and reference if from some interval
pointer of some binding for the parent variable, the induced relation is no longer the same but contains
additional tuples. (2) we can not extend or shrink, collapse or divide an interval pointer for a binding
n of v ∈ dom S. If we extend an interval pointer i and the added indices (which are adjacent to i) are
covered in the old interval set, then the original set of intervals is not minimal (as we could collapse i
with the interval pointer covering the adjacent indices). If the added indices are not covered in the old
interval set, we introduce new tuples into the induced relation. Analog for shrinking, we remove tuples
in the induced relation. For collapsing and dividing, either the original interval set is not minimal (if we
can collapse) or the resulting interval set is not minimal (if we divide). �

2.2.2 Answers: Consistent and Complete Sequence Maps

Sequencemapsmay be only a partialmapping of query variables to bindings and thus contain only partial
or intermediary answers to a query, many of which may actually not contribute to any complete answer
of the query.

De�nition 2.8 (Complete sequence map). For a tree query Q a sequence map SM
D Q

is called complete if
(1) all variables of Q are covered by the sequence map: dom SM

D Q
= Vars(Q); (2) all relations of Q are

covered in all bindings for the involved variables: for all v,v′ ∈ Vars(Q) it holds that v = parent(v′) if and
only if, for all i ≤ ∣SM

D Q(v)∣, intervalsv′(SM
D Q(v)[i]) ≠ ∅; (3) all relations in the sequence map are covered by

the query: for all v,v′ ∈ Vars(Q) it holds that if there is a i ∈ N such that intervalsv′(SM
D Q(v)[i]) ≠ ∅, then

v = parent(v′).
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Complete sequence maps can still be inconsistent, though failure markers can only occur for leaf
variables (for inner variables, they violate condition (2) of the de�nition as there are no related bindings
to a failure marker by de�nition). “Dangling” bindings may occur for any variable.

Before we can compile queries into sequence map operations, we �rst need to de�ne those operations
in Chapter 3. Before we can de�ne the operations, we establish a number of properties for sequence maps
on di�erent shapes of data in Section 2.3. With these properties, we can establish, in Section 2.4 bounds for
the space needed to represent (intermediary) results of a tree query in a sequence map for the di�erent
kinds of data. ¿ese results are used, �nally, to de�ne operations on sequence maps such as creation
of sequence maps, projection, join, union, subtraction, and propagation to remove inconsistencies, cf.
Section 3. We conclude with a number of variants of the sequence map, in particular, a purely relational
sequence map.

2.3 On The Influence of Data Shape

Sequencemaps are capable of representing (intermediary) answers to tree queries on any relational struc-
ture as de�ned above. However, when we pose certain restrictions on the shape of the relations involved,
we can place bounds on the number of intervals required to represent relations between bindings of ad-
jacent query nodes and thus on the size of the sequence map.

2.3.1 Exploiting Tree-Shape of Data: Single Interval Pointers

Tree data exhibits a number of regularities that have been exploited bymost previous approaches to query-
ing structural relations on tree data: labeling schemes such as pre-/post-encoding [16, 28]allow constant
time, constant space membership test of tree-shaped relations as well as their closure (descendant or ances-
tor in XPath); similarly, twig join approaches [8] exploit the fact that in tree shaped data, their is at most
one parent for each node in the data and at most d related nodes, with d depth of the tree, if the closure
relation is considered, i.e., at most d ancestor nodes; like twig joins, we exploit limits on the number of
parents and ancestors of a node in SPEX. Additionally, we observe that, for horizontal closure relations,
the bounds are less favorable, e.g., breadth of tree for following-sibling and size of tree for following. But also
for horizontal relations we observe that the images for nodes follow certain patterns (e.g., the followings
of a node are a subset of the followings of all its pre-order predecessors).

In the following, we give alternative characterisations of tree-shaped relations and their transitive clo-
sures that allow us to identify in what way we can order the domain to allow a linear representation of the
related nodes in the given relation. Furthermore, we use these characterisations to show in Section 2.3.2
how to go beyond tree data and still maintain the linear representation.

To start with, let us consider relations that directly form trees, i.e., direct structural relations such as
child, next-sibling, and next (in the sense of [23]). If we look at how the images of nodes are shaped under
these relations, we can note that the images of two di�erent nodes never overlap. We call this property
image disjointness:

De�nition 2.9 (Image Disjointness Property). Let R be a binary relation over some domain N. ¿en R
is said to carry the image disjointness property, if and only if, for any two nodes n1 ≠ n2 ∈ N, it holds
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that R(n1) ∩ R(n2) = ∅.4

We choose this formulation of image disjointness as it immediately induces a set of orders on N
that guarantee that the image of a node n ∈ N can be represented as a single interval: keep each R(n)
together (with arbitrary “internal” order) but choose an arbitrary order among the R(n). More formally,
Let <arbitrary be some arbitrary total order on N, <dom some total order on domR, and <n a total order
on each R(n) for n ∈ domR. ¿en ≺ is a total order on N with

≺= {(n,n′) ∈ (rngR)2 ∶ n ∈ R(m) ∧ n′ ∈ R(m′) ∧
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n <m n′ ifm = m′

m <dom m′ ifm ≠ m′
}

All n /∈ rngR either follow or precede the n ∈ rngR.
It is easy to see that a sequence over N consistent with any such order allows the representation of the

images of any node n under R as a single interval.
In terms of orders on the tree, any breadth-�rst traversal induces such an order. Whether the traversal

is top-downor bottom-up, le -to-right, or right-to-le is immaterial. In fact, the order inwhich the nodes
of the tree are visited is entirely arbitrary as long as the children of each node are visited together.

¿e image disjointness property captures exactly all tree- and forest-shaped relations:

¿eorem 2.3. Let R be a binary relation over some domainN. ¿en (N,R) is a forest i� R carries the image
disjointness property.

Proof. Recall, that a (directed rooted) tree is a rooted connected simple graph with a unique simple path
between the root and any other node. A forest is a disjoint union of trees, i.e., we all multiple roots but
each node is part of exactly one tree. In other words, there is only one root per node from which that
node is reachable and, as in a tree, there is a unique simple path between that root and the node.

If (N,R) is a forest and n1 ≠ n2 ∈ N, thenR(n1)∩R(n2) = ∅: any node n′ ∈ R(n1)∩R(n2) violates the
forest property as it is either, if n1’s root is di�erent from n2, reachable frommultiple roots (i.e., (N,R) is
no disjoint union of trees) or, if n1 and n2 have the same root, there are two unique simple paths between
the root and n′ by appending n′ to the path from the root to n1 and to n2.

If R has the image disjointness property, then let roots(R) = {n ∈ N ∶/∃ n′ ∈ N ∶ (n′,n) ∈ R}. (1) Each
node n ∈ N is reachable from at most one root r ∈ roots(R): If n is directly reachable (a child) from r
then it can not be directly reachable from any other n′ ∈ N including any r ∈ roots(R) due to the image
interval property and as r is not reachable from any node in n by de�nition of roots(R). If n is indirectly
reachable from r the same argument can bemade recursively for the nodes in the path from r to n. (2) For
each node n ∈ N, there is a unique path from its root r to n. If there are two distinct paths from r to n
then either n or some node on the path from r to n lies in the image of two distinct nodes in violation of
the image interval property. �

However, on tree data also closure relations can be represented and tested in linear time and space,
e.g., the descendants of a node. In fact, for any of the structural closure relations such as descendant, ancestor,
following, following-sibling, etc. we can observe the same. However, the images of two distinct nodes are
clearly not distinct in these cases. E.g., the descendants of a child are always a subset of the descendants

4Recall, the we denote with R(n) = {n′ ∈ N ∶ (n,n′) ∈ R′}.
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of its parent. For all these relations, the images of two di�erent nodes can overlap, but on tree data only
in a “disciplined” manner: either they do not overlap at all or one is entirely contained in the other. We
formalize this property as follows:

De�nition 2.10 (Image Containment Property). Let R be a binary relation over some domain N. ¿en R
is said to carry the image containment property, if and only if, for any two nodes n1 ≠ n2 ∈ N, it holds
that R(n1) ∩ R(n2) ≠ ∅ implies that R(n1) ⊂ R(n2) ∨ R(n2) ⊂ R(n1).

Again, given this propertywe can readily de�ne an order overN such that the images of each node can
be represented as a single, continuous interval: the containment of images constitute a hierarchy on the
domain of R. As long as that hierarchy is respected by the order, the images of a node can be represented
as a single, continuous interval on a sequence over N consistent with that order.

More formally, let <n be some order on R(n) for each n ∈ domR. Let direct(n) for some n ∈ rngR be
the n′ ∈ domR such that n ∈ R(n′) and there is no n′′ ∈ domR such that n ∈ R(n′′) and R(n′′) ⊂ R(n′).
Finally, let <dom be an arbitrary order on domR and <incl= {(n,n′) ∈ (domR)2 ∶ R(n) ⊂ R(n′)∨(R(n)∩
R(n′) = ∅ ∧ n <dom n′)}. ¿en ≺ is a total order on N with

≺ = {(n,n′) ∈ (rngR)2 ∶ m = direct(n) ∧m′ = direct(n′) ∧
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n <m n′ ifm = m′

m <incl m′ ifm ≠ m′

All n /∈ rngR either follow or precede the n ∈ rngR.
¿e image containment property captures exactly closure relations over forest-shaped base relations:

¿eorem 2.4. Let R be a binary relation overN. ¿en R carries the image containment property if and only
if there is a forest-shaped base relation R′ such that R is the transitive closure of R′.

Proof. If R is the transitive closure of a forest-shaped relation R′ and m ∈ R(n),m ∈ R(n′). ¿en either
n is an ancestor of n′ or the other way round as R′ is a forest, i.e., R(n) ⊂ R(n′) or vice versa.

If R carries the image containment property, let R′ = {(n,n′) ∈ N2
∶ R(n′) ≠ ∅ ∧ R(n′) ⊂ R(n)∧ /∃

m ∈ N ∶ R(n′) ⊂ R(m) ∧ R(m) ⊂ R(n)} ∪ {(n,n′) ∈ N2
∶ n′ ∈ R(n)∧ /∃ m ∈ N ∶ n′ ∈ R(m) ∧ R(m) ⊂

R(n)}. ¿e �rst set represents the hierarchy of the inner nodes, the second set the leaf nodes. ¿en
(N,R′) is a forest, since (1) leaf nodes l have by de�nition a single parent: if there are two n ≠ n′ ∈ N with
l ∈ R(n) and l ∈ R(n′) but neither R(n) ⊂ R(n′) nor R(n′) ⊂ R(n) (otherwise n or n′ do not ful�ll the
condition for parents of lead nodes), then R(n)∩R(n′) ≠ ∅ but neither is subset of the other in violation
of the image containment property of R. (2) inner nodes i have also a single parent: if there are two nodes
n,n′ with i ⊂ R(n) and i ⊂ R(n′) but no m,m′ ∈ N with i ⊂ R(m) ⊂ R(n) and i ⊂ R(m′) ⊂ R(n′),
then R(n) ∩ R(n′) ≠ ∅, yet neither is a subset of the other. ¿us, the image containment property is
violated. �

2.3.2 Beyond Trees: Consecutive Ones Property

Tree data, as argued above, allows us to represent relations on that data more compact, e.g., using various
interval-based labeling schemes. Here, we introduce a new class of graphs, called continuous-image graphs
(or cigs for short), that generalize features of tree data in such a way that we can evaluate (tree) queries
on cigs with the same time and space complexity as techniques such as twig joins [8] which are limited
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Figure 14. Sharing: On the Limits of Continuous-image Graphs

to tree data only. Moreover, we show that even skipping and pruning techniques used for tree data carry
over to continuous-image graphs (cf. Section 3.9.1).

Continuous-image graphs are a proper superset of (ordered) trees where we require not that each
node has at most one parent, as we do for trees, but that we can �nd a single order on all nodes of the
graph such that the children of each parent form a continuous interval in that order. ¿is de�nition allows
graphs where some or all children of two parents are “shared” but limits the degree of sharing: Figure 14
shows two minimal graphs that are not cigs. Incidentally, both graphs are acyclic and, if we take away
any one edge in either graph, the resulting graph becomes a cig. ¿e second graph is actually the smallest
(w.r.t. number of nodes and edges) graph that is not a cig. ¿e �rst is only edge minimal but illustrates
an easy to grasp su�cient but not necessary condition for violating the interval property: if a node has at
least three parents and each of the parents has at least one (other) child not shared by the others then the
graph can not be a cig.

On continuous-image graphs we can exploit similar techniques for compacting structural relations
as on trees, most notably representing the nodes related to a given node as a single, continuous interval
and thus with constant space. ¿is applies also for derived relations such as closure (XPath’s descendant)
or order relations (XPath’s following-sibling) on cigs.

From a practical perspective, cigs are actually quite common, in particular, where time-related or
hierarchical data is involved: If relations, e.g., between Germany and kings, are time-related, it is quite
likely that there will be some overlapping, e.g., for periods where two persons were king of Germany
at the same time. Similarly, hierarchical data o en has some limited anomalies that make a modelling
as strict tree data impossible. Figure 2 shows actual data5 on relations between the family (red nodes,
non-ruling member 1 , co-emperor or heir designate 10 , emperors 2 ) of the Roman emperors in
the time of the “Five Good Emperors” (Edward Gibbon) in the 2nd century. It also shows, for actual
emperors, which of the four new provinces ( I ) added to the roman empire in this period each emperor
ruled (the other provinces remained mostly unchanged and are therefore omitted). Arrows between
familymembers indicate, natural or adoptive, fathership6. Arrows between emperors and provinces show
rulership, di�erent colors are used to distinguish di�erent emperors. Despite the rather complicated shape
of the relations (they are obviously not tree-shaped and there is considerable overlapping, in particular
w.r.t. province rulership).

5¿e name and status of the province between the wall of Hadrian and the wall of Antonius Pius in northern Britain is
controversial. For simplicity, we refer to it as “Caledonia”, though that actually denotes all land north of Hadrian’s wall.

6Note that all emperors of the Nervan-Antonian dynasty except Nerva and Commodus were adopted by their predecessor
and are therefore o en referred to as “Adoptive Emperors”.
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Formally, we de�ne a cig as an arbitrary relation (or graph) that carries the following property:

De�nition 2.11 (Image interval property). Let R be a binary relation over some domainN. ¿en R is said
to carry the image interval property, if and only if there exists a total order <i on N with its induced
sequence S over N such that for all nodes n ∈ N, R(n) = ∅ or R(n) = {S[s], . . . ,S[e] ∶ s ≤ e ∈ N}.

¿is property merely formalizes the original observation that one means of compacting a binary re-
lation on N (for linear space storage with linear time membership test) is through the use of intervals.
Here, we demand that there is an order and thus a sequence over N that allows us such an interval rep-
resentation.

¿e image interval property is a generalization of both image disjointness and image containment
but characterizes a strictly larger class of relations.

¿eorem 2.5. Let R be a binary relation over some domain N. If R carries the image disjointness (image
containment) property, then R also carries the image interval property.

Proof. For relation with image disjointness or image containment property, we choose an order over N
as described when de�ning the two properties. Together with any such order, R ful�ls the de�nition of
image interval property. �

¿eorem 2.6. ¿e image interval property covers a strictly larger class of relations than either the image
disjointness or the image containment property.

Proof. Figure 2 as well as Figure 15 show relations that carry the image interval property but do not carry
either image disjointness or image containment. In general, cigs allowmore freedom in overlapping than
relations with image containment property: two nodes may share some but not all nodes in their image.
However, as discussed above, cf. Figure 14, they still pose a limit on the sharing. �

It is easy to see, that the weakest of the three properties, image disjointness, can be tested in quadratic
time over the size of the domain. Surprisingly, the same holds for the image interval property: For that we
observe that it is merely another formulation of to the consecutive-ones property introduced for {0, 1}
matrices in [19]. A {0, 1} matrix is said to exhibit the consecutive-ones property if its rows may be per-
muted in such a way as to make the ones in each column consecutive.

¿eorem 2.7. Let R be a binary relation over some domain N. ¿en R carries the image interval property
i� its adjacency matrix carries the consecutive-ones property.

Proof. Recall, that the adjacency matrix of a binary relation R ⊂ N2 is a quadratic {0, 1}matrixM where
rows and columns correspond to the nodes inN andM(i, j) = 1 i� the nodes corresponding to the ith row
and jth column stand in relation R. LetMR be a corresponding matrix for a relation R. MR exhibits the
consecutive-ones property if and only if the image interval property holds for R: Each column represents
the images of a node. A permutation of the rows is merely a speci�c order of the nodes in N. ¿us, if a
permutation of the rows exists such that the ones in each column are consecutive, then an order on the
nodes in N exists such that the images of each node form a single continuous interval on the sequence of
nodes represented by the row permutation. �

32



For the consecutive-ones problem [7] gives the �rst linear time (in the size of the matrix) algorithm
based on so called PQ-trees, a compact representation for permutations of rows (or columns) in amatrix.
Consider the relation represented in Figure 15 as an adjacency matrix. It is neither forest-shaped (e.g., 1
has many parents: (A, 1), (A,2), . . . ) nor does it carry the image containment property (2 is in image of
both A and B but neither image is a subset of the other).

However, we can compute a PQ-tree for this relation that represents all permutations of columnorders
such that the 1s are consecutive in each row. ¿is PQ-tree is shown in Figure 16. A PQ-tree contains, as the
name suggests, two kinds of inner nodes: Q nodes and P nodes. P nodes indicate that any permutation
of its children guarantees consecutive 1s in each row. Q nodes indicate that its children must be traversed
in order or in the inverse order. For Figure 16 this means, that the PQ-tree represents the permutations
4271356, 4271536, 4217356, 4217536, 6357124, 6351724, 6537124, 6531724.

Figure (b) shows one such permutation where, indeed, the 1s are consecutive in all rows. It is also
easy to see that we can �ip 7 and 1, as well as 3 and 5 arbitrarily (they are each identical). And, of course,
we can invert the order of the columns without violating the consecutive ones property.

¿e PQ-tree algorithm gives us a quadratic decision algorithm whether any given relation carries the
image interval property (details cf. [7]).

¿eorem 2.8. Let R be a binary relation over some domain N. ¿en deciding whether R carries the image
interval property and computing a corresponding order <i has space and time complexityO(∣N∣2)

More recent re�nements of the PQ-tree, viz. the PC-tree described in [34, 36], give a slightly simpler
test for the consecutive-ones property (albeit with the same complexity). Figure 17 shows the PC-tree
for the relation in Figure 15. In a PC-tree, we have again two kinds of inner nodes: P nodes where we
can freely permute the children and C (or cyclic) nodes where we can only traverse the children either in
clockwise or in counter-clockwise order.

2.3.3 Open Questions: Beyond Single Intervals

With the image interval property, we now have a characterisation of a large class of graphs that contains
all forest-shaped relations and their closures, yet covers a substantially larger class of graphs. ¿is charac-
terisation allows us, as for forest-shaped relations, to use a single interval to represent the related nodes of
any node in a relation carrying the property. Moreover, deciding whether a relation carries that property
is decidable in quadratic time and gives, as a by-product, an appropriate order. Note, that the decision
is entirely independent of the query and can thus be computed when storing the relation rather than an
query evaluation time.

2.3.3.1 Bounded Intervals: k-Interval Property

¿e image interval property ensures that we need atmost one interval to represent the image of a node un-
der a relation. Linear time representation and linear timemembership test, however, can also be achieved
if we relax that a bit more: If there is a (preferably small) k ∈ N independent of ∣N∣ that represents an
upper limit to the number of intervals needed to represent the image of a node, that still gives us a linear
space representation and linear time membership test.

¿us, even for a relation R that carries the k-interval property for a small k ∈ N we can still pro�t
from the sequence map representation over a plain relational representation:
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1 2 3 4 5 6 7

A 1 1 0 1 0 0 1

B 1 1 1 0 1 0 1

C 1 0 1 0 1 1 1
(a) Adjacency matrix representation of a

sample relation

4 2 7 1 3 5 6

A 1 1 1 1 0 0 0

B 0 1 1 1 1 1 0

C 0 0 1 1 1 1 1
(b) Consecutive-ones permutation of rela-

tion from (a)

Figure 15. Relation with (1-) interval property
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Figure 16. PQ-Tree for Relation in Figure 15
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Figure 17. PC-Tree for Relation in Figure 15
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De�nition 2.12 (Image k-interval property). Let R be a binary relation over some domain N and k ∈ N.
¿en R is said to carry the k-image interval property, if and only if there exists a total order <i on N
with its induced sequence S over N such that for all nodes n ∈ N, R(n) = ∅ or

R(n) = {S[s1], . . . ,S[e1],S[s2], . . . ,S[e2], . . . ,S[sl], . . .S[el] ∶ si ≤ ei ∧ l ≤ k}.

If we modify the relation as in Figure 18 by adding 4 to the image of Aand 6 to the image of C, the re-
sulting relation does no longer carry the consecutive-ones property (and thus has no associated PQ-tree).
It carries, however, the 2-interval property as illustrated by the permutation in Figure 18. Furthermore,
it also has a corresponding PC-tree (in fact, the same as the original relation). ¿is is due to the fact that
PC-trees actually test for the circular-ones property circular-ones property, as de�ned in [36]. ¿e circular
ones property of a {0, 1}-matrix indicates that there is a permutation of the rows such that either the 0s
or the 1s are consecutive in each column. It is called “circular ones” as, the 1s are still consecutive in all
columns if we consider the matrix circular, i.e., a er the last row we continue with the �rst row.

Whether there is a polynomial decision algorithm for the general k-interval property, remains an
open question though the test for “circular ones” points towards a decision algorithm for k = 2. In the
following, we use only the 1-interval property characterising cig data.

2.3.3.2 Arbitrary, but Optimal Intervals for Arbitrary Graphs

Even on arbitrary graphs, where we can no longer guarantee liner space representation and linear time
membership test, we nevertheless can o en pro�t from selecting a suitable order on the nodes of N: for
most graph the number of intervals needed to represent the images of a node is o en much lower than
the worst case ofO(∣N∣).

To characterise such an order, we �rst de�ne the (minimal) interval representation for a relation R:

De�nition 2.13 (Minimal interval representation of a relation). Let R ⊂ N2 be a (�nite) binary relation
and < a total order over N. Let S< be the induced sequence over N for <. ¿en I ∶ domR → 2Intervals}
is called the minimal interval representation of R over < if (s, e) ∈ I(n) for any n ∈ domR i� for all
s < i < e: (n,S[i]) ∈ R (all elements in the interval are in R(n)), s = 1 or (n,S[s − 1]) /∈ R and e = ∣S<∣
or (n,S[e + 1]) /∈ R (there is no larger interval over S< that also ful�ls the �rst condition and includes
(s, e)).

