
A1-D10-2

Implementation: The CTTN-System,

Version 2007

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/A1-D10-2/D/PU/a1
Responsible editors: H.J. Ohlbach
Reviewers:
Contributing participants: Munich
Contributing workpackages: A1
Contractual date of deliverable: 29 February 2008
Actual submission date: 29 March 2008

Abstract
The CTTN–system is a computer program which provides advanced processing of temporal
notions. The basic data structures of the CTTN–system are time points, crisp and fuzzy
time intervals, labelled partitionings of the time line, granularities, and calendar systems. The
labelled partitionings and granularities are used to model periodic temporal notions, quite
regular ones like years, months etc., partially regular ones like timetables, but also very irregular
ones like, for example, dates of a conference series. These data structures can be used in the
temporal specification language GeTS (GeoTemporal Specifications). GeTS is a functional
specification and programming language with a number of built-in constructs for specifying
customised temporal notions.

CTTN is implemented as a Web server and as a C++ library. This document gives a de-
tailed overview over the current state of the system and its components.

Keyword List
temporal notions

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2008.

ii

Implementation: The CTTN-System,

Version 2007

Hans Jürgen Ohlbach

Department of Computer Science, University of Munich
Email: ohlbach@ifi.lmu.de

29 March 2008

Abstract
The CTTN–system is a computer program which provides advanced processing of temporal
notions. The basic data structures of the CTTN–system are time points, crisp and fuzzy
time intervals, labelled partitionings of the time line, granularities, and calendar systems. The
labelled partitionings and granularities are used to model periodic temporal notions, quite
regular ones like years, months etc., partially regular ones like timetables, but also very irregular
ones like, for example, dates of a conference series. These data structures can be used in the
temporal specification language GeTS (GeoTemporal Specifications). GeTS is a functional
specification and programming language with a number of built-in constructs for specifying
customised temporal notions.

CTTN is implemented as a Web server and as a C++ library. This document gives a de-
tailed overview over the current state of the system and its components.

Keyword List
temporal notions

iv

Contents

1 A General Overview Over the CTTN–System 1
1.1 Introduction . 2
1.2 Time Points and Time Intervals in the FuTI–Module 2
1.3 Periodic Temporal Notions in the PartLib–Module 5

1.3.1 Partitionings of the Time Axis . 5
1.3.2 Labelled Partitionings . 6
1.3.3 Specification of Partitionings . 7
1.3.4 Leap Seconds . 9
1.3.5 Granularities . 9
1.3.6 Calendar Systems . 10

1.4 The GeTS–Language . 10
1.5 The Web–Interface . 13
1.6 Notation . 13

2 Fuzzy Time Intervals – The FuTI–Module 17
2.1 Motivation and Introduction . 18
2.2 The Mathematics of Fuzzy Time Intervals . 18

2.2.1 Fuzzy Time Intervals . 19
2.2.2 Scalar Properties of Fuzzy Time Intervals 23
2.2.3 Functions Operating on Fuzzy Time Intervals 24
2.2.4 Set Operators for Fuzzy Intervals . 26
2.2.5 Hull Operators for Fuzzy Intervals . 30
2.2.6 Basic Unary Transformations . 32

2.3 Data Structures and Algorithms . 38
2.3.1 Points . 41
2.3.2 Fuzzy Time Intervals . 44

2.3.2.1 Representation and Construction 45
2.3.2.2 Basic Features of Fuzzy Intervals 48
2.3.2.3 Regions . 51
2.3.2.4 Point–Interval and Interval–Interval Relations 52
2.3.2.5 Hull Operators . 53
2.3.2.6 Basic Unary Transformations . 54
2.3.2.7 Y-Function Based Unary Transformations 57
2.3.2.8 Y-Function Based Binary Transformations 58

2.3.3 Integration over Multiplied Intervals . 60

v

2.4 Circular Fuzzy Intervals . 63
2.5 Summary . 64

3 Periodic Temporal Notions – The PartLib–Module 65
3.1 Introduction . 66

3.1.1 Peculiarities of Real Time Systems . 67
3.2 Basic Concepts of PartLib: An Introduction . 67

3.2.1 Structures along the Time Axis . 68
3.2.1.1 Partitionings of the Time Axis 68
3.2.1.2 Labels for Partitions . 68
3.2.1.3 granularities . 69

3.3 Compact Mathematical Models . 70
3.3.1 Partition Coordinates and Integer Structures 70
3.3.2 Compact Representation of Partitionings 73

3.3.2.1 Length of Intervals and Time Shifts in Terms of Partitions . . . 75
3.3.3 Labels Attached to Partitions . 78

3.3.3.1 Finite Labellings . 79
3.3.4 Partitioning Based Granularity Representations 81
3.3.5 Granularity Based Time Shifts . 89
3.3.6 Durations . 95
3.3.7 Partitioning Types . 95
3.3.8 Global and Local Reference Time, Leap Seconds 95

3.3.8.1 Algorithmic Partitionings . 97
3.3.8.2 Duration Partitionings . 99
3.3.8.3 Date Partitionings . 100
3.3.8.4 Intersection Partitionings . 101
3.3.8.5 Shifted Partitionings . 103
3.3.8.6 Tree Partitionings . 104

3.3.9 Calendar Systems . 124
3.3.10 The XML-Interface . 124

4 GeTS– A Specification Language for Geo-Temporal Notions 125
4.1 The GeTS Language . 126

4.1.1 Types in the GeTS Language . 129
4.1.1.1 Basic Types . 129
4.1.1.2 Compound Types . 132

4.1.2 Language Constructs for GeTS . 132
4.1.2.1 Arithmetic Expressions . 133
4.1.2.2 Boolean Expressions . 135
4.1.2.3 Control Constructs . 135
4.1.2.4 Functional Arguments . 136
4.1.2.5 Now and Shift . 137
4.1.2.6 Explicit Construction of Time Intervals 140
4.1.2.7 Set Operations on Intervals . 141
4.1.2.8 Predicates of Intervals . 144
4.1.2.9 Other Features of Intervals . 145
4.1.2.10 Basic Manipulations of Intervals 148

vi

4.1.2.11 Date and Time . 157
4.1.2.12 Partitionings and Labels . 158
4.1.2.13 Control Constructs for Operations on Intervals 161

4.2 Summary . 166

5 Relations Between Fuzzy Time Intervals 167
5.1 Motivation and Introduction . 168
5.2 Point–Interval Relations . 170

5.2.1 Point–Interval ‘Before’ and ‘After’ Relations 171
5.2.2 Point–Interval ‘Starts’ and ‘Finishes’ Relations 174
5.2.3 Point–Interval ‘During’ Relations . 176
5.2.4 Point–Interval Relations for Non-Convex Intervals 177
5.2.5 Point–Interval Relations for Intervals with Metric 178

5.3 Interval–Interval Relations . 179
5.3.1 Nagypál and Motik’s Interval–Interval Relations 179
5.3.2 Operator Based Interval–Interval Relations 180
5.3.3 Interval–Interval ‘before’ Relations . 181
5.3.4 Interval–Interval ‘meets’ Relations . 186
5.3.5 Interval–Interval ‘overlaps’ Relations . 189
5.3.6 Interval–Interval ‘starts’ Relations . 192
5.3.7 Interval–Interval ‘finishes’ Relations . 196
5.3.8 Interval–Interval ‘during’ Relations . 196
5.3.9 Interval–Interval ‘equals’ Relations . 199
5.3.10 Summary: Operator Version versus Nagypál and Motik’s Relations 201
5.3.11 Until . 202

5.4 Summary . 204

Appendix 205

A The FuTI–Module 205
A.1 The FuTI—interface . 206

A.1.1 Points . 206
A.1.2 Intervals . 207
A.1.3 Circular Intervals . 213
A.1.4 Y-Functions . 213

B The GeTS–Language 217
B.1 Overview over the Language Constructs . 218

B.1.1 Types . 218
B.1.2 Arithmetics . 218
B.1.3 Boolean Operators . 218
B.1.4 Control Constructs . 219
B.1.5 Time Points . 219
B.1.6 Intervals . 219
B.1.7 Time and Partitions . 221

B.2 The Application Programming Interface . 222

vii

viii

Chapter 1

A General Overview Over the
CTTN–System

1

1.1 Introduction

In the CTTN–project we aim at a very detailed modelling of the temporal notions. These are, in
particular, time points, crisp and fuzzy temporal intervals together with built-in as well as user
definable relations between and operations on these intervals. Furthermore, there is support
for various kinds of regular and irregular periodic temporal notions, again built-in ones as well
as user definable ones. The possibilities range from very simple ones like seconds or minutes
up to complex ones like Easter time or solar eclipses. A special specification and programming
language GeTS (GeoTemporal Specifications [32]) allows applications and users to defined their
own versions of temporal notions and to do all kinds of computations with them.

CTTN is not the implementation of a theoretical temporal logic, but it models the flow of
time as it is perceived on our planet. It realizes the main concepts and operations underlying
many temporal notions in natural language.

The key components of the CTTN–system consist of the modules depicted in Figure 1.1.
The Service module at the bottom contains a large variety of application independent functions.
The FuTI module (Fuzzy Time Intervals) [31, 34] contains the data structures and operations on
time time points and crisp and fuzzy time intervals. The largest module is the PartLib module
(Partitioning module). It contains the machinery for specifying and working with periodic
temporal notions. Since calendar systems consist of such periodic temporal notions, a module
for representing different calendar systems is also part of PartLib.

The GeTS–module implements a functional programming language with certain additional
constructs for this application area. A flex/bison type parser and an abstract machine for
GeTS has been implemented as part of the CTTN–system. GeTS is the first specification and
programming language with such a rich variety of built-in data structures and functions for
GeoTemporal notions. In a first case study it has been used to define various versions of fuzzy
interval–interval relations [34].

The basic interface to the CTTN –system is socket based and implements the CTTN pro-
tocol. Prototypes of RMI, CORBA and SOAP interfaces have also been implemented, but not
yet fully tested.

1.2 Time Points and Time Intervals in the FuTI–Module

The flow of time underlying most calendar systems corresponds to a time axis which is iso-
morphic to the real numbers R. Since the most precise clocks developed so far, atomic clocks,
measure the time in discrete units, it is sufficient to restrict the representation of concrete time
points to integers. Therefore FuTI represents time points with integers, either with 64–bit in-
tegers, or with multiple precision integers (this is a compiler option). Within FuTI there is no
assumption about the meaning of these integers, whether they are days, seconds, femtoseconds
or not even time points1.

Although FuTI represents time points only with integers, there is still the underlying as-
sumption that the time axis is isomorphic to the real numbers. That means, for example, the
interval between the time points 0 and 1 is not empty, but it is set of real numbers between 0
and 1.

1A special component of FuTI, which was developed for another application allows for the representation of
circular intervals like angles between 0 and 360 degrees. In this case the integers represent fractions of angular
degrees.

2

Service

FuTI

Point
Interval
Operation
Y-Function

-
Definitions

RelationsSocket SOAP CORBA RMI

Interfaces

Parser, abstract machine

GeTS

algorithmic Granules
duration Labels
tree Labellings

individual / sequence

YearMonthDay

HourMinuteSecond

SubSeconds

Gregorian

Julian
...

Partitioning Granularity

Calendar Systems

?

? ?

�
�

�
��+

HHHHHHHj

B
B
B
B
B
B
B
B
B
B
B
B
B
BBN

�������)?

Figure 1.1: The CTTN-System

The next important data type is that of time intervals. Time intervals can be crisp or fuzzy.
With fuzzy intervals one can encode notions like ‘around noon’ or ‘late night’ etc. Since fuzzy
intervals are more general and more flexible than crisp intervals, FuTI uses fuzzy intervals as
basic interval data type.

Fuzzy intervals are usually defined through their membership functions [41, 14]. A mem-
bership function maps a base set to real numbers between 0 and 1. The base set for fuzzy time
intervals is a linear time axis.

3

-

6

R
0

1

Crisp and Fuzzy Intervals

The fuzzy intervals can also be infinite. For example, the term ‘after tonight’ may be
represented as a fuzzy distribution which rises from fuzzy value 0 at 6 pm until fuzzy value 1
at 8 pm and then remains 1 ad infinitum.

-

6

R
0

1

after tonight
6 8

Fuzzy time intervals are realized in the FuTI–module as polygons with integer coordinates.
The x-coordinates represent time points and the y-coordinates represent fuzzy values as integers
between 0 and a maximum value (the default value is 1000). A normalised fuzzy value between
0 and 1 can then be obtained by dividing the integer y-coordinate by the maximum value. A
y-coordinate of 500, for example, represents the normalised fuzzy value 0.5.

If the integers represent hours, one can, for example, represent the interval ‘around noon’
as the polygon ((11,0) (12,1000) (13,0)). The membership function of the corresponding fuzzy
interval starts at 11 o’clock with fuzzy value 0 and then rises linearly to fuzzy value 1 at noon.
From there on it falls linearly to fuzzy value 0 at 1 pm.

FuTI provides a large collection of operations on these intervals. There are methods for
accessing information about the intervals, the location of various parts of an interval, its size
(which is the integral over the membership function), its components etc. There are methods
for transforming the intervals, for example, hull computations. There are integration functions,
fuzzification functions etc. There are also very general unary and binary transformation func-
tions which can be parameterised with functions operating on the fuzzy values. All the set
operations on fuzzy intervals, for example, are realized as transformations with functions on
the fuzzy values. The transformations of the fuzzy membership functions need not be linear,
i.e. they may transform straight lines into curved lines. The FuTI–module contains for these
cases an approximation algorithm which approximates curved lines by polygons.

Example 1.2.1 (Birthday Party Time) This example illustrates some of the operations
which are possible with the FuTI–module. Consider the statement “the birthday party for took
place from around noon until early evening of 20/7/2003”. The corresponding fuzzy interval
could be generated by integrating the fuzzy interval for ‘around noon’ in positive direction,
integrating the fuzzy interval for ‘early evening’ in negative direction and then intersecting the
two integrals. The resulting fuzzy set is:

4

-

6

R
0

1

Birthday Party Time
11 12 13 20 21 2422

A GeTS–specification of this example is given in Example 1.4.5.

1.3 Periodic Temporal Notions in the PartLib–Module

The PartLib–module offers powerful machinery for specifying and working with periodic tempo-
ral notions. The basic concept is the concept of the partitionings of the time axis. Since most pe-
riodic temporal notions, for example, days, yield infinite partitionings of the time axis, PartLib
offers different versions of finite representations of these infinite structures. The operations on
the infinite structures are turned into operations on the corresponding finite representations.

Partitions can be labelled, e.g., with ‘Monday’, ‘Tuesday’ etc. Partitionings with labels can
be comprised in different ways to different structures. For example, from the day–partitioning
and the corresponding labelling one can derive the structure which corresponds to ‘all Mondays’
or to ‘all non-Mondays’. If the labels are organised in a hierarchy, for example, Monday,..,Friday
are all ‘Workdays’ and Saturday and Sunday are ‘Weekenddays’ one can derive the notion of ‘all
Workdays’. Since there are a number of further ways to derive new substructures of the time
axis from labelled partitionings, all these ways are comprised into the concept of granularities
(see Sec. 1.3.5). A granularity is essentially a subset of a partitioning of the time axis. Many
operations in the CTTN–system work with the more general concept of granularities instead
with partitionings.

1.3.1 Partitionings of the Time Axis

Most basic time units of calendar systems, years, months etc., are essentially partitionings of the
time axis. Other periodical temporal notions, for example, semesters, school holidays, sunsets
and sunrises etc., can also be modelled as partitionings.

A partitioning of the real numbers R may be, for example, (..., [−100, 0[, [0, 100[, [100, 101[,
[101, 500[, ...). The intervals in the partitionings need not be of the same length (because time
units like years are not of the same length either). The intervals can, however, be enumerated
by integers (their coordinates). For example, we could have the following enumeration

... [−100 0[[0 100[[100 101[[101 500[...

... −1 0 1 2 ...

The enumeration of partitions, i.e. their coordinates, are a very useful means for concrete
computations. It turned out, however, that in some cases instead of integer coordinates, certain
other structures which are isomorphic to integers are more useful. An example for a structure
which is isomorphic to the integers are the paths in an infinite tree. Therefore PartLib has
introduced the concept of Integer Structures as a generalisation of the integer coordinates.

Definition 1.3.1 (Partitioning) A partitioning P of the time axis in PartLib is a sequence

. . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .

5

of non-empty half open intervals in R with integer boundaries such that ti < ti+1 for all i.
The partitioning may be finite at one or both sides, i.e.] −∞, t0[, ..., [tn,+∞[is allowed.
An Integer Structure is a set of objects which is isomorphic to the integers.
A coordinate mapping c is a bijective mapping between a partitioning and an Integer Struc-

ture (or a part of it if the partitioning is finite) such that if partition p is before partition q then
c(p) < c(q).

The choice of half open intervals of the kind [ti, ti+1[as partitions was arbitrary. It means
that, for example, Midnight always belongs to the next day.

1.3.2 Labelled Partitionings

The partitions in CTTN can be labelled. The labels are just names for the partitions like in the
following example.

Example 1.3.2 (The Labelling of Days) We count the time in seconds beginning with Jan-
uary 1st 1970. This was a Thursday. Therefore we choose as labelling for the day partitioning

L =def Th, Fr, Sa, Su,Mo, Tu,We.

The following correspondences are obtained:

time : . . . [−86400, 0[[0, 86400[[86400, 172800[. . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, Label(−1) = We, i.e. December 31 1969 was a Wednesday.

Labels are different to coordinates because different partitions can have the same label (e.g.,
all Mondays). Labellings can be used for three purposes. The first purpose is to get access to the
partitions via their names (labels). One can use these names in various GeTS–functions. The
second purpose is to associate partitions with further attributes. The labels can, for example,
serve as keys into databases. The third purpose is to use the labels for grouping partitions
together into granules. An example is the set of all Mondays. This is no longer a partitioning
of the time axis because there are gaps between the Mondays.

Definition 1.3.3 (Labels) A set of labels in PartLib is just an arbitrary finite or infinite set2

A label hierarchy is a binary relation ⊑ which orders the labels in a tree.
A labelling of a PartLib partitioning is a possibly partial mapping from the partitions into

the set of labels.

Since a labelling can be partial, not all partitions need to have labels. As an example, where
this makes sense, consider the partitioning of hours and the labelling which associates the label
‘working hour’ with all hours between 8 am and noon and all hours between 1 pm and 5 pm.
The other hours don’t have labels. This labelling specifies implicitly the concept of ‘working
day’, the concept of ‘lunch time’, and the concept of ‘after work’. These implicit definitions can
be made explicit in PartLib by turning them into granularities (see below).

2Labels are in fact instances of subclasses of a class Label.

6

1.3.3 Specification of Partitionings

Partitionings have a finite representation in PartLib. There are the following representations
for partitionings.

Algorithmic Partitionings
This type of partitionings is mainly used for modelling the basic time units of calendar systems,
years, months etc. The specification consists of an offset against time point 0, an average
length of the partitions, and a correction function which corrects the average length to the
actual length. Algorithmic Partitionings are useful for modelling very basic time units, such
as months or years, but also for very complex ones, such as Easter time, sunrises and sunsets,
tides etc.

Duration Partitionings
They are specified by an anchor time and a sequence of ‘durations’.

For example, I could define ‘my weekend’ as a duration partitioning with anchor time
2004/7/23, 4 pm (Friday July, 23rd, 2004, 4 pm) and durations: (‘8 hour + 2 day’, ‘4 day
+ 16 hour’). The first interval would be labelled ‘weekend’.

A simpler example is the notion of a semester at a university. In the Munich case, the
dates could be: anchor time: October 2000. The durations are: 6 months (with label ‘winter
semester’) and 6 months (with label ‘summer semester’). This defines a partitioning with
partition 0 starting at the anchor time, and then extending into the past and the future. The
first partition in this example is the winter semester 2000/2001.

The units for the duration are in fact granularities, and not just partitionings. Thus, one
can, for example, define durations in terms of granules. An example is ‘3.5 working days + 1.5
weekends’.

Date Partitionings
In this version we provide the boundaries of the partitions by concrete dates. Therefore the
partitioning can only cover a finite part of the time line.

An example could be the dates of the Time conferences: 1994/5/4 Time94 1994/5/4 gap
1995/4/26 Time95 1995/4/26 . . . 2004/7/1 Time04 2004/7/3.

Since the intervals between two adjacent dates determine durations, date partitionings are
in fact special cases of duration partitionings, and this is one of the two possibilities how they
are treated in PartLib. The other possibility is to generate an explicit representation of the
finitely many partition boundaries.

Intersection Partitionings
They combine two previously defined partitionings by intersecting their partitions. If the two
original partitionings are labelled then a new labelling can be computed by means of mapping
rules for labels.

As an example, suppose there is a partitioning p1 representing the lecture course l, say every
Wednesday from 10 am until 12 am. There is a second partitioning p2 which represents public
holidays. p2 is labelled with the holiday names (Easter, Christmas etc.) The holiday name
labels are all sub-labels in a label hierarchy with top element ‘holiday’. The partitioning which
represents the lecture time without the public holidays can be generated by intersecting p1 and
p2 with the following mapping rules

l ∗ holiday 7→ gap;
l ∗ gap 7→ l;
gap ∗ holiday 7→ gap

7

with the extra provision that adjacent partitions without labels are comprised into a single
partition. ‘gap’ stands for the empty label. The following picture illustrates the example.

-

-

-

l l

holiday

l

l l resulting labelled partitioning

Shifted Partitionings
Suppose a bus timetable for a particular bus station has been defined as a partitioning. The
bus time table for the next bus station may be such that all time are just shifted by, say, 5
minutes. It would be very inconvenient to force a user to specify this new timetable in the
same complicated way as the first one. Moreover, if the original bus timetable is changed,
the timetables for all other stations have to be changed as well. A much easier and safer way
would be to define the other timetables by taking the first one and just shifting it by a certain
duration.

To this end a partitioning type Shifted Partitioning has been introduced. It is specified by
a given partitioning and a duration. All partitions of the new partitioning, together with their
labels, are generated by shifting the original partitions by the given duration.

Tree Partitionings (TPS)
This type of specification for partitionings can be used when concrete dates are involved. Typical
examples are bus timetables. A tree partitioning is given by a Date Format and a Range Tree.
The date format determines a kind of calendar to be used for interpreting the nodes in the
range tree.

Example 1.3.4 (for a Tree Partitioning Specification) A typical date format is the stan-
dard date format year/week/day/hour/minute/second.

The following TPS may define a bus schedule.

year *

week *

day 0–4 5–6

hour 5 6 . . . 20 8 10 . . . 16

minute 20–21 20–21 . . . 20–21 0–1 0–1 . . . 0–1

It specifies the following bus schedule: every year, every week, every work day (0–4), there is a
bus at 5:20 – 5.21 (2 minutes stay at the bus stop), 6:20 – 6:21 until 20:20 – 20:21, and at the
weekends (days 5,6) there is a bus every hour from 8 until 16 hours.

The nodes in the TPS determine an offset from the start of the granule given by the corre-
sponding position in the date format. There are four different node types:

8

NumberRange nodes. They specify concrete number sets, for example, 4-6,10-12 specifies
the set {4, 5, 6, 10, 11, 12}
NumberIterator nodes. They specify iterators like, for example, in a ‘for loop’. The iterator
is given by a start value, a step value and a number of iterations. For example, start = 1, step
= 2, iterations = 5 specifies the set {1, 3, 5, 7, 9}
LabelRange nodes. They specify concrete label sets, for example, March-May, August spec-
ifies the set {2, 3, 4, 7} (January is month 0).

LabelIterator nodes. They specify labels by giving a label together with a number iterator.
For example, Label = ’L’, start = 2, steps = 10, iterations = 5 The loop starts with the second
occurrence of L and then continues 5 times in steps of 10 partitions with this label, 5 iterations.

In all four cases it is also possible to interpret the numbers as distances from the end
of a partition. For example, if the day partition is right below the month partition in the
corresponding date format, and the backwards flag is set to true, then the number 0 at the day
level is interpreted as the very last day in the given month.

The specification of a partitioning can be quite complex and require a lot of data. Therefore
for each partitioning type, except for algorithmic partitionings, there is a corresponding XML
document type for specifying a partitioning. After the CTTN interface has read and parsed
such an XML specification one can use them in the same way as the built-in partitionings for
calendar systems.

1.3.4 Leap Seconds

To compensate for the slowing down of the earth’s rotation, since 1971 every few years a leap
second has been introduced. The last minute in the year where a leap second has been inserted
has 61 seconds instead of 60 seconds. This has an effect on all partitionings above the level of
seconds. It would be very complicated and error prone to integrate the effect of leap seconds
in all these partitionings. As an alternative, this phenomenon is taken care of by separating
the reference time into a global reference time and a local reference time. The global reference
time counts the seconds as they are. It knows nothing about leap seconds. The local reference
time shrinks the leap seconds to 0 length. That means the last minute in the years where a
leap second has been inserted has still 60 seconds in the local reference time. The extra second
occurs only in the transition to the global reference time. This way the leap second calculations
have been concentrated in a single place, the transition between local and global reference time.
All other partitioning dependent calculations can ignore leap seconds.

1.3.5 Granularities

The labels which can be attached to the partitionings generate a variety of new substructures
of the time axis which are no longer partitionings because there can be gaps between the
corresponding time intervals. Since periodic temporal notions with gaps are much more frequent
than partitionings, the concept of granularities has been introduced.

Granularities are like partitionings, but there are two essential differences

• there are gaps allowed between two neighbouring granules

• there are gaps allowed even within a granule. An example is ‘working day’ from 8 am
until 5 pm with a lunch break from 12 am until 1 pm.

9

CTTN distinguishes the following types of granularities:

Partitioning Granularities: each partition is a granule. Labels are ignored.

Label Partition Granularities: are determined by a label (possibly within a label hierarchy).
For example, the Label Partition Granularity with label ‘weekendday’ of a day partitioning (with
sub-labels Saturday and Sunday below weekendday) would join the days of the weekends into
a granule. A Saturday is a granule, followed by the following Sunday, followed by the following
Saturday etc.

Label Block Granularities: is similar to a Label Partition Granularity. The difference is
that neighbouring partitions with the given label form one granule. A Label Block Granularity
with labels ‘weekendday’ (see above) would join Saturdays and Sundays into one single granule.

Labelling Granularities: declares a whole label sequence as a granule. For example, the
labelling ‘Monday’, ‘Tuesday’, ... ‘Sunday’ of the day partitioning comprises a whole week into
a single granule.

Gap Block Granularities: A Gap Block Granularity comprises all adjacent partitions without
labels into one granule.

As soon as a labelling has been attached to a partitioning, all these types of granularities are
available as concrete data types, and a common API is available via the superclass ’Granularity’.
Typical examples for the API are methods which move from a given granule to the next granule,
methods which move from a given time point n granules forward or backward (n may be
fractional), methods which measure time intervals in terms of granule length etc.

1.3.6 Calendar Systems

A calendar system in the CTTN–system is a set of partitionings or granularities, for example
the partitionings for seconds, minutes, hours, weeks, months and years, together with some
extra data and methods. Dershowitz and Reingold’s ‘calendrical calculations’ are used here
[13] for computing the details down to the level of days. In addition PartLib models all the
nasty features of real calendar systems, in particular leap seconds and daylight saving time
schemes (in a submodule DLST). Calendar systems can be arranged in sequences, for example,
the sequence consisting of the Julian calendar system until 4th of October 1582 followed by the
Gregorian system. Another example of a sequence of calendar systems in PartLib could be a
sequence of calendars and time zones a traveller encounters when he travels around the world.

The Calendar submodule in PartLib has predefined general classes for years/ months/days,
for hours/minutes/seconds and for sub-seconds. Using these classes it requires very little code
to add new calendar systems.

1.4 The GeTS–Language

The PartLib–module has, via the XML-interface, mechanisms for integrating user defined pe-
riodic temporal notions. Not all temporal notions and computations, however, have to do with
periodicies. The GeoTemporal Specification Language GeTS has therefore been added as a gen-
eral purpose language for working with temporal notions. The design of the GeTS–language
was influenced by the following considerations:

10

1. Although the GeTS–language has many features of a functional programming language, it
is not intended as a general purpose programming language. It is a specification language
for temporal notions, however, with a concrete operational semantics.

2. The parser, compiler, and in particular the underlying GeTS abstract machine are not
standalone systems. They must be embedded into a host system which provides the data
structures and algorithms for time intervals, partitionings etc., and which serves as the
interface to the application. GeTS provides a corresponding application programming
interface (API).

3. The language should be simple, intuitive, and easy to use. It should not be cluttered
with too many features which are mainly necessary for general purpose programming
languages.

4. The last aspect, but even more the point before, namely that GeTS is to be integrated
into a host system, were the main arguments against an easy solution where GeTS is
only a particular module in a functional language like SML or Haskell. The host system
was developed in C++ (it could also be Java, but multiple precision integers are more
efficient in C++). Linking a C++ host system to an SML or Haskell interpreter for GeTS
would be more complicated than developing GeTS in C++ directly. The drawback is that
features like sophisticated type inferencing or general purpose data structures like lists or
vectors are not available in the current version of GeTS.

5. Developing GeTS from scratch instead of using an existing functional language has also
an advantage. One can design the syntax of the language in a way which better reflects
the semantics of the language constructs. This makes it easier to understand and use. As
an example, the syntax for a time interval constructor is just [expression1, expression2].

The GeTS–language is a strongly typed functional language with a few imperative constructs.
Here we can give only a flavour of the language. The technical details are in Chapter 4
Comment[32].

Example 1.4.1 (tomorrow) The definition

tomorrow = partition(now(),day,1,1)

specifies ‘tomorrow’ as follows: now() yields the time point of the current point in time. day

is the name of the day partitioning. Let i be the coordinate of the day-partition containing
now(). partition(now(),day,1,1) computes the interval [t1, t2[where t1 is the start of the
partition with coordinate i+ 1 and t2 is the end of the partition with coordinate i+ 1. Thus,
[t1, t2[is in fact the interval which corresponds to ‘tomorrow’.

In a similar way, we can define

this_week(Time t) = partition(t,week,0,0).

The time point t, for which the week is to be computed, is now a parameter of the function.

Example 1.4.2 (Christmas) The definition

christmas(Time t) =

dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),

time(year|12|27,Gregorian_month)]

11

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t in the date
format Gregorian month (year/month/day/hour/minute/second). Only the year is needed.
dLet year = ... therefore binds only the year to the integer variable year. If, for example,
in addition the month is needed one can write dLet year|month = date(....

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of December of this
year. time(year|12|27,Gregorian month) computes t2 = begin of the 27th of December of
this year. The expression [...,...] denotes the half open interval [t1, t2[.

3 The result is
therefore the half open interval from the beginning of the 25th of December of this year until
the end of the 26th of December of this year.

Example 1.4.3 (Point–Interval Before Relation) The function

PIRBefore(Time t, Interval I) =

if (isEmpty(I) or isInfinite(I,left)) then false

else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works also for fuzzy
intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is false, otherwise
t must be smaller than the left boundary of the support of I.

Now we define a parameterised fuzzy version of the interval–interval before relation.

Example 1.4.4 (Fuzzy Interval–Interval Before Relation) A fuzzy version of an interval–
interval before relation could be

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =

case

isEmpty(I) or isEmpty(J) or

isInfinite(I,right) or isInfinite(J,left) : 0,

(point(I,right,support) <= point(J,left,support)) : 1,

isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))

else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals to intervals. B is
used to compute for the interval J an interval B(J), which represents the degree of ‘beforeness’
for the points before J.

The function first checks some trivial cases where I cannot be before J (first clause in the
case statement), or where I definitely is before J (second clause in the case statement). If I
is infinite at the left side then

∫
(I ∩ J)(x) · B(J)(x)dx/|I ∩ J | is computed to get a degree of

‘beforeness’, at least for the part where I and J intersect. If I is finite then
∫
I(x)·B(J)(x)dx/|I|

is computed. This averages the degree of a point–interval ‘beforeness’, which is given by the
product I(x) · B(J)(x), over the interval I.

3Crisp intervals in CTTN are always half open intervals [. . . , . . . [. Sequences of such intervals, for example,
sequences of days, can therefore be used to partition a time period. The syntactic representation of these intervals
in GeTS is [...,...] and not [...,...[because this simplifies the grammar and the parser considerably.

12

The next example is a parameterised version of an ‘Until’ operator. It can be used to
formalise expressions like ‘from around noon until early evening’. The parameters are operators
which manipulate the front and back end of the intervals, together with a complement operator.

Example 1.4.5 (Until) an ‘Until’ operator can be defined in GeTS:

Until(Interval I, Interval J, Side s1, Side s2,

(Interval*Interval)->Interval Ints,

Interval->Interval Ep, Interval->Interval En,

Interval->Interval C) =

if (s1 == left) then

(if (s2 == left) then Ints(Ep(I),C(Ep(J)))

else Ints(Ep(I),En(J)))

else

(if (s2 == left) then Ints(C(En(I)),C(Ep(J)))

else Ints(C(En(I)),En(J)));

The birthday party example (Example 1.2.1) could be specified using this function:

Birthdayparty(I,J)

= Until(I, J, left, right,

lambda(Interval K, Interval L) intersection(K,L),

lambda(Interval K) integrate(K,positive),

lambda(Interval K) integrate(K,negative),

lambda(Interval K) complement(K)).

1.5 The Web–Interface

CTTN is a collection of C++ classes and methods which can be used in any other C++ program.
There is, however, also a command interface which is realized as a web server. It communicates
with a client through a socket. There is a group of commands for uploading application specific
definitions of temporal notions in the GeTS–language and in the specification language for
labelled partitionings. There are also commands for working with instances of these temporal
notions, particular time intervals, particular partitionings, particular calendar systems etc.

More details about the CTTN–system are available at the CTTN homepage:
http://www.pms.ifi.lmu.de/CTTN.

1.6 Notation

A typical mathematical notation is something like “an object of type X is an n-tuple x =
(a1, . . . , an) where a1 is a ..., a2 is a ..., and ...”. If the ai themselves are some m-tuples, it
becomes sometimes quite cumbersome to express which component is actually meant. This
is made much simple with a notation which comes from object oriented programming. The
components of the n-tuples become names and for a particular n-tuple x they are accessed by
x.〈name〉.

As an example, suppose we have a concept “PersonName” with components (first name,
middle name, surname). For a particular object x = (John, F., Kennedy), we could write

13

x.F irstName to access “John”, x.MiddleName for “F.” and x.Surname for “Kennedy”. If we
have another object type, for example “presidency” with components PersonName and country,
we could iterate the notation and write y.PersonName.F irstName to access the component
“John” of the object y = ((John, F., Kennedy),USA)

The notation can be extended to denote functions (methods) operating on these objects.
For example, if there is a function StringRepresentation for a name, we could write

y.PersonName.StringRepresentation()

to get a string representation for the given name. The functions can of course have additional
parameters. If StringRepresentation, for example, has an additional Boolean parameter “up-
per case”, we could write

y.PersonName.StringRepresentation(true)

to get the string representation with upper case letters.

Overloaded Functions There are many cases where there are a number of functions which
deliver the same information, but which have different argument types. In this case one can
use the same (overloaded) function names. The type of the argument determines the concrete
version of the function. This is a common notation in mathematics, where one uses, for example,
the same + function in x+y and the type of x and y (integer, real or complex numbers, vectors
etc.) determine the meaning of the x.

Some more or less standard mathematical notations are further listed in Def. 1.6.1 below.

Definition 1.6.1 (Notation) We use the following notations:
I is the set of integers
N is the set of natural numbers with 0
R is the set of real numbers
R

+ =def
R ∪ {−∞,+∞}.

sup{s} is the supremum of the set s ⊆ R and
inf{s} is the infimum of the set s ⊆ R.
For an interval I = [a, b] ⊆ R let |I|=defb−a be the length of I. If I consists of several subintervals
let |I| be the sum of the length of the subintervals. The same definitions apply if I consists of
open or half-open intervals.

If x ∈ R then ⌊x⌋ is the integer part of x, e.g. ⌊3.5⌋ = 3 and ⌊−3.5⌋ = −3.

If L is an ordered list of length |L| and i ∈ {0, . . . , |L| − 1} we write L[i] to denote the i’th
element of the list.

mini{f(i) | ϕ(i) | m(i)} yields the value f(i) for the parameter i for which the condition ϕ(i)
holds and for where m(i) is minimised.

maxi{f(i) | ϕ(i) | m(i)} yields the value f(i) for the parameter i for which the condition ϕ(i)
holds and for where m(i) is maximised.

An example for the max construct is:

maxi{age(i) | i is a person | hight(i)}

yields the age of the tallest person.

14

Definition 1.6.2 (Time) We define the data types Time and Time∞ with infinities:
Time =def

I

Time∞ =def
I ∪ {−∞,+∞}

If s = −∞ and t ∈ Time then [s, t[stands for] −∞, t[.

Structure of the Document. Chapter 2 contains a description of the FuTI–module (fuzzy
intervals). Chapter 3 contains a description of the PartLib module (for periodic temporal
notions). Chapter 4 contains a description of the GeTS–language. An application of the
GeTS– language where fuzzy temporal relations for fuzzy intervals are defined is presented in
Chapter 5. The appendix contains the API of the FuTI module (Appendix A) and the syntax
description of the GeTS–language (Appendix B).

15

16

Chapter 2

Fuzzy Time Intervals – The
FuTI–Module

17

Abstract: The FuTI–module is a collection of classes and methods for representing and
manipulating fuzzy time intervals. The chapter consists of three parts. The mathematical
theory is described in the first part. The concrete representation of fuzzy time intervals as
polygons, together with the algorithms for operating on these polygons is presented in the
second part. Finally, the third part contains a short description of the application interface.
Version 1.1 contains in addition a class for representing circular fuzzy intervals which can, for
example, be used to represent fuzzy angles. FuTI is an open source C++–module. .

2.1 Motivation and Introduction

Many temporal notions used in everyday life have a deliberate imprecise meaning. For example,
if I say in the morning “tonight I’ll go to the disco”, and somebody asks me “will you go to
the disco at 8 pm?” I may neither want to say “yes” nor may I want to say “no”. One may
argue whether in this case any precise mathematical model of “tonight” is useful at all. There
are other cases, however, where a fuzzy logic model of imprecise notions is definitely helpful.
Consider, for example, a database with, say, a cinema timetable. If you query the timetable
“give me all performances ending before midnight”, do you really want to exclude a performance
ending just one minute after midnight? I think, not. One could solve this problem by giving the
‘before’ relation a fuzzy meaning, such that performances ending before midnight get a fuzzy
value 1, and performances ending after midnight get a fuzzy value which decreases the later the
performance ends. The fuzzy value could then be used to order the answers to the query such
that the performances ending after midnight come late in the list.

In this paper the FuTI–module (Fuzzy Temporal Intervals) of data structures and algorithms
for representing and manipulating fuzzy temporal notions is described. In the first part the
components of the FuTI–module are described in a purely mathematical way, without any
commitment to concrete data structures and algorithms. A representation of the fuzzy intervals
as polygons with integer coordinates is explained in the second part. All algorithms in FuTI
work on these polygons. Finally the concrete interface to the module is listed and explained.

The fuzzy intervals in FuTI are fuzzy subsets of the real values. Therefore they can represent
all kinds of things. The main motivation for most of the operations in FuTI, however, comes
from their interpretation as temporal intervals and relations; and this is the reason for the ‘T’
in FuTI.

2.2 The Mathematics of Fuzzy Time Intervals

The mathematics of general fuzzy sets [41] has been investigated in great depth. The particular
fuzzy sets in FuTI are subsets of the real numbers. On the one hand, this makes things
easier. On the other hand, however, it offers a very rich algebraic structure with many different
operations and relations. Therefore it is useful to start with an overview of the basic ideas and
definitions about fuzzy sets. Some, but not all of them can be found in textbooks about fuzzy
sets (see e.g. [14]).

Since FuTI is designed as a library to be used in many different applications, we need to
provide a broad spectrum of quite different concepts and operations. I tried to organise them
in a meaningful way and to motivate them with temporal notions and operations.

18

2.2.1 Fuzzy Time Intervals

Fuzzy Intervals are usually defined through their membership functions. A membership function
maps a base set to a real number between 0 and 1. This “fuzzy value” denotes a kind of degree
of membership to a fuzzy set S. For example, the base set may consist of all people on earth,
and S may be the set of ‘large persons’. If for the person John the fuzzy value for ‘large persons’
is 1 then John is definitely a large person. If the fuzzy value is 0 then John is definitely not a
large person. If, instead, the fuzzy value is, for example, 0.8, then John is quite tall, but not as
tall as really large persons.

The base set for fuzzy time intervals is the time axis. In FuTI it is represented by the set R

of real numbers. Real numbers allow us to model the continuous time flow which we perceive
in our life. A fuzzy time interval in FuTI is now a fuzzy subset of the real numbers.

Definition 2.2.1 (Fuzzy Time Intervals) A fuzzy membership function in FuTI is a total
function f : R 7→ [0, 1] which need not be continuous, but it must be integratable.

The fuzzy interval If that corresponds to a fuzzy membership function f is

If =def {(x, y) ⊆ R × [0, 1] | y ≤ f(x)}.

Given a fuzzy interval I we usually write I(x) to indicate the value of the corresponding mem-
bership function at point x.

Let FR be the set of fuzzy time intervals.

This definition comprises single or multiple crisp intervals like this:

-

6

R
0

1

Crisp Fuzzy Intervals [0,20],[50,80]
0 20 50 80

It also comprises finite fuzzy intervals like this one:

-

6

R
0

1

Party Time
6pm 7pm 10pm 12pm 2am 3am

This set may represent a particular party time, where the first guests arrive at 6 pm. At
7 pm all guests are there. Half of them disappear between 10 and 12 pm (because they go to
the pub next door to watch an important soccer game). Between 12 pm and 2 am all of them
are back. At 2 am the first ones go home, and finally at 3 am all are gone. The fuzzy value
indicates in this case the number of people at the party.

Fuzzy intervals may also be infinite.

19

-

6

R
0

1

Danger Time: Caused by Radioactive Decay

More realistic examples of infinite fuzzy time intervals are intervals where the fuzzy value
remains constant after a while. For example, the term ‘after tonight’ may be represented by
a fuzzy interval which rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm and then
remains 1 ad infinitum.

-

6

R
0

1

After Tonight
6 8

The more general case are infinite fuzzy intervals which may be infinite at one or two sides,
but where the membership function becomes constant, but not necessarily 1, after a while.

-

6

R
0

1

Infinite Fuzzy Interval with Mostly Constant Membership Function

Remark 2.2.2 The representation of a fuzzy interval as a subset of R × [0, 1] means that one
can apply the standard set operators ∪ (union), ∩ (intersection) and \ (set difference) to fuzzy
intervals. The standard set theoretic definition of intersection and set difference, however, need
not yield fuzzy intervals any more. Therefore there are other, more appropriate definitions of
the set operations on fuzzy intervals (see Section 2.2.4).

Definition 2.2.3 (Height of a Fuzzy Interval (sup, inf)) For a fuzzy interval I ∈ FR let

sup(I) =def sup{I(x) | x ∈ R}
be the height (largest fuzzy value, supremum) of I and let

inf(I) =def inf{I(x) | x ∈ R}
be the smallest fuzzy value, (infimum) of I

sup(I) is usually, but not necessarily, 1 for nonempty fuzzy time intervals. If sup(I) = 0 then,
however, I must be empty.

Fuzzy time intervals may be quite complex structures with many different characteristic
features. The simplest ones are core and support. The core is the subset of R where the fuzzy
value is 1, and the support is the subset of R where the fuzzy value is non-zero. In addition, we
define the kernel as the subset of R where the fuzzy value is not constant ad infinitum. Finally,
maxRegion is the interval between the first and last point where the fuzzy value is maximal.

20

Definition 2.2.4 (Core, Support, Kernel and MaxRegion)
The core C(I) of a fuzzy set I is the subset of R where the membership function is 1:

C(I) =def {x ∈ R | I(x) = 1}.

The core of I can be empty even if I itself is not empty.

The support S(I) of I is the subset of R where the membership function is nonzero:

S(I) =def {x ∈ R | I(x) 6= 0}.

If S(I) = ∅ then I = ∅.
The kernel K(I) of I is the smallest interval [a, b[⊆ R

+ such that there are I1 ∈ [0, 1] and
I2 ∈ [0, 1] with I(x) = I1 for all x < a and I(x) = I2 for all x > b.

K(I) can be empty, finite or infinite. If K(I) = ∅ then I is either empty or infinite with at
most two different fuzzy values.

The maxRegion M(I) of I is the interval between the first and last maximal points, i.e.

M(I) =def

{
[inf{x | I(x) = sup(I)}, sup{x | I(x) = sup(I)}[if sup(I) 6= 0
[] otherwise

For O ∈ {C, S,K,M} let O⊓(I) be the (crisp) fuzzy interval such that C(O⊓(I)) = S(O⊓(I)) =
O⊓(I).

For O ∈ {C, S,K,M} let

IfO =def

{
inf{x | O(I)(x) 6= 0} if O(I) 6= ∅
+∞ otherwise

be the first O-point of I and let

I lO =def

{
sup{x | O(I)(x) 6= 0} if O(I) 6= ∅
+∞ otherwise

be the last O-point of I.

IfC and I lC are the first/last core points.
IfS and I lS are the first/last support points.
IfK and I lK are the first/last kernel points.
IfM and I lM are the first/last maxRegion points.

-

6

R
0

1

First and Last Core and Support Points

I

IfS I lSIfC = IfM I lC = I lM

core and maxRegion

21

-

6

R
0

1

First and Last Kernel Points
IfK I lK

The next picture shows the kernel of the same interval I as crisp interval K⊓(I).

-

6

R
0

1

K⊓(I)

I K⊓(I)

The next picture shows an example where IfM = I lM and where sup(I) is really the supremum,
and not the maximum because I(IfM) = 0.

-

6

R
0

1

First and Last Maximal Points
IfM = I lM

If sup(I) = 1 then IfM = IfC and I lM = I lC . If, however, sup(I) < 1 then IfM and I lM

have nothing to do with the core of I.
Fuzzy time intervals with finite kernel are of particular interest because although they may

be infinite, they can easily be implemented with finite data structures. Therefore we give them
an extra name.

Definition 2.2.5 (Fuzzy Time Intervals with Finite Kernel) Let F f
R

be the set of fuzzy
time intervals (Def. 2.2.1) with finite kernel (Def. 2.2.4).

Fuzzy time intervals which are in fact crisp intervals can now be characterised very easily
as intervals where core and support are the same.

Definition 2.2.6 (Crisp Interval) A crisp interval is a fuzzy interval I (Def. 2.2.1) such that
C(I) = S(I) (Def. 2.2.4).

Remark 2.2.7 (Openness and Closedness) Ordinary intervals can be open or closed. A
similar distinction can also be made for fuzzy intervals. As an example, consider the following
fuzzy interval I:

-

6

R
0

1

Half Open Fuzzy Interval

I

a b c d

22

If we have I(a) = 0.5, I(b) = 1, but I(c) = 0.5 and I(d) = 0 then I is closed at a and b and
open at c and d.

We sometimes indicate the open sides of fuzzy intervals with dashed lines.

Half-open intervals are of particular interest for time intervals. Consider, for example, the
two intervals ‘this week’s Monday’ and ‘this week’s Tuesday’. If both intervals are represented
as closed intervals then midnight belongs to Monday and Tuesday. This is not what we usually
want. Therefore it is more realistic to represent the intervals as half-open intervals such that
midnight belongs to either Monday or Tuesday, but not to both days. As a convention, we
assume that (finite) time intervals are half open at the positive side: their structure is [a, b[.
Midnight would then belong to Tuesday. This has some consequences for the algorithms (cf.
Remark 2.3.24).

2.2.2 Scalar Properties of Fuzzy Time Intervals

Fuzzy time intervals can be measured in various ways. Besides the size, which is the integral
over the membership function, one can locate the position of the core, support and kernel. One
can also measure the maximal fuzzy value. This should, but need not be 1. Furthermore, one
can split the interval into parts of equal size (the first half and the second half etc.), and locate
their boundaries. Let us start with the size of the interval.

Definition 2.2.8 (Size) For a, b ⊆ R
+ and a fuzzy time interval I let

|I|ba =def

∫ b

a

I(x) dx. |I| =def |I|+∞−∞ is the size of I.

If I is a crisp interval then |I| yields the length of I in the usual sense.

Centre Points
The n,m-centre points defined below are used to express temporal notions like ‘the first half of
the year’, or ‘the second quarter of the year’ or more exotic expressions like ‘the 25th 49th of
the weekend’ etc. The notion of n,m-centre points makes only sense for finite intervals.

Definition 2.2.9 (n,m-Centre Points) Let I ∈ FR with |I| < ∞. For two integers m > 1
and 0 ≤ n ≤ m we define the n,m-centre points
In,m =def xn where xn is a minimal R-value in a sequence IfS = x0, . . . , xm = I lS with |I|x1

x0
=

|I|x2
x1

= . . . = . . . |I|xm
xm−1

= |I|/m.

Examples: I1,2 splits I in two halfs of the same size. I1,3 indicates a split of I into three parts
of the same size. I1,3 is the boundary of the first third, I2,3 is the boundary of the second third.

-

6

R
0

1

n, 3-Centre Points
I0,3 I1,3 I2,3 I3,3

23

-

6

R
0

1

n, 2-Centre Points
I0,2 I1,2 I2,2

Middle Points:
The middle point between the centre points In,m and In+1,m is just I2n+1,2m. For example,
the middle point in the first half of I is I1,4 and the middle point in the second half is I3,4.

Components
Fuzzy time intervals can consist of several different components. A component is a sub-interval
of a fuzzy interval such that the left and right end is either the infinity, or the membership
function drops down to 0. Let Cmp(I) be the list of components of I. nComponents(I) is the
number of components of I. component(I, k) is the kth component of I.

Definition 2.2.10 (Components) Let I ∈ FR. The components I0, . . . , In of I are fuzzy
time intervals such that: (i) Ik(x) = I(x) for all x ∈ S(Ik) and 0 ≤ k ≤ n, and (ii) for
all k ∈ {1, . . . , n − 1}: (limx→IfS

k

I(x) = 0 or limIfS

k
←x I(x) = 0) and (limx→IlS

k
I(x) = 0 or

limIlS
k
←x I(x) = 0).

Let nComponents(I) be the number of components of I.
Let component(I, k) be the kth component of I.

The definition is quite complicated because we want to count as separate components parts
of fuzzy time intervals where the membership function drops down to 0 at just one single point.

Example:

-

6

R
0

1

Components

I0 I1 I2

2.2.3 Functions Operating on Fuzzy Time Intervals

Time intervals usually don’t appear from nowhere, but they are constructed from other time
intervals. We distinguish two ways of constructing new fuzzy time intervals, first by means of
y-functions and then by means of interval operators. Y-functions map fuzzy values to fuzzy
values. They can therefore be used to construct a new interval from a given one by applying
the y-function point by point to the membership function values.

Interval operators are more general construction functions. They take one or more fuzzy
time intervals and construct a new one out of them.

24

Definition 2.2.11 (Y-Functions)
Y-FCTn =def {f : [0, 1]n 7→ [0, 1]} is the set of n-place y-functions.
They map fuzzy values to fuzzy values.

Y-FCT =def
⋃

n≥0 Y-FCTn.

Definition 2.2.12 (Interval Operators)
I-OPsn =def {g : FR

n 7→ FR} is the set of n-place interval operators.
They map fuzzy intervals to fuzzy intervals.

I-OPs =def
⋃

n≥0 I-OPsn.

Every y-function can be used to construct a new fuzzy time interval from given ones by
applying the y-function to the fuzzy values.

Definition 2.2.13 (Associated Interval Operators) If f ∈ Y-FCTn is a y-function then
gf ∈ I-OPsn defined by gf (I1, . . . , In)(x) =def f(I1(x)), . . . , In(x)) is the associated interval oper-
ator.

Linear Y-Functions
A small, but important class of y-functions are linear y-functions. They are important firstly
because very natural operators, like standard complement, intersection and union of fuzzy time
intervals can be described with linear y-functions. Secondly they are important because they
allow us to transform intervals represented by polygons in a very efficient way: only the vertices
and intersection points of the polygons need to be transformed.

The main characterisation of linear y-functions is therefore that they map non-intersecting
straight line segments to straight line segments, and not to curves.

Definition 2.2.14 (Linear Y-Function) A y-function f ∈ Y-FCTn is linear if the mapping
f ′((x, y1), . . . , (x, yn))=def(x, f(y1, . . . , yn)) maps non-intersecting line segments (x1, z11) – (x2, z12),
. . ., (x1, zn1) – (x2, zn2) to a line segment (x1, f(z11, . . . , zn1)) – (x2, f(z12, . . . , zn2)).

One-place linear y-functions can be characterised in the following way:

Proposition 2.2.15 (Characterisation of One-Place Linear y-Functions) A one-place y-
function f is linear if and only if f(y) = f(0) + (f(1) − f(0)) · y holds.

Proof: Suppose f is linear. We take the straight line segment between (0, 0) and (1, 1). The
mapping f ′(x, y) =def (x, f(y)) maps this line segment to a line segment between (0, f(0)) and
(1, f(1)). Therefore

f(y) = f(0) + f(1)−f(0)
1−0 · (y − 0) (line equation)

= f(0) + (f(1) − f(0)) · y
The other direction of the proof is trivial.

An example for a one-place linear y-function is the standard negation n(y) = 1 − y.

The characterisation of two-place linear y-functions is a bit trickier.

Proposition 2.2.16 (Characterisation of Two-Place Linear y-Functions) A two-place
y-function f is linear if and only if the following condition holds:

f(y1, y2) =

{
f(0, 0) + (f(y1/y2, 1) − f(0, 0)) · y2 if y1 ≤ y2
f(0, (y1 − y2)/(1 − y2)) + (f(1, 1) − f(0, (y1 − y2)/(1 − y2))) · y2 otherwise

Proof: Suppose f is linear.

25

-

6

�
�

�
�

�
��

�������

0
0

1

y2

1

y2

y1

z

We consider the case y1 ≤ y2 first. To this end we take the
straight line segment between (0, 0) and (1, 1). The line equation
for this line is just y = x. Now take an arbitrary y2 ∈ [0, 1] and an
arbitrary y1 ≤ y2. The line equation for the line segment starting
at (0, 0) and crossing (y2, y1) is y = (y1 − 0)/(y2 − 0) ·x. For x = 1
we get z = y1/y2.

Since f is linear we have

f(y1, y2) = f(0, 0) + f(z,1)−f(0,0)
1−0 · y2

= f(0, 0) + (f(y1

y2
, 1) − f(0, 0)) · y2

Now consider the case y1 ≥ y2.

-

6

�
�

�
�

�
��
!!!!!!!

0
0

1

1
y1

y2

y2

z

The line starting at (1, 1) and crossing (y2, y1) crosses the y-axis
at z = (y1 − y2)/(1 − y2).

Since f is linear we have

f(y1, y2) = f(0, z) + f(1,1)−f(0,z)
1−0 · y2

= f(0, y1−y2

1−y2
) + (f(1, 1) − f(0, y1−y2

1−y2
)) · y2

The other direction, showing that the two conditions imply linear-
ity, is again straightforward.

Simple examples for linear two-place y-functions are the minimum and maximum functions.
The minimum function is used to realize standard intersection of two fuzzy time intervals, and
the maximum function is used to realize standard union of two fuzzy time intervals.

2.2.4 Set Operators for Fuzzy Intervals

For ordinary intervals there are the standard Boolean set operators: complement, intersection,
union etc. These are uniquely defined. There is no choice. Unfortunately, or fortunately,
because it gives you more flexibility, there are no such uniquely defined set operators for fuzzy
intervals. Set operators are essentially transformations of the membership functions, and there
are lots of different ones. One has tried to classify them such that essential properties of the
Boolean set operators are preserved.

Complement of Fuzzy Time Intervals
The complement operator for fuzzy time intervals is to be understood in the following sense: if
for a particular point x the probability to belong to a set S is y then the probability to belong
to the complement of S is n(y) where n is a so called negation function.

Definition 2.2.17 (Negation Function) A function n ∈ Y-FCT1 satisfying the conditions

• n(0) = 1 and n(1) = 0;

• n is non-increasing, i.e. ∀x, y ∈ [0, 1] : x ≤ y ⇒ n(x) ≥ n(y)

is called a negation function.

Let NF be the set of all negation functions.

26

Example 2.2.18 (Standard Negation and λ-Complement) The function

n(y) =def 1 − y

is the standard fuzzy negation.

For any λ > −1 the so called λ-complement is the function

nλ(y) =def 1 − y

1 + λy
.

Both functions n and nλ are negation functions in the sense of Def. 2.2.17.

N(I)(x) =def n(I(x)) is the standard complement operator.
Nλ(I)(x) =def nλ(I(x)) is the λ-complement operator.

If I is a crisp interval then N(I) = Nλ(I)

Proposition 2.2.19 (Idempotency of the negation functions) For every y ∈ [0, 1] we
have for the standard negation n(n(y)) = y and for the λ-complement: nλ(nλ(y)) = y.

The proof is straightforward.

This property need not hold for other negation functions.
We give some examples for standard and λ-complement. The dashed lines indicate the

complement.

-

6

R
0

1

Standard Complement and λ-Complement for a Crisp
Interval

-

6

R
0

1

Standard Complement for a Fuzzy Interval

If we define ‘tonight’ as a fuzzy interval, rising from 0 at 6pm to 1 at 8pm, we could use
the standard complement for ‘before tonight’. The term ‘long before tonight’ must of course be
represented differently to ‘before tonight’. A λ-complement version with λ = 2 looks as follows:

-

6

R
0

1

λ-Complement for λ = 2
6 8

If λ is increased then the descend from 6 pm till 8 pm becomes steeper. A suitable λ could
then in fact mean ‘long before tonight’.

27

Intersection and Union of Fuzzy Time Intervals
The two figures below show standard union and intersection of fuzzy intervals. Union is obtained
by taking the maximum of the two member functions. The minimum of the two member
functions yields intersection.

-

6

R
0

1

Standard Union of Fuzzy Sets

I J

I ∪ J

-

6

R
0

1

Standard Intersection of Fuzzy Sets

I
JI ∩ J

Standard union and intersection, however, is only one particular form of union and inter-
section. Instead of minimum and maximum one could think of other functions for computing
union and intersection. These other functions, so called triangular norms and co-norms, must
fulfil certain axioms in order to satisfy our intuition about union and intersection.

Definition 2.2.20 (Triangular Norms and Co-norms) A function T : [0, 1]2 7→ [0, 1] is
called a triangular norm, or t-norm for short, iff it satisfies the laws T1-T4 below. A function
S : [0, 1]

2 7→ [0, 1] is called a triangular co-norm, or t-co-norm for short, iff it satisfies the laws
S1-S4 below.

Identity law: T1: ∀x T (x, 1) = x,
S1: ∀x S(x, 0) = x

Commutativity: T2: ∀x, y T (x, y) = T (y, x),
S2: ∀x, y S(x, y) = T (y, x)

Associativity: T3: ∀x, y, z T (x, T (y, z)) = T (T (x, y), z),
S3: ∀x, y, z S(x, S(y, z)) = S(S(x, y), z)

Monotonicity: ∀x, y, u, v ∈ [0, 1] x ≤ u, y ≤ v :
T4: T (x, y) ≤ T (u, v),
S4: S(x, y) ≤ S(u, v)

Triangular norms and co-norms are y-functions in Y-FCT2 (Def. 2.2.11).

Let TNorm be the set of triangular norms and
let TCoNorm be the set of triangular co-norms.

The triangular norms and co-norms are now turned into interval operators ∩T and ∪S :

Definition 2.2.21 (Intersection and Union) Let I, J ∈ FR be two fuzzy intervals. If T is
a triangular norm and S a triangular co-norm (Def. 2.2.20) then

(I ∩T J)(x) =def T (I(x), J(x)) and (I ∪S J)(x) =def S(I(x), J(x))

28

are the intersection and union operators on the fuzzy intervals.

Example 2.2.22 (Standard Fuzzy Intersection and Union) The function min is a tri-
angular norm and the function max is a triangular co-norm. Therefore

(I ∩min J)(x) =def min(I(x), J(x)) and (I ∪max J)(x) =def max(I(x), J(x))

are the standard fuzzy intersection and union operators.

A particular class of triangular norms and co-norms, together with a negation function, is
the Hamacher family.

Example 2.2.23 (Hamacher Family) The Hamacher family consists of the following pa-
rameterised families of triangular norms and co-norms, and negation functions (λ-complement):

Tγ(x, y) =def xy

γ + (1 − γ)(x+ y − xy)
γ ≥ 0

Sβ(x, y) =def x+ y + (β − 1)xy

1 + βxy
β ≥ −1

nλ(x) =def 1 − x

1 + λx
λ > −1

-

6

R
0

1

Hamacher Intersection and Union with β = γ = 0.5

Set Difference of Fuzzy Time Intervals Set difference I \J can also be defined by means
of y-functions. The following versions are derived from corresponding implication functions:

Definition 2.2.24 (Set Difference)
Kleene: (I \ J)(x) =defmin(I(x), 1 − J(x))
Lukasiewicz: (I \ J)(x) =defmax(0, I(x) − J(x))
Goedel: (I \ J)(x) =def 0 if I(x) ≤ J(x) and 1 − J(x) otherwise

Example 2.2.25 (Set Difference) The following picture shows the difference between the
three versions of set difference.

-

6

R
0

1

Set Difference I \ J

Kleene

Lukasiewicz

Goedel

I J

29

The Kleene version corresponds to the crisp definition of set difference: I \ J = I ∩ Jc where
Jc is the complement of J . This can be generalised by replacing ∩ with ∩T and Jc with a
complement operator.

Definition 2.2.26 (Generalised Set Difference) Let N be a complement function and T a
t-norm. We define the set difference operator \N,T between two fuzzy intervals I and J as

(I \N,T J) =def I ∩T N(J)

-

6

R
0

1

Fuzzy Set Difference I \N0.5 ,T0.5 J

I

JI \N0.5 ,T0.5 J

Splitting an interval into two intervals is the worst that can happen for the set difference
of two crisp intervals. In the case of fuzzy intervals, the set difference operator can produce
arbitrary many disjoint intervals, as the next figure shows.

-

6

R
0

1

Set Difference Splits into three Components

I

J

I \n,min J

2.2.5 Hull Operators for Fuzzy Intervals

Except for the closed hull of an open interval there is no meaningful notion of a ‘hull’ for a
single crisp time interval. It turns out, however, that there are various hulls for fuzzy intervals.
We define them in the order of information loss. The first notion of a hull, the crisp hull looses
most information about the interval, whereas the last notion, the monotone hull looses the least
information. All these notions of a hull coincide for crisp intervals.

Definition 2.2.27 (Crisp Hull) For an interval I ∈ FR let crispHull(I) be the smallest con-
vex crisp interval containing I.

-

6

R
0

1

Crisp Hull of a Finite Interval

30

-

6

R
0

1

Crisp Hull of an Infinite Interval

Notice that crispHull(I) 6= S⊓(I) if I consists of several unconnected components.

Definition 2.2.28 (Convex Hull) The convex hull convexHull(I) of a fuzzy set I is the
smallest convex set containing I.

-

6

R
0

1

Convex Hull of a Finite Set

-

6

R
0

1

Convex Hull of an Infinite Set

Finally we define the monotone hull which looses the least of the structural information
about the interval.

Definition 2.2.29 (Monotone Hull) The monotone hull monotoneHull(I) of a fuzzy set
I is the smallest monotone fuzzy interval containing I. Monotone means that from left to
right the fuzzy values monotoneHull(I)(x) are rising monotonically to sup(I), and then falling
monotonically again.

-

6

R
0

1

Monotone Hull

-

6

R
0

1

Monotone Hull of a Fuzzy Interval with Three
Components

31

2.2.6 Basic Unary Transformations

We now introduce a little library of interval operators. They are used in the GeTS specification
language [32] as building blocks, for example, to define fuzzy point–interval and fuzzy interval–
interval relations [34].

Definition 2.2.30 (Basic Unary Transformations) Let I ∈ FR be a fuzzy interval. We
define the following (parameterised) interval operators:

identity(I) =def I

extend+(I)(x) =def

{
sup{I(y) | y ≤ x} if x ≤ IfM

1 otherwise

extend−(I)(x) =def

{
sup{I(y) | y ≥ x} if x ≥ I lM

1 otherwise

scaleup(I)(x) =def

{
I(x)/ sup(I) if sup(I) 6= 0
0 otherwise

cutx1,x2(I)(x) =def

{
0 if x < x1 or x ≥ x2

I(x) otherwise

cutx1,+(I)(x) =def

{
0 if x < x1

I(x) otherwise

cutx1,−(I)(x) =def

{
0 if x ≥ x1

I(x) otherwise

shiftn(I)(x) =def I(x− n)

timesa(I)(x) =def min(1, a · I(x)) a ≥ 0

exponentiatee(I)(x) =def I(x)e e ≥ 0

integrate+(I)(x) =def lim
a7→∞

∫ x

−a I(y)dy
∫ +a

−a I(y)dy

integrate−(I)(x) =def lim
a7→∞

∫ +a

x
I(y)dy

∫ +a

−a I(y)dy

negateoffset(I)(x) =def 1 − I(x − offset)

invert(I)(x) =def

1 − I(x) if IfM
k ≤ x < I lM

k+1

where I0, . . . Im are the components of I
0 otherwise.

extend
extend+(I) follows the left part of the monotone hull of the interval until the left maximum I lM

is reached and then stays at fuzzy value 1. extend−(I) is the symmetric version of extend+(I).

32

-

6

R
0

1

extend+ and extend−

IfM I lM

I I

extend+(I) is useful for implementing a fuzzy ‘before’-relation because only the left part of I
is relevant for evaluating ‘before’. extend−(I), on the other hand, can be used for an ‘after’-
relation.

scaleup
The scaleup-function is different to the identity function only if the hight sup(I) is not 1. In
this case it scales the membership function up such that sup(scaleup(I)) = 1.

-

6

R
0

1

scaleup

cut
cutx1,x2(I) just cuts the piece between x1 and x2 out of the interval I. The resulting interval
is closed at x1 and half open at x2.

-

6

R
0

1

cutx1,x2

x1 x2

cutx1,+(I) cuts the part out of I before x1 whereas cutx1,−(I) cuts the part out of I after x1.

shift
shiftn just moves the interval by n time units.

-

6

R
0

1

shift20
0 20

times
timesa multiplies the membership function by a, but keeps the result smaller or equal 1. timesa

has no effect on crisp intervals.

33

-

6

R
0

1

times2

exponentiate
exponentiatee takes the membership function to the exponent e. It can be used to damp
increases or decreases. exponentiatee has also no effect on crisp intervals. exponentiatee is
non-linear in the sense that straight lines are turned into curved lines.

-

6

R
0

1

exponentiate3

integrate
This operator integrates over the membership function and normalises the integral to values
≤ 1. The two integration operators integrate+ and integrate− can be simplified for finite
fuzzy time intervals.

Proposition 2.2.31 (Integration for Finite Intervals) If the fuzzy interval I is finite then

integrate+(I)(x) =

∫ x

−∞ I(y)dy

|I| and integrate−(I)(x) =

∫ +∞

x I(y)dy

|I|

The proofs are straightforward.

Example for integrate+ and integrate−:

-

6

R
0

1

integrate+ and integrate−

integrate+(I) integrate−(I)

The integration operator for infinite intervals I with finite kernel turns the interval into a
constant function which does no longer depend on the finite part of I.

Proposition 2.2.32 (Integration for Intervals with Finite Kernel) If the infinite fuzzy
interval I has a finite kernel with I1 =def I(−∞) and I2 =def I(+∞) then

integrate+(I)(x) =
I1

I1 + I2
and integrate−(I)(x) =

I2
I1 + I2

Proof:

34

integrate+(I)(x) = lima7→∞

R

x

−a
I(y)dy

R

+a

−a
I(y)dy

= lima7→∞
|I|I

fK

−a +|I|x
IfK

|I|I
fK

−a
+|I|I

lK

IfK
+|I|a

IlK

= lima7→∞
|I|I

fK

−a

|I|I
fK

−a
+|I|a

IlK

= lima7→∞
(IfK+a)·I1

(IfK+a)·I1+(a−IlK)·I2

= lima7→∞
a·I1

a·I1+a·I2

= I1
I1+I2

integrate−(I)(x) = lima7→∞

R

+a

x
I(y)dy

R

+a

−a
I(y)dy

= lima7→∞
|I|I

lK

x +|I|a
IlK

|I|I
fK

−a
+|I|I

lK

IfK
+|I|a

IlK

= lima7→∞
|I|a

IlK

|I|I
fK

−a
+|I|a

IlK

= lima7→∞
(a−IlK)·I2

(IfK+a)·I1+(a−IlK)·I2

= lima7→∞
a·I2

a·I1+a·I2

= I2
I1+I2

invert
The invert function is almost like the standard negation function, except that invert(I) is
nonzero only in the gaps between the components of I. The interval I in the next picture
consists of three components. The maximal fuzzy value of the middle component is not 1.
Nevertheless invert(I) drops down to 0 between the first and last maximum of the middle
component. invert is needed for an in the gap operator.

-

6

R
0

1

invert

Fuzzification
Fuzzy time intervals could be defined by specifying the shape of the membership function in
some way. This is in general very inconvenient. Therefore FuTI provides an alternative. The
idea is to take a crisp interval and to ‘fuzzify’ the front and back end in a certain way. For
example, one may specify ‘early afternoon’ by taking the interval between 1 and 6 pm and
imposing, for example, a linear or a Gaussian shape increase from 1 to 2 pm, and a linear
or a Gaussian shape decrease from 4 to 6 pm. Technically this means multiplying a linear or
Gaussian function with the membership values.

The fuzzification functions can be defined with absolute coordinates and with relative coor-
dinates. We define the absolute version first.

Definition 2.2.33 (Linear Fuzzification Function) Let I ∈ FR, x1, x2 and offset be x-
coordinates.

35

We define the ‘front’ linear fuzzification function with zero offset first:

FALfx1,x2,0(I)(x) =def

0 if x < x1

I(x) if x ≥ x2

I(x) x−x1

x2−x1
otherwise

If the offset is nonzero we have

FALfx1,x2,offset(I)(x) =def

FALfx1,x2,0(x+ offset) if x < x2 − offset
FALfx1,x2,0(x2) if x2 − offset ≤ x < x2

I(x) otherwise

The ‘back’ linear fuzzification function is:

FALbx1,x2,0(I)(x) =def

0 if x ≥ x2

I(x) if x < x1

I(x) x2−x
x2−x1

otherwise

If the offset is nonzero we have

FALbx1,x2,offset(I)(x) =def

FALbx1,x2,0(x− offset) if x ≥ x1 + offset
FALbx1,x2,0(x2) if x1 ≤ x ≤ x1 + offset
I(x) otherwise

In the picture below we fuzzify a crisp interval with a linear increase from 0 – 10, and a linear
decrease from 20 – 30, which is shifted by an offset of 10.

-

6

R
0

1

Linear Fuzzification:
0 10 25 35

FALf0,10,0(I)

FALb20,30,10(I)

The next example shows the linear fuzzification of an already fuzzy interval. The dotted lines
show the linear increase and decrease. The dashed line is the result of the fuzzification operator.
Since the two polygons are multiplied, we get quadratic curves.

-

6

R
0

1

Linear Fuzzification of an Already Fuzzy Interval

Gaussian Fuzzification
Besides linear fuzzification, FuTI offers the fuzzification with a Gaussian shape. The Gaussian

function is e−(
x−x0

σ
)2 . x0 is the symmetry point and σ determines the increase and decrease.

36

-

6

R
0

1

Gaussian Shape
xh x0

0.5

The Gaussian fuzzification function is determined by the parameters x0 and xh. xh is the x-
coordinate where e−((xh−x0)/σ)2 = 0.5. This condition determines σ =

√

(−1/ln(0.5))·(xh−x0).
Since the Gauss function does not become 0, we must cut it off at some x-coordinate. The

heuristic is to cut it off at a distance 3(x0 − xh) from x0.

Definition 2.2.34 (Gaussian Fuzzification Function) Let I ∈ FR, xh, x0 and offset be
x-coordinates. Let σ =def

√

(−1/ln(0.5)) · (xh − x0).
We define the ‘front’ Gaussian fuzzification function with zero ‘offset’ first:

FAGfxh,x0,0(I)(x) =def

0 if x < 3xh − 2x0

I(x) if x ≥ x0

I(x)e−((x−x0)/σ)2 otherwise

If the offset is nonzero we have

FAGfxh,x0,offset(I)(x) =def

FAGfxh,x0,0(x+ offset) if x < x0 − offset
FAGfxh,x0,0(x0) if x0 − offset ≤ x < x0

I(x) otherwise

The ‘back’ Gaussian fuzzification function is:

FAGbxh,x0,0(I)(x) =def

0 if x > 3xh − 2x0

I(x) if x < x0

I(x)e−((x−x0)/σ)2 otherwise

If the offset is nonzero we have

FAGbxh,x0,offset(I)(x) =def

FAGbxh,x0,0(x− offset) if x ≥ x0 + offset
FAGbxh,x0,0(x2) if x0 ≤ x ≤ x0 + offset
I(x) otherwise

Example 2.2.35 We fuzzify ‘early afternoon’ by taking the interval between 1pm and 6pm,
imposing a Gaussian rise between 1pm and 2pm and a Gaussian decrease between 4 and 6pm.

-

6

R
0

1

Early Afternoon: FAGf1.5,2,0(I) and FAGb5,4,0(I)
1pm 2pm 4pm 6pm

I

Fuzzification functions with absolute coordinates are not that useful because usually one
does not know the coordinates in advance. Therefore FuTI also provides fuzzification functions
where the parameters are percentage values. FRLf10,5, for example, means linear fuzzification
where the linear increase is 10% of the kernel size and the offset is 5% of the kernel size.
FRGf10,0 means a Gaussian increase where x0 is 10% of the kernel size past IfK , xh is 1/2 the
distance between IfK and x0, and the offset is such that xh coincides with IfK .

37

Definition 2.2.36 (Fuzzification with Relative Coordinates) For an interval I, percent-
age numbers r and o between 0 and 100 we define the relative fuzzification functions.

Let d = (I lK − IfK)/100.

FRLfr,o(I) =def FALfIfK ,IfK+d·r,IfK−d·o(I)
FRLbr,o(I) =def FALbIlK−d·r,IlK,IlK+d·o(I)
FRLr,o(I) =def FALbIlK−d·r,IlK,IlK+d·o(FALfIfK ,IfK+d·r,IfK−d·o(I))
FRGfr(I) =def FAGfIfK+d·r,IfK+1/2·d·r,2/3·d·r(I)
FRGbr(I) =def FAGbIlK−d·r,IlK−1/2·d·r,2/3·d·r(I)
FRGr(I) =def FAGbIlK−d·r,IlK−1/2·d·r,2/3·d·r(FAGfIfK+d·r,IfK+1/2·d·r,2/3·d·r(I))

The functions FRL and FRG fuzzify an interval at both sides. A simple composition of
FRLf and FRLb, for example, yields an un-symmetric result because the fuzzification at one
end first changes the kernel size. The relative fuzzification of the other side of the changed
literal therefore uses the data of the changed interval for computing xh and x0. FRL and FRG
avoid this by computing the absolute coordinates first and using them for both sides.

-

6

R
0

1

Relative Gaussian Fuzzification FRG20

2.3 Data Structures and Algorithms

The main data structures and algorithms of the FuTI–module are presented in this section. The
actual implementation contains a few more functions. Since their implementation is more or
less straight forward, they are not mentioned explicitely here. There are four basic datatypes:
time points, fuzzy values, fuzzy temporal intervals and y-functions.

Time Points
The time points are points on the R-axis. Arbitrary real numbers cannot be represented on
computers. The choice is therefore between floating point numbers and integers as represen-
tation of time points. The range of floating point numbers is much higher than the range of
integers. Unfortunately, algorithms operating on floating point numbers are prone to uncontrol-
lable rounding errors. Another argument for using integers instead of floating point numbers
is that the real time measurements on earth give you always integers. The very definition of
exact time measurement already uses integers: in 1967 one second was defined as 9.192.631.770
cycles of the light emitted when an electron jumps between the the two lowest hyperfine levels
of the Caesium 133 atom. Thus, the most precise time measurement available at all depends
on counting integers (cycles of light).

Therefore the FuTI–module represents time with integer coordinates. There is no assumption
about the meaning of these integers. They may be years, seconds, picoseconds or even cycles
of the Caesium 133 light.

38

Fuzzy Values
Fuzzy values are usually real numbers between 0 and 1. A first choice would therefore be
to use floating point numbers for the fuzzy values. Again, floating point numbers are prone
to rounding errors. Moreover, computation with floating point numbers is more expensive
than computation with integers. Therefore FuTI uses again integers instead of floating point
numbers. This means of course that one cannot represent the fuzzy value 1 as the integer 1. We
could then use just 0 and 1 and no other fuzzy value. Instead one better represents the fuzzy
value 1 as a suitable unsigned integer of a certain bit size. Since fuzzy values are estimates only
anyway, 16 bit unsigned integer (unsigned short int in C) are precise enough for fuzzy values.

Definition 2.3.1 (Largest Fuzzy Value) Let ⊤ be the maximal fuzzy value in the imple-
mentation.

To make the examples more easy to understand, we use ⊤ = 1000 in this paper. ⊤ is a
compiler option in the actual implementation and can be changed easily.

Fuzzy Time Intervals
Fuzzy intervals are usually implemented by a representation of their membership functions.
Arbitrary membership functions are almost impossible to represent precisely on a computer. A
natural choice for realizing approximated fuzzy time intervals over integer time and integer fuzzy
values is the representation with envelope polygons over integer coordinates. This has a number
of advantages: the representation is compact and can nevertheless approximate the membership
functions very well; simple structures, like crisp intervals, have a simple representation; we
can use ideas and algorithms from Computational Geometry [36, 19]; there are very efficient
algorithms for most of the problems, and it is clear where rounding errors can occur, and where
not.

Coordinates and Integer Datatypes
The implemented fuzzy intervals are independent of their interpretation as fuzzy time intervals.
Therefore we shall speak of the x-axis instead of the time axis and of the y-axis instead of the
fuzzy value axis.

-

6

x

⊤

0

y

The Used Coordinate System

Definition 2.3.2 (x-Integers and y-Integers) FuTI uses integers of different size for the
x-coordinates and the y-coordinates. Therefore we shall speak of the x-integers and of the y-
integers. The default for x-integers is 64 bit long long integers, and the default for y-integers
is 16 bit short integers. The module has also been tested with multiple-precision x-integers.

Notation for Algorithms
We shall write most algorithms in a functional notation which is as mathematical as possible,

39

but still concrete enough that they can be implemented straight away. It turned out that the
object oriented paradigm is not only very good for getting modularised and easy to understand
implementations, but it also makes the mathematical notation clearer. Therefore we shall use
the notation o.v and o.m(p1, . . . , pn) where o is an object, v is an instance variable, and m is a
method (function) with arguments p1, . . . , pn.

The expression

a =def

s1 if ϕ1

s2 if ϕ2

.
sn otherwise

is a case analysis. It means:
a =def s1 if ϕ1 is true
a =def s2 if ϕ1 is false and ϕ2 is true
. . .
a =def sn if ϕ1, . . . , ϕn−1 are all false.

The notation Σm
n=0s(n) is well known in mathematics. In the same style we define a notation

V m
n=0s(n). The V operator causes the values s(n) to be collected in a list. For example,

V 20
n=0

{
(n) if n is a prime number
() otherwise

yields the list (1,3,5,7,11,13,17,19).

We may also use the keyword break to stop the V -loop. For example,

Vn>0

break if n > 20
(n) if n is a prime number
() otherwise

yields the same list (1,3,5,7,11,13,17,19).

Sometimes it is necessary to include a value in a list and then stop the loop. We specify this
with an expression ‘s and break’.

Vn>0

(n) and break if n > 20
(n) if n is a prime number
() otherwise

yields the list (1,3,5,7,11,13,17,19,21).

Partial Functions and Error Handling
Most of the functions defined in this chapter are partial functions. Therefore the preconditions
the arguments must meet when these functions are called need to be stated very clearly. This
means for an implementation that the functions should only be called when the preconditions
are guaranteed. An error handling mechanism treats the cases where the preconditions are not
met.

Special Functions
We use the following functions:

40

roundX(a) rounds the floating point number a to the closest x-integer (time value).

roundY (a) rounds the floating point number a to the closest y-integer (fuzzy value).

The two functions are almost identical. The only difference is the bit length of the resulting
integer values.

2.3.1 Points

We need 2-dimensional points with coordinates (x, y) as the representation of points on the
envelope polygon. The x-coordinate is the time coordinate and the y-coordinate is the fuzzy
value coordinate. x-coordinates are represented with x-integers and y-coordinates are repre-
sented with y-integers (Def. 2.3.2).

Notation
If p = (x, y) is a point then p.x denotes the x-coordinate (time coordinate) of p and p.y denotes
the y-coordinate (fuzzy coordinate) of p.

Collinearity
The collinearity check for three points p1, p2 and p3 is a standard method from Computational
Geometry [36]. The doubled area of the triangle p1, p2 and p3 is computed. With integer
coordinates this can be done without any error at all. If the doubled area is 0 then the three
points are collinear.

Definition 2.3.3 (Collinear) The method p1.collinear(p2, p3) returns true if the three points
p1, p2 and p3 are collinear.

Left turn
Another important operator is the ‘left turn test’.

Definition 2.3.4 (Left Turn) The method p1.leftturn(p2, p3) returns true if the three points
p1, p2 and p3 make a left turn.

The leftturn method computes the doubled area of the triangle p1, p2 and p3 and checks its
sign. Left turns and right turns yield opposite signs.

Intersection
Testing whether line segments intersect and computing the intersection point are also standard
methods from Computational Geometry.

Definition 2.3.5 (Intersects and IntersectsProper) The method p1.intersects(p2, q1, q2)
returns true if the line segment (p1, p2) intersects or touches the line segment (q1, q2).

The method p1.intersectsProper(p2, q1, q2) returns true if the line segment (p1, p2) inter-
sects properly, and not only touches the line segment (q1, q2).

Definition 2.3.6 (Intersection) The method p1.intersection(p2, q1, q2) returns the rounded
x-coordinate of the intersection point of the two intersecting line segments (p1, p2) and (q1, q2).

41

lineY
The function p.lineY (q, x) considers the line crossing the points p and q, and computes for a
given x-value the corresponding y value at the line.

-

6

x

⊤

0

y

p.lineY (q, x)

x

y
p

q

Definition 2.3.7 (lineY) Let p and q be the two points which define a line, and let x be an
x-coordinate.

p.lineY (q, x) =def

{

undefined if p.x = q.x

p.y + (q.y−p.y)·(x−p.x)
q.x−p.x otherwise

The result is floating point number.

lineX
This method computes for a line and a y-value the corresponding x-value.

Definition 2.3.8 (lineX) Let p and q be the two points which define a line, and let y be a
y-coordinate.

p.lineX(q, y) =def

{

undefined if p.y = q.y

p.x+ roundX((q.x−p.x)·(y−p.y)
q.y−p.y) otherwise

The result is an x-coordinate.

Area
We provide two methods for computing the area between a line and the x-axis. The first
function p.area2(q) computes for two points p and q twice the area below the line segment
between p and q. When p and q are points with integer coordinates then twice the area yields
also an integer, and no rounding is necessary.

The second method p.area2(q, x1, x2) computes twice the area between x1 and x2 below the
line segment between p and q.

Definition 2.3.9 (area2) Let p and q be the two points which define a line, let x1 and x2

x-coordinates.
p.area2(q) =def (q.x − p.x) · (q.y + p.y)
The result is an x-integer.

p.area2(q, x1, x2) =def

undefined if p.x = q.x and p.x 6= x
0 if p.x = q.x = x
(x2 − x1) · (p.lineY (q, x2) − p.lineY (q, x1)) otherwise

The result is a floating point number.

42

The next method, p.area2X(q, a) computes for two points p and q and for a doubled area
a the x-coordinate x such that twice the area below the line segment between p and q from p.x
till x is a. The function is undefined if the line is vertical, or the line is just the coordinate axis
and a > 0, or the slope of the line is negative and there is not enough area available between
p.x and the point where the line crosses the coordinate axis.

Definition 2.3.10 (area2X) Let p and q be the two points which define a line. Let a ≥ 0 be
an integer or floating point number.

p.area2X(q, a) =def

undefined if p.x = q.x
or p.y = q.y = 0 and a > 0
or p.y2 < −slope · a

p.x if p.y = q.y = 0 and a = 0
p.x+ roundX(a

2p.y) if p.y = q.y

p.x+ roundX(

√
p.y2+slope·a−p.y

slope) otherwise

where slope =def q.y−p.y
q.x−p.x

The result is a rounded x-integer.

Proposition 2.3.11 (Soundness of area2X) Let p and q be two points and a a doubled area
(non-negative number). Then p.area2X(q, a) returns the (rounded) x-coordinate x such that
the doubled area below the line crossing p and q and between p.x and x equals a.

Proof: The doubled area below the line crossing p and q and between p.x and x is
(x− p.x) · (p.y + (p.y + slope · (x− p.x))) = a
where slope = q.y−p.y

q.x−p.x

Case 1: q.x− p.x = 0, i.e. p.x = q.x.
The equation is not solvable in this case.

Case 2: slope = 0, i.e. p.y = q.y:
Case 2a: p.y = 0: the equation is only solvable for a = 0, in which case p.x is a solution.

Case 2b: p.y > 0: The equation simplifies in this case to
(x − p.x) · 2p.y+ = a with solution
x = p.x+ a

2p.y .

Case 3: slope 6= 0:
The equation is normalised to
slope · (x− p.x)2 + 2p.y(x− p.x) − a = 0 with solution

(x − p.x) =
−2p.y±

√
4p.y2+4slope·a

2slope

x = p.x+
−p.y+

√
p.y2+slope·a

slope
The −√

. . .-case yields a point left of p.x, which is not what we want. The square root has

a real number solution only if p.y2 + slope · a ≥ 0. Otherwise the function is undefined.

Integration
Some interval–interval relations are defined as an integral over two multiplied polygons (Section
2.3.3). A building block for the integration algorithm is a method which integrates the product
of two lines.

43

Definition 2.3.12 (Integration of Multiplied Lines) Let p1, p2 and q1, q2 be the two pairs
of points which define two lines. Let x1 and x2 be two x-coordinates.

p1.integrate(p2, q1, q2, x1, x2) =def

undefined if (p1.x = p2.x or q1.x = q2.x) and x1 6= x2

0 if x1 = x2

a · b · (x2 − x1) + (m2a+m1b) · (x2
2 − x2

1)/2 +m1 ·m2 · (x3
2 − x3

1)/3 otherwise

where a =def p1.y −m1p1.x, b =def q1.y −m2q2.x,

m1 =def p2.y − p1.y

p2.x− p1.x
and m2 =def q2.y − q1.y

q2.x− q1.x
.

The result is a floating point number.

Proposition 2.3.13 (Soundness of Integration of Multiplied Lines) Let p1, p2 and q1, q2
be the two pairs of points which define two lines. Let x1 and x2 be two x-coordinates. Then

p1.integrate(p2, q1, q2, x, y) =
∫ x2

x1
l1(x) · l2(x) dx

where l1 is the line crossing p1 and p2 and l2 is the line crossing q1 and q2.

Proof: Let l1(x) =def p1.y +m1(x− p1.x) and l2(x) =def q1.y +m2(x − q1.x)

where m1 =def p2.y − p1.y

p2.x− p1.x
and m2 =def q2.y − q1.y

q2.x− q1.x
.

∫ x2

x1
l1(x) · l2(x) dx

=
∫ x2

x1
(p1.y +m1(x− p1.x))(q1.y +m2(x − q1.x)) dx

= [(p1.y −m1p1.x)(q1.y −m2q2.x) + (m2(p1.y −m1p1.x) +m1(q1.y −m2q2.x))x +m1m2x
2]x2

x1

= [ab+ (m2a+m1b)x+m1m2x
2]x2

x1

= ab(x2 − x1) + (m2a+m1b)(x
2
2 − x2

1)/2 +m1m2(x
3
2 − x3

1)/3

where a =def p1.y −m1p1.x and b =def q1.y −m2q2.x.

2.3.2 Fuzzy Time Intervals

In this section we introduce a concrete representation of fuzzy time intervals and present the
algorithms implemented in FuTI.

Definition 2.3.14 (Infinity) We use +∞ and −∞ with the same meaning as before. How-
ever, since infinity cannot be represented properly on a computer, +∞ stands in fact for a
sufficiently large positive representable x-integer, and −∞ stands for a sufficiently large neg-
ative representable x-integer. If the bit size of the integers is fixed, these can be the largest
representable integers at all. For multiple-precision integers one can choose an arbitrary very
large number.

The finite representation of +∞ and −∞ could in principle cause errors if the time values
become extremely large. Therefore one has to check in the application how large the numbers
could become and then choose a large enough x-integer datatype.

44

2.3.2.1 Representation and Construction

Fuzzy intervals are represented by their envelope polygons. These polygons represent the mem-
bership functions.

Definition 2.3.15 (Envelope Polygon) The envelope polygon I of a fuzzy time interval is
a finite sequence of points p0, . . . , pn such that pi.x ≤ pi+1.x holds for all i.

The envelope polygons in FuTI are constructed that there are no redundant points. That
means in particular that there are no collinear triples (pi, pi+1, pi+2) of points.

We usually identify the envelope polygon with the fuzzy interval itself.

Example 2.3.16 (Envelope Polygon) The picture below shows the envelope polygon

I = (0, 0)(10, 500)(20, 500)(30, 1000)(60, 1000)(60, 500).

Since p5.y = 500 > 0 it represents a positive infinite fuzzy interval.

-

6

x

⊤

0

y

The Envelope Polygon

0 10 20 30 60

Example 2.3.17 (Crisp Intervals) The representation of finite crisp intervals consists al-
ways of four points: I = ((x0, 0)(x0,⊤)(x1,⊤)(x1, 0).

-

6

x

⊤

0

y

Finite Crisp Interval

x0 x1

The envelope polygon representation of fuzzy intervals leaves it open whether they are open or
closed intervals. This decision is left to the membership function (see Remark 2.3.24 below).

Infinite crisp intervals can of course also be represented. For example, [10,+∞[can be
represented by (10, 0)(10,⊤). [−∞, 10[can be represented by (10,⊤)(10, 0).

An envelope polygon is constructed from the empty list of points by adding new points to the
back of the list. The push back method defined below ensures that the condition pi.x ≤ pi+1.x
holds and that collinear triples of points are avoided.

Definition 2.3.18 (push back and pop back) Let I = (p0, . . . , pn) be an envelope polygon
and p a new point.

45

I.push back(p) =def

undefined if I 6= () and p.x < pn.x
(p) if I = () or I = (p0) and p.y = p0.y
(p0, p) if I = (p0)
(p1, . . . , pn−1, p) if p.collinear(pn−1, pn) = true (Def. 2.3.3)
(p1, . . . , pn, p) otherwise

I.pop back() removes the last element.

The push back method alone does not guarantee that there are no redundant points in an
envelope polygon. The method I.close() defined next removes all remaining redundancies. It
is automatically called before the other algorithms use the envelope polygon.

Definition 2.3.19 (Close) Let I = (p0, . . . , pn) be an envelope polygon.

I.close() =def

() if I = ((x, 0))
(p1, . . . , pn).close() if p0.y = p1.y
(p0, . . . , pn−1) if pn−1.y = pn.y
I otherwise

The method index defined below can be used to locate for a given x-coordinate x and an
envelope polygon I the line segment which is above x. indexMax(true) locates the index of
the leftmost polygon point with maximum y-value (IfM), whereas indexMax(false) locates
the index of I lM .

Definition 2.3.20 (index and indexMax) For an envelope polygon I = (p0, . . . , pn) let

I.index(x) =def

{
−1 if I = () or x < p0.x
max{k ≤ n | xk ≤ x} otherwise

be the index of the rightmost polygon point that is left of x. The index is actually obtained with
binary search in O(log2(n)) time.

I.indexMax(front) =def

−1 if I = ()
min{i ≥ 0 | pi.y = ⊤ or ∀j : 0 ≤ j < i : pj .y < pi.y} if front = true
max{i ≤ n | pi.y = ⊤ or ∀j : i < j ≤ n : pj .y < pi.y} if front = false

indexMax requires linear search. Fortunately the search can be stopped as soon as a point pi

is reached with pi.y = ⊤. Therefore for the important case of crisp polygons, the search stops
always at the second point.

Example 2.3.21 (index and indexMax) For the envelope polygon

I = (0, 0)
︸ ︷︷ ︸

p0

(10, 500)
︸ ︷︷ ︸

p1

(10, 1000)
︸ ︷︷ ︸

p2

(50, 1000)
︸ ︷︷ ︸

p3

(50, 0)
︸ ︷︷ ︸

p4

we have
I.index(0) = 0, I.index(9) = 0, I.index(10) = 2, I.index(11) = 2, I.index(50) = 4,
I.indexMax(true) = 2, I.indexMax(false) = 3.

46

-

6

x

⊤

0

y

index and indexMax

0 10 50

The envelope polygon contains only the vertices of a piecewise linear membership function.
Therefore we need a member method which interpolates for a given x the corresponding y-value
of the membership function.

Definition 2.3.22 (Member Function) Given a fuzzy interval (envelope polygon) I = (p0, . . . , pn)
the Member function is defined:

I.member(x) =def

0 if I = ()
p0.y if x < p0.x
pn.y if x ≥ pn.x
pi.y if x = pi.x
pi.lineY (pi+1, x) otherwise

where i = I.index(x)

The result is converted to a floating point number, if necessary.

The usual membership function (Def. 2.2.1) is then I(x) = I.member(I, x)/⊤
Remark 2.3.23 (Extrapolation and Infinite Intervals) The member method extrapolates
the membership function to x-coordinates below p0.x and above pn.x. The y-value for x-
coordinates below p0.x is constant p0.y. The y-value for x-coordinates above pn.x is constant
pn.y. Therefore envelope polygons always represent fuzzy intervals with finite kernel (Def.
2.2.4).

Remark 2.3.24 (Half-open Intervals) The index method (Def. 2.3.20) which is used in the
member method returns for a given x the largest index i such that pi.x ≤ x. This causes that
the envelope function is interpreted as a half-open interval which is closed at the left hand side
and open at the right hand side.

To see this, consider the following example:

I = (0, 0)
︸ ︷︷ ︸

p0

(0, 500)
︸ ︷︷ ︸

p1

(10, 500)
︸ ︷︷ ︸

p2

(10, 1000)
︸ ︷︷ ︸

p3

(50, 1000)
︸ ︷︷ ︸

p4

(50, 500)
︸ ︷︷ ︸

p5

(60, 500)
︸ ︷︷ ︸

p6

(60, 0)
︸ ︷︷ ︸

p7

-

6

x

⊤

0

y

Half-Open Interval

0 10 50 60

47

We have I.member(0) = 500, I.member(10) = 1000, I.member(50) = 500, I.member(60) = 0
because I.index(50) = 5 and I.index(60) = 7.

Remark 2.3.25 (Extreme Cases) There are a number of extreme cases of envelope polygons
I:

• I = () represents the empty set;

• I = ((a, 0)) also represents the empty set (which gets normalised to ());

• I = ((a, y)) with y > 0 represents the infinite fuzzy interval with constant membership
function I(x) = y;

• I = ((a, y1)(a, y2)) represents the fuzzy interval with membership function

I(x) =

{
y1 for x < a
y2 for x ≥ a.

• ((0, 0)(0,⊤)) represents [0,+∞[

• ((0,⊤)(0, 0)) represents] −∞, 0[

2.3.2.2 Basic Features of Fuzzy Intervals

We start with some simple predicates for checking whether the intervals are infinite.

Definition 2.3.26 (Infinity Predicates) Let I = (p0, . . . , pn) be an envelope polygon.
I.isNegInfinite() =def I 6= () and p0.y > 0
I.isPosInfinite() =def I 6= () and pn.y > 0
I.isInfinite() =def I 6= () and p0.y > 0 or pn.y > 0

Using the indexMax-method (Def. 2.3.20) we can define I.sup() for computing the height
sup(I) (Def. 2.2.3) of the fuzzy interval.

Definition 2.3.27 (sup and inf Values) Let I = (p0, . . . , pn) be an envelope polygon.
I.inf() =def min{pi.y | 0 ≤ i ≤ n}
I.sup() =def

{
0 if I = ()
pI.indexMax(true).y otherwise

The result of sup and inf are y-integer values.

The complexity of sup and inf are in general linear because indexMax requires linear
search. It is constant for crisp intervals.

Size of Fuzzy Intervals
The size of a fuzzy interval is the integral over its membership functions (Def. 2.2.8). We define
now three methods for computing the (doubled) size of a fuzzy interval. size2() computes the
overall size, i.e. I.size2()/⊤ = 2|I|. I.size2(k, l) computes the size between two vertices of
the envelope polygon, i.e. I.size2(k, l)/⊤ = 2|I|pl.x

pk.x. Finally I.size2(a, b) computes the size

between two arbitrary x-coordinates a and b: I.size2(a, b)/⊤ = 2|I|ba.

48

Definition 2.3.28 (Size) Let I = (p0, . . . , pn) be an envelope polygon. Let k and l be two
indices.

I.size2I(k, l) =def

undefined if k < 0 or l > n
−I.size2(l, k) if l < k
0 if k = l or I = ()

Σl−1
m=kpm.area2(pm+1) otherwise (Def.2.3.9)

I.size2() =def

0 if I = ()
+∞ if p0.y > 0 or pn.y > 0
I.size2(0, n) otherwise

Both versions of size2 return x-integers.

Now let a and b be two x-coordinates:

I.size2(a, b) =def

0 if I = () or a = b
−I.size2(b, a) if b < a
2 · (b − a) · pn.y if a ≥ pn.x
2 · (b − a) · p0.y if b ≤ p0.x
(b− a) · (pi.lineY (pi+1, a) + pi.lineY (pi+1, b)) if pi−1.x ≤ a ≤ b ≤ pi.x

where i = I.index(a)
head+middle+ tail otherwise

where

head =def

2 · (p0.x− a) · p0.y if a ≤ p0.x
0 if pi.x = a
pi.area2(pi+1, a, pi+1.x) otherwise

where i = I.index(a) and

middle =def I.size2(I.index(a), I.index(b)) and

tail =def

2 · (b− pn.x) · pn.y if b ≥ pn.x
0 if pi.x = b
pi.area2(pi+1, pi.x, b) otherwise

where i = I.index(b)

The method returns a floating point value.

The next two methods compute the centre and middle points for a fuzzy interval (Def.
2.2.9).

Definition 2.3.29 (Centre Points) Let I = (p0, . . . , pn) be an envelope polygon.

I.centrePoint(k,m)=def

undefined if I = () or I.isInfinite()
p0.x if k = 0
pn.x if k = m
pi−1.area2X(pi,

s·k
m − I.size2(0, i− 1)) otherwise

where s =def I.size2(0, n) and
i = min{i | m · I.size2(0, i) > s2 · k}

centrePoint returns a (rounded) x-integer.

The search for the index i in centrePoint causes linear complexity for both methods.

The centrePoint method needs to locate the x-coordinate such that |I|x−∞ = k
m |I|. To this

end it first locates the index i with pi−1 ≤ x ≤ pi. Then it calls the area2X-method to calculate
the x-coordinate x with |I|pi−1.x

−∞ + |I|xpi−1.x = k
m |I|.

49

Example 2.3.30 (Centre Point Computation)
Let I = (0, 0)

︸ ︷︷ ︸

p0

(0, 500)
︸ ︷︷ ︸

p1

(4, 500)
︸ ︷︷ ︸

p2

(4, 1000)
︸ ︷︷ ︸

p3

(6, 1000)
︸ ︷︷ ︸

p4

(6, 0)
︸ ︷︷ ︸

p5

-

6

x

⊤

0

y

Centre Point Computation

0,4 1,4 2,4 3,4 4,4

We have |I| = 4000, i.e. s2 = 8000, and we want to compute centrePoint(1, 4). The search
for i = min{i | 4 · I.size2(0, i) > 8000 · 1} yields i = 2 because 4 · 4000 > 8000 · 1.

Since |I|p1.x
−∞ = 0 there is still an area the size of 2000 to be covered by |I|xp1.x.

The call to p1.area2X(p2,
8000·1

4 − 0) = p1.area2X(p2, 2000) yields 2, such that x = 2 is in fact
the correct result for I1,4.

Components of Fuzzy Intervals
The nComponents-method can be used to count the number of components of an interval. It
counts the number of times the envelope polygon drops down to an y-value 0 and adds 1 if it
is positively infinite.

Definition 2.3.31 (Number of Components) Let I = (p0, . . . , pn) be an envelope polygon.

I.nComponents() =def

0 if I = () or n = 0 and p0.y = 0
1 if n = 0 and p0.y > 0

Σn
i=1

{
1 if pi.y = 0 and pi−1.y > 0
0 otherwise

+

{
1 if pn.y > 0
0 otherwise

The method component(k) below extracts from an envelope polygon the kth component as
a new envelope polygon.

Definition 2.3.32 (component) Let I = (p0, . . . , pn) be an envelope polygon.

I.component(k) =def

() if I = ()

V n
i=I.skipComponent(k−1)

{
(pi) and break if pi.y = 0 and pi−1.y > 0
(pi) otherwise

where I.skipComponent(k) returns the first index of the k + 1st component.
It is described procedurally.

If k = 0 return 0.
If n = 0 return 1.
Let l =def 0.
Forn

i=1 {if(pi.y = 0 and pi−1.y > 0) l = l+ 1; // next component
if(l = k){ if(i = n) return n+ 1 // last component skipped

if(pi+1.y > 0) return i // the two components meet at pi.x
else return i+ 1.}}

return n+ 1 // last component skipped

50

2.3.2.3 Regions

A basic design decision for the algorithms in the FuTI–module is to have only half open crisp
intervals of the form [a, b[. Unfortunately there are fuzzy intervals with open intervals as support
(Def. 2.2.4). Consider the following interval:

-

6

R
0

1

Open Support
10 20 30 40 50

Its support is the open interval]10, 30[,]30, 50[. If this is again represented as a fuzzy
interval in the FuTI style, it corresponds to the half open interval [10, 50[. This is a fundamental
weakness of the FuTI–module, which, hopefully, has no practical relevance.

The FuTI–module has therefore the concept of a region of a fuzzy interval, which approxi-
mates the real regions as half-open intervals.

Definition 2.3.33 (Region) We define an enumeration type Region with values core, support,
kernel and maximum. These values indicate the smallest, possibly non-convex, half open interval
which contain the corresponding regions of Def. 2.2.4.

This means that if one of the subsequent functions with parameter region computes the
corresponding region, the smallest half open interval which contain the corresponding regions
of Def. 2.2.4 is meant.

The components of the regions of an interval can be enumerated with the method nextComponent.

Definition 2.3.34 (nextComponent) The method boolI.nextComponent(x1, x2, i1, i2, region)
computes the components of the given region (core, support, kernel or maximum) of the in-
terval I one by one. The first component is computed when the variable i1 has the value -1. In
this case x1 and x2 are bound to the x-coordinates of the endpoints of the component. x1 and
x2 may be the infinity. i1 and i2 are bound to the indices of the endpoints of the component
in the envelope polygon. Successive calls to nextComponent yield the next components. The
Boolean result of nextComponent is true as long as there is still a component which has just
been computed.

Notice that nextComponent computes for the above example with support]10, 30[,]30, 50[
indeed the two components [10, 30[and [30, 50[, and not [10, 50[.

The FuTI–module provides three more methods for extracting information about the regions
of an interval, size, crisp and side:

Definition 2.3.35 (size) The method I.size(region) measures the size of the given region
(core, support, kernel or maximum) of the interval I in x-coordinates.

The algorithm uses I.nextComponent(x1, x2, i1, i2, region) (Def. 2.3.34) to enumerate the
components of I’s region, and adds up the differences x2 − x1. If one of these values is the
infinity then the infinity is returned.

Definition 2.3.36 (crisp) The method I.crisp(region) turns the given region (core, support,
kernel or maximum) into a – possibly non-convex – crisp interval.

51

The algorithm uses I.nextComponent(x1, x2, i1, i2, region) (Def. 2.3.34) to enumerate the
components of I’s region, and constructs from x1 and x2 crisp subintervals which are joined to
a new interval.

Definition 2.3.37 (side) The method I.side(region, front) computes the left (if front =
true) or right (if front = false) side of the region (core, support, kernel or maximum)
of the interval I.

The result may be the infinity.

2.3.2.4 Point–Interval and Interval–Interval Relations

Point–interval and interval–interval relations for fuzzy intervals should not yield boolean, but
fuzzy results. Unfortunately the situation here is even worse than with the set operations
for fuzzy intervals. There are no natural and obvious definitions for such relations. There
are different and equally plausible versions. Therefore there are no fuzzy point–interval and
interval–interval relations within the FuTI–module. Different versions of such relations have
been specified in the GeTS language [34].

The FuTI–module contains instead crisp point–interval and interval–interval relations be-
tween the regions of the intervals. Since the regions are crisp intervals, there are natural
definitions for these relations.

Point–Interval Relations for Regions
The relations between a single time point and a, possibly non-convex, (crisp) region of a fuzzy
interval are: before, starts, during, finishes, after and between. The point–interval relations
before and after respect that the regions are treated as half open intervals [a....b[. That means
t before [a....b[is only true if t < a. t after [a....b[is true if t ≥ b.

The between–relation makes sense for non-convex regions of intervals. t betweenI means
that t is in a gap between the components of the corresponding region of I. Notice that for
the above interval I with support]10, 30[,]30, 50[we get (30 between I) = false because the
support region (Def. 2.3.33) is [10, 50[in this case.

Interval–Interval Relations
For crisp intervals there is the standard set of Allen’s interval–interval relations (Fig. 2.1) [1].

These relations are defined for convex crisp intervals. Since the FuTI–module has to deal
with non-convex crisp intervals as well, it has to generalise these relations to the non-convex
case. The generalisation is straightforward for before, meets, during and after. The condition
for I overlaps J is that a part of I is before J and the rest of I is during J , and this version
is implemented in FuTI. The condition for I starts J is that the left ends of I and J coincide
and I is during J , and this works also for non-convex intervals. The analogous conditions hold
for the finishes relation.

There is a further subtlety to be considered when implementing interval–interval relations.
Allen’s interval–interval relations come with a constraint calculus which relies heavily on the
condition that the relations are disjoint. That means, two intervals I and J stand in exactly
one of the relations to each other. For example, [0, 10[meets [10, 20[, and therefore [0, 10[
before [10, 20[must be false. The disjointness of the relations is necesary for the constraint
calculus. For other applications it not very intuitive. Therefore the interval–interval relations
in the FuTI–module are defined in the more intuitive way where both [0, 10[meets [10, 20[,

52

I

I

I

I

I

I

I

..

..

J

J

I before J

I finishes J
J finished-by I

J after I

I meets J
J met-by I

I overlaps J

I starts J
J started-by I

I during J
J contains I

J overlapped-by I

I equals J

Figure 2.1: Interval–Interval Relations

and [0, 10[before [10, 20[are true. By similar reasons, the during relation is defined such that
starts ⊆ during and finishes ⊆ during.

The FuTI–module provides two sets of interval–interval relations. One set is between ordi-
nary intervals [a, b[and regions of fuzzy intervals. The second set is between the corresponding
regions of two fuzzy intervals. The algorithms have either constant or at worst linear com-
plexity. In particular the algorithm for during uses a sweep line technique for going only once
through the two envelope polygons.

2.3.2.5 Hull Operators

The method I.crispHull() implements the crispHull()-function (Def. 2.2.27).

Definition 2.3.38 (Crisp Hull) Let I = (p0, . . . , pn) be an envelope polygon.

I.crispHull()=def

() if I = ()
({

((p0.x,⊤)) if p0.y > 0
((p0.x, 0)(p0.x,⊤)) otherwise

,

{
((pn.x,⊤)) if pn.y > 0
((pn.x,⊤)(pn.x, 0)) otherwise

)

otherwise

The method I.monotoneHull() implements the monotoneHull()-function (Def. 2.2.29). The
algorithm scans the envelope polygon first from 0 to the first maximal element and skips all
vertices which destroy monotonicity. Then it scans the envelope polygon from the last element
to the last maximal element and skips again all vertices which destroy monotonicity. Finally it
appends the first lists with the reversed second list.

Definition 2.3.39 (Monotone Hull) Let I = (p0, . . . , pn) be an envelope polygon. We de-
scribe the algorithm I.monotoneHull() procedurally:

53

If I = () return ();

Let newI1 =def (p0, V
I.indexMax(true)
i=0

((pi−1.lineX(pi,max),max), pi)
if i > 0 and pi.y ≥ max and pi−1.y < max

(pi) if pi.y ≥ max
() otherwise

)

where max is the current largest y-coordinate in newI1:

Let newI2 =def (pn, V
I.indexMax(false)
i=n

((pi−1.lineX(pi,max),max), pi)
if i < n and pi.y ≥ max and pi−1.y < max

(pi) if pi.y ≥ max
() otherwise

)

where max is now the current largest y-coordinate in newI2:
Let newI2 = (q0, . . . , qm);
For0i=m newI1.push back(qi).
return newI1.

The algorithm for the convex hull function convexHull (Def. 2.2.28) is a special version of the
Graham Scan algorithm for arbitrary polygons. It goes from left to right through the envelope
polygon and pushes all candidates for the convex hull on a stack. Wrong candidates are later
popped from the stack. Since the points are already sorted, its complexity is linear.

Definition 2.3.40 (Convex Hull) Let I = (p0, . . . , pn) be an envelope polygon. We describe
the algorithm I.convexHull() procedurally:

If I = () return ().

Let f =def

{
I.indexMax(true) if p0.y > 0
0 otherwise

Let l =def

{
I.indexMax(false) if pn.y > 0
n otherwise

Let newI =def (pif
).

Forl
i=f while(m ≥ 1 and qm−1.leftturn(qm, pi)) newI.pop back();

newI.push back(pi);
where qm is the current last element of newI.
return newI.

2.3.2.6 Basic Unary Transformations

A number of basic unary transformations (Def. 2.2.30) can be implemented by just manipulating
the vertices of the envelope polygons.

Definition 2.3.41 (Extend, Scaleup, Shift) Let I = (p0, . . . , pn) be an envelope polygon.
The three functions return () if I = (). Let M =def (q0, . . . , qk) =def I.MontoneHull().

I.extend(true) =def (V j
i=0(qi), (qj .x,⊤))

where j = M.indexMax(true)

I.extend(false) =def ((qj .x,⊤), V k
i=j(qi))

where j = M.indexMax(false)

I.scaleUp() =def V n
i=0(pi.x, roundY ((pi.y · ⊤/I.sup())))

I.shift(a) =def V n
i=0(pi.x+ a, pi.y)

54

extend(true) implements extend+, extend(false) implements extend−, (Def. 2.2.30).

cut
We provide three cut-methods. The first one cuts an envelope polygon between two given x-
coordinates x1 and x2. The second one cuts it between the x-coordinates of two given vertices.
The third one cuts the interval after or before an x-coordinate.

Definition 2.3.42 (cut) Let I = (p0, . . . , pn) be an envelope polygon. x, x1 and x2 are x-
coordinates.

I.cut(x1, x2)=
def

() if x2 ≤ x1

((x1, 0), (x1, I.member(x1)), (V
I.index(x2)

i=I.index(x1)pi), (x2, I.member(x2)), (x2, 0))

otherwise
where the list is formed with the push back operator (Def. 2.3.18). This removes certain

redundancies.

Let i1 and i2 be two indices.

I.cutI(i1, i2) =def

{
() if i2 ≤ i1
V i2

i=i1
(pi) otherwise.

I.cut(x, true) =def ((x, 0), (x, roundY (I.member(x))), V n
i=I.index(x)pi)

I.cut(x, false) =def (V
i=I.index(x)
0 pi, (x, roundY (I.member(x))), (x, 0))

times
The times operator, which multiplies the membership function with a constant, is not so easy
to implement. Since y · a > ⊤ is possible, one has to cut the multiplied envelope polygon at
y = ⊤. The picture below illustrates the problem.

-

6

x

⊤

0

y

times

In order to cut the multiplied polygon at y = ⊤ the intersection points between the dotted
and dashed lines have to be computed. The times function defined below follows the line
segments of the envelope polygon I and checks whether the multiplied line segments cross the
y = ⊤ line. In this case the intersection points are computed and inserted into the transformed
polygon.

55

Definition 2.3.43 (times) Let I = (p0, . . . , pn) be an envelope polygon and a a non-negative
floating point number.

I.times(a) =def

() if I = ()

(p0.x,min(1, p0.y · a)),

V n
i=1

() if pi−1.y · a ≥ ⊤ and pi.y · a > ⊤
((x,⊤)) if pi.y · a < ⊤ and pi−1.y · a > ⊤
((x,⊤), (pi.x, pi.y · a)) if pi.y · a > ⊤ and pi−1.y · a < ⊤

where x = pi−1.lineX(pi,⊤)
((pi.x, pi.y · a)) otherwise

otherwise

Interpolation
Some of the transformations of fuzzy time intervals are non-linear in the sense that they trans-
form straight lines into curved lines. These transformations cannot be implemented by simply
transforming the vertices of the envelope polygons. Since the result of the transformations must
be envelope polygons, we need to approximate curved lines by polygons. To this end we define
a method interpolate which interpolates curved lines between vertices of polygons.

Definition 2.3.44 (Interpolation) Let I = (p0, . . . , pn) be a non-empty envelope polygon, x
an x-coordinate, f a function from x-coordinate 7→ y-coordinate and ∆ a threshold value (e.g.
∆ = 0.1).
I.interpolate(x, f,∆) =def

I if x ≤ pn.x
I.interpolate(roundX((pn.x+ x)/2), f,∆).interpolate(x, f,∆)

if |2y1 − y2| > ∆′y2
where y1 = f(roundX((pn.x+ x)/2)) and y2 = pn.y + f(x) and ∆′ = ∆/(1 + 2y2/⊤)

I.push back((x, f(x))) otherwise

The interpolate-method starts with an envelope polygon I = ((x0, y0)) and fills up I with
interpolated values. Suppose I = (p0, . . . , pn). For a given x > pn.x it checks whether the
relative difference between the middle point (pn.x + x)/2 of the straight line between pn and
(x, f(x)), and f((pn.x+ x)/2) is larger than ∆. If this is not the case then the approximation
is good enough and the point (x, f(x)) is pushed onto I. If this is the case, better interpolation
is necessary. Therefore it calls itself recursively with x = middle point to fill up I until the
middle point, and then with x itself to fill up I from the middle point until the actual x. The
threshold ∆ is only a basic threshold for very small y-values. The threshold ∆’ causes that the
interpolation becomes denser for larger y-values.

-

6

x

⊤

0

y

Interpolation

pn.x

pn.y

x(pn.x+ x)/2

f(x)
f((pn.x+ x)/2)

} > ∆′?

56

Integration
The integrate+-function (Def. 2.2.30) is implemented by the integrate(true)-method below and
the integrate−-function is implemented by the integrate(false)-method. integrate(true) goes
from left to right through the envelope polygon I and calls for each line segment the area2-
function for points (Def. 2.3.9). integrate(false) goes from right to left through the polygon.
Therefore the resulting list has to be reversed. Since line segments are linear, their integration
yields a quadratic curve. Therefore interpolation is necessary.

Definition 2.3.45 (Integration) Let I = (p0, . . . , pn) be an envelope polygon and ∆ the
threshold. We write the function again in a procedural style.

I.integrate(true):

if I = () then return ()

Let newI =def (p0.x, 0)

Forn
i=1 newI.interpolate(pi.x, λ(x)(qm.y + pi−1.area2(pi, x, true)/2),∆)

where newI = (q0, . . . , qm)

return newI.

I.integrate(false):

if I = () then return ()

Let newI =def (pn.x, 0)

For1i=n newI.interpolate(pi−1.x, λ(x)(qm.y + pi−1.area2(pi, x, false)/2),∆)

where newI = (q0, . . . , qm)

return newI reversed.

2.3.2.7 Y-Function Based Unary Transformations

For unary transformations of fuzzy intervals which can be generated by applying a y-function
to the membership values, there is a simple algorithm scheme: if the y-function is linear, apply
it to the y-coordinates of the envelope polygon; if the function is not linear, use the interpolate
method.

Definition 2.3.46 (Unary Transformation) Let I = (p0, . . . , pn) be an envelope polygon
and let f be a unary y-function and ∆ a threshold value. We describe the method I.unaryT ransformation(f,∆)
procedurally:

If I = () return ();

If f is linear then return V n
i=0(pi.x, f(pi.y)).

Otherwise:

Let newI =def (p0.x, f(p0.y));

Forn
i=1 newI.interpolate(pi.x, λ(x)f(pi−1.lineY (pi, x)),∆);

return newI;

Exponentiation
The exponentiation operator exponentiatee(i) (Def. 2.2.30) is the first non-linear transforma-
tion we consider here.

57

Definition 2.3.47 (Exponentiation) Let I = (p0, . . . , pn) be an envelope polygon, e a non-
negative number (the exponent) and ∆ the threshold.

I.Exp(e) =def I.unaryT ransformation(λ(y)ye,∆).

λ(y)ye is not linear.

Complement Operator
Another point-based transformation is the complement operator.

Definition 2.3.48 (complement) Let I = (p0, . . . , pn) be an envelope polygon, n a negation
function (Def. 2.2.17) and ∆ the threshold.

I.complement(n) =def I.unaryT ransformation(n,∆).

2.3.2.8 Y-Function Based Binary Transformations

Y-Function based binary transformations of fuzzy intervals are more complicated to implement
because besides the vertices of the two envelope polygons their intersection points are relevant
for the transformation. The intersection points my become vertices of the transformed enve-
lope polygons. Therefore the first thing the binary transformation algorithm must do is to
compute the intersection points of the two polygons. Fortunately, since the two polygons are
unimonotone, this can be done with a sweep line algorithm in linear time. The result of the
IntersectionPoints-algorithm defined below is a list ((p0, q0), . . .) of pairs of points. The pi are
the vertices of I1 and the intersection points between I1 and I2. The qi are the vertices of I2
and also the intersection points between I1 and I2. pi.x = qi.x holds for all i.

In order to simplify the presentation of the algorithm a little bit we assume that I1 and I2
start at the same x-coordinates, and that both polygons have a redundant extra point pn+1

and qm+1 at the end. This saves some case distinctions at the beginning and at the end of the
sweep.

Definition 2.3.49 (Intersection Points) Let I1 = (p0, . . . , pn+1) and I2 = (q0, . . . , qm+1) be
two envelope polygons such that p0.x = q0.x and pn.y = pn+1.y and qm.y = qm+1.y. We define
the method I1.IntersectionPoints(I2). It returns a list of pairs ((p0, q0), . . .).

Let IntP =def ().
Let i =def 0 and j =def 0
Let x =def p0.x (x is the position of the sweep line).

58

while(x ≤ max(pn.x, qm.x)){
if(i < n and pi.x = pi+1.x)

if(x = qj .x){
IntP.push back(pi, qj); i := i+ 1; }
if(j < m and qj .x = qj+1.x)j := j + 1; }

else{IntP.push back(pi, (x, roundY (qj .lineY (qj+1, x)))); i := i+ 1; }
continue; }

if(j < m and qj .x = qj+1.x){
IntP.push back(pi, qj);
IntP.push back(pi, qj+1); j := j + 1
continue; }

if(x = qj .x)IntP.push back(pi, pj)
else IntP.push back(pi, (x, roundY (qj .lineY (qj+1, x))));

if(i < n){
if(j < m){

if(pi.intersectsProper(pi+1, qj , qj+1)){
xint := pi.intersection(pi+1, qj , qj+1);
IntP.push back((xint, roundY (pi.lineY (pi+1, xint))),

(xint, roundY (qj .lineY (qj+1, xint))); }

if(pi.x < qj .x){x = pi+1.x; i := i+ 1; continue; }
if(pi.x = qj .x){x = pi+1.x; j := j + 1; continue; }
x = qj+1.x; continue; }

x = pi+1.x; continue; }

if(j < m){x := qj+1.x; continue; }
x := x+ 1; }

return IntP.

We can now define the binaryT ransformation-method. It works much like the unaryT ransformation-
method. The differences are that binaryT ransformation first needs to compute the intersec-
tion points, and that the call to the interpolate-method gets as input a function which is
parameterised with two line segments instead of one.

Definition 2.3.50 (Binary Transformation) Let I1 = (p0, . . . , pn1) and I2 = (q0, . . . , qn2)
be envelope polygons. Let f be a binary y-function and ∆ a threshold value.
We describe the method I1.binaryT ransformation(I2, f,∆) procedurally:

Let I =def ((p0, q0), . . . , (pn, qn)) = I1.IntersectionPoints(I2)

If I = () return ();

If f is linear then return V n
i=0(pi.x, f(pi.y, qi.y)).

Otherwise:

Let newI =def (p0.x, f(p0.y, q0.y));

Forn
i=1 newI.interpolate(pi.x, λ(x)f(pi−1.lineY ((pi, x), qi−1.lineY ((qi, x)),∆);

return newI;

59

2.3.3 Integration over Multiplied Intervals

The motivation for the operators in this section come from certain fuzzy relations between fuzzy
intervals. There is no unique generalisation of interval–interval relations like ‘before’ to fuzzy
intervals. One idea for the generalisation works in two steps. The first step is to define a point–
interval ‘before’-relation: PIbefore(x, I). This can also be done in different ways. Regardless
how the concrete definition is, it is always possible to define this as an operator which maps an
interval to an interval: PIbefore′(I)(x) =def PIbefore(x, I). We can now generalise the point–
interval ‘before’ relation to an interval–interval ‘before’-relation IIbefore(I, J) by averaging the
point–interval ‘before’ relation over J : IIbefore(I, J) =def

∫
I(x) · PIbefore′(J)(x) dx/N(I, J).

N(I, J) is a normalisation factor which forces the result to be a fuzzy value between 0 and 1.
More details about fuzzy point–interval and interval–interval relations can be found in [34].

FuTI provides two different integration operations which can be used for these purposes.
We start with an auxiliary definition, a parameterised integration over multiplied membership
functions.

Definition 2.3.51 (Integration over Multiplied Intervals) Let I = (p0, . . . , pn) and J =
(q0, . . . , qm) be envelope polygons. Let a be an x-coordinate. The integral I.integrate(J, a) =def

∫
I(x− a)J(x) dx is computed as follows:
If I = () or J = () then return 0;

If (I.isInfinite() and J.isInfinite()) then undefined;
Let Int = 0;

If (p0.x+ a ≤ q0.x) then {j = 0; i = I.index(q0.x− a); x = q0.x;
Int = q0.y · I.size2(p0.x, q0.x− a)/2;}

else {i = 0; j = J.index(p0.x); x = p0.x+ a;
Int = p0.y · J.size2(q0.x, p0.x+ a)/2;} }

while (i < n and j < m){
Int = Int+ p′i.integrate(p

′
i+1, qj , qj+1, x,min(pi+1.x+ a, qj+1.x)); //Def.2.3.12

where p′i =def (pi.x+ a, pi.y) and p′i+1 =def (pi+1.x+ a, pi+1.y)
x = min(pi+1.x+ a, qj+1.x);
if(x = pi+1.x+ a) i = i+ 1;
if(x = qj+1.x) j = j + 1; }

if(pn.x+ a ≤ qm.x)Int = Int+ pn.y · J.size2(pn.x+ a, qm.x)/2;
else Int = Int+ qm.y · I.size2(qm.x− a, pn.x)/2;
return Int;

Asymmetric integration integrates over the multiplied membership functions of I and J and
normalises the result with the size of I.

Definition 2.3.52 (Asymmetric Integration) Let I and J be two fuzzy polygons. I must
be finite. The method

I.integrateAsymmetric(J) =def roundY (
2 · I.integrate(J, 0)

I.size2()
)

computes
∫
I(x) · J(x) dx/|I|.

60

The ‘symmetric integration’ over multiplied envelope polygons differs from the asymmetric
integration by the normalisation factor. The normalisation factor maximizeOverlap(I, J) be-
low causes that there is a position of the interval I relative to the interval J such that the value
of the normalised integral is 1. This is a useful operation for defining a fuzzy interval–interval
‘meets’ relation. It guarantees that if (a finite) I is shifted along the time axis, eventually it
meets (a finite) J with resulting fuzzy value 1.

Definition 2.3.53 (Symmetric Integration) Let I and J be two envelope polygons.
The function I.integrateSymmetric(J, simple) computes

∫
I(x) · J(x) dx/N

where N =

{
min(|I|, |J |) if simple = true
max{a |

∫
I(x− a) · J(x) dx} otherwise

I.integrateSymmetric(J, simple)

=def

undefined if I.isInfinite() or J.isInfinite()

roundY (
2 · I.integrate(J, 0)

min(I.size2(), J.size2)
) if simple = true

roundY (
⊤ · I.integrate(J, 0)

maximizeOverlap(I, J)
otherwise (Def. 2.3.56 below)

The normalisation factormaximizeOverlap(I, J) = max{a |
∫
I(x−a)·J(x) dx}, where I is

finite, amounts in general to a nontrivial search problem with unpredictable solutions. Consider
the following example:

-

6

R
0

1

Maximising the Overlap

I J J

If we move I into the left component of J we get maximal overlap as long as I is completely
contained in this part of J . The same holds for the right part of J .

For the parameter a to be maximised in the integral we get two plateaux as solutions.
There seems to be no easy analytical solution to this problem. Fortunately there are im-

portant classes of fuzzy time intervals, where this problem is extremely easy to solve.
The first class is when J is infinite and J(−∞) = ⊤ or J(+∞) = ⊤, and, of course J

has a finite kernel. In this case one can move I to the infinite part where J is constant 1.
∫
I(x− a)J(x) dx = |I| in this case, i.e. maxa

∫
I(x− a) · J(x) dx = |I|,

The other class are the the symmetric and monotone fuzzy intervals.

Definition 2.3.54 (Symmetric and Monotone Intervals) A fuzzy time interval I is sym-
metric if there is a time point t such that I(t− x) = I(t+ x) for all x holds. t is the symmetry
axis.

A fuzzy time interval I is monotone if with increasing time coordinate x, I(x) is monoton-
ically increasing until a maximal value and then it is monotonically decreasing again.

Crisp intervals are in particular monotone and symmetric. Maximal overlap is achieved for
monotone and symmetric intervals if the symmetry axes of both intervals coincide.

61

-

6

R
0

1

Maximal Overlap

I J

t

Proposition 2.3.55 If I and J are two monotone and symmetric fuzzy intervals then
∫
I(x)J(x) dx is maximal if the symmetry axis of I and J coincide.

The proof is very technical. We therefore sketch only the basic idea. First I and J are discretised
into step functions with finite step size. The limit ‘step size 7→ 0’ is then the original problem.
The discretised integral then becomes a sum stepsize · ΣkIk · Jk

One must show that moving the interval I away from the position where the two symmetry
axes coincide, decreases the sum.

-

6

R
0

1

Discretised Maximisation Problem

J

I

shifted I

As one can see in this picture, shifting I to the right hand side, decreases the parts of the sum
Ik ·Jk on the left side of the symmetry axis of J , and increases the parts of the sum on the right
side of the symmetry axis. The important observation is, that because J is monotone falling
at the right hand side, the parts Ik on the right side, which cause the sum to increase again,
are multiplied with smaller Jk than the corresponding parts on the left hand side. Therefore
the sum gains less on the right hand side than it looses on the left hand side. The overall sum
therefore decreases or remains constant.

A General Search Procedure
We want to find a value for a such that

∫
I(x−a)J(x) dx is maximal. If I or J are not monotone

and symmetric a general search procedure has to be applied. The search procedure which is
implemented in FuTI is a combination of an iterated binary local search with a randomised
global search. It is optimised for search spaces with little structure and terminates quickly.
100% success, however, is not guaranteed.

The first problem to be solved is to find good starting points for the search. Reasonable
choices are the middle points of the local maxima of I and J . For the examples in the picture
below the search starts by matching the four combinations of ak with bl.

-

6

R
0

1

Starting Points for the Local Search

I J

a1 a2 b1 b2

Since all these combinations may miss the global maximum, random start points are also
generated.

62

The second problem is to choose an initial step size for the search. The initial step size is
∆ = min(J lS − b0, b0 − JfS)/2, i.e. half way between the start point b0 of the search in the
interval J and the closest end of J .

If, for example, the value for the integral increases for a0+∆ then the local search procedure
is called recursively for the initial value a0 + ∆ and step size ∆/2. The other cases are similar.
This way ∆ is decreased exponentially until it reaches a certain threshold. The new value for a
is now the start point of another local search with the same ∆ as before. This is iterated until
the changes in the integral falls under another threshold (1% seemed to be a good choice).

Definition 2.3.56 (The Search for Maximising the Overlap) Let I and J be two finite
fuzzy intervals. We define a local search function and then a global search procedure for max-
imising the integral

Int(a) =def

∫

I(x− a)J(x) dx.

Let a be the start value for the search and ∆ the step size. ‘threshold’ is threshold for ∆.

localSearch(a,∆)

=def

(a, Int(a)) if ∆ ≤ threshold
localSearch(a+ ∆,∆/2) if Int(a+ ∆) > Int(a) and Int(a+ ∆) ≥ Int(a− ∆)
localSearch(a− ∆,∆/2) if Int(a− ∆) > Int(a) and Int(a− ∆) ≥ Int(a+ ∆)
localSearch(a,∆/2) otherwise

iteratedLocalSearch(a,∆): iterate (a, Int) := localSearch(a,∆) until the changes in Int falls
under a threshold. return Int.

The global search procedure maximizeOverlap(I, J) is described procedurally:

For all combinations mi and nj of middle points of local maxima of I and J :
let ∆ = min(J lS −nj, nj −JfS)/2, call Int = iteratedLocalSearch(nj −mi,∆) and choose the
maximal Int-value.

Repeat this k times with randomly chosen mi and nj and choose again the maximal Int-value.
(k = 5 seemed to be enough.)

return the maximal Int-value.

2.4 Circular Fuzzy Intervals

A typical example for circular fuzzy intervals are angles between 0 and 360 degrees. A notion
like ‘around 360 degrees’ could be represented by a fuzzy distribution 340,0 350,1 10,1 20,0
where 340, 350, 10, and 20 are degrees. This example shows already the difference to ordinary
(linear) fuzzy intervals introduced so far: the x-coordinates need not be in increasing order.

We can reuse the ideas and algorithms for linear fuzzy intervals with a very simple trick:
circular intervals are represented as ordinary intervals where the x-coordinates are normalised in
a certain way such that the x-coordinates are again in increasing order. For the above example,
this means that internally the interval 340,0 350,1 10,1 20,0 is stored as a polygon 340,0 350,1
370,1 380,0. This way all algorithms can exploit that the x-coordinates are in increasing order.

The circularity is taken into account by the constructor functions and the push back method.
They normalise the x-coordinates appropriately.

63

Despite the normalisation, the member method works as expected. Take again the above
example: the intended interval is: 340,0 350,1 10,1 20,0, its internal representation is 340,0
350,1 370,1 380,0. Nevertheless, member(10) and member(370) both yield 1.

2.5 Summary

This report is a detailed description of the FuTI–module. This module is a C++-package
for representing and manipulating fuzzy time intervals. The mathematical background, the
concrete data structures and algorithms, and the interface to the module is described. The
FuTI–module is used in the GeTS language [32]. This language in turn is then used to define
point–interval and interval–interval relations for fuzzy intervals [34].

Appendix A contains the detailed interface description of the FuTI–module.

64

Chapter 3

Periodic Temporal Notions – The
PartLib–Module

65

3.1 Introduction

The basic time units of calendar systems, years, months, weeks, days etc. are the prototypes of
periodic temporal notions. Because time is one of the most important parameters of our life,
the representation of temporal notions, and in particular periodic temporal notions, is necessary
in many computer applications. There have been quite intensive studies of periodic temporal
notions from various points of view. One can distinguish at least three approaches.

First of all, there is the important work of Dershowitz and Reingold [13] who analysed
existing calendar systems and came up with algorithms for converting date information from
one system to another. These algorithms are the basis for the implementation of concrete
calendar systems in computer programs.

On a more abstract level there is all the work about the mathematical representation of
periodic temporal notions as time granularities, or similar kind of mathematical objects. A
good overview is given in the book of Bettini, Jajoda and Wang [5]. This work is particularly
motivated by the need to represent time in temporal databases. A selection of papers about the
abundant work in this area is [3, 27, 21, 38, 22, 26, 15, 4, 16, 6, 20, 7]. Since time granularities
are the most important objects in this area, we introduce them already at this early place in
the paper. A time granularity is usually defined as a mapping of a subset of the integers to sets
of intervals in the time domain, the granules. This mapping must have certain properties in
order to count as time granularity. Another way to explain time granularities is: a granule is a,
possibly non-convex finite subinterval of the time domain. A time granularity is a sequence of
such granules. One can require that this sequence is consecutive, i.e. the rightmost time point
of a granule n comes before the leftmost time point of the granule n+ 1. Sometimes, however,
overlapping granules are also considered [16]. The simplest time granularities are in fact par-
titionings of the time domain. All basic time units, years, months etc., are of this type. The
granules consist of one single interval, and there are no gaps between them. Granules consisting
of one single interval only, but with gaps between them, can, for example, be used to model
‘weekend’. The time spans between the weekends are the gaps between the granules. Granules
consisting of several intervals are useful to model notions like ‘my working day’, where there
is a lunch break which should not count as part of ‘my working day’. Overlapping granules
might be used to model, for example, the union of ‘my working day’ and ‘my wife’s working
day’. The ‘time granularity community’ has developed ways for constructing time granulari-
ties, usually as algebraic operations on previously constructed time granularities. Conversion
operations between different granularities have been defined. Relations between different time
granularities have been developed, and applications, mainly in the area of temporal databases,
have been considered.

An even further abstraction is possible by axiomatising temporal notions in an expressive
enough logic, for example in first order predicate logic. The SOL time theory (SOL for Struc-
tured Temporal Object) of Diana Cuckierman with a first order formalisation of time loops is
a prominent example for this approach [10, 11, 12].

This document presents an alternative to the granularities approach found in the literature.
Periodic temporal notions are presented at a basic level as partitionings of the real numbers,
which is the simplest form of granularities. To compensate for this very weak structure, names
(labels) are introduced for the partitions. The labels carry information about the meaning
of the partitions. Labelled partitionings can be structured in quite different ways. Therefore
PartLib introduces the concept of granularities as a means to structure labelled partitionings.

66

3.1.1 Peculiarities of Real Time Systems

PartLib supports the following phenomena of real time measurement

1. Leap seconds: in order to compensate for the slowing down of earth’ rotation almost every
other year since 1971 the last minute of the year is made up to 10 seconds longer.

2. Daylight Savings Time Schemes: the day, week and month partitioning of a calendar
system can be modified by incorporating the Daylight Savings Time rules of a given
region. To this end the notion of a DLS-region is introduced, which contains the daylight
savings time rules of a particular region. One such DLS-region is West Germany, where
daylight savings time was introduced already in 1916.

3. Complex application specific partitionings: Examples for these are the Easter time, which
depends on the moon phases, tides, sunrises and sunsets, celestic phenomena etc. All
these can be incorporated by providing suitable algorithms which map partition intervals
to partition coordinates and back.

3.2 Basic Concepts of PartLib: An Introduction

This section gives a very brief introduction to the basic ideas and concepts realised in PartLib.
We distinguish six levels:

1. The basic level is the physical reality of time. This involves relativistic effects, quantum
effects at very small time scales, cosmologic phenomena like the big bang or big crunch.etc.

2. Relativistic, quantum and cosmological effects do not play a role for every day temporal
notions. For the purposes of PartLib, it is therefore sufficient to take the time line as
isomorphic to the real numbers. Since the most precise clocks developed so far, atomic
clocks, measure the time in discrete units, it is even sufficient to restrict the representation
of concrete time points to integers1.

3. Most mathematical objects which are used to represent periodic temporal notions are
infinite. Since infinite objects cannot be represented in a computer, we need to develop
a finite representation of these infinite structures. The finite representations can still
be purely mathematical concepts, but they are very close to concrete data structures in
computers.

4. At this level there are the internal data structures for the temporal notions in PartLib.
They are not described in this document, but in the Doxygen generated implementation
documentation.

5. The fifth level, finally, is the persistence and interface level. We need a description of the
temporal notions (usually in XML) which can be stored on a file and which can be turned
into the internal data structures.

1In the standard setting these integers count seconds, and they are internally represented by 64-bit long
integers. If more precise time information is to be processed, and calendar systems with sub-seconds (millisec-
onds, microseconds etc.) are to be used, the system automatically switches to a resolution which is fine enough
to represent these time units. For these cases a version of PartLib is available where the basic time units are
represented by multiple precision integers.

67

6. There is a further level, the (graphical) user interface level, which has not yet been
developed.

3.2.1 Structures along the Time Axis

Periodic temporal notions can have a very simple structure, like, for example, the sequence
of seconds measured by an atomic clock. Most periodic temporal units, however, are much
more complicated and may depend on various influences. Easter time, for example, depends
on the moon cycle. My working hours, as another example, depends on the week and the day
structure. They may have gaps during lunch break and they may be interrupted by private and
public holidays. In order to model all these phenomena, PartLib uses three levels of structures:
Partitionings of the time axis, Labels and granularities.

3.2.1.1 Partitionings of the Time Axis

Many basic time units, seconds, minutes, hours, weeks, months, years etc. just partition the
time axis into non-overlapping adjacent sequences of intervals. From a mathematical point
of view these are just partitionings of the real numbers R. Therefore the basic concept for
representing periodic temporal notions in PartLib are partitionings of the real numbers into
finite partitions. PartLib can model infinite partitionings like the infinite sequence of days, but
also finite partitionings like, say, the sequence of bus stops at a particular bus station during
the year 2007. That means, a partitioning in PartLib is a sequence of finite adjacent non-
overlapping intervals which is either infinite, or which can be preceded or followed, or both, by
an infinite partition] −∞, t] or]t,+∞[.

Definition 3.2.1 (Partitions and Partitionings) A partitioning of the time line in PartLib
is a sequence

. . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .

of half open intervals in R, the partitions.
The sequence is infinite at one or both ends, or it is preceded by an infinite interval]−∞, t[

(the start partition) or/and it is ended by an infinite interval [t,+∞[(the end partition).
The boundaries ti are integer values ti ∈ Time.

Since the partitions in a partitioning do not overlap, one cannot use closed intervals because
the endpoints of the closed intervals would be in two different partitions. Open intervals can
not be used either because then the infima and suprema of the intervals would not be in any
partition at all. Therefore only half open intervals can be used, either of the type [a, b[, or of
the type]a, b]. In most cases there is no preference for either of the two types, but both types
should not be used together. In this document we therefore use the first type [a, b[.

3.2.1.2 Labels for Partitions

Many every-day periodic temporal notions correspond to partitionings whose partitions have
names. The month partitioning, for example, has partitions with names “January”, “February”
etc. The day partitioning has partitions with names “Monday”, “Tuesday” etc. These names are
in general very useful for addressing particular partitions. Therefore PartLib has the possibility
to attach labels (names) to partitions. This can be done in different ways. The simplest way
is to specify a finite list of labels, e.g (Monday, Tuesday, ..., Sunday) and to associate the first

68

label in this list with a particular partition. The labelling is then automatically extrapolated to
the past and the future. There are other ways for attaching labels to partitions, in particular
when new partitionings are defined on top of existing component partitionings. This is the case,
for example, for Intersection Partitionings (Sec. 3.3.8.4) and Tree Partitionings (Sec. 3.3.8.6).

It is also possible to leave particular partitions without a label at all. For example, a labelling
for “working day” based on the hour partitioning could attach the label “working hour” at all
hours between 8 AM and 12 AM and between 1 PM and 6 PM. The remaining hours do not
get a label. As another example, assume a partitioning models a bus timetable for a particular
bus station. Different buses stop there for 2 minutes every hour between, say, minute 10 and
minute 12. These two-minute intervals could be labelled with the bus number. The intervals in
between do not get a label. The bus number, in turn, could be used as an index in a database
of buses.

Label Hierarchies. Many concepts in everyday life can be part of a taxonomy, and the
taxonomy is hierarchically structured. For example, one can subsume the days Monday -
Friday under “working days” and Friday and Saturday under “weekend days”. This is also
possible with PartLib’s labels. They can be part of a tree like hierarchy of labels. Labelled
partitions can be accessed from all levels of the label hierarchy.

Definition 3.2.2 (Labels and Label Hierarchies)

• A Label in PartLib is any object with a name (a string).
∅ stands for the empty label (no label).

• A Label Hierarchy LH in PartLib is a finite forest whose nodes are labels and whose
edges represent the sub-label hierarchy. A label hierarchy does not contain two or more
occurrences of the same label. A Label Hierarchy can also consist of just a set of isolated
labels.

We write l0 ≤LH l1 if either l0 = l1 or the label l0 is below l1 in the label hierarchy LH.

Let LABEL be the set of all labels.

3.2.1.3 granularities

Many periodic temporal notions are not consecutive sequences of time intervals. They are
sequences of intervals, but there may be gaps between them and they may even be non-convex.
An example could be “my working day”, which lasts from 8 AM until 6 PM with a one hour
lunch break at noon. A particular working day is usually taken as a single unit, in this case
an interval with an internal gap. This kind of time interval sequences is called in the literature
granularity. A single interval in such a sequence is a Granule.

Definition 3.2.3 (Granules and Granularities) A granularity is a sequence of non-over-
lapping, possibly non-convex, time intervals, the granules.

A granularity G is partitioning based iff there is a partitioning PG such that all granules in
G consist of partitions in PG.

69

Most approaches for modelling periodic temporal notions found in the literature use gran-
ularities as the basic concept. In contrast to this, PartLib takes the mathematically simpler
partitionings as the basic concept and defines partitioning based granularities on top of them.

Let us take again the “my working day” example to illustrate this construction. Suppose
the hours between 8 AM and 12 AM are labelled “mwh” (morning working hour), the hour
between 12 AM and 1 PM is labelled “lt” (lunch time) and the hours between 1 PM and 6 PM
are labelled with “awh” (afternoon working hour). The labels can be part of a label hierarchy

wd

wh lt

mwh awh

Now it is possible to define various granularities:

1. “my working day”, which comprises all partitions labelled in the “wd” part of the label
hierarchy (this includes lunch time);

2. “my working hours”, which comprises all partitions labelled in the “wh” part of the label
hierarchy (this excludes lunch time);

3. “my lunch time”, which comprises all partitions with label “lt”;

4. “my free time”, which comprises all partitions without a label.

The working day example is used quite frequently in this document.

Example 3.2.4 (Working Day Granularity) A “working day” lasts between 8 AM and 6
PM with a one hour lunch break at noon.

-

8 9 10 11 12 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8
mwh mwh mwh mwh awh awh awh awh awhlt

The hours between 8 AM and 12 AM are labelled “mwh” (morning working hour), the hour
between 12 AM and 1 PM is labelled “lt” (lunch time) and the hours between 1 PM and 6 PM
are labelled with “awh” (afternoon working hour).

The numbers 0 - 8 count the working hours.

3.3 Compact Mathematical Models

3.3.1 Partition Coordinates and Integer Structures

Partitionings and granularities are usually infinite structures, and infinite structures cannot
be represented in a computer with finite memory. Therefore it is necessary to find a finite

70

representation for the infinite partitionings. An important observation here is the fact that
partitionings of R with finite partitions can be enumerated. They are isomorphic to the integers.

Astronomers, for example, have long exploited this by identifying days with their Julian
Day Numbers (JDN). This is the integer number of days that have elapsed since the initial
epoch defined as noon Universal Time, Monday, January 1, 4713 BC in the proleptic Julian
calendar. That noon-to-noon day is counted as Julian day 0.

A finite representation of the (infinite) concept of days can now be given by a first procedure
that takes a JDN n and computes the exact start and end time of the partition that corresponds
to that day, and a second procedure which takes a time point t and returns the JDN of the day
containing t.

Unfortunately it turns out that there are cases where integer coordinates are just too cum-
bersome for identifying particular partitions of a given partitioning. For identifying days, for
example, humans do not use Julian Day Numbers. Instead they count days relative to months,
and months relative to years.

The mapping between partition coordinates and partitions may become much simpler and
more efficient if it does not work with integer coordinates but with other more suitable data
structures. This need not be, but it can be the case when new partitionings are defined on top of
existing partitionings. Examples are the set theoretic composition of partitionings, for example,
the intersection of the Roman catholic public holidays with the protestant public holidays. In
this case one must define coordinates for the combined partitioning on top of the coordinates
of the component partitionings. Since one cannot use the same integer coordinates for all three
partitionings, a more appropriate data structure is necessary for the new partitioning which
combines the information contained in the two component partitionings.

To overcome these problems, PartLib introduces Integer Structures as a representation for
the general concept of isomorphisms with the integers. Different instances of this general
concept can then serve as partition coordinates for particular partitionings.

Definition 3.3.1 (Integer Structure) An Integer Structure IS = (Co, zero, inc, dec) con-
sists of

• a set Co of objects which are isomorphic to the integers, or at least to a connected subset
of the integers,

• a distinguished element zero ∈ Co which corresponds to 0 ∈ N, and

• partial or total injective increment and decrement functions inc and dec of type Co 7→ Co.

An integer structure need only be isomorphic to a connected subset of the integers, for
example [i, j] or [i,+∞[or] −∞, i[for some numbers i and j. The increment and decrement
functions are undefined for the boundary values. This reflects the decision to allow partitionings
with infinite start and end partitions (Def. 3.2.1).

Definition 3.3.2 (Convenient Notations for Integer Structures)
Let IS = (Co, zero, inc, dec) be an integer structure. A convenient notation is:

IS.Co =def Co IS.inc =def inc
IS.zero =def zero IS.dec =def dec

Since integer structures are isomorphic to the integers or parts of them, we can use the usual
operations on integers also on the integer structures.

71

These are in particular: +IS, −IS, <IS, >IS, ≤IS, ≥IS, minIS, maxIS,
The operations may take values from integer structures as well as integers directly. The

main difference to the ordinary integers is that the operations on integer structures may be
partial.

For a value i ∈ Co let I(i) be the corresponding integer under the isomorphism.

The ordinary integers are of course the prototypes of integer structures.

Definition 3.3.3 (Integers as Integer Structures) The structure ISI =def(I, 0,+1,−1) is the
integer structure (Def. 3.3.1) which consists of the ordinary integer values.

There are two partitioning types in PartLib, Intersection Partitionings (Sec. 3.3.8.4) and
Tree Partitionings (Sec. 3.3.8.6), where the integers themselves are not appropriate as coordi-
nates. The easiest way to identify these partitions is by just listing their boundary values. The
increment and decrement functions then need to compute the boundaries of the next/previous
partition. If the partitioning is labelled then the partition coordinates need to contain besides
the boundary values also a label.

Definition 3.3.4 (Partitions as Integer Structures) A Partition Integer Structure

ISP =def (Bounds, zero, inc, dec)

has coordinates c ∈ Bounds with c = (P, lower, upper, l) such that
1. P is a Coordinate Based Partitioning Representation (Def.3.3.6)
2. [lower, upper[is a partition of the partitioning P and
3. l is either a label or l = ∅.

zero is a particular partition.

The inc and dec functions are generated by a variant of the partition coordinate function PaCo
for the partitioning P (Def. 3.3.11) as follows

1. inc((P, lower, upper, l)) =def (P, upper, upper′, l′)
where (P, lower′, upper′, l′) = P.PaCo(upper) and upper 6= +∞

2. dec((P, lower, upper, l)) =def (P, lower′, lower, l′)
where (P, lower′, upper′, l′) = P.PaCo(lower − 1) and lower 6= −∞

3. Bounds =def {zero} ∪ {incn(zero) | n > 0 ∧ incn(zero) is defined}
∪ {decn(zero) | n > 0 ∧ decn(zero) is defined}.

A partitioning that uses Partition Integer Structures (Def. 3.3.4) gets some of the access
functions for partitions for free.

Definition 3.3.5 (Access Functions for Partitions with Partition Integer Structures)
A partitioning P which uses Partition Integer Structures (Def. 3.3.4) as partition coordinates
has the following access functions for a coordinate i =def (P, lower, upper, l):

P.sPa(i) =def lower
P.ePa(i) =def upper
P.Label(i) =def l

72

3.3.2 Compact Representation of Partitionings

Infinite partitionings of the time line are no suitable bases for concrete algorithms operating
on concrete partitionings. Therefore a compact finite representation is introduced. It is still
abstract enough to cover many different partitioning types, and it has a concrete counterpart
in the implementation.

The compact representation consists of an integer structure (Def. 3.3.3) for the partition
coordinates and a function sPa (start of partition) which computes for a given partition co-
ordinate the left boundary of the partition with this coordinate. Concrete partitioning types
(Sec. 3.3.7) can then be realised by specifying concrete integer structures as coordinates and a
concrete sPa function.

The integer structure and the sPa function are a sufficient basis for all kinds of other
functions for partitionings. Some of them are listed in Def. 3.3.11 below. The definitions
given there are default definitions. Their concrete implementation might become much more
efficient for concrete partitioning types if they take into account the concrete information for
the concrete partitioning type.

Definition 3.3.6 (Coordinate Based Partitioning Representations (CBPR)) A Coor-
dinate Based Portioning Representation P = (CO, sPa) consists of

• an integer structure CO (Def. 3.3.1), the partition coordinates,

• a “start of partition” function sPa : CO.Co 7→ Time∞ which maps partition coordinates
to the start time of the partitions,

such that: sPa(i) < sPa(i+Co 1) holds for all coordinates i where CO.inc(i) is defined.

Definition 3.3.7 (Convenient Notations for CBPR) If P = (CO, sPa) is a Coordinate
Based Portioning Representation then let

P.CO =defCO and P.sPa =def sPa

Definition 3.3.8 (Generated Partitioning) A Coordinate Based Portioning Representation
P = (CO, sPa) generates the following partitioning of the time line:
Partitions =def {[sPa(zero+CO n), sPa(zero+CO (n+ 1))[| n ≥ 0,+CO is defined} ∪

{[sPa(zero−CO (n− 2)), sPa(zero−CO (n− 1))[| n ≥ 0,−CO is defined

Proposition 3.3.9 (The Partitioning Generator is Well Defined)
The intervals in Def. 3.3.8 for the CBPR P = (CO, sPa) yields a partitioning of the time line.

Proof:

1. The intervals [sPa(zero+CO n), sPa(zero+CO (n+ 1))[and
[sPa(zero−CO (n−2)), sPa(zero−CO (n−1))[are non-empty semi-open intervals because
of the condition sPa(i) < sPa(CO.inc(i)) in Def. 3.3.6.

2. Subsequent intervals do not overlap because sPa(zero+CO (n+ 1))
and sPa(zero −CO (n − 1)) respectively, is the end of one interval and the start of the
next interval.

73

3. By the same reason, subsequent intervals do not have gaps between them.

Remark 3.3.10 (CBPR = Partitioning) In the sequel we shall not distinguish any more
between Coordinate Based Portioning Representations and their generated Partitionings.

Definition 3.3.11 (Derived Functions for Partitionings) Let P = (CO, sPa) be a Co-
ordinate Based Partitioning Representation.
For a time point t and a partition coordinate i let

• P.PaCo : Time 7→ CO.Co : with

P.PaCo(t) =defmaxCO{i | sPa(i) ≤ t}

be the partition coordinate function which maps a time point t to the coordinate of the
partition containing t. (This definition is not directly implementable. Definitions which
yield efficient implementations are given for concrete partitioning types.)

• P.ePa : CO.Co 7→ Time∞ with

P.ePa(i) =def

{
P.sPa(i+CO 1) if i+CO 1 is defined
+∞ otherwise

be the end of the partition with coordinate i;

• P.sPa : Time 7→ Time∞ with

P.sPa(t) =defP.sPa(P.PaCo(t))

be the start of the partition containing the time point t;

• P.ePa : Time 7→ Time∞ with

P.ePa(t) =def ePa(P.PaCo(t))

be the end of the partition containing the time point

• P.lengthT : Time 7→ Time∞ with

P.lengthT (t) =defP.ePa(t) − P.sPa(t)

be the length of the partition containing the time point t;

• P.lengthT : CO.Co 7→ Time∞ with

P.lengthT (i) =defP.ePa(i) − P.sPa(i)

be the length of the partition with coordinate i.

74

Notice that the functions are overloaded (see Sec. 1.6). We use the same function names,
regardless whether the arguments are time points or partition coordinates. The type of the
argument determines the meaning of the function. The PartLib implementation uses different
types for time points and partition coordinates. Therefore this is not a problem

The length functions may in fact return the infinity if applied to infinite start or end par-
titions. PartLib has provisions for dealing with this special case. The next example illustrates
the functions.

Example 3.3.12 (for the auxiliary functions)
For the following partitioning P

] −∞,−100[[−100, 0[[0, 100[[100, 101[[101, 500[[500,+∞[
−2 −1 0 1 2 3

we have:
P.PaCo(−200) = −2 P.PaCo(200) = 2
P.sPa(−200) = −∞ P.sPa(200) = 101
P.ePa(200) = 500 P.sPa(2) = 101
P.ePa(2) = 500 P.lengthT (200) = 399
P.lengthT (2) = 399 P.lengthT (−200) = ∞
P.lengthT (−2) = ∞

3.3.2.1 Length of Intervals and Time Shifts in Terms of Partitions

It is very common to measure the length of intervals or the distance between time points in
terms of time units. Examples are ‘The train A arrives in the station 5 minutes before the train
B leaves it’. ‘Tomorrow I go on a adventure trip and will be back in 3 months time’.

A very useful function is therefore P.lengthP (t1, t2), which measures the length of the
distance between t1 and t2 in terms of partitions of the partitioning P . month.lengthP (t1, t2),
for example, measures the length of [t1, t2[in months. Since partitions may have different
lengths, this is a nontrivial operation.

The idea for the method can be illustrated with the following picture

-??

� -� -

t2t1

3 4 5 6 72

f2f1

The distance between t1 and t2 is the sum of the relative length of f1, measured as a fraction
of the length of partition 3, plus the relative length of f2, measured as a fraction of the length
of partition 6, plus the number of partitions in between.

Definition 3.3.13 (Length in Partitions) Let P = (CO, sPa) be a partitioning.
For two time points t0 and t1 we define a function lengthP : Time× Time 7→ R.
If t0 ≤ t1 then

75

P.lengthP (t0, t1) =def

t1 − t0
P.lengthT (t0)

if P.PaCo(t0) = P.PaCo(t1)

I(P.PaCo(t1) −Co P.PaCo(t0)) − 1 +
P.ePa(t0) − t0
P.lengthT (t0)

+
t1 − P.sPa(t1)

P.lengthT (t1)
otherwise

If t1 < t0 then P.lengthP (t0, t1) =def −P.lengthP (t1, t0).

Notice that P.lengthP (t0, t1) = 0 if t0 and t1 lie in an infinite partition.
P.lengthP (t1, t2) is continuous. That means if t1 is kept fixed and t2 is moved, or the other

way round, then P.lengthP (t1, t2) makes no jumps. It is, however, not differentiable at the
points where t2 crosses the boundaries of neighbouring partitions with different length.

P.lengthP (t1, t2) can be used to measure the absolute length of the interval [t1, t2[if P is
the partitioning for seconds or smaller time units. If P is the partitioning for minutes we can
get the effect that an interval of 60 seconds length is smaller than one minute. This is the case
for those minutes which contain leap seconds. Similar things happen for the coarser time units.
We may get day.lengthP (t1, t2) < 1 even if hour.lengthP (t1, t2) = 24. This happens when
daylight savings time is disabled just during the interval [t1, t2[, and the day is 25 hours long.

Partition Oriented Shift Function: Closely related to the length function is the partition
oriented shift function P.shiftP (t,m) for partitionings. The shift function moves a time point t
by m partitions forward (or backwards if m < 0) such that P.lengthP (t, P.shiftP (t,m)) = m.

Definition 3.3.14 (Partition Oriented Shift Function) Let P = (CO, sPa) be a parti-
tioning. We define a partition oriented time shift function P.shiftP (t,m) : Time× R 7→ Time:
Case m ≥ 0:

Let k =def P.ePa(t) − t

P.lengthT (t)
∈ R. k is the relative distance between t and the end of the partition

containing t.

P.shiftP (t,m) =def

t+ ⌊m · P.lengthT (t)⌋ if m ≤ k (Def. 3.3.11)
sPa(i) + ⌊(m′ − ⌊m′⌋) · P.lengthT (i)⌋ otherwise

where m′ =defm− k
and i =defP.PaCo(t) +CO (⌊m′⌋ + 1)

Case m < 0:

Let k =def P.sPa(t) − t

P.lengthT (t)
∈ R (k < 0).

P.shiftP (t,m) =def

t+ ⌊m · P.lengthT (t)⌋ if k ≤ m
P.ePa(i) + ⌊(m′ − ⌊m′⌋) · P.lengthT (i)⌋ otherwise

where m′ =defm− k
and i =defP.PaCo(t) −CO (⌊m′⌋ + 1)

Notice that the rounding is necessary because m can be an arbitrary real number, but the time
points in Time are integers.

The shift function works for fractional shift parameters as well, but the resulting time point
may get rounded to the next integer value of the integer data type which is used for the reference
time. Therefore the equation lengthP (t, shiftP (t,m)) = m holds in fact only approximatively.

76

Proposition 3.3.15 For the length function (Def. 3.3.13) and the partition oriented shift
function (Def. 3.3.14) we have, up to rounding errors: P.lengthP (t, P.shiftP (t,m)) = m for
every time point t and every real number m.

Proof: Case m ≥ 0:
Subcase m ≤ k:

⇒ m ≤ P.ePa(t)−t)
P.lengthT (t) Def. of k

⇒ m · P.lengthT (t) ≤ P.ePa(t) − t
⇒ t+m · P.lengthT (t) ≤ P.ePa(t)
⇒ PaCo(t) = PaCo(P.shiftP (t)) Def. of shiftP

⇒ P.lengthP (t, P.shiftP (t)) = P.lengthP (t, t+m · P.lengthT (t)) = t+m·P.lengthT (t)−t
P.lengthT (t) = m

Subcase m > k: Let t′ =defP.shift(t,m)
⇒ i > 1
⇒ P.PaCo(t) < P.PaCo(t′)
⇒ P.PaCo(i) = PaCo(P.sPa(i) + ⌊m′ −m⌋ · P.lengthT (i)) since ⌊m′ −m⌋ < 1
⇒ P.sPa(i) = P.sPa(t′)

⇒ P.lengthP (t, t′) = I(P.PaCo(t′)
︸ ︷︷ ︸

i

−CO P.PaCo(t))
︸ ︷︷ ︸

i−⌊m−k⌋−1

−1

︸ ︷︷ ︸

⌊m−k⌋

+k +
t′ − P.sPa(t′)

P.lengthP (t′)
︸ ︷︷ ︸

m−k−⌊m−k⌋

= m

because t′−P.sPa(t′)
P.lengthP (t′) = P.sPa(i)+(m′−⌊m′⌋)·P.lengthT (i)−P.sPa(t′)

P.lengthT (t′) = m′ − ⌊m′⌋ = m− k − ⌊m− k⌋

The case m < 0 is analogous.

Example 3.3.16 (for the length and shift functions) For the following partitioning P

... [−100, 0[[0, 100[[100, 101[[101, 500[...

... −1 0 1 2 ...

we have:
P.lengthP (0, 100) = 1
P.lengthP (0, 50) = 0.5
P.lengthP (50, 101) = 1.5
P.lengthP (50, 200) = 1.7481203

P.shiftP (0, 1) = 100
P.shiftP (0, 2) = 101
P.shiftP (50, 0.5) = 100
P.shiftP (100,−0.5) = 50
P.shiftP (50, 1.75) = 200 (rounded)
P.shiftP (200,−1.75) = 50 (rounded)

Unfortunately the shiftP function yields in many cases results which are not what is intu-
itively expected. The following example illustrates the critical phenomenon: The month April
has 30 days. Suppose the time point t is exactly in the middle of April (15th of April, midnight).
If t is shifted with the shiftP function by exactly 1 month, we do not end up at midnight in
the middle of May, as one might expect. Since May has 31 days, the exact middle of May is
at noon, the 15th of May. Therefore the shiftP function moves in this case a time point from
midnight to a time point at noon.

This phenomenon occurs always when the partitions have different lengths. A shift function,
however, which can only take into account a single partitioning, has not much chance to do

77

it better. If we expect to shift a time point t by one month from midnight, 15th of April to
midnight, 15 of May, we take into account that months are decomposed into days. The shift
is computed by realising that the time point t is 15 days away from the start of April. A shift
of one month can then be realised by moving to a time point which is 15 days away from the
start of May. PartLib provides a shift function which is based on a context of granularities and
which can do the shift in this way (see Def. 3.3.36).

3.3.3 Labels Attached to Partitions

Labels can be attached to partitions in quite different ways. Therefore PartLib has an abstract
interface for accessing the label information associated with partitions. The concrete algorithms
depend on the way the labels are attached to the partitions. We start with the abstract interface
and then describe the concrete methods.

Definition 3.3.17 (Label Attachments) Given a partitioning P = (CO, sPa), a label at-
tachment is a, possibly partial, mapping Label : CO.Co 7→ LABEL from partition coordinates to
labels (Def. 3.2.2).

Furthermore, for a time point t let Label(t) =defLabel(P.PaCo(t)).

Partitions have at most one label, but not all partitions need to have labels, and different
partitions may have the same label. Partitions without label are called gap partitions.

Definition 3.3.18 (Labelled Partitionings) A Labelled Partitioning Representation (or sim-
ply “labelled partitioning”) is a tuple P = (CO, sPa, Label) where (CO, sPa) is a Coordinate
Based Portioning Representation (Def. 3.3.6) and Label is a labelling attachment (Def. 3.3.17).

Let P.Label =defLabel be the associated label attachment.

There are a number of functions operating on labelled partitionings or granularities which
require to locate the coordinate of a partition with a particular label. The search for such a
coordinate may not terminate if the partitioning has no such label at all. Therefore it is impor-
tant to have a function P.hasLabel(l, LH) which can decide whether the labelled partitioning
has such a label.

Definition 3.3.19 (A Label Existence Check)
A labelled Partitioning P = (CO, sPa, Label) has a decidable “label existence check” for a label
hierarchy LH if the functions

P.hasLabel(l, LH) =def ∃i ∈ CO.Co Label(i) ≤LH l and
P.hasNoLabel(l, LH) =def ¬∃i ∈ CO.Co Label(i) ≤LH l and
P.hasGap() =def ∃i ∈ CO.Co Label(i) = ∅

are decidable for every label l and label hierarchy LH.

A labelled partitioning which is based on a finite labelling (Def. 3.3.21 below) has always a
decidable label existence check. The functions need only check the finitely many labels in the
finite labelling.

The functions in Def. 3.3.20 below can be used to locate partitions with given labels. They
are partial functions if the given label is not one of the labels in the partitioning. Therefore they
should be used only in combination with the hasLabel and hasNoLabel and hasGap functions
(Def. 3.3.19).

78

Definition 3.3.20 (Navigators for Labellings)
Let P = (CO, sPa, Label) be a labelled partitioning, i ∈ CO.Co a partition coordinate, l a label
and LH a label hierarchy.

P.nextLabelled(i, l, LH, true) =def minCO{j ≥ i | P.Label(j) ≤LH l}
P.nextLabelled(i, l, LH, false) =def maxCO{j ≤ i | P.Label(j) ≤LH l}

nextLabelled moves forward (true case) or backwards (false case) to the coordinate of the
next/previous partition whose label is below l in the label hierarchy. It is undefined if P has no
such label.

P.nextLabelled(i, true) =def minCO{j ≥ i | P.Label(j) 6= ∅}
P.nextLabelled(i, false) =def maxCO{j ≤ i | P.Label(j) 6= ∅}

nextLabelled without a label parameter moves forward (true case) or backwards (false case) to
the coordinate of the next/previous partition with a non-empty label. It is undefined if P has
no empty label.

P.nextDifferernt(i, l, LH, true) =def minCO{j ≥ i | P.Label(j) 6≤LH l}
P.nextDifferernt(i, l, LH, false) =def maxCO{j ≤ i | P.Label(j) 6≤LH l}

nextDifferent moves forward (true case) or backwards (false case) to the coordinate of the
next/previous partition whose label is not below l in the label hierarchy. It is undefined if P has
only labels below or equal to l in the hierarchy.

P.nextGap(i, true) =def minCO{j ≥ i | P.Label(j) = ∅}
P.nextGap(i, false) =def maxCO{j ≤ i | P.Label(j) = ∅}

nextGap moves forward (true case) or backwards (false case) to the coordinate of the next/previous
gap partition. It is undefined if P has no gap partition.

3.3.3.1 Finite Labellings

For many periodic temporal notions there are finitely many standard names for the partitions,
which are repeated in regular intervals. For example, days are named ‘Monday’, ‘Tuesday’ etc.,
and repeated every 7th day. Months are named ‘January’, ‘February’ etc., and repeated every
12th month. Seasons are named ‘winter’, ‘spring’ etc. and repeated every 4th season. In these
cases it is sufficient to list the finitely many labels, and to attach the first one in the list to the
partition with coordinate 0. The labels for the other partitions can then be extrapolated to the
past and the future.

Definition 3.3.21 (Labellings) A Labelling L in PartLib is a finite sequence of labels l0, . . .,
ln−1. There can be multiple occurrences of the same label in the labelling and some of the labels
li may be the empty label.

A labelling L = l0, . . . , ln−1 is turned into a labelling attachment for a partitioning P and
a coordinate i: Label(i) =def li%n.

Example 3.3.22 (The Labelling of Days) The origin of the reference time is again Jan-
uary 1st 1970. This was a Thursday. Therefore we choose as labelling for the day partitioning

L =def Th, Fr, Sa, Su,Mo, Tu,We.

79

The following correspondences are obtained:

ref.time : . . . [−86400, 0[[0, 86400[[86400, 172800[. . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, Day.Label(−1) = We, i.e. December 31 1969 was a Wednesday.

As we have seen in Sec. 3.2.1.3, partitionings with finite labellings are a very convenient basis
for specifying various kinds of granularities. There is, however, a conceptual difficulty which
needs special consideration. The difficulty can be illustrated with the working day example
(Ex. 3.2.4).

-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0

whwhwhwhwhwhwhwhwh

A specification of the “my working day” granule could be: partition = hour, label = wh with
the implicit assumption that a granule consists of all wh-labelled partitions, possibly interrupted
by gap partitions. The interval [8,18], with a gap at 12 is such a granule, but also, for example,
[13,11 next day], which was not intended. To exclude such cases, we need a further assumption:
“granules based on labelled partitionings with finite labellings do not exceed the boundaries
of the labelling blocks”. This condition rules out the interval [13,11 next day] in the above
example.

The functions listed in the next definition (Def. 3.3.23) support the definition of “Labelled
Granularities” (Def. 3.3.35) which rely on partitionings with finite labellings. LG stands for
“Labelled Granularity”. A labelled granule in the sense of Def. 3.3.23 with label l and label
hierarchy LH is a maximally connected block of partitions which are either gap partitions or
they are labelled with a label l′ ≤LH l, and which do not exceed labelling blocks. A labelling
block for a labelling (l0, . . . , ln−1) is a block of partitions with coordinates k, . . . , k = n for some
k.

The functions in (Def. 3.3.23) are partial if no suitable granules exist. This is, however, easy
to check because there are only the finitely many labels and coordinates of a labelling block to
check.

Definition 3.3.23 (Navigators with Finite Labellings) Let P = (CO, sPa, Label) be a
labelled partitioning, based on a finite labelling (l0, . . . , ln−1) (Def. 3.3.21), LH a label hierarchy,
i ∈ CO.Co, a partition coordinate and l a label.
P.withinLG(i, l, LH) =defP.Label(i) ≤LH l ∨ (P.Label(i) = ∅ ∧

P.Label(s) ≤LH l ∧
P.Label(e) ≤LH l ∧
∀k s <CO k ≤CO e : k % n 6= 0)

where s =defP.nextLabelled(i, false) and e =defP.nextLabelled(i, true)

checks whether the partition with coordinate i is within a labelled granule.

P.startLG(i, l, LH)=def

minCO{j ≤CO i | P.Label(j) ≤LH l ∧ ∀k j <CO k ≤CO i :
(P.Label(k) = ∅ ∨ P.Label(k) ≤LH l) ∧
k % n 6= 0} if P.withinLG(i, l)

P.nextLabelled(i, l, LH, true) otherwise

80

computes the start coordinate of the next labelled granule. If i is within a granule then the start
coordinate of this granule is returned. If i is not within a granule, then the start coordinate of
the next (future) granule after i is computed. The function is partial if no such granule exists.

P.endLG(i, l, LH)=def

maxCO{j ≥CO i | P.Label(j) ≤LH l ∧ ∀k i ≤CO k <CO j :
(P.Label(k) = ∅ ∨ P.Label(k) ≤LH l) ∧
k % n 6= 0} if P.withinLG(i, l, LH)

P.nextLabelled(i, l, LH, false) otherwise

computes the end coordinate of the next labelled granule. If i is within a granule then the end
coordinate of this granule is returned. If i is not within a granule, then the end coordinate of the
previous (past) granule before i is computed. The function is partial if no such granule exists.

P.nextLG(i, l, LH, foward) =def

(P.startLG(i, l, LH), P.endLG(i, l, LH))
if P.withinLG(i, l, LH)

(P.startLG(i, l, LH), P.endLG(P.startLG(i, l, LH), l, LH))
if ¬P.withinLG(i, l, LH) ∧ forward

(P.startLG(P.endLG(i, l, LH), l), P.endLG(i, l, LH))
if ¬P.withinLG(i, l, LH) ∧ ¬forward

computes start and end coordinates of the next labelled granule. If i is within a granule then the
coordinates of this granule are returned. If i is not within a granule, then the end coordinate of
the next (forward = true) or previous (forward = false) granule is computed. The function
is partial if no such granule exists.

The Labelling class in PartLib has a sophisticated implementation of labellings where a
lot of information is precomputed when a new labelling is defined. This way navigation along
labelling sequences is very efficient and requires in many cases only a single table lookup.

3.3.4 Partitioning Based Granularity Representations

Granularities in PartLib represent sequences of non-overlapping granules, and granules are,
possibly non-convex, time intervals. They are modelled at an abstract level which determines
the interface to its general attributes and methods, and at a concrete level, which provides
different ways to specify different kinds of granularities.

The basis of all granularities in PartLib are partitionings. That means, a particular granu-
larity G is always associated with a partitioning PG such that a granule g ∈ G consists of one
or more partitions from PG. Thus, granules need not have their own coordinates to identify
them, but they can be identified by the coordinates of the component partitions. The different
kinds of granularities at the concrete level are distinguished by the different ways, partitions
from PG are comprised into granules.

Definition 3.3.24 (Partitioning Based Granularity Representations (PBGR))
A Partitioning Based Granularity Representations is a tuple

(P, enclosingGranule, withinGranule, firstGranule)

where

• P = (CO, sPa, Label) is the underlying labelled partitioning (Def. 3.3.18)

81

• enclosingGranule : CO.Co 7→ CO.Co × CO.Co is a partial function for computing the
boundaries of the granule around a partition coordinate. Thus, enclosingGranule(i) =
(s, e) where s and e are the coordinates of the start and end partition of the granule g
around i, if there is one.

• withinGranule : CO.Co 7→ bool is a function which returns true if i is within a granule
interval (and not in an internal gap), otherwise it returns false.

• firstGranule : Time 7→ CO.Co × CO.Co is a partial function for computing the bound-
aries of the first granule after a time point t.

The two functions enclosingGranule and withinGranule together specify granules. enclosing-
Granule computes the boundary coordinates and withinGranule determines the internal (and
external) gaps. Def. 3.3.35 contains a number of concrete definitions for these two functions.

The third function, firstGranule, has a very particular purpose. It determines what counts
as the first granule after a given time point. An example where this is important is the first
week within a year. If t is new year’s eve then the first week in the new year is not necessarily
the week around t, but the first week whose bigger part lies inside the new year. If new year’s
day is a Friday, Saturday or Sunday then this week is still taken to be in the last year. The
firstGranule function therefore becomes relevant when we want to count granules relative to
some start time. The specification of a single firstGranule function takes this phenomenon
into account in a very general way. There could be cases where the first granule after a time
point t is computed differently depending on the meaning of t. For example, somebody might
determine the first week within a year differently to the first week within a month. If such
cases really come up in particular applications, the firstGranule function needs to get more
parameters which allows it to distinguish the meaning of the time point parameter.

Definition 3.3.25 (Generated Granularities) A Partitioning Based Granularity Represen-
tations G = (P, nextGranule, withinGranule, firstGranule) generates the following granular-
ity:

{
⋃

s ≤ j ≤ e
withinGranule(j) = true

[P.sPa(j), P.ePa(j)[| (s, e) = P.enclosingGranule(i), i ∈ CO.Co}

The granularity construction in (Def. 3.2.3) loops over all partition coordinates i for which
enclosingGranule(i) is defined to get the coordinates of the boundary partitions of the granule
around i. All partitions between the boundary partitions, for which withinGranule(j) yields
true are then comprised into one granule.

Proposition 3.3.26 The generated granularity in Def. 3.3.25 is really a granularity.

Proof: This holds:

1. by the very definition of a granule (Def. 3.2.3) and because enclosingGranule computes
the coordinates of the first and last partition of a granule and

2. the construction in Def. 3.3.25 uses the withinGranule function to exclude internal gaps.

82

All granule functions which take partition coordinates as parameters can easily be extended
to take time points as parameters: the PaCo function of the underlying partitioning turns the
time point into the corresponding partition coordinate, and then the original granule function
can be called.

Definition 3.3.27 (Granule Functions with Time Parameters) For a Partitioning Based
Granularity Representations G = (P, enclosingGranule, withinGranule, firstGranule) (Def.
3.3.24) and any n-place function G.F of type

G.F : X0 × . . .×Xk × CO.Co ×Xk+2 × . . .×Xn−1 7→ Y0 × . . .× Ym

we define for parameters xi of type Xi and time point t:

G.F (x0, . . . , xk, t, xk+2, . . . , xn−1) =defG.F (x0, . . . , xk, P.PaCo(t), xk+2 , . . . , xn−1)

Sometimes it is useful to check whether a partition coordinate i lies between the boundaries
of a granule, regardless whether it is an internal gap partition or not.

Definition 3.3.28 (within Granule Boundaries) For a Partitioning Based Granularity Rep-
resentations G = (P, enclosingGranule, withinGranule, firstGranule) and a partition coordi-
nate i we define

withinGrBoundaries(i) =def

{
s ≤CO i ≤CO e if(s, e) =def enclosingGranule(i) is defined
false otherwise

An important feature of the concept of granularities is the possibility to move from a given
granule forward or backward to the next or previous granule. In Def. 3.3.29 below we therefore
define a nextGranule function. nextGranule(i, forward) computes either the granule bound-
aries of the granule around a partition coordinate i, if there is one, or the next/previous granule
after/before i, depending on the parameter forward.

The second version, nextGranule(i,m, forward) yields the m’th next/previous granule. If
i is within a granule, them m = 0 yields this granule. m = 1 yields the next/previous granule,
depending on the value of forward. If i is outside a granule, m = 0 yields the next/previous
granule after/before i, m = 1 jumps two granules further etc.

-� - � - � -� -?

nextGranule(i,1,false)

= nextGranule(i,-1,true)

nextGranule(i,0,false) nextGranule(i,0,true) nextGranule(i,1,true)

i

83

Definition 3.3.29 (nextGranule) For a Partitioning Based Granularity Representations G =
(P, enclosingGranule, withinGranule, firstGranule), a partition coordinate i and a Boolean
parameter forward we define a partial function nextGranule : CO.Co×Bool 7→ CO.Co×CO:

G.nextGranule(i, forward) =def

(s, e) = G.enclosingGranule(i) if this is defined
minj{(s, e) | j > i ∧ (s, e) = G.enclosingGranule(j) is defined | j}

if forward
maxj{(s, e) | j < i ∧ (s, e) = G.enclosingGranule(j) is defined | j}

if ¬forward

The nthGranule function (Def. 3.3.30 below) below is a generalisation of the nextGranule
function (Def. 3.3.29) in two ways. First of all, it can move n granules forward or backwards
where n is an arbitrary integer. Secondly, it can modify the counting of the granules by a second
granularity. The purpose of this feature should become clear when we look at the working day
example again (Ex. 3.2.4).

-

8 9 10 11 12 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8

Two granularities are involved here, the hour granularityGhour and the working day granularity
Gwd. If it is 8 AM and we want to locate, say, the 5th hour within the working day, there are
two possibilities.

1. The lunch break counts as well as an hour within the working day. The 5th hour within
the working day is then between 1 PM and 2 PM. That means, the structure of the Gwd

is irrelevant.

2. The lunch break does not count. The 5th hour is then between 2 PM and 3 PM.

The first possibility is realised by calling the nthGranule function:

Ghour.nthGranule(i, n, forward, ∅),

i.e. the second granularity is undefined. The second possibility is realised by the call

Ghour.nthGranule(i, n, forward,Gwd).

The Boolean parameter forward is relevant only if n = 0 and the partition coordinate i is
within an (internal or external) gap of the G or G′-granularities. forward = true causes to
search forward to find the first partition coordinate which is within G-granule and not within
a G′-gap. forward = false causes a backwards search.

Definition 3.3.30 (nthGranule) For Partitioning Based Granularity Representations G and
G′, a partition coordinate i, an integer n and a Boolean parameter forward we define a partial
function nthGranule : CO.Co × I ×Bool ×Granularities 7→ CO.Co × CO.Co

84

G.nthGranule(i, n, forward,G′)=def

G.nextGranule(i′, forward) if n = 0
G.nthGranule(i,−n,¬forward,G′) if ¬forward
G.nthGranule(e+G.CO 1, n− 1, true,G′) if n > 0

where (s, e) = G.nextGranule(i, true)
G.nthGranule(s−G.CO 1, n+ 1, false,G′) if n < 0

where (s, e) = G.nextGranule(i, false)

where i′ is defined as follows if G′ 6= ∅:
i′=def

{
min{j ≥G.CO i | G′.withinGranule(P.sPa(j)) ∧G.withinGrBoundaries(j)} if forward
max{j ≤G.CO i | G′.withinGranule(P.sPa(j)) ∧G.withinGrBoundaries(j)} otherwise

and i′ is defined as follows if G′ = ∅:
i′ =def

{
min{j ≥G.CO i | G.withinGrBoundaries(j)} if forward
max{j ≤G.CO i | G.withinGrBoundaries(j)} otherwise

furthermore, P =defG.partitioning

Let G.nthGranuleI(i, n, forward,G′) =def [P.sPa(s), P.ePa(e)[
where (s, e) =defG.nthGranule(i, n, forward,G′)
(nthGranuleI computes the granule boundaries as time interval.)

Let G.nthGranule(i, n, forward) =defG.nthGranule(i, n, forward, ∅) and
G.nthGranuleI(i, n, forward) =defG.nthGranuleI(i, n, forward, ∅).

Since the granules in PartLib are based on partitionings, we can measure the length of a
granule either in terms of the basic time units or in terms of the number of partitions which make
up a granule. The function lengthT (i) in Def. 3.3.31 below measures the length of a granule
around a partition coordinate i in terms of the basic time units. The function lengthP (i)
measures the length of a granule around a partition coordinate i in terms of the number of
partitions. Both functions do not measure internal gaps and they return 0 if i lies outside a
granule.

Definition 3.3.31 (Length of Granules) For a Partitioning Based Granularity Representa-
tions G = (P, enclosingGranule, withinGranule, firstGranule), we define functions lengthT :
CO.Co 7→ Time and lengthP : CO.Co 7→ N. Let i be a partition coordinate.

G.lengthT (i) =def

0 if ¬withinGrBoundaries(i)
Σ P.lengthT (j)

s ≤CO j ≤CO e

withinGranule(j)

otherwise

where (s, e) =def enclosingGranule(i)

computes the length of a granule (without internal gaps) in terms of the basic time units.

G.lengthP (i) =def

0 if ¬withinGrBoundaries(i)
Σ 1

s ≤CO j ≤CO e

withinGranule(j)

otherwise

where (s, e) =def enclosingGranule(i)

computes the length of a granule (without internal gaps) in terms of the number of partitions.

85

The three length functions in Def. 3.3.32 below measure distances between time points in
terms of 1. the basic time units, 2. a, possibly fractional, number of partitions, and 3. a,
possibly fractional, number of granules. The difference to the corresponding length functions
for partitionings (Def. 3.3.13) is that internal and external gaps are ignored.

Definition 3.3.32 (Length Functions for Granules) We define three functions which mea-
sure the distance between two time points while ignoring the gaps between and inside granules.

1. G.lengthT : Time× Time 7→ Time measures distances in terms of time length

2. G.lengthP : Time × Time 7→ R measures distances in terms of numbers of partitions
(maybe fractional)

3. G.lengthG : Time×Time 7→ R measures distances in terms of numbers of granules (maybe
fractional)

For a Partitioning Based Granularity Representations

G = (P, enclosingGranule, withinGranule, firstGranule)

and two time points t0 and t1 let
(s0, e0) =def nextGranule(t0, true)
(s1, e1) =def nextGranule(t1, false).

All three functions below yield 0 if nextGranule(t0, true) or nextGranule(t1, false) is unde-
fined. Suppose now that s0, e0, s1 and e1 are defined.

If t0 ≤ t1 we define

G.lengthT (t0, t1) =def

Σ
s0 ≤CO i ≤CO e1

G.withinGranule(i)

0 if P.ePa(i) ≤ t0 ∨ t1 ≤ P.sPa(i)
P.ePa(i) − t0 if P.sPa(i) ≤ t0 < P.ePa(i)
t1 − P.sPa(i) if P.sPa(i) ≤ t1 < P.ePa(i)
P.lengthT (i) otherwise

If t0 > t1 we define G.lengthT (t0, t1) =def −G.lengthT (t1, t0).

If t0 ≤ t1 we define

G.lengthP (t0, t1) =def

Σ
s0 ≤CO i ≤CO e1

G.withinGranule(i)

0 if P.ePa(i) ≤ t0 ∨ t1 ≤ P.sPa(i)
P.ePa(i)−t0
P.lengthT (i) if P.sPa(i) ≤ t0 < P.ePa(i)

t1−P.sPa(i)
P.lengthT (i) if P.sPa(i) ≤ t1 < P.ePa(i)

1 otherwise
If t0 > t1 we define G.lengthP (t0, t1) =def −G.lengthP (t1, t0).

If t0 ≤ t1 and initially (s, e) =def (s0, e0) we define

G.lengthG(t0, t1) =def

Σ
(s, e) =def

G.nextGranule(e +CO 1, true)

e ≤CO e1

G.lengthT (t0,P.ePa(e))
G.lengthT (s) if P.sPa(s) ≤ t0 < P.ePa(e)

G.lengthT (P.sPa(s),t)
G.lengthT (s) if P.sPa(s) ≤ t1 < P.ePa(e)

1 otherwise

If t0 > t1 we define G.lengthG(t0, t1) =def −G.lengthG(t1, t0).

86

The function granulesWithLabels (Def. 3.3.33 below) computes for a time interval [t0, t1[
or a partition coordinate interval [a, b[a list of relative granule positions of granules between t0
(inclusive) and t1 (exclusive) or between a (inclusive) and b (exclusive) respectively which have
at least one partition whose label is in a given list L of labels, or which is a sub-label of some
label in this list. The function is used in Def. 3.3.79 and Def. 3.3.80.

Definition 3.3.33 (granulesWithLabels) For two granularities G and G′, a time interval
[t0, t1[a set L of labels and a label hierarchy LH we define

G.granulesWithLabel(t0, t1, L, LH,G
′) =def

{i ∈ N | (s, e) = G.nthGranule(s0, i, true,G
′) ∧ e <G.CO s1 ∧

∃j s ≤G.CO j ≤G.CO e ∧ P.Label(j) ≤LH l for some l ∈ L}
where
1. (s0, e0) =defG.firstGranule(t0)
2. (s1, e1) =defG.firstGranule(t1)
3. P =defG.partitioning.

For two G-partition coordinates a, b with a ≤G.CO b we define

G.granulesWithLabel(a, b, L, LH,G′) =def

{i ∈ N | (s, e) = G.nthGranule(a, i, true,G′) ∧ e <G.CO b ∧
∃j s ≤G.CO j ≤G.CO e ∧ P.Label(j) ≤LH l for some l ∈ L}

A number of useful auxiliary functions are listed in the following definition.

Definition 3.3.34 (Further Auxiliary Functions) For a granularity G and a time point t
we define

G.withinInternalGap(t) =def G.withinGrBoundaries(t) ∧ ¬G.withinGranule(t)
G.withinExternalGap(t) =def ¬G.withinGrBoundaries(t)

Let G.internalGapGranularity() be the granularity whose granules consist of G’s internal gap
partitions.
Let G.externalGapGranularity() be the granularity whose granules consist of G’s external gap
partitions.
Both functions are undefined if there are no such gaps.

PartLib distinguishes different types of granularities according to the different ways they can
be constructed from labelled partitionings.

Partitioning Granularities just identify partitions and granules. Thus, all partitionings are
automatically associated with a granularity. Typical examples, are years, months, weeks,
days, hours, minutes, seconds.

Label Partition Granularities for a label l in a label hierarchy LH choose individual par-
titions labelled with l or a sub-label of l in LH . As an example, consider the ‘day’
partitioning with labels Mo, Tu, We, Th, Fr, Sa, Su. A Label Partition granularity with
label We in a flat label hierarchy selects all Wednesdays as granules. The other days are
the gaps between the granules.

87

If the label hierarchy LH classifies the labels Su and So as ‘weekend day’, we could define
a Label Partition Granularity with label ‘weekend day’. This way, we get two consecutive
granules, the Saturday and the Sunday, followed by a gap up to the next Friday.

Label Block Granularities for a label l in a label hierarchy LH are very similar to Label
Partition Granularity. The difference is that neighbouring Label Partition granules are
comprised into one single Label Block granule. Taking the above example again, we could
define a Label Block Granularity with label ‘weekend day’. It joins the Saturday and
Sunday into one single granule.

Labelling Granularities for a label l in a label hierarchy LH are defined for labelled par-
titionings with finite labellings (Def. 3.3.21) only. They are essentially like Label Block
Granularities, but the granules do not exceed the boundaries of the finite labellings. The
example before Def. 3.3.23 explains the ideas.

Gap Block Granularities finally, comprise neighbouring unlabelled partitions into a single
granule

Definition 3.3.35 (Concrete Granularities)
A granularity (P ,nextGanule,withinGranule,firstGranule) with P = (CO, sPa, Label) is a

Partitioning Granularities iff the ‘enclosingGranule’ function identifies partitions of P and
granules, i.e. granules are just partitions:

enclosingGranule(i) =def (i, i)
withinGranule(i) =def true

Label Partition Granularities with label l and label hierarchy LH iff P is a labelled parti-
tioning, and the ‘enclosingGranule’ function chooses partitions labelled with l or a sub-label
of l in LH as granule, i.e. granules are individual partitions labelled l (or sub-labels of l)

enclosingGranule(i) =def

{
(i, i) if P.Label(i) ≤LH l
undefined otherwise

withinGranule(i) =def

{
true if P.Label(i) ≤LH l
false otherwise

Label Block Granularities with label l and label hierarchy LH iff P is a labelled partitioning,
and the ‘enclosingGranule’ function chooses consecutive blocks of partitions labelled with
l or a sub-label of l in LH as granule, i.e. granules are partition blocks labelled l (or
sub-labels of l):

enclosingