
I5-D8

Realistic information integration application

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R/P (report and prototype)
Dissemination level: PU (public)
Document number: IST506779/Dresden/I5-D8/D/PU/a1
Responsible editors: Michael Schröder
Reviewers: José Júlio Alferes
Contributing participants: Dresden, Lisbon
Contributing workpackages: I5
Contractual date of deliverable: 31 August 2007
Actual submission date: 22 November 2007

Abstract
The goal of this deliverable is the development of applications in collaboration with Working
Group A2 “Bioinformatics”. Some such applications of reactive web frameworks and languages
developed in I5 have been made. In particular, using the r3 framework we have developed
two applications in close collaboration with A2 members: the B-Domain application and the
PubMed Reactive Classifier. Other applications have been developed using the Prova inference
service system.

In this deliverable we concentrate on the description of the latter, with an application of In-
ductive Logic Programming features of Prova for bioinformatics, including integration of Prova
with several external languages (Java, SQL, RDF/OWL, ...). The applications of r3 are de-
tailed in other deliverables, together with the description of that framework.

Keyword List
BioInformatics, Reactive Rules

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2007.

ii

Realistic information integration application

Adrian Paschke1, Michael Schröder 2

1 RuleML Inc., Canada and Biotec/Dept. of Computing, TU Dresden
2 Biotec/Dept. of Computing, TU Dresden

22 November 2007

Abstract
The goal of this deliverable is the development of applications in collaboration with Working
Group A2 “Bioinformatics”. Some such applications of reactive web frameworks and languages
developed in I5 have been made. In particular, using the r3 framework we have developed
two applications in close collaboration with A2 members: the B-Domain application and the
PubMed Reactive Classifier. Other applications have been developed using the Prova inference
service system.

In this deliverable we concentrate on the description of the latter, with an application of In-
ductive Logic Programming features of Prova for bioinformatics, including integration of Prova
with several external languages (Java, SQL, RDF/OWL, ...). The applications of r3 are de-
tailed in other deliverables, together with the description of that framework.

Keyword List
BioInformatics, Reactive Rules

iv

Contents

1 Introduction 1

2 Inductive Logic Programming for Bioinformatics in Prova 3
2.1 Introduction . 3
2.2 Inductive Logic Programming . 5
2.3 Inductive Logic Programming in Prova . 6

2.3.1 ILP Meta Program . 6
2.3.2 Aggregations and Constructive Scopes 8
2.3.3 Types and Modes . 13

2.4 Distributed Inductive Logic Programming in Prova 14
2.5 Conclusion . 16

v

vi

Chapter 1

Introduction

Several applications to Bioinformatics of reactive web frameworks and languages developed in
I5 have been made during the project, and are being updated, and improved up to now.

Among those applications are several ones of the Prova inference service system. The ap-
plication detailed in the remainder of this deliverable is one such application concentrating on
the Inductive Logic Programming features of Prova for bioinformatics.

Other applications were made using the r3 framework. Their description is not included here
since they are already described in other deliverables. Namely, its current status is described in
deliverable I5-D9 “Prototype on the RDF/OWL level”, along with the r3 prototype, as example
use-cases. The applications of r3 in the bioinformatics domain include the Bioinformatics
Domain Broker, and a PubMed Reactive Classifier.

In short, the Bioinformatics Domain Broker (B-Domain) provides/manages personalized
mirrors of the Protein Databank (PDB), i.e. tertiary bioinformatics data sources (cf. the use-
case scenario “Updates and evolution in bioinformatics data sources” described in [1]). The B-
Domain application uses the r3 library to implement a bioinformatics-specific domain language
of events, static terms, and actions1 that currently includes three atomic constructs: An atomic
event that signals the addition of new structures to PDB (occurs every time a new structure
is added and returns the PDBID of the added structure). An atomic condition that checks
if a specific PDBID satisfies a criterion specified using domain specific concepts. An atomic
action that stores a PDBID in a personal repository of structures. Using this language, the
maintenance of the personalized PDB mirrors is achieved by a set of reactive rules generated
and loaded to an r3 ECA engine by B-Domain, once again, using the r3 development library.
The current implementation of B-Domain is available online at http://di150.di.fct.unl.
pt:15080/b-domain/monitor_form.jsp and allows the user to monitor new PDB structures.
Given a criterion specified at the level of the advanced query functionality available at the PDB
site, a storage (viz. a personalized PDB mirror) is created to keep all the new structures that
satisfy that criterion.

PubMed, http://www.pubmed.gov/, is the main biomedical literature database referencing
over 12.000.000 entries. Based on events signaling additions to PubMed, the PubMed Reactive
Classifier generates events detecting the relevant additions (filtered) according to a set of (so
called) relevant terms. The relevant terms and publications are maintained in a Prova rulebase,

1http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/b-domain.owl

1

http://di150.di.fct.unl.pt:15080/b-domain/monitor_form.jsp
http://di150.di.fct.unl.pt:15080/b-domain/monitor_form.jsp
http://www.pubmed.gov/
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/b-domain.owl

based on the occurrence of (XChange) events stating new publications added to PubMed and
new or no longer relevant terms. A publication is deemed relevant if it contains, according to
the PubMed eSearch utility, any of the supplied relevant terms. For each relevant publication
information is retrieved (and mirrored) for inclusion in the generated events. Additionally
events are also generated signaling any publication that becomes irrelevant due to the removal
of a relevant term. This application can be tested at http://di150.di.fct.unl.pt:15080/
r3/TST/

2

http://di150.di.fct.unl.pt:15080/r3/TST/
http://di150.di.fct.unl.pt:15080/r3/TST/