Note, that the intervals in I(n) are non-overlapping and cover R(n) for each n ∈ domR. ¿ey are
non-overlapping, as (s1, e1),(s2, e2) ∈ I(n) with s1 < s2 < e1 either e2 ≤ e1 which means (s2, e2) violates
the second condition of the de�nition or e2 > e1 which means both violate the second condition and
(s1, e2)must be included in I(n) by de�nition.

Using the notion of interval representation, we can now de�ne the minimal interval representation
and thus the cost of representing a relation by intervals over some given order <.

De�nition 2.14 (Interval cost of a relation). Let I ∈ I<(R) be the minimal interval representation of a
relation R under <. ¿en we call IN<(R) = ∑n∈N ∣I(n)∣ the size of I and the interval cost for R under <.

¿is gives us the cost of representing a relation R under an order on N. What we would like to �nd,
is an order on N with the lowest cost for the representation:
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De�nition 2.15 (Interval-optimal order). Let R ⊂ N2 be a (�nite) binary relation and O the set of all
total orders over N. ¿en an order < ∈ O is called interval optimal if its associated interval cost IN<(R) is
minimal among the interval costs of all orders over R.

Obviously, we can �nd the interval-optimal order by trying each permutation of the nodes in N. As
for the k-interval property, it is an open question whether there is a polynomial decision algorithm for
the optimal interval order.

For a given order <, however, we can compute a minimal interval representation in polynomial time
by Algorithm 1.

Algorithm 1: Compute interval representation from relation
input : Relation R total order < over rngR.
output: Interval representation I of R.

S ← induced sequence for < over rngR;1

I ← ∅;2

foreach n ∈ domR do3

Intervals← ∅;4

start← �;5

for i ← 1 to ∣S∣ do6

if (n,S[i]) ∈ R and start = � then7

start← i ;8

if (n,S[i]) /∈ R and start ≠ � then9

Intervals← Intervals ∪ {(start, i − 1)} ;10

start← � ;11

if start ≠ � then12

Intervals← Intervals ∪ {(start, ∣S∣)} ;13

I ← I ∪ {(n, Intervals)};14

return I15

¿eorem 2.9. Algorithm 1 computes the minimal interval representation of the input relation R under the
order < in timeO(n2) where n = ∣Nodes(R)∣.
Proof. Let I be the result of Algorithm 1 for a given R under the order < and S< the induced sequence
over rngR for <. ¿en I is the minimal interval representation of R under < as (1) there is an interval
(s, e) ∈ I(n) for each n′ ∈ R(n) such that s ≤ S−1(n′) ≤ e (as at each n′ ∈ R(n) either a new interval
is started, l. 7–8, or an open interval is continued); (2) for all intervals (s, e) ∈ I(n) and s < i < e,
S<[i] ∈ R(n) (as if S<[i] /∈ R(n) the previous interval is closed at i − 1, l. 9–11, or start = �); (3) for all
intervals (s, e) ∈ I(n) either s = 1 or S<[s − 1] /∈ R(n) (if S<[s − 1] ∈ R(n) then s can not be the start of
an interval as the interval either starts at s − 1, l. 7–9, or before); (4) for all intervals (s, e) ∈ I(n) either
e = ∣S<∣ or S<[e + 1] /∈ R(n) (only if S<[e + 1] /∈ R(n) or we are at the end of the sequence is an interval
added with the current interval position as end index).
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Algorithm 1 runs in ∣domR∣ ⋅ ∣rngR∣ = O(∣Nodes(R)∣): the induced sequence can be computed in
O(n logn). ¿e main loop (l. 3–14) iterates over all elements in domR, the inner loop over the elements
of S which are all elements in rngR. �

2.4 Space Bounds for Sequence Maps

With the above properties of data represented in sequence maps, we can now give precise characterisa-
tions of the space used by a sequence map SM

D Q
over a relational structure D and a query Q.

¿eorem 2.10. Let SM
D Q

be a sequence map over a relational structure D and a query Q. ¿en the size of SM
D Q

is bounded byO(q ⋅ n ⋅ i) ≤ O(q ⋅ n2) where n = ∣Nodes(D)∣ ,q = ∣Vars(Q)∣, and i is the maximum number
of intervals needed to represent the image of a node n ∈ N under any query relation R and the order O(R)
associated with R in D.

Proof. Recall, the signature of a sequence map from Section 2.2:

SM
D Q

∶ Vars(Q)→ SubSeq(Nodes(D)→ 2Vars(Q)×Intervals)
Each of the q variables in Vars(Q) is mapped to a sub-sequence over Nodes(D) each of which is asso-

ciated with a subset of Vars(Q) × Intervals. Since sequences are by de�nition (see Section 2.2) duplicate-
free, the size of each sub-sequence over Nodes(D) is bounded by n = ∣Nodes(D)∣. ¿us, we have at most
q ⋅ n bindings represented in a sequence map. However, each binding is associated with a sub-set over
Vars(Q) × Intervals the size of which is bounded by q ⋅ i where i is the maximum number of intervals
needed to represent the image of a node n ∈ N under any query relation R and its associated orderO(R).

¿is indicates a bound of q ⋅n ⋅q ⋅ i. However, for each variable v, its bindings are referenced only from
bindings of its parent variable v′, but not from the bindings of any other variable. ¿us, for each variable,
we have at most n ⋅ i intervals referencing bindings of that variable and the total size of the associated
interval sets is limited by q ⋅ n ⋅ i.

In total, we arrive at a bound of q ⋅ n for the bindings and a bound of q ⋅ n ⋅ i for the interval sets and
thus at an overall bound of q ⋅ n + q ⋅ n ⋅ i = O(q ⋅ n ⋅ i).

Note, that i ≤ n, as all intervals are, by de�nition of a sequence map, non-overlapping and grounded:
Since they are grounded, the largest index covered by any interval is bounded by n (the maximum length
of the sequence of child variable bindings). Since they are non-overlapping, there are at most n intervals
to cover a sequence from 1 to n, viz. n intervals of size 1.

¿e edge cover associated with a sequence map does not a�ect the space complexity: sinceQ is a tree
query, there are at most q− 1 edges in Q and thus in the edge cover of a sequence map for Q. �

Note, that the above result holds for arbitrary relations and tree queries. It shows that the sequence
map provides a polynomial storage for (intermediary) answers of tree queries on arbitrary relations, i.e.,
an exponentially more succinct storage than �at relations.

Together with the results from the previous sections we can immediately infer a number of conditions
when the sequence map provides linear data complexity for answer storage:

Corollary 2.1. Let SM
D Q

be a sequencemap over a relational structureD and a queryQ. Let all query relations
carry the image disjointness, image containment, or image interval property together with their associated
order O(R) in D. ¿en the size of SM

D Q
is bounded byO(q ⋅ n) where n = ∣Nodes(D)∣ and q = ∣Vars(Q)∣.
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Proof. For relations that ful�ll one of these properties, i = 1 since the R(n) can be represented as a single
interval for each n ∈ Nodes(D) over the induced sequence for O(R). �

Since image disjointness, containment and interval are precise characterisations of tree/forest-shaped
relations, closure relations over tree/forest-shaped relations, or cig-shaped relations resp., we can also
state this result as follows:

Corollary 2.2. Let SM
D Q

be a sequencemap over a relational structureD and a queryQ. Let all query relations
be tree- or forest-shaped, closure relations over tree- or forest-shaped relations, or cig-shaped. ¿en the size
of SM

D Q
is bounded byO(q ⋅ n) where n = ∣Nodes(D)∣ and q = ∣Vars(Q)∣.

Note, if all variables in Q are answer variables (in other words, if we evaluate Q by pattern matching
in the classi�cation of [51]), this bound becomes tight if we ensure that only nodes from N are retained
in the sequence map that are actual matches for the full query, cf. Section 3.9 for details and conditions
on the data needed to ensure that property.

Analogously, for relations with k-interval property we have at most k intervals needed to represent
the image of each node an thusO(q ⋅ n ⋅ k) space bound.
Corollary 2.3. Let SM

D Q
be a sequencemap over a relational structureD and a queryQ. Let all query relations

carry the k-image interval property together with their associated order O(R) in D. ¿en the size of SM
D Q

is
bounded byO(q ⋅ n ⋅ k) where n = ∣Nodes(D)∣ and q = ∣Vars(Q)∣.

Finally, note that these results hold also for inconsistent sequence maps as the number of failure
markers is bounded by ∣N∣ as well as the number of “dangling” bindings (since the latter are nodes from
N).

¿e space bounds for sequence maps established in this section form the foundation for the time
complexity of the sequence map operations discussed in Section 3. Before, we turn to the sequence map
operations and thus the CIQCAG algebra proper, we �nish our discussion of the sequencemapdata structure
by a brief outlook on variants of the sequence map: a purely relational variant of the sequence map and a
variant of the sequence map supporting not only tree queries but also some graph queries, viz. diamond-
free DAG queries.

2.5 Sequence Map Variations

2.5.1 Purely Relational Sequence Map

As de�ned above, the sequence map uses sequences to represent bindings and associates with each bind-
ing a set of variable-interval pairs. Both are features that are not provided by pure relational databases
(though sequences and order, e.g., are provided in SQL and most practical DBS).

De�nition 2.16 (Purely relational sequence map). A purely relational sequence map, denoted SM
∗ DQ, over

a relational structure D and a query Q is a set of relations: For each variable v in Q, there is a rela-
tion Rv ∈ SM

∗ DQ with schema ⟨index ∈ N,binding ∈ Nodes(D), child variable ∈ children(v), start index ∈
N, end index ∈ N⟩. Each tuple in Rv stores a node binding together with its index and one interval of
related nodes for one child variable.
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In contrast to the de�nition of a sequence map in Section 2.2, we duplicate the index and binding
node information for each related child variable interval. To obtain the related bindings of some child
variable v′ for a given binding of the parent variable v, we evaluate a range query on RV′ for all tuples with
index between start index and end index.

¿ough general range queries requireO(n logn) time to iterate all nodes in a given interval, we can
exploit in this case the fact that the index column can be stored as a sequence or ordered relation allowing
indexed access andO(n) time iteration. In this sense, the sequence map as de�ned in Section 1.3 can be
seen as a speci�c realisation of the purely relational sequence map with linear time iteration for related
bindings of a given node.

2.5.2 Multi-Order Sequence Map for Diamond-Free DAG Queries

¿e above de�nitions of a sequence map allow only tree queries (or tree cores of arbitrary queries). How-
ever, we can in fact extend the sequence map approach also to forest queries and even certain classes of
DAG queries. In fact, the above de�nitions are also amenable to forest queries. Beyond forest queries, we
can still use the sequencemap for diamond-free DAG queries, albeit with a slight modi�cation. Diamond-
free DAG queries are queries in the shape of a DAG where there are no two distinct paths between
two nodes (and thus no diamond-shaped sub-graph). Diamond-free DAG queries are also used, e.g.,
in [45, 42] (there named single-join DAG queries).

If we consider diamond-freeDAGqueries, theremay be nodes in the query that havemultiple parents.
However, as for tree queries only the parent and child nodes are relevant to decide whether a data item
is a match for a query node. ¿e multiple parents, however, may be connected using di�erent relations,
e.g., XPath’s child, descendant, and following relations. In the above de�nitions, we only demand that for
each relation the continuous-image property of the data holds. If we have DAG queries this might lead to
di�erent, possibly incompatible orders for the image relations (e.g., child needs a breadth-�rst order to ob-
tain continuous-images vs. depth-�rst order for descendant). However, we do not need to “strengthen” the
cig property for diamond-free DAG queries. Rather, we use the purely relational variant of the sequence
map but add in Rv one separate index column for each di�erent incoming relation of vwith incompatible
orders and interval pointers are resolved as range queries over the appropriate order number.

¿e downside of this adaptation is that we can now no longer use the index for ordered storage of
the relation as there are several index columns. ¿erefore, we have to fall back to general, O(n logn)
time range queries rather than indexed access. For most of the operations discussed in Section 3, this
increases the time complexity with a logarithmic factor. Moreover, range queries are in most practical
SQL database systems not very e�cient, cf. [29], if compared with indexed access.
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1 2 3 4 5 6 7

A 1 1 0 1 0 1 1

B 1 1 1 0 1 0 1

C 1 0 1 1 1 1 1
(a) Adjacency matrix representation of a

sample relation with 2-interval prop-
erty

4 2 7 1 3 5 6

A 1 1 1 1 0 0 1

B 0 1 1 1 1 1 0

C 1 0 1 1 1 1 1
(b) Permutation of relation from (a) illus-

trating the circular-ones property

Figure 18. Relation with 2-interval property
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Chapter 3

Sequence Map Operators

3.1 Introduction and Overview

In this chapter, we concentrate on the �rst set of operators in the CIQCAG algebra, the operators for con-
structing andmanipulating a sequencemap. ¿e remaining operators are as in the relational algebra. ¿e
sequence map operators, summarized in Table 17, roughly fall into three groups: initialization or access
operators (Section 3.3) create a sequence map from a given relation, combination operators (Section 3.4)
such as join, union, and di�erence combine two sequence maps, and reduction operators (Section 3.5)
such as projection, selection, or propagation drop some of the bindings contained in a sequence map.
¿e role of the “odd men out” is played by the extraction operator (Section 3.7) that returns parts of the
induced relation of its input sequencemap and plays the bridge between sequencemaps, used in the eval-
uation of the tree core of a query, and relations, used in the evaluation of the remaining query, if there is
any.

¿e sequence map operators closely mirror their relational counterparts, where such exists. In gen-
eral, they are de�ned by reduction to the relational counterpart on the induced relation(s) of the input
sequence map(s). In contrast to relations, however, sequence maps are, in general, not closed under
union, di�erence, or even projection, see Section 3.4. ¿is is addressed by placing certain restrictions on

access join (conjunction) union difference

...µv,v′(D,Q), ...µv(D,Q,R) ...
&
(☇)
∩ ,

...
&
(☇), ...X(☇)(S,S′) ...

∪(S,S′) ...
∖(S,S′)

projection, rename selection propagation expansion

...πV(S), ...ρv1→v2(S)
...σ(☇)c (S) ...

ϖv(S), ...ϖv(S) V(S)
Table 17. Overview of sequence map operators in CIQCAG (all operators return a single sequence map S except  which

returns a (standard) relation)
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Imperial Family Member

‘Emperor’ Imperial Family Member

Imperial Family Member

‘Emperor’

Figure 19. Spanning tree for the query from Figure 10

the input sequence maps for each of these operators.
¿e three most unusual operators are the sequence map join, propagation, and extraction. For the

two latter operators, the reason is mostly that there are no relational counterparts. For the sequence map
join the main reason is that we present a number of variants for the sequence map join with di�erent
characteristics. Most notably, we introduce (as we also do for selection and initialization) both consistent
and inconsistent variants (marked with a ☇ as superscript) of the join: ¿e former ensures that a resulting
sequence map is consistent if the input sequence maps are, the latter allows and in many cases introduces
inconsistencies. However, as discussed in Section 3.4.1, the use of the inconsistent variant actually yields,
in general, an evaluation plan with lower complexity as we propagate inconsistencies once per query
variable instead of at each join.

To illustrate, how these operators play together to implement a typical Web query consider again the
query in Figure 10 and the spanning tree for that query shown in Figure 19. Note, that we mark also v2
as answer node (i.e., with a red rectangle ). ¿is is necessary as both v2 and v4 are used in the non-tree
part of the query. We can evaluate this (spanning) tree query using sequence maps with many di�erent
sequence map expressions (see Section 3.8 for equivalences between CIQCAG expressions formed from
sequence map operators).

One approach is to use the, in most cases more e�cient, inconsistent variants of the operators where
possible, at the price of additional propagation operations at the end of the query:

v2 ,v4(
...
ϖ
v4 ,v2(...ϖv4 ,v2(
(...µ☇v1 ,v4(D,Q) ...X☇ ...πv1(

...µ☇v1 ,v3(D,Q) ...X☇ ...µv3(D,Q, ‘Emperor’)))
...
&
☇
...µ☇v1 ,v2(D,Q) ...X☇ ...πv2(

...µ☇v2 ,v5(D,Q) ...X☇ ...µv5(D,Q, ‘Emperor’)) )
Instead of the semi-join operators we could also choose (inconsistent) join operators. However, we

could not replace the inconsistent joins with consistent ones without adapting also the contained expres-
sions as consistent join operators require that the input sequence maps are consistent.

A variant using only consistent operators is, nevertheless, also possible and, as expected, even more
compact:

v2 ,v4( (
...µv1 ,v4(D,Q) ...&∩ ...πv1(

...µv1 ,v3(D,Q) ...&∩
...µv3(D,Q, ‘Emperor’)))

...
&∩

...µv1 ,v2(D,Q) ...&∩ ...πv2(
...µv2 ,v5(D,Q) ...&∩

...µv5(D,Q, ‘Emperor’)) )
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Here, we use a join variant (denoted by a ∩ subscript) that allows only input sequence maps with
disjoint edge covers and is slightly more e�cient than the general join, ...&, which could be employed here
as well.

For more examples, see Section 3.8 and 3.9.
¿e sequence map operators are introduced as sequence-at-a-time operators, i.e., given one or more

input sequence maps they compute all their results at once. In Section 3.9, we show how to obtain a
iterator-based evaluation where results are generated tuple-at-a-time. ¿e disadvantage of that scheme
is that we are no longer free to rearrange the expression of the CIQCAG expression, but rather cluster all
expressionsmodifying values for a certain variable. Also, for general graph or even cig queries the bene�t
of a tuple-at-a-time evaluation is fairly low as there are no bounds on the number of nodes related to a
single node under a given relation and thus all previously computed answers may still be related to nodes
(matching with their parent variable) that come “later” in the processing.

On tree or forest data, however, there are such bounds: Namely, the number of parents of a node is
limited by 1 for direct tree relations, i.e., relations with image disjointness property, and by d for closure
relations, i.e., relations with image containment property, where d is the depth of the base relation. How-
ever, the presence of closure relations still prevents e�ective pruning of already considered bindings in
a sequence map unless we assume that the orders associated with the incoming relations of all pairs of
parent-child variables are consistent, i.e., if a node n1 is before another node n2 in the parent order, all the
nodes in n1’s image are before or the same as the nodes in n2’s image. An example of such relations are
child and descendant fromXPath and, actually, all pairs of base relation and corresponding closure relation.
For queries containing only such order-compatible relations, we can prune already considered bindings
earlier than in the general case and arrive at a tighter bound for the space used by their evaluation, viz.
O(q ⋅ d) which coincides with the lower bound for such queries shown in [51].

3.2 Interval Access to a Relational Structure

Before we turn to the actual operators, we brie�y outline the physical storage for a relational structure:
In Section 2.2, we de�ne a relational structure D as a tuple (RD

1 , . . . ,RD
k ,O

D) over some relational
schema (R1[U1], . . . ,Rk[Uk]). OD associates with each binary relation RD

i a total order on the (�nite)
domain.

For the description of the CIQCAG operators, we assume a speci�c way of accessing a given relational
structure (which provides the logical description of the queried data):

(1) For each order<N∈ rngOD, we access the nodes ofD in the induced sequence of<N overNodes(D).
Recall, that <N is a total order and thus has a unique induced sequence that faithfully represents that or-
der. Intuitively, instead of querying pairs of nodes (n1,n2) with n1 <N n2 we iterate over all nodes of D
such that a node n is accessed at index in where n1 <N n2 i� in1 < in2 .
For each induced sequence of an order <R= OD(R) we also store the “�ip” index flip

<R
∈ N such that, for

all i ≤ flip
<R
, S<R[i] ∈ rngR and, for all j> flip

<R
, S<R[j] /∈ rngR. Recall, from the de�nition of a relational

structure in Section 2.2, that in the associated order <R of each relation R all nodes in rngR precede all
nodes not in rngR. ¿us, each induced sequence has a (unique) �ip index.

(2) Each binary relation R is accessed through its minimal interval representation I(R) over its as-
sociated order OD(R). Recall, that a minimal interval representation maps each node in n ∈ domR to
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the minimal set of intervals needed to represent R(n) over the induced sequence of OD(R).
From¿eorem2.9 and the fact that the induced sequence of a total order can be computed inO(n logn),

we conclude that, even if we store the relations and orders in D as sets of pairs (or tables), we can provide
the above access in polynomial time:

Corollary 3.1. Let D = (RD
1 , . . . ,RD

k ,O) be a relational structure andm be the maximum cost of member-
ship test for RD

1 , . . . ,RD
k . ¿en its physical storage can be computed inO(k ⋅ ∣Nodes(D)∣2 ⋅m).

If all relations inD are extensional, we assumem to be constant and thusO(k ⋅ ∣Nodes(D)∣2) as bound
for the computation of the physical storage.

In the following, we assume that the iteration over the induced sequences is in O(n), membership
test is constant, and the iteration over the interval representations I(n) of a single node is inO(∣I(n)∣).

¿ese time bounds can be achieved for arbitrary relations with associated order < by storing the
induced sequence for each order (at the same cost as storing the orders itself) and storing for each binary
relation its minimal interval representation. ¿e minimal interval representation I< can be stored in
O(∣I<∣) ≤ O(n ⋅max{∣I(n)∣ ∶ n ∈ domR} ⋅ logn) space (if we assume constant pointer size, we can drop
the logarithmic factor).

For tree, forest, and cig data, this yields linear space in the number of nodes in D, for arbitrary
relations the same or less space than storing the relation as a table of pairs.

It should also be noted, that the above time and space bounds can be achieved for structural relations
over tree or forest data using an interval labeling of the elements in the tree, e.g., pre/post-encoding
[16, 28] or BIRD [54]: Given two nodes, we can determine in constant timewhether they are child, parent,
descendant, ancestor, following, preceding, following-sibling, preceding-sibling, etc. just from looking at
the node labels. We can also iterate over all, e.g., descendants of a node by a single range query on the pre-
and post-values. ¿e advantage of such labeling schemes is that they encode an entire set of structural
relations using only n ⋅ l where l is the size of a label space. For most of these encodings, l is in the same
order as the size of a pointer to a sequence over n, i.e., l ≤ logn.

In the following, we record bindings for all query variables in the order associated with the relation
the incoming edge of the variable is labeled with in the query. For root variables we use some �xed, but
arbitrary order ≺std.1 ¿us, in a queryQ against a relational structureD, we can associate with each query
variable v ∈ Vars(Q) an order ≺v such that

≺v=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

≺std if v root variable

OD(rel(v1)D) otherwise

3.2.1 Storing and Managing Interval Sets

Bindings in a sequence map may be associated with a set of intervals and their associated child vari-
ables, i.e., a relation over Vars(Q) × N × N. For each binding and child variable, the intervals are non-
overlapping. We assume that this set is stored partitioned by child variable and, for each such variable,
the non-overlapping intervals are in order of their start index.

