
I5-D9

Prototype on the RDF/OWL level

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R/P (report and prototype)
Dissemination level: PU (public)
Document number: IST506779/Lisbon/I5-D9/D/PU/a1
Responsible editors: José Júlio Alferes
Reviewers: Wolfgang May
Contributing participants: Göttingen, Lisbon
Contributing workpackages: I5
Contractual date of deliverable: 31 August 2007
Actual submission date: 23 November 2007

Abstract
This deliverable concerns the extension of the prototypes introduced in deliverable I5-D5, to
deal with evolution and reactivity at the RDF/OWL level, and in accordance with the ontology
defined in deliverable I5-D6.

The deliverable is constituted by this report, and by the prototype implementations that are
freely available online from http://rewerse.net/I5/r3/ and http://www.dbis.informatik.
uni-goettingen.de/MARS.

Keyword List
ECA rules, Reactivity, Evolution and updates of data, OWL ontology, Language and data het-
erogeneity

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2007.

http://rewerse.net/I5/r3/
http://www.dbis.informatik.uni-goettingen.de/MARS
http://www.dbis.informatik.uni-goettingen.de/MARS

ii

Prototype on the RDF/OWL level

José Júlio Alferes1, Ricardo Amador1, Erik Behrends2, Tiago Franco1, Oliver
Fritzen2, Ludwig Krippahl1, Wolfgang May2, Franz Schenk2

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
2 Institut für Informatik, Universität Göttingen

23 November 2007

Abstract
This deliverable concerns the extension of the prototypes introduced in deliverable I5-D5, to
deal with evolution and reactivity at the RDF/OWL level, and in accordance with the ontology
defined in deliverable I5-D6.

The deliverable is constituted by this report, and by the prototype implementations that are
freely available online from http://rewerse.net/I5/r3/ and http://www.dbis.informatik.
uni-goettingen.de/MARS.

Keyword List
ECA rules, Reactivity, Evolution and updates of data, OWL ontology, Language and data het-
erogeneity

http://rewerse.net/I5/r3/
http://www.dbis.informatik.uni-goettingen.de/MARS
http://www.dbis.informatik.uni-goettingen.de/MARS

iv

Contents

1 Introduction 1
1.1 On the contents and structure of this deliverable 1
1.2 On the current prototypes for evolution and reactivity 2

2 The r3 Prototype - v0.20 5
2.1 The r3 Foundational Ontology . 7

2.1.1 An Ontology for Reactive Rules . 8
2.1.2 Defining Reactive Rule Languages . 9
2.1.3 Defining Reactive Rule Constructions . 14
2.1.4 From ECA-ML to r3DF . 17

2.2 r3 Engines and Library . 20
2.2.1 Resourceful Reactive Engines and Rules 20
2.2.2 Loading and Evaluating Reactive Rules 24
2.2.3 Variables, Substitutions and Results . 32
2.2.4 Rule Instances, et al. 35
2.2.5 Prototype Implementation and Communication Details 36
2.2.6 Building r3 Component Engines . 37
2.2.7 r3 Component Languages . 43

3 r3 Use-Cases 67
3.1 Use-Cases Scenario . 67

3.1.1 Scenario Overview . 67
3.1.2 Scenario Use-Cases Overview . 69

3.2 r3-based Bio Domain Broker . 69
3.2.1 Message Examples . 72

3.3 r3-based PubMed Reactive Classifier . 75
3.3.1 Message Examples . 75
3.3.2 Possible Extensions . 100

4 Future Work 101

v

vi

Chapter 1

Introduction

1.1 On the contents and structure of this deliverable

Two prototypes have been developed at the XML level for the General Framework for Evolution
and Reactivity in the Semantic Web, that have been introduced in the previous deliverable I5-
D5 “A first prototype on evolution and behaviour at the XML-Level”. Namely, for the general
framework, we have developed the framework “MARS – Modular Active Rules for the Semantic
Web” and the rule engine for reactive rules “r3 – Resourceful Reactive Rules”. These prototypes
have been tested in a number of scenarios and use-cases, as described in I5-D7 “Completion of
the prototype scenario”. Then, in I5-D6 “Reactive rule ontology: RDF/OWL level” we have
defined a concrete ontology for reactive rules at RDF/OWL level. This deliverable is concerned
with the lifting of the previous prototypes to the RDF/OWL level, according to the defined
ontology. It is worth mentioning that, though not required at the time, the r3 prototype used
for the example in I5-D7 already included features at the RDF/OWL level, and this is reflected
in the description of its implementation there.

Besides this report, the deliverable contains the current state of the two prototypes, r3

and MARS, both freely available from, respectively, http://rewerse.net/I5/r3/ and http:
//www.dbis.informatik.uni-goettingen.de/MARS/. In these web sites, one can find more
documentation of these prototypes and their usage, including online demonstrators of the pro-
totypes with several use-case examples. This report describes in more detail the r3 prototype,
leaving the more complete description of MARS to the next and final deliverable report, on
pre-standardization.

In the interest of self-containment of the present report chapter 2 starts with a recap of
the r3 ontology description (section 2.1) previously presented in [7], and proceeds with the
description of the r3 prototype, library and languages (section 2.2). The report includes an
substantial number of examples in order to illustrate the usage of r3, and help outside users.

The ontology description is presented in its most up-to-date state that includes only mi-
nor changes. These minor changes, well pointed out in the text and figures, are related to
MARS/ECA-ML compatibility issues. The reader familiar with [7] may skip section 2.1 en-
tirely. For the sake of readability, we have chosen here to completely define the current state
of the r3 ontology using UML 2.0 [31] diagrams (figures 2.1 to 2.12) and to illustrate it with
examples written using Turtle [12] notation1. Nonetheless, the normative definition used by r3

1For the sake of simplicity, the included Turtle examples omit most of the @prefix declarations, and they all

1

http://rewerse.net/I5/r3/
http://www.dbis.informatik.uni-goettingen.de/MARS/
http://www.dbis.informatik.uni-goettingen.de/MARS/

is an OWL-DL [45] ontology (http://rewerse.net/I5/NS/2006/r3), and currently r3 only
supports XML-based serializations (e.g. RDF/XML [49]).

Chapter 3 further complements the description in the first chapter with realistic use-case
scenarios and concrete examples of r3 usage, and we terminate with some comments about the
future of r3 in chapter 4.

1.2 On the current prototypes for evolution and reactivity

The goal of the Semantic Web is to bridge the heterogeneity of data formats and languages
and provide unified view(s) of the Web. In this scenario, XML (as a format for storing and
exchanging data), RDF (as an open abstract data model), OWL (as an additional logic model),
and XML-based communication (using different protocols, e.g. pure HTTP or SOAP/WSDL,
preferably adhering to a REST architectural style) provide the natural underlying concepts.

The Semantic Web does not have any central structure, neither topologically nor themat-
ically, but is based on peer-to-peer communication between autonomous, and autonomously
developing, nodes. Furthermore, the Semantic Web should be able not only to support query-
ing, but also to propagate knowledge and changes in a semantic way. This evolution and
behavior depends on the cooperation of nodes. In the same way as the main driving force for
RDF and the Semantic Web idea was the heterogeneity and incompleteness of the underlying
data, the heterogeneity of concepts for expressing behavior requires for an appropriate handling
on the semantic level. Since the contributing nodes are prospectively based on different concepts
such as data models and languages, it is important that frameworks for the Semantic Web are
modular, and that the concepts and the actual languages are independent. Even if we would
agree that for querying the current set of “common” standards for particular data/knowledge
representations/models (e.g. XQuery for XML vs. SPARQL for RDF) could evolve into a sin-
gle universal query language, which is doubtful, the concepts for describing and implementing
behavior are much more different, due to different needs, and is really unlikely that there will
be a unique language for the latter throughout the Web.

Heterogenous Reactivity. Here, reactivity and its formalization as Event-Condition-Action
(ECA) rules provide a suitable common model because they provide a modularization into
clean concepts with a well-defined information flow. An important advantage of them is that
the content of a rule (event, condition, and action specifications) is separated from the generic
semantics of the ECA rules themselves that provides a well-understood formal semantics: when
an event (atomic event or composite event, using some event algebra for the composition) occurs,
evaluate a condition (possibly gathering further data via queries, again possibly combined via
an algebra of queries), and if the condition is satisfied then execute an action (or a sequence
of actions, a program, a transaction, or even start a process). Another important advantage
of ECA rules is their loosely coupled inherent nature, which allows for declaratively combining
the functionality of different Web Services (providing events and executing actions). ECA rules
constitute a generic uniform framework for specifying and implementing communication, local
evolution, policies and strategies, and –altogether– global evolution in the Semantic Web.

Previously, in [26, 27] we have proposed an ontology-based approach for describing (reactive)
behavior in the Web and evolution of the Web that follows the ECA paradigm. This work also
defines a global architecture and general markup principles for a modular framework capable

assume at least the declaration of @prefix : <http://rewerse.net/I5/NS/2006/r3#>.

2

http://rewerse.net/I5/NS/2006/r3

of composing languages for events, conditions, and actions by separating the ECA semantics
from the underlying semantics of events, conditions and actions. This modularity allows for high
flexibility wrt. the heterogeneity of the potential sub-languages, while exploiting and supporting
their meta-level homogeneity on the way to the Semantic Web. Further details about this
previous work are available [3, 4, 26, 27].

Resourceful Reactive Rules. Since the inception of the Semantic Web, rules have always
been proposed as one of its upper layers: an ontology-based one. Although much research effort
is being targeted upon defining rules for and about ontologies, pragmatical and compatibility
issues seem to be guiding the work on modelling the rules themselves. In what concerns the
latter, most of the current proposals are based on XML markups and rely on specific abstract
syntax. Markup-based approaches, as such, seem to ignore the fact that rules do not only
operate on the Semantic Web, but are themselves also part of it. In general, especially if one
wants to reason about evolution, (ECA) rules and their components must be communicated
between different nodes, and may themselves be subject to being updated. For that, (ECA)
rules themselves must be first class citizens of the Semantic Web. This need calls for a foun-
dational ontology for describing (ECA) rules. Such an ontology, according to the heterogeneity
requirement previously presented, must provide also the means (viz. terms) to describe different
languages to be used at the rule component level. As such, we make two important assumptions:
first, in the Semantic Web, rules are resources like everything else, and secondly, there won’t
be such a thing as a (concrete) universal rule language, particularly in what concerns ECA
rule components. Given these two hypotheses, here we take a third hypothesis: ontologies (viz.
OWL-DL, eventually OWL-Full) provide a suitable tool for describing language heterogeneity.

WG I5 Prototypes. Although the examples included in [26] used “syntactical” languages
in XML term markup – ECA-ML – to describe ECA rule components, an OWL ontology has
been presented in [7], thus leading to fully embrace the approach proposed in [27]. To further
experiment with both approaches, namely syntactic and semantic, the two above mentioned
Rewerse WG I5 sub-projects, aiming at developing prototypes of the proposed general ECA
framework, were launched: MARS [14, 44] at the markup level and r3 [1, 47] at the ontology
level. Currently, both prototypes are functional [5] and, eventually they’ll be integrated with
each other on a semantic/ontology level.

The work towards taking MARS to an ontology level is on the way, taking an OWL-Full
(cf. [7]) approach complementary to r3. As already mentioned, the final state of MARS will
be described in the next deliverable. Another WG I5 prototype exists: XChange [18]. It
precedes and complements both MARS and r3 and continues to evolve (e.g. [19]) under its
fully homogenous and markup based approach. This proprietary, purely syntactical approach
doesn’t doesn’t qualify it for inclusion in the present report which is dedicated to prototypes
on the RDF/OWL level. Given all this, the focus of this report is the r3 prototype and its
OWL-DL foundational ontology.

Related Work. We are not aware of any Web rule engine (prototype or not) that works on
an ontology level like r3 does, or like MARS will do. To the best of our knowledge there are
only three ontology proposals for describing rules, besides MARS and r3: SWRL [23], WRL
[11] and SBVR [32]. Loosely speaking, the rules modelled by SWRL and WRL are Horn rules;
none of the two includes any form of reactive rules. SWRL provides an OWL (Full) ontology;

3

WRL includes a mapping to OWL-DL (but only at the core level that does not include rules).
Although following different approaches, both proposals “extend” OWL by providing means to
express OWL-DL axioms. On the other hand, SBVR, which is not formalized in OWL terms,
does not exclude reactive rules (some illustrative examples are even present in the specification);
but it explicitly chooses not to address its specificities, postponing such matters for reevaluation
upon OMG’s BPDM [30] results. About SBVR, it is worth mentioning, that it is targeted to
describe business rules in general with an emphasis on human understanding [34] (which may
hinder machine computability) and it is the only one of the three that actually addresses the
issue of language heterogeneity (introducing the concept of business vocabularies, as a form of
controlled natural language). Nonetheless, it must be stressed that, SBVR is the only one of
these three that does not include a formalization of its semantics.

Most current standardization efforts related to rule interchange, e.g. [17, 16], by following a
markup-oriented approach, tend to be charged with syntactical details without semantic value,
which has a negative impact on any attempt to raise them to the ontology level. Concrete syntax
is usually expressed in terms of abstract syntax, not the other way around. Nevertheless, one
of such efforts has to be mentioned even if it does not include any Semantic Web transparent
proposal: Common Logic (CL) [24], in what concerns language heterogeneity, is probably the
standardization effort closest to the spirit of r3. CL achieves semantics formalization in face
of language heterogeneity by limiting its family of languages to those that (and we quote)
have declarative semantics and are logically comprehensive, i.e. it is possible to understand the
meaning of expressions in these languages without appeal to an interpreter for manipulating
those expressions and, at its most general, they provide for the expression of arbitrary first-
order logical sentences. Given the state of the art, this limitation actually excludes most forms
of reactive rules from CL.

4

Chapter 2

The r3 Prototype - v0.20

Resources provide the foundation for the Semantic Web. Ultimately, in the Semantic Web
everything will be described in resource terms (RDF). For rules to be first class citizens in
the Semantic Web, they should also be described at the RDF level. This approach allows the
manipulation of rules as pure semantic objects, (re-)using other Semantic Web technologies, not
only to define rules, but, more importantly, to reason about rules, leading to a truly adaptive
Semantic Web.

Semantic Web rules and rule engines should go semantic all the way. Rule engines have
to embrace the ontology layer, even when designing their interface, quite similarly to (or even
better, applying if possible) the results achieved by the Semantic Web Services community.
Furthermore, the ontology layer should also be used to describe the internal state of rule engines;
allowing, for instance, to check the consistency of different representations for the same resource
(e.g. different instances of the “same” rule, as “held” by different rule engines). The ultimate
goal would be to realize the concept of Reliable (Reactive) Rules. Defining a foundational
ontology and realizing Resourceful Reactive Rules is just a first step in a long way yet to be
trailed towards that final goal.

Also, rule engines cannot aim at doing everything by themselves, they have to become
really Web-oriented, taking an open and collaborative perspective when evaluating different
rule components (in cases where such different components exist, like the case of the reactive
ECA rules considered in this work). The incompleteness concept is core to the Semantic Web
and it applies not only to data but also to behavior. Rule engines must focus on providing
the inference mechanisms, evaluating (different types of) rules, towards drawing conclusions
(or performing actions) based on given conditions (or event occurrences), regardless of what
the specific rule components (conditions, events, conclusions or actions) really are/mean. The
semantic interpretation of rule components must be an open matter, for which a main rule engine
relies on other sub-engines. In most cases these “sub-engines” will be domain/application-
specific, but generic inference engines, rule-based or not, are not to be excluded.

What is r3? r3 stands for “Resourceful Reactive Rules”, it is a Rewerse WG I51 sub-
project [47] being developed by CENTRIA in Lisbon, and aims at building a functional research
prototype implementing the concepts originally proposed in [6], thus trying to fulfill (and at

1http://rewerse.net/I5/

5

http://rewerse.net/I5/

the same time evaluate and experiment) the reactive approach to evolution on the Semantic
Web as stated in the goals of Rewerse WG I5 (and initially outlined in [28]).

Two major requirements were previously identified in order to realize this open/semantic
perspective on reactivity and evolution for the Web: taking an ontology/resource-based per-
spective (as detailed in [27]), and dealing with language heterogeneity at the rule component
level (as explained in [26]). These requirements led to the specification of a model [3] for a
general framework that r3 aims to bring to life.

In more concrete terms, r3 is a prototype of a (Semantic) Web Rule Engine for Reactive
Rules. Reactive rules have the general form “on Event if Condition do Action”, and are also
known as: ECA rules, triggers, or active rules. They are intuitively easy to understand, viz.
when an event (atomic or composite) occurs, evaluate a condition, and if the condition is
satisfied then execute an (atomic or complex) action. This prototype is capable of dealing with
reactive rules that use different languages either at the rule component level (event, condition,
action), or within each component (by algebraic composition, based also on different algebraic
languages).

Component languages may range from general purpose languages (with high flexibility, but
limited semantic transparency/value), to domain or application-specific languages (with much
richer semantic value). For instance, if a language-specific to the currency trading domain exists,
an event stating that “the exchange rate between Euro and US$ has changed” may be
specified using exactly these terms; for sure in any such language, the precise meaning of this
statement is well-known. Otherwise, if no such domain-specific language is available, a general
purpose language like XChange [18] (viz. XChangeEQ [19]) may be used instead, namely
by specifying: an XML pattern to be applied to every incoming event message originated from
the addresses of the International Monetary Fund or of the Federal Reserve Bank of New York
(assuming these addresses and the actual XML markups used are all known). Of course, in
the latter case, one would have to ensure (manually in the rule itself) that such a low level
specification is (and will be kept) consistent with the currency market common sense; whereas
in the former case, the semantic consistency of the rule is intrinsic to the domain-specific
language used.

Why Resourceful? r3 fully embraces the Semantic Web by taking an ontology/resource-
based perspective on reactive rules. At the heart of the r3 prototype is the decision to fully
base its implementation on an RDF [48] model. Every resource that matters to an r3 engine
(e.g. rules) is to be described in terms of an OWL-DL foundational ontology: the r3 ontology.

r3 sees Rules as First Class Citizens of the Semantic Web, allowing research results from
other areas, related to the Semantic Web, to be applied also to rules. For instance, it becomes
possible to reason about rules by defining rule ontologies and by stating rules about rules,
eventually leading to rule evaluation policies and adaptive behaviour.

The different components of each reactive rule are specified (and composed) using different
component languages. Each of those languages is to be implemented by specific expression
sub-engines (all of them, languages and engines, also described using the terminology provided
by the r3 ontology). For an r3 engine, everything is a resource, even rule and rule component
evaluation instances are to be represented as resources (for these an adequate extension of the
r3 ontology is being defined).

Natively r3 “talks” RDF/XML [49] (using HTTP POST for communication, SOAP [52]
wrapped or not), but any other XML serialization (concrete markup) of an RDF model is
acceptable, provided an appropriate (bi-directional) translator is available. Any request received

6

by an r3 engine is expected to be translated into an RDF model based on the r3 ontology. This
model is then added to an internal ontology that includes every resource known to a particular
r3 engine. This internal ontology must also be dynamically completed by means of automatic
searching and fetching missing pieces of information (resource representations) directly from
the (Semantic) Web (already identified, in [15], as an important issue, yet to be supported by
r3).

Notice that besides adding resources/models to this internal ontology (e.g. loading rules),
which already introduces consistency matters, it is also possible to remove resources/models
(e.g. unloading rules), which clearly involves non-monotonic matters. Also when we talk about
merging ontologies that contain rules, this merging may lead to updating rules and evolving
rule-bases.

If it is true that this fully resource-based (or down-to-earth, resource-full) approach used
by r3 opens many research issues (some of them yet untouched in what concerns the Semantic
Web), it is also true that every research issue opened by r3 (given its modular architecture)
constitutes an opportunity for scientific cooperation with other research communities, paving
the way to more Resourceful solutions.

Chapter Structure. This chapter is divided into 2 sections, the first dedicated to the foun-
dational components of the r3 ontology, and the second related to details of a more pragmatical
nature both of the ontology and the prototype.

2.1 The r3 Foundational Ontology

In this section we present current results of the r3 project towards defining an (OWL-DL) foun-
dational ontology for reactive rules. The current proposal is at a low (structural) abstraction
level; the extension of this proposal towards characterizing higher abstraction level concepts,
like domain/application specific languages (vs. algebraic and general-purpose languages) is also
being considered. Although focusing on reactive rules, the r3 ontology defines a vocabulary
that allows for the definition of rule (component) languages that can be extended to model
other types of rules.

We start (in section 2.1.1) by introducing the r3 ontology from a global point of view2. In the
following sections we detail the r3 ontology explaining (and illustrating3) how to define different
languages (in section 2.1.2), and how to use these languages to define heterogenous rules (in
section 2.1.3). The definition of the r3 ontology is further complemented (in section 2.1.4) by
sketching how the ontology can be used to provide additional semantic value to heterogeneous
XML markups. We do this by describing how an RDF model, compliant with the r3 ontology,
may be automatically obtained from an XML markup adhering to the previously proposed
general markup principles (viz. ECA-ML). We end this section with some future directions of
the presented work.

The complete r3 ontology (http://rewerse.net/I5/NS/2006/r3, v0.20), as well as the
implementation and demonstration of r3 prototype can be found at http://rewerse.net/I5/
r3/.

2The r3 OWL-DL ontology is presented here using UML2 diagrams for the sake of readability.
3Examples illustrating RDF models: use N3 notation, omit prefix declarations, and assume r3 as the

empty(‘:’) prefix.

7

http://rewerse.net/I5/NS/2006/r3
http://rewerse.net/I5/r3/
http://rewerse.net/I5/r3/

2.1.1 An Ontology for Reactive Rules

From a global point of view, the r3 ontology defines a vocabulary to describe RulePackages4.
A RulePackage is just a single Rule or a RuleSet, as depicted in figure 2.1. In order to cope
with the language heterogeneity requirements previously stated, the r3 ontology includes a
meta-language/vocabulary to describe rule (component) languages/vocabularies. This meta-
level assumes a term based structure for rule languages where atomic functors are composed
using algebraic operators. To account for languages not compliant with this term structure
(like purely textual languages, e.g. database triggers, external program call for action, etc)
opaque/native “functors” are also allowed.

+is[1] : RuleSetConstruct
+contains[*] : Member

RuleSet

«definition»
RulePackage

{com
plete}

Rule

+is[1] : RuleSetMember
+sub[1] : RulePackage

«definition»Member

+contains {subsets taking}

+is[1] : RuleComponent

«definition»
Component+component {subsets taking}

Argument

Language
«definition»

LanguageConstruct

+in +defines
OperatorArgument

+is

+takes

Construction

+taking

+isEngine+implementation

«definition»
LanguageElement

+sub

Figure 2.1: Rule Packages
(changes since I5-D6: none)

In terms of this meta-vocabulary, a RulePackage is a language Construction (exclusively a
Rule or a RuleSet) taking a set of Arguments (resp. Rule Components or RuleSet Members). The
complete definition of a Construction is to be provided in section 2.1.3, but for now, cf. figure
2.1, a Construction is a LanguageConstruct taking a set of Arguments, in accordance with its
LanguageConstruct that takes a set of OperatorArguments (non-empty, in case of an algebraic
operator). An Argument is a specific OperatorArgument including a sub-Construction.

LanguageConstructs and OperatorArguments constitute some of the specialized forms of LanguageElements
defined in a Language. The actual operational implementation of (the elements of) a Language

is provided by some Engine.
A RuleSet is a RuleSetConstruct that recursively contains other RulePackages (viz. Member is

a RuleSetMember including a sub-RulePackage). A Rule, as further detailed in figure 2.2, is either
a NativeRule defined by a mandatory (and usually textual) opaque source; or an AbstractRule,
fully defined by a non-empty set of Components (where a Component is a RuleComponent).

The opaque Source of a NativeRule is neither a Construction nor an Argument. Instead,
it is defined as a Parameter (one that is a RuleSource). This leads to an extension of the
LanguageConstruct concept as being a parametric construct. Any LanguageConstruct has an
(optionally empty) set of ConstructParameters, another kind of LanguageElements. As such, the
language Construction concept, besides taking a set of Arguments, is further refined, in figure 2.2,
as having a set of Parameters, where a Parameter is a ConstructParameter. The full definition

4For the sake of conciseness, we use generic terms, like “Rule” or “Language”, whereas more specific terms,
like “Reactive Rule” or “Reactive Rule Language”, would have been more consistent with the actual motivation
of the presented work. As such, it is worth stressing here that the adequacy of the r3 ontology to describe rules
in general, although not excluded, has not been properly evaluated and is, at the time of this writing, an open
matter.

8

+is[1] : RuleConstruct
+source[0..1] : Source
+component[*] : Component

Rule
+is[1] : RuleComponent

«definition»
Component

Construction

Argument+taking

«definition»
LanguageConstruct

+is

+is[1] : NativeRuleConstruct
+source[1]
-component[0]

«definition»NativeRule

+is[1] : RuleSource

«definition»
Source

Parameter

+having

+is[1] : AbstractRuleConstruct
-source[0]
+component[1..*]

«definition»AbstractRule

{complete}

+source {subsets having}

+component {subsets taking}

«definition»
ConstructParameter+has

+is
+sub

Figure 2.2: Rules
(changes since I5-D6: none)

of an r3 Language is presented in the next section, followed by the complete definition of an
heterogenous Construction in section 2.1.3.

2.1.2 Defining Reactive Rule Languages

In order to define the different Languages involved in a RulePackage, the r3 ontology provides a
meta-vocabulary, depicted in figure 2.3 at its core level.

+name[0..1] : NCName
+defines[*] : LanguageResource
+implementation[*] : Engine

Language

+type[0..1] : LanguageType

«definition»
LanguageElement

+has[*] : ConstructParameter
+takes[*] : OperatorArgument

«definition»
LanguageConstruct

«definition»
ConstructParameter+has

+takes

FunctionalParameter

OpaqueParameter {com
plete}LogicalParameter

{com
plete}

+uses {subsets has}

+digs {subsets has}

+binds {subsets has}

+in +defines

+has[*] : AbstractParameter

«definition»
AbstractConstruct

OpaqueConstruct

{complete}

LanguageType

{c
om

pl
et

e}

-takes[0]
Functor

-type[0]
+takes[1..*]

Operator

Aggregator {c
om

pl
et

e}

+implements[*] : Language
+exports[*] : LanguageConstruct
+provides[1..*] : Interface

Engine
+implementation

+implements

+type

+in[1] : Language

«definition»
LanguageResource

OperatorArgument

«definition»
AbstractParameter

«definition»
InputParameter

{complete}

{complete}

Figure 2.3: Languages
(changes since I5-D6: added Language.name and Engine.exports mainly for compatibility with MARS)

Some of the more generic terms/concepts (e.g. Language, LanguageElement) are pretty
straightforward and have already been introduced before. Nevertheless, it is worth mentioning
that a Language actually defines a set of LanguageResources (LanguageElements or LanguageTypes,
defined in the Language itself); and that a LanguageElement has to be either a LanguageConstruct,
a ConstructParameter or an OperatorArgument.

9

A LanguageConstruct is further distinguished between an OpaqueConstruct and an AbstractConstruct

(one that has only AbstractParameters), the latter being either an algebraic Operator (if it takes
at least one OperatorArgument) or a Functor5.

The set of ConstructParameters a LanguageConstruct has, may be explicitly divided according
to the specific nature of each parameter: a LanguageConstruct uses (or digs) InputParameters
and binds LogicalParameters. The semantics of a LanguageConstruct is not defined unless the
actual value of all its InputParameters is known. Example 2.1.1 further illustrates the concept
of an r3 Language partially presenting the definition of some Languages.