Chapter 2

Inductive Logic Programming for
Bioinformatics in Prova

This chapter describes the inductive logic programming (ILP) features of Prova, a state-of-art
distributed and reactive Semantic Web and Life Science inference service system and archi-
tecture for multi-relational data mining of complex Life Science phenomena such as complex
biological relationships. The proposed novel design artifact implements typical ILP inference
formalisms for rule-based generalization and specialization and combines them with expres-
sive logic-based formalisms such as scoped meta-data based reasoning and typed logic in order
to constrain the search space and the level of generality of relevant background knowledge.
The tight integration of declarative rule-based programming with object-oriented programming
(Java) allows outsourcing of computation intensive functionalities such as aggregations and
data selections to highly optimized procedural code and query languages such as SQL, XQuery,
OWL2Prova RDF, SPARQL. Parallel processing of ILP tasks is supported by a distributed
service-oriented and event-driven middleware where several Prova rule engine instances are de-
ployed on the Web as distributed inference services having access to modular data sources and
distributed web-based resources. As a result our approach preserves the high expressiveness
and flexibility of ILP for multi-relational data mining and attempts to overcome well-known
computational and logical problems of ILP when facing very large and scattered heterogenous
amounts of data with complex relationships published on the (Semantic) Web.

2.1 Introduction

Typical propositional data mining approaches use a simplified assumption that all data is
stored in a single relation and that each object of interest is represented by one row. However,
mining biological data, such as in molecular biology, requires expressive, efficient and scalable
multi-relational data mining algorithms to find highly complex structural elements in multiple
and possibly distributed data relations. In data mining there exists two main approaches for
handling relational data: Inductive Logic Programming (ILP) and Propositionalization. [14]

Propositionalization converts the relational complex data into a flat propositional represen-
tation and generates one single relation out of multiple relations such that typical propositional
learners can be applied. This can be achieved by using e.g. typical aggregation functions as

3

provided by relational database languages such as SQL or by generating features (attributes)
by applying logic-oriented propositionalization.

In contrast, ILP systems directly operate on multiple relations where the relational pat-
terns are represented as subsets of first-order logic as logic programs (LPs) consisting of rules
and facts. They search for regularities by inductively generalizing the specialized individual
instances to more general rules which describe new relations.

Both approaches have pros and cons. Database oriented propositionalization approaches
allow using highly-optimized queries and aggregations to reduce the number of relations and
apply efficient propositional learning techniques. However, beside the computational costs of
joins, they typically produce one huge propositional relation with a large number of possi-
ble redundant features which might negatively impact the performance of learning algorithms.
ILP systems directly operate on multi-relational models, provide expressive declarative repre-
sentation languages (logic programming languages) and can handle additional (user-defined)
background knowledge to substantially improve the results of learning in terms of accuracy and
efficiency. On the other hand, large background knowledge bases (KBs) with many irrelevant
information for the problem might have the opposite effect since the induction algorithm has
to search over all the relations and rules and generalized model construction might take very
long or even be infinite (depending on the logic class).

Here we introduce Prova, a distributed web-based rule inference system, which combines
expressive declarative logic programming techniques with procedural object-oriented program-
ming and distributed web technologies. In particular, we describe the ILP meta program imple-
mentations of Prova which beside the inductive logical inference algorithms allows utilizing ex-
pressive logical formalisms for, e.g., building constructive scopes on modular (distributed) KBs,
object-oriented (OO) description languages with external OO and Semantic-Web type systems
(e.g. meta data vocabularies, ontologies), integration of multiple external tools and data from
e.g. relational databases, and parallel computation by distributing inference tasks to multiple
web-based Prova inference services deployed on a stable and highly scalable service-oriented
communication middleware. This novel integrated approach preserves the expressiveness ben-
efits of ILP and adopts the aggregation and constructive view approach of relational database
systems to logic programming. Moreover, it addresses the heterogeneousness of complex data
and data types in the Life Science domain by integrating Semantic Web domain ontologies and
meta data and considers computational complexity due to large and and increasing amounts
of data via distribution of computational tasks to multiple Prova inference services (akin to
service grids) for parallel computation.

The remainder of this chapter is structured as follows: Section 2.2 describes the relevant
background in ILP. Section 2.3 implements the ILP formalisms of Prova and elaborates on sev-
eral expressive formalisms in Prova which can be used to access and query external data sources
using existing highly optimized query languages and construct modular scopes on the possible
distributed knowledge base in order to constrain the search space on relevant background knowl-
edge. Section 2.4 extends Prova with a highly scalable and efficient service-oriented middleware
for deploying several Prova rule engines as distributed inference services on the Web. The
middleware features complex event processing and conversation-based messaging for seamless
integration of external tools and resources and for distributing ILP tasks in the Prova service
grids. Finally, section 2.5 summarizes the novel design artifact for distributed rule-based ILP
proposed.

4

2.2 Inductive Logic Programming

In the following, we assume that the reader is familiar with logic programming techniques [4].
We use the standard LP notation with an ISO Prolog related scripting syntax, i.e. variables
start with upper-case letters, constants/individuals with lower-case letters.

ILP is a research area at the intersection of machine learning and logic programming. [14] It
allows inductively deriving general information from specific knowledge. Traditionally, ILP has
been concerned with finding patterns expressed as logic programs. In recent years, however, the
scope of ILP has broadened to cover the whole spectrum of data mining tasks (classification,
regression, clustering, association analysis). There are two main directions in ILP: learning
from entailment and learning from interpretations. Learning from entailment is also called ex-
planatory ILP. Most of ILP systems are learning from entailments (e.g. RDT, Progol, FOIL,
SRT, Fors). Learning from interpretations is also called descriptive ILP. Examples of the ILP
systems which are based on this setting are Claudien, ICL, and Tilde. The differences between
the two ILP approaches are in the way they represent the examples, the background knowledge
and the way the final hypothesis is induced. The entailment paradigm represents all the data
examples together with the background knowledge as one LP. Background knowledge is a prior
knowledge, provided by the user to be used in the construction of rules. In ILP background
knowledge is expressed in the form of clauses (facts or rules) and is used in the construction
of relations. ILP generalizes from individual instances or observations in the presence of back-
ground knowledge, finding regularities or hypotheses about yet unseen instances. It learns from
examples, usually positive ground clauses as positive examples (+ negative examples) with
additionally taking background knowledge into account. To test the coverage of the learned hy-
pothesis, a function covers(H,E) returns the value true if E (the examples) is covered by H
(the hypothesis), and false otherwise. ILP systems can be differentiated into systems which only
learn one hypothesis or several, systems which know all examples from the beginning (batch
learner, e.g. empirical ILPs such as FOIL, MARKUS, GOLEM, LINUS) or incrementally learn
them (incremental learner, e.g. MIS, MARVIN, CLINT, CIGOL), and systems which might
ask an additional oracle (interactive) or not (non-interactive).

To enable a direct and efficient search the search space for hypothesis needs to be structured
in a certain way. θ-subsumption ordering introduces a syntactic notion of generality: A rule
(clause) r (resp. a term t) θ-subsumes another rule r′, if there exists a substitution θ, such
that r ⊆ r′, i.e. a rule r is as least as general as the rule r′ (r ≤ r′), if r θ-subsumes r′ resp.
is more general than r′ (r < r′) if r ≤ r′ and r′ � r. (see e.g. [13]). Specialization techniques
search the hypothesis space in a top-down manner, from general to specific hypotheses, using a
θ-subsumption-based specialization operator, called refinement operator. Generalization tech-
niques search the hypothesis space in a bottom-up manner. Bottom-up learners start from the
most specific clause that covers a given example and then generalize the clause until it cannot
further be generalized without covering examples. Two basic generalization techniques are:
relative least general generalization (rlgg) and inverse resolution. A lgg is the generalization
that keeps an generalized term t (or clause) as special as possible so that every other gener-
alization would increase the number of possible instances of t in comparison to the possible
instances of the lgg. The extension of lgg builds the relative least general generalization (rlgg),
which takes into consideration available background knowledge. Inverse resolution faces the
following ”inverse” problem: given a clause R and a parent clause C1, find a second parent
clause C2 such that R is an instance of a resolvent of C1 and c2. θ-subsumption and rlgg has
some nice computational properties and it works for simple terms as well as for complex terms,

5

e.g. p() : −q(f(a)) is a specialization of p : −q(X). θ-subsumption and lgg are purely
syntactic notions. Their computation is therefore simple, as compared to inverse resolution
or inverse implication, which are both computationally intractable. Thus, theta-subsumption
and rlgg qualify to be the right framework of generality in the application of ILP in the domain
of bioinformatics data mining.

2.3 Inductive Logic Programming in Prova

Among other application domains the Prova project [2] is addressing Semantic Web Life Science
applications [3]. It follows the spirit and design of the recent W3C Semantic Web initiative and
combines declarative rules, ontologies and inference with dynamic object-oriented Java API
calls and access to external data sources such as relational databases or enterprise applications
and IT services. One of the key advantages of Prova is its elegant separation of logic, data
access, and computation and its tight integration of Java and Semantic Web technologies. In
the following we first describe the ILP support of Prova and then elaborate on several expressive
extensions of Prova in this context.

2.3.1 ILP Meta Program

The ContractLog KR [9, 6, 8] of Prova implements a meta inference engine which allows

• computing the substitution sets of terms and clauses,

• apply the substitutions to compute specializations of clauses (instantiations of rules),

• generalize clauses/terms and compute the (r)lgg

• compute the coverage

The ILP inference engine is implemented as a meta program (as a Prova LP script). Meta-
programming and meta-interpreters have their roots in the original von Neumann computer
architecture where program and data treated in a uniform way and are a popular technique
in logic programming for representing knowledge, in particular, knowledge in the domains
containing logic programs as objects of discourse. LPs representing such knowledge are called
meta-programs (a.k.a. meta interpreters) and their design is referred to as meta-programming.
The core inference functions implemented in the meta program are:

Specialization

• substitution(Term1, T erm2, Subst) - Compute and return the substitution S of two
terms t1 and t2.

• substitute(Clause, ClauseInstance, Subst)
substitute(Term, TermInstance, Subst) - Apply the substitutions to a clause/term
and compute the specialized instance

• specializations(Goal, Clause, Instances) - Unify (i.e. specialize) a clause (rule)
with a goal (set of subgoals)and compute the specialized top level instances (specializa-
tions)

6

• specialize(Goal, InputLP,OutputLP) - Specialize an input LP (set of clauses) with
a goal and return the specialization of the LP (i.e. set of top level clause instances).

Generalization

• lgg(Clause1, Clause2, LGG) - compute (r)lgg of two clauses

• lgg(Term1, T erm2, LGG) - compute (r)lgg of two terms

• lggs(Clause, LP, LGGs) - compute all (r)lggs of a clause and a LP (set of clauses)

• generalize(InputLP,OutputLP) - Generalize an input LP (set of clauses) and re-
turns the generalized and minimalized (compacted) output LP using relative least general
generalization with the given background knowledge in the input LP.

Cover / Coverage

• cover(LP1, LP2, CoveredClause) - Return the covered clause from both LPs, i.e.
the clauses which are variants

• coverage(Goal, LP,CoveredClauses,
NotCoveredClauses, CoverageLevel) - Computes the test coverage for a given hy-
pothesis and a given LP.

The specialization and generalization functions can be used to define meta reasoning rules
for reasoning on top of the LP/knowledge base and the contained rules, where a logic program
is viewed as a single logical formula. For example, recursively computing the substitution
sets, the substitutions and continuing this process with the body literals (sub goals) of the
computed substitution leads to a standard top-down derivation. In order to enable processing
of clauses and their terms in the ILP meta inference engine, queries, rules and facts are internally
represented in a list format, e.g. a term p(X) can be equivalently represented as [”p”, X].
That is, rules a represented as a list starting with the head literal and then the body literals,
e.g. p(X) : −q(X) is written as [[p(X)], [q(X)]]. A fact is a rule consisting only of the rules’
head, e.g. the fact q(a) is written as [[p, a]] or equivalently [p(a)].

Here are some examples to illustrate the use of the inductive logic / meta inference functions
and the list representation:

% compute the substitution set for the two complex terms
:-solve(substitution(f(g(A),B),f(g(h(a)),i(b)),Subst)).

% substitute a complex term with the substitution set
% {(A / h(a)),(B / h(b))}
:-solve(substitute(f(g(A),A),Instance,

[[A,["h","a"]],[B,["h","b"]]])).

% compute the lgg = f(X, g(Y,Z), c).
:-solve(lgg(f(a, g(b, h(X)), c), f(d, g(j(X), a), c),LGG)).

% Generalize a LP with the rules p(a):-q(a). p(a):-q(a),r(a).

7

% ... and the facts r(a). q(a). ...
% and return the generalized LP (set of general rules)
:-solve(generalize([

[p(a),q(a)],
[p(a),q(a),r(a)],
[p(b),q(b)],
[p(c),q(c)],
[r(a)],[q(a)],[q(b)],[q(c)]],

Generalization)).

The special built-in predicate metaLP (LP) (coming with the ContractLog distribution
or the Prova distribution since 2.0) automatically translates the internal rules/facts of the
knowledge base into the list representation format and binds it to the variable LP . The
”meta” LP can then be used in further meta reasoning rules, e.g. the rule
clauses(Clause) : −metaLP (LP),member(Clause, LP).
returns all clauses of the logic program using the member function on the list of clauses bound
the the variable LP . The combination of generalization and specializations allows implementing
typical top-down and bottom-up ILP learning algorithms as well as combinations of both (akin
to Muggletons’ unifying framework of generalization which combines rlgg and inverse resolution.

As it is well-known several problems in pure theta- subsumption and rlgg arise due to
the combinatorics of the search-space (the space is infinite in multi-relational models) and the
determinancy problem. To make the search space tractable and efficient, it is thus necessary
to constrain the search space in some way. In the following subsections we will elaborate on
several formalisms in Prova which can be used to limit the number of clauses in an useful way.

2.3.2 Aggregations and Constructive Scopes

A common technique in logic-based propositionalization to reduce the number of relations to be
considered for feature generation is aggregation by using aggregation functions as provided by
SQL. Aggregation replaces a set of values by a suitable single value that summarizes properties
of the set. The data in Prova can either be available locally as facts in the KB, or dynamically
accessed via database queries on arbitrary external data sources such as relational databases,
XML documents, Semantic Web RDF or RDFS/OWL ontologies which can be queried by sev-
eral built-in query languages (e.g. SQL, RDF, XQuery, SPARQL) or wrapped via Java APIs
(e.g. local enterprise java beans or distributed web services):

Prova Java Integration: The tight and natural Java integration of Prova [3] allows dynam-
ically calling external procedural Java methods during runtime. That is, efficient procedural
code can be integrated into the rule executions and used for dynamically accessing external data
sources and tools using their programming interfaces (APIs). Methods of classes in arbitrary
Java packages can be dynamically invoked from Prova rules. The method invocations include
calls to Java constructors creating Java variables and calls to instance and static methods for
Java classes. The example below shows how XML Document Object Model (DOM) is manipu-
lated in the code. Prova provides a special wrapper object for XML DOM with a built-in class
XML. The objects of this class can be constructed from StringReader objects and can be
manipulated with ordinary methods of the standard Java org.w3c.dom.Document class.

8

attachResults(Doc,Root,XMLPapers) :-
element(XMLPaper,XMLPapers),
ResId = XMLPapers.indexOf(XMLPaper),
StringReader = java.io.StringReader(XMLPaper),
Document = XML(StringReader),
ResRoot = Document.getDocumentElement(),
ResRoot.setAttribute("ResId",ResId),
Paper = Doc.importNode(ResRoot,Boolean.TRUE),
Root.appendChild(Paper),
fail().

attachResults(Doc,Root,XMLList).

The Java listXMLPapers contains papers returned from a query to an external database.
The built-in predicate element non-deterministically enumerates each paper in the list. The
method indexOf invoked on the list XMLPapers returns ResId as the sequential number
of the current paper. An XML DOM document is imported from the text based XML repre-
sentation contained in XMLPaper by first creating a StringReader object from it and
then constructing an XML DOM object. The root attribute is set in the next two lines and
then standard Java XML importNode and appendChild methods are used to append the
Paper node to the XML DOM in Doc.

By calling external Java methods, computation intensive functions can be implemented by
highly optimized procedural code and external data sources can be accessed via calling Java
wrappers and Java (web) service APIs. For typical data sources such as relational databases,
Semantic Web and XML documents, Prova provides specialized query and update built-ins.

Prova SQL Integration: Provas’ SQL integration has a crucial role in providing an effi-
cient and flexible mechanism for relational data integration. Prova offers a seamless integration
of predicates with most common SQL queries and updates. The language goes beyond pro-
viding embedded SQL calls and attempts to achieve a more flexible and natural integration of
queries with Prova predicates.

The main format for Prova predicates dynamically mapped to SQL Select statements is as
follows:

sql_select(DB,From,[N1,V1],...,[Nk,Vk],
[where,Where],[having,Having],[options,Options])

The built-in sql select predicate non-deterministically enumerates over all possible records
in the result set corresponding to the query. The predicate fails if the result set is empty or
an exception occurs. It accepts a variable number of parameters of which only the first two
are required. DB corresponds to an open database connection and From is either the name
of a table to be queried or a valid From clause in SQL syntax enclosed in single or double
quotes. From can be a variable but it must become instantiated before the execution of the
query. Not only the From clause can be determined dynamically, but also all the remaining
parameters can be either variables or constants or even the whole list of parameters can be
dynamically constructed. The most important part of the syntax of sql select is 0 or more
field name-value pairs [N1, V 1], ..., [Nk, V k]. N1, ..., Nk correspond to field names (with
possible modifiers) included in the query. As opposed to ordinary SQL Select statements, this
list of fields includes both the fields to be returned from the query and those that can be

9

supplied in the automatically constructed part of a SQL Where clause. Whether a particular
field Ni will be returned or used as a constraint depends on the values V i corresponding to
these field. If V i is a constant at the time of the invocation, it becomes a constraint in the
automatically constructed Where clause. Otherwise, V i is an un-instantiated (free) variable
and will be returned by the query in each record in the result set. In addition to simple
field names, N1, ..., Nk can be strings containing special SQL modifiers such as Distinct
(for example, distinctname) or group functions such as Count (for example, count(px)).
The remaining parameters are entirely optional. In the pair [where,Where], where is a
reserved word and Where is a variable or constant containing an explicit SQL Where clause.
An automatically constructed Where clause part is concatenated via AND with the explicit
Where clause specified in this parameter. This syntax is useful in situations requiring the
use of such constraints as Like or Rlike, for example, [where, ”pdbidlike

′%%gs′”]. The
pair [having,Having] allows specifying a post processing filter on the results returned by
the query, for example, [having, ”count(px) > 1”]. A large variety of other modifiers for
the query can be included with the [order, Order] pair. Queries with joined tables can either
be constructed by combining several single table queries or by using a composite From clause
and making sure each field name is prefixed with either the corresponding table name or an
alias variable if a syntax table as alias is used in the From clause.

sql_select(DB,cla,[pdb_id,"1alx"],[px,Domain])
sql_select(DB,cla,[pdb_id,PDB_ID],[count(px),2])
sql_select(DB,cla,[pdb_id,PDB_ID],[count(px),Count])
sql_select DB,cla,[pdb_id,PDB_ID],[count(px),Count],

[where,"pdb_id like ’%%gs’"]
sql_select(DB,cla,["distinct pdb_id",PDB_ID],[options,"limit 10"])

sql_select(DB,’cla as c1,cla as c2’,[’c1.px’,PXA],[’c2.px’,PXB],
[’c1.pdb_id’,PDB_ID],[where,’c1.pdb_id=c2.pdb_id and c1.px<c2.px’])

The where clause can be used to define a view on the relational data base and constrain
the number of considered instances. The last rules in the example shows how two sql select
calls can be used to compute an inner join for table cla finding two different domains PXA
and PXB belonging to the same PDB file. Beside querying a database Prova also supports
built-ins for inserting knowledge and updating databases.

Prova RDF / Ontology Integration: As for SQL, Prova provides a special RDF query
predicate which can be used in the body of rules to interact with Semantic Web data sources
and explicitly express queries, such as concept membership, role membership or concept in-
clusion on the ontologies. [5, 7] The special query predicate rdf is used to query external
ontologies written in RDF(S) or OWL (OWL Lite or OWL DL).

% Bind all individuals of type "Gene" to the variable "Subject"
%using the owl ontology "gene1.owl" and the "rdfs" reasoner
rdf(

"http://www.gene.com/gene1.owl",
"rdfs",
Subject,"rdf_type","gene1_Gene")

10

The first argument specifies the URL of the external ontology. The second argument spec-
ifies the external reasoner which is used to infer the ontology model and answer the query.
The hybrid approach provides a technical separation between the inferences in the ontology
(Description Logic) part which is solved by an optimized external DL reasoner and the Logic
Programming components which is solved by the rule engine. As a result the combined het-
erogenous integration approach is robustly decidable, even in case where the rule language is far
more expressive than Datalog. Moreover, the triple-based query language also supports queries
to plain RDF data sources. The following predefined reasoner are supported:

• ”” — ”empty” — null = no reasoner

• default = OWL reasoner

• transitive = transitive reasoner

• rdfs = RDFS rule reasoner

• owl = OWL reasoner

• daml = DAML reasoner

• dl = OWL-DL reasoner

• swrl = SWRL reasoner

• rdfs full = rdfs full reasoner

• rdfs simple = rdfs simple reasoner

• owl mini = owl mini reasoner

• owl micro = owl micro reasoner

User-defined reasoners can be easily configured and used. By default the specified reasoners
are used to query the external models on the fly, i.e. to dynamically answer the queries using
the external reasoner. But, a pre-processing mode is also supported. Here the reasoners are
used to pre-infer the ontology model, i.e. build an inferred RDF triple model where the logical
DL entailments such as transitive subclasses are already resolved at compilation time. Queries
then operate on the inferred model and are hence much fast to answer, however with the draw-
back that updates of the ontology model require a complete recompilation of the inferred model.

Prova Meta-Data LPs and Scoped Reasoning: To capture the often distributed and
open structure of multi-relational knowledge/data bases which are deployed on the Web Prova
implements expressive updates and imports of Prova scripts (knowledge modules) from web
URIs, meta-data annotated labelled logic programs (LLPs) and scoped reasoning. [9] Arbitrary
meta-data such as rule labels, module labels or Dublin Core annotations (e.g., author, date,
topic) can be attached to rules and facts. These additional meta-data annotations become in
particular interesting when the knowledge base consists of several (possibly distributed) rule
sets, so called modules, which might be dynamically imported from different external sources
accessible by their Web-based URIs. The meta-data might be used to to create constructive
(explicitly closed) views on the distributed KB via scoped reasoning by scoped queries, e.g.,

11

”all rules/facts to a particular topic” or ”all facts with time stamps after a certain date/time”.
Hence, scoping leads to much smaller search spaces and allows an explicit management of the
level of generality of queries/goals.

To explicitly annotate clauses in a labelled logic program (LLP) P with an additional set of
meta-data labels Prova introduces a general n-ary metadata function into the LP language.
The function metadata is a partial injective labelling function that assigns a set of meta data
annotations m (property-value pairs) to a clause cl in the program P , i.e., m : cl. It is
syntactically defined separated from a clause (rule/fact/query) by ”::”:
metadata(L1, .., Ln) :: H ← B

where Li are a finite set of unary positive literals (positive meta data literals) which denote
an arbitrary meta data property(value) pair, e.g., label(rule1). The explicit metadata()
annotation is optional, i.e., a program P without meta data annotated clauses coincides with
a standard unlabelled LP.

metadata(label(rule1), topic("mutagenesis"), dc_date(2006-11-12))::
p(X):-q(X).

metadata(label(fact1))::q(1).
% scoped query using topic as scope
:-solve(scope(p(X),topic("mutagenesis"))).

The example shows a rule with rule label rule1, a topic mutagenesis, an additional
Dublin Core annotation
dc date(2006 − 11 − 12) and a fact with fact label fact1. The meta annotation of rules
and rule sets (modules) enables (meta) reasoning with the semantic annotations. The meta
data can act as an explicit scope for constructive queries (creating a view) on the knowledge
base. For instance, the meta data annotations might be used to constrain the level of generality
of a scoped goal literal to a particular module (defined by the meta data constraints), i.e., to
consider only the set of rules and facts which belong to the specified module. A scoped literal
is of the form L : C where L is a positive or negative atom and C is the scope definition
which is a set of one or more meta data constraints. Scoped literals are only allowed in the
body of a rule. Scoped literals might be default negated ∼ L : C. Syntactically, the following
built-in predicates are used to query the meta data annotations and define the scope of literals
for metadata-based scoped reasoning on explicitly specified parts of the KB:

% scoped literal
scope(<literal>,<meta data value>)
% query meta data value
metadata(<literal>,<Variable>,<meta data property>)
% constrain scoped goal literal
metadata(<literal>,<meta data value>,<meta data property>)

Scoped reasoning is crucial to explicitly close open and possibly distributed KBs on the Web.
Comparable to database views created by Where-SQL clauses scoped goals can be used to create
constructive views on the KB and reduce the number of relations and background knowledge
which needs to be considered in ILP. Moreover, more meaningful and relevant information can
be selected from the KB by the additional meta data of the rules/facts and rule sets (modules).

12

2.3.3 Types and Modes

Type and mode declarations are a common way in many ILP systems, like in PROGOL, TILDE
or WARMR, to constrain the search space and state how clauses can be refined. Prova provides
rich support for modes and external order-sorted type systems, in particular Semantic Web
ontologies and Java class hierarchies by a polymorphic order-sorted typed unification [7].

In order to type a variable with a Java type the fully qualified name of the Java class to
which the variable should belong must be specified as a prefix separated from the variable by
a dot ”.”.

java.lang.Integer.X variable X is of type Integer
java.util.Calendar.T variable T is of type Calendar
java.sql.Types.STRUCT.S variable S is of SQL type Struct

Java objects, as instances of Java classes, can be dynamically constructed by calling their
constructors or static methods using highly-expressive procedural attachments. The returned
objects, might then be used as individuals / constants that are bound by an equality relation
(denoting typed unification equality) to appropriate variables, i.e., the variables must be of the
same type or of a super type of the Java object. Ad-hoc polymorphic specialized functions
can be implemented based on the type declarations, as can be seen in the following example
showing two variants of the add function.

add(java.lang.Integer.In1,java.lang.Integer.In2,Result):-
Result = java.lang.Integer.In1 + java.lang.Integer.In2.

add(In1, In2,Result):-
I1 = java.lang.Integer(In1),
I2 = java.lang.Integer(In2),
X = I1+I2,
Result = X.toString().

Beside Java class hierarchies Semantic Web taxonomies and ontologies (e.g. RDFS tax-
onomies or OWL ontologies) can be used as external order-sorted type systems in the multi-
sorted Prova rule language. The implementation follows a prescriptive hybrid DL-typing ap-
proach with an polymorphic order-sorted unification and incorporates ontology type information
directly into the names of symbols in the rule language. [9, 5, 7]

sameTranscriptionDirection(patika_P53Protein:A,
patika_MacroMolecule:B) :-
orfDirection(patika_P53Protein:A,patika_MacroMolecule:D),
orfDirection(patika_MacroMolecule:B,patika_MacroMolecule:D),
patika_P53ProteinA<>patika_MacroMolecule:B.

The example annotates variables (Type : Term) with conceptual types such as P53Protein
or MacroMolecule from an ontology patika, which denotes the namespace.

In the rlgg computation in ILP types are used to select relevant facts and rules from the
background knowledge.

13

Figure 2.1: Distributed Prova Web Services

2.4 Distributed Inductive Logic Programming in Prova

Biological data mining systems typically accesses large and distributed web-based data sources
and integrates multiple services, tools and resources during runtime. In this section we will
implement Prova as a highly efficient and scalable inference service architecture with a com-
munication middleware which supports parallel computation and resource allocation, seamless
integration of external tools and communication of data, tasks and results between the dis-
tributed Prova inference services and external data sources / tools using an enterprise service
bus (ESB) as communication middleware. [10] Figure 2.1 exemplifies the technical design of
our approach.

The three core design artifacts in our architecture are several instances of Prova rule engines
deployed as web-based inference services (web-based execution environments), a scalable and
efficient service-broker and communication middleware (an ESB) and, a common platform-
independent rule interchange format to interchange rules, data and events between arbitrary
Prova inference services and with external tools and data sources.

Several Prova rule engines might be deployed as distributed web-based services. Each service
might dynamically import or pre-compile and load distributed rule bases which implement ILP
theories and background knowledge. External data from data sources such as Web resources or
relational databases and external application tools, web services and object representations can

14

be directly integrated during runtime or by translation during compile time by the expressive
homogenous and heterogenous integration interfaces of Prova. Furthermore, the ESB can be
used to communicate with external components such as web services via asynchronous publish-
subscribe message conversations. The ESB is used as object broker for the Prova inference
services and as stable and efficient messaging middleware between the services [11]. Different
transport protocols such as JMS, HTTP or SOAP (or Rest) can be selected to transport rule
sets, data, queries and answers as payload of Reaction RuleML event messages between the
internal Prova inference services deployed on the ESB. RuleML/Reaction RuleML [12, 11] is
used as common platform-independent rule interchange format in which the Prova platform-
specific execution language is translated and vice versa.

The main Prova language constructs for rule interchange are: sendMsg predicates, reaction
rcvMsg rules, and rcvMsg or rcvMult inline reactions:

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)
rcvMsg(XID,Protocol,From,queryref,Paylod|Context)
rcvMult(XID,Protocol,From,queryref,Paylod|Context)

where XID is the conversation identifier (conversation-id) of the conversation to which the
message will belong. Protocol defines the communication protocol. More than 30 protocols
such as JMS, HTTP, SOAP, Jade are supported by the underlying ESB as efficient and scalable
object-broker and communication middleware. Agent denotes the target (an agent or service
wrapping an instance of a Prova rule engine) of the message. Performative describes the
pragmatic context in which the message is send (e.g. a multi-request in a contract net protocol).
Payload represents the message content sent in the message envelope. It can be a specific query
or answer or a complex interchanged rule base (set of rules and facts).

% Upload a rule base read from File to the host
% at address Remote via JMS
upload_mobile_code(Remote,File) :-

% Opening a file returns an instance
% of java.io.BufferedReader in Reader
fopen(File,Reader),
Writer = java.io.StringWriter(),
copy(Reader,Writer),
Text = Writer.toString(),
% SB will encapsulate the whole content of File
SB = StringBuffer(Text),
sendMsg(XID,esb,Remote,eval,consult(SB)).

The example shows a rule that sends a rule base from an external File to the inference service
Remote using the ESB. The inline sendMsg reaction rules is locally used within a derivation
rule, i.e. only applies in the context of the derivation rule. The corresponding global receiving
rule on the inference service side could be:

rcvMsg(XID,esb,Sender,eval,[Predicate|Args]):-
derive([Predicate|Args]).

This rule receives all incoming messages from the ESB send to the inference service with the
pragmatic context eval and derives the message content. The list notation [Predicate | Args]

15

will match with arbitrary n-ary predicate functions, i.e., it denotes a kind of restricted second
order notation since the variable Predicate is always bound, but matches to all predicates in
the signature of the language with an arbitrary number of arguments Args).

Rules and data are translated and interchange as inbound and outbound Reaction RuleML
messages < Message > over the ESB:

<Message mode="outbound" directive="ACL:inform">
<oid> <!-- conversation ID--> </oid>
<protocol> <!-- transport protocol --> </protocol>
<sender> <!-- sender agent/service --> </sender>
<content> <!-- message payload --> </content>

</Message>

• @mode = inbound|outbound – attribute defining the type of a message

• @directive – attribute defining the pragmatic context of the message, e.g. a FIPA ACL
performative

• < oid > – the conversation id used to distinguish multiple conversations and conversation
states

• < protocol > – a transport protocol such as HTTP, JMS, SOAP, Jade, Enterprise
Service Bus (ESB) ...

• < sender >< receiver > – the sender/receiver agent/service of the message

• < content > – message payload transporting a RuleML / Reaction RuleML query,
answer or rule base

By distributing mobile code to several inference services parallel computation of ILP tasks
becomes possible. Relevant parts of the background knowledge for learning particular hypothe-
ses are bundled to modules using constructive scopes and distributed to several client inference
services in parallel. The learned rlggs from each client are send back to the manager node
and integrated and aggregate in the background knowledge removing redundant and irrelevant
clauses. The manager node then constructs new modules from the updated background knowl-
edge and again sends out the ILP tasks to the clients for parallel processing. This process is
repeated until a certain fixpoint in the incremental learner is reached for the inductively de-
rived hypotheses such that no further generalizations can be found. Typical verification and
validation tasks such as coverage proving the learned hypotheses with negative examples by
specialization, or finding and removing failures in the background knowledge can be also solved
in parallel by ”outsourcing” this processes to the client services.

In summary, the described middleware addresses the needs for a seamless integration of
distributed external data sources, tools and resources and provides the technical infrastructure
to develop new distributed and service-oriented ILP algorithms which share Web resources and
data.

2.5 Conclusion

While previous work in data mining has focused on extracting useful information from large
database and on implementing scalable, robust algorithms for propositional and flat relations,

16

multi-relation data mining operating on heterogenous and distributed data sources on the Web
is a relatively young field. Here we have introduced Prova as a state-of-art distributed Semantic
Web inference service which supports distributed multi-relational inductive logic programming
based on a rule and event-based middleware. Prova combines technologies from declarative
rule-based programming with enterprise application technologies for object-oriented program-
ming, relational and semi-structured heterogenous data access and novel techniques for service
oriented computing and complex event processing as basis for inference service grids, resource
sharing networks and parallel computation. The resulting design artifact addresses real-world
requirements in ILP-based mining of biological data such as: highly complex structural ele-
ments with diverse and unusual relational, semi-structured or object-centered data types, e.g.
using Semantic Web ontology languages as semantically rich concept description languages;
large amounts of data stored in distributed heterogenous data sources; seamless integration
and combinations of tools and services demanding for efficient interchange of data and events;
high computational complexity of the ILP tasks due to the complex combinatorics of multi-
relational search space and the open-world assumption of the open distributed Web knowledge
bases.

Our distributed rule-based Prova approach, which is akin to grid service networks, has the
potential to overcome these problems in standard ILP and establish ILP as a potential approach
to analyze biological data in multi-relational Life Science data bases published on the Web.

The implementations described in this here are part of the Prova / ContractLog open-source
distribution [2] and we have successfully demonstrated the usability and adequacy of our ILP
and enterprise service middleware approach in various domains of research and industry use
cases such as for test-driven verification and validation of correctness and quality of rule bases
(see RBSLA project [8, 6, 9]), and Semantic Web-based virtual organizations and web service
collaborations (see Rule Responder project [10]).

17

18

Bibliography

[1] José Júlio Alferes, Mikael Berndtsson, François Bry, Michael Eckert, Nicola Henze, Wolf-
gang May, Paula-Lavinia Pătrânjan, and Michael Schroeder. Use-cases on evolution. de-
liverable I5-D2, Centro de Inteligncia Artificial - CENTRIA, Universidade Nova de Lisboa,
2005.

[2] A. Kozlenkov, A. Paschke, and M. Schroeder. Prova, http://prova.ws, accessed jan. 2006.
2006.

[3] A. Kozlenkov and M. Schroeder. Prova: Rule-based java-scripting for a bioinformatics se-
mantic web. Proceedings International Workshop on Data Integration in the Life Sciences,
2004.

[4] J. W. Lloyd. Foundations of logic programming; (2nd extended ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1987.

[5] A. Paschke. Owl2prova: Homogeneous and heterogeneous integration of description logics
into logic programming, http://prova.ws/forum/viewtopic.php?t=152, accessed dec. 2005,
2005.

[6] A. Paschke. Rule based service level agreements,
http://ibis.in.tum.de/projects/rbsla/index.php, 2006.

[7] A. Paschke. A typed hybrid description logic programming language with polymor-
phic order-sorted dl-typed unification for semantic web type systems. In OWL-2006
(OWLED’06), Athens, Georgia, USA, 2006.

[8] A. Paschke. Verification, validation and integrity of distributed and interchanged rule based
policies and contracts in the semantic web. In Int. Semantic Web and Policy Workshop
(SWPW’ 06), Athens, Georgia, USA, 2006.

[9] A. Paschke. Rule-Based Service Level Agreements - Knowledge Representation for Auto-
mated e-Contract, SLA and Policy Management. IDEA, Munich, 2007.

[10] A. Paschke, H. Boley, A. Kozlenkov, and B. Craig. Rule responder: A ruleml-based
pragmatic agent web, www.responder.ruleml.org, 2007.

[11] A. Paschke, A. Kozlenkov, and H. Boley. A homogenous reaction rules language for complex
event processing. In International Workshop on Event Drive Architecture for Complex
Event Process (EDA-PS 2007), Vienna, Austria, 2007.

19

[12] A. Paschke, A. Kozlenkov, H. Boley, M. Kifer, S. Tabet, M. Dean, and K. Barrett. Reaction
ruleml, http://ibis.in.tum.de/research/reactionruleml/, 2006.

[13] G.D. Plotkin. A note on inductive generalization. Machine Intelligence, 5, 1970.

[14] S. Wrobel. Inductive Logic Programming for Knowledge Discovery in Databases. Relational
Data Mining. Springer, Berlin, 2001.

20

Acknowledgements

This research has been co-funded by the European Commission and by the Swiss Federal Of-
fice for Education and Science within the 6th Framework Programme project Rewerse num-
ber 506779 (cf. http://rewerse.net).

21

http://rewerse.net

	Introduction
	Inductive Logic Programming for Bioinformatics in Prova
	Introduction
	Inductive Logic Programming
	Inductive Logic Programming in Prova
	ILP Meta Program
	Aggregations and Constructive Scopes
	Types and Modes

	Distributed Inductive Logic Programming in Prova
	Conclusion