1¿e �xed order ensures that over several constraints for the same root variable bindings are recorded in the same order.
¿is is exploited in the (merge) join algorithm discussed in Section 3.4.1.
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For the sequence map operations, we introduce four algorithms on such interval sets (or, where con-
venient, on interval sets for a single child variable): Adapt, Algorithm 8, slides and/or shrinks a set of
intervals with the help of a change set, that maps indices of the sequence those intervals reference to a
indices of a subsequence of that sentence such that the same binding is at the position of the index in the
original sequence as at the position of its image in the subsequence. For details, see Section 3.4.1. JoinInts,
Algorithm 9, computes the minimal interval sets representing the join (or intersection) of the two inter-
val sets. DifferenceInts, Algorithm 14, computes the minimal interval set representing the di�erence of two
interval sets. UnionInts, Algorithm 25, computes the minimal interval set representing the union of two
interval sets. All three algorithms construct the new interval set ordered by increasing start index.

Note, that all these algorithms are linear in the size of the input sets as they can exploit (1) that the in-
terval sets are stored in order of their start index and (2) that the intervals in each set are non-overlapping.
¿e ordered storage allows us to avoid sorting the intervals. ¿us, the complexity for these algorithmdoes
not contradict results on interval merge or union, e.g., in [33].

3.3 Initialize (from Relation)

¿e basic operation when constructing a sequence map representing the answers of a tree query is the
initialization of a sequence map from a single given relation such that the resulting sequence map repre-
sents the given relation. ¿ere are two variants of the initialization operation, one for unary relations and
one for binary relations. ¿ese are separate as for binary relations we need to store not only bindings for
the two query variables involved but also interval pointers between those relations.

Initializing a sequence map with a unary relation is essentially the same as turning a unary relation
into a sequence over the order associated with its query variable. ¿e result is a consistent sequence map
such that its induced relation represents the given unary relation:

De�nition 3.1 (Initialization of unary relations). Let D be a relational structure, Q a tree query, v ∈
Vars(Q), and R a relation with relation name in LD

V(v). ¿en,
...µv(D,Q,R) returns a consistent sequence

map SM
Q Dsuch that

(1) R is the induced relation of SM
Q D(represents the unary relation on v) and

(2) SM
Q D∣v = SM

Q D(contains bindings only for v).
¿e edge cover associated with

...µv(D,Q,R) is empty.

Algorithm 2 computes such a sequence map for a given input relation. ¿e resulting sequence map is
consistent as there are no failure markers (the algorithm does not introduce any and the nodes in S are
distinct from any failure marker) and no dangling bindings (as there are bindings in the sequence map
only for v and, thus, the parent of v, if there is any, is not in the sequence map’s domain).

At �rst glance, asking for a consistent sequence map is the obvious choice for this operator. However,
e.g., when the selectivity for a unary relation is very low, we can actually pro�t from an inconsistent
sequence map containing an entry for all nodes in D but failure markers where those entries are not in
the given unary relation as this slightly simpli�es, e.g., the join algorithm (cf. Section 3.4.1).

We denote with
...µ☇v(D,Q,R) the sequence map initialization where we allow also inconsistent se-

quence maps and realize this operation by replacing lines 1–7 as follows:
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Algorithm 2:
...µv(D,Q,R)

input : Relational structure D, tree query Q, variable v ∈ Vars(Q), unary relation R with relation
name in LD

V(v).
output: Consistent sequence map representation of R and associated edge cover.

S ← induced sequence for ≺v over Nodes(D) ;1

S′ ← ∅ ;2

j ← 1 ;3

for i ← 1 to ∣S∣ do4

if S[i] ∈ R then5

S′[j]← S[i];6

j← j+ 1 ;7

return {(v,S′)}, ∅8

S ← induced sequence for ≺v over Nodes(D) ;
foreach i ← 1 to ∣S∣ do

if S[i] /∈ R then
S[i]← ☇

return {(v,S)}
Here, we employ in-place editing of the sequence S andmerely “bomb” entries not in the given relation

with a failure marker.

¿eorem 3.1. Both,
...µv(D,Q,R) and ...µ☇v(D,Q,R), can be computed in O(n ⋅m) where n = ∣Nodes(D)∣

and m is the cost for the membership test in R.

Proof. Algorithm2 computes
...µv(D,Q,R). It loops over ∣S∣ = ∣Nodes(D)∣ elements of S. For each element,

the membership in R is tested. ¿e same reasoning applies to the modi�ed version of Algorithm 2 for
computing

...µ☇v(D,Q,R). �

For a binary relation, we not only need to record bindings for two variables, the relations parent and
child variable, but also the interval pointers referencing related bindings from bindings of the parent
variable to bindings of the child variable. Again, we require that the resulting sequence map is consistent.

De�nition 3.2 (Initialization of binary relations). Let D be a relational structure, Q a tree query, and
v1,v2 ∈ Vars(Q). ¿en

...µv1 ,v2(D,Q) returns a consistent sequence map SM
Q Dsuch that

(1) rel(v2)D is the induced relation of SM
Q D(represents the relation between v1 and v2) and

(2) SM
Q D∣v1 ,v2 = SM

Q D(contains bindings only for v1 and v2).
¿e associated edge cover for

...µv1 ,v2(D,Q) is {(v1,v2)}.

Recall, that by the de�nition of a sequence map (part (3)), the bindings of v1 in
...µv1 ,v2(D,Q) are

ordered by O(rel(v1)D) and those of v2 by O(rel(v2)D).
Algorithm 3 computes such a sequence map in linear time:
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Algorithm 3:
...µv1 ,v2(D,Q)

input : Relational structure D, tree query Q, variables v1,v2 ∈ Vars(Q).
output: Consistent sequence map representation of rel(v2)D.
I ←minimal interval representation of rel(v2)D ;1

S1 ← induced sequence for ≺v1 over Nodes(D) ;2

S′1 ← ∅ ;3

j← 1 ;4

for i ← 1 to ∣S1∣ do5

if I(S1[i]) ≠ ∅ then6

S′1[j]← (S1[i], I(S1[i]) ;7

S2 ← induced sequence for ≺v2 over Nodes(D) ;8

return {(v1,S′1),(v2,S2∣{1,...,flip
<2})}, {(v1,v2)}9

¿eorem 3.2.
...µv1 ,v2(D,Q) can be computed in O(n ⋅ mI) where n = ∣Nodes(D)∣ and mI is the cost for

accessing I(n) for any node n ∈ Nodes(D).
Proof. Algorithm 3 computes a consistent sequencemapwith the induced relation rel(v2)D: ¿e sequence
map is consistent as there are no failuremarkers (the algorithmdoes not introduce failuremarkers and the
entries in S1 and S2 are nodes from D, not failure markers) and no dangling bindings (the parent variable
of v1, if there is any, is not mapped; for v2, each binding has a corresponding binding of v1 by de�nition
of flip

<2
). ¿e induced relation of the sequence map is rel(v2)D: For each pair (n1,n2) ∈ rel(v2)D, n1 is in

SM
D Q(v1) by the construction of S′1 in line 3–7; n2 is in SM

D Q(v2) as all n2 ∈ rng rel(v2)D are associated with
an index ≤ flip

<2
by de�nition. Finally, since I is an interval representation of rel(v2)D there is an interval

in I(n1) and thus in SM
D Q(v1) such that the index associated with n2 in SM

D Q(v2) is in that interval.
Given an interval representation of rel(v2)D and mI time access to I(n) for each n ∈ Nodes(D), Al-

gorithm 3 runs in time O(n ⋅ mI): it loops over at most n elements of S1, for each obtaining I(n). ¿e
restriction of S2 to elements before flip

<2
can be done inO(∣S2∣) ≤ O(n) time. �

As for the unary initialization, we can de�ne a variant of the binary initialization that drops the con-
sistency requirement from the above de�nition. We denoted this variant as

...µ☇v1 ,v2(D,Q). Algorithm 4
marks bindings for v1 with no related bindings for v2 with a failure marker (instead of dropping them)
and does not limit S2 to only those elements in rng rel(v2)D. It has obviously the same time complexity
as the one computing a consistent sequence map, but operates in-place, i.e., without building a second
sequence for bindings of v1.

3.4 Combine

Once a sequence map is initialized by a single unary or binary relation, we need to be able to combine
multiple sequence maps to evaluate a tree query containing more than one relation.

¿e essential operation for combining sequence maps is the join in analogy to a natural join on rela-
tions: take two sequence maps and, for all shared variables, retain bindings contained in both sequence
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Algorithm 4:
...µ☇v1 ,v2(D,Q)

input : Relational structure D, tree query Q, variables v1,v2 ∈ Vars(Q).
output: Sequence map representation of rel(v2)D.
I ←minimal interval representation of rel(v2)D ;1

S1 ← induced sequence for ≺v1 over Nodes(D) ;2

for i ← 1 to ∣S1∣ do3

if I(S1[i]) ≠ ∅ then4

S1[i]← (S1[i], I(S1[i])) ;5

else6

S1[i]← ☇ ;7

S2 ← induced sequence for ≺v2 over Nodes(D) ;8

return {(v1,S′1),(v2,S2)}, {(v1,v2)}9

maps, for variables occurring only in one sequence map, retain the bindings in those sequence map. In
fact, this corresponds to a join of the induced relations of the two sequence maps and yields an impor-
tant property of sequence maps: ¿ey are closed under join, i.e., the join of the induced relations of two
sequence maps can be represented as a sequence map, cf. ¿eorem 3.9. ¿ere is no direct analog to the
relational cross product, since a sequence map, in contrast to a relation, may not contain more than one
sequence of bindings for a variable/attribute. If we join two sequence maps with disjoint domains, the
result is, as in the relational case, the cross product (of the induced relations).

For the evaluation of proper tree queries, join is the only combine operation needed. However, we
also investigate two more combine operations, union and di�erence with similar semantics to those for
relations. ¿ese allow also queries where some parts are negated or alternatives to other parts to be
evaluated in a sequence map (rather than on the level of �at relations). Intersection is omitted as it can
be expressed through union and di�erence and, moreover, as the natural join yields intersection if the
domain and edge covers of the input sequence maps are the same.

As for the corresponding operations on relations, we place certain restrictions on the shape of the
sequence maps allowed in these operations: At least the involved sequence maps must map the same
variables (i.e., the same nodes of the underlying query are covered) and edge cover (i.e., the same edges
of the underlying query are covered). However, it turns out that this restriction does not su�ce for com-
bining sequence maps with union or di�erence:

Consider the sequence maps S1 and S2 in Figure 20 (S1 = {v1 ↦ {(1,d1 ↦ {(v2, 1, 1)})},v2 ↦
{(1,d3 ↦ {(v3, 1, 1)})},v3 ↦ {(1,d4 ↦ ∅)}}, S2 = {v1 ↦ {(1,d2 ↦ {(v2, 1, 1)})},v2 ↦ {(1,d3 ↦
{(v3, 1, 1)})},v3 ↦ {(1,d5 ↦ ∅)}}). ¿e induced relations areR1 = {(d1,d3,d4)} andR2 = {(d2,d3,d5)}
and R1 ∪ R2 = {(d1,d3,d4),(d2,d3,d5)}. ¿is is (1) di�erent from the induced relation
{(d1,d3,d4),(d1,d3,d5),(d2,d3,d4),(d2,d3,d5)} of sequence map S3 which is the result if we “union”
the bindings for adjacent pairs of variables independently (as we can do for the join). Nevertheless, S3 is
the smallest sequence map whose induced relation contains R1 ∪ R2. (2) a relation that can not be rep-
resented by any sequence map as it does not exhibit a lossless-join decomposition into binary relations
over each pair of adjacent variables. In fact, there are no multivalue dependencies in R1 ∪ R2. Similar
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Figure 20. Sequence maps for illustrating “separate union” problem

observations apply for di�erence, thus yielding the following result:

¿eorem 3.3. ¿e union (di�erence) of the induced relations of two sequence maps is, in general, not an
induced relation of any sequence map.

To obtain a union and di�erence operation on sequence maps that is well-de�ned and intuitive w.r.t.
the induced relations of the involved sequencemaps, we restrict union and di�erence to single-variable or
single-edge sequence maps: A single-variable sequence map contains bindings for a single query variable
only (and, thus, has an empty edge cover). A single-edge sequencemap contains bindings for two adjacent
query variables v and v′ and has an associated edge cover {(v,v′}.

On single-variable (single-edge) sequence maps, we can de�ne union and di�erence operations such
that the result is a single-variable (single-edge) sequence map and such that the union or di�erence of
the induced relations of two single-variable (single-edge) sequence maps is the induced relation of the
resulting sequence map.

3.4.1 Join

¿e�rst combination operator for sequencemaps, ...&☇
∩
(SM
D Q

1,SM
D Q

2), joins two sequencemaps into one, such
that the resulting sequence map represents the natural join of the two induced relations of the two input
sequencemaps. We �rst introduce amore restrictive variant of the general join that limits the overlapping
between the edges covered by two sequence map. ¿is allows us to carry over the interval pointers from
the input sequence maps unchanged or only slightly adapted.

De�nition 3.3 (Sequence map join (disjoint edge covers)). LetD be a relational structure,Q a tree query,
and S1,SM2 two sequence maps for D over Q such that their associated edge covers are disjoint. ¿en
...
&
☇

∩
(S1,S2) returns a sequence map SM

D Q
3 such that

(1) the induced relation of SM
D Q

3 is the natural join of the induced relations of S1 and S2, i.e., RSM
D Q

3 =

RS1 & RS2 .
(2) SM

D Q
3∣dom S1∪dom S2 = SM

D Q
3 (contains bindings only for variables mapped either in S1 or in S2).

¿e associated edge cover for ...&☇
∩
(S1,S2) is the union of the edge covers associated with S1 and S2.
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Note that this de�nition yields a sequence map that leaves bindings for non-shared variables un-
changed from either sequence map (correspond to attributes of their induced relations that occur only in
one of the two relations, for these attributes the relational join subsumes to a cross product and thus re-
tains any combination of the bindings). For shared variables, only those bindings are retained that occur
in both sequence maps. ¿is also applies to the (interval pointer) references from bindings of a parent
variable v to a child variable v′ of v: ¿ey are contained only in one of the sequencemaps (due to the edge
cover restriction), for the other sequence map the induced relation records any combination of bindings
by de�nition (cf. Section 2.2).

¿e restriction on the edge covers on S1 and S2 is imposed to ensure that for any pair of variables v,v′

only one of the sequence maps may contain interval pointers from v to v′, though sequence maps may
contain bindings for v and v′. In other words, each edge of the query is enforced by at most one of the two
sequence maps.

For a given CIQCAG expression, the edge cover of each sequence map (created as result of any sub-
expression) can be determined statically, without knowledge about the data the expression is to be eval-
uated against: For each CIQCAG operation, we de�ne here either how the edge cover is computed from its
input (for combine and reduce operations) or the edge cover is independent from the input data (initial-
ization). ¿us, we can also statically determine whether a CIQCAG join expression is valid or violates the
edge cover restriction de�ned above.

¿e above de�nition does not demand that the resulting sequence map is consistent. ¿erefore, Al-
gorithm 5 computes a sequence map that represents the join of the induced relations as demanded in the
de�nition of ...&☇

∩
(), but may be inconsistent: It “bombs” bindings not contained in both sequence maps

rather than dropping them entirely. ¿is has the e�ect that interval points can remain unchanged (but
no reference an interval containing possibly bombed entries). Note, that interval pointers to bindings of
a variable occur only in one of the two sequence maps as the incoming edge of each variable is unique
(since the query is tree-shaped) and the edge covers are disjoint (and thus the unique incoming edge is
only covered by one of the two sequence maps). ¿is allows line 16 where we simply throw together in-
tervals from both sequencemaps. Finally, observe that by the de�nition of the initialization of a sequence
map, bindings for the same query variable occur in the same order in all sequence maps for that query.
¿us the bindings of a variable shared between the two sequence maps to be joined are ordered the same.

¿ese observations are exploited in Algorithm 5 to give a merge-join [21] style algorithm for the join
of two sequence maps with disjoint edge cover that has linear time complexity in the (combined) size of
the input sequence maps. Since the bindings are already in the same order, we can omit the sort phase
of the merge join and immediately merge the two binding sequences. However, we need to ensure that
not only the order but also the number of bindings (and the position of eventual failure markers, cf. lines
18–20) re�ects that for the same variable v in the sequence map where v’s incoming edge is in the edge
cover (lines 9–11).

¿eorem 3.4. Algorithm 5 computes ...&☇
∩
(S1,S2) for sequencemaps with disjoint edge cover and set of shared

variables Shared inO(btotalShared ⋅i) ≤ O(∣Shared∣⋅n⋅i) timewhere btotalShared is the total number of bindings associated
in either sequence map with a variable in Shared and i is the maximum number of intervals associated with
any such binding. For tree, forest, and cig data i = 1, for arbitrary graph data i ≤ n.

Proof. Algorithm 5 computes S = ...&☇
∩
(S1,S2): For any variable v, if a binding for v occurs in the induced

relation of both sequence maps, it occurs also in S due to lines 15–17. If v’s incoming edge is in the edge
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Algorithm 5: ...&☇
∩
(S1,S2)

input : Sequence maps S1 and S2 with disjoint edge covers
output: Sequence map res representing the join of the induced relations of the input maps

ec1 ← edgeCover(S1); ec2 ← edgeCover(S2);1

AllVars← dom S1 ∪ dom S2;2

SharedVars← dom S1 ∩ dom S2;3

res← ∅ ;4

foreach v ∈ AllVars do5

if v /∈ dom S2 then res← res ∪ {(v,S1(v))} ;6

else if v /∈ dom S1 then res← res ∪ {(v,S2(v))};7

else // v is in both8

// 1 is the primary (fallback if v is in neither edge cover)
iter← S1(v); alt← S2(v) ;9

if (v′,v) ∈ ec2 for some v′ then10

// v is sink in ec2, thus the order and number of entries must be as in 2 (it can not be sink
in ec1 as Q tree query and edge covers disjoint)

iter← S2(v); alt← S1(v);11

S ← ∅; i, j, k← 1 ;12

while i ≤ ∣iter∣ do13

(n1, i)← nextBinding(S1(v), i); (n2, j)← nextBinding(S2(v), j); if n1 = n2 then14

// Retain binding if same
S[k] = (n1, intervals(iter[i]) ∪ intervals(alt[j])) ;15

i++; j++; k++;16

else if n1 < n2 then // “bomb” if in iter but not in alt17

S[k] = ☇;18

i++; k++;19

else // skip binding if in alt but not in iter20

j++;21

22

res← res ∪ {(v,S)} ;23

24

return res25
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Algorithm 6: NextBinding(S, i)
input : Sequence S containing, possibly, failure markers and start index i
output: ¿e next element in S at or a er i that is not a failure marker and its index or (∞,∞) if no

such binding exists

for j← i to ∣S∣ do1

if S[j] is not a failure marker then break ;2

if j= ∣S∣ and S[j] failure marker then return (∞,∞) ;3

return (S[j], j)4

cover of one of the sequence maps S′, lines 9–11 ensure that the sequence of bindings for v is the same
(except that some bindings are “bombed”) in S as in S′. For the parent v′ of v, if a binding is retained the
set of intervals from both sequence maps are copied en block. ¿ere are only intervals in S′ (as (v′,v)
is not in the edge cover of the other sequence map) and thus only those relations between bindings of v
and v′ as in the induced relation of S′ are retained. ¿is is proper as in the induced relation of the other
sequence map all bindings of v are related to all bindings of v′ by de�nition of the induced relation. Both
input sequences may be inconsistent: ¿e presence of failure markers in either sequence does not a�ect
the correctness of the algorithm: failure markers in alt are skipped, failure markers in iter are retained
(lines 15–17) as intended. Dangling bindings do not a�ect the algorithm.

Algorithm 5 loops over all shared variables of S1 and S2 and for each such variable it iterates over
all bindings in the primary sequence map iter and corresponding bindings in alt, skipping, if necessary,
bindings in alt not in iter. In the loop lines 13–22 i or j is incremented (possibly multiple times, if failure
markers are skipped in NextBinding) until either i > ∣iter∣. If j ever becomes > ∣alt∣ subsequent calls of
binding(()alt[j]) return, by de�nition, a value larger than all n ∈ Nodes(D).

¿us the algorithm touches, for each shared variable, each entry in either sequence map at most
once (and touches one proper (not a failure mark) entry in each step of the loop 13–22). ¿us it runs in
O(btotalShared ⋅ i)where btotalShared is the total number of bindings in both sequence maps for a shared variable and
i is the maximum number of intervals per binding. ¿is is bound by O(∣Shared∣ ⋅ n ⋅ i) for any sequence
map (including sequence maps for arbitrary graphs) as shown in Section 2.4. �

It is worth pointing out, that in a CIQCAG expression for a tree query any variable is shared at most
once for each in- or outgoing edge and for each unary relation associated with the variable. ¿us, even
if there are O(q) joins in the expression, the accumulated number of shared variables among all those
joins is also onlyO(q) an thus the complexity for only those joins is bounded byO(q ⋅ n ⋅ i).

3.4.1.1 Consistent Join

In contrast to themap initialization, joining two sequencemaps becomes considerablymore complicated
if we modify the de�nition to require that the resulting sequence map is consistent.

De�nition 3.4 (Consistent sequence map join (disjoint edge covers)). Let D be a relational structure, Q
a tree query, and S1,S2 two consistent sequence maps for D over Q such that their associated edge covers
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are disjoint. ¿en ...&∩(S1,S2) returns a consistent sequence map SM
D Q

3 that also ful�lls all the conditions for...
&
☇

∩
(S1,S2).

When computing the consistent join sequence map, we have to adapt the interval referencing from
one binding to a sequence of bindings of one of its child variables. ¿is is necessary even if both input
sequence maps are consistent, as some bindings may occur in one but not in the other sequence map and
thus intervals shrink or even collapse.

We can use the previous algorithm for the possibly inconsistent variant as a starting point. However,
we process now all variables that are either shared or from which a shared variable is reachable by edges
covered by the union of the edge covers of the input sequence map. ¿is is necessary, as changes to one
variable v have to be propagated to its parent v′, as some of the parents bindings may reference only
bindings for v that are dropped. Such bindings for v′ must be dropped and, accordingly, may a�ect
bindings for the parent of v′ and so on. ¿ese variables are processed in inverse topological order w.r.t.
the edges in the edge covers of the two sequence maps, i.e., child variables before parent variables. For
each variable, we record how the indices of bindings have changed: Let i be an index for a binding n of
variable v in one of the sequence map. ¿en, (1) if n also occurs in the other sequence map, we retain n
and log (v,↓, i, k) where k is the new index for n and ↓ is the type of the log entry, here a mapping for a
retained binding. (2) if n does not occur in the other sequence map, we drop it and log both the index (in
the original sequence of bindings for v) of the next retained entry (with type↪) and of the last preceding
retained entry (with type↩).

With these change logs, we can then adapt the intervals referring to bindings of v when we process
the parent variable for v later (it comes a er v in inverse topological order).

Algorithm 7 gives the computation of the consistent join for sequence maps with disjoint edge covers
and re�ects these modi�cations from Algorithm 5. Note, that for each variable and index there is either
a ↓ entry in the change log or both a↩ and a↪.

We use an additional helper function Adapt that is detailed in Algorithm 8 and actually applies a
“change log” to a set of intervals: For each interval, we look at the start index. If it has a↪ entry (and thus
the referenced binding is not retained) we set s to the index in that entry, i.e., the index (in the original
sequence of bindings) of the next retained binding. ¿e same we do for the end index, but with its ↩
entry, if there is any. A er these adaptations, the start and end indexmight actually overlap if all bindings
in the original interval have been dropped. Note, that the border cases are covered as we use∞ to indicate
that the start index is no “outside” the sequence and 0 to indicate that the end index is “outside”, cf. line
21 and 24 in Algorithm 7 if the �rst element is bombed its↩ becomes 0 and line 26 if the last (or last few)
element is bombed.

If that is not the case, the new start and end indices are retained and we can retrieve their ↓ entries
with the indices in the new sequence. Finally, we ensure that intervals separated in the original sequence
by entries dropped in the new sequence collapse (lines 9–12). ¿is guarantees that the new set of intervals
is actually minimal.

It is worth pointing out, that Adapt requires that the intervals are non-overlapping (as is guaranteed
if they come from a sequence map, by de�nition of a sequence map). ¿e generated intervals are again
overlapping for log entries resulting from Algorithm 7.

For example for the interval set {(v, 3, 5),(v,7,7),(v, 10, 12)} over a sequence from 1 to 12 and the log
entries {(v,↪, 3,4),(v,↩, 3,0),(v,↓,4,2),(c,↪, 5,7),(v,↩, 5,4),(v,↓,7, 3),(v,↪,8,9),(v,↩,8,7),(v,↓
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Algorithm 7: ...&∩(S1,S2)
input : Consistent S1 and S2 with disjoint edge covers
output: Consistent sequence map representing the join of the input maps

ec1 ← edgeCover(S1); ec2 ← edgeCover(S2); Shared← dom S1 ∩ dom S2;1

PendingVars← {v ∈ Vars(Q) ∶ v ∈2

Shared ∨ ∃ path from v to v′ in ec1 ∪ ec2 with v′ ∈ Shared};
res← ∅; AdaptedVars← ∅; Log← {(S1,∅),(S2,∅)};3

while PendingVars ≠ ∅ do4

// Select some variable v without children
v ∈ {v′ ∈ PendingVars ∶/∃ v′′ ∈ PendingVars ∶ parent(v′′) = v′} ;5

// last records the start of the current interval of dropped bindings,∞ indicates that there is no
such interval

lastI ← lastA←∞; iter← S1; alt← S2; S ← ∅; i, j, k← 1 ;6

if v /∈ dom S1 then iter← S2; alt← �;7

if v /∈ dom S2 then alt← �;8

while i ≤ ∣iter(v)∣ do9

I ← ∅; n1 ← binding(iter(v)[i]);10

n2 ← binding(alt(v)[j]) or n1 if alt = �;11

// Compute the adapted intervals (if necessary) and bomb entry if all intervals dropped
if (v,v′) ∈ ec1 ∪ ec2 for some variable v′ then12

I1 ← intervals(iter(v)[i]); I2 ← intervals(alt(v)[j]) or ∅ if alt = �;13

I ← Adapt(I1, Log(iter)) ∪ Adapt(I2, Log(alt));14

if I = ∅ then n1 ← 015

if n1 = n2 then // retain binding if same16

S[k]← (n1, I);17

// Log: i changes to k; i next good binding for all “bombed” bindings directly before i (if
there are none lasti =∞)

Log(iter)← Log(iter) ∪ {(v,↓, i, k)} ∪ {(v,↪, l, i) ∶ lastI ≤ l < i}18

Log(alt)← Log(alt) ∪ {(v,↓, j, k)} ∪ {(v,↪, l, j) ∶ lastA ≤ l < j} i++; j++; k++;
lastI ← lastA←∞; // incr. counters; reset last

else if n1 < n2 then // skip binding if in iter but not in alt19

lastI ← min(lastI, i); // start of current interval of only “bombs”20

// Record the last “good” binding before i
Log(iter)← Log(iter) ∪ {(v,↩, i, lastI − 1)}; i++;21

else // skip binding if in alt but not in iter22

lastA← min(lastA, j) ;23

Log(alt)← Log(alt) ∪ {(v,↩, j, lastA− 1)}; j++;24

25

set next “good” binding for open “bombed” intervals to∞ in Log;26

PendingVars← PendingVars ∖ {v}; AdaptedVars← AdaptedVars ∪ {v};27

res← res ∪ {(v,S)};28

copy bindings for variables not in AdaptedVars to res29

return res30
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,9,4),(v,↪,∞),(v,↩, 10,9),(v,↪, 12,∞),(v,↩, 12,9), . . .} (the log is larger but the remaining entries
are not of interest). From the log, we can conclude that only the bindings for 4,7,9 are retained. ¿e in-
terval [3, 5] collapses to the interval [1, 1] (the old 4 is now the 1st binding) and then collapses with [7,7]
that is now [2,2]. ¿e interval [10, 12] is dropped entirely. ¿us the adapted set of intervals is {[1,2]}
(note that 9, now 3, is not covered by the intervals in this set).

Algorithm 8: Adapt(Ints, Log)
input : Non-overlapping set of intervals Ints and set of “log” entries Log as generated from

Algorithm 7
output: Set of intervals modi�ed according to Log

NewInts← ∅ ;1

// For variables with entries in the “Log”: adapt
foreach v ∈ π1(Log) do2

lastStart←∞; lastEnd←∞;3

foreach (v, s,∈ Ints in order of start index do4

if (v,↪, s,next) ∈ Log then s← next;5

if (v,↩, e,prev) ∈ Log then e ← prev;6

if s > e then continue ;7

// Now theremust be ↓ entries for s and e, as↪ and↩ entries always reference “good”
entries or∞ or 0 which are excluded above
(v,↓, s, snew),(v,↓, e, enew) ∈ Log ;8

// If we cannot extend the last interval, add it . . .
if lastEnd ≠ snew + 1 then9

NewInts← NewInts ∪ {(v, lastStart, lastEnd)};10

lastStart = snew ;11

// . . . otherwise lastStart remains unchanged
lastEnd← enew ;12

// Collect remaining interval
if lastStart ≠∞ then NewInts← NewInts ∪ {(v, lastStart, lastEnd)};13

// For variables without entries in the “Log”: copy
foreach (v, s, e) ∈ Ints with v /∈ π1(Log) do14

NewInts← {(v, s, e)};15

return NewInts16

¿eorem 3.5. Algorithm 8 computes the adapted set of intervals for a given set of intervals I and a change
log L inO(∣I∣) time assuming constant membership test in L.

Proof. Note, that L contains for each pair (v, i) either one ↓ or one ↩ and one ↪ entry. ¿us L’s size is
bounded byO(q ⋅ n) where for a given sequence map SM

D Q
and constant membership test can be realized

by an array over variables and indices, each cell containing either the ↓ or the ↩ and ↪ entry, with the
same space bound.
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¿e iteration over the intervals in order of start indices (line 4) is linear, since the intervals are stored
ordered, cf. Section 3.2.1.

¿e algorithm iterates over all intervals in I and for each interval performs a series of membership
tests in L or simply copies the interval if there are no change entries for the involved variable. �

¿e advantage of ...&∩() vs. ...&☇∩() is quite obvious: we get a consistent and thus in most cases smaller
resulting sequence map. ¿e sequence map computed by ...&☇

∩
(), on the other hand, most likely contains

some redundancies. ¿is e�ect is all themore pronounced themore selective the involved sequencemaps
are.

However, the computation of ...&∩() is also signi�cantly more involved than that of ...&☇∩() and requires
O(∣V ∣ ⋅n) additional space for the change log where V is the set of variables that are either shared or from
which a shared variable is reachable by edges in the union of the edge covers of the input sequence maps
(PendingVars in line 3). Where ...&☇

∩
() ignores non-shared variables (and can copy all intervals en-block),

...
&∩()must touch all shared variables and their ancestors and for each adapt all its intervals at least once
to adapt start and end index. ¿us, the total number of intervals associated to any binding for a variable
in V forms a lower bound for ...&∩(). Algorithm 7 runs inO(btotalV ⋅ i) where btotalV is the total number of
bindings for all variables in V in both sequence maps and i the maximal number of intervals per binding.
¿is is bounded byO(q ⋅ n ⋅ i) where i is the maximal number of intervals per binding. For tree, forest,
and cig queries i = 1, for arbitrary queries i ≤ n, cf. Section 2.4.

¿eorem 3.6. Algorithm 7 computes ...&∩(S1,S2) for sequence maps with disjoint edge cover inO(btotalV ⋅ i) ≤
O(q ⋅ n ⋅ i) time where i is the maximal number of intervals per binding and btotalV is the total number of
bindings for shared variables or variables from which shared variables are reachable by edges in the union of
the edge covers of the two sequencemaps, n = ∣Nodes(D)∣ and q = ∣Vars(Q)∣. It requiresO(∣V∣⋅n) additional
space for the change log.

Proof. Algorithm 7 computes S = ...&∩(S1,S2): A tuple t ∈ RS1&RS2 , i� for all variables vwith t[v] = n (1) n
occurs among the bindings of v in both sequence maps and thus among the bindings of v in the resulting
sequence map (lines 16–18) and, (2) for all variables v′ with (v′,v) in the edge cover of either sequence
map, the interval pointer in all bindings for v′ are adapted using the change log (note that only one of
sequence maps contains bindings for v′ with interval pointers to v since the edge covers are disjoint. ¿e
change log contains a mapping from each index i of S1 to an index k in the result sequence map, if the
binding with index i is retained. Otherwise, it references back and forward to the last previous and next
following index of a binding that is not dropped. Adapt adapts the old intervals to the new indices. If
all bindings in an interval are dropped, the interval is removed. If all bindings for v in all intervals for a
binding n of v′ are dropped (and thus, one of the sequence maps contains no tuples with bindings for v
in any of the intervals for n and thus no tuple containing n), n is eliminated (cf. line 15 and 19–21).

¿e result of Algorithm 7 is consistent: ¿ere are no failure markers as the algorithm does not intro-
duce any (and the input sequence maps are consistent). If there are no dangling bindings in the original
sequence maps, then there are no dangling bindings in the resulting sequence map, as any binding that
is retained and is covered in the original sequence map is also covered in the new sequence map by the
construction of the adapted intervals (lines 17–18 and lines 21 and 24).

¿e algorithm loops over the variables in AllVars, each iteration removing one variable until AllVars is
empty. For the inner loop reasoning analog to Algorithm 5 applies except if the binding is retained: ¿en
we also call Adapt which requires time linear in the size of the intervals.
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As Algorithm 5, the algorithm touches each entry in either sequence map at most once (and touches
one such entry in each step of the loop 13–25), but for each entry it can not copy all intervals en block, but
needs to adapt each interval. ¿us it runs inO((bS1 + bS2) ⋅ i) where bSM

D Qis the total number of bindings
in a sequence map and i the maximal number of intervals per binding. ¿is is bound by O(q ⋅ n ⋅ i) for
any sequence map (including sequence maps for arbitrary graphs) as shown in Section 2.4.

Regarding the space bound, see AdaptIntervals and the proof of ¿eorem 3.5. �

Note that the algorithm actually handles and even corrects failure markers in the input sequence
maps, but does not allow dangling bindings if the result is expected to be consistent. In other words,
we could weaken the requirement that both input sequence maps are consistent to only that they do not
contain dangling bindings.

¿ough, at the �rst glance, the time bounds for the two algorithms are similar, the above observation
that variables in CIQCAG expressions for tree queries are shared at most once per edge and at most once
per associated unary relation, does not hold. Rather, variables with many descendants in the query are
likely to be considered in many joins, in particular if the constraints of a query a enforced in bottom-up
fashion. In general, this means that for a CIQCAG expression with q joins evaluating a tree query we incur
a total cost ofO(q ⋅ q ⋅ n ⋅ i) for the processing of all joins. ¿is is an increase by a multiplicative factor q
compared to the use of ...&☇

∩
().

If we compare this result with the combination of the possibly inconsistent ...&☇
∩
() with the propagate

operator (cf. Section 3.5.3) we can observe the essential advantage of allowing (temporarily) inconsistent
sequence maps: If we use explicit propagate we can touch and adapt the intervals of each variable once
(a er all restrictions for that variable and its descendant variables have been evaluated). With implicit
propagate, we have to potentially “touch” them in each join and thus introduce an additional multiplica-
tive factor in the order of the size of the query. For details, see Section 3.5.3.

For the join, as for many of the operators de�ned in the following, there is a variant for consistent
and a variant for inconsistent variants, the prior requiring consistent sequence maps and returning con-
sistent sequence maps, the latter allowing any sequence map and returning sequence maps with possible
inconsistencies. All operators for consistent sequence preserve interval-minimality, i.e., if given interval-
minimal, consistent sequence maps as input, they produce interval minimal consistent sequence maps.
¿e propagation operator actually ensure that the resulting sequence map is interval-minimal.

3.4.1.2 General Join

¿e second variation of the sequence map join revolves around the restriction to sequence maps with
disjoint edge covers. What is the e�ect if we allow the edge covers to overlap?

If we relax the edge cover restriction, we allow that both sequence maps represent some subset of
the possible combinations of bindings for, e.g., the three variables v1, v2, v3. At �rst glance, this seems to
make it impossible to join such sequence maps and represent the result as a sequence map (rather than
a relation where we track combinations of all variables rather than only references from v1 to v2 and,
separately, from v2 to v3). Figure 21 shows two such relations where we can not join separately: If we
consider only references from v1 to v2, we retain the pair (d1,d3). If we consider only references from v2
to v3, we retain the pair (d3,d4) since both pairs occur in each relation. ¿us the resulting sequence map
represents the relation {(d1,d3,d4)} which is di�erent from R1 & R2.
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v1 v2 v3

d1 d3 d4

v1 v2 v3

d1 d3 d5
d2 d3 d4

Figure 21. Relations R1 and R2 where join on decomposed relations seems insu�cient

However, the reason for this behavior is that R2 from Figure 21 can actually not be represented as a
sequence map (it does not exhibit a lossless-join decomposition into binary relations over the pairs of
adjacent attributes): Should we reference d4, d5, or both from d3’s binding for v2? In contrast to R2, all
relations representable as a sequencemap actually ensure that if there is any tuple with (n,n′) as bindings
for v2,v3 then, for any combination of values for the remaining variables (here v1), there must be a tuple
with (n,n′) as bindings for v2,v3, cf. Section 2.2. In our example R2 must be extended with the tuples
(d1,d3,d4) and (d2,d3,d5) to be amenable for representation as sequence map.

¿is property is what makes it possible to de�ne a variant of the sequence map join that allows over-
lapping edge cover yet still computes the join for each adjacent pair of variables separately. ¿us we can
de�ne the general sequence map join as follows:

De�nition 3.5 (General sequence map join). Let D be a relational structure, Q a tree query, and S1,S2
two arbitrary (consistent) sequence maps for D over Q. ¿en ...&☇(S1,S2) (...&(S1,S2)returns a (consistent)
sequence map SM

D Q
3 that also ful�lls all the conditions for

...
&
☇

∩
(S1,S2).

Algorithms for this join variant can be fairly easily derived from the Algorithms for ...&☇
∩
and ...&∩: ¿e

previous algorithms for a sequencemap join use a union (line 16 in Algorithm 5, line 17 in Algorithm 7) to
combine intervals from both sequence maps, since we know that one of the two sets of intervals is always
empty (otherwise the edge covers overlap) and thus no further “joining” is necessary. For the general
sequence map join, both sequence maps may contain interval pointers for the same edge and we have to
ensure that only those references are retained for that an interval pointer exists in both input sequence
maps.

To compute ...&(S1,S2), we modify line 14 in Algorithm 7 to use a new function JoinInts, instead of ∪
to combine the two adapted sets of intervals. ¿is function is de�ned in Algorithm 9. First, for variables
covered in both interval sets, we iterate (lines 3–16) in parallel over the two sets of intervals (that are
non-overlapping and thus can be ordered, e.g., by start index). For each interval, we look obtain the next
intervals of the other set as long as there is an overlapping or the interval is entirely to the right. In the
latter case, we take another interval from the �rst set etc. For variables covered only in one interval set,
we simply retain the existing intervals. With this adaptation, we obtain an algorithm for ...&().

Note, that JoinInts is surprisingly simple as both sets contain non-overlapping intervals. ¿us a simple
traversal in the order of the start (or, equivalently, end) indices is possible. An alternative is the use
of an interval tree or, since our intervals are non-overlapping, even of B-trees indexing start and end
intervals. ¿ough interval trees are, in general, very e�cient (logarithmic) at answering point or stab
queries (where we give an index and retrieve all intervals containing that index), we can exploit here that
we are interested in the full interval cover instead of a single point query. Realizing JoinInts as a sequence
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Algorithm 9: JoinInts(Intervals1, Intervals2)
input : Two sets Intervals1, Intervals2 of non-overlapping intervals with associated variables
output: Minimal, non-overlapping set of intervals covering all indices contained in intervals of

both sets

NewIntervals← ∅ ;1

start← � ;2

foreach v ∈ π1(Intervals1) ∩ π1(Intervals2) do3

(v, s1, e1)← interval in Intervals1 with minimal start index s1;4

(v, s2, e2)← interval in Intervals2 with minimal start index s2;5

while true do6

while e2 < s1 do7

// Current (s2, e2) do not overlap, get the next
Intervals2 ← Intervals2 ∖ {(v, s2, e2)};8

if Intervals2 = ∅ then break 2 (line 6);9

(v, s2, e2)← interval in Intervals2 with minimal start index s2;10

// ¿ere is some overlapping
if s2 ≤ e1 then11

NewIntervals← NewIntervals ∪ {(v,max(s1, s2),min(e1, e2)};12

if e1 ≤ e2 or s2 > e1 then13

// Current (s1, e1) do not overlap (any further), get the next
Intervals1 ← Intervals1 ∖ {(v, s1, e1)};14

if Intervals1 = ∅ then break (line 6);15

(v, s1, e1)← interval in Intervals1 with minimal start index s1;16

foreach v ∈ π1(Intervals1) ∖ π1(Intervals2) do17

NewIntervals← NewIntervals ∪ {(v, s, e) ∈ Intervals1};18

foreach v ∈ π1(Intervals2) ∖ π1(Intervals1) do19

NewIntervals← NewIntervals ∪ {(v, s, e) ∈ Intervals2};20

return NewIntervals ;21
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of point queries (for all covered indices of a child relation) is possible, but comes at a higher complexity
(by the logarithmic look-up time factor) than the above algorithm.

¿e algorithm touches each interval in both sets A and B exactly once. Each interval in Amay be
compared to several intervals of B, though all but the last of these are not compared to any other from
interval from A. In total, this gives a bound of O(∣A∣ + ∣B∣). We assume that the access to the intervals
in order of the start indices (lines 4–5) is constant for each interval and linear for the entire set. In other
words, we assume that the intervals are stored ordered by the start index (cf. Section 3.2.1).

¿eorem 3.7. Algorithm 9 computes the join over the set of non-overlapping intervals I1 and I2 inO(∣I1∣ +
∣I2∣) time.

¿us, the use of join interval does not signi�cantly a�ect the complexity of Algorithm 7:

¿eorem 3.8. Algorithm 7 with JoinInts instead of ∪ in line 14, computes ...&∩(S1,S2) for sequence maps
with disjoint edge cover in O(btotalV ⋅ i) ≤ O(q ⋅ n ⋅ i) time where i is the maximal number of intervals
per binding and btotalV is the total number of bindings for shared variables or variables from which shared
variables are reachable by edges in the union of the edge covers of the two sequence maps, n = ∣Nodes(D)∣
and q = ∣Vars(Q)∣. It requiresO(∣V∣ ⋅ n) additional space for the change log.

Proof. ¿emodi�ed algorithm ensures that the resulting sequencemap contains a reference from a bind-
ing n for variable v to a binding n′ for a variable v′ if and only if both input sequence maps contain such
a reference.

In addition to the argument ...&∩, we can observe one more case: a pair of variables v,v′ is in the edge
cover of both sequence maps. In this case, any tuple t in the induced relation of either sequence map with
t[v] = n and t[v′] = n′ implies that there is an interval pointer in the set associated with n among the
bindings for v that covers the index of n′ in the bindings of v′. If t is in both sequencemaps, such pointers
exists in both of them and t is also in the join of the two induced relations. ¿en JoinInts ensures that there
is an interval pointers in the new sequence map from n to an interval containing the index of n′ among
the bindings for v′. With the observation that the same holds for every pair of variables, we obtain that t
is in the induced relation of the resulting sequence map.

¿e complexity follows from¿eorems 3.6 and 3.7. �

For the variant that accepts possibly inconsistent sequence maps as result, denoted with ...&☇(S1,S2),
the modi�cations are a bit more extensive and move the inconsistent variant closer to the consistent one:
we need to introduce change tracking for the secondary sequence (alt in Algorithm 5) and use those
changes to adapt the intervals in alt so that we can join them with the intervals from iter (that, as before,
do not need to be adapted). However, as for Algorithm 5 and in contrast to the consistent case, only
intervals of shared variables and their direct parents, but not of other ancestor variables, must be adopted.
¿e the move from union to JoinInts does not a�ect the cost for a single variable, however, we also need to
cover direct parent variables. Since each shared variable has a unique parent (if any), this, nevertheless,
increases the required time only a constant multiplicative factor.

Since we are now able to compute the join of two arbitrary sequence maps such that the induced
relation of the resulting sequence map is the natural join of the induced relation of the input sequence
maps, we can conclude the following theorem:
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¿eorem 3.9. For any two sequence maps S1,S2, the join of their induced relations can be represented as a
sequence map.

As discussed above, the reason this statement holds is that the induced relations of the input sequence
maps themselves can be represented in a sequence map and thus have lossless-join decompositions to
binary relations over each pair of adjacent variables. ¿erefore, either a particular binding pair for two
adjacent variables is eliminated from all binding tuples (if it is only in one of the sequence maps) or from
none. In both cases, the resulting relation still is fully decomposable and thus can be represented by a
sequence map.

3.4.1.3 Semi-Join

As a convenience, we also introduce a speci�c (le ) semi-join operator ...X☇(S1,S2). ¿e de�nitions and
algorithms can be easily derived from the join operator and are only sketched here. First we adopt the
(possibly inconsistent) de�nition of ...&∩():
De�nition 3.6 (Sequence map semi-join (disjoint edge covers)). Let D be a relational structure, Q a tree
query, and S1,S2 two sequence maps for D over Q such that their associated edge covers are disjoint and
S2 is a single-variable sequence map. ¿en ...X☇(S1,S2) returns a sequence map SM

D Q
3 such that

(1) the induced relation of SM
D Q

3 is the le semi-join of the induced relations of S1 and S2, i.e., RSM
D Q

3 =

RS1 X RS2 .
(2) SM

D Q
3∣dom S1∪dom S2 = SM

D Q
3 (contains bindings only for variables mapped either in S1 or in S2).

¿e associated edge cover for ...X☇(S1,S2) is the edge covers associated with S1.

We limit the second sequence map to a single-variable sequence map to avoid cases, where the result-
ing relation no longer exhibits a full join decomposition and can thus not be represented in a sequence
map. ¿us, the semi-join operators is o en combined with a projection (see Section 3.5.1) to a single
variable.

We can compute ...X☇ by a slightly modi�ed version of Algorithm 5: We drop line 7 and thus do not
retain bindings for variables only in the second sequence map. Furthermore, in line 15 we only retain
intervals from iter not from alt (i.e., we drop the second operand from the union). ¿e resulting algorithm
computes ...X☇ with the same complexity as Algorithm 5.

An analog modi�cation for Algorithm 7 yields a consistent sequence map (we copy only bindings
from the �rst sequence map in line 26 and drop I2 and all its references in lines 12–15. Again, the change
does not a�ect signi�cantly the complexity of the algorithm.

3.4.2 Union

Where the sequence map join requires that only bindings of shared variables that are contained in both
input sequence maps are retained, the sequence map union, denoted by ...∪(), accepts bindings contained
in either sequence map.

¿e union (and di�erence) of sequence maps is de�ned in the following only for single-variable or
single-edge sequence maps. A sequence map SM

D Q
over a relational structure D and a tree query Q is

called single-variable, i� ∣dom SM∣ = 1. It is called single-edge, i� dom SM
D Q
= {v,v′} and edgeCover(SM

D Q) =
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{(v,v′)}, i.e., if there is a single edge in the edge cover of SM
D Q

and the only variablesmapped by SM
D Q

are that
edge’s source and sink. ¿is restriction allows that union is well-de�ned and closed over such sequence
maps and in accordance to the union over the induced relations of their input sequence maps.

De�nition 3.7 (Sequence map union). Let D be a relational structure, Q a tree query, and S1,S2 two
single-variable sequence maps or two single-edge sequence maps for D over Q with dom S1 = dom S2
and the same associated edge cover (empty if single-variable, the same single edge if single-edge). ¿en
...
∪(S1,S2) returns a (single-variable or single-edge) sequence map SM

D Q
3 such that

(1) the induced relation RSM
D Q

3 of SM
D Q

3 is RSM
D Q

3 = RS1 ∪ RS2 , i.e., the union of the induced relations of S1
and S2.

(2) SM
D Q

3∣dom S1∪dom S2 = SM
D Q

3 (contains bindings only for variables mapped either in S1 or in S2).
¿e associated edge cover for ...∪(S1,S2) is the edge cover associated with S1 and S2, i.e., either empty if
both input sequence maps are single-variable or the single edge in their edge cover.

¿e limitation to single-variable and single-edge sequencemapsmirrors the restrictions for relational
union (same schema for both relations), but is necessarily stronger, as discussed above.

Algorithm 10 gives an implementation of this operator. Notice, the similarity and di�erences to Al-
gorithm 7: ¿ough the main skeleton is similar, we actually retain bindings in each of the cases in lines
11–22, only failure markers are skipped (line 10). We also only record ↓mappings from old indices to new
ones, but no↩ and↪mappings.

If both input maps are single-edge, the child variable is processed �rst (by means of line 5) and, for
each index of any binding (except for failure markers) for both sequence maps a mapping to the new
index is established. Note, that all interval sets are empty and thus line 9 has no e�ect. Second, the parent
variable is processed using the change log for the child variable. Now, there are interval sets pointing
to bindings of the child variable and these intervals are adapted to the new indices in line 9 by means
of RecreateInts. Algorithm 11 shows how RecreateInts is realized: For each variable covered by the passed
interval sets (if called from Algorithm 10, there is always only a single such variable), we recreate the
intervals. We can not simply adapt the intervals as in Adapt, Algorithm 8 (which is limited by the number
of intervals in the input set), since within the range of an interval additional bindings (from the “opposite”
sequence map) are introduce that are not actually mapped to that parent binding. ¿is is impossible in
the case of join and di�erence, where we only restrict but do not extent the bindings contained in each of
the input sequence maps.

Depending onwhether the input sequencemaps are consistent (contain dangling bindings), we obtain
the following result:

¿eorem 3.10. Algorithm 11 recreates a minimal set of non-overlapping interval pointers to bindings in a
given sequence map S such that the index of each binding covered by an interval in that set is mapped by a
given change log Log to an index covered in the set of intervals I1 or the set of intervals I2. It computes this
set inO(btotalV + ∣I1∣ + ∣I2∣) where btotalV is the total number of bindings for variables occurring in I1 or I2, if
the input sequence maps contain no dangling bindings,O(btotalV ⋅ (∣I1∣ + ∣I2∣)) otherwise.
Proof. ¿e set of generated intervals is minimal and non-overlapping as the next index a er any end
index is either out-of-bound (line 15) or not covered by any interval (line 12–14) and the previous index
before any start index is either out-of-bound or not covered by any interval (an interval starts only in line
11 and only if start is∞which is only the case at the beginning of the loop, line 3, or if the preceding index
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Algorithm 10: ...∪(S1,S2)
input : Single-variable or single-edge Sequence maps S1 and S2 as in De�nition 3.7
output: Sequence map res representing the union of the induced relations of the input maps

SharedVars← dom S1(= dom S1 ∩ dom S2) ;1

ec← edgeCover(S1)(= edgeCover(S2));2

Log← {(S1 ↦ ∅),(S2 ↦ ∅)}; res← ∅;3

while SharedVars ≠ ∅ do4

v ∈ {v′ ∈ SharedVars ∶/∃ v′′ ∈ SharedVars ∶ (v′′,v′) ∈ ec} ;5

S ← ∅; i, j, k← 1;6

while i ≤ ∣S1(v)∣ or j≤ ∣S2(v)∣ do7

// bindings returns∞ for index out of bound
n1 ← binding(S1(v)[i]); n2 ← binding(S2(v)[j]);8

// intervals returns ∅ for index out of bound
I ← RecreateInts(S, intervals(S1(v)[j]), intervals(S2(v)[j]), Log);9

if n1 = ☇ then i++ else if n2 = ☇ then j++10

else if n1 = n2 then11

Log(S1)← Log(S1) ∪ {(v,↓, i, k)};12

Log(S2)← Log(S2) ∪ {(v,↓, j, k)};13

i++; j++; k++;14

else if n1 < n2 then15

S[k]← (n1, I);16

Log(S1)← Log(S1) ∪ {(v,↓, i, k)};17

i++; k++;18

else if then19

S[k]← (n2, I);20

Log(S2)← Log(S2) ∪ {(v,↓, j, k)};21

j++; k++;22

res← res ∪ {(v,S)};23

SharedVars← SharedVars ∖ {v};24

return res25
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Algorithm 11: RecreateInts(S, I1, I2, Log)
input : Sequence map S, non-overlapping interval sets I1, I2, and change log Log
output: Set of intervals modi�ed according to Log

NewInts← ∅ ;1

// For variables with entries in either interval set . . .
foreach v ∈ π1(I1) ∪ π1(I2) do2

i ← j← k← 1; start←∞;3

for k← 1 to ∣S(v)∣ do4

n← S(v)[k];5

(v,↓, idx1, k) ∈ Log or idx1 ← 0;6

(v,↓, idx2, k) ∈ Log or idx2 ← 0;7

covered← false;8

if FallsIn(idx1,π2,3(I1)) then9

I1 ← FallsIn(idx1,π2,3(I1)); covered← true;10

if FallsIn(idx2,π2,3(I2)) then11

I2 ← FallsIn(idx2,π2,3(I2)); covered← true;12

if covered = true and start =∞ then start← k;13

else if covered = false and start ≠∞ then14

NewInts← NewInts ∪ {(v, start, k − 1)};15

start←∞;16

// Collect remaining interval
if start ≠∞ then NewInts← NewInts ∪ {(v, start, ∣S(v)∣)};17

return NewInts18

Algorithm 12: FallsIn(index, I)
input : Index idx and non-overlapping interval set I
output: ¿e interval set I′ containing only those intervals from I that cover or follow idx, or false if

idx not covered by I

foreach (s, e) ∈ I in increasing order on start index s do1

if idx < s then break ;2

if idx ≤ e then return I ;3

I ← I ∪ {(s, e)} ;4

// idx is not covered by any interval in I
return false ;5
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is not covered, line 12–14). ¿us, we can expand neither interval. Also all intervals are by construction
non-overlapping.

For each index k that lies in an interval, there is an old index idx1 (or idx2) such that the old index lies
in one of the intervals of I1 (or I2), line 9–11. Otherwise, it is not covered by an interval, line 12–14.

For the complexity, consider the loop 4–15 over the bindings for any variable in π1(I1) ∪ π2(I2). For
each iteration, we call FallsInwhich returns either the interval covering the index (and removes all previous
intervals) or false.

If the underlying sequencemap contains no dangling bindings each binding is covered by some index
and the total run-time is bound byO(btotalV + ∣I1∣ + ∣I2∣) as each call to FallsIn runs in amortised constant
time. If there are dangling bindings, however, for those bindings there is an associated old index, but this
old index is not covered by any interval. ¿us, in worst case, FallsIn runs in ∣I∣ for each call. �

If both input maps are single-variable, we can actually eliminate the change log and all references to
it. We can also eliminate line 9 entirely, though RecreateInts anyway returns immediately in this case as
the interval sets are always empty.

With this observation the following corollary follows directly from¿eorem 3.4 and¿eorem 3.10:

Corollary 3.2. Algorithm 10 computes ...∪(S1,S2) for consistent single-variable or single-edge sequence maps
with shared domain Shared and edge cover in O(bShared ⋅ bShared) ≤ O(∣Shared∣ ⋅ n2) time where bShared is the
maximum number of bindings associated in either sequence map with a variable in Shared. If either input
map is inconsistentO(bShared ⋅bShared +b

dangle
Shared ⋅bdangleShared ⋅ i) ≤ O(∣Shared∣ ⋅n2

⋅ i) where bdangleShared is the maximum
number of dangling bindings associated in either sequence map with a variable in Shared, i is the maximum
number of intervals associated with any such binding. For tree, forest, and cig data i = 1, for arbitrary graph
data i ≤ n.

¿ere is no speci�c version that generates consistent sequence maps, as the above algorithm ensure
that the resulting sequence map contains no failure markers if neither input sequence maps contained
any (for shared variables, failure markers are actually removed due to NextBinding, for others the existing
bindings are copied in line 3–4). Furthermore, if neither input sequencemaps contains dangling bindings,
no such bindings are introduced (all interval pointers remain untouched as do the binding sequences they
reference due to the second condition imposed on the input sequence maps in De�nition 3.7.

3.4.3 Difference

¿e �nal combination operation for the sequence map removes bindings from a given sequence map if
they are also contained in another sequencemap. We posemuch the same restrictions as on the sequence
maps serving as input for the union operator.

De�nition 3.8 (Sequence map di�erence). Let D be a relational structure, Q a tree query, and S1,S2 two
single-variable sequence maps or two single-edge sequence maps for D over Q with dom S1 = dom S2
and the same associated edge cover (empty if single-variable, the same single edge if single-edge). ¿en
...
∖(S1,S2) returns a (single-variable or single-edge) sequence map SM

D Q
3 such that

(1) the induced relation RSM
D Q

3 of SM
D Q

3 is RSM
D Q

3 = RS1 ∖ RS2 , i.e., the di�erence of the induced relations of
S1 and S2.

(2) SM
D Q

3∣dom S1∪dom S2 = SM
D Q

3 (contains bindings only for variables mapped either in S1 or in S2).
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¿e associated edge cover for ...∖(S1,S2) is the edge cover associated with S1 and S2, i.e., either empty if
both input sequence maps are single-variable or the single edge in their edge cover.

...
∖ can be computed by an algorithm similar to the one for inconsistent sequence map join with the

same time and space properties, cf. Algorithm 13.
It uses a helper function DifferenceInts that computes the di�erence between two given sets of intervals.

Algorithm 13 computes a possibly inconsistent sequence map. Since the input is either single-variable or
single-edge we refrain from de�ning a consistent version as it can be achieved with the same complexity
by a

...
ϖv followed by

...
ϖ
v where v is either the single variable covered by the two sequencemaps or the child

variable in the edge cover.
Since we only consider single-edge sequence maps, the disadvantages of the join with overlapping

edge sets (in contrast to the one with disjoint edge sets) are not exhibited by the sequence map di�erence.

¿eorem 3.11. Algorithm 14 computes a minimal, non-overlapping sequence of intervals representing the
union of two sequences of intervals I1 and I2 inO(∣I1∣ + ∣I2∣) time and constant additional space.
Proof. Algorithm 14 computes minimal, non-overlapping intervals by the same observation as for Algo-
rithm 8: an interval is added only, if it is clear that the next binding a er its end index is covered also in
the second sequence map and thus should not be included in the result (line 7 and 11).

¿e result of Algorithm 14 is the di�erence of the intervals in the input sequences: if a binding is
covered by an interval in I1 but not in I2, then it is either entirely before any interval in I2 (lines 6–8) or
it is partially overlapping (lines 10–13) in which case we split, if some pre�x of it is not covered in I2 (line
11) and continue with any su�x (if there is any).

¿e algorithm relies on the fact that the interval sets are ordered by increasing start index and non-
overlapping. ¿is allows us to infer that, if an interval from I1 lies before the �rst (remaining) interval
from I2, then it lies before all intervals of I2 and vice versa. ¿us deciding overlapping becomes amortised
constant rather than linear in the size of the intervals.

Algorithm 14 runs in O(∣I1∣ + ∣I2∣) as in each iteration of the loop 3–14 either i or jor both are in-
cremented. Getting the next interval from I1 and I2 (line 4–5) is by assumption constant, as is adding an
interval at the end of NexIntervals (lines 7, 11). �

3.5 Reduce

Given a single input map, we can perform several operations on that sequence map in isolation that drop
certain variables (projection), certain bindings (selection), or propagate changes from bindings of one
variable to those for another (propagate) removing any inconsistencies w.r.t. the propagated pair.

Sequencemaps are closed under projection and propagation, but under selection only if we allow only
conditions that refer only to one variable or to two variables adjacent in the edge cover of the sequence
map.

3.5.1 Project

Projection is de�ned analogous to relational projection: We retain only bindings for variables speci�ed in
the projection, bindings for other variables are dropped (including interval pointers to those bindings).
Formally, we de�ne the sequence map projection as follows:
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Algorithm 13: ...∖(S1,S2)
input : Single-variable or single-edge Sequence maps S1 and S2 as in De�nition 3.8
output: Sequence map res representing the di�erence of the induced relations of the input maps

SharedVars← dom S1(= dom S1 ∩ dom S2); res← S1;1

if ∣SharedVars∣ = 1 then2

// Single-variable sequence maps
let v be the single variable in SharedVars;3

res(v)← ∅;4

while i ≤ ∣S1(v)∣ do5

// bindings returns∞ for index out of bound
n1 ← binding(S1(v)[i]); n2 ← binding(S2(v)[j]);6

if n1 = n2 then i++; j++;7

else if n1 < n2 then8

res(v)[k]← (n1, I);9

i++; k++;10

else if n1 = ☇ then i++;11

else j++;12

else13

// Single-edge sequence maps
let c be the child, p the parent variable in SharedVars;14

i, j, k← 1;15

while i ≤ ∣S1(p)∣ do16

// bindings returns∞ for index out of bound
n1 ← binding(S1(v)[i]); n2 ← binding(S2(v)[j]);17

// intervals returns ∅ for index out of bound
if n1 = n2 then18

I ← DifferenceInts(π2,3(intervals(S1(v)[i])),19

π2,3(intervals(S2(v)[j])));
if I = ∅ then n1 ← ☇ else res(v)[k]← (n1, I); k++;20

i++; j++;21

else if n1 < n2 or n1 = ☇ then22

res(v)[k]← (n1, I);23

i++; k++;24

else j++;25

return res26
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Algorithm 14: Di�erenceInts(Intervals1, Intervals2)
input : Two sequences Intervals1, Intervals2 of non-overlapping intervals (without associated

variables) in order of start index
output: Minimal, non-overlapping sequence of intervals covering all indices contained in

intervals of the �rst input sequence, but not in the second

NewIntervals← ∅ ;1

i, j, k← 1;2

while i ≤ ∣Intervals1∣ or j≤ ∣Intervals2∣ do3

(v, s1, e1)← Intervals1[i] or∞ if i > ∣Intervals1∣;4

(v, s2, e2)← Intervals2[i] or∞ if j> ∣Intervals2∣;5

if e1 < s2 then // (s1, e1) before (s2, e2)6

NewIntervals[k]← (s1, e1); k++;7

i++;8

else if e2 < s1 then j++ ; // (s2, e2) before (s1, e1)9

else // (s1, e1) overlaps (s2, e2)10

if s1 < s2 then NewIntervals[k]← (s1, s2 − 1); k++;11

if e2 < e1 then Intervals1[i]← (e2 + 1, e1);12

j++;13

else i++;14

15

return NewIntervals ;16

68



De�nition 3.9 (Sequence map projection). Let D be a relational structure, Q a tree query, S a sequence
maps for D over Q, and V ⊂ dom S a sub-set of variables in Q such that for each pair (v,v′) ∈ V2 either
v,v′ have no least common ancestor, lca(v,v′), in the edge cover of S or all variables on the path from
lca(v,v′) to v and v′, respectively, are also in V.

¿en,
...πV(S) returns a sequence map SM

D Q
3 such that

(1) the induced relation RSM
D Q

3 of SM
D Q

3 is RSM
D Q

3 = πV(RS), i.e., the projection toV of the induced relations
of S.

(2) SM
D Q

3∣dom S = SM
D Q

3(= SM
D Q

3∣V) (contains bindings only for variables mapped in S).
¿e associated edge cover for

...πV(S) is edgeCover(S) ∩V2.

¿e restriction on the shape of V ensures, that there is no variable with parent in dom S ∖ V but
ancestor inV w.r.t. the edge cover of S. In that case, the parent must be removed, however, it is needed to
represent which bindings for the ancestor relate to which bindings of the descendant. Simply dropping
the parent’s bindings yields a cross product between the bindings of ancestor and descendant and thus
more tuples than allows by the de�nition. ¿e alternative to the restriction is that the resulting sequence
map is no longer over D and Q but over a query Q′ and relational structure D′ such that (1) the variables
of Q′ are as in Q and the edges are Edges(Q) ∖ (V × dom S ∪ dom S × V) ∪ Edges(Q) ∩ V2

∪ E with
E{(v1,vk) ∈ V ∶ ∃v2, . . . ,vk−1 ∈ dom S ∖ V ∶ (v1,v2), . . . ,(vk−1,vk) ∈ EdgesQ}. (2) For each such edge
(v1,vk) ∈ E , there is a new relation name R in the relational schema for D′ that is the label of that edge in
Q′ and relation instance RD′ in D′ such that RD′

= π1,k(R1 &2=1 R2 &2=1 . . .&2=1 Rk−1) if Ri is the relation
name of the edge between vi and vi+1. In the following, we only present the �rst approach.

¿e above de�nition allows both consistent and inconsistent sequence maps as result of
...π . However,

Algorithm 15 ensures that, if the input sequence map is consistent, the result is consistent. If the input
sequence map is inconsistent, the result is only consistent, if the inconsistencies are limited to bindings
of variables not contained in the projection set.

Algorithm 15 gives a straightforward implementation for the sequence map projection: For all vari-
ables in the projection setV ⊂ dom Swe either copy the bindings of the variable unchanged, if none of its
children (in the edge cover of the input sequence map) are dropped, or copy them retaining only interval
pointers to variables inV (line 7 σ1∈V selects those tuples from intervals(S(v)[i]) that have a variable from
V as �rst component).

¿eorem 3.12. Algorithm 15 computes
...πV(S) for a sequence map S and a projection set V ⊂ dom S in

O(btotalDropParent ⋅ i + ∣V∣) ≤ O(q ⋅ n ⋅ i) time and constant additional space where i is the maximal number of
intervals per binding and btotalDropParent is the total number of bindings for variables with children in dom S∖V.

Proof. ¿e resulting sequence map for Algorithm 15 retains bindings (line 3) and interval pointers (line
7) only for variables from V. For variables from V neither the bindings nor the interval pointers are
touched. Together with the edge cover {(v,v′) ∈ edgeCover(S) ∶ v,v′ ∈ V} as in De�nition 3.9, this yields
an induced relation that is the projection to V of the induced relation of the input sequence map.

¿e Algorithm loops over all variables in V and either copies the bindings unchanged (line 8) or
touches each binding and modi�es it by dropping the non-V interval pointers (line 4–7), thus touching
each (of maximum i) intervals associated with that binding.

If the data is tree, forest, or cig shaped, i = 1. �
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Algorithm 15:
...πV(S)

input : Sequence map S over a query Q and set of variables V ⊂ dom S
output: Sequence map res representing the projection of S to the variables in V

res← ∅; // All variables with a covered edge to a dropped child1

DropParent← {v ∈ V ∶ ∃v′ ∈ dom S ∖V ∶ (v,v′) ∈ edgeCover(S)};2

foreach v ∈ V do3

if v ∈ DropParent then4

res(v)← ∅;5

foreach i ← 1 to ∣S(v)∣ do6

res(v)[i]← (binding(S(v)[i]),σ1∈V(intervals(S(v)[i])));7

else res(v)← S(v);8

return res9

Note, that each variable has a unique parent, if any, in a tree query. ¿us, even if a CIQCAG expression
for evaluating a given tree query drops all but one variable, whether in a single project operation, or in a
sequence of q − 1 projections, at most q − 1 variables become “drop parents”, i.e., variables with dropped
child variable, over the whole expression and, thus, the overall complexity for the projections is also
bounded byO(q ⋅ n ⋅ i).

Obviously, the result of a projection is a sequence map and
...πV can be applied to any sequence map

S with V ⊂ dom S.

3.5.2 Select

Sequence map selection we also based on relational selection: We retain only bindings that ful�ll a given
selection condition. However, in contrast to relational selection, conditions may not relate multiple vari-
ables. Rather each condition may only reference a single variable from the query. ¿is restriction is nec-
essary to ensure the tree query property, where only relations between variables adjacent in the tree query
are allowed. Consider, e.g., the sequence map S shown in Figure 22: A selection on the induced relation
of S with a condition v1 = v2 (reading = as node identity) yields the relation {(d1,d3,d1),(d2,d3,d2)}.
¿is relation can not be represented as a sequence map, since it can no longer be decomposed into binary
relations over the pairs of adjacent variables without loss: only the d1 (not the d2) binding for v1 remains
related to the d1 binding for v2. However, both remain related to d3 (as (d2,d3,d2) remains in the rela-
tion). ¿us, either we allow also (d2,d3,d1) (and (d1,d3,d2) by retaining an interval pointer 1–2 in d3 or
we drop all references from d3 to bindings for v3, thus yielding a sequence map representing the empty
relation.

¿us we de�ne the sequence map selection as follows:

De�nition 3.10 (Sequence map selection). Let D be a relational structure, Q a tree query, S a sequence
maps forD overQ, and c a single atom containing (possiblymultiple) references to a single variable. ¿en
...σ☇c(S) returns a sequence map SM

D Q
3 such that
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Figure 22. Sequence maps for illustrating the single-variable condition restriction for
...σ

(1) the induced relation RSM
D Q

3 of SM
D Q

3 is RSM
D Q

3 = σc(RS), i.e., the selection on c over the induced relations
of S.

(2) SM
D Q

3∣dom S = SM
D Q

3 (contains bindings only for variables mapped in S).
¿e associated edge cover for

...σ☇V(S) is the same as for S.
We allow in the de�nition only a single atom, since conjunctions, disjunctions, and quanti�cation

can be achieved by combining selection with union, join, or di�erence. As a convenience, we can easily
extend c to conjunctions and/or disjunctions of atoms, all over the same single variable, without changes
to the algorithms and results.

Algorithm 16 gives a straightforward implementation for the inconsistent case: Here, we merely
“bomb” all bindings where c does not hold if we replace v with its binding in c (line 3). Since the number
and order of bindings is untouched, the interval pointers can remain unchanged (but now possibly point
to some or all failure markers).

Algorithm 16:
...σ☇c(S)

input : Sequence map S over a query Q and condition c on variable v ∈ dom S
output: Possibly inconsistent sequence map res representing the selection of only bindings for v

from Smatching c

res← S;1

foreach i ← 1 to ∣res(v)∣ do2

if ¬c{v/res(v)[i]} then res(v)[i]← ☇;3

return res4

¿eorem 3.13. Algorithm 16 computes
...σ☇V(S) for a sequence map S and a condition c over a single variable

v in O(bv ⋅ mc) ≤ O(n ⋅ mc) time and constant additional space where mc is the maximum time for
evaluating c if all references to v are replaced by a binding for v in S and bv the number of bindings for v in
S. For most conditions, mc is constant.

Proof. Algorithm 16 computes
...σ☇V(S): No v binding for that c does not hold is retained (line 2–3). All

bindings for other variables are untouched (line 1).
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It is obviously bounded by the number of bindings for v in S (line 2), for each of which c is evaluated
in line 3. �

De�nition 3.10 allows the input to be inconsistent and a inconsistent sequence maps as result of
...σ☇.

As for most other operators, we can drop this restrictions and require consistent sequence maps as input
and result. We denote the resulting operation with

...σ . ¿e required changes are similar to the case of the
sequence map join (cf. Section 3.4.1): We introduce a change log for the changes applied to the variable
v involved in c and use this change log to adapt the intervals of the parent variable of v. Since we may
also drop bindings for the parent variable (where all related bindings for v are dropped), we need to
propagate such changes upwards in the query to all ancestors to v. ¿e corresponding algorithm is given
in Algorithm 17 and shows roughly the same relation to the above Algorithm for

...σ☇ as Algorithm 7 to
Algorithm 5.

¿eorem 3.14. Algorithm 17 computes
...σV(S) for a consistent sequence map S and a condition c over a

single variable v inO(btotalV ⋅(max(i,mc)) ≤ O(q ⋅n ⋅max(i,mc)) time andO(n) additional space where
mc is the maximum time for evaluating c if all references to v are replaced by a binding for v in S, i the
maximum number of associated intervals for a binding in S, and btotalV the total number of bindings for all
variables in V = {v′ ∈ dom S ∶ ∃ path from v′ to v in edgeCover(S)}.

3.5.3 Propagate

As discussed above, in particular for the sequence map join in Section 3.4.1, many of the previous opera-
tors are easier to implement with better complexity if we allow the results to be inconsistent. ¿ough this
advantage may, to some extent, be o�set by the increase in result size, if the involved operations are selec-
tive, we can still pro�t in many cases from inconsistent sequence maps: Instead of propagating changes
from a o en small subset of variables involved in an operation to all variables a er each operation, we
propagate these changes once at the end of an entire sequence of operations. See Section ?? for a more
detailed discussion of when to employ inconsistent sequence maps.

For some operations, however, a consistent sequence map is either required or bene�cial. ¿is is
particularly true for , which extracts bindings for some variables from a sequence map. Consider, e.g.,
that we are interested only in the bindings of a single variable v. If the given sequence Smap is consistent,
it su�ces to return the bindings in S(v), without even considering the other variables or the relation of
them to v. ¿is is possible, since every binding n ∈ S(v) occurs in at least one tuple of the induced relation
of S (i.e., can be extended to a full answer if S is complete). If, however, Smay be inconsistent, a binding
n ∈ S(v) (or, for that matter, its parents or their parents . . . ) may be dangling in which case there is no
binding for v’s parent and n does not contribute to a tuple in the induced relation. If n is a failure marker,
it does not contribute to the induced relation by de�nition and, worse, bindings for v’s parent may only
be related to failure markers among the binding for v and thus, in fact, also not contribute to the induced
relation.

To enable this mode of processing, we require explicit propagation operators, that, progressively, en-
sure that a resulting sequence map is consistent. For the two types of inconsistency, two di�erent opera-
tors are provided:

(1)
...
ϖv(S) removes all failure markers from the bindings of v and, if there is a parent v′ of v covered

by S, adopts the interval pointers of v accordingly. ¿is may lead to some bindings of v′ without related
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Algorithm 17:
...σ c(S)

input : Consistent sequence map S over a query Q and condition c on variable v ∈ dom S
output: Consistent sequence map res representing the selection of only bindings for v from S for

which c holds

ec← edgeCover(S);1

res← S;2

// Process the selection variable
res(v)← ∅; k← 1; Log← ∅; last←∞;3

for i ← 1 to ∣S(v)∣ do4

if c{v/S(v)[i]} then5

res(v)[k]← S(v)[i];6

Log← Log ∪ {(v,↓, i, k)} ∪ {(v,↪, l, i) ∶ last ≤ l < i};7

k++; last←∞;8

else9

last← min(last, i); Log← Log ∪ {(v,↩, i, last − 1)};10

if last ≠∞ then11

Log← Log ∪ {(v,↪, l,∞) ∶ last ≤ l ≤ ∣S(v)∣}12

// Process the ancestors of the selection variable
Ancestors← {v′ ∈ dom S ∶ ∃ path from v′ to v in ec}13

foreach v′ ∈ Ancestors in topological order w.r.t. ec do14

NoDrop← true;15

res(v′)← ∅; k← 1; last←∞;16

for i ← 1 to ∣S(v′)∣ do17

I ← Adapt(intervals(S(v′)[i]), Log);18

if I = ∅ then19

last← min(last, i);20

Log← Log ∪ {(v′,↩, i, last − 1)};21

NoDrop← false;22

else23

res(v′)[i]← (binding(S(v′)[i]), I);24

Log← Log ∪ {(v′,↓, i, k)} ∪ {(v,↪, l, i) ∶ last ≤ l < i};25

k++; last←∞;26

if NoDrop then break ;27

if last ≠∞ then28

Log← Log ∪ {(v′,↪, l,∞) ∶ last ≤ l ≤ ∣S(v)∣}29

return res30
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bindings for v. ¿ese bindings can no longer contribute to a tuple in the induced relation of S and are
thus “bombed”. ¿is way we move the consistency up one level in the (tree) query, from v to its unique
parent v′. Since v′ is the only variable whose bindings have interval pointers to bindings of v, no other
variable is directly a�ected. However, to remove all failure markers from S, we need to perform

...
ϖv(S)

for all variables covered by S in inverse topological order (i.e., child before parent).
(2)

...
ϖ
v(S) discovers and removes all “dangling” bindings of v. Note, that this may a�ect the interval

pointers from v′ = parent(v) to v: ¿ey may “slide” to the le , as “dangling” bindings for v are removed
from the beginning of the binding sequence S(v), and merge with the previous interval(s), if all the
intermediary bindings are dangling. ¿e number of related bindings of v, however, remains unchanged
for each binding of v′. ¿erefore, the sequence of bindings for v′ remains the same, only the interval
pointers change. To remove all “dangling” bindings from S, we need to perform

...
ϖ
v for all non-root

variables covered by S in topological order (i.e., parent before child).
If we perform �rst

...
ϖv(S) for all variables by S in inverse topological order, then ...ϖv(S) in the inverse

order, the resulting sequence map is consistent, see ¿eorem 3.17.
Formally, we de�ne the up-propagation operator as follows:

De�nition 3.11 (Sequencemap propagation). LetD be a relational structure,Q a tree query, S a sequence
maps for D over Q, and v ∈ dom S a variable covered by S. ¿en

...
ϖv(S) (...ϖv(S)) returns a sequence map

SM
D Q

3 such that:
(1) the induced relation RSM

D Q
3 of SM

D Q
3 is unchanged, i.e., RSM

D Q
3 = RS.

(2) SM
D Q

3∣dom S = SM
D Q

3 (contains bindings only for variables mapped in S).
For

...
ϖ
v(S) in addition to 1 and 2 it also holds that

(3a) there are no failure markers in SM
D Q

3(v) (among the bindings for v).
For

...
ϖ
v(S) in addition to 1 and 2 it also holds that

(3b) there are no direct dangling bindings in SM
D Q

3(v), i.e., no bindings of v that are not covered by some
interval pointer of a binding for v’s parent in the edge cover of S, if there is such a parent.

¿e associated edge cover for
...
ϖv(S) (...ϖv(S)) is the edge cover of the input sequence map.

Note that, for of
...
ϖ
v(S), if v is a root node in Q or v′ = parent(v) in Q but (v′,v) /∈ edgeCover(S), the

above condition (3b) implies that no binding of v is dangling.
We require that w.r.t. v (and only v) the result of

...
ϖv(S) (...ϖv(S)) is consistent wrt. failure markers

(direct dangling bindings) even if S contains failure markers (direct dangling bindings) for v. However,
for all other variables there may still be (direct) dangling bindings or failure markers. In fact, to remove
failure markers from the bindings of v we need, in general, to adapt the bindings of any variable with an
edge to v in the edge cover. Since Q is a tree query, there is a single such variable, v′. When we adapt the
interval pointers referring from bindings of v′ to bindings of v, we may end up with bindings for v′ with
no corresponding binding for v. ¿ose bindings are then “bombed”. ¿us, we may actually introduce
failure markers for v′. ¿ose failure markers may, e.g., be propagated and removed by a later

...
ϖv′(S′)

where S′ is the result of
...
ϖv(S).

Algorithm 18 shows in detail, how to compute
...
ϖ . It is, basically, the “consistency” component of

Algorithm 7 for a single variable. It is divided in two phases, one for v and one for its parent, if there
is any: (1) In lines 2–9, we remove all failure markers from S(v) and store the result in S′. ¿is yields a
change log mapping indices for bindings in S(v) to indices in S′. ¿e change log is shaped exactly the
same as the change log for Algorithm 7: For each retained binding a ↓ entry associating the old index to
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the index in S′. For each dropped binding (i.e., failure marker), a↩ and a↪ entry referencing the index
of the last preceding and next following retained binding. (2)¿is change log is used in the second phase,
lines 10–16, to adapt each of the interval pointers from bindings for v′ to bindings for v. At the end of
phase 2, all intervals reference now indices in S′ rather than in S(v). Note, that, if all interval pointers
of a binding are dropped (because they pointed only to failure markers), that binding is itself “bomb”ed
(line 13).

Algorithm 18:
...
ϖv(S)

input : Sequence map S over a query Q and variable v ∈ dom S
output: Sequence map res representing the induced relation for S with no failure markers among

the bindings of v

ec← edgeCover(S); res← S;1

// 1—Child Phase: For v, remove failure markers
S′ ← ∅; k← 1; Log← ∅; last←∞;2

for i ← 1 to ∣S(v)∣ do3

if S(v) = ☇ then last← min(last, i); Log← Log ∪ {(v,↩, i, last − 1)};4

else5

S′[k]← S(v)[i];6

Log← Log ∪ {(v,↓, i, k)} ∪ {(v,↪, l, i) ∶ last ≤ l < i};7

k++; last←∞;8

if last ≠∞ then Log← Log ∪ {(v,↪, l,∞) ∶ last ≤ l ≤ ∣S(v)∣}9

// 2—Parent Phase: For parent v′, shrink intervals
if (v′,v) ∈ ec for a v′ ∈ dom S then10

take that v′ (there is at most one);11

res(v′)← ∅;12

for i ← 1 to ∣S(v′)∣ do13

I ← Adapt(intervals(S(v′)[i]), Log);14

if I = ∅ then res(v′)[i]← ☇; // We introduce a failure marker!15

else res(v′)[i]← (binding(S(v′)[i]), I);16

return res17

¿eorem 3.15. Algorithm 18 computes
...
ϖv(S) for a sequence map S and variable v ∈ dom S O(bv + bv′ ⋅

i) ≤ O(n ⋅ i) time and O(bv) ≤ O(n) additional space where i is the maximum number of associated
intervals pointing to v for any binding in S, and bv (bv′ ) the number of bindings for v (v′ if v′ ∈ dom S with
(v′,v) ∈ edgeCover(S) or 0 otherwise) in S.

Proof. Algorithm 18 computes a sequencemap S′ such that S′(v) contains no failure markers. It contains
no failure markers due to line 4.

S′ has the same induced relation as the input sequence map, as only failure markers are dropped
which do not contribute to a tuple contained in the induced relation by De�nition 2.4.
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Phase 1 of the algorithm runs in O(bv) time as it iterates over all bindings for v in S. For each such
binding, the entry is copied to the new sequence map and the change log is updated (in constant time).

Phase 2 runs in constant time if there is no parent in ec, otherwise inO(bv′ ⋅ i) time, as it iterate over
the bindings for v′ in S. For each such binding, they call Adapt which runes, by ¿eorem 3.5 in time i
where i is the maximum number of intervals pointing to v associated with a binding of v′ (which are the
only bindings pointing to v). �

For
...
ϖ , we obtain a similar algorithm 19 with three phases: In the �rst phase, the skip index for the

parent v′ of v (if there is any) is created: It contains for each index i of a binding of v the maximum end
index of any interval pointer starting at i and associated with a binding of v′. ¿e second phase uses the
skip index �nd all dangling bindings in a single pass over the bindings of v. In a third phase, the interval
pointers from v′ to v are slided (and, possibly, merged) to adapt to the new sequence of bindings for v.
In detail: (1) In the �rst parent phase, we build a skip index Skip that initially points to 0 for all indices in
S′. Whenever we �nd an (adapted, i.e., already pointing to S′) interval that starts at an index s, we set the
skip index for s to the maximum of its current value and the end index e of the interval.

At the end of phase 2, the skip index records, for each index i, the maximum end index of any interval
that starts at i (or 0 if there is none). (2) ¿e skip index is used in the second phase, lines 17–25, for a
second pass over the bindings of the child variable. Here, we consider for each binding, if it lies within
a interval of one of the bindings for the parent variable. ¿is is recognized using the skip index: maxEnd
always points to the highest end point of any interval whose start index we have already passed. If maxEnd
is smaller than the current index and the current index is not a start index (Skip(i) = 0), we have found a
dangling binding that must be eliminated. Otherwise, we copy the binding and update maxEnd (with the
maximum end index of an interval that starts at the current index, if it is larger than maxEnd). (3) Finally,
in a third phase we slide the intervals of all bindings for the parent variable to adapt to the changes to the
sequence of bindings for the child variable in the previous step. Note, that this step does not introduce
any new dangling bindings, as intervals do not shrink in this phase, but only slide since the bindings
associated with start and end indices can not have been dropped in the previous phase (they are, a er
all, covered by at least the current interval). ¿us, there are ↓ entries in the change log for them (line
24) and the interval is simply slided according to those entries and possibly collapsed with a previous
interval (if the only bindings between the two intervals have been dangling bindings and thus dropped
in the previous phase.

¿eorem 3.16. Algorithm 19 computes
...
ϖ
v(S) for a sequence map S and variable v ∈ dom S O(bv + bv′ ⋅

i) ≤ O(n ⋅ i) time and O(bv) ≤ O(n) additional space where i is the maximum number of associated
intervals pointing to v for any binding in S, and bv (bv′ ) the number of bindings for v (v′ if v′ ∈ dom S with
(v′,v) ∈ edgeCover(S) or 0 otherwise) in S.

Proof. Algorithm 19 computes a sequence map S′ such that S′(v) contains no direct dangling bindings.
Due to lines 17–25, it contains no direct dangling binding, since, for each direct dangling binding n with
index i, Skip(i) = 0 (there can be no interval with i as start index otherwise n is not dangling) and there
is no previous index j≤ i that is the start index of an interval that cover i (i.e., with end index ≥ i). ¿us
maxEnd < i, all conditions of line 19 are ful�lled, and the binding is dropped.

S′ has the same induced relation as the input sequence map, as only dangling bindings are dropped
which do not contribute to a tuple contained in the induced relation by De�nition 2.4.
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Algorithm 19:
...
ϖ
v(S)

input : Sequence map S over a query Q and variable v ∈ dom S
output: Sequence map res representing the induced relation for S with no direct dangling bindings

among the bindings of v

ec← edgeCover(S); res← S;1

if (v′,v) ∈ ec then2

take that unique v′;3

// 1—Parent Phase: Compute skip index
Skip← {(i,0) ∶ 1 ≤ i ≤ ∣S′∣}; res(v′)← ∅;4

foreach (n, I) ∈ S(v′) do5

foreach (s, e) ∈ I do Skip(s)← max(Skip(s), e);6

// 2—Child Phase: For v, drop dangling bindings
// maxEnd maximum end point of any “open” interval
maxEnd← 0; res(v)← ∅; k← 1; Log← ∅; last←∞; i ← 1;7

for i ← 1 to ∣S′∣ do8

if maxEnd < i and Skip(i) = 0 then9

last← min(last, i); maxEnd← 0;10

else11

res(v)[k]← S(v)[i];12

Log← Log ∪ {(v,↓, i, k)};13

k++; last←∞; maxEnd← max(maxEnd, Skip(i));14

// 3—Parent Phase: For v′, slide intervals
for i ← 1 to ∣res(v′)∣ do15

if res(v′) = ☇ then continue ;16

I ← Adapt(intervals(res(v′)[i]), Log);17

res(v′)[i]← (binding(res(v′)[i]), I);18

return res19
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Phase 1 and 3 of the algorithm run in O(bv′ ⋅ i) time, as they both iterate over the bindings for v′
in S. For each such binding, phase 1 iterates over all its i intervals and updates the skip index (single
comparison and assignment). Phase 3 calls Adapt which runs, by ¿eorem 3.5, in time i where i is the
maximum number of intervals pointing to v associated with a binding of v′.

Phase 2 of the algorithm runs in O(bv) time as they both iterate at most over all bindings for v in S
(phase 3 already skips failure markers). For each such binding, the entry is copied to the new sequence
map and the change log is updated (in constant time). �

From these results, we can immediately conclude the following result:

¿eorem 3.17. Let SM
D Q

be an inconsistent sequence map. ¿en there is a consistent sequence map SM
D Q

′

equivalent to SM
D Q

. ¿is sequence map can be computed inO(q̃ ⋅ n ⋅ i) where q̃ = ∣dom SM
D Q∣, n = ∣Nodes(D)∣,

and i the maximum number of intervals per binding in S. For tree, forest, and cig data i = 1.

Proof. To compute the consistent sequence map S′ from the inconsistent input sequence map S, we use a
CIQCAG-expression using

...
ϖ and

...
ϖ . Let dom S = {v1, . . . ,vk} such that, for any vi,vjwith vi < vjwrt. the

topological order on dom S induced by edgeCover(S) (i.e., v < v′ if ∃ path from v′ to v in edgeCover(S)),
it holds that i < j. ¿en the following CIQCAG-expression computes a consistent sequence map that is
equivalent to S:

...
ϖ
v1(...ϖv2(. . . ...ϖvk(...ϖvk(

...
ϖvk−1(. . .(

...
ϖv1(S)))))))

¿e resulting sequence map is consistent, as it contains: (1) no failure markers for any vi, as there is
a
...
ϖvi(Ei) for each vi and only

...
ϖvj(Ej) with j < i may create failure markers for vi (viz.

...
ϖv(Ev) for all

children v of vi), all of which are contained in Ei. (2) no direct dangling bindings for any vi, as there is
a
...
ϖ
vi(Ei) only ...ϖ ’s and

...
ϖ
vj(Ej) with j > i in�uence the bindings of the parent of vi and all these are

contained in E . (3) no indirect dangling bindings as there are no direct dangling bindings.
¿e CIQCAG-expression has a size of 2 ⋅ ∣dom S∣ and consists only of ...ϖ and

...
ϖ expressions, all of which

operate on S or a sequence map smaller than S. ¿us, all of them are bound by O(n ⋅ i) where i is the
maximum number of intervals per binding in S.

Overall, the computation is thus bound byO(∣dom S∣ ⋅ n ⋅ i). �

In the rest of this work, we use o en sequences v1, . . . ,vn of variables instead of a single variable as
index for

...
ϖ (

...
ϖ ). ¿is notation is a shorthand for a sequence of n nested

...
ϖ (

...
ϖ ) expressions each for

one variable in the order of the variables in the index sequence.

3.6 Rename

For convenience, we brie�y discuss an analog to the rename operator on (named) relational algebra.

De�nition 3.12 (Sequence map renaming). Let D be a relational structure, Q a tree query, S a sequence
maps for D over Q, and v1 ∈ dom S,v2 ∈ Vars(Q) ∖ dom S. ¿en

...ρv1→v2(S) returns a sequence map SM
D Q

′

such that
(1) the induced relation RSM

D Q
′ of SM

D Q
′ is RSM

D Q
′ = ρv1→v2(RS), i.e., the induced relation of the input se-

quence map with attribute v1 renamed to v2.
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(2) SM
D Q

′∣dom S = SM
D Q

′ (contains bindings only for variables mapped in S).
¿e associated edge cover for

...ρv1→v2(S) is the edge cover of the input sequence map with all occurrences
for v1 replaced by v2.

Algorithm 20:
...ρv1→v2(S)

input : Sequence map S over a query Q two variables v1 ∈ dom S, v2 ∈ Vars(Q) ∖ dom S
output: Sequence map res representing the induced relation of S with v1 renamed to v2

res← S;1

// All variables with a covered edge to v1
ParentVars← {v ∈ dom S ∶ (v,v1) ∈ edgeCover(S)};2

foreach v ∈ ParentVars do3

res(v)← ∅;4

foreach i ← 1 to ∣S(v)∣ do5

I ← σ1≠v1(intervals(S(v)[i])) ∪ {v2} × π2,3(σ1=v1(intervals(S(v)[i])));6

res(v)[i]← (binding(S(v)[i]), I);7

res(v2)← res(v1);8

res← res ∖ {(v1, res(v1))};9

return res10

Note, that
...ρv1→v2 can be applied only, if v2 is not covered by S and if v2 has at least the same in-

and outgoing edges in Q as v1 has in the edge cover of S. ¿is limits the applicability compared to the
relational case.

Algorithm 20 shows how to compute the sequence map rename operation. Note, that only bindings
for the parent of v1, if there is any in the edge cover of S, are processed.

¿eorem 3.18. Algorithm 20 computes
...ρv1→v2(S) for a sequence map S and variables and v1 ∈ dom S,v2 ∈

Vars(Q) ∖ dom S in O(bparent(v1) ⋅ i) ≤ O(n ⋅ i) time and constant additional space where bparent(v1) is the
number of bindings for the parent of v1 in S and i the maximum number of associated intervals associated
with such a binding.

3.7 Back to Relations: Extract

Fittingly, we conclude the introduction and de�nition of the sequence map operators in CIQCAG with the
sequence map extraction, where we obtain the variable bindings for a subset V of a sequence maps vari-
ables as a relation. A tuple t = ⟨v1 ∶ n1, . . . ,vk ∶ nk⟩ is contained in that relation, if V = {v1, . . . ,vk} and t
is in the projection to V of the induced relation of the sequence map S. ¿us, for each vi ∶ ni there is an
index l such that binding(S(vi)[l]) = ni and, if (v,v′) ∈ edgeCover(I), then v ∶ n ∈ t and v′ ∶ n′ ∈ t if there
are indices l, l′ such that S(v)[l] = (n, I), binding(S(v′)[l′]) = n′ and l′ is covered by some interval in I.
If the data is tree, forest, or cig shaped, ∣I∣ ≤ 1 and l′ must lie within the boundaries of the single interval
in I.

Formally, we de�ne the sequence map extract operator as follows:
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De�nition 3.13 (Sequence map extraction). Let D be a relational structure, Q a tree query, S a sequence
maps for D over Q with the induced relation RS, and V = {v1, . . . ,vk} ⊂ dom S. ¿en V(S) returns a
relation R = πV(RS).

By de�nition, dom SS returns exactly the induced relation of S, yielding an algorithm for computing
the induced relation.

Algorithm 21: V(S)
input : Sequence map S and variables V = {v1, . . . ,vk} ⊂ dom S
output: πv1 ,...,vk(RS)
res← {};1

RootVars← {v ∈ dom S ∶/∃ v′ ∶ (v,v′) ∈ edgeCover(S)};2

foreach v ∈ RootVars do3

res← res × Relation(S,v, 1, ∣S(v)∣);4

return πv1 ,...,vk(res) or ∅ if res = {⟨⟩}5

First, we present a naive version of  that always computes the induced relation and simply applies a
relational projection to the computed relation. It is presented in Algorithm 21 and uses Algorithm 22 to
compute the induced relation for each connected component.

¿eorem 3.19. Algorithm 21 computes V(S) for a sequence map S and a set of variables V ⊂ dom S in
O(b∣dom S∣

+
) ≤ O(nq) where b+ is the maximum number of “good” bindings (neither failure markers nor

dangling) for a variable in S.

Proof. ¿e result of Algorithm 21 is the projection to V of the induced relation of S: Relation computes
the induced relation for each connected component of the edge cover ec of S rooted at one of the root
vars. ¿is is extended to the full induced relation in line 4 (note that there are no covered edges between
variables from di�erent connected components and thus a mere cross product su�ces.

Algorithm 22 computes the induced relation for each connected component of the edge cover: it
combines each binding for the root variable (line 5) with all bindings generated for each of its children
(w.r.t. the edge cover of S), line 6–9. If all bindings for v are either failure markers or dangling, ∅ is
returned (and, if this is the only all to Relation for v, the entire induced relation becomes ∅.

Algorithm 22 performs, for each root variable (lines 3–4 in Algorithm 21), the expansion of the in-
duced relation over all descendant variables. ¿e outer loop (lines 2–6) iterates over all elements of the
given interval. ¿ere are at most bint ≤ b ≤ n such elements. For each such element, it iterates (lines
4–5) over all its associated intervals of which there are at most i ≤ n per child variable of which there
are at most bec where bec is the maximum degree of a variable in the edge cover associated with S. For
each such interval, a recursive call to Relation with an interval of maximum size bint ≤ b ≤ n (line 5). ¿e
recursive calls return, if a leaf variable in the edge cover of S is found, at a recursion depth of at most
dec where dec is the maximum depth of the edge cover associated with S. Overall, Algorithm 22 runs in
O((bec ⋅ bint ⋅ i)dec + o) where o is the size of the result relation.

¿e result relation is bound by b+(q̃)∣q̃∣ where q̃ is the number of descendant variables of a node v in
ec and b+(q̃) is the maximum number of “good” bindings for any variable in q̃.

80



In Algorithm 21, we always compute the full induced relation (lines 3–4) only to drop bindings for
variables not in V in line 5. ¿e complexity of Algorithm 21 is dominated by the time and space for
construction and storing the induced relation and thus byO(b∣dom S∣

+
). �

Algorithm 22: Relation(S,v, start, end)
input : Sequence map S, variable v ∈ dom S, start and end index
output: Relation containing one tuple for each combination of bindings for v and each of its

children represented in S

ChildVars← {v′ ∈ dom S ∶ (v,v′) ∈ edgeCover(S)}; res← {⟨⟩};1

for i ← start tomin(end, ∣S(v)∣) do2

(n, I)← S(v)[i];3

if n = ☇ then continue ;4

R← {⟨v ∶ n⟩};5

foreach v′ ∈ ChildVars ∩ π1(I) do6

R′ ← R; R← ∅;7

foreach (v′, start′, end′) ∈ I do8

R← R ∪ (R′ × Relation(S,v′, start′, end′));9

res← res ∪ R;10

return res11

In most cases, we are not interested to compute the full induced relation, but only in a few of the
variables covered by a sequence map. It is also not su�cient to use

...π to remove all the variables we are
not interested in as

...π is limitedw.r.t. the shape of the variable sets allowed (no variable with parent outside
the projection set but ancestor within is allowed). ¿e above algorithm, however, always computes the
entire induced relation even for parts of the query not relevant for the variables we are actually interested
in and that are speci�ed in V.

¿erefore, we present a second algorithmAlgorithm 23 that tries tominimize the amount of unneces-
sary expansion of the sequence map under the assumption that the input sequence map is consistent. Re-
call that using the two propagation operators we can obtain a consistent sequencemap inO(b⋅ ∣dom S∣ ⋅ i)
time.

Intuitively, by assuming a consistent sequence map, we can avoid even looking at bindings for vari-
ables that do not lead to (i.e., are ancestors of) variables inV. Furthermore, even, for variables that lead to
variables inV, we do not really care about actual bindings, but only that it is related to bindings of a child
variable that leads to a variable in V. If a variable has more than one child variable that is an ancestor
of a variable in V (we call such a variable a branch variable in Algorithm 23), only then, it is necessary
to ensure that only combinations of bindings contributed by each of the child variables are accepted that
have a common binding for the parent.

¿is intuition is realized in Algorithm 23 by �rst marking (by inclusion in AncestorVars) in lines 2–8
all ancestors of a variable in V.

¿is set of ancestors is used in lines 9–11 to compute the projected relation of any connected compo-
nent rooted (w.r.t. the edge cover) at a variable that is in V or ancestor of a variable in V.
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Algorithm 23: V(S)
input : Sequence map S and variables V = {v1, . . . ,vk} ⊂ dom S
output: πv1 ,...,vk(RS)
res← {⟨⟩};1

AncestorVars← CurrentVars← V;2

// Compute all ancestors
while CurrentVars ≠ ∅ do3

v ∈ CurrentVars;4

if ∃ ∶ v′ ∈ dom S ∖ AncestorVars ∶ (v′,v) ∈ EC then5

AncestorVars← AncestorVars ∪ {v′};6

CurrentVars← CurrentVars ∪ {v′};7

CurrentVars← CurrentVars ∩ {v};8

// Take all root variables that are ancestors
RootVars← {v ∈ dom S ∶/∃ v′ ∈ dom S ∶ (v,v′) ∈ edgeCover(S)};9

foreach v ∈ RootVars do10

res← res × ProjectedRelationAncestorVars
V (S,v,{1→ (1, ∣S(v)∣)});11

return res12

For each such variable, we call Algorithm24with a sequence of intervals containing one single interval
over all bindings for that variable in S.

Algorithm 24 computes the projection to V of the induced relation of the component rooted at v.
However, it avoids, where possible, to compute the induced relation for the variables not in V. For this,
the central observation is that, if a variable is neither part of V nor the least common ancestor of two
variables in V, it has only a single child that is ancestor of a variable in V (otherwise it would be least
common ancestor of all pairs of variables in V where one is contained in the sub-trees rooted at one of
the children and the other in the sub-tree of the other child). For computing the projection to V of the
induced relation, it matters in this case not which binding of the parent is connected to which binding
of the child. It only matters that a bindings of the child variable is related to any binding of the parent
(and even that only matters if we are in a sub-tree rooted at the least-common ancestor of at least one
pair of variables in V, otherwise we just go to the next variable, line 24). ¿is is exploited in line 23 by
computing the union over the intervals of all parent bindings. Observe, that the union of non-overlapping
intervals, as computed by Algorithm 25, is still a (minimal) sequence of non-overlapping intervals and
can be computed e�ciently (in linear time over the two sequences of intervals). We can then continue
with that single sequence of intervals. In comparison, at a branch variable (with more than one child
in the ancestors A of a variable in V) we call ProjectedRelation for each binding. In the worst case, the
intervals associated with each binding overlap entirely and ProjectedRelation is called for each binding with
an interval set that covers as many bindings of the child as the single interval set computed for a skip
variable (lines 18–25).

To compute that single interval we use UnionInts, the last of the operations on sets of intervals, as shown
in Algorithm 25.
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Algorithm 24: ProjectedRelationAV(S,v,I , inLCA)
input : Sequence map S, set of variables V ⊂ dom S, variable v ∈ dom S, sequence I of

non-overlapping sets of intervals in order of start index
output: Projection of the induced relation of S to V

ChildVars← {v′ ∶ (v,v′) ∈ edgeCover(S)};1

if v ∈ V then2

// Result variable: we need to return bindings for the variable in the result.
res← ∅;3

foreach (s, e) ∈ do4

for i ← s to e do5

(n, I)← S(v)[i]; R← {⟨v ∶ n⟩};6

foreach v′ ∈ π1(I) ∩ ChildVars do7

R← R × ProjectedRelationV(S,v′,π2(σ1=v(I)), true);8

res← res ∪ R;9

else if ∣ChildVars∣ > 1 then10

// Branch variable: we need to ensure that bindings from two branches are connected to the same
binding of the branch variable before combining

res← ∅;11

foreach (s, e) ∈ do12

for i ← s to e do13

(n, I)← S(v)[i]; R← {⟨⟩};14

foreach v′ ∈ π1(I) ∩ ChildVars do15

R← R × ProjectedRelationV(S,v′,π2(σ1=v(I)), true);16

res← res ∪ R;17

else if ∣ChildVars∣ = 1 then18

// Skip variable: we can “skip” to the next variable.
v′ ∈ ChildVars;19

if inLCA = true then20

// We care that only bindings covered by any of the intervals in I are considered
CurrentInts← ∅;21

foreach (s, e) ∈ do22

for i ← s to e do23

CurrentInts← UnionInts(CurrentInts, intervalsv′(S(v)[i]));24

res← ProjectedRelationV(S,v′,CurrentInts, inLCA);25

else res← ProjectedRelationV(S,v′,{(1, ∣S(v′)∣)}, inLCA);26

return res27

83



Algorithm 25: UnionInts(Intervals1, Intervals2)
input : Two sequences Intervals1, Intervals2 of non-overlapping intervals (without associated

variables) in order of start index
output: Minimal, non-overlapping sequence of intervals covering all indices contained in

intervals of either input sequence, in order of start index

NewIntervals← ∅ ;1

start←∞; end← 0;2

i, j, k← 1;3

while i ≤ ∣Intervals1∣ or j≤ ∣Intervals2∣ do4

(v, s1, e1)← Intervals1[i] or∞ if i > ∣Intervals1∣;5

(v, s2, e2)← Intervals2[i] or∞ if j> ∣Intervals2∣;6

if e1 < s2 then // (s1, e1) before (s2, e2)7

s← s1; e ← e1;8

i++;9

else if e2 < s1 then // (s2, e2) before (s1, e1)10

s← s2; e ← e2;11

j++;12

else // (s1, e1) overlaps (s2, e2)13

s← min(s1, s2);14

e ← max(e1, e2);15

i++; j++;16

if end < s then17

if start ≠∞ then NewIntervals[k]← (start, end); k++;18

start← s; end← e;19

else20

start← min(start, s); // only for illustration, always start ≤ s21

end← max(end, e);22

if start ≠∞ then NewIntervals[k]← (start, end); k++;23

return NewIntervals ;24
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¿eorem 3.20. Algorithm 25 computes a minimal, non-overlapping sequence of intervals representing the
union of two sequences of intervals I1 and I2 inO(∣I1∣ + ∣I2∣) time and constant additional space.
Proof. Algorithm 25 computes minimal, non-overlapping intervals by the same observation as for Algo-
rithm 8: an interval is added only, if it is clear that the next binding a er its end index is not covered (line
18) or if the end of the sequence is reached (line 23).

¿e result of Algorithm 25 are the union of the intervals in the input sequences: if a binding is covered
by either interval in I1 or I2, then either that interval overlaps with some interval in the other sequence
(line 13–16) and we extend the currently active interval by all bindings covered in these overlapping inter-
vals (lines 20–22) or start a new interval covering these bindings (line 17–19). If it does not overlap (lines
7–12), we also either extend or create a new interval, but only for the bindings covered by the interval
itself.

¿e algorithm relies on the fact that the interval sets are ordered by increasing start index and non-
overlapping. ¿is allows us to infer that, if an interval from I1 lies before the �rst (remaining) interval
from I2, then it lies before all intervals of I2 and vice versa. ¿us deciding overlapping becomes amortised
constant rather than linear in the size of the intervals.

Algorithm 25 runs in O(∣I1∣ + ∣I2∣) as in each iteration of the loop 4–22 either i or j or both are
incremented. Getting the next interval from I1 and I2 (line 5–6) is by assumption constant, as is adding
an interval at the end of NexIntervals (line 18). �

From this result, we can derive the following properties of  depending on the number of variables in
V, the number of least common ancestors of (pairs of) variables in V, and the size of the sub-tree rooted
at such least common ancestors.

¿eorem 3.21. Algorithm 21 computes V(S) for a sequence map S and a set of variables V ⊂ dom S in
O(b∣V ∣V ⋅ b2W + b2W + ∣dom S∣) ≤ O(n2

+ n∣V ∣ + ∣dom S∣) where V = V ∪ {v ∈ dom S ∶ ∃v′ ≠ v′′ ∈ V ∶

lcaec(v′,v′′) = v} is the set of all variables in V and their least common ancestors in ec = edgeCover(S),
W = {v ∈ dom S ∶ ∃ path from v′ ∈ V to v}∖V is the set of all variables in a sub-tree rooted at a variable in
V except V , and bN is the maximum number of bindings for a variable in a set of variables N or 1 if N = ∅.

Proof. In Algorithm 21, computing the ancestors of any variable in V is bound by O(∣dom S∣) time by
stopping the mark process whenever a previously marked ancestor is found (line 5). ¿is means, at worst
each variable in dom S is marked once by lines 5–7.

Algorithm 24 is called for each root of a connected component containing with variables in V (de-
termined by looking at AncestorVars).

If Algorithm 24 is called with a skip node and is in inLCA mode, it �rst computes a single sequence
of intervals from the sequences for each bindings. ¿is is done in O(b ⋅ (i + b)) = O(b2) as the size of
a non-overlapping sequence of intervals and thus the size of CurrentInts is bound by b and we compute
the union of the intervals of each of the b bindings with CurrentInts. ¿en it calls itself once with a single
sequence of intervals for the child variable of v. If it is not in inLCA mode, we just skip to the next variable
(constant time).

On a tree, forest, or cig data, the second interval sequence of UnionInts is always a single interval. In
this case, storing the current intervals in an interval tree and querying and modifying that interval tree
with each of the single intervals associated with a binding can be done inO(b ⋅ log(b)) time rather than
O(b2) as the unmodi�ed Algorithm 25. However, in the general case, an interval tree based algorithm
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performs worse, as the interval sequence associated with each binding is already of size i ≤ b and thus
the overall time isO(b2 ⋅ log(b)).

If Algorithm 24 is called with a branch or result variable, it calls itself once for each child variable and
interval set associated with a binding of v. Each such interval set is bound by b and the number of calls
are bound by b × bec where bec is the maximum degree of the edge cover of S.

Overall, there are ∣V ∣ branch and result nodes and thus the overall run time is bound byO(b∣V ∣V ⋅b2W +

b2W). �

If V = {v} for some variable v, then we can omit the computation of the ancestors and the call to
project relation and directly return the set of all binding(S(v)[i]) for i ≤ ∣S(v)∣. ¿is yields an algorithm
linear in the number of bindings for v.

For ∣V∣ > 1, however, the algorithm needs to know the lca’s of each pair of variables inV and the path
from these lca’s to a variable in V. ¿ere is a wealth of well-established approaches for �nding the least
common ancestor [32, 3] that, at a linear pre-processing cost for the tree (here the query), allow constant
look-up of the least common ancestor. However, since we also need the path between lca(v,v′) and v, v′,
the gains by adopting such an approach are limited.

With  the set of operators on sequence maps is complete. ¿e following sections conclude the dis-
cussion of the operators by highlighting some of their properties.

3.8 Algebraic Equivalences

¿e sequence map operations de�ned above as part of the CIQCAG algebra mirror, where possible, closely
relational algebra expressions. ¿is is re�ected not only in the de�nitions throughout the previous sec-
tions which reducemost of the operations to operations on the induced relations of the involved sequence
maps, but also in the algebraic properties that govern these operations. In the following, we brie�y sum-
marize and compare the most important algebraic laws that govern the the sequence map operations.
Particularly, we consider the e�ect of consistent and inconsistent operator variants and the propagation
operators.

In the following, we denote with ec(S) the edge cover of a sequence map S, SM(R) a sequence map
with the induced relation R, and S∅ = SM(∅) a sequence map with induced relation RS∅ = ∅. For
brevity, when there are both consistent and inconsistent variants of an operator that exhibit the same
laws, we denote that with (☇). Note, however, that either all, or none of the operators in each formula are
of the consistent variant.

Neutral and absorbing element laws. For ...∪ and ...∖, any single-variable or single-edge sequence map
with induced relation∅ is a the neutral element. Note, that there are, as for most other relations, many se-
quencemaps that represent∅ as long aswe allow inconsistent (where failuremarkers alone giveNodes(D)dom S

variations of a consistent sequence map that represent the same induced sequence) or not interval-
minimal (where non minimal interval sets give up to 2Nodes(D) variants) sequence maps. For ...&☇

∩
, S∅

forms is an absorbing element. Table 20 summarizes the laws for neutral and absorbing elements. We
can also observe, that ...&(☇) and ...∪ return the unmodi�ed input sequence map if it is combined with itself.

86



(N1) S ...∪ S∅ ↔ S* (N2) S ...∪ S↔ S

(N3) S ...∖ S∅ ↔ S*

(N4) S θ S∅ ↔ S∅* (N5) S θ S↔ S

Precondition: ec(S∅) = ec(S), both single-variable or both single-edge
Precondition: ec(S∅) ∩ ec(S) = ∅

Table 20. Neutral and absorbing elements for combination operators (θ ∈ {...&(☇)∩ ,
...
&
(☇), ...X(☇)})

(C1) S1
...
∪ S2↔ S2

...
∪ S1*

(C2) S1
...
&
(☇)
∩

S2↔ S2
...
&
(☇)
∩

S1*

(C3) S1
...
&
(☇) S2↔ S2

...
&
(☇) S1

(A1) (S1 ...∪ S2) ...∪ S3↔ S1
...
∪ (S2 ...∪ S3)*

(A2) (S1 ...&(☇)∩ S2) ...&(☇)∩ S3↔ S1
...
&
(☇)
∩
(S2 ...&(☇)∩ S3)*

(A3) (S1 ...&(☇) S2) ...&(☇) S3↔ S1
...
&
(☇) (S2 ...&(☇) S3)

(DM1) S1
...
∖ (S2 ...∪ S3)↔ (S1 ...∖ S2) ...&(☇) (S1 ...∖ S3)*

(DM2) S1
...
∖ (S2 ...&(☇) S3)↔ (S1 ...∖ S2) ...∪ (S1 ...∖ S3)*

(D1) S1
...
∪ (S2 ...&(☇) S3)↔ (S1 ...∪ S2) ...&(☇) (S1 ...∪ S3)*

(D2) S1
...
&
(☇) (S2 ...∪ S3)↔ (S1 ...&(☇) S2) ...∪ (S1 ...&(☇) S3)*

(D3) S1
...
&
(☇)
∩
(S2 ...&(☇) S3)↔ (S1 ...&(☇)∩ S2) ...&(☇) (S1 ...&(☇)∩ S3)*

(D4) S1
...
X
(☇) (S2 θ S3)↔ (S1 ...X(☇) S2) θ (S1 ...X(☇) S3)*

Precondition: ec(S1) = ec(S2) = ec(S3), S1, S2, S3 all single-variable or all single-edge
Precondition: ec(S1) ∩ ec(S2) = ∅, ec(S1) ∩ ec(S3) = ∅, ec(S2) ∩ ec(S3) = ∅
Precondition: ec(S1) ∩ ec(S2) = ∅, ec(S1) ∩ ec(S3) = ∅

Table 21. Commutative, associative, distributive, de Morgan laws (θ ∈ {...&(☇)∩ ,
...
&
(☇)})
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(S1) ...σ(☇)c (
...σ(☇)c (S))↔

...σ(☇)c (S)
(S2) ...σ(☇)c (S1 θ S2)↔ ...σ(☇)c (S1) θ

...σ(☇)c (S2)* (S2a) ...σ(☇)c (S1 ϕ S2)↔ ...σ c(S1) ϕ ...σ c(S2)*
(S3) ...σ(☇)c (S1 θ S2)↔ ...σ(☇)c (S1) θ S2* (S3a) ...σ(☇)c (S1 ϕ S2)↔ ...σ c(S1) ϕ S2*

(S4) ...σ(☇)c (S1 θ S2)↔ S1 θ
...σ(☇)c (S2)* (S4a) ...σ(☇)c (S1 ϕ S2)↔ S1 ϕ

...σ c(S2)*

Precondition: Vars(c) ∈ dom S1 ∩ dom S2
Precondition: Vars(c) ∈ dom S1 ∖ dom S2
Precondition: Vars(c) ∈ dom S2 ∖ dom S1

Table 22. Selection laws (θ ∈ {...∪, ...&☇∩, ...&☇, ...X(☇), ...∖}, ϕ ∈ {...&∩, ...&})

Commutative, associative, and distributive laws. Figure 21 summarizes commutative, associative, dis-
tributive, and de-Morgan laws for sequence map combination operators: ...∪ and all join variants are com-
mutative and associative as is easy to see from their de�nition (C1–C3, A1–A3). Moreover, a variation
(DM1–DM2) of de-Morgan laws hold for ...∖, ...∪, and ...&(☇) (which takes the place of ∩ in usual set-theoretic
formulations of de-Morgan laws), but only if all involved sequence maps are either all single-variable or
all single-edge and have the same edge cover. ¿is is, in fact, the precondition for all laws involving ...∖ or
...
∪. Recall, that in this case ...&(☇) is equivalent to intersection as all variables and edges are shared. ...&(☇)

∩

can not be used, here, as it prohibits overlapping edge covers (which are required by ...∪ and ...∖). For the
same reason, only ...&(☇) and ...∪ distribute over each other (D1–D2) on all single-edge or all single-variable
sequence maps, but not ...&(☇)

∩
. Finally, distribution between the two join types ...&(☇)

∩
and ...&(☇) is limited,

...
&
(☇)
∩

distributes over ...&(☇) (D3), but, in general, not the other way around.

Table 21. ¿e commutative and associative laws are easy to verify in the respective de�nition. For the
de-Morgan laws, consider that a tuple is in the induced relation of S1

...
∖ (S2 ...∪ S3) if it is in RS1 but neither

in RS2 nor in RS3 . It is in (S1
...
∖ S2) ...&(☇) (S1 ...∖ S3) if it is both in RS1 but not in RS2 and in RS1 but not in

RS3 . ¿is is the case due to the precondition that the edge covers of all three sequence maps are the same.
¿us, RS1 & RS2 = RS1 ∩ RS2 . Analog for DM2.

For the distributive laws D1 and D2, the core observation is again that all involved sequence maps
have the same edge cover. ¿us the induced relation of ...&(☇) is the intersection of the induced relations
of its input sequence maps.

For D3, consider that S1
...
&
(☇)
∩
(S2 ...&(☇) S3) is a valid expression only if ec(S2 ...&(☇) S3) ∩ ec(S1) =

ec(S2)∪ ec(S3)∩ ec(S1) = ∅. ¿us it is valid if ec(S1)∩ ec(S3) = ∅ and ec(S2)∩ ec(S3) = ∅, in which
case also (S1 ...&(☇)∩ S2) ...&(☇) (S1 ...&(☇)∩ S3) is valid. �

Selection. Selection is generally a good candidate for optimization, pushing selections (a fast but pos-
sibly fairly selective operation) inside of an expression thus limiting the size of intermediary results. Also
selection can generally be propagated “down” into an expression: Selection distributes over ...∪, ...&☇

∩
, ...&☇

and ...∖, see Table 22. For ...&∩ and
...
&, we need to ensure that the consistency of the input sequence maps

is retained and thus can only push
...σ inside (regardless of the outer selection variant), cf. (S2a, S3a, S4a).
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(P1) ...πV(...πV′(S))↔ ...πV∪V′(S)* (P2) ...πV(...σ(☇)c (S))↔
...σ(☇)c (

...πV(S))*

(P3) ...πV(S1 θ S2)↔ ...πV1(S1) θ
...πV2(S2)* (P4) ...πV(S1 ...X(☇) S2)↔ ...πV1(S1)

...
X
(☇) S2*

Precondition: the projection condition holds for V,V′ and no pair of variables from v ∈ V and v′ ∈ V′ has a common
ancestor in the edge cover of S

Precondition: Vars(c) /∈ V
Precondition: V1∪V2 = V,V1 (V2) ful�lls the projection condition for S1 (S2) with dom S1∩V∖V1 = ∅ (dom S2∩V∖V2 = ∅)

Table 23. Projection laws (θ ∈ {...&(☇)∩ ,
...
&
(☇)})

(ϖ1) ...
ϖv(S)↔ S* (ϖ2) ...

ϖ
v(S)↔ S*

(ϖ3) ...
ϖ(S1 θ S2)↔ S1 θ S2* (ϖ4) ...

ϖ(...σ c(S))↔ ...σ c(S)*
(ϖ5) ...

ϖ(...µv(D,Q,R))↔ ...µR(D,Q)v (ϖ6) ...
ϖ(...µv1 ,v2(D,Q))↔ ...µv1 ,v2(D,Q)

Precondition: v ∈ dom S equivalence does not preserve consistency
Precondition: v ∈ dom S equivalence does not preserve consistency
Precondition: S1, S2 consistent
Precondition: S consistent

Table 24. Propagation laws (
...
ϖ ∈ {...ϖv,

...
ϖ

v}, θ ∈ {...∖, ...&∩, ...&, ...X})

For ...∖ and ...X(☇), we can actually drop the selection around S2 in (S2), since we only retain tuples from the
�rst input sequence map.

Projection. In contrast to selection, we can only propagate selection “down” in an expression to the
point where the projection condition that V ⊂ dom S and, for all pairs v,v′ ∈ V all variables on the path
from lca(v,v′) to each variable are inV still hold in the sub-expressions. Conversely, an expressionmight
bene�t from introducing additional projections to get rid of attributes not used in the remainder of an
expression as early as possible, viz. immediately a er the innermost expression referencing them.

Given two sets of variables V and V′ such that the projection condition on S holds for both sets and
no pair v ∈ V ,v′ ∈ V′ has a common ancestor in the edge cover of S, we can combine a sequence of
projections for these two sets into a single projection for V ∪ V′ (P1). Projection and selection can be
arbitrarily ordered as long as Vars(c) /∈ V (P2). Finally,

...π distributes over ...&(☇)
∩
, ...&(☇), ...X(☇) if there are

subsets V1,V2 of V such that each subset a�ects one of the input sequence maps but not the other. For
...
X
(☇), we can omit the projection on S2 since only bindings from S1 are retained.

Propagation. Both propagation operators do not a�ect the induced sequence only the consistency state.
¿us, as long as we are only interested in the induced sequence, we can add or remove propagation op-
erators arbitrarily (ϖ1–ϖ2). Finally, for each of the consistent sequence map operators (such as ...&∩ or...
∖) we can drop any surrounding propagation operators if the input sequence maps are consistent itself
(ϖ3–ϖ6).
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Figure 23. Example query for iterator approach

Extract. Extract returns a relation rather than a sequence map. ¿us it can not be distributed over any
of the sequence map operations. However, it may interact with relational expressions as discussed in
Section ??.

¿is concludes the brief overview of the most important algebraic laws for sequence map operators
in CIQCAG. Before we extend the sequence map operators that are limited to the evaluation of tree queries,
to the full CIQCAG algebra with (standard relational) operators for the evaluation of non-tree parts of an
arbitrary query and operators for construction and iteration, we brie�y outline in the following section
an iterator model for the physical realisation of the sequence map operators.

3.9 Iterator Implementation

Iterator or stream model has proved essential for the scalable evaluation of relational queries, see, e.g.,
[27]. Here, we brie�y outline how CIQCAG’s sequence map operators can be implemented in an iterator
model that reduces the space complexity of the evaluation compared to the sequence-at-a-time model
discussed above. ¿is holds in particular on tree or forest data and if the number of variables that are
either part of the answer or used in the non-tree part of the query (i.e., the number of variables extracted
by ) is small compared to the full number of variables in the query.

Let V(E) be a CIQCAG expression such thatE contains only join, semi-join, selection and initialization
operators. We limit the operators to keep the discussion brief, but we can extend the approach to allow
also projection, union, and di�erence. Note, that we can order E in such a way that all unary conditions
(i.e., the unary initialization operators and joins to connect them) for each query variable v are clustered
and the result of all these unary conditions is connected by a single join to the expressions representing
the conditions on each child variable of v. We denote with L(v) the unary conditions relating to v and
with E(v) the full expression for v including the expressions for its children.
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Consider the query in Figure 23. It can be realized by the CIQCAG expression v7(E) where

E(v1)

E(v2)

E(v5)

E =

L(v1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ...µv1(D,Q, Label‘a′) ...&
...µv1 ,v2(D,Q) ...& ...µv1 ,v5(D,Q)

...
&

...µv2(D,Q, Label‘a′)
...
&

...µv2 ,v3(D,Q)
...
&

...µv2 ,v4(D,Q)...µv4(D,Q, Label‘c′)
...
&

...µv5(D,Q, Label‘c′) ...X
...µv5(D,Q,Arity

=1)
...
&

...µv5 ,v6(D,Q) ...& ...µv6(D,Q, Label‘d′)
...
&

...µv6 ,v7(D,Q)

¿is is an example of the general shape of an expression such that it is amenable to the iterator ap-
proach discussed in this section. Figure 24 illustrates this shape in detail: blue colored parts of the query
together with their root represent the part of the query rooted at the corresponding variable v, i.e., E(v).
¿e yellow colored parts represent the unary conditions for each variable, i.e.,L(v). For each query vari-
able v, there is a representing node (indicated by and labeled with the variable in Figure 23). Under this
node we �nd, in general, two children: one for L(v) and one join node grouping all of v’s children (we
use here a multi-way join instead of a sequence of binary joins to simplify the presentation). For each
child variable v′ of v, this node has a connection node

...µv,v′(D,Q) and the representative join node for
v′. Some variables have no unary restrictions, some no children in which case the respective parts are
omitted (see v4). If a variable has neither, we use the connection node as representative node for that
variable (see v3,v7).

Based on this ordering of the CIQCAG expression, we can nowde�ne a processing scheme that computes
the resulting sequence map for the entire expression incrementally, outputs potential answers as soon as
there is an extension to a full answer, and discards potential answers as soon as there can be no more
extension to a full answer.

¿e fundamental observation for this scheme is that all unary operators are already implemented in
an iterator fashion, see Section 3, i.e., as a single pass over the input sequence using, for each binding
in the sequence, only conditions on that binding itself (and not on any other binding) to determine its
inclusion or exclusion from the result.

For ...& and
...µv,v′(D,Q), this is not so easy to see from the Algorithms in Section 3. In the following,

we focus on these two operators to detail the incremental processing scheme. First, we annotate each
join with the intersection of the variables of the sequence maps computed by its children. For all variable
nodes in Figure 24, this yields a single variable, viz. the one shown as label in Figure 24. For the semi-joins
(which only connect unary operators), this yields also a single variable (viz. the variable their parent is
annotated with). For child joins, i.e., joins with one

...µv,v′(D,Q) and, possibly, one variable node, this
yields the two variables v,v′ (note that the multi-way joins in Figure 24 are realized as a sequence of
binary joins) such that v = parent(v′).

¿e �rst change is that an operator no longer computes the entire result sequence map at once, but
that each operator provides an interface with three functions next, out, and close. ¿is extends the iterator
interface used, e.g., in [27] for relational operators with out and modi�es the semantics for next: We can
call next on each operator with or without a pair (variable, binding).
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E(v6):

L(v6):

...
&
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&
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&

...µv4(D,Q, Label‘c′)

...µv1 ,v5(D,Q) ...
&

...
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Figure 24. Operator tree for query from Figure 23

Unary initialization, if called without such a pair, compute the next binding in their result sequence
and return that binding (or false if there are no more bindings), remembering the point in the result
sequence reached by the computation as well as the computed partial sequence of bindings; if called with
such a binding pair they return the binding, if it is included in the result sequence and the variable is
consistent. ¿ey also advance the computation of that result sequence up to the point where the binding
is computed, if necessary (i.e., if the binding has not already been computed). Otherwise they return
false.

A join remembers the all bindings returned by its �rst operand as well as the last pair next was called
with. If next is called on a join and the passed pair is the same as in the last call, it calls the right operand’s
next with the last remembered pair returned by the �rst operand. If that call returns false or the passed
pair is di�erent from the last call, it calls the le operand’s next with the passed pair, if there is any, and
returns false if that call returns false. Otherwise, it remembers the new pair returned and calls next on
the right operand with that pair. If that returns false, we loop and call next on the le operand again etc.
As soon as the right operand’s next returns a pair, that pair is returned.

For binary initialization operators for v,v′, we return for a call with next (1) if a pair (v′′,n) is passed
with v′′ = v, and n is in the partial sequence of bindings for v already computed, we return the next
binding for v′ related to n (i.e., covered by an interval pointer associated with n) together with v′, if there
is none return false. Otherwise, we expand the partial sequence of bindings for v until we �nd n or the
�rst binding n′ with n > n′ wrt. the order associated to the relation between v and v′. If we �nd n, return
the �rst binding for v′ related to n, if there is any, together with v′. Otherwise return false. (2) if no pair
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is passed, we take the �rst binding n for v where not all related bindings for v′ have been generated (and
return false if there is no such binding). For that binding, we compute the next binding for v′ and return
that binding. Note, that the binary initialization stores the partial binding sequences for v and v′ as well
as all interval pointers from bindings in the partial binding sequence for v to bindings of v′ for which not
all covered bindings have been returned by next. For each such binding n in the partial binding sequence
of v, we also store a single pointer into the sequence of bindings for v′ indicating the last returned binding
for v′ that is related to n.

¿e second function close removes from all operators the current state, i.e., resets the iterations (as
for the iterator approach on relational operators discussed in [27]).

¿e �nal function of the iterator interface, out, each operand calls out on its child operators. In ad-
dition, if an operator is a variable node, it outputs the current binding for the variable it is labeled with
together with any intervals associated with it.

¿e query is embedded in an outer loop, that calls next on the �rst operand of the query (for queries
with size > 1 always a join). If the call returns true, it calls out on that join and continues the loop.
Otherwise it terminates.

Consider again the operator tree from Figure 24: First next is called on the top-level join. ¿e join
calls its �rst operand (

...µv1(D,Q, Label‘a′) without parameter.
...µv1(D,Q, Label‘a′) returns the �rst node in

the document with label ‘a′. With that binding for v1 the top-level join calls the “child join”. ¿at join
calls �rst

...µv1 ,v2(D,Q) with the binding pair and then with the result the variable join node for v2, . . .
Two observations are crucial here: Except for the le most, all initialization operators are always called
with a binding pair. Partial sequence maps are stored in initialization operators (joins only retain the
last successful binding from the second operand). E.g.,

...µv2 ,v3(D,Q) builds a sequence map consisting
of bindings for v2 in the associated order of the relation between v1 and v2, and bindings for v3 in the
associated order of the relation between v2 and v3. Only bindings for v2 are “restricted” by binding pairs
passed in next, not bindings for v3. ¿is avoids dropping intermittent bindings for v3 and thus allows to
keep the interval pointers as given by the interval representation discussed in Section 3.2. Each of these
sequence maps is bound byO(n× i) where n is the number of nodes in D and i the maximum size of an
interval per binding. For join operators that are also variable nodes, we also store a sequence map over
the bindings of the variable the node is labeled with. ¿ese sequence map are bound by O(n) since we
do not retain intervals and can, at no additional cost, be ordered in the associated order of the incoming
edge of the variable the join is labeled with.

3.9.1 Optimal Space Bounds for Tree Data

In contrast to the operators discussed in Section 3, here we compute sequence maps incrementally. For
tree data, we can pro�t from another regularity to further decrease the space complexity: Recall, that tree
data corresponds to relations with image disjointness property and, if we also allow closure axis, with
image containment property. For a relation with image disjointness property, the number of parents of
a node is bound by 1. In other words, as soon as we have found a single parent for a node, there can
be no further nodes related to it among the bindings for the parent variable. For a relation R with image
containment, the number of parents is limited by the depth of the forest represented by the relation whose
closure is R (by¿eorem 2.4 there is such a forest-shaped base relation for each R). Consider, e.g., XPath
closure relations descendant, following, or following-sibling. For descendant the base relation is child and as such
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the number of parents under descendant is limited by the depth of the queried XML tree. For following,
the base relation is the relation associating with each element the next element in document order. For
that relation, the number of ancestors is limited only by the size of the XML tree. For following-sibling it is
the relation that associates with each node the next element in document order that has the same parent.
¿us, the number of ancestors is limited by the degree of the XML tree.

How canwe exploit this observation in the iterator algorithm sketched above? ¿e aim is to reduce the
size of the partial sequence maps and the stores in join operators by deleting nodes as soon as they can no
longer contribute to any further match under the assumption that all relations carry image containment
or image disjointness property. We know, that as soon as a binding is related to 1, resp. d (depth of base
relation), di�erent bindings of its parent, it can not contribute to any further and, thus no longer needs
to be stored. However, for image containment the related bindings may scattered over the entire binding
sequence for the parent variable and thus a binding added at the beginning of the processing (i.e., related
to the �rst binding of the parent variable) may be amenable to be removed only at the very end (if the last
binding of the parent variable is also related to it).

¿us, we impose a further property to hold for the relations used in a query, that guarantees us that
all parent bindings related to a given child binding are “clustered” together. It also ensures, that there are
no parent bindings n that are related to child bindings prior to child bindings related to parent bindings
prior to n:

De�nition 3.14 (Order-compatible query). Let D be a relational structure and Q a query on D. ¿en
Q is called order-compatible if, for each pair (v,v′) of parent-child variables in Q with rel(v) = R and
rel(v′) = R′, it holds that n <R n′ implies that, for all nodes c ∈ R′(n), c′ ∈ R′(n′), c, c′ ∈ R′(n) ∩ R′(n′)
or c ≤R′ c′.

Intuitively, the two orders associatedwith the parent and the child variable are compatible in the sense
that if a given child binding is either related to a binding of the parent or neither it or any child bindings
a er the given one are related to a binding of the parent.

¿e class of order-compatible queries is interesting because of the following result:

¿eorem 3.22. For a tree query Q containing only a single, forest-shaped base relation R and its closure
relation C there are orders for R and C such that Q is order-compatible and the images of all nodes under
R and C form a single continuous interval under the respective orders.

Proof. In the following, we consider only tree based relations for simplicity. However, for forest we simply
add some �x order on the connected components of the forest to the de�nitions.

Order the children of each node in R in some order and call the ordered tree induced by R and this
order T. Choose as order for R the breadth-�rst le -to-right preorder traversal <b of T. Choose as order
for C the depth-�rst le -to-right preorder traversal <d of T.

¿en, if n <b n′, either n ancestor of n′ (<b is preorder) and R′(n′) ⊂ R′(n) or there is an ancestor a
of n and an ancestor a′ of n′ such that a is a preceding sibling of a′ (and both are children of lca(a,a′)).
¿en, also a <c a′ (since the depth-�rst traversal is le -to-right) and all descendants of a come before all
descendants of a′ in <c. In particular any c ∈ C(n) is a descendant of a, any c′ ∈ C(n′) a descendant of
a′ and thus c <c c′. �

¿is yields, e.g., that tree queries containing only child and descendant.
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Corollary 3.3. Tree queries containing only child and descendant are order-compatible (for some orders on
child and descendant, resp.).

Under these assumptions (tree or forest data, order-compatible query wrt. the associated orders of
the involved relations), we can now adapt the algorithm: (1) As soon as we �nd no more child bindings
for a parent, that parent is dropped from the sequence map of a binary initialization operator, since the
data is tree shaped and thus each parent has a single interval pointer. (2) Each child binding is dropped as
soon as the �rst parent binding is encountered, that does not relate to it, since no further parent binding
can related to that child binding. (3)When next is called for a binary initialization operator, we alternate
between the two binding sequences: We �nd the �rst binding for the parent together with its �rst related
binding for the child. ¿e next call to next returns not the next binding for the child variable related to
current parent binding (as in the original algorithm), but the next parent binding related to the current
child binding. If there is no such binding le , we delete the child binding and continue with the �rst
binding of the parent variable that has yet more related bindings for the child variable (and delete all
parents before that parent binding). We let the binary initialization operator report the deleted bindings
(as pairs of variable and the largest deleted bindings) as a further result of next to its parent (join) operator.
(4) For unary initialization operators, we only store the last binding. (5) In a join operator, we delete all
binding up to and including the delete bindings returned by a next and propagate them upwards, unless
they are for the variable the join is labeled with. If the le operand of the join operator is no binary
initialization operator, that join operator only stores the last binding.

¿eorem 3.23. For order-compatible queries on tree or forest data, the above algorithm runs inO(q ⋅n+o)
time andO(q ⋅ d+ o) space where o is the size of the output, q is the size of the query, n the size of the data,
and d the depth of the tree or forest.

Proof. ¿e modi�cations of the algorithm do not a�ect correctness. For the binary initialization opera-
tors this follows from the forest shape of the data and the order-compatibility of the query. For the join
operators without le binary initialization operator, there is either always an ancestor join operator that
memoizes the bindings (e.g., for the “child join” operators in Figure 24) or it is the top-level join. For
unary initialization operators, we can observe that same fact. ¿e reason this holds is that the query is
connected and tree-shaped. ¿us for each variable except for the root variable there is a binary initializa-
tion operator (and a corresponding join) that “generates” bindings for the variable from bindings of the
parent variable.

¿e time complexity is the same as for the sequence-at-a-time operators from Section 3. Note that we
operate on tree or forest data and thus the number of intervals per binding is at most 1.

It retains the complexity of the set-at-a-time algorithm by memoizing already computed bindings in
variable join nodes and initialization operators, as described above. ¿e deletion of bindings does not
a�ect the complexity (it adds an additive factor of n to the complexity).

However, by alternating between parent and child nodes we can ensure that all the partial binding
sequences in the sequence maps of the binary initialization operators contain at most d bindings for the
parent variable and at most 1 binding for the child variable.

¿e memoization structures in the join operators remove bindings at the same time as their sub-
ordinate binary initialization operators. ¿us, they are also bound by d. �

Corollary 3.4. Queries containing only XPath’s child and descendant relation are evaluated by the above
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algorithm in O(q ⋅ n + o) time and O(q ⋅ d + o) space where o is the size of the output, q is the size of the
query, n the size of the data, and d the depth of the tree or forest.

¿e last results are optimal wrt. data complexity as they coincide with the Ω(d + o) lower bound for
the data complexity of such queries shown in [51].

However, it is an open question, whether order-compatible queries are the largest class of queries that
can be evaluated with this complexity.
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