Example 2.1.1 Below we present an r3 partial definition of several rule component languages,
that will be further exploited in subsequent examples. Namely, an event algebra (snoop), two
domain/application languages (travel and rental), and two general-purpose libraries (mail and
text).

snoop:sequence a :Operator; :in snoop:event-algebra;

:takes snoop:first, snoop:other.

travel:booking-place a :Functor; :in travel:domain;

:binds travel:client, travel:flightnr, travel:seat.

travel:flight-info a :Functor; :in travel:domain;

:uses travel:flightnr;

:binds travel:date, travel:origin, travel:destination.

rental:request-quotation-for-flight a :Functor; :in rental:application

:uses rental:client, rental:flightnr.

rental:get-client a :Functor; :in rental:application

:uses rental:client;

:binds rental:client-name, rental:favorite-class, rental:max-price.

rental:get-available-cars a :Functor; :in rental:application

:uses rental:office, rental:date;

:binds rental:car, rental:car-class, rental:price.

mail:send a :Functor; :in mail:library;

:uses mail:from, mail:to, mail:subject, mail:body.

text:join a :Aggregator; :in text:library;

:uses text:template, text:separator.

text:replace a :Aggregator; :in text:library;

:uses text:template.

An InputParameter may first be seen as a purely FunctionalParameter, whose (atomic) val-
ues, the LanguageConstruct transparently uses to define its actual semantics. However, careful
observation reveals that some of these parameters may hide semantic value (e.g. variable ref-
erences to be expanded) by using “internal” (sub-)languages. In these cases, the full semantics
of the construction is not accessible without full knowledge of the (sub-)languages actually
used inside the (consequently, non-atomic) values of those parameters. Such parameters are
called OpaqueParameters and any LanguageConstruct that has (or, more precisely, digs) at least
one of such OpaqueParameters must be an OpaqueConstruct (since it cannot be a semantically
transparent AbstractConstruct).

The semantics of a Construction that is an OpaqueConstruct is known only to an Engine

that implements the associated Language. Most of the times these Engines will only define the
semantics of such an OpaqueConstruct in operational terms, meaning that the only form of
knowing it is to submit (at runtime) an actual Construction to the evaluation Interface that
the Engine provides. Nevertheless, static analysis may some times be possible as long as the

5Also distinguishable, among Functors, are Aggregators which provide the means to construct arbitrary
variable Aggregations, as a specialized form of Constructions, cf. section 2.1.3.

10

Engine provides a translation Interface for parsing such an opaque Construction into one that
is an AbstractConstruct6.

In general, the definition of a LanguageElement may include a type. The exceptions to this
are Operators and OperatorArguments, cf. figure 2.5, given their required algebraic nature. A
LanguageType is considered here only as some resource that implicitly defines a domain of literal
values (having a lexical space compatible with rdf:XMLLiteral) and may refer, for instance, to
a particular XML Schema (element or type, basic or not). The actual treatment of types, in
the context of a general framework like [26], has no yet been studied, but it may provide, for
instance, the means for a safer equality relation (e.g. xml:space preserving or not). As such,
the concept of a LanguageType is already included here providing the means to define, among
others7, the domain of a ConstructParameter or the range of a Functor.

The r3 meta-vocabulary for defining languages (given its core level, in figure 2.3) is extended
in figure 2.4 with additional LanguageConstructs specific to rule languages, viz. RulePackageConstructs,
which are clearly distinguished from other constructs, viz. ExpressionConstructs.

«definition»
LanguageConstruct

«definition»
AbstractConstruct

OpaqueConstruct

Operator

OpaqueParameter

OperatorArgument

+t
ak

es

+digs {subsets has}

«definition»
RequiredParameter

RuleSource

+has[1..*] : InputParameter
+digs[1] : RuleSource
-takes[0]

NativeRuleConstruct

+digs[0..1] : RuleSource
+takes[*] : RuleComponent

«definition»
RuleConstruct

RuleComponent

+takes[1..*] : RuleComponent
AbstractRuleConstruct

{c
om

pl
et

e}

RuleSetMember

«definition»
CollectionArgument

+takes[1..*] : RuleSetMember
RuleSetConstruct

ExpressionConstruct

{complete}

{complete}

«definition»
ECARuleComponent

+takes[1..*] : ECARuleComponent
ECARuleConstruct

EventComponent

ConditionComponent

ActionComponent

{complete}

QueryComponent TestComponent

«definition»
RulePackageConstruct{complete}

Figure 2.4: Rule Languages
(changes since I5-D6: none)

ECARuleConstructs, which are particularly relevant to our work at this rule level, provide,
together with specific ECARuleComponents, the means for constructing ECA rules. Also relevant
are NativeRuleConstructs that allow modelling ECA rules at an opaque level (e.g. database
triggers). Notice that a NativeRuleConstruct, besides its RuleSource (that it digs), additionally
has other InputParameters (if needed, as is usually the case of e.g. database name and user in
database triggers).

On a general level, most practical language definitions include some forms of syntactic sugar.
Among the most common forms are optional/multiple parameters/arguments (e.g. in figure 2.4
a RuleSetMember is defined as a CollectionArgument). These forms of syntactic sugar very often
hide major semantic decisions. In an eclectic heterogenous context like the one proposed, the

6The concept of an Engine which implements a Language is core to the general ECA framework and the
r3 prototype, further details about how this concept helps realize the current version of the r3 prototype may
be found in 2.2.

7LanguageTypes are also used to constrain the domain of logical variables and the range of expressions, as
explained later in section 2.1.3.

11

“sweetness” of these syntactic forms may be misleading and hinder the semantic understanding
of a set of constructions. For instance, an ECA rule may be defined as taking several condition
or action components, but the actual meaning of such constructions remains unknown or opaque
unless a particular composer operator is explicitly chosen and identified. Different ECA lan-
guages may follow different directions in this respect: usually a simple conjunction is assumed
for conditions, but the choice becomes a bit more fuzzy for actions, particularly if transactions
are considered, and things get even more involved if multiple event components are considered
(where the natural choice would be to interpret them as a disjunction). Multiple/optional pa-
rameters/arguments are not actually allowed in a LanguageConstruct. Nevertheless appropriate
extension of the r3 ontology (as presented in figure 2.5) may provide enough expressivity for
the most “annoying” situations without disregarding semantic transparency.

+default[0..1] : XMLLiteral

«definition»
InputParameter

+default[1]

«definition»
OptionalParameter

{c
om

pl
et

e}

-default[0]

«definition»
RequiredParameter

-type[0]
+nil[0..1] : Constant
+composer[0..1] : Operator

OperatorArgument

+collector[1] : CollectionOperator

«definition»
CollectionArgument

-type[0]
+takes[1..*]

Operator

+composer

+takes[2]
+collects[1] : CollectionArgument

«definition»
CollectionOperator

-composer[0]

«definition»
SimpleArgument{complete}

Functor

-has[0]
Constant

+nil[1]

«definition»
OptionalArgument

+nil

-nill[0]

«definition»
RequiredArgument

{complete}

+composer[1]

«definition»
CompositeArgument

+collector {subsets composer}

+collects {subsets takes}

Aggregator

Figure 2.5: Language (not so Syntactical) Details
(changes since I5-D6: none)

Optional parameters (and arguments) are modelled as usual with the introduction of default
(and nil) constants that are to be used if the parameter (or argument) is omitted. For
the moment, multiple parameters are not accounted for (assuming that a parameter value
may as easily be a single value or a list of values using appropriate markups). Multiple ar-
guments, as CollectionArguments, are considered a specialization of a more general concept:
CompositeArguments. A CompositeArgument, if present, is always built using a specific composer

Operator and most often it induces syntactic simplifications when defining markup languages
(i.e. the CompositeArgument or its composer are omitted, as long as ambiguity issues are not
introduced). A CollectionArgument (named after rdf:parseType=”Collection”) has a recursive
nature given by its collector, which, as a binary associative CollectionOperator, takes one
occurrence and further collects additional occurrences of the CollectionArgument itself (termi-
nated by a required nil Constant, which stands for the empty collection if there are no further
occurrences of it). To further illustrate some of these issues, consider example 2.1.2 where a
definition of the ECA-ML Language (viz. eca:ml) is presented.

Example 2.1.2 The eca:ml Language is defined in r3 as:

eca:rule a :ECARuleConstruct; :in eca:ml;

:takes eca:event, eca:condition, eca:action.

eca:event a :EventComponent; :in eca:ml.

eca:condition a :ConditionComponent; :in eca:ml;

:composer eca:collect-and-test; :nil eca:true.

eca:collect-and-test a :Operator; :in eca:ml;

:takes eca:collect, eca:test.

eca:collect a :CollectionArgument; :in eca:ml;

12

:collector eca:query-collect; :nil eca:true.

eca:query-collect a :CollectionOperator; :in eca:ml;

:takes eca:query, eca:collect.

eca:query a :QueryComponent; :in eca:ml; :nil eca:true.

eca:test a :TestComponent; :in eca:ml; :nil eca:true.

eca:launch a :CollectionArgument; :in eca:ml;

:collector eca:launch-all; :nil eca:nop.

eca:launch-all a :CollectionOperator; :in eca:ml;

:takes eca:action, eca:launch.

eca:action a :ActionComponent; :in eca:ml; :nil eca:nop.

eca:native a :NativeRuleConstruct; :in eca:ml;

:uses eca:lang; :digs eca:source.

eca:opaque a :ExpressionConstruct; :in eca:ml;

:uses eca:lang; :digs eca:literal.

Some of the LanguageElements, included in example 2.1.2, come directly from the actual
ECA-ML markup and are self-explanatory, nevertheless those that don’t, are worth mention-
ing. In the previously proposed ECA-ML markup the eca:condition “tree” is not explicitly
included since the collect and test composition and the multiple query collection are always
implicitly present and no syntactical ambiguity results from omitting them. As such, only
the “leaf” arguments eca:query and eca:test were actually included in the ECA-ML markup
(and the same applies to eca:action). Furthermore, the ECA-ML markup does not include
any eca:native element, instead it chooses to re-use a pair of other elements (eca:rule and
eca:opaque). This pair of elements has no meaning in r3 terms. In fact, the ECA-ML markup
has chosen that syntactical form (of a pair) precisely because it bears no other meaning, and
overloading these elements avoided the inclusion of a new term (e.g. eca:native). This is a good
example of how a markup-based approach (even a striped one, favoring RDF/XML) differs from
an ontology-based approach. The rationale behind the chosen terms for the vocabulary is simply
different. Both approaches reject ambiguity, but in the former, minimizing verbosity and the
number of vocabulary terms are driving forces (as long as readability and “syntactical elegance”
are kept), whereas in the latter overloading of terms, without proper specialization of concepts,
is to be avoided since it reduces the semantic value of the vocabulary. Both approaches are
pertinent, but when defining new vocabularies for the Semantic Web, it is our stance that the
former should not influence the latter, but the other way around: ontology-based vocabularies
should influence and provide an appropriate abstract syntax for concrete markups, which may
be improved, later, towards syntactical conciseness and elegance (although an XML markup is
hardly the better serialization choice for those purposes).

As a final note about defining r3 Languages, it is worth stressing that strict conformance
to OWL-DL must be observed at all times. The Language meta-level of the r3 ontology may
lead to (sometimes tempting) misuses that may introduce undecidability issues. For instance,
an ontology that imports the r3 ontology and defines a particular Language, must do just that:
define a resource that is a Language individual. Most frequently, such an ontology will define
a set of terms (e.g. individual LanguageElements) in the ontology namespace. This namespace,
as a URI reference, refers to the ontology itself which is not the Language, but instead defines
the Language (which in turn, defines, e.g., its LanguageElements). Such an ontology (or its
namespace, e.g. eca:) should never be mistaken for the Language itself (e.g. eca:ml). Another
example of such (tempting) misuses, that must be avoided, is to define an OWL class as being
a LanguageType individual, which is not a valid OWL-DL statement (one possible way around
this would be to extend the LanguageType class with appropriate data-type properties).

13

2.1.3 Defining Reactive Rule Constructions

Given a set of Languages defined using the meta-vocabulary presented in the previous section,
it is possible to define the general concept of an heterogenous CodingElement (a Construction,
a Parameter or an Argument) which is a LanguageElement (respectively, a LanguageConstruct,
a ConstructParameter or an OperatorArgument). The definition of a CodingElement (depicted
in figure 2.6) follows a structure that closely mimics the structure of Languages, previously
presented in figure 2.3).

+is[1] : LanguageConstruct
+having[*] : Parameter
+taking[*] : Argument
+with[*] : SolutionConstraint
+boundTo[0..1] : NCName

Construction

+is[1] : ConstructParameter
+boundTo[0..1] : NCName
+literal[0..1] : XMLLiteral

Parameter

+is[1] : OperatorArgument
+sub[1] : Construction

Argument

+having +taking

«definition»
SolutionConstraint+with

+is[1] : OpaqueConstruct
«definition»Opaque

{complete}

+is[1] : AbstractConstruct

«definition»
AbstractConstruction

+is[1] : Functor
-taking[0]

«definition»
Term

+is[1] : Operator
+taking[1..*]

«definition»
Formula«definition»

Aggregation

{complete}

+sub

«definition»
LanguageElement

+is[1] : LanguageElement

«definition»
CodingElement +is

{complete}

Figure 2.6: Language Constructions
(changes since I5-D6: none)

A Construction may be seen as an instance of a LanguageConstruct, having a set of Parameters
possibly with specific literal values (or boundTo a particular variable), and taking a concrete set
of sub-Constructions as Arguments. Example 2.1.3 illustrates this concept with several concrete
Construction instances.

Example 2.1.3 Find below some rule component constructions using the languages in example
2.1.1.

ex:event :is snoop:sequence;

:taking [:is snoop:first; :sub [

:is travel:booking-place;

:having [:is travel:client; :boundTo "Mail"];

:having [:is travel:flightnr; :boundTo "Flight"]]];

:taking [:is snoop:other; :sub [

:is rental:request-quotation-for-flight;

:having [:is rental:client; :boundTo "Mail"];

:having [:is rental:flightnr; :boundTo "Flight"]]].

ex:get-client :is rental:get-client;

:having [:is rental:client; :boundTo "Mail"];

:having [:is rental:client-name; :boundTo "Client"];

:having [:is rental:favorite-class; :boundTo "Class"];

:having [:is rental:max-price; :boundTo "Max-Price"].

ex:get-available-cars :is rental:get-available-cars;

:having [:is rental:office; :boundTo "To"];

:having [:is rental:date; :boundTo "Date"];

:having [:is rental:car; :boundTo "Car"];

:having [:is rental:car-class; :boundTo "Class"];

:having [:is rental:price; :boundTo "Price"].

ex:flight-info :is travel:flight-info;

14

:having [:is travel:flightnr; :boundTo "Flight"];

:having [:is travel:date; :boundTo "Date"];

:having [:is travel:origin; :boundTo "From"];

:having [:is travel:destination; :boundTo "To"].

Upon evaluation by an appropriate Engine, a Construction returns a set of results (given a
set of input substitutions). Each returned result contains an optional literal value and a set
of output substitutions (that must be joined to one or more of the input substitutions). The
returned literal values can only be used as argument values of an algebraic operator, provided
the Construction is actually a sub-Construction of a Formula (abstract or “disguised” as an
Opaque), unless they are boundTo some variable (thus extending the output substitutions).

A Construction may further restrict its results with a set of SolutionConstraints (cf. figure
2.7), each defining a constraint domain used to constrain the constraint range. The constraint
range may be either the actual set of values bound to a particular variable (identified by its
name in a VariableDeclaration8), or the set of values returned by a TestExpression involving
several variables (where an Expression is understood as a Construction that does not contain
any form of RulePackage, cf. figures 2.4 and 2.7).

+name[0..1] : NCName
+literal[0..1] : XMLLiteral
+type[*] : LanguageType
+equals[*] : BoundExpression
+boundTo[*] : NCName

«definition»
SolutionConstraint

-name[0]
+boundTo[0..1]

TestExpression

{complete}

+name[1]
+rename[0..1] : string

«definition»
VariableDeclaration

+is[1] : ExpressionConstruct
+taking[*] : ExpressionArgument

«definition»
Expression

BoundVariable
{complete}

FreeVariable

{c
om

pl
et

e}

«definition»
SharedVariable

LocalVariable

«definition»
BoundConstraint

{complete}

Construction
+with

Argument +sub[1] : Expression

«definition»
ExpressionArgument

+sub[1] : TestExpression

«definition»
TestArgument

«definition»
BoundExpression

+is[1] : Aggregator
-taking[0]
+aggregate[1..*] : BoundVariable
+groupBy[*] : BoundVariable

«definition»Aggregation

+with[*] : BoundConstraint
BoundConstruction

+use {subsets with}

+aggregate {subsets use}
+groupBy {subsets use}

+bind {subsets with}

+var {subsets with}

Figure 2.7: Constraints, Variables and Expressions
(changes since I5-D6: none)

Any Construction defines a scope where LocalVariables may be declared. The communi-
cation between a sub-Construction and its ancestor/sibling Constructions is achieved through
the SharedVariables it either uses or binds. A Construction cannot be evaluated unless all the
variables it uses are actually bound to specific values.

If a Construction is boundTo a variable; that variable, if not explicitly declared, is implic-
itly declared as a FreeVariable, i.e. one that the Construction may bind. If a Construction

having a Parameter boundTo a variable does not explicitly declare it, the variable is implic-
itly declared a SharedVariable according to the nature of the Parameter: a FreeVariable if
it is a LogicalParameter that the Construction may bind, or a BoundVariable if it is an
InputParameter that the Construction must use. A Construction implicitly inherits all the

8A VariableDeclaration may additionally rename its variable, in order to support different naming con-
ventions used by different Opaque languages.

15

SharedVariables (implicit or explicit) of the sub-Constructions of its Arguments. All variables
in a BoundConstruction must be explicitly declared with BoundConstraints, thus excluding the
declaration of FreeVariables. Namely a BoundConstruction cannot bind SharedVariables.

A SolutionConstraint states that the intersection between the constraint domain and the
constraint range (the actual set of values of a variable, for a VariableDeclaration, or the actual
set of values returned by a TestExpression) must not be empty. If it does not define a constraint
domain it simply states that the constraint range must not be empty. The constraint domain
of a SolutionConstraint is defined by intersecting several sub-domains, namely a domain with
a single literal value, some domains implicitly defined by given types, some domains formed
by the values boundTo given variables, or even some domains where each one equals the actual
set of values returned by a BoundExpression: a BoundConstruction that is an Expression. Op-
erationally, a SolutionConstraint can only be checked when its constraint range is known (i.e.
the variable becomes bound or is possible to evaluate the test expression). If it can be checked
then, for efficiency, it must invalidate as much solutions as possible, as soon as possible (i.e.
the constraint range must be checked against each of the known constraint sub-domains; this
check must not be postponed until the full constraint domain is known).

Example 2.1.4 Below we illustrate the usage of SolutionConstraints as VariableDeclarations
in several Constructions (using the Languages defined in examples 2.1.1 and 2.1.2).

ex:check-price :is eca:opaque;

:boundTo "Is-True"; :var [:name "Is-True"; :literal "true"];

or simply, cf. :TestExpression, :literal "true";

:use [:name "Price"];

:use [:name "Max-Price"; :rename "MaxPrice"];

:having [:is eca:lang; :literal "http://www.w3.org/XPath"];

:having [:is eca:literal; :literal "$Price <= $MaxPrice"].

ex:send-quotation :is mail:send;

:var [:name "Text"; :equals ex:quotation-message];

:having [:is mail:from; :boundTo "Rental-Mail"];

:having [:is mail:to; :boundTo "Mail"];

:having [:is mail:subject; :literal "Car Rental Quotation"];

:having [:is mail:body; :boundTo "Text"].

ex:quotation-message :is text:replace;

:use [:name "Quotation"];

:var [:name "Priced-Cars";

:equals [:is text:join;

:aggregate [:name "Car"], [:name "Price"];

:having [:is text:template; :literal "|Car|=|Price|"];

:having [:is text:separator; :literal ", "];]];

:aggregate

[:name "Client"], [:name "Priced-Cars"],

[:name "Flight"], [:name "Date"], [:name "To"];

:having [:is text:template; :boundTo "Quotation"].

To ensure full transparency of an AbstractConstruction, explicit declaration of Shared-

Variables in these Constructions is restricted and only allowed for those variables already
implicitly declared as shared: boundTo the Construction itself or to one of its Parameters, or
declared as shared in an Argument. The only form of AbstractConstruction that does not have
this restriction is a specialized form of a Term called an Aggregation (that is a purely functional
Aggregator), which aggregates some variables grouped by some other variables it uses (groupBy
is intended as a synonym of use).

Both the input and output substitutions of any Construction must include only the variables
declared in it. Furthermore, input substitutions must be distinct and output substitutions of

16

an Aggregation cannot contain the aggregated variables.
Given the definitions contained in the diagrams of the previous figures, an ECARule is finally

defined as depicted in figure 2.8.
«definition»
AbstractRule +is[1] : ECARuleConstruct

+on[0..1] : Event
+if[0..1] : Condition
+do[0..1] : Action

«definition»ECARule

+is[1] : ActionComponent
«definition»Action

+is[1] : ConditionComponent
«definition»Condition

+is[1] : EventComponent
«definition»Event

+is[1] : QueryComponent
«definition»Query

+is[1] : TestComponent
«definition»Test

«definition»
Component

«definition»
TestArgument

+on {subsets component}

+if {subsets component}

+do {subsets component}

+query {subsets component}

+test {subsets component}

«definition»
ExpressionArgument

+on[1]
+if[1]
+do[1]
-event[0]
-query[0]
-test[0]
-action[0]

«definition»
ECARuleStrict

+event[1]
+query[*]
+test[*]
+action[1..*]
-on[0]
-if[0]
-do[0]

«definition»
ECARuleExtended

{com
plete}

+event {subsets component}

+action {subsets component}

Figure 2.8: ECA Rules
(changes since I5-D6: added ECARule partition and event/query/test/action sub-properties mainly for compatibility with

ECA-ML)

Example 2.1.5 To further illustrate this definition a concrete ECARule is presented here, using
the Languages and Constructions included in the previous examples.

ex:rule :is eca:rule;

:on [:is eca:event; :sub ex:event];

:if [:is eca:condition; :sub [

:is eca:collect-and-test;

:var [:name "Class"];

:taking [:is eca:collect;

:sub [:is eca:query-collect;

:taking [:is eca:query; :sub ex:get-client];

:taking [:is eca:collect; :sub [:is eca:query-collect;

:taking [:is eca:query; :sub ex:get-available-cars];

:taking [:is eca:collect; :sub [:is eca:query-collect;

:taking [:is eca:query; :sub ex:flight-info];

:taking [:is eca:collect; :sub [:is eca:true]]]]]]]];

:taking [:is eca:test; :sub ex:check-price]]];

:do [:is eca:action; :sub ex:send-quotation].

For the time being, the r3 prototype does not support CollectionOperators, as such in
order to easilly support ECA-ML we have chosen to include an ECARuleExtended form taking
sub-properties that mimic the ECA-ML elements.

2.1.4 From ECA-ML to r3DF

The original motivation for using an OWL-DL ontology definition as the foundation for r3

instead of an XML markup (viz. ECA-ML [26]) was that the heterogeneous approach made it
quite difficult to fully formalize the XML markup. The level of expressiveness of the available
standards (viz. DTD or XML Schema) was not sufficient. Instead of pushing these standards

17

to the limit (or defining a new abstract syntax) it seemed only natural to resort to an adequate
standard like OWL-DL (re-using already defined abstract syntaxes, e.g. RDF, and related
concrete markups, e.g. RDF/XML).

To complement the definition of the r3 ontology just presented, we now informally describe
how an RDF model of an ECARule, like the one included in example 2.1.5, may be automatically
obtained from an XML serialization of an ECA rule. Of course, we do not simply mean
RDF/XML serializations. Rather, our aim here is to translate markups that adhere to the ECA-
ML proposal [26] (and to its general guidelines for component languages and logical variables).
Such an ECA-ML compliant serialization of a rule is shown in example 2.1.6.

Example 2.1.6 The ECARule of example 2.1.5 using an ECA-ML serialization:
<eca:rule>

<eca:event>
<snoop:sequence>

<snoop:first>
<travel:booking-place client="$Mail" flightnr="$Flight"/>

</snoop:first>
<snoop:other>

<rental:request-quotation-for-flight
client="$Mail" flightnr="$Flight"/>

</snoop:other>
</snoop:sequence>

</eca:event>
<eca:query>

<rental:get-client client="$Mail" client-name="$Client"
favorite-class="$Class" max-price="$Max-Price"/>

</eca:query><eca:query>
<travel:flight-info flightnr="$Flight" date="$Date"

origin="$From" destination="$To"/>
</eca:query><eca:query>

<rental:get-available-cars office="$To" date="$Date"
car="$Car" car-class="$Class" price="$Price"/>

</eca:query>
<eca:test eca:variable="Is-True">

<eca:variable name="Is-True">true</eca:variable>
<eca:input-variable name="Price"/>
<eca:input-variable name="Max-Price" use="MaxPrice"/>
<eca:opaque lang="http://www.w3.org/XPath">

$Price <= $MaxPrice
</eca:opaque>

</eca:test>
<eca:action>

<eca:variable name="Text"><eca:query>
<eca:variable name="Priced-Cars"><eca:query>

<eca:input-variable name="Car"/>
<eca:input-variable name="Price"/>
<text:join template="|Car|=|Price|" separator=", "/>

</eca:query></eca:variable>
<text:replace template="$Quotation">

<eca:input-variable name="Client"/>
<eca:input-variable name="Priced-Cars"/>
<eca:input-variable name="Flight"/>
<eca:input-variable name="Date"/>
<eca:input-variable name="To"/>

</text:replace>
</eca:query></eca:variable>
<mail:send from="$Rental-Mail" to="$Mail"

subject="Car Rental Quotation" body="$Text"/>
</eca:action>

</eca:rule>

Given the definition of the eca:ml Language provided in example 2.1.2, we immediately
identify the root element and its children, in the given ECA-ML example, as LanguageElements
in the eca:ml Language: an Operator, eca:rule, and several OperatorArguments. As such, it

18

should be possible to build a Construction out of it. Two of the children (eca:event and
eca:action) are in fact arguments of eca:rule, but there are several eca:query and an eca:test

that cannot be “parsed”. Furthermore, a third argument is missing: eca:condition. If we look
closely at the definition of eca:condition, we see that it is a CompositeArgument which must
be built using the particular Operator eca:collect-and-test that takes as OperatorArguments
an eca:collect and an eca:test. We do have an eca:test available, so our problem is now
narrowed to building an eca:collect out of several eca:query. Another look at the eca:ml

definition tells us that eca:collect is also a CompositeArgument (a CollectionArgument), and
that its composer (collector) takes an eca:query. So, we just pick one from our queries. The
actual order could be relevant, but in fact that is not the case here since a partial order may be
inferred, given the added semantic value provided by Language definitions, viz. InputParameters.
Once we have picked a query, we are back to our problem of building an eca:collect, only now
with one less eca:query. If we continue applying this process we will be reduced to the problem
of building an eca:collect, which becomes possible (since it is an OptionalArgument) by simply
grabbing its nil constant, eca:true. The result is an ECARule with the structure presented in
example 2.1.5 that includes several RuleComponents: an EventComponent, several QueryComponents,
a TestComponent, and an ActionComponent. What is still missing is the sub-Construction for each
of those RuleComponents.

The same process may be easily applied to obtain the eca:event EventComponent, which leads
us to the problem of “parsing” the Terms that relate to the Functors included in it (cf. example
2.1.1, for travel:booking-place and rental:request-quotation-for-flight). As XML elements,
these Functors, include attributes without a namespace, which are meaningless in RDF, but
nevertheless quite common in current XML markups. To avoid this problem we assume that any
attribute without a namespace is to be replaced by an (equally valued) attribute with the same
local name but in the namespace of its parent element. Given that, all those attributes may be
identified as LanguageElements (viz. ConstructParameters). Furthermore, those Parameters are
boundTo variables according to the ECA-ML guidelines, prefixing variables with ‘$’. Given all
this, not only the eca:event EventComponent, but also all the eca:query QueryComponents, may
be promptly translated into RDF models containing the sub-Constructions of example 2.1.3.

The eca:test TestComponent and the eca:action ActionComponent both use ECA-ML nodes
that are specific to logical variables (i.e. eca:variable and eca:input-variable). Although
these nodes belong to the eca: namespace they are not defined as LanguageElements in eca:ml.
Dealing with logical variables is orthogonal to language heterogeneity, in fact, logical variables
provide the homogeneous “glue” that supports language heterogeneity and are not themselves
part of it. Actually, this calls for a markup specific to logical variables, which is out of scope in
this paper. So, for now, we stick with the ECA-ML proposal, but we do look at these XML nodes
as homogeneous. As such, we map an eca:variable XML attribute to a Construction boundTo a
variable; and the eca:variable (and eca:input-variable) XML elements to FreeVariables (and
BoundVariables). Each SharedVariable resulting from the latter mapping (notice that ECA-
ML does not include LocalVariables): has a name; is optionally renamed (according to its use

attribute); and its content (if not empty) defines its value literally or through the (eca:query)
sub-Construction that equals it.

Given this (partial) homogeneous mapping for the ECA-ML nodes related to logical vari-
ables, both the TestComponent and ActionComponent sub-Constructions are built as the previous
RuleComponents (leading to the RDF model included in example 2.1.4), and our ECARule is finally
complete and should be recognized as such by an OWL-DL reasoner (given the r3 ontology and
the appropriate Languages).

19

2.2 r3 Engines and Library

At the heart of the r3 prototype is the decision to fully base its implementation on an RDF
model, fully embracing Semantic Web technologies and standards by taking an ontology/resource-
based perspective on reactive rules (to the extent allowed by the actual availability of “stable”
prototypes9). Every resource that matters to an r3 engine (e.g. rules) is to be kept in this
RDF model and described in terms of the r3 ontology. As detailed in section 2.1, the different
components of each reactive rule are specified (and composed) using different component lan-
guages. Each of those languages is to be implemented by specific expression sub-engines, all of
them, languages and engines, also described using the terminology provided by the r3 ontology.
For an r3 engine, everything is a resource, even rule and rule component evaluation instances
are to be represented as resources. For these an adequate extension of the r3 ontology needs
to be defined.

Naturally, openness and flexibility (as opposed to efficiency and optimization) are the main
drivers for the technical choices behind r3, nevertheless it is important to correctly abstract
shared functionality in order to account as much as possible for future evolution (not excluding
optimization). r3 provides a Java development library intended to help in the development of
(generic or domain/application specific) language engines. This library abstracts many of the
details needed to realize an engine conforming to the General ECA framework detailed in [3]
(e.g. communication/protocols, RDF/XML manipulation, binding variables, joining substitu-
tion sets).

In this section we present the current state of the extension of the r3 ontology in order to
include the abstract API of r3 engines, together with architecture and development details of
the r3 prototype and library. We start by describing the ontology extension that deals with
the operations supported by an r3 engine (section 2.2.1); namely operations to load and eval-
uate reactive rules (section 2.2.2). This description is further complemented in section 2.2.3
where we detail the lower levels of the ontology that provide the support for dealing with vari-
ables, substitutions and results. For the sake of completeness of the presented ontology, in
section 2.2.4, additional details are briefly introduced (some more concerned with the actual
implementation of the prototype). We proceed with information concerning the prototype im-
plementation and communication infra-structure (section 2.2.5), including also an introduction
to the r3 library (section 2.2.6). Finally, we end this section by describing the current set of
languages implemented in the r3 prototype (section 2.2.7).

2.2.1 Resourceful Reactive Engines and Rules

The r3 prototype is actually formed by an abstract network (physically distributed or not) of
r3 Engines that cooperate towards evaluating ECA rules. The entry point into this network is
an r3 main Engine (or ECAEngine, as depicted in figure 2.9) providing a Load operation that
allows an external Client to activate a RulePackage.

The ECAEngine interfaces with r3 Language specific sub-engines (called LanguageEngines),
e.g. sub-engines for detecting events, querying Web data, testing conditions, etc. One such r3

LanguageEngine implements one or more Languages, or exports an ad-hoc set of LanguageCon-
structs. Each LanguageConstruct supplies the semantics of any CodingElement that is defined

9Integration with Semantic Web Services was attempted but had to be postponed. Nevertheless by using a
literal SOAP body conforming to an RDF/XML serialization r3 tries to keep an open perspective for the future.

20

Register
(Definition)

RuleEngine
Evaluate

(Expression)

EventDetector

LanguageEngine

{overlapping, complete}

Load
(RulePackage)

EvaluateResponse
EventComposer

Definition

ECAEngine

BrokerEngine

Terminated

ExpressionEngine

ComposerEngine

Engine

Language+implementation
+implements

Client

«definition»
AsynchClient

«definition»
AsynchEngine NativeEngine

Figure 2.9: Engines

by it. BrokerEngines may also be used in cases where an appropriate LanguageEngine is not
known.

The API of r3 Engines is defined at a conceptual level based on an ontology of concepts,
fostering the use of other Semantic Web technologies. This resource-based approach is present
in every operation supported by an r3 Engine. RulePackages are Loaded by RuleEngines
whereas Expressions are Evaluated by ExpressionEngines.

ExpressionConstructs allow both the specification of atomic Expressions (e.g. events or
actions) using either generic or domain/application specific Languages (that some, e.g., Event-
Detector implements), and also the specification of composite Expressions using algebraic Op-
erators, of some (e.g. event or process) algebra provided by ComposerEngines that recursively
Evaluate the OperatorArguments using other r3 ExpressionEngines.

According to ECA-ML [26] and as explained in section 2.1, ECARules are formed by sev-
eral distinct components, namely: an event component (specifying the event occurrences that
trigger the activation of the ReactiveRule), an optional condition part formed by several com-
ponents (that, based on an actual event occurrence, gather/query additional information and
define/test the applicability of the rule under consideration), and an action component (stat-
ing the actions to execute whenever the ECARule is applicable). It is worth noting that this
abstract component structure could also be used to accommodate other kinds of rules. The
communication between these heterogeneous components is achieved through the use of logical
variables, bound to XML literals10.

Example 2.2.1 To illustrate, consider an ECARule notifying a teacher in case some admin-
istrative office processes a registration cancellation (ex:ev1), from a particular student to one
of the teacher’s lectures, provided that the student is considered a good student (according to
some departmental criteria). In this example several languages are in fact used, namely: a
language about people and notifying people (people:), an application/domain specific event
language particular to some administrative office (office:), another domain specific query and
test language (dept:), and a generic language for text manipulation (text:).

ex:ev1 a :Event; :sub [a :Expression;

10Currently these literals are opaque to an r3 main engine, but nevertheless RDF references, serializations,
or typed data values are not excluded.

21

:is office:registration_cancelled;

:having [a :Parameter;

:is office:student; :boundTo "St"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]].

ex:qry1 a :Query; :sub [a :Expression;

:is dept:lecture_teacher;

:having [a :Parameter;

:is dept:lecture; :boundTo "Lect"];

:having [a :Parameter;

:is dept:teacher; :boundTo "Prof"]].

ex:tst1 a :Query; :sub [a :Expression;

:is dept:good_student;

:having [a :Parameter;

:is dept:student; :boundTo "St"]].

ex:r1 a :ECARule;

:event ex:ev1;

:query ex:qry1;

:test ex:tst1;

:action [a :Action :sub [a :Expression;

:is people:notify;

:having [a :Parameter;

:is people:person; :boundTo "Prof"];

:having [a :Parameter;

:is people:message; :boundTo "Msg"];

:var [a :Variable; :name "Msg";

:equals [a :Expression;

:is text:merge;

:use

[a :Variable; :name "Prof" :rename "1"],

[a :Variable; :name "Lect" :rename "3"],

[a :Variable; :name "St" :rename "2"];

:having [a :Parameter;

:is text:pattern;

:literal """

Dear %1,

We are sorry to inform you that

student %2 has cancelled his

registration to your lecture %3."""

]]]]].

As an example of using logical variables for communicating among these different languages,
consider example 2.2.1: a specific event occurrence provides a particular binding for variables
St and Lect (identifying, respectively, a student and a lecture), given this binding, Lect is
used to issue a query retrieving one or more bindings for variable Prof (the lecture professors,
provided the query succeeds), whereas St is tested in order to filter out all non-good students,
and finally the action is executed for all of the resulting substitutions (each containing all the
previously bound variables, viz. St, Lect and Prof, and also an auxiliary local variable Msg,
which is in fact a derived functional variable for each substitution).

Languages may be generic or application/domain specific. For instance, in example 2.2.1
instead of using ex:qry1 based on the domain specific query element dept:lecture_teacher
we could have used instead an XQuery [56] expression, this way re-using a generic language
with a generic (but opaque) semantics (resulting in the domain specific semantics being hidden
in :data and :literal opaque properties and so no longer available):

22

ex:r1 a :ECARule;

...

:query [a :Query; [a :Expression;

:boundTo "Prof";

:is xquery:opaque;

:having [a :Parameter;

:is xquery:base-uri;

:data "DEPT_LECTURES"];

:having [a :Parameter;

:is xquery:literal;

:literal """

for $t in doc($Lect)//teacher

return $t/@id;"""];

:use [a :Variable; :name "Lect"]]]

...

On the other hand, also in example 2.2.1, instead of using a generic element like text:merge
we could have used a domain specific language to build the Msg text, e.g.:

ex:r1 a :ECARule;

...

:var [a :Variable; :name "Msg";

:equals [a :Expression;

:is office:cancel_registration_warning;

:having [a :Parameter;

:is office:teacher; :boundTo "Prof"];

:having [a :Parameter;

:is office:student; :boundTo "St"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]

]]

...

The recursive nature of Expressions, depicted in figure 2.1, also allows the use of different
Languages in a single component through the composition of several Argument Expressions.
This composition is achieved using generic algebraic Languages (e.g. an event algebra like Snoop
[20, 9] or a process algebra like CCS [29, 13]) that may compose different application/domain
specific (or even generic) Languages, as long as they share a common algebraic domain. For
instance, by using an event algebra to define composite events, the event used in example 2.2.1
could be refined to trigger the rule only if if the teacher has previously confirmed the student
merit:

ex:r1 a :ECARule;

:event [a :Event; :sub [a :Expression;

:is snoop:sequence;

:taking [a :Argument;

:is snoop:first;

:sub [a Expression;

:is teacher:confirmed_student_merit

:having [a :Parameter;

:is teacher:id; :boundTo "Prof"]

:having [a :Parameter;

:is teacher:student; :boundTo "St"]]];

:taking [a :Argument;

:is snoop:next;

:sub ex:ev1]]];

...

23

According to figure 2.2, a Rule may be either an AbstractRule or a NativeRule. A NativeRule
(as illustrated in example 2.2.2) is a specific NativeRuleConstruct that digs its opaque source
containing its literal specification (e.g. a DB2 [37] database trigger or an Outlook mail routing
rule).

Example 2.2.2 The RuleSet below contains the AbstractRule already defined in example 2.2.1
and also a NativeRule for a DB2 trigger that shows how the firing event of the AbstractRule
(ex:ev1) could be generated from an existing DB2 database.

ex:rs1 a :RuleSet;

:includes ex:r1, ex:nr1.

ex:nr1 a :NativeRule;

:is officedb2:trigger;

:having [a :Parameter;

:is officedb2:schema;

:literal "office"];

:having [a :Parameter;

:is officedb2:user;

:literal "trigger_adm"];

:having [a :Parameter;

:is officedb2:passwd;

:literal "some_pwd"];

:source [a :Source;

:is officedb2:opaque;

:literal """

after delete on office.registration

referencing old as reg

for each row mode db2sql

begin atomic

values(raise_event(

"registration_cancelled",

reg.student, reg.lecture));

end"""].

NativeRules provide a minimal level of integration for legacy (or any other non-r3) sub-
systems, allowing a RuleSet to contain all the relevant rules. Ignoring the existence of Na-
tiveRules, and simply considering them as outcasts, can lead to unexpected inferences/actions.
Considering them, not only integrates these other sub-systems, but it also makes it explicit (in
the RuleSet description) that those NativeRules and their associated NativeEngines do have an
impact on the behavior of the global system.

Nonetheless, AbstractRules are the preferred form of a Rule and it should be noticed that
the NativeRule included in example 2.2.2 has an (intuitive) translation into an AbstractRule.
Extending the interface of NativeEngines to include also a Compile operation, although not
considered currently, may provide an higher level of integration whenever such a translation is
possible.

2.2.2 Loading and Evaluating Reactive Rules

r3 abstract Messages provide the foundation for the r3 API, as defined in figure 2.10. Each
actual message is to be seen as a serialization of a Resource Description (as in RDF [48]) of
an r3 abstract Messsage, defining a (possibly incomplete) RDF graph (optionally including
references to external resources).

24

«definition»
Message

+issuer[0..1] : Client

«definition»
Request

{complete}

+relatesTo[1] : Request
+available[*]

«definition»Response

+using[*] : Substitution
+activate[1] : RulePackage

Load
{c

om
pl

et
e}

+relatesTo[1] : Load
Loaded+using[*] : Substitution

+solve[1] : Expression

Evaluate

Evaluating

+relatesTo[1] : Request
Terminate

+notifyTo[0..1] : Interface
Client

Terminated

{complete}

+issuer

Evaluated

+relatesTo

{c
om

pl
et

e}

+relatesTo[1] : Evaluate
+returns[*] : Result

«definition»
EvaluateResponse

+fault[*] : Error

«definition»
TerminatedResponse

+target[1] : anyURI
+markup[1..*] : anyURI
+multiple[0..1] : boolean

Interface

+notifyTo {subsets provides}

+declare[1] : Definition
Register +relatesTo[1] : Register

Registered

+provides[1..*] : Interface
Service

+notifyTo[1]

«definition»
AsynchClient

+provides

{c
om

pl
et

e}

+activate

+declare

«definition»
Expression

+solve

Engine

Definition

«definition»
RulePackage

«definition»
AsynchEngine

TerminateInterface

Figure 2.10: Messages

It is of particular relevance to clearly distinguish between the abstract concepts presented
in figure 2.10 and any actual messaging framework (abstract or not) that is used to support
them. The concepts presented here provide a conceptual view of Messages as required by r3

Engines. This conceptual view is to be supported by full-blown messaging frameworks and
(concrete) protocols, preferably standardized ones. Such supporting frameworks/protocols/s-
tandards must account for asynchronous communication; examples may include (and are not
restricted to): pure HTTP using a REST architectural style [21], FIPA [22], (Semantic) Web
Services, JMS [43].

Load ing a RuleSet (like ex:rs1 in example 2.2.2) into an ECAEngine causes this Engine
not only to activate the included AbstractRules (like ex:r1 in example 2.2.1) by resorting to
the adequate ExpressionEngines to Evaluate their RuleComponents, but also to deliver any
NativeRules to the appropriate NativeEngines where they must be natively embedded. For this
purpose, r3 NativeEngines must also provide a Load operation for embedding a NativeRule
(like ex:nr1 in example 2.2.2).

A Load (like any other) Request is sent by its issuer Client to the target of the appropriate
Interface that some Engine provides, as illustrated in example 2.2.3. The actual markup to be
used must be compatible with the one required by this Interface. This Request is then answered
by the Engine (using the same markup) providing at least a Response (possibly asynchronous
if dealing with an AsynchClient that provides a notifyTo Interface for this specific purpose).

The ECAEngine will return a Loaded Response as soon as the given RulePackage is acti-
vated, otherwise, if it is not able to activate it, a Terminated Response will be returned. In
the former case, the RulePackage will remain active until the Client sends a Terminate that
will result in a Terminated Response acknowledging that the RulePackage deactivation is under
way11.

11An Engine may also send a TerminatedResponse at any point (provided the Client is an AsynchClient),
and not only after getting a Terminate from the Client, thus signalling that, from that moment on, there will
be no more Responses to the initial Request. An Engine may choose to do so either because all Responses were

25

Example 2.2.3 The following illustrates the loading of the RuleSet ex:rs1 from example
2.2.2.

@prefix ecaeng: <http://engine.nop#>.

@prefix ecarls: <http://engine.nop/rules/>.

@prefix clireq: <http://client.nop/requests#>.

ecaeng: a :ECAEngine;

:provides ecaeng:interface;

:notifyTo ecaeng:interface.

ecaeng:interface a :Interface;

:target "http://engine.nop/service";

:markup "http://rewerse.net/I5/NS/2006/r3".

The Client wants to Load a RuleSet

clireq:rs1 a :Load;

:issuer [a :Client;

:notifyTo [a :Interface;

:target "http://client.nop/notify";

:markup "http://rewerse.net/I5/NS/2006/r3"

]];

:activate ex:rs1.

Rules have been activated, in this case the

Engine chooses to expose the Loaded rules

through the resource ecarls:rs1

[] a :Loaded; :relatesTo clireq:rs1;

:available ecarls:rs1.

Rules are active in the Engine and

the Client may retrieve the current

state of resource ecarls:rs1

The Client wants to deactivate

the previously Loaded rules

[] a :Terminate; :relatesTo clireq:rs1.

All rules relating to clireq:rs1 are

assumed as deactivated/unloaded and

any associated resources as released

[] a :Terminated; :relatesTo clireq:rs1.

A Load Request causes the ECAEngine to issue additional subordinated Requests targeted
to specific LanguageEngines. For instance, as a result of the Request included in example 2.2.3,
the ECAEngine would submit a Load Request (as shown in example 2.2.4) to the target of a
NativeEngine that implements the officedb2: Language used in ex:nr1.

Example 2.2.4 Installing the NativeRule ex:nr1 contained in ex:rs1 from example 2.2.2.
These Messages should be interleaved with the ones already included in example 2.2.3.

already generated, or because it can no longer honor the initial Request due to some (probably unexpected)
circumstance. In any case, a TerminatedResponse is always the last Message that relatesTo a particular Request,
signalling that all the Engine’s resources associated with that Request are already released (or at least they must
be assumed as such). A Terminate of a Request trivially succeeds, if it is sent after a TerminatedResponse for
that same Request has been issued.

26

@prefix engdb2:

<http://office.nop/db2service#>.

@prefix ecareq:

<http://engine.nop/requests#>.

engdb2: a NativeEngine;

:provides [a :Interface;

:target "http://office.nop/db2service";

:markup "http://rewerse.net/I5/NS/2006/r3"

];

:implements officedb2:.

Requested Load clireq:rs1 and before

responding Loaded must Load ex:nr1

ecareq:nr1 a :Load;

:issuer ecaeng:;

:source ex:nr1.

[] a :Loaded; :relatesTo ecareq:nr1.

The Loaded Response can now be sent

after knowing that ex:nr1 is Loaded

Got Terminate for clireq:rs1, so

must also Terminate ecareq:nr1

[] a :Terminate; :relatesTo ecareq:nr1.

[] a :Terminated; :relatesTo ecareq:nr1.

Now clireq:rs1 can also be Terminated

Upon a Load Request, an ECAEngine, besides Load ing contained NativeRules and RuleSets,
as explained before, also has to activate (viz. Evaluate) any AbstractRules (viz. ECARule
components) contained in the given RulePackage. To achieve this, it must interface with several
ExpressionEngines (that actually provide the specific Evaluate implementation) according to
the specific LanguageConstructs involved in the different RuleComponents, namely: an event,
an optional query (or more than one), an optional test (or more), and a actions. Since rule
components are Expressions and communicate with each other using logical variables, they are
Evaluated (by ExpressionEngines) using a context provided by several alternative Substitutions.
Each Substitution must be unique and must enumerate all (and only those) variables involved
in the Expression (possibly restricting some of them, by binding them to specific values or to
other variables, as further detailed in section 2.2.3). While Evaluating an expression using a
given context the ExpressionEngine returns all possible Results, or none if the expression fails
(meaning the Expression was Evaluated and returns no Results). Besides (optionally) using a
set of Substitutions, any Result may also return a literal value (cf. figure 2.11). This value may
be used as an Argument for another Expression or boundTo a variable.

As an illustrative example consider the activation of the ECARule ex:r1 of example 2.2.1.
When an ECAEngine receives a Load Request for a RulePackage containing this rule (as
clireq:rs1 in example 2.2.3), it must activate the rule by issuing a subordinated Evaluate
Request for the rule event (ex:ev1) to the EventDetector that implements the (office:) Lan-
guage (as shown in example 2.2.5).

Example 2.2.5 Activating the ECARule ex:r1 contained in ex:rs1 from example 2.2.2. These
Messages should be interleaved with the ones already included in examples 2.2.3 and 2.2.4.

27

Variable

+with[*] : SolutionConstraint
Solution

+name[0..1] : NCName
+literal[0..1] : XMLLiteral
+type[*] : LanguageType
+equals[*] : BoundExpression
+boundTo[*] : NCName

«definition»
SolutionConstraint

+name[1]
+rename[0..1] : string

«definition»
VariableDeclaration

+with +with[*] : Variable
Tuple

+with[*] : VariableConstant
Substitution

+literal[0..1] : XMLLiteral
+type[0..1] : LanguageType
+using[*] : Substitution

Result

+binding {subsets with}

TestExpression
{complete}

+must {subsets with}

+msg[1] : string
+literal[0..1] : XMLLiteral

Error

Assertion

+literal[0..1]
+type[0..1]
-boundTo[0]
-equals[0]

«definition»
VariableConstant

+is[1] : RulePackageConstruct
+with[*] : VariableConstant

«definition»RulePackage

Figure 2.11: Solutions and Results

Requested Load clireq:rs1 and before

responding Loaded must launch Evaluate

for ex:ev1 used in ex:r1

ecareq:ev1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "St"],

[a :Variable; :name "Lect"]];

:solve ex:ev1.

[] a :Evaluating; :relatesTo ecareq:ev1.

Evaluate for ex:ev1 accepted, actual

Results will be communicated later

The Loaded Response can now be sent

Later whenever an event occurrence is

detected the literal event is returned

together with the substitution

[] a :Evaluating; :relatesTo ecareq:ev1;

:returns [a Result;

:literal """

<offc:registration_cancelled

xmlns:offc="http://office.nop/events#"

offc:docid=

"http://office.nop?did=DRC20062395"

/>""";

:using [a Substitution;

:binding

[a :Variable; :name "St"

:literal "S4521"],

[a :Variable; :name "Lect"

:literal "L144"]]].

Got Terminate for clireq:rs1, so

must also Terminate ecareq:ev1

[] a :Terminate; :relatesTo ecareq:ev1.

[] a :Terminated; :relatesTo ecareq:ev1.

Now clireq:rs1 can also be Terminated

This EventDetector will then signal back (asynchronously) each occurrence (of ex:ev1) it

28

detects, by sending an Evaluating Response that returns the Result associated with the detected
event. Note that if, at any point, the EventDetector concludes that the event can no longer
occur (e.g. because deadline for registration cancellations has expired), it may send an Evaluated
Response (depicted in figure 2.10) meaning that the event expression has no additional solutions
and so the Evaluate Request is Terminated.

For each Result of Evaluating the event component, the ECAEngine will create a rule
instance using the Substitutions it returns12. For this rule instance, query and test compo-
nents are then taken into consideration by issuing Evaluate Requests to the appropriate query
processors and test evaluators, as shown in example 2.2.6.

Example 2.2.6 Considering an ECARule instance, originated by the event occurrence re-
turned in example 2.2.5.

ecareq:qry1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "Prof"];

[a :Variable; :name "Lect"

:literal "L144"]];

:solve [a :Expression;

:is dept:lecture_teacher;

:having [a :Parameter;

:is dept:lecture; :boundTo "Lect"];

:having [a :Parameter;

:is dept:teacher; :boundTo "Prof"]].

[] a :Evaluated; :relatesTo ecareq:qry1;

:returns

[a Result; :using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T57"],

[a :Variable; :name "Lect"

:literal "L144"]]],

[a Result; :using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T01"],

[a :Variable; :name "Lect"

:literal "L144"]]].

ecareq:tst1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "St"

:literal "S4521"]];

:solve [a :Expression;

:is dept:good_student;

:having [a :Parameter;

:is dept:student; :boundTo "St"]];

[] a :Evaluated; :relatesTo ecareq:tst1;

:returns [a Result]

12The literal value is to be discarded unless the event Expression is boundTo a variable, as detailed later in
section 2.2.3, in which case this variable binding must be added to the Substitution.

29

Assuming no optimizations, first the query is Evaluated, extending the original Substitution
with bindings for additional variables (possibly multiple ones, generating alternative Substitu-
tions as in example 2.2.6), and if it succeeds, then the test is Evaluated. Both test and query
may possibly filter out some of the Substitutions.13.

Given the set of Substitutions for which all query and test components succeed, the action
component is finally executed by an ExpressionEngine, as partially shown in example 2.2.7.

Example 2.2.7 Executing an ECARule instance, with the extended (or filtered) Substitutions
resulting after consideration of the rule conditions in example 2.2.6.

{Prof=T57, Lect=L144, St=S4521}

ecareq:ex1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "Prof";

:rename "1"; :literal "T57"],

[a :Variable; :name "Lect";

:rename "3"; :literal "L144"],

[a :Variable; :name "St";

:rename "2"; :literal "S4521"]];

:solve [a :Expression;

:is text:merge;

:literal # simplified

"%1, %2 not attending %3."

]].

[] a :Evaluated; :relatesTo ecareq:ex1;

:returns [a Result;

:literal "T57, S4521 not attending L144."].

{Prof=T01, Lect=L144, St=S4521}

... omitted ...

ecareq:act1 a :Evaluate;

:issuer ecaeng:;

:using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T57"],

[a :Variable; :name "Msg"

:literal

"T57, S4521 not attending L144."]];

:using [a Substitution;

:binding

[a :Variable; :name "Prof"

:literal "T01"],

[a :Variable; :name "Msg"

:literal

"T01, S4521 not attending L144."]];

:solve [a :Expression;

:is people:notify;

:having [a :Parameter;

:is people:person; :boundTo "Prof"];

:having [a :Parameter;

:is people:message; :boundTo "Msg"]].

[] a :Evaluated; :relatesTo ecareq:act1;

13Notice that an Expression succeeds if it returns at least one Result, even an empty one like the test Evaluated
in example 2.2.6.

30

:returns [a Result]

For the action component, it is of particular relevance to ensure that all (distinct) Substitu-
tions (for the variables involved in the Expression) are included in a single Evaluate Request, in
order to account for any possible transactional behavior (associated with the LanguageConstruct
defining the actual operational semantics of the action).

Example 2.2.8 The following further illustrates the concept of Languages showing a possible
definition for the Languages used in examples 2.2.1, 2.2.2 and 2.2.9.

office:language a :Language;

:defines office:registration_cancelled,

office:student, office:lecture,

office:registration, office:state.

office:registration_cancelled a :Functor;

:binds office:student, office:lecture.

office:registration a :Functor;

:binds office:student, office:lecture,

office:state.

dept:language a :Language;

:defines

dept:term_completed,

dept:course_lecture, dept:lecture_teacher,

dept:course, dept:lecture, dept:teacher,

dept:good_student, dept:student.

dept:term_completed a :Functor;

:binds dept:course.

dept:course_manager a :Functor;

:binds dept:course, dept:teacher.

dept:course_lecture a :Functor;

:binds dept:course, dept:lecture.

dept:lecture_teacher a :Functor;

:binds dept:lecture, dept:teacher.

dept:good_student a :Functor;

:uses dept:student.

people:language a :Language;

:defines people:notify,

people:person, people:format,

people:message.

people:notify a :Functor;

:uses people:person, people:format,

people:message.

people:format a :FunctionalParameter;

:default "plain".

text:language a :Language;

:defines text:merge, text:pattern.

text:merge a :OpaqueConstruct;

:digs text:pattern.

officedb2:language a :Language;

:defines officedb2:trigger,

officedb2:schema,

officedb2:user, officedb2:passwd.

officedb2:trigger a :NativeRuleConstruct;

31

:uses officedb2:schema,

officedb2:user, officedb2:passwd;

:digs officedb2:trigger.

util:language a :Language;

:defines util:count.

util:count a :Aggregator;

:binds office:student, office:lecture.

xcerpt:language a :Language;

:defines xcerpt:eval, xcerpt:construct.

util:count a :Aggregator;

:uses xcerpt:construct.

2.2.3 Variables, Substitutions and Results

As described in section 2.2.2, the Evaluate of an Expression, using some (input) Substitutions,
returns several Results. Each Result may provide a literal value using Substitutions. Usually
each returned Substitution is subsumed by one of the input Substitutions, but it may instead
actually subsume several input Substitutions (by omitting some of the involved Variables, to be
considered as unbound). An empty Result Substitution set (subsuming all input Substitutions)
may be omitted altogether. The literal value of a Result is required to be present if the
Expression is boundTo a Variable. If the Expression is boundTo a Variable a binding for
this Variable is to be created (using the returned literal value) and joined with the returned
Substitution. The Substitution resulting from this join is additionally joined with all the input
Substitutions, yielding the actual set of output Substitutions associated with that Result (this
set must not be empty). Given this, a Result may actually stand for several Results, all sharing
the same literal value (if there is one). The Evaluate of the Expression is said to succeed if it
outputs at least a Result.

The Evaluate of an Aggregation is expected to aggregate the values of a set of Variables
(contained in the input Substitutions) optionally groupedBy a set of other Variables (also con-
tained in the input Substitutions). As such, the Results of an Aggregation are further restricted:
their Substitutions cannot contain any binding for the aggregated Variables (unless explicitly
included as groupedBy at the same time14), and they must always include the aggregated value
as the literal Result value. An Aggregation returns at most a single Result for each set of
distinct values of the groupedBy Variables. The actual Aggregation to be performed is defined
by parametric Aggregators like util:count or xcerpt:eval in example 2.2.9.

Example 2.2.9 To illustrate the use of Aggregations the following specifies an ECARule
(ex:r2) that sends a map of all registration cancellations for a given course at the end of
every term (re-using ex:qry1 from example 2.2.1). Notice that the action uses only two vari-
ables (Mngr and CourseMsg) and so it sends a message for each distinct pair of values of these
variables.

ex:r2 a :ECARule;

:event [a :Event; :sub [a :Expression;

:is dept:term_completed;

14If an Aggregation is groupedBy on the same set of variables it aggregates, it becomes a simple function that
returns a single composed value for each set of distinct values of the given variables.

32

:having [a :Parameter;

:is dept:course; :boundTo "Course"]]];

:query [a :Query; :sub [a :Expression;

:is dept:course_manager;

:having [a :Parameter;

:is dept:course; :boundTo "Course"];

:having [a :Parameter;

:is dept:teacher; :boundTo "Mngr"]]];

:query [a :Query; :sub [a :Expression;

:is dept:course_lecture;

:having [a :Parameter;

:is dept:course; :boundTo "Course"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]]];

:query ex:qry1;

:query [a :Query; :sub [a :Expression;

:is office:registration;

:having [a :Parameter;

:is office:state; :literal "cancelled"];

:having [a :Parameter;

:is office:student; :boundTo "St"];

:having [a :Parameter;

:is office:lecture; :boundTo "Lect"]]];

:query [a :Query; :sub [a :Expression; :boundTo "Num";

:is util:count; :aggregate "St";

:groupedBy "Course", "Lect"]];

:action [a :Action; :sub [a :Expression;

:is people:notify;

:having [a :Parameter;

:is people:person; :boundTo "Mngr"];

:having [a :Parameter;

:is people:format; :literal "html"];

:having [a :Parameter;

:is people:message; :boundTo "CourseMsg"];

:var [a :Variable; :name "CourseMsg";

:equals [a :Expression;

:is xcerpt:eval;

:aggregate "Lect", "Num", "Prof";

:groupedBy "Course";

:having [a :Parameter;

:is xcerpt:construct; :literal """

html { body {

h1 { var Course },

table {

tr {

th { "Lecture" },

th { "Cancellations" },

th { "Teachers" } },

all tr {

td { var Lect },

td { var Num },

td { ul {

all li { var Prof } } }

} } } }"""]]]]].

Every input Substitution must explicitly include all (and only those) Variables involved in
the Expression to Evaluate. If there is a single empty input Substitution (no variables involved)
it may be omitted. The set of Variables involved in an Expression includes the ones boundTo its

33

Parameters or Argument Expressions. If there is a Variable boundTo the whole Expression, it is
also included in this set. Additionally, for an Aggregation, groupedBy and aggregate Variables are
also included. Besides these implicitly involved Variables, an Expression may also be specified
with several explicit Variable declarations15 (explicitly declaring also any Variables boundTo
those). The set of all involved Variables must be fully included in every input Substitution
(regardless if they are bound or unbound, thus allowing all the with declarations to be omitted
in an Expression to be solved).

An Opaque Expression must be specified together with all the Variables non-transparently
referenced by its literal part. An Opaque may also rename its Variables according to the naming
conventions used by its literal part16 (as shown in example 2.2.1).

For each Expression, either a single Evaluate Request is issued using all the distinct input
Substitutions (this is mandatory for action components, as said before, and also for Aggrega-
tions); or several individual Requests may be issued (e.g. one for each Substitution, or one for
each set of distinct values for FunctionalParameters).

As usual, the scope of a Variable is the Rule that contains the Expression, unless it is a
LocalVariable in a particular Expression. The scope of such LocalVariables is the Expression
where they are explicitly declared, and they are usually used to hold literal functional Results
(e.g. to be used as Parameters, like Msg in example 2.2.1) or to express local join conditions
between Expression Arguments.

All Variables are assumed to be FreeVariables, unless they are explicitly declared other-
wise or implicitly enforced to be BoundVariables by the context in which they are involved
(viz. groupedBy, aggregate, boundTo a FunctionalParameter, or boundTo another BoundVari-
able). An Evaluate Request can only be issued for a specific Expression if all the Variables the
Expression uses are actually bound to literal values17. The FreeVariables and LocalVariables
mode may be unbound at the time of the Evaluate Request. The nature of a Variable poses
no restriction on the Results of an Evaluate (for instance, a FreeVariable may be bound in a
Result but is not required to be so).

An explicit Variable declaration may also include restrictions to the domain of the Variable,
namely: it may be restricted to having a specific literal value (which may be understood as a
simple binding), or it may be declared that its value always equals one (or more) Expressions (as
shown in example 2.2.1 for Variable Msg). Declaring that a Variable equals several Expressions
defines the domain of the Variable as the intersection of the sets of literal values that each
Expression returns. Notice that equals (and test component) Expressions can only produce
new bindings for LocalVariables, as such, the Evaluate Request for these Expressions can only
be issued when all Variables they use or bind are actually bound to literal values.

15For an AbstractExpression, these explicit declarations are restricted to the Variables already implicitly
involved in it or in one of its Argument Expressions. This restriction stems from the fact that the full se-
mantics of AbstractExpressions is to be defined by their parametric ExpressionConstructs (together with any
OperatorArguments, in case of algebraic Operators).

16Notice that this rename information is not to be used to perform any form of blind textual replacement in
the literal text before an Evaluate. Instead, this rename information is to be included in the Substitutions used
when issuing the Evaluate Request (as illustrated in example 2.2.7).

17Notice that, actually, the Variables used by different Expressions define a partial evaluation order among
them (most relevant when there are multiple conditions in a rule).

34

2.2.4 Rule Instances, et al.

For the sake of completeness of the presented r3 ontology, it is worth mentioning some additional
details that, although not fully supported by the current prototype, are also included in the
current version of the ontology.

Figures 2.9 and 2.10 include a Register operation that may be used to supply Definitions
of Languages and Engines (usually to a ComposerEngine, a RuleEngine, or a BrokerEngine).
This operation is in fact supported by the current prototype, but disregarding any inconsistency
matters that it may introduce.

+literal[0..1] : XMLLiteral
+type[0..1] : LanguageType
+possible[*] : Tuple

ECARuleInstance

Solution+possible

LanguageType+type

+has[1] : OpaqueParameter
-takes[0]

LiteralConstruct

+is[1] : LiteralConstruct
+is[1] : ExpressionConstruct

«definition»
LiteralExpression

+is+is[1] : OpaqueConstruct
«definition»Opaque

OpaqueConstruct

InterfaceTerminateInterface

Figure 2.12: Implementation Details

Furthermore, if an Engine creates or updates resources, as a result of a Request, these
resources may be included in any Response. In doing so, the Engine makes those resources
available to the Client, as shown in figure 2.9. For instance, during a Load conversation (as the
one in example 2.2.3), chances are that the Engine will keep a materialized copy of the Loaded
RulePackage (like ecarls:rs1) and the ECAEngine may choose to share that copy with the
Client making it available.

Often these available resources will be persistent ones (with an associated URI), at least
while the Request is not Terminated. These resources may even have a dynamic (evolving)
nature (for instance ecarls:rs1 may include information about the current state of evaluation
of the different rules by including any active ECARuleInstances) and the Client may retrieve
updated descriptions, whenever he wishes to. These available resources are released (and usually
their representation becomes unavailable) when the Request is Terminated. Currently, the
r3 prototype does not expose any available resources, but internally it already relies upon
ECARuleInstances to keep the evaluation state of reactive rules.

Notice that figure 2.10 does not include any functionality regarding consulting resources
(and their representations). Nonetheless, consulting resources is not only needed to retrieve
available resources, it is also core to the r3 API, since, as said before, a Message may be an
incomplete RDF graph containing references to external resources. This means that in order to
fully understand a Request (or a Response) an Engine (or Client) may have to retrieve additional
resource representations18. Such functionality (of retrieving resource representations) is core to
the (Semantic) Web itself and not specific to rule engines.

The ontology also includes (see figure 2.12) an incomplete set of specializations of Interface
and Expression to be refined in future versions. These specializations are currently used for
some minor implementation details (viz. ECA-ML integration), but are not yet consistently
used throughout the ontology.

18How (and to what extent) this is actually done is up to the receiver, as long as it manages to understand
the Message (correctly).

35

2.2.5 Prototype Implementation and Communication Details

The r3 prototype is implemented as a Java 5 Servlet [41], with minimal use of JavaServer Pages
[40] for the prototype frontend. The r3 Servlet provides an HTTP POST interface (embedding
also Apache Axis [35] 1.3, for SOAP 1.1 support), and is packaged as a WAR19 file, thus allowing
easy installation under any servlet container20.

The core of the r3 ECA rule engine relies heavily upon Jena [42] 2.4 for RDF support
(wrapped in Jastor-like [39, 25] Java classes). Nevertheless, the core of this engine is imple-
mented using Prova (version 1.9, commit 1421, patched22). The use of Prova embedded in a
Servlet required the development of an extension to the Java/Prova integration mechanisms.
The extended/patched version of Prova 1.9 is also included in the WAR package.

The prototype frontend allows to browse through different Use-Case scenarios formed by
Groups of Examples, inspecting the actual requests that would be posted. Installed on an
application server, it allows the actual posting of requests to that same server and the inspection
of the synchronous responses. It is also possible to unpack the WAR file and browse the files
offline. This offline configuration may have weaker security restrictions and allow the posting of
requests to any application server that you are aware of (just by redirecting the URL of the r3

Server in the frontend). Currently the Use-Case scenarios available are B-Domain (see section
3.2) or PubMed (see section 3.3) related, and an ad-hoc collection of development tests is also
included.

Founding the r3 API on an abstract messaging layer, like the one introduced in section
2.2.2, provides an architecture where other more specific layers may be semantically plugged
providing support for: many concrete syntaxes (or serializations), alternative protocols, and
even ontology reasoners. All that is assumed is that any message, at the time it gets delivered
to the core of an r3 Engine, is a fully materialized resource description of a Message (detailed in
figure 2.10), and so the rule engine can focus on what constitutes its true added value (realizing
reactive behavior), and rely on (re-using) other Semantic Web technologies for the rest.

For sure, a prototype like r3, in order to provide some actual functionality, must make some
choices and eventually commit to concrete syntaxes and protocols, and for that it must include
specific code to support its choices, but if the internal architecture of the prototype conforms to
the abstract messaging layer keeping a clean separation between these external layers and the
core of the engine, the latter will be a re-usable “abstract” library (that actually implements
the behavior of reactive rules).

Currently in r3 we have chosen to implement an external layer (as said before, using a Java
Servlet based on Axis 1.3) supporting simultaneously a SOAP 1.1 and a pure HTTP REST [21]
style interface. The body of an HTTP POST request (SOAP wrapped or not) may be an ECA-
ML [3] XML document (viz. the restricted ECA-ML subset defined in http://rewerse.net/
I5/r3/DOC/2006/eval.xsd) or any of the XML based RDF serializations supported by Jena
2.4. Supporting N3 and other non-XML serializations (e.g. using CDATA XML nodes) would
require a more involved architecture given the XML Element orientation of Axis (probably the

19r3.war: including r3.jar with sources, released under the Apache License - version 2.0.
20Just copy the r3.war file to the webapps directory of your Apache Tomcat installation (tested with version

5.5.12).
21Regretfully, support for Prova 1.9 was dropped (before final release, cf. http://prova.ws/forum/viewtopic.php?

t=160), in favor of the new upcoming version 2.0 (which includes a major rewriting of the inference engine and
has not yet been released). The available Prova version (1.8) is more than 2 years old and does not constitute
a viable alternative.

22http://prova.ws/forum/viewtopic.php?t=149

36

http://rewerse.net/I5/r3/DOC/2006/eval.xsd
http://rewerse.net/I5/r3/DOC/2006/eval.xsd
http://prova.ws/forum/viewtopic.php?t=160
http://prova.ws/forum/viewtopic.php?t=160
http://prova.ws/forum/viewtopic.php?t=149

recently released Axis2 [36] would be the best choice to achieve this).
A preliminary WSDL 1.1 [54] specification (http://rewerse.net/I5/r3/DOC/2005/r3.

wsdl) defines the actual SOAP [52] 1.1 binding (document style - not rpc - with a literal
body - not encoded). This specification is based on an XML Schema [55] (http://rewerse.
net/I5/NS/2006/r3/r3.xsd) that defines a markup based on RDF/XML for the r3 ontology.
This XML Schema is obtained automatically from the OWL-DL definition of the r3 ontology,
using a generation tool still under development (which is not the focus of our work but that
may prove relevant as a proof-of-concept for other Rewerse Working Groups, viz. WGI1).

It is worth noting that both the protocol and the markup could contribute to the actual
serialization of Messages. For instance, one could use WS-Addressing [53] in the SOAP header,
identifying a Request - wsa:MessageID - Message (to which a Terminate - wsa:RelatesTo - or
Response - wsa:ReplyTo - relatesTo), and the specific subclass - wsa:Action - of the Message,
reserving the SOAP body for providing the serialization of other properties of the Message (like
parameters, for instance). Similar results may be achieved by introducing proprietary HTTP
headers. The external (concrete) layers would be responsible for mapping all this information
into a materialized resource description of a Message.

Also, these external layers may be capable of reasoning improving their Semantic (Web)
potential. For instance, once obtained the explicit RDF graph contained in a message, it is
possible to scan that graph for any resources used only as objects of tuples (excluding those
that are also used as subjects), and go grab their representation from the Web, thus building
an extended graph (that would for instance include ontology information), and right before
submitting it to the core of the engine (with the help of an ontology reasoner, like Pellet [46])
materialize also derived tuples.

Finally, the external layers can even be made adaptive by extending the Interface class with
properties describing the actual markup and protocol supported. Currently the r3 ontology only
allows the specification of a markup URI, but a richer definition (e.g. introducing a new Markup
class, instead of the markup property) must be considered in the future, eventually including
markup transformations (e.g. XSLT [58]). The current r3 implementation supports, in its
external layers, a limited form of adaptive functionality by recognizing two different markups
(viz. http://rewerse.net/I5/NS/2006/r3 for RDF/XML serializations; and http://www.
semwebtech.org/eca/2006/eca-ml for ECA-ML); and by issuing local (in-memory) calls to
Load and Evaluate (avoiding the overhead of remote calls) for locally supported component
Languages.

2.2.6 Building r3 Component Engines

Since the beginning of the work on the r3 ontology and the r3 prototype, it became clear that
there was a considerable amount of code that would be shared by r3 main rule engines and the
different r3 expression sub-engines (hopefully to be developed for an unlimited set of component
Languages).

To some extent, this sharing of code, may be solved by an adequate distributed component-
based architecture. This is the case for the requirement to evaluate expression arguments (which
is not trivial) that is common to all algebraic languages and shared by the main engines (given
precisely the algebraic nature of those languages). This requirement may be solved/shared
by the introduction of BrokerEngines to be used both by the the main rule engines and any
algebraic engines23. Nevertheless, other (not so minor) details like actually invoking a broker

23Besides BrokerEngines, other more involving interfaces were also suggested (like the one included in previous

37

http://rewerse.net/I5/r3/DOC/2005/r3.wsdl
http://rewerse.net/I5/r3/DOC/2005/r3.wsdl
http://rewerse.net/I5/NS/2006/r3/r3.xsd
http://rewerse.net/I5/NS/2006/r3/r3.xsd
http://rewerse.net/I5/NS/2006/r3
http://www.semwebtech.org/eca/2006/eca-ml
http://www.semwebtech.org/eca/2006/eca-ml

engine (or, e.g., dealing with variables and unification, and joining substitution sets) are hardly
solved by distributed architectures.

Eventually, all fully compliant r3 expression engines will share an enormous amount of code
that is already part of an r3 main engine. In order to minimize this issue and ease, as much
as possible, the process of implementing and testing new expression engines, r3 facilitates a
Java library that abstracts away matters like communication protocols (HTTP, SOAP); binding
variables and generating alternative solutions; or even the r3 ontology itself (and dealing with
the Jena RDF models).

The final goal is to allow developers of expression engines to focus on the specificities of the
languages to implement; freeing them from r3 details which are to be abstracted by tailored
evaluation context components (under development at the time of this writing).

Currently, the functionality of the r3 development library is still limited, nevertheless you
may use it if you are willing to do so. It provides, e.g., a net.rewerse.i5.r3.test.Tester
class for offline testing (without requiring the use of a Java application server) and even a
net.rewerse.i5.r3.test.dumpster Engine for receiving asynchronous Responses. Actually
this library is being used to develop all the component Languages included in the r3 prototype
(as illustrated by the excerpts of Java code included in section 2.2.7). More documentation is
being made available. This documentation is meant to fully support developers of component
languages. Nevertheless, you can also contact us if you plan to use this library to develop any
component language. We will do our best to further support you!

Here are a few tips on how you may develop your own r3 Engine.
First of all you need the development library available at http://rewerse.net/I5/r3/

TST/install/r3lib.jar. Using this library you should create/build a Web Dynamic Project
exporting a Servlet24. Then you need to create a Servlet, a Server25 and an Evaluator as
illustrated by the following Java excerpt:

package com.ricardoamador.r3.test.engine;

public class Servlet extends net.rewerse.i5.r3.Servlet {

protected void initServices() {

super.initServices(); // declare r3 default services if present

registerService("com.ricardoamador.r3.test.engine.Server", "dummy");

}

}

package com.ricardoamador.r3.test.engine;

import net.rewerse.i5.r3.eval.ExprEvaluator;

public class Server extends net.rewerse.i5.r3.eval.Server {

protected ExprEvaluator createEvaluator(String url) throws Exception {

return new Evaluator(url);

}

r3 versions, and shown in figures reffig:002more01 and reffig:001more01). These are probably too involved to
be really useful.

24The easiest way to create an r3 Web Dynamic Project in Eclipse is to import http://rewerse.net/I5/r3/TST/

install/r3xra.war into your own Eclipse workspace
25For each engine several instances of Server may be created, whereas one and only one Evaluator is instan-

ciated.

38

http://rewerse.net/I5/r3/TST/install/r3lib.jar
http://rewerse.net/I5/r3/TST/install/r3lib.jar
http://rewerse.net/I5/r3/TST/install/r3xra.war
http://rewerse.net/I5/r3/TST/install/r3xra.war

}

package com.ricardoamador.r3.test.engine;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import net.rewerse.i5.r3.R3Utils;

import net.rewerse.i5.r3.eval.ExprEvaluator;

import net.rewerse.i5.r3.juice.ontology.Language;

import net.rewerse.i5.r3.juice.ontology.Tuple;

import net.rewerse.i5.r3.juice.ontology.Variable;

public class Evaluator extends ExprEvaluator {

public static final Language LANG =

r3lang(Evaluator.class, "test.owl",

r3url("http://www.ricardoamador.com/tmp/test.owl"), "test");

protected Language getLanguage() {

return LANG;

}

protected void evaluate(Context ctx) throws Exception {

String opname = ctx.opname();

if (opname.equals("opaque")) {

String lvars = "";

for (Tuple t: ctx.getUsing()) {

lvars += "\n";

for (Variable v: t.getBinding()) {

lvars += v.getName()+"="+v.getLiteral()+"; ";

}

}

// a single result for all tuples

ctx.addResult(opname+": "+ctx.literal("literal")+lvars);

} else if (opname.equals("functor")) {

Document d = xmlBuilder().newDocument();

String res = opname+": "+ctx.literal("fpar")+"|"+ctx.text("fpar");

// ctx.literal is the literal XML serialization

// ctx.text is ctx.literal with any XML escapes (e.g. <) removed

for (Tuple t: ctx.getUsing()) {

ctx.startResult(t);

// ctx.literal/text/output/result sensitive to the current tuple

// result/output must be literal XML serializations

if (ctx.output("lpar", "Y1")) {

Node nd = d.createTextNode(res+"#"+ctx.text("lpar"));

ctx.finishResult(R3Utils.asString(nd));

} else ctx.cancelResult();

}

}

}

}

If you want to test your Servlet offline just derive your class from net.rewerse.i5.r3.test.Tester
(instead of), as shown in the following Java excerpt:

package com.ricardoamador.r3.test.engine;

public class Servlet extends net.rewerse.i5.r3.test.Tester {

public static void main(String[] args) throws Exception {

39

String templates = parseArgs(args);

if (templates == null) templates = "tests.xml";

testTemplates(templates, new Servlet());

}

protected void initServices() {

super.initServices(); // declare r3 default services if present

registerService("com.ricardoamador.r3.test.engine.Server", "dummy");

}

}

Finally you have to define your own Language in an OWL-DL ontology (importing the
r3 ontology) and implement your Evaluator. Example 2.2.10 shows the definition for the
HTTP language included in the r3 prototype and described in section 2.2.7 where several Java
excerpts of the implementation for some of the engines included in r3 are also presented . These
Java excerpts are based on the current r3 version (v0.20) and are bound to become outdated.
Nevertheless they may help the interested reader to get a better insight on the expected features
for the r3 library, for which full documentation is to be postponed until a more stable version
is reached.

Example 2.2.10 r3 HTTP Language. r3 prototype include an HTTP language that includes
the most common HTTP functionality.

<rdf:RDF

xmlns="http://rewerse.net/I5/NS/r3/2005/eval/http#"

xmlns:r3="http://rewerse.net/I5/NS/2006/r3#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/http">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://rewerse.net/I5/NS/2006/r3"/>

</owl:Ontology>

<r3:Language rdf:ID="http">

<r3:defines>

<r3:Functor rdf:ID="get">

<r3:uses>

<r3:FunctionalParameter rdf:ID="uri">

<r3:in rdf:resource="#http"/>

</r3:FunctionalParameter>

</r3:uses>

<r3:binds>

<r3:LogicalParameter rdf:ID="status">

<r3:in rdf:resource="#http"/>

</r3:LogicalParameter>

</r3:binds>

<r3:binds>

<r3:LogicalParameter rdf:ID="status-reason">

<r3:in rdf:resource="#http"/>

</r3:LogicalParameter>

</r3:binds>

<r3:binds>

<r3:LogicalParameter rdf:ID="content-type">

<r3:in rdf:resource="#http"/>

</r3:LogicalParameter>

</r3:binds>

40

<r3:binds>

<r3:LogicalParameter rdf:ID="content-length">

<r3:in rdf:resource="#http"/>

</r3:LogicalParameter>

</r3:binds>

<r3:in rdf:resource="#http"/>

</r3:Functor>

</r3:defines>

<r3:defines>

<r3:Functor rdf:ID="post">

<r3:uses rdf:resource="#uri"/>

<r3:uses>

<r3:FunctionalParameter rdf:ID="body">

<r3:in rdf:resource="#http"/>

</r3:FunctionalParameter>

</r3:uses>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds>

<r3:LogicalParameter rdf:ID="soapaction">

<r3:in rdf:resource="#http"/>

</r3:LogicalParameter>

</r3:binds>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:Functor>

</r3:defines>

<r3:defines>

<r3:Functor rdf:ID="put">

<r3:uses rdf:resource="#uri"/>

<r3:uses rdf:resource="#body"/>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:Functor>

</r3:defines>

<r3:defines>

<r3:Functor rdf:ID="delete">

<r3:uses rdf:resource="#uri"/>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:in rdf:resource="#http"/>

</r3:Functor>

</r3:defines>

<r3:defines>

<r3:Operator rdf:ID="transform">

<r3:uses>

<r3:FunctionalParameter rdf:ID="method">

<r3:default rdf:parseType="Literal">POST</r3:default>

<r3:in rdf:resource="#http"/>

</r3:FunctionalParameter>

</r3:uses>

<r3:uses rdf:resource="#uri"/>

<r3:takes>

<r3:OperatorArgument rdf:ID="source">

<r3:in rdf:resource="#http"/>

41

</r3:OperatorArgument>

</r3:takes>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:Operator>

</r3:defines>

<r3:defines>

<r3:OpaqueConstruct rdf:ID="vget">

<r3:digs>

<r3:OpaqueParameter rdf:ID="vuri">

<r3:in rdf:resource="#http"/>

</r3:OpaqueParameter>

</r3:digs>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:OpaqueConstruct>

</r3:defines>

<r3:defines>

<r3:OpaqueConstruct rdf:ID="vpost">

<r3:digs rdf:resource="#vuri"/>

<r3:uses rdf:resource="#body"/>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds rdf:resource="#soapaction"/>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:OpaqueConstruct>

</r3:defines>

<r3:defines>

<r3:OpaqueConstruct rdf:ID="vput">

<r3:digs rdf:resource="#vuri"/>

<r3:uses rdf:resource="#body"/>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:OpaqueConstruct>

</r3:defines>

<r3:defines>

<r3:OpaqueConstruct rdf:ID="vdelete">

<r3:digs rdf:resource="#vuri"/>

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:in rdf:resource="#http"/>

</r3:OpaqueConstruct>

</r3:defines>

<r3:defines>

<r3:OpaqueConstruct rdf:ID="vtransform">

<r3:uses rdf:resource="#method"/>

<r3:digs rdf:resource="#vuri"/>

<r3:takes rdf:resource="#source"/>

42

<r3:binds rdf:resource="#status"/>

<r3:binds rdf:resource="#status-reason"/>

<r3:binds rdf:resource="#content-type"/>

<r3:binds rdf:resource="#content-length"/>

<r3:in rdf:resource="#http"/>

</r3:OpaqueConstruct>

</r3:defines>

<r3:defines>

<r3:OpaqueConstruct rdf:ID="opaque">

<r3:in rdf:resource="#http"/>

<r3:digs>

<r3:OpaqueParameter rdf:ID="literal">

<r3:in rdf:resource="#http"/>

</r3:OpaqueParameter>

</r3:digs>

<r3:binds rdf:resource="#status"/>

<r3:binds>

<r3:LogicalParameter rdf:ID="status-class">

<r3:in rdf:resource="#http"/>

</r3:LogicalParameter>

</r3:binds>

<r3:binds rdf:resource="#status-reason"/>

</r3:OpaqueConstruct>

</r3:defines>

<r3:defines rdf:resource="#method"/>

<r3:defines rdf:resource="#uri"/>

<r3:defines rdf:resource="#body"/>

<r3:defines rdf:resource="#status"/>

<r3:defines rdf:resource="#status-class"/>

<r3:defines rdf:resource="#status-reason"/>

<r3:defines rdf:resource="#vuri"/>

<r3:defines rdf:resource="#literal"/>

<r3:defines rdf:resource="#source"/>

<r3:defines rdf:resource="#soapaction"/>

<r3:defines rdf:resource="#content-type"/>

<r3:defines rdf:resource="#content-length"/>

</r3:Language>

</rdf:RDF>

2.2.7 r3 Component Languages

The r3 prototype includes, not only the main ECA rule engine, but also, several expression sub-
engines supporting some particular rule component Languages. All these languages have been
integrated using the r3 development library. The component Languages currently integrated in
the prototype are26 http, prova, xcerpt, xchange, xquery, xpath and util27. The OWL-DL
ontologies28 (and Java classes29) that currently define (and implement) these Languages are
available online. Together with the description of each language, an illustrative set of examples
is included here, and additionally some Java excerpts of the engine implementation showing
how the r3 library is used.

26http://rewerse.net/I5/NS/r3/2005/eval/<name>#<name>
27An expression engine for (a demonstrative subset of) the SNOOP [20] event algebra also exists [9]. This

latter Language was implemented using a previous r3 version (v0.02) and still has to be upgraded to the current
r3 version.

28http://rewerse.net/I5/NS/r3/2005/eval/<name>
29net.rewerse.i5.r3.eval.<name>.Evaluator

43

http://rewerse.net/I5/NS/r3/2005/eval/<name>#<name>
http://rewerse.net/I5/NS/r3/2005/eval/<name>
net.rewerse.i5.r3.eval.<name>.Evaluator

HTTP support. The http Language defines a set of Functors, viz. get, post, put and
delete. Any of these constructs uses an absolute request uri and binds a response status
and status-reason. Additionally each of put and post uses a literal body. Only textual (viz.
text/*) and XML application (viz. application/xml, application/*+xml) response content-
types are supported and the response body is returned after being converted into an XML
fragment according to the actual content-type (e.g. text/plain yields an XML text node).
Any other response content-type is taken as an error, pretty much like failing to establish a
connection or getting an HTTP response status not in the ok (2xx) range (with the exception
of “Not Found”/404 and “Gone”/410 that are considered a failure, returning an empty set of
results). The extension of these Functors so that each of them binds a set of parameters relating
to (the most common) HTTP headers, is being considered30.

For any of the above constructs, there exists a similar OpaqueConstruct (with the same
name prefixed with a ‘v’) that, instead of using a uri, digs a vuri. For these OpaqueConstructs,
variables may also be used as URI query parameters31 (if renamed to properly URI encoded
strings prefixed with a non-encoded ‘=’, variable values must not be encoded); or bound to
request/response HTTP headers32 (if renamed to strings that are valid HTTP headers with the
addition of a ‘:’ prefix).

Also available is an opaque construct that digs a literal HTTP request33 and binds a
response status, status-reason and status-class34. This construct does not deal with any
redirections (3xx), it succeeds for any response status (contrary to the others that only succeed
for 2xx response status) and fails if it is not possible to establish a connection or if an invalid
response content-type is returned. It uses variables in the same way the other OpaqueConstructs
do.

Under consideration is a transform Operator that takes a source body (instead of a literal
body), having a behaviour similar to the post and put constructs (to distinguish between them
it uses a method parameter: POST, by omission, or PUT). Additionally, a modified uri event
(with an optional poll interval) and a modified-since test are also being considered.

Examples:

<Evaluate

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/http"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<issuer><Client/></issuer>

<solve><Expression><is rdf:resource="#opaque"/>

<having><Parameter>

<is rdf:resource="#status"/>

<boundTo>Status</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#status-class"/>

<boundTo>StatusClass</boundTo>

</Parameter></having>

30Actually, e.g., post already binds a soapaction.
31Unbound query parameters are included in the query without the equal character.
32Unbound headers are omitted in the request, and bound if present in the response. Bound headers are

included in the request and checked (if present) in the response. Beware when using bound general headers
(or entity headers in a POST) since these relate to a specific HTTP message (or entity body) and may have
different values in the request and in the response causing the construct to fail.

33Any included HTTP version is ignored.
34status-class is the first digit of status.

44

<having><Parameter><is rdf:resource="#status-reason"/>

<boundTo>StatusReason</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#literal"/>

<literal rdf:parseType="Literal">

POST http://di150.di.fct.unl.pt:15080/r3/service/prova HTTP/1.1 content-type: text/xml

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body> <request xmlns=""

xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/ddd/solve</subject>

<opaque>a(X,Y)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X" />

<log:variable name="Y" />

</log:tuple>

</log:variable-bindings>

</request> </soapenv:Body> </soapenv:Envelope>

</literal>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable>

<name>SOAPAction</name><rename>:SOAPAction</rename>

<literal rdf:parseType="Literal"

>"http://rewerse.net/I5/NS/2006/r3#Evaluate"</literal>

</Variable></binding>

<binding><Variable>

<name>Type</name><rename>:Content-Type</rename>

</Variable></binding>

<binding><Variable>

<name>Length</name><rename>:Content-Length</rename>

</Variable></binding>

<binding><Variable><name>Status</name></Variable></binding>

<binding><Variable><name>StatusClass</name></Variable></binding>

<binding><Variable><name>StatusReason</name></Variable></binding>

</Substitution></using>

</Evaluate>

Java Excerpts:

package net.rewerse.i5.r3.eval.http;

...

public class Evaluator extends ExprEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String op = ctx.opname();

boolean usevars = op.startsWith("v");

String puri = usevars ? "vuri" : "uri";

HTTPRequest req = new HTTPRequest(ctx.text("method"), ctx.text(puri), ctx.text("body"));

String[] phs = null;

boolean trstatus;

if (op.equals("opaque")) {

usevars = true;

trstatus = false;

45

req.parse(ctx.text("literal"));

} else { // op.equals("get/post/put/delete/transform")

if (usevars) op = op.substring(1);

trstatus = true;

if (op.equals("transform")) {

if (!req.method.equals("POST") && !req.method.equals("PUT"))

throw new Exception("Operator http:transform requires http:method PUT or POST");

throw new Exception("Operator http:[v]transform not implemented");

// Naive view: req.body = ctx.opcomposite().arg-eval("source");

// TODO: implement AlgebraContext with multiple results,

// each with its set of ?distinct? tuples to join

} else {

req.method = op.toUpperCase();

}

phs = new String[] {"soapaction", "content-type", "content-length"};

for (String hn: phs) {

String hv = ctx.text(hn);

if (hv != null) req.headers.add(hn+": "+hv);

}

}

URI u = new URI(req.uri);

String bqry = u.getRawQuery(), frag = u.getRawFragment();

for (Tuple t: ctx.getUsing()) {

String qry = bqry;

ArrayList<String> headers = new ArrayList<String>(req.headers);

Hashtable<String,String> vhs = new Hashtable<String,String>();

if (usevars) {

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

char c = r.charAt(0);

if (c != ’:’ && c != ’=’) continue;

r = r.substring(1);

String txt = v.getLiteral();

if (c == ’:’) {

if (txt != null) headers.add(r+": "+txt);

vhs.put(n, r.toLowerCase());

} else {

if (txt != null) txt = URLEncoder.encode(txt, "UTF-8");

qry = r+(txt == null ? "" : ("="+txt))+(qry == null ? "" : ("&"+qry));

}

}

}

u = new URI(u.getScheme(), u.getUserInfo(), u.getHost(), u.getPort(), u.getPath(), null, null);

String uri = u.toURL().toString();

if (qry != null) uri += "?"+qry;

if (frag != null) uri += "#"+frag;

SSLSocketFactory sslf = HttpsURLConnection.getDefaultSSLSocketFactory();

HttpsURLConnection.setDefaultSSLSocketFactory(sslfactory);

R3Utils.URLStream us;

try {

us = new R3Utils.URLStream(req.method, uri, headers, req.body, trstatus, true);

} finally {

HttpsURLConnection.setDefaultSSLSocketFactory(sslf);

}

if (trstatus && !us.isok()) {

us.close();

if (us.isnotfound()) {

if (usevars) continue; else break; // fail

46

}

throw new Exception("Unexpected HTTP status "+us.status+ " "+us.reason);

}

ctx.startResult(usevars ? t : null);

if (usevars) {

for (String vn: vhs.keySet()) {

String h = us.headers.get(vhs.get(vn));

if (h != null) ctx.addBinding(vn, h);

}

}

if (phs != null) {

for (String hn: phs) {

String hv = us.headers.get(hn);

if (hv != null) ctx.output(hn, hv);

}

}

if (!trstatus)

ctx.output("status-class", ""+((int)(us.status/100)));

ctx.output("status", ""+us.status);

ctx.output("status-reason", us.reason);

ctx.finishResult(us.asString(true).trim());

if (!usevars) break;

}

}

...

}

Prova support. The prova Language included in the r3 prototype defines a native con-
struct that digs a literal Prova rule; and an opaque construct that digs a literal Prova
goal and generates all the possible bindings (for the involved variables) satisfying the given goal
(variable values are represented as string values35 or XML elements/documents, when appro-
priate). Any of these prova constructs uses a rulesdb that identifies a particular rulebase (viz.
Prova shell) to be used (empty by omission, denoting a default one; if given, it may be an URL
to be retrieved for initialization of the rulebase).

No asynchronous functionality is currently provided, but Functors for rcvMsg and sendMsg
are under consideration36.

Examples:

<register>

<subject>http://dummy.nop/ddd/1</subject>

<opaque>

a(’1’,bbb).

a(2,aaa).

a(3,bbb).

</opaque>

</register>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

35For what is worth, it should be mentioned that several problems remain unresolved relating to the repre-
sentation of numbers vs. strings, and also that quotes (single or double) in Prova strings must be balanced and
have no escape mechanism.

36Actually Functors rcvMsg and sendMsg are implemented but restricted to using the Prova self protocol
(which does not allow remote messages).

47

<subject>http://dummy.nop/ddd/solve</subject>

<opaque>a(X,Y)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X" />

<log:variable name="Y" />

</log:tuple>

</log:variable-bindings>

</request>

<deregister>

<subject>http://dummy.nop/ddd/1</subject>

</deregister>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/ddd/solve</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/prova"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter>

<is rdf:resource="#rulesdb" />

<literal>http://rewerse.net/I5/r3/TST/templates.prova</literal>

</Parameter></having>

<having><Parameter>

<is rdf:resource="#literal" />

<literal>a(X)</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="X" />

</log:tuple>

</log:variable-bindings>

</request>

Java Excerpts:

package net.rewerse.i5.r3.eval.prova;

...

public class Evaluator extends NativeEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String rules = normalize(ctx.text("rulesdb"));

String opn = ctx.opname();

if (opn.equals("opaque")) {

solve(ctx, rules, ctx.text("literal"));

} else if (opn.equals("sendMsg")) {

sendMsg(ctx, rules);

} else { // opn.equals("rcvMsg")

addRcvMsg(ctx, rules);

}

}

protected void solve(Context ctx, String rules, String goal) throws Exception {

// collect variables with a bad name

ArrayList<String> badv = new ArrayList<String>();

48

for (String n : ctx.vars())

if (!Character.isUpperCase(ctx.rename(n).charAt(0))) badv.add(n);

// if there are any bad variables

if (!badv.isEmpty()) {

// compute a conflict free prefix

String vpref = varPrefix(ctx, goal);

// and rename those bad variables

int vind = 0;

for (String bn : badv) ctx.rename(bn, vpref+(vind++));

}

// build list of goals to solve

String lgoals = "";

ArrayList<Object> lobjs = new ArrayList<Object>();

for (Tuple t : ctx.getUsing()) {

ArrayList<String> vns = new ArrayList<String>();

ArrayList<String> vvs = new ArrayList<String>();

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

Object o = asObject(v.getLiteral());

if (o != null) {

vns.add(r);

vvs.add("_"+lobjs.size());

lobjs.add(o);

}

}

lgoals += ":- solve(ctxderive("+vns.toString()+", "+vvs.toString()+", "+goal+")).\n";

}

// solve goals

List lrs = null;

Communicator sh = provaShell(rules);

synchronized (sh) {

// We do not want different evaluations to interfere with each other

// and since we are re-using the knowledge base the different evaluations

// must already be serialized. :-(

// BTW, like this we can always re-use the same consultSync key. ;-)

// For now this is enough, in the future may have to be revised...

sh.consultSync("ctxderive(X,X,[P|As]) :- derive([P|As]).\n", "ctxderive", null);

lrs = sh.consultSync(lgoals.toString(), "ctxderive", lobjs.toArray());

sh.unconsultSync("ctxderive");

}

// collect bindings

for(Iterator itrs = lrs.iterator(); itrs.hasNext();) {

ProvaResultSet rs = (ProvaResultSet)itrs.next();

Exception ex = rs.getException();

if (ex != null) throw ex;

for(Iterator itr = rs.iterator(); itr.hasNext();) {

org.mandarax.kernel.Result r = (org.mandarax.kernel.Result)itr.next();

ctx.startResult();

Map m = r.getResults();

Set ks = m.keySet();

for (Object ko : ks) {

VariableTerm vk = (VariableTerm)ko;

Object vo = m.get(ko);

ConstantTerm c = (ConstantTerm)vo;

String vn = ctx.var(vk.getName());

if (vn == null || vn.startsWith("_")) continue; // skip new or unnamed vars

49

ctx.addBinding(vn, asString(c.getObject()));

}

ctx.finishResult("");

}

}

}

...

protected void createNative(Context ctx, String id) throws Exception {

String rules = normalize(ctx.text("rulesdb"));

provaShell(rules).consultSync(ctx.text("literal"), id, null);

}

protected void freeId(Context ctx, String id) throws Exception {

String rules = normalize(ctx.text("rulesdb"));

boolean create = false;

provaShell(rules, create).unconsultSync(id);

}

...

}

Xcerpt support. The xcerpt Language defines a native construct that digs a literal
Xcerpt rule; and an opaque construct that digs a literal Xcerpt query (trivially succeeds,
if empty) producing several variable bindings. Any of these constructs uses a rulesdb that
identifies a particular rulebase to be used (empty by omission, denoting a default one; if given,
it may be an URL to be retrieved for initialization of the rulebase).

Additionally opaque uses an Xcerpt construct term to build and return a result for each
produced tuple (empty by omission, in which case nothing is returned).

Two additional Functors are also available to obtain the Xcerpt term or program corre-
sponding to a given XML document.

Finally, two other constructs are currently under consideration: an eval Aggregator that
uses an Xcerpt construct term to build the aggregated result based on the involved variables (if
omitted, a tupleset of tuples with the aggregated variables could be returned, for each group);
and a transform Operator similar to the opaque construct, but that instead of evaluating a
literal query against a rulebase, takes a source Argument and uses an Xcerpt match pattern
to filter it (trivially succeeding, if empty) and possibly produce additional variable bindings (an
Xcerpt construct term may also be provided to specify a transformation of the source to be
returned, defaults to identity).

Examples:

<register>

<subject>http://dummy.nop/xcerpt/bib</subject>

<opaque>

CONSTRUCT

bib [

book [

title ["Dummy33"],

price ["33"]

],

book [

title ["Dummy44"],

50

price ["44"]

],

book [

title ["Dummy55"],

price ["55"]

]

]

END

</opaque>

</register>

<register>

<subject>http://dummy.nop/xcerpt/rev</subject>

<opaque>

CONSTRUCT

reviews [

entry [

title ["Dummy33"],

price ["66"]

]

]

END

</opaque>

</register>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=00</subject>

<opaque>

and {

bib {{

book {{

title { var T },

price { var Pa }

}}

}}

,

reviews {{

entry {{

title { var T },

price { var Pb }

}}

}}

}

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="T" />

<log:variable name="Pa" />

<log:variable name="Pb" />

</log:tuple>

</log:variable-bindings>

</request>

<deregister>

<subject>http://dummy.nop/xcerpt/bib</subject>

</deregister>

<deregister>

<subject>http://dummy.nop/xcerpt/rev</subject>

51

</deregister>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=01</subject>

<opaque>

in {

resource {"file:bib.xml"},

bib {{

book {{

title { var T },

price { var Pa }

}}

}}

}

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="T" />

<log:variable name="Pa" />

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=4</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xcerpt"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter>

<is rdf:resource="#rulesdb" />

<literal>http://rewerse.net/I5/r3/TST/templates.xcerpt</literal>

</Parameter></having>

<having><Parameter>

<is rdf:resource="#construct" />

<literal>

book [

title [var Title],

price-a [var PriceA],

optional price-b [var PriceB]

]

</literal>

</Parameter></having>

<having><Parameter>

<is rdf:resource="#literal" />

<literal>

or {

bib {{

book {{

title { var Title },

price { var PriceA }

}}

}}

,

books-with-prices [[

book-with-prices [

title [var Title],

price-a [var PriceA],

52

price-b [var PriceB]

]

]]

}

</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="Title" />

<log:variable name="PriceA" />

<log:variable name="PriceB" />

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xcerpt?ex=5</subject>

<opaque>

in {

resource {"http://rewerse.net/I5/r3/TST/templates.xml"},

templates {{

group {{

attributes {{ name { var G } }},

description { var GD },

template {{

attributes {{ name { var T } }},

description { var TD }

}}

}}

}}

}

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="G" />

<log:variable name="T" />

</log:tuple>

</log:variable-bindings>

</request>

Java Excerpts:

package net.rewerse.i5.r3.eval.xcerpt;

...

public class Evaluator extends XcerptEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String opn = ctx.opname();

if (opn.equals("program")) {

// program(document)

ctx.finishResult(xcerptClient().convertProgramXML2Xcerpt(

ctx.literal("document")));

return;

} else if (opn.equals("term")) {

// term(document)

ctx.finishResult(xcerptClient().convertTermXML2Xcerpt(

53

ctx.literal("document")));

return;

} else if (opn.equals("eval")) {

// eval(?construct)+aggregate+groupedBy

// TODO: query/frm must ensure groupedBy, default construct is all tuple(aggregate)

throw new Exception("xcerpt:eval aggregator not implemented");

} else if (opn.equals("transform")) {

// transform(?construct, match)+takes(source)

// TODO: init/frm must use match/(ctx*source), default construct is source

throw new Exception("xcerpt:transform operator not implemented");

} else { // opn.equals("opaque")

// opaque(?rulesdb, ?construct, literal), default construct is no result

solve(ctx, ctx.text("rulesdb"));

}

}

void solve(Context ctx, String rules) throws Exception {

XcerptClient cli = xcerptClient();

rules = getRules(cli, rules);

String tupleset = "tupleset";

while (rules.contains(tupleset)) tupleset += "_";

String lresult = "result";

ArrayList<String> tpl = new ArrayList<String>();

for (String n : ctx.vars()) {

String r = ctx.rename(n);

if (lresult.equals(r)) lresult += "_";

tpl.add("optional "+r+" { var "+r+" }");

}

String frm = ""

+ " "+tupleset+" {{ tuple {\n"

+ " "+join(tpl, ",\n ")+"\n"

+ " } }}";

String query = notEmpty(ctx.text("literal"));

if (query != null) {

query = " and {\n"+query.trim()+",\n\n "+frm+"\n }";

} else {

query = frm;

}

String construct = notEmpty(ctx.text("construct"));

if (construct != null)

construct = lresult+" { "+construct+" }";

construct = ""

+ " out { resource { \"stdout:xml\" },\n"

+ " "+tupleset+" { all tuple {\n"

+ " "+join(construct, tpl, ",\n ")+"\n"

+ " } }"+"\n"

+ " }";

String goal = "\nGOAL\n"+construct+"\nFROM\n"+query+"\nEND\n";

String init = "\n"

+ "CONSTRUCT\n"

+ tupleset+" ["+join(getTuples(cli, ctx), ", ")+"\n"

+ "]\n"

+ "END\n";

54

// System.out.println("\n> Xcerpt ######\n"+goal+init+"\n"+rules+"\n###### Xcerpt >\n"); // System.out.println(xc.convertProgramXcerpt2XML(goal, 5));

String res = cli.evaluateProgram(goal+init+"\n"+rules);

// System.out.println("\n> Xcerpt ######\n"+res+"\n###### Xcerpt <\n");

if (!res.trim().equals("<xcerpt:error xmlns:xcerpt=\"http://xcerpt.org\">no results</xcerpt:error>"))

buildResult(res, lresult, ctx);

}

...

}

package net.rewerse.i5.r3.eval.xcerpt;

...

public abstract class XcerptEvaluator extends NativeEvaluator {

...

protected Collection<String> getTuples(XcerptClient cli, Context ctx) throws Exception {

ArrayList<String> tsl = new ArrayList<String>();

ArrayList<String> tl = new ArrayList<String>();

for (Tuple t : ctx.getUsing()) {

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

String vs = v.getLiteral();

if (vs != null) {

if (vs.trim().length() == 0)

// quote to avoid problems with r being a reserved word

vs = "\""+r+"\""+" [\"\"]";

else

// XRA: try to avoid convert

vs = cli.convertTermXML2Xcerpt("<"+r+">"+vs+"</"+r+">");

tl.add("\n "+vs);

}

}

tsl.add("\n tuple ["+join(tl, ", ")+"\n]");

tl.clear();

}

return tsl;

}

protected void buildResult(String res, String lresult, Context ctx) throws Exception {

Document tmpd = xmlBuilder().parse(new ByteArrayInputStream(res.getBytes()));

Element el = tmpd.getDocumentElement();

NodeList lr = el.getChildNodes();

for (int i=0, szr=lr.getLength(); i<szr; i++) {

Node nr = lr.item(i);

if (nr.getNodeType() != Node.ELEMENT_NODE) continue;

ctx.startResult();

String r = null;

NodeList lt = nr.getChildNodes();

for (int j=0, szt=lt.getLength(); j<szt; j++) {

Node nt = lt.item(j);

if (nt.getNodeType() != Node.ELEMENT_NODE) continue;

String nm = nt.getLocalName();

String vl = asString(nt, true).trim(); // Xcerpt not xml:space aware

if (nm.equals(lresult)) {

r = vl;

} else {

nm = ctx.var(nm);

if (nm != null) ctx.addBinding(nm, vl);

55

}

}

ctx.finishResult(r);

}

}

}

XChange support. The xchange component Language defines a native construct that digs
a literal XChange rule; a detect/on OpaqueConstruct that digs an XChange event/query37

and signals any events matching it; a raise Functor that uses a recipient and an event
body to generate an XChange event (if recipient is omitted it generates a local event); and
an execute OpaqueConstruct that digs an XChange transaction and executes it.38

It should be stressed that all these ExpressionConstructs (even if they are only action
related, e.g. execute) return their results asynchronously, and so any xchange Client must
always provide a notifyTo Interface in order to receive any possible results.

Examples:

<register>

<subject>http://dummy.nop/xchange/1</subject>

<opaque>

RAISE

"xchange":event {{

"xchange":recipient { "http://localhost:4711" },

blablub { got { var X }, "in" { var Y } }

}}

ON

var Y -> "xchange":event {{

blablub { var X }

}}

END

</opaque>

</register>

<deregister>

<subject>http://dummy.nop/xchange/1</subject>

</deregister>

<Evaluate

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

rdf:about="http://dummy.nop/xchange?id=detect">

<solve><Expression><is rdf:resource="#detect" />

<having><Parameter><is rdf:resource="#query" />

<literal rdf:parseType="Literal">

"xchange":event {{

blablub {{ }}

}}

</literal>

37event is the XChange body of an atomic query.
38Alternatively, mainly for compatibility with ECA-ML, it is also available an opaque construct that digs a

literal. This literal may stand for a detect, raise or execute using for this purpose a syntax similar to
XChange rules (starting with a line containing ON, RAISE or TRANSACTION, respectively; containing the appropriate
XChange term; and ending with a line containing END).

56

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:8080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

<deregister>

<subject>http://dummy.nop/xchange?id=detect</subject>

</deregister>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xchange?id=detect2</subject>

<reply-to>http://localhost:8080/r3/service/dumpster</reply-to>

<opaque>

ON

andthen [

"xchange":event {{

var Ev1 -> blablub {{ }}

}},

"xchange":event {{

var Ev2 -> blablub {{ }}

}}

]

END

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="Ev1"/>

<log:variable name="Ev2"/>

</log:tuple>

</log:variable-bindings>

</request>

<deregister>

<subject>http://dummy.nop/xchange?id=detect2</subject>

</deregister>

<Evaluate

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

rdf:about="http://dummy.nop/xchange?id=theevent">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>blablub { "o tal do xxx" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:8080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

<Evaluate

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

57

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

rdf:about="http://dummy.nop/xchange?id=prxevent">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>blablub { "o tal do xxx" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:8080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xchange?id=mlevent</subject>

<reply-to>http://localhost:8080/r3/service/dumpster</reply-to>

<opaque>

RAISE

"xchange":event {{

"xchange":recipient { "http://localhost:4711" },

blablub { var X }

}}

END

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X">o tal do zzz</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xchange?id=upd</subject>

<reply-to>http://localhost:8080/r3/service/dumpster</reply-to>

<opaque>

TRANSACTION

or [

in { resource {"file:travel5.xml"},

travel {{

delete train {{ name{var X} }},

insert name{var X},

currency {"EUR" replaceby "DM"}

}}

},

in { resource {"file:travel5.xml"},

travel {{

delete name{var X},

insert train {{ name{var X} }},

currency {"DM" replaceby "EUR"}

}}

}

]

END

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="X">t1</log:variable>

</log:tuple>

58

</log:variable-bindings>

</request>

Java Excerpts:

package net.rewerse.i5.r3.eval.xchange;

...

public class Evaluator extends XcerptEvaluator implements XChangeListener {

...

protected void evaluate(Context ctx) throws Exception {

XChangeFullClient cli = xchangeClient();

String detect = null, action = null;

String opn = ctx.opname();

String lresult = "result", lsender = null;

if (opn.equals("on")) {

detect = notEmpty(ctx.text("query"));

} else if (opn.equals("detect")) {

detect = notEmpty(ctx.text("event"));

if (detect != null) lsender = "sender";

} else if (opn.equals("execute")) {

action = notEmpty(ctx.text("transaction"));

} else if (opn.equals("raise")) {

String recipient = notEmpty(ctx.text("recipient"));

action = cli.buildEventRaise(recipient, notEmpty(ctx.text("event")));

} else { // opn.equals("opaque")

String txt = notEmpty(ctx.text("literal"));

if (txt == null)

throw new Exception("xchange:literal cannot be empty");

if (txt.endsWith("END")) {

int nl = txt.length()-"END".length();

txt = txt.substring(0, nl).trim();

if (txt.length() == nl)

// no space before END

txt = null;

} else {

txt = null;

}

if (txt == null)

throw new Exception("xchange:literal must terminate with ’END’");

boolean isqry = false;

String pref = null;

if (txt.startsWith("ON")) {

isqry = true;

pref = "ON";

} else if (txt.startsWith("TRANSACTION")) {

pref = "TRANSACTION";

} else if (txt.startsWith("RAISE")) {

pref = "RAISE";

}

if (pref != null) {

int nl = txt.length()-pref.length();

txt = notEmpty(txt.substring(pref.length()));

if (txt == null || txt.length() == nl)

// txt empty || no space after pref

pref = null;

}

59

if (pref == null)

throw new Exception("xchange:literal must start with ’ON’, ’RAISE’ or ’TRANSACTION’");

if (isqry) detect = txt; else action = txt;

}

String tupleset = "tupleset";

String init = tupleset+" ["+join(getTuples(cli.xcerptClient(), ctx), ", ")+"\n]";

ArrayList<String> tpl = new ArrayList<String>();

for (String n : ctx.vars()) {

String r = ctx.rename(n);

tpl.add("optional \""+r+"\" { var "+r+" }");

while (r.startsWith(lresult)) lresult += "_";

while (lsender != null && r.startsWith(lsender)) lsender += "_";

}

if (lsender != null) {

String s = notEmpty(ctx.text("sender"));

if (s != null) s = s.trim(); else lsender = s = null;

detect = cli.buildEventMatch(s, detect);

}

String tuple = ""

+" "+join(tpl, ",\n ")+"\n";

String from = ""

+" "+tupleset+" {{ tuple {\n"

+tuple

+" } }}";

tuple = ""

+" tuple {\n"

+tuple

+" }";

String iid = ctx.incomplete();

String seed = cli.proxyEventMatch("id { \""+iid+"\" }, "+from);

String seedRaise = "id { \""+iid+"\" }, "+init;

ArrayList<String> rules = new ArrayList<String>();

if (detect != null) {

rules.add(""

+"RAISE\n"

+cli.proxyEventRaise("event { "+

"attributes { id { \""+iid+"\" } }, "+

(lsender == null ? "" : "sender { var "+lsender+" }, ")+

"result { var "+lresult+" }, "+tuple+" }")+"\n"

+"ON\n"

+"andthen [\n"

+seed+",\n"

+"var "+lresult+" ->\n"

+detect+"\n"

+"]\n"

+"END\n");

} else { // action != null

rules.add(""

+"TRANSACTION\n"

+"or [\n"

+" and [\n"

+" "+action+",\n"

+cli.proxyEventRaise("done { "+

"attributes { id { \""+iid+"\" } }, "+

"result { \"\" }, "+tuple+" }")+"\n"

+"],\n"

+cli.proxyEventRaise("error { "+

60

"attributes { id { \""+iid+"\" } } }")+"\n"

+"]\n"

+"ON\n"+seed+"\n"

+"END\n");

}

// System.out.println(rules);

// System.out.println(seedRaise);

cli.registerRules(iid, rules, seedRaise);

}

protected void createNative(Context ctx, String id) throws Exception {

xchangeClient().registerRule(id, ctx.text("literal"));

}

protected void freeId(Context ctx, String id) throws Exception {

xchangeClient().freeRules(id);

}

public synchronized void received(String msg) {

// public to be called by the xchangeClient() proxy

try {

Element el = getReceivedEvent(msg);

if (el == null) return;

String iid = el.getAttribute("id"), tp = el.getLocalName();

boolean islast = !tp.equals("event");

if (islast) xchangeClient().freeRules(iid);

NodeList l = el.getElementsByTagName("result");

int sz = l.getLength();

if (sz > 1) return;

Element result = sz == 1 ? (Element)l.item(0) : null;

l = el.getElementsByTagName("sender");

sz = l.getLength();

if (sz > 1) return;

Element sender = sz == 1 ? (Element)l.item(0) : null;

l = el.getElementsByTagName("tuple");

sz = l.getLength();

if (sz > 1) return;

Element tuple = sz == 1 ? (Element)l.item(0) : null;

if (result == null && tuple != null) return;

if (tuple == null && result != null) return;

Context ctx = incompleteEvaluation(iid);

if (ctx == null) {

System.err.println("[r3 WARNING] Context for "+iid+" no longer active, discarded message:\n"+msg+"\n");

return;

}

if (tuple != null) {

boolean ok = true;

XChangeFullClient cli = xchangeClient();

ctx.startResult();

try {

l = tuple.getChildNodes();

sz = l.getLength();

for (int i=0; i<sz; i++) {

Node nd = l.item(i);

if (nd.getNodeType() != Node.ELEMENT_NODE) continue;

String nm = nd.getLocalName();

nm = ctx.var(nm);

if (nm != null)

ctx.addBinding(nm, asString(nd, true).trim()); // XChange not xml:space aware

61

}

if (sender != null) {

String s = asString(sender, true).trim(); // XChange not xml:space aware

if (s.equals(cli.proxyUri())) {

ctx.cancelResult();

ok = false;

} else {

ctx.output("sender", s);

}

}

} catch (Exception ex) {

ctx.cancelResult();

throw new Exception("Result aborted", ex);

}

if (ok)

ctx.finishResult(asString(result, true).trim()); // XChange not xml:space aware

}

ctx.notifyResults(islast);

} catch (Exception e) {

// XRA: log exception

e.printStackTrace(System.out);

}

}

...

}

Xcerpt and XChange TCP servers. The LanguageEngines that support Xcerpt and
XChange languages are mainly wrappers around the existing TCP servers for both languages,
so in order to use these languages the appropriate TCP servers must be running (the XChange
wrapper requires also the Xcerpt TCP server).

Currently the set of TCP ports used for integrating with r3 is fixed. The Xcerpt and
XChange TCP servers must be started with the appropriate parameters, viz. ‘xcerptd 15003’
and ‘xchange -p4711 -nhttp://localhost:4711’. The available implementations for Xcerpt
and XChange TCP servers are research prototypes (just like r3), so versioning is a bit elusive.
Both prototypes are developed using Haskell [38], and binary versions may not be available for
all platforms, or if available they might be a bit outdated.

The current version of the r3 wrappers requires the use of the most recent version of the
Xcerpt and XChange binaries (as of March 2007) for both prototypes. Please refer to the r3

site39 for information on how to obtain the appropriate binaries.

XQuery and XPath support. The r3 prototype also supports XQuery and XPath as com-
ponent Languages. For each of the two Languages (viz. xquery and xpath) it implements,
based on Saxon 8.7 [51], an opaque construct that digs a literal XQuery or XPath query.

This construct returns the XML literal results of evaluating the opaque query for all the
input Substitutions. XQuery external variable declarations (for all the variables included in the
input Substitutions) are added if needed40. Additionally it is also possible to specify a base-uri
or a context document41.

39http://rewerse.net/I5/r3/TST/install/
40In xpath, generated variable declarations are always added, whereas in xquery, these are added only if a

related error occurs during compilation of the XQuery expression.
41In xpath, any namespace prefix used in the context document is added to the set of static namespace prefixes

62

http://rewerse.net/I5/r3/TST/install/

By default a raw format is used and literal results are returned as string values or XML ele-
ments (when appropriate); unless one explicitly uses a wrap format. In the latter case, each re-
sult is always wrapped with Saxon elements (e.g. result:sequence / element / attribute
/ atomic-value) providing details of its type and value.

Examples:

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<opaque>

for $X in ("aaa", "bbb")

return <doc><xxx>{$X}</xxx><yyy>{$Y}</yyy></doc>

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="Y">ccc</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="Y">ddd</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="Y">eee</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<opaque>

fn:doc($W)/*:feed/*:entry/*:link/@href

</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="W"

>http://code.google.com/feeds/updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="W"

>http://code.google.com/feeds/featured.xml</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xquery"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter><is rdf:resource="#format" />

<literal>wrap</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#base-uri" />

<literal>http://code.google.com/feeds/</literal>

</Parameter></having>

available.

63

<having><Parameter><is rdf:resource="#document" />

<literal rdf:parseType="Literal">

<config xmlns="">

<mode>escaped</mode>

<entry>1</entry>

</config>

</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#literal" />

<literal>

xquery version "1.0";

declare namespace atom = "http://purl.org/atom/ns#";

declare variable $W external;

let $m := fn:string(config/mode), $i := fn:number(config/entry)

for $r in fn:doc($W)/atom:feed/atom:entry[$i]/atom:title[@mode=$m]

return (fn:string($r), $r/@type, $r)

</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="X">x1</log:variable>

<log:variable name="W">updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="X">x2</log:variable>

<log:variable name="W">updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="X"/>

<log:variable name="W">featured.xml</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic#">

<subject>http://dummy.nop/xqq</subject>

<Expression

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xpath"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<is rdf:resource="#opaque" />

<having><Parameter><is rdf:resource="#format" />

<literal>raw</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#base-uri" />

<literal>http://code.google.com/feeds/</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#document" />

<literal rdf:parseType="Literal">

<config xmlns="" xmlns:atom="http://purl.org/atom/ns#">

<!-- using xpath -->

<!-- all namespace prefixes used here, get declared -->

<atom:entry>1</atom:entry>

</config>

</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#literal" />

<literal>

64

for $i in config/atom:entry

return fn:string(

fn:doc($W)/atom:feed/atom:entry[fn:number($i)]/atom:title)

</literal>

</Parameter></having>

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="W">updates.xml</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="W">featured.xml</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

Java Excerpts:

package net.rewerse.i5.r3.eval.xquery;

...

public class Evaluator extends ExprEvaluator {

...

protected void evaluate(Context ctx) throws Exception {

String buri = notEmpty(ctx.text("base-uri"));

String xmldoc = notEmpty(ctx.literal("document"));

String query = ctx.literal("literal");

boolean wrap = !ctx.text("format").equals("raw");

XQueryEvaluator exp = new XQueryEvaluator(

autoDeclare(),

buri, xmldoc, query, ctx.renames());

LinkedList<String> pvars = new LinkedList<String>();

for (String vr: exp.getParameters()) {

String vn = ctx.var(vr);

if (vn != null) pvars.add(vn);

}

Iteratable<String> restrict = new Iteratable<String>(pvars);

for (Tuple t : ctx.getUsing(restrict)) {

QryEvaluation eval = exp.evaluate(wrap);

for (Variable v : t.getBinding()) {

String n = v.getName(), r = ctx.rename(n);

eval.setParameter(r, asObject(v.getLiteral()));

}

while (true) {

String res = eval.nextResult();

if (res == null) break;

ctx.addResult(t, res);

}

}

}

...

}

65

Basic utilities support. The r3 prototype further includes the util Language that defines
several ad-hoc utility LanguageConstructs:

• A replace-all Functor with three FunctionalParameters (viz. text, pattern and
replacement) for regular expression text replacement (based on java.util.regex pack-
age42).

• A text2xml Functor that uses a textthat is an XML serialization and returns the re-
spective XML node (e.g. <x/> becomes <x/>).

An introspective OpaqueConstruct is currently under consideration (viz. opaque) that digs
a literal RDF/XML serialization of an r3 Message, i.e. a Request/Terminate is to be issued
and the synchronous Response returned, and a Response is to be validated and “echoed”43.

The util Language will probably be extended in the future. Some useful Aggregators may
be added (e.g. count, sum, avg, min, max). Also some basic comparison Functors44 (e.g. eq,
neq, lt, lte, gt, gte) and some basic Operators (e.g. and/and-then, or/or-then, not, select-when-
otherwise/if-then-else) may be added. Nevertheless, the addition of many of these Functors
should

42Beware of \ and $ occurrences in the replacement, particularly if this parameter is boundTo a vari-
able, you may need to escape them. You may be better of using the (less powerful, but safer) Functor
util:replace(util:text, util:old-text, util:new-text) which is also available for literal text replacement.

43Eventually, echoing a Response seems to be the only functionality that cannot be achieved using the http

Language.
44Extension of the xquery and xpath Languages to export also their functions and operators [57] may be a

better solution.

66

Chapter 3

r3 Use-Cases

For testing and showcasing of r3, some scenarios more realistic than mere ad-hoc development
tests have been implemented. For that, we mostly resorted to the the bioinformatics scenario
and use-cases contained in the previous deliverable [8]. It is worth noting that the other scenarios
and use-cases from that deliverable have been tackled by other prototypes within I5. Namely,
the travel scenario has been tried with the MARS framework, and the project’s node scenario
with XChange. There is also an ongoing test of MARS with this latter scenario.

Chapter Structure. In this chapter we present the current state of the r3 use-cases derived
from [8]. In the first section we recapitulate the information contained in [8] briefly relating it
to the r3 use-cases. The following two sections are each dedicated to a distinct r3 use-case,
namely the Bio-Domain Broker and the PubMed Reactive Classifier.

3.1 Use-Cases Scenario

The use-cases scenario considered for testing the r3 prototype is based on the scenario Updates
and evolution in bioinformatics data sources described in [8].

3.1.1 Scenario Overview

In bioinformatics there are many publicly accessible data sources, which are often mirrored
locally and integrated with other data. The bioinformatics use case discusses four specific data
sources: PubMed, a database of 12.000.000 biomedical literature abstracts, GeneOntology, an
ontology for molecular biology, with 19.000 concepts, PDB, a database with some 25.000 protein
structures, and SCOP, the Structure Classification of Proteins, which groups PDB structures
according to their evolutionary relationships. The scenario is concerned with mirroring these
data sources locally, keeping them consistent and integrating them, and its relation and use-
fulness to the work being developed in working group A2 is clear. These public bioinformatic
data sources can be classified as primary and secondary (i.e. derived from one or more primary
data sources, e.g. SCOP or Astral1). The scenario, besides the four specific data sources,
also considers online applications that integrate them, viz. (Gene)Ontology-based Literature

1The ASTRAL Compendium for Sequence and Structure Analysis, http://astral.berkeley.edu/

67

http://astral.berkeley.edu/

search, GoPubMed, which given the appropriate interfaces may also be considered as secondary
data sources. Users of such data sources (final users or applications) keep local copies of these
primary and secondary databases and often derive tertiary data sources. Keeping local and
remote databases in sync and consistent is an important problem, which requires techniques to
deal with evolution and reactivity.

PubMed PubMed, http://www.pubmed.gov/, the main biomedical literature database ref-
erences over 12.000.000 abstracts. It has grown by some 500.000 in 2003 alone. Besides biology
it covers fields such as medicine, nursing, dentistry, veterinary medicine, the health care sys-
tem, and the preclinical sciences. PubMed contains bibliographic citations and author abstracts
from more than 4,600 biomedical journals published in 70 countries. Abstracts date back to
the mid-1960’s. Coverage is worldwide, but most records are from English-language sources or
have English abstracts. PubMed is available in XML.

PDB Another source, which is widely used in the A2 group, is PDB, http://www.rcsb.org/
pdb/, the protein databank. PDB is a repository of the atomic coordinates of proteins and
nucleic acids. PDB entries contain among others, besides the coordinates, the resolution at
which the coordinates have been obtained, the authors (who submitted the data), literature
references (some recorded in PubMed), the species the data is coming from. PDB is updated
every week and is available as XML and flat file.

SCOP Also widely used in the A2 group, SCOP, http://scop.mrc-lmb.cam.ac.uk/scop/,
classifies PDB structures according to their evolution. SCOP contains four main structural
classes, which are refined into some 1000 structural families of proteins. SCOP is updated
every 6 months and is available as flat file. Inconsistencies introduced by PDB updates, given
their weekly update rate, are a possibility not to be discarded lightly.

GeneOntology GeneOntology (GO), http://www.geneontology.org/, is a controlled, hi-
erarchical vocabulary. GO has been designed for the annotation of genes. It comprises over
19.000 terms organized in three sub-ontologies for cellular location, molecular function and bio-
logical process. GO was initially created to reflect gene function of fruitflies, but has expanded
to encompass many other genomes as well as sequence and structure databases. The hierarchi-
cal nature of GO allows one to quickly navigate from an overview to very detailed terms. As an
example, there are maximally 16 terms from the root of the ontology to the deepest and most
refined leave concept in GO. GO is available in free text, XML and as database. The XML
version is updated on a monthly basis. The deliverable A2-D2 contains further details on GO.

GoPubMed GoPubMed, http://www.gopubmed.org/, a tool developed by TU Dresden in
the A2 group, uses GO to structure large amounts of relevant literature to realize the con-
cept of Ontology-based Literature search2. GoPubMed submits keywords to PubMed, extracts
GO-terms from the retrieved abstracts, and presents the relevant sub-ontology for browsing.
GoPubMed has a number of advantages, e.g. users get a high-level overview of the whole search

2MeshPubMed, http://www.meshpubmed.org/, also based on PubMed and developed by TU Dresden, realizes the
same concept of Ontology-based Literature search using the hierarchical vocabulary “Medical Subject Headings”,
MeSH, http://www.nlm.nih.gov/mesh/.

68

http://www.pubmed.gov/
http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.geneontology.org/
http://www.gopubmed.org/
http://www.meshpubmed.org/
http://www.nlm.nih.gov/mesh/

result and are not forced to view multi-dimensional and thus often incomparable articles in a
one-dimensional list. The latest versions of GoPubMed also integrate with Wikipedia.

3.1.2 Scenario Use-Cases Overview

This scenario, cf. [8], includes the following two specific use-cases.

Use Case 3.1.1 (Caching and Actuality of data in GoPubMed, PubMed, and GO)
GoPubMed is a distributed application: A query entered in GoPubMed is submitted on-the-fly
to the remote PubMed site, which returns relevant articles. These are then annotated by GoP-
ubMed with relevant terms from the GO, a local copy of which is residing at the GoPubMed site.
To integrate the three sources, the GoPubMed application needs to exhibit reactive behaviour.
On the event of a user query, a request is sent to PubMed. On the event of an answer from
PubMed, a local cache is consulted. If the abstracts are not cached, then GoPubMed sends
another message to PubMed requesting the abstracts. On receipt of them, they are annotated.
Finally, the results are compiled an presented to the user. Overall, there are different distributed
data sources, which are communicating with each other using event-condition-action rules.

Use Case 3.1.2 (Mirroring, Actuality, and Consistency of data in SCOP and PDB)
The original SCOP data is published on a website hosted in Cambridge. A researcher may have
a copy of SCOP on his laptop besides a copy hosted at his university. The copy on the laptop
is not up-to-date, so that the researcher usually uses the remote database, but when offline he
is forced to use the local laptop copy. The researcher wants to transparently access SCOP and
this access needs to handle the preference of the remote SCOP copy over the local SCOP copy.

A reactive agent acts as a wrapper of the original SCOP site and data and upon the event
of a new release it informs a local agent, who updates the local SCOP copy.

Updates of PDB can lead to inconsistencies as SCOP is derived from PDB and as PDB is
updated weekly, while SCOP is only updated every six months. If a PDB entry gets withdrawn
between two SCOP releases, then the constraint is violated that every SCOP entry should have
a PDB entry it is derived from. The constraint can be satisfied if we know which PDB entry
replaces a withdrawn PDB entry. Then the local SCOP copy can be updated accordingly.

Relationship to r3 Use-Cases The work reported in the following r3 use-cases is an at-
tempt towards integrating the different components needed to realize the [8] use-cases summa-
rized here, eventually identifying and anticipating future needs/limitations.

Use-case 3.1.1 embodies the concept of reactive querying where synchronicity drives the
use of reactive rules. Since reactive rules have an asynchronous nature, this use-case must be
considered very carefully and it is not clear at this point if a reactive model will constitute an
appropriate solution to support this use-case.

The r3 use-cases are restricted to a proof-of-concept of use-case 3.1.2. A more comprehensive
coverage of the mirroring concerns contained in this use-case is to be pursued in the future, and
if possible consistency concerns should also be addressed.

3.2 r3-based Bio Domain Broker

The Bioinformatics Domain Broker (B-Domain) provides/manages personalized mirrors of the
protein databank (PDB), i.e. tertiary bioinformatics data sources (cf. the use-case scenario “Up-
dates and evolution in bioinformatics data sources” described in [8]). Extension of B-Domain to

69

other bioinformatics specific functionalities is far from excluded (e.g. a Personalization Service
for the Personal Reader framework is currently under consideration).

B-Domain uses the r3 library to implement a bioinformatics specific language3 that currently
includes three atomic constructs. An atomic event that signals the addition of new structures
to PDB (occurs every time a new structure is added and returns the PDBID of the added
structure). An atomic condition that checks if a specific PDBID satisfies a criterion specified
using domain specific concepts. An atomic action that stores a PDBID in a personal repository
of structures. Using this language, the maintenance of the personalized PDB mirrors is achieved
by a set of reactive rules generated and loaded to an r3 ECA engine by B-Domain, once again,
using the r3 development library.

The current implementation of B-Domain is available online and allows the user to monitor
new PDB structures. Given a criterion specified at the level of the advanced query functionality
available at the PDB site, a storage (viz. a personalized PDB mirror) is created to keep all the
new structures that satisfy that criterion. Try it yourself at http://di150.di.fct.unl.pt:
15080/b-domain/monitor_form.jsp:

• Define the monitor criterion4 that new PDB entries must satisfy in order to be included
in your personal mirror;

• Submit and B-Domain will create a storage for your own personal mirror and will also
load the appropriate ECA rules that will ensure the appropriate monitoring of new PDB
entries cf. the provided criterion;

• Bookmark the returned URL for the created storage;

• You may see the ECA rules responsible for the actual update of your storage in the r3

ECA engine model (http://di150.di.fct.unl.pt:15080/r3/service), or by analyzing
the latest logged requests in the r3 dumpster (http://di150.di.fct.unl.pt:15080/r3/
service/dumpster);

• Visit the bookmarked URL periodically to see the new PDB entries conforming to your cri-
terion (you will have to wait for the next PDB release5 - updated every Tuesday/Wednes-
day - actually containing new structures that fit your monitor criterion).

PDB provides an advanced query facility (http://www.rcsb.org/pdb/search/advSearch.
do) which is commonly used by bioinformatic researchers to locate relevant structures. Also,
every week the new structures added to PDB are listed in an RSS feed (http://www.rcsb.org/
pdb/rss/LastLoad). B-Domain combines these two functionalities providing an infra-structure
by which researchers may define their own personalized mirrors of PDB. These personalized
mirrors should contain all the new structures relevant for each researcher, and for each new
structure (depending on its “kind”) mirror the relevant information (either from PDB or other
sources, e.g. PubMed).

The current implementation allows a researcher to create a storage (viz. personalized mirror)
by specifying a criterion to filter the relevant new structures. This criterion is currently specified
by an XML document (cf. http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/

3http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/b-domain.owl
4An example of a monitor criterion is available at http://di150.di.fct.unl.pt:15080/b-domain/schemas/examples/

criteriaExample2.xml.
5RCSB Protein Data Bank - This week’s new structures: http://www.rcsb.org/pdb/rss/LastLoad.

70

http://di150.di.fct.unl.pt:15080/b-domain/monitor_form.jsp
http://di150.di.fct.unl.pt:15080/b-domain/monitor_form.jsp
http://di150.di.fct.unl.pt:15080/r3/service
http://di150.di.fct.unl.pt:15080/r3/service/dumpster
http://di150.di.fct.unl.pt:15080/r3/service/dumpster
http://www.rcsb.org/pdb/search/advSearch.do
http://www.rcsb.org/pdb/search/advSearch.do
http://www.rcsb.org/pdb/rss/LastLoad
http://www.rcsb.org/pdb/rss/LastLoad
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/b-domain.owl
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/examples/criteriaExample2.xml
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/examples/criteriaExample2.xml
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://www.rcsb.org/pdb/rss/LastLoad
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd

criteria.xsd) and mimics some of the PDB advanced query parameters. Upon submission
of a criterion, an URL is returned. The researcher may later use this URL to browse to its
personalized mirror.

The currently available set of PDB advanced query parameters is only a restricted set of the
full set available at PDB, and is meant primarily as a proof-of-concept. Nevertheless a complete
survey of the existing parameters has been conducted and work is on the way towards defining
an OWL ontology to be used as a model for defining the criteria instead of the current XML
Schema. The final goal is not to develop a B-Domain front-end for the PDB advanced query
functionality, but instead to make this functionality available to be used (at an RDF level) in
different front-ends allowing the creation (and browsing) of personalized mirrors. As possible
front-ends, two main options are currently under consideration, viz. the Chemera6 application
and the Personal Reader7 framework, both developed within Rewerse by members of WGA2
and WGA3, respectively).

The personalized mirrors are maintained through the use of appropriate reactive rules. For
this, B-Domain provides a domain specific language and generates reactive rules realizing a
(more or less) complex plan that is responsible for detecting relevant updates and retrieve the
relevant information to be stored/updated. Currently the plans generated by B-Domain are
far too simple (cf. example 3.2.1) for the intended use. They store a simple link for the PDB
page dedicated to the new structure. These plans are to be improved with actual replication of
information available not only at PDB but also at SCOP and PubMed.

Example 3.2.1 To illustrate the kind of plans that B-Domain may generate, consider the
following very simple plan formed by two rules that use the B-Domain language and that are
chained together by an XChange event.

ex:r1 a :ECARule;

:event [a :Expression;

:is b-domain:newStructure;

:boundTo [a :Variable; ;name "PDBID"]];

:test [a :Expression;

:is b-domain:satisfies;

:having [a :Parameter;

:is b-domain:pdbId; :boundTo "PDBID"];

:having [a :Parameter;

:is b-domain:criteria; :boundTo "MyCriterion"]];

:action [a :Expression;

:is xchange:raise;

:having [a :Parameter;

:is xchange:event;

:literal """

newpdb {

id {var PDBID},

crit{var MyCriterion},

for{var MyStorage}

}"""]].

ex:r2 a :ECARule;

:event [a :Expression;

:is xchange:detect;

:having [a :Parameter;

:is xchange:event;

:literal "newpdb {{ id {var Id}, for{var St} }}"]];

6http://www.cqfb.fct.unl.pt/bioin/chemera/Chemera/Intro.html
7http://www.personal-reader.de/

71

http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://di150.di.fct.unl.pt:15080/b-domain/schemas/2007/criteria.xsd
http://www.cqfb.fct.unl.pt/bioin/chemera/Chemera/Intro.html
http://www.personal-reader.de/

:action [a :Expression;

:is b-domain:store;

:having [a :Parameter;

:is b-domain:storage; :boundTo "St"];

:having [a :Parameter;

:is b-domain:pdbId; :boundTo "Id"]].

3.2.1 Message Examples

Assuming no cascading of reactive rules, the interaction between B-Domain and the r3 engine
could be reproduced and experimented by the following examples.

Example 3.2.2 B-Domain Register (di150). Registering B-Domain engine di150:15080. Since
B-Domain is not an engine/language known to the r3 engine it needs to be registered before any
rule that uses the B-Domain language can be activated. Notice that http: // di150. di. fct.
unl. pt: 15080/ b-domain/ service/ b-domain has an RDF description available online to be
fetched. The availability of such description and the auto-fetching of the declared resource are
example of the functionalities that the r3 library provides for you out-of-the-box.

<r3:Register

xmlns:r3="http://rewerse.net/I5/NS/2006/r3#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

rdf:about="http://dummy.nop/b-domain">

<r3:declare rdf:resource="http://di150.di.fct.unl.pt:15080/b-domain/service/b-domain" />

<r3:issuer><r3:Client/></r3:issuer>

</r3:Register>

Example 3.2.3 B-Domain Rule. An ECA rule similar to the ones created by B-Domain.

<register xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml">

<subject>http://dummy.nop/b-domain/rules/0</subject>

<eca:rule

xmlns:r3="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://b-domain.w4sys.com/schemas/2007/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<eca:variable name="STORAGE-ID">45</eca:variable>

<eca:variable name="PDB-ID">

<eca:event><r3:Expression><r3:is rdf:resource="b-domain#newStructure" />

</r3:Expression></eca:event>

</eca:variable>

<eca:query><r3:Expression><r3:is rdf:resource="b-domain#satisfies" />

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#pdbId" />

<r3:boundTo>PDB-ID</r3:boundTo>

</r3:Parameter></r3:having>

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#criteria" />

<r3:literal rdf:parseType="Literal"

><b-domain:criteria

xmlns:b-domain="http://b-domain.w4sys.com/schemas/2007/criteria#">

<b-domain:section>

<b-domain:structureSummary>

<b-domain:structureTitle>

<b-domain:comparator>contains</b-domain:comparator>

<b-domain:keywords>UDP-GLUCOSE 4-EPIMERASE</b-domain:keywords>

72

http://di150.di.fct.unl.pt:15080/b-domain/service/b-domain
http://di150.di.fct.unl.pt:15080/b-domain/service/b-domain

</b-domain:structureTitle>

</b-domain:structureSummary>

</b-domain:section>

</b-domain:criteria></r3:literal>

</r3:Parameter></r3:having>

</r3:Expression></eca:query>

<eca:action><r3:Expression><r3:is rdf:resource="b-domain#store" />

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#storage" />

<r3:boundTo>STORAGE-ID</r3:boundTo>

</r3:Parameter></r3:having>

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#pdbId" />

<r3:boundTo>PDB-ID</r3:boundTo>

</r3:Parameter></r3:having>

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#content" />

<r3:literal rdf:parseType="Literal"

><div xmlns="http://www.w3.org/1999/xhtml">

New PDB structure description...</div></r3:literal>

</r3:Parameter></r3:having>

</r3:Expression></eca:action>

</eca:rule>

</register>

Example 3.2.4 Free B-Domain Rule. Unloading previous ECA rule.

<deregister><subject>http://dummy.nop/b-domain/rules/0</subject></deregister>

Example 3.2.5 B-Domain Event. Registering a B-Domain event detection.

<request

xmlns:r3="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://b-domain.w4sys.com/schemas/2007/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/b-domain/events/0</subject>

<reply-to>http://localhost:15080/r3/service/dumpster</reply-to>

<r3:Expression><r3:is rdf:resource="b-domain#newStructure" /></r3:Expression>

</request>

Example 3.2.6 Free B-Domain Event. Terminating previous event detection.

<deregister><subject>http://dummy.nop/b-domain/events/0</subject></deregister>

Example 3.2.7 B-Domain Query. Evaluating a B-Domain query.

<request

xmlns:r3="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://b-domain.w4sys.com/schemas/2007/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/b-domain/query/0</subject>

<r3:Expression><r3:is rdf:resource="b-domain#satisfies" />

73

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#pdbId" />

<r3:boundTo>PDB-ID</r3:boundTo>

</r3:Parameter></r3:having>

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#criteria" />

<r3:literal rdf:parseType="Literal"

><b-domain:criteria

xmlns:b-domain="http://b-domain.w4sys.com/schemas/2007/criteria#">

<b-domain:section>

<b-domain:structureSummary>

<b-domain:structureTitle>

<b-domain:comparator>contains</b-domain:comparator>

<b-domain:keywords>UDP-GLUCOSE 4-EPIMERASE</b-domain:keywords>

</b-domain:structureTitle>

</b-domain:structureSummary>

</b-domain:section>

</b-domain:criteria></r3:literal>

</r3:Parameter></r3:having>

</r3:Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="PDB-ID">4HHB</log:variable>

</log:tuple>

<log:tuple>

<log:variable name="PDB-ID">2C20</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

Example 3.2.8 B-Domain Action. Execute a B-Domain action.

<request

xmlns:r3="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://b-domain.w4sys.com/schemas/2007/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/b-domain/action/0</subject>

<r3:Expression><r3:is rdf:resource="b-domain#store" />

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#storage" />

<r3:boundTo>STORAGE-ID</r3:boundTo>

</r3:Parameter></r3:having>

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#pdbId" />

<r3:boundTo>PDB-ID</r3:boundTo>

</r3:Parameter></r3:having>

<r3:having><r3:Parameter><r3:is rdf:resource="b-domain#content" />

<r3:literal rdf:parseType="Literal"

><div xmlns="http://www.w3.org/1999/xhtml">

New PDB structure description...</div></r3:literal>

</r3:Parameter></r3:having>

</r3:Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="PDB-ID">2C20</log:variable>

<log:variable name="STORAGE-ID">43</log:variable>

</log:tuple>

</log:variable-bindings>

</request>

74

Example 3.2.9 B-Domain Unregister. Deregistering B-Domain engine.

<deregister><subject>http://dummy.nop/b-domain</subject></deregister>

3.3 r3-based PubMed Reactive Classifier

PubMed, http://www.pubmed.gov/, is the main biomedical literature database, and references
over 12.000.000 entries. Based on events signaling additions to PubMed, this use-case generates
events detecting the relevant additions filtered according to a set of (user-defined) relevant
terms.

The relevant terms and publications are maintained in a Prova rulebase, based on the
occurrence of events stating new publications added to PubMed and new or no longer relevant
terms.

A publication is deemed relevant if it contains, according to PubMed eSearch utility, any
of the supplied relevant terms. For each relevant publication information is retrieved (and
mirrored) for inclusion in the generated events. Additionally events are also generated signaling
any publication that becomes irrelevant due to the removal of a relevant term.

3.3.1 Message Examples

These use-cases are available online at our development server (http://di150:15080.di.fct.
unl.pt/r3/TST/) including the following messages.

Event Interface The event interface of the present scenario is formed only by XChange
events. This scenario assumes the occurrence of 4 different kinds of events:

• new pubmed(PMID)

• not pubmed(PMID)

• new relevant(Term)

• not relevant(Term)

The form in which these occurrences are actually generated is outside the scope of the sce-
nario. The first two could be generated by PubMed itself (or by a broker application monitoring
the PubMed site), whereas the other two could be generated by an application allowing a user
to define the relevant set of terms (or by a broker application monitoring the Gene Ontology
site, http://www.geneontology.org/, if one wishes to include as relevant all Gene Ontology
terms). For the purpose of this scenario, and especially of running it as demo which otherwise
would have to wait until new entries are actually added in PubMed, all of them are manually
generated with the help of the following xchange:raise examples.

Based on these occurrences, the scenario generates 2 different kinds of events:

• new pubmed relevant(PMID, Summary, Term)

• not pubmed relevant(PMID, Summary, Term)

75

http://www.pubmed.gov/
http://di150:15080.di.fct.unl.pt/r3/TST/
http://di150:15080.di.fct.unl.pt/r3/TST/
http://www.geneontology.org/

Such generated events are to be consumed by anyone interested. Here, they may be caught
by the following xchange:detect examples (redirected to the dumpster). Other possibilities
would be to e.g. send an email with notification.

Example 3.3.1 Raise Relevant Term. Generate an occurrence stating that a new relevant term
is to be considered, providing the new relevant term.

When testing this use-case, please be careful when choosing the values in order to avoid
overloading NCBI’s servers. Choose relevant terms that are restrictive enough, for instance
DO NOT choose ’cancer’ as a relevant term (you will get almost 2 million entries). At the
time of this writing, there is a single entry (viz. 15980585) in PubMed matching the term in
this example (viz. ”gene ontology levamisole”).

<Evaluate

rdf:about="http://dummy.nop/events/new_relevant"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>new_relevant { "gene ontology levamisole" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:15080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

Example 3.3.2 Raise Dropped PubMed Entry. Generate an occurrence stating that an entry
has been dropped from PubMed, providing the identifier of the dropped entry.

<Evaluate

rdf:about="http://dummy.nop/events/not_pubmed"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>not_pubmed { "15980585" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:15080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

Example 3.3.3 Raise Added PubMed Entry. Generate an occurrence stating that an entry
has been added to PubMed, providing the identifier of the added entry.

76

<Evaluate

rdf:about="http://dummy.nop/events/new_pubmed"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>new_pubmed { "15980585" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:15080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

Example 3.3.4 Raise Irrelevant Term. Generate an occurrence stating that a term is to be
considered as no longer relevant, providing the previously relevant term.

<Evaluate

rdf:about="http://dummy.nop/events/not_relevant"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#raise" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>not_relevant { "gene ontology levamisole" }</literal>

</Parameter></having>

</Expression></solve>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:15080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

Example 3.3.5 Detect Relevant PubMed Entry. Detect, in XChange, relevant terms found in
PubMed entries, providing:

• the identifier of the PubMed entry,

• its summary and

• the relevant term found.

In general, such an event may be caused by new PubMed entries or by the addition of new
relevant terms. In this scenario, we do not distinguish whether this is caused by one or the
other reason.

If you have all the Reactive Rules of this scenario in place (viz. Registered/Loaded), with
this expression you will be able to find such events in the ”dumpster”.

77

<Evaluate

rdf:about="http://dummy.nop/events/new_pubmed_relevant"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#detect" />

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>S</name></Variable></with>

<with><Variable><name>T</name></Variable></with>

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>new_pubmed_relevant {

entry { var ID },

summary { var S },

term { var T }

}</literal>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable><name>ID</name></Variable></binding>

<binding><Variable><name>S</name></Variable></binding>

<binding><Variable><name>T</name></Variable></binding>

</Substitution></using>

<issuer><Client><notifyTo><Interface>

<target

>http://localhost:15080/r3/service/dumpster</target>

</Interface></notifyTo></Client></issuer>

</Evaluate>

Example 3.3.6 Detect Irrelevant PubMed Entry. Detect relevant terms found in PubMed
entries, providing:

• the identifier of the PubMed entry and

• the no longer relevant term.

In general, such an event may be caused by the removal of the entry from PubMed or by the
term becoming irrelevant, and in this scenario we don’t distinguish what was the actual cause.

If you have all the Reactive Rules of this scenario in place (viz. Registered/Loaded), with
this expression you will be able to find such events in the ”dumpster”.

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/events/not_pubmed_relevant</subject>

<reply-to>http://localhost:15080/r3/service/dumpster</reply-to>

<Expression

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xchange"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://rewerse.net/I5/NS/2006/r3#">

<is rdf:resource="#detect" />

<having><Parameter><is rdf:resource="#event" />

<literal rdf:parseType="Literal"

>not_pubmed_relevant {

entry { var ID },

term { var T }

}</literal>

</Parameter></having>

78

</Expression>

<log:variable-bindings>

<log:tuple>

<log:variable name="ID" />

<log:variable name="T" />

</log:tuple>

</log:variable-bindings>

</request>

Prova Queries. A Prova rulebase is maintained by this scenario containing:

• relevant(Word): all relevant terms

• relevant(Word, Id): all relevant terms for each relevant PubMed entry

• pubmed(Id, Details): a mirror of the details for all relevant PubMed entries

Here you will find some examples on how to query this Prova rulebase.

Example 3.3.7 Prova Predicates. One can load the Prova rulebase with a set of predicate. In
particular, in the use case, for using some of the queries exemplified there, it is useful to add
some utility predicates. In fact they are required for the reactive rules included in this scenario
to work properly, as shall be illustrated below.

<register xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml">

<subject>http://dummy.nop/rules/prova</subject>

<eca:rule>

<eca:opaque lang="http://rewerse.net/I5/NS/r3/2005/eval/prova#prova">

not(G) :- call(G), !, fail().

not([_|_]).

and(G1, G2) :- and([G1, G2]).

and([G|T]) :- call(G), and(T).

and([]).

or(G1, G2) :- or([G1, G2]).

or([G|_]) :- call(G).

or([_|T]) :- or(T).

once(G) :- call(G), !.

if(C, T) :- if(C, T, true()).

if(C, T, _) :- call(C), !, call(T).

if(_, _, E) :- call(E).

test(G) :- not(not(G)).

call(G) :- equals(G, [P|Args]), derive([P|Args]).

\% built-in derive/1 throws an exception if called

\% with derive(G) instead of derive([P|Args])

</eca:opaque>

</eca:rule>

</register>

79

Example 3.3.8 PubMed Entries. List all relevant publications in the Prova rulebase with
details.

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/prova/details</subject>

<opaque>pubmed(ID, S)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="ID" />

<log:variable name="S" />

</log:tuple>

</log:variable-bindings>

</request>

Example 3.3.9 Relevant Terms. List all relevant terms.

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/prova/terms</subject>

<opaque>relevant(T)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="T" />

</log:tuple>

</log:variable-bindings>

</request>

Example 3.3.10 Relevant Terms for Entries. List all relevant terms for each publication.

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/prova/irrelevant</subject>

<opaque>relevant(T, ID)</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="ID" />

<log:variable name="T" />

</log:tuple>

</log:variable-bindings>

</request>

Example 3.3.11 Irrelevant Terms for Entries. List all irrelevant terms for each publication in
the rulebase.

<request xmlns:log="http://www.semwebtech.org/lang/2006/logic">

<subject>http://dummy.nop/prova/irrelevant</subject>

<opaque>and([relevant(T), pubmed(ID, _), not(relevant(T, ID))])</opaque>

<log:variable-bindings>

<log:tuple>

<log:variable name="ID" />

<log:variable name="T" />

</log:tuple>

</log:variable-bindings>

</request>

80

Querying PubMed. For online querying of its entries, PubMed supplies a set of tools: the
Entrez utilities. This scenario uses two of those utilities:

• EFetch, to fetch the summary of a publication, and

• ESearch, to search for publications that refer to specific terms.

Here you will find some examples. For more information about the Entrez utilities see:

• http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html

Example 3.3.12 Fetching an Entry. The EFech Utility, given a PubMed identifier, fetches
details about an entry (cf. ’rettype’, e.g. abstract or citation).

You may also try to change the URL query parameter ’retmode’ (e.g. text, html, xml) and
see the results (notice how content-type never changes).

<Evaluate

rdf:about="http://dummy.nop/queries/efetch"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/http"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#vget" />

<with><BoundVariable><name>ID</name><rename>=id</rename></BoundVariable></with>

<with><BoundVariable><name>RT</name><rename>=rettype</rename></BoundVariable></with>

<with><Variable><name>st</name></Variable></with>

<with><Variable><name>tp</name></Variable></with>

<having><Parameter><is rdf:resource="#vuri" />

<literal rdf:parseType="Literal"

>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#status" />

<boundTo>st</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#content-type" />

<boundTo>tp</boundTo>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable><name>ID</name><rename>=id</rename>

<literal>17727721</literal></Variable></binding>

<binding><Variable><name>RT</name><rename>=rettype</rename>

<literal>abstract</literal></Variable></binding>

<binding><Variable><name>RM</name><rename>=retmode</rename>

<literal>text</literal></Variable></binding>

<binding><Variable><name>st</name></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>ID</name><rename>=id</rename>

<literal>15980585</literal></Variable></binding>

<binding><Variable><name>RT</name><rename>=rettype</rename>

<literal>citation</literal></Variable></binding>

<binding><Variable><name>RM</name><rename>=retmode</rename>

<literal>text</literal></Variable></binding>

<binding><Variable><name>st</name></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

</Evaluate>

81

http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html

Example 3.3.13 Fetching Bad IDs. When using the EFetch utility some caution must be taken
as errors are not identified by proper HTTP status and returned content type may be different
from the expected.

Try to change the URL query parameter ’retmode’ (viz. xml) and notice that the returned
HTTP status and content type are always, resp., 200 and text/html.

<Evaluate

rdf:about="http://dummy.nop/queries/efetch"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/http"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#vget" />

<with><BoundVariable><name>ID</name><rename>=id</rename></BoundVariable></with>

<with><BoundVariable><name>RT</name><rename>=rettype</rename></BoundVariable></with>

<with><Variable><name>st</name></Variable></with>

<with><Variable><name>tp</name></Variable></with>

<having><Parameter><is rdf:resource="#vuri" />

<literal rdf:parseType="Literal"

>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#status" />

<boundTo>st</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#content-type" />

<boundTo>tp</boundTo>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable><name>ID</name><rename>=id</rename>

<literal>99999999</literal></Variable></binding>

<binding><Variable><name>RT</name><rename>=rettype</rename>

<literal>citation</literal></Variable></binding>

<binding><Variable><name>RM</name><rename>=retmode</rename>

<literal>text</literal></Variable></binding>

<binding><Variable><name>st</name></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>ID</name><rename>=id</rename>

<literal>9999999a</literal></Variable></binding>

<binding><Variable><name>RT</name><rename>=rettype</rename>

<literal>citation</literal></Variable></binding>

<binding><Variable><name>RM</name><rename>=retmode</rename>

<literal>text</literal></Variable></binding>

<binding><Variable><name>st</name></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

</Evaluate>

Example 3.3.14 Searching for Entries. The ESearch utility provides a list of (identifiers for)
the set of PubMed entries satisfying a search term.

The number of returned entries may be limited with the ’retmax’ URL query parameter.
The total number of entries satisfying the criteria is always included in the resulting XML (viz.
/eSearchResult/Count).

82

Notice that the returned content-type is always text/html (which is invalid here), resulting
in XML characters being escaped in the result (which otherwise would be a well-formed XML
document).

<Evaluate

rdf:about="http://dummy.nop/queries/esearch"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/http"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#vget" />

<with><BoundVariable><name>T</name><rename>=term</rename></BoundVariable></with>

<with><BoundVariable><name>N</name><rename>=retmax</rename></BoundVariable></with>

<with><Variable><name>tp</name></Variable></with>

<having><Parameter><is rdf:resource="#vuri" />

<literal rdf:parseType="Literal"

>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="#content-type" />

<boundTo>tp</boundTo>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable><name>T</name><rename>=term</rename>

<literal>ontology pubmed</literal></Variable></binding>

<binding><Variable><name>N</name><rename>=retmax</rename>

<literal>0</literal></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>T</name><rename>=term</rename>

<literal>ontology pubmed</literal></Variable></binding>

<binding><Variable><name>N</name><rename>=retmax</rename>

<literal>1</literal></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>T</name><rename>=term</rename>

<literal>ontology pubmed</literal></Variable></binding>

<binding><Variable><name>N</name><rename>=retmax</rename>

<literal>5</literal></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>T</name><rename>=term</rename>

<literal>(ontology pubmed)+AND+(15980585[uid])</literal></Variable></binding>

<binding><Variable><name>N</name><rename>=retmax</rename>

<literal>5</literal></Variable></binding>

<binding><Variable><name>tp</name></Variable></binding>

</Substitution></using>

</Evaluate>

Example 3.3.15 From HTML to XML. To remove the escaping of XML characters (explained
in the previous example), we resort to a text to XML utility.

<Evaluate

rdf:about="http://dummy.nop/queries/esearch-xml"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

83

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/util"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<solve><Expression><is rdf:resource="#text2xml" />

<with><BoundVariable><name>T</name></BoundVariable></with>

<having><Parameter><is rdf:resource="#text" />

<boundTo>T</boundTo>

</Parameter></having>

</Expression></solve>

<using><Substitution>

<binding><Variable><name>T</name>

<literal><![CDATA[<?xml version="1.0"?>

<!DOCTYPE eSearchResult PUBLIC "-//NLM//DTD eSearchResult, 11 May 2002//EN"

"http://www.ncbi.nlm.nih.gov/entrez/query/DTD/eSearch_020511.dtd">

<eSearchResult>

<Count>43</Count>

<RetMax>0</RetMax>

<RetStart>0</RetStart>

<IdList>

</IdList>

<TranslationSet>

<Translation>

<From>pubmed</From>

<To>(&quot;pubmed&quot;[MeSH Terms] OR pubmed[Text Word])</To>

</Translation>

</TranslationSet>

<TranslationStack>

<TermSet>

<Term>ontology[All Fields]</Term>

<Field>All Fields</Field>

<Count>2114</Count>

<Explode>Y</Explode>

</TermSet>

<TermSet>

<Term>&quot;pubmed&quot;[MeSH Terms]</Term>

<Field>MeSH Terms</Field>

<Count>3529</Count>

<Explode>Y</Explode>

</TermSet>

<TermSet>

<Term>pubmed[Text Word]</Term>

<Field>Text Word</Field>

<Count>4582</Count>

<Explode>Y</Explode>

</TermSet>

<OP>OR</OP>

<OP>GROUP</OP>

<OP>AND</OP>

<OP>GROUP</OP>

</TranslationStack>

<QueryTranslation>ontology[All Fields] AND

(&quot;pubmed&quot;[MeSH Terms] OR pubmed[Text Word])

</QueryTranslation>

</eSearchResult>]]></literal></Variable></binding>

</Substitution></using>

</Evaluate>

Example 3.3.16 XPath Queries. To obtain specific values from the ESearch returned XML
document we resort to XPath expressions.

84

This example uses a copy of an eSearchResult document actually returned by PubMed and
performs three different XPath queries on it:

• it retrieves the total Count of elements satisfying the search (to retrieve all of them –if
more than 20– this number must be included in the ESearch query);

• it retrieves all the Id’s actually returned;

• it builds a search term that is the disjunction of all these Id’s.

<Evaluate

rdf:about="http://dummy.nop/queries/esearch-xml"

xmlns="http://rewerse.net/I5/NS/2006/r3#"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/xpath"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<using><Substitution>

<binding><Variable><name>Qry</name><literal

>/eSearchResult/Count/string()</literal></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>Qry</name><literal

>/eSearchResult/IdList/Id/string()</literal></Variable></binding>

</Substitution></using>

<using><Substitution>

<binding><Variable><name>Qry</name><literal

>string-join(for $i in /eSearchResult/IdList/Id/string()

return concat($i,’[uid]’),’+OR+’)</literal></Variable></binding>

</Substitution></using>

<solve><Expression><is rdf:resource="#opaque" />

<with><BoundVariable><name>Qry</name></BoundVariable></with>

<having><Parameter><is rdf:resource="#literal" />

<boundTo>Qry</boundTo>

</Parameter></having>

<having><Parameter><is rdf:resource="#document" />

<literal rdf:parseType="Literal">

<eSearchResult xmlns="">

<Count>43</Count>

<RetMax>5</RetMax>

<RetStart>0</RetStart>

<IdList>

<Id>17727721</Id>

<Id>17620146</Id>

<Id>17488846</Id>

<Id>17473321</Id>

<Id>17403693</Id>

</IdList>

<TranslationSet>

<Translation>

<From>pubmed</From>

<To>("pubmed"[MeSH Terms] OR pubmed[Text Word])</To>

</Translation>

</TranslationSet>

<TranslationStack>

<TermSet>

<Term>ontology[All Fields]</Term>

<Field>All Fields</Field>

<Count>2114</Count>

<Explode>Y</Explode>

85

</TermSet>

<TermSet>

<Term>"pubmed"[MeSH Terms]</Term>

<Field>MeSH Terms</Field>

<Count>3529</Count>

<Explode>Y</Explode>

</TermSet>

<TermSet>

<Term>pubmed[Text Word]</Term>

<Field>Text Word</Field>

<Count>4582</Count>

<Explode>Y</Explode>

</TermSet>

<OP>OR</OP>

<OP>GROUP</OP>

<OP>AND</OP>

<OP>GROUP</OP>

</TranslationStack>

<QueryTranslation>ontology[All Fields] AND ("pubmed"[MeSH Terms] OR pubmed[Text Word])</QueryTranslation>

</eSearchResult>

</literal></Parameter></having>

</Expression></solve>

</Evaluate>

Reactive Rules. Having explained (and set) the types of XChange events involved, what
is to be stored (and queried) in the Prova rulebase , and the usage of some PubMed utilities,
we can now illustrate the reactive rules used in this scenario. For easing the reading of this
document, we begin by describing all the rules in a compact notation, and only then detail each
of them:

• Rule for Added PubMed Entry

on new_pubmed(ID)
if not(pubmed(ID, _)), relevant(W),

xpath(concat(’(’,$W,’)+AND+(’,$ID,’[uid])’))^Q,
xpath(/eSearchResult/IdList/Id/string(),

text2xml(eSearch(Q, 1)))^ID
raise search_result(entry(ID), terms(*term(W)))

• Rules for Relevant Term

on new_relevant(W)
if not(relevant(W))
raise found_relevant(W)

on found_relevant(W)
do assert(relevant(W))
if xpath(/eSearchResult/Count/string(),

text2xml(eSearch(W, 0)))^N,
xpath(/eSearchResult/IdList/Id/string(),

text2xml(eSearch(W, N)))^ID
raise search_result(entry(ID), terms(*term(W)))

86

• Rule for Fetching PubMed Entry

on search_result(entry(ID), TERMS)
if pubmed(ID, S)
raise search_xresult(entry(ID), summary(S), TERMS)

if not(pubmed(ID, _)), eFetch(ID)^S
raise search_xresult(entry(ID), summary(S), TERMS)

• Rules for Processing Search Results

on search_xresult(entry(ID), summary(S), ...)
if not(pubmed(ID, _)) do assert(pubmed(ID, S))

on search_xresult(entry(ID), terms(*term(W)), ...)
do assert(relevant(WORD, ID))

on search_xresult(entry(ID), summary(S), terms(*term(W)))
raise new_pubmed_relevant(entry(ID), summary(S), term(W))

Example 3.3.17 Rule for Added PubMed Entry. Upon a new PubMed entry: - search for
relevant terms in it and - raise the search result.

on new_pubmed(ID)
if not(pubmed(ID, _)), relevant(W),

xpath(concat(’(’,$W,’)+AND+(’,$ID,’[uid])’))^Q,
xpath(/eSearchResult/IdList/Id/string(),

text2xml(eSearch(Q, 1)))^ID
raise search_result(entry(ID), terms(*term(W)))

<register

xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<subject>http://dummy.nop/rules/new_pubmed</subject>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

new_pubmed { var ID }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>not(pubmed(ID, _))</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:query>

87

<eca:query>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>relevant(WORD)</literal>

</Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="xpath#opaque" />

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

<having><Parameter><is rdf:resource="xpath#literal" />

<literal>concat(’(’,$WORD,’)+AND+(’,$ID,’[uid])’)</literal>

</Parameter></having>

<boundTo>SEARCH</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="http#vget" />

<with><BoundVariable><name>SEARCH</name><rename>=term</rename></BoundVariable></with>

<with><BoundVariable><name>one</name><rename>=retmax</rename>

<literal>1</literal></BoundVariable></with>

<having><Parameter><is rdf:resource="http#vuri" />

<literal rdf:parseType="Literal"

>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed</literal>

</Parameter></having>

<boundTo>LST_</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="util#text2xml" />

<with><BoundVariable><name>LST_</name></BoundVariable></with>

<having><Parameter><is rdf:resource="util#text" />

<boundTo>LST_</boundTo>

</Parameter></having>

<boundTo>LST</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="xpath#opaque" />

<with><BoundVariable><name>LST</name></BoundVariable></with>

<having><Parameter><is rdf:resource="xpath#literal" />

<literal>/eSearchResult/IdList/Id/string()</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="xpath#document" />

<boundTo>LST</boundTo></Parameter></having>

<boundTo>ID</boundTo>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_result { entry { var ID }, terms { all term { var WORD } } }

</literal></Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

88

</Expression>

</eca:action>

</eca:rule>

</register>

Example 3.3.18 Rules for Relevant Term. Upon a new relevant term:

• search for PubMed entries containing it and

• raise the search result for each entry found.

on new_relevant(W)
if not(relevant(W))
raise found_relevant(W)

on found_relevant(W)
do assert(relevant(W))
if xpath(/eSearchResult/Count/string(),

text2xml(eSearch(W, 0)))^N,
xpath(/eSearchResult/IdList/Id/string(),

text2xml(eSearch(W, N)))^ID
raise search_result(entry(ID), terms(*term(W)))

<register

xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<subject>http://dummy.nop/rules/new_relevant</subject>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

new_relevant { var WORD }

</literal></Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>not(relevant(WORD))</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise" />

<having><Parameter><is rdf:resource="xchange#event" />

<literal>found_relevant { var WORD }</literal>

89

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

found_relevant { var WORD }

</literal></Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>assert(relevant(WORD))</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

found_relevant { var WORD }

</literal></Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression><is rdf:resource="http#vget" />

<with><BoundVariable><name>WORD</name><rename>=term</rename></BoundVariable></with>

<with><BoundVariable><name>zero</name><rename>=retmax</rename>

<literal>0</literal></BoundVariable></with>

<having><Parameter><is rdf:resource="http#vuri" />

<literal>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed</literal>

</Parameter></having>

<boundTo>CNT_</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="util#text2xml" />

<with><BoundVariable><name>CNT_</name></BoundVariable></with>

<having><Parameter><is rdf:resource="util#text" />

<boundTo>CNT_</boundTo></Parameter></having>

<boundTo>CNT</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="xpath#opaque" />

<with><BoundVariable><name>CNT</name></BoundVariable></with>

90

<having><Parameter><is rdf:resource="xpath#literal" />

<literal>/eSearchResult/Count/string()</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="xpath#document" />

<boundTo>CNT</boundTo></Parameter></having>

<boundTo>N</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="http#vget" />

<with><BoundVariable><name>WORD</name><rename>=term</rename></BoundVariable></with>

<with><BoundVariable><name>N</name><rename>=retmax</rename></BoundVariable></with>

<having><Parameter><is rdf:resource="http#vuri" />

<literal rdf:parseType="Literal"

>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed</literal>

</Parameter></having>

<boundTo>LST_</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="util#text2xml" />

<with><BoundVariable><name>LST_</name></BoundVariable></with>

<having><Parameter><is rdf:resource="util#text" />

<boundTo>LST_</boundTo>

</Parameter></having>

<boundTo>LST</boundTo>

</Expression>

</eca:query>

<eca:query>

<Expression><is rdf:resource="xpath#opaque" />

<with><BoundVariable><name>LST</name></BoundVariable></with>

<having><Parameter><is rdf:resource="xpath#literal" />

<literal>/eSearchResult/IdList/Id/string()</literal>

</Parameter></having>

<having><Parameter><is rdf:resource="xpath#document" />

<boundTo>LST</boundTo></Parameter></having>

<boundTo>ID</boundTo>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_result { entry { var ID }, terms { all term { var WORD } } }

</literal></Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

</register>

Example 3.3.19 Rule for Fetching PubMed Entry. Upon a search result for a PubMed entry:

• fetch the entry details and

91

• complete the search result with them.

on search_result(entry(ID), TERMS)
if pubmed(ID, S)
raise search_xresult(entry(ID), summary(S), TERMS)

if not(pubmed(ID, _)), eFetch(ID)^S
raise search_xresult(entry(ID), summary(S), TERMS)

<register

xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<subject>http://dummy.nop/rules/fetching</subject>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_result { entry { var ID }, var TERMS -> terms {{ }} }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>TERMS</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression>

<is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>pubmed(ID, PUB)</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><Variable><name>PUB</name></Variable></with>

</Expression>

</eca:query>

<eca:query>

<!-- truncate PUB to avoid a possible XChange problem related to long strings -->

<!-- somehere between 80 and 120 XChange starts to crash :-((-->

<Expression><is rdf:resource="xpath#opaque" />

<with><BoundVariable><name>PUB</name></BoundVariable></with>

<having><Parameter><is rdf:resource="xpath#literal" />

<literal>concat(substring(\$PUB,1,80),’...’)</literal>

</Parameter></having>

<boundTo>S</boundTo>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_xresult { entry { var ID }, summary { var S }, var TERMS } }

</literal></Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><BoundVariable><name>S</name></BoundVariable></with>

<with><BoundVariable><name>TERMS</name></BoundVariable></with>

</Expression>

92

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_result { entry { var ID }, var TERMS -> terms {{ }} }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>TERMS</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression>

<is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>not(pubmed(ID, _))</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:query>

<eca:query>

<Expression><boundTo>PUB</boundTo>

<is rdf:resource="http#vget" />

<having><Parameter><is rdf:resource="http#vuri" />

<literal>http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name><rename>=id</rename></BoundVariable></with>

<with><BoundVariable><name>mode</name><rename>=retmode</rename>

<literal>text</literal></BoundVariable></with>

<with><BoundVariable><name>type</name><rename>=rettype</rename>

<literal>abstract</literal></BoundVariable></with>

</Expression>

</eca:query>

<eca:query>

<!-- truncate PUB to avoid a possible XChange problem related to long strings -->

<!-- somehere between 80 and 120 XChange starts to crash :-((-->

<Expression><is rdf:resource="xpath#opaque" />

<with><BoundVariable><name>PUB</name></BoundVariable></with>

<having><Parameter><is rdf:resource="xpath#literal" />

<literal>concat(substring(\$PUB,1,80),’...’)</literal>

</Parameter></having>

<boundTo>S</boundTo>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_xresult { entry { var ID }, summary { var S }, var TERMS }

</literal></Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><BoundVariable><name>S</name></BoundVariable></with>

<with><BoundVariable><name>TERMS</name></BoundVariable></with>

</Expression>

</eca:action>

93

</eca:rule>

</register>

Example 3.3.20 Rules for Processing Search Results. Upon a complete search result for a
PubMed entry with details:

• cache the details if needed,

• mark contained relevant terms and

• signal relevant terms.

on search_xresult(entry(ID), summary(S), ...)
if not(pubmed(ID, _)) do assert(pubmed(ID, S))
on search_xresult(entry(ID), terms(*term(W)), ...)
do assert(relevant(WORD, ID))
on search_xresult(entry(ID), summary(S), terms(*term(W)))
raise new_pubmed_relevant(entry(ID), summary(S), term(W))

<register

xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<subject>http://dummy.nop/rules/processing</subject>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_xresult {{ entry { var ID }, summary { var PUB } }}

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>PUB</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression>

<is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>not(pubmed(ID, _))</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>assert(pubmed(ID, PUB))</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

94

<with><BoundVariable><name>PUB</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_xresult {{ entry { var ID }, terms {{ term { var WORD } }} }}

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>assert(relevant(WORD, ID))</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

search_xresult { entry { var ID }, summary { var PUB }, terms {{ term { var WORD } }} }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>PUB</name></Variable></with>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

new_pubmed_relevant { entry { var ID }, summary { var PUB }, term { var WORD } }

</literal></Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

<with><BoundVariable><name>PUB</name></BoundVariable></with>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

</register>

Example 3.3.21 Rules for Dropped PubMed Entry. Cleanup Prova rulebase and signal any
dropped relevant terms for each PubMed entry.

on not_pubmed(ID)

95

do retract(pubmed(ID, _))
if relevant(W, ID)
raise not_pubmed_relevant(entry(ID), term(W))

on not_pubmed_relevant(entry(ID), term(W))
do retract(relevant(W, ID))

<register

xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<subject>http://dummy.nop/rules/not_pubmed</subject>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_pubmed { var ID }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

</Expression>

</eca:event>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>retract(pubmed(ID, _))</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_pubmed { var ID }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>relevant(WORD, ID)</literal>

</Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_pubmed_relevant { entry { var ID }, term { var WORD } }

</literal></Parameter></having>

96

<with><BoundVariable><name>WORD</name></BoundVariable></with>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_pubmed_relevant { entry { var ID }, term { var WORD } }

</literal></Parameter></having>

<with><Variable><name>ID</name></Variable></with>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>retract(relevant(WORD, ID))</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

</register>

Example 3.3.22 Rules for Irrelevant Term. Cleanup Prova rulebase and signal any dropped
relevant terms for each PubMed entry.

on not_relevant(W)
do retract(relevant(W))
if relevant(W, ID)
raise not_pubmed_relevant(entry(ID), term(W))

if relevant(W, ID), ~(relevant(X, ID), ~equals(X, W))
do retract(pubmed(ID, _))

<register

xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xml:base="http://rewerse.net/I5/NS/r3/2005/eval/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<subject>http://dummy.nop/rules/not_relevant</subject>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_relevant { var WORD }

</literal></Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

97

</eca:event>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>retract(relevant(WORD))</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_relevant { var WORD }

</literal></Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>relevant(WORD, ID)</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

<with><Variable><name>ID</name></Variable></with>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="xchange#raise"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_pubmed_relevant { entry { var ID }, term { var WORD } }

</literal></Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

<eca:rule xmlns="http://rewerse.net/I5/NS/2006/r3#">

<eca:event>

<Expression><is rdf:resource="xchange#detect"/>

<having><Parameter><is rdf:resource="xchange#event"/><literal rdf:parseType="Literal">

not_relevant { var WORD }

</literal></Parameter></having>

<with><Variable><name>WORD</name></Variable></with>

</Expression>

</eca:event>

<eca:query>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>and(relevant(WORD, ID), not(and(relevant(W, ID), not(equals(W, WORD)))))</literal>

</Parameter></having>

<with><BoundVariable><name>WORD</name></BoundVariable></with>

98

<with><Variable><name>ID</name></Variable></with>

</Expression>

</eca:query>

<eca:action>

<Expression><is rdf:resource="prova#opaque" />

<having><Parameter><is rdf:resource="prova#literal" />

<literal>retract(pubmed(ID, _))</literal>

</Parameter></having>

<with><BoundVariable><name>ID</name></BoundVariable></with>

</Expression>

</eca:action>

</eca:rule>

</register>

Testing. Now that you have all your rules in place (assuming you have posted everything up
to this point), go back to the “Event Interface” examples and use the first 4 examples.

Chek the detected events in the ”dumpster” and query the Prova rulebase with the examples
available in ”Prova Queries”.

For proving a fresh rulebase and detectors, the example also includes some cleanup and reset
utilities.

Cleanup and Reset. Reset Prova rulebase and cleanup all rules and event detectors.
Just post everything (in order) and you will get a clean start.

Example 3.3.23

Resetting Prova Rulebase.

<request>

<subject>http://dummy.nop/prova/reset</subject>

<opaque>and([

retractall(pubmed(_, _)),

retractall(relevant(_)),

retractall(relevant(_, _))

])</opaque>

</request>

Uninstall Prova Predicates. Cleanup rules for Prova utility predicates.

<deregister><subject>http://dummy.nop/rules/prova</subject></deregister>

Uninstall Rules for Added PubMed Entry, for Relevant Term, for Fetching PubMed Entry, for
Processing Search Results, for Dropped PubMed Entry, for Irrelevant Term.

<deregister><subject>http://dummy.nop/rules/new_pubmed</subject></deregister>

<deregister><subject>http://dummy.nop/rules/new_relevant</subject></deregister>

<deregister><subject>http://dummy.nop/rules/fetching</subject></deregister>

<deregister><subject>http://dummy.nop/rules/processing</subject></deregister>

<deregister><subject>http://dummy.nop/rules/not_pubmed</subject></deregister>

<deregister><subject>http://dummy.nop/rules/not_relevant</subject></deregister>

99

Uninstall Detect Relevant PubMed Entry, and Irrelevant PubMed Entry.

<deregister><subject>http://dummy.nop/rules/new_pubmed_relevant</subject></deregister>

<deregister><subject>http://dummy.nop/rules/not_pubmed_relevant</subject></deregister>

3.3.2 Possible Extensions

Recall that the main purpose of the example here is the illustration of how to build a rulebase,
and to test it as a demo. But this example suggests several ways to expand this scenario, which
can be tried.

One such extension resides in the generation of new pubmed events directly from PubMed.
Since PubMed does not, at present, provide any wait of detecting changes, not even an RSS
feed, such generation could only rely on periodically pooling E-Search (in a continuous-queries
style). This pooling could be easily written with an ECA rule, triggered by some clock event.
Of course, for a demo such automatic generation of new entries is not adequate, since it would
require the demo to actualy wait for real addition of entries in PubMed.

Another possible extension is to, instead of raising output event, have some other way of
signalling the user, e.g. by sending emails. One main reason for not having it in the demo
has to do with malicious use that could generate many mail messages with origin in our demo
server.

Yet another, more interesting, extension, is the generation of new relevant events from
GeneOntology, and making inference on that ontology for relevance of one terms given others.
This would require a way to detect differences in GO, possibly optimised with some http:if-
modified-since. Eventually an eca:rule may be written which must use appropriate GO URLs
and possibly resort to some XML diff utility.

100

Chapter 4

Future Work

Being a research prototype, r3 constitutes an actual moving target, with periodic stable releases.
The release described in this report, version 0.20, is one such stable releases. However, the most
up-to-date information about r3 is to be found at the r3 site (http://rewerse.net/I5/r3/).
This release, including its documentation and test examples will be available to the outside
after the life of the project, and support for it will continue to be given.

A new version of the r3 ontology [2] (version 0.50) is already available, pointing the future
direction of r3 (beyond the timeframe of Rewerse). Such future is expected to profit from
close cooperation with the industry, namely with RuleCore [50] together with the SSRG group
at Skövde, towards WIDER [10] perspectives on evolution and reactivity on the Semantic Web.
Given the complementary nature of r3, MARS [44] and XChange [18], it is quite important
that the integration effort between the 3 prototypes continues to be pursued.

The foundational and structural nature of the r3 ontology seems appropriate for describing
rules in general (not withstanding proper extension/generalization whenever needed). For in-
stance, it would be quite simple to provide a definition (particularly, at an algebraic level) of
the Prolog language and write heterogenous Prolog rules using the r3 vocabulary. Although
our present work, and the work proposed in the context of Rewerse workpackage I5, is not
focused on rules in general, reactive rules very often use other types of rules, namely to model
relationships of a more deductive nature (e.g. higher level constructions based on lower level
ones, or events “derived” from actions). As such, it would be quite interesting (both from a
general and reactive perspective) to collaborate with other communities towards achieving an
r2 ontology (viz. a foundational ontology for Resourceful Rules). Also, considering the exten-
sion of the r3 ontology to higher abstraction levels (e.g. rule languages, domain/application
languages, event languages, event algebras, process algebras) would be interesting to pursue.

Regarding ECA languages, the r3 ontology implicitly extends and generalizes the previously
proposed general ECA framework of [5, 26, 27] (e.g. solution constraints and rule constructions)
and calls for a revision of the ECA-ML markup [26] and of the general framework. Any revision
of the ECA-ML markup should: consider a homogenous markup for logical variables, clearly
identify syntactic sugar constructions (e.g. using XPath expressions to initialize variables), and
be based upon the formal specification of the (revised) framework. This is in accordance with
the ontology proposed in [7]. Also, given the r3 ontology (as an adequate abstract syntax for the
framework), such a (fully) formal specification of the framework is possible to achieve without
resorting to general markup guidelines and principles. Once the revised general framework is

101

http://rewerse.net/I5/r3/

formally specified, the r3 prototype is to be upgraded accordingly, thus supporting the final
version of the ontology.

The r3 approach tries to maximize separation of concerns and to focus as much as possible
on a model for reactive rule evaluation, taking into consideration (but not focusing on) the
specificities of the different component languages. For instance, Semantic Web event detec-
tion/propagation is a concern for event engines (viz. atomic event detectors/matchers, event
brokers or algebraic event composers); as much as Semantic Web transactions are a concern
for action engines. r3 is expected to work with different event (and action) engines, regardless
of the specific event detection/propagation (and transaction management) algorithms/archi-
tectures they use. r3 is not expected to enforce any particular algorithm/architecture at this
level, which, of course, also means that r3 does not propose any particular solution for these
research issues. r3 simply does not try to solve these issues. Instead, r3 tries to integrate
external research results, by defining how they should work together and by providing an ade-
quate environment for testing these results. It is our stance that r3 may provide a useful test
bed for integration of related languages like, for instance, XChangeEQ [19] and GeTS [33].
Regarding such research areas/issues, and related work, r3 takes a cooperative stand; hoping
to become a useful scenario where different external results (either within or outside Rewerse)
may be integrated and experimented.

102

Bibliography

[1] José Júlio Alferes and Ricardo Amador. r3: Towards a foundational ontology for reactive
rules. In 4th European Semantic Web Conference (ESWC), 2007. Poster at http://www.
eswc2007.org/posters.cfm.

[2] José Júlio Alferes and Ricardo Amador. r3 - a foundational ontology for reactive rules. In
Ontologies, DataBases, and Applications of Semantics (ODBASE), volume 4803/4804 of
Lecture Notes on Computer Science. Springer, 2007.

[3] José Júlio Alferes, Ricardo Amador, Erik Behrends, Mikael Berndtsson, François Bry,
Gihan Dawelbait, Andreas Doms, Michael Eckert, Oliver Fritzen, Wolfgang May, Paula-
Lavinia Pătrânjan, Loc Royer, Franz Schenk, and Michael Schroeder. Specification of a
Model, Language and Architecture for Reactivity and Evolution. Deliverable I5-D4, Centro
de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa, 2005.

[4] José Júlio Alferes, Ricardo Amador, Erik Behrends, Michael Eckert, Oliver Fritzen, Wolf-
gang May, Paula-Lavinia Pătrânjan, and Franz Schenk. A first prototype on evolution
and behaviour at the XML-Level. Deliverable I5-D5, Centro de Inteligência Artificial -
CENTRIA, Universidade Nova de Lisboa, 2006.

[5] José Júlio Alferes, Ricardo Amador, Erik Behrends, Michael Eckert, Oliver Fritzen, Wolf-
gang May, Paula-Lavinia Pătrânjan, and Franz Schenk. Completion of the prototype
scenario. Deliverable I5-D7, Rewerse project, 2007.

[6] José Júlio Alferes, Ricardo Amador, and Wolfgang May. A general language for Evolu-
tion and Reactivity in the Semantic Web. In Principles and Practice of Semantic Web
Reasoning (PPSWR), volume 3703 of Lecture Notes on Computer Science, pages 101–115.
Springer, 2005.

[7] José Júlio Alferes, Ricardo Amador, and Wolfgang May. Reactive rule ontology: RD-
F/OWL level. Deliverable I5-D6, Rewerse project, 2007.

[8] José Júlio Alferes, Mikael Berndtsson, François Bry, Michael Eckert, Nicola Henze, Wolf-
gang May, Paula-Lavinia Pătrânjan, and Michael Schroeder. Use-cases on evolution. Deliv-
erable I5-D2, Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa,
2005.

[9] José Júlio Alferes and Gastón E. Tagni. Implementation of a Complex Event Engine for
the Web. In Proceedings of First International Workshop on Event-driven Architecture,
Processing and Systems, Chicago, USA (18th September 2006), 2006.

103

http://www.eswc2007.org/posters.cfm
http://www.eswc2007.org/posters.cfm

[10] Ricardo Amador and José Júlio Alferes. Web Integrated Development tools for Evolution
and Reactivity (WIDER). http://www.ricardoamador.com/research/program.aspx,
2005. PhD Proposal.

[11] Jürgen Angele, Harold Boley, Jos de Bruijn, Dieter Fensel, Pascal Hitzler, Michael Kifer,
Reto Krummenacher, Holger Lausen, Axel Polleres, and Rudi Studer. Web Rule Language
(WRL). http://www.w3.org/Submission/2005/SUBM-WRL-20050909/.

[12] Dave Beckett. Turtle - Terse RDF Triple Language. http://www.dajobe.org/2004/01/
turtle/.

[13] Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz Schenk. Combining ECA Rules
with Process Algebras for the Semantic Web. In Proceedings of Second International Con-
ference on Rules and Rule Markup Languages for the Semantic Web, Athens, Georgia,
USA (10th–11th November 2006), 2006.

[14] Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An ECA Engine for
Deploying Heterogeneous Component Languages in the Semantic Web. In Proceedings of
Workshop Reactivity on the Web, Munich, Germany (31st March 2006), LNCS, 2006.

[15] Tim Berners-Lee. Putting the Web back in Semantic Web - talk. http://www.w3.org/
2005/Talks/1110-iswc-tbl/, November 2005.

[16] Harold Boley, Benjamin Grosof, Michael Sintek, Said Tabet, and Gerd Wagner. RuleML
Design. RuleML Initiative, http://www.ruleml.org/, 2002.

[17] Harold Boley and Michael Kifer. RIF Core Design. Working Draft, W3C, http://www.
w3.org/TR/2007/WD-rif-core-20070330, March 2007.

[18] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications of the
Language XChange. In 20th ACM Symp. Applied Computing. ACM, 2005.

[19] François Bry and Michael Eckert. Rule-Based Composite Event Queries: The Language
XChangeEQ and its Semantics. In RR’07, volume 4524 of LNCS. Springer, 2007.

[20] Sharma Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases. Data & Knowledge Engineering, 14(1):1–26, 1994.

[21] Roy Thomas Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[22] Foundation for Intelligent Physical Agents. FIPA ACL message structure specification.
Technical Report SC00061G, http://www.fipa.org, Dec. 2002.

[23] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[24] International Organization for Standardization. Common Logic (CL): a framework
for a family of logic-based languages, volume ISO/IEC FDIS 24707. ISO, http://
common-logic.org/, May 2007.

104

http://www.ricardoamador.com/research/program.aspx
http://www.w3.org/Submission/2005/SUBM-WRL-20050909/
http://www.dajobe.org/2004/01/turtle/
http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/2005/Talks/1110-iswc-tbl/
http://www.w3.org/2005/Talks/1110-iswc-tbl/
http://www.w3.org/TR/2007/WD-rif-core-20070330
http://www.w3.org/TR/2007/WD-rif-core-20070330
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://common-logic.org/
http://common-logic.org/

[25] Aditya Kalyanpur, Daniel Pastor, Steve Battle, and Julian Padget. Automatic Mapping
of OWL Ontologies into Java. In Proceedings of Sixteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE), Banff, Canada, (20th–24th
June 2004), 2004.

[26] Wolfgang May, José Júlio Alferes, and Ricardo Amador. Active rules in the Semantic
Web: Dealing with language heterogeneity. In International Conference on Rules and
Rule Markup Languages for the Semantic Web (RuleML), volume 3791 of Lecture Notes
on Computer Science, pages 30–44. Springer, 2005.

[27] Wolfgang May, José Júlio Alferes, and Ricardo Amador. An ontology- and resources-based
approach to evolution and reactivity in the Semantic Web. In Ontologies, DataBases, and
Applications of Semantics (ODBASE), volume 3761 of Lecture Notes on Computer Science,
pages 1553–1570. Springer, 2005.

[28] Wolfgang May, José Júlio Alferes, and François Bry. Towards generic query, update,
and event languages for the Semantic Web. In Principles and Practice of Semantic Web
Reasoning (PPSWR), volume 3208 of Lecture Notes on Computer Science, pages 19–33.
Springer, 2004.

[29] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

[30] Object Management Group. Business Process Definition Metamodel (BPDM). OMG,
2003.

[31] Object Management Group. Unified Modelling Language (UML) 2.0 Superstructure. OMG,
2004. http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

[32] Object Management Group. Semantics of Business Vocabulary and Business Rules
(SBVR). OMG, 2006. http://www.omg.org/cgi-bin/doc?dtc/2006-03-02.

[33] Hans Jürgen Ohlbach. Implementation: GeTS - A Specification Language for Geo-
Temporal Notions. Deliverable A1-D10-1, Rewerse project, 2005.

[34] Silvie Spreeuwenberg and Rick Gerrits. Business Rules in the Semantic Web, Are There
Any or Are They Different? In Proceedings of Summer School Reasoning Web 2006, Lisbon,
Portugal (4th–8th September 2006), volume 4126 of LNCS, pages 152–163. REWERSE,
2006.

[35] Apache Axis. http://ws.apache.org/axis/.

[36] Apache Axis2. http://ws.apache.org/axis2/.

[37] DB2 universal database. http://www.ibm.com/db2/.

[38] Haskell - A purely functional language. http://haskell.org/.

[39] Jastor - Typesafe, Ontology Driven RDF Access from Java. http://jastor.sourceforge.
net/.

[40] JavaServer Pages Technology. http://java.sun.com/products/jsp.

105

http://ws.apache.org/axis/
http://ws.apache.org/axis2/
http://www.ibm.com/db2/
http://haskell.org/
http://jastor.sourceforge.net/
http://jastor.sourceforge.net/
http://java.sun.com/products/jsp

[41] Java Servlet Technology. http://java.sun.com/products/servlets.

[42] Jena Semantic Web framework for Java. http://jena.sourceforge.net/.

[43] Java message service (JMS). http://java.sun.com/products/jms/.

[44] MARS: Modular Active Rules for the Semantic Web. http://www.dbis.informatik.
uni-goettingen.de/MARS/. Databases and Information Systems Group - DBIS, Institute
for Informatics, Georg-August-Universität Göttingen.

[45] Web ontology language (OWL). http://www.w3.org/2004/OWL/.

[46] Pellet OWL Reasoner. http://www.mindswap.org/2003/pellet/.

[47] Resourceful Reactive Rules (r3). http://rewerse.net/I5/r3/. Centro de Inteligência
Artificial - CENTRIA, Universidade Nova de Lisboa.

[48] Resource description framework (RDF). http://www.w3.org/RDF/.

[49] RDF/XML syntax specification (revised). http://www.w3.org/TR/2004/
REC-rdf-syntax-grammar-20040210/.

[50] ruleCore: The Active Rule Engine. http://www.rulecore.com/.

[51] SAXON - The XSLT and XQuery Processor. http://saxon.sourceforge.net/.

[52] Simple object access protocol (SOAP). http://www.w3.org/TR/soap.

[53] Web services addressing (WS-Addressing). http://www.w3.org/Submission/
ws-addressing/.

[54] Web services description language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[55] XML Schema. http://www.w3.org/XML/Schema/.

[56] W3C XML query (XQuery). http://www.w3.org/XML/Query/.

[57] XQuery 1.0 and XPath 2.0 Functions and Operators. http://www.w3.org/TR/xpath-
functions/.

[58] XSL transformations (XSLT) 2.0. http://www.w3.org/TR/xslt20/.

106

http://java.sun.com/products/servlets
http://jena.sourceforge.net/
http://java.sun.com/products/jms/
http://www.dbis.informatik.uni-goettingen.de/MARS/
http://www.dbis.informatik.uni-goettingen.de/MARS/
http://www.w3.org/2004/OWL/
http://www.mindswap.org/2003/pellet/
http://rewerse.net/I5/r3/
http://www.w3.org/RDF/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.rulecore.com/
http://saxon.sourceforge.net/
http://www.w3.org/TR/soap
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema/
http://www.w3.org/XML/Query/
http://www.w3.org/TR/xslt20/

Acknowledgements

This research has been co-funded by the European Commission and by the Swiss Federal Of-
fice for Education and Science within the 6th Framework Programme project Rewerse num-
ber 506779 (cf. http://rewerse.net).

107

http://rewerse.net

	Introduction
	On the contents and structure of this deliverable
	On the current prototypes for evolution and reactivity

	The r3 Prototype - v0.20
	The r3 Foundational Ontology
	An Ontology for Reactive Rules
	Defining Reactive Rule Languages
	Defining Reactive Rule Constructions
	From ECA-ML to r3DF

	r3 Engines and Library
	Resourceful Reactive Engines and Rules
	Loading and Evaluating Reactive Rules
	Variables, Substitutions and Results
	Rule Instances, et al.
	Prototype Implementation and Communication Details
	Building r3 Component Engines
	r3 Component Languages

	r3 Use-Cases
	Use-Cases Scenario
	Scenario Overview
	Scenario Use-Cases Overview

	r3-based Bio Domain Broker
	Message Examples

	r3-based PubMed Reactive Classifier
	Message Examples
	Possible Extensions

	Future Work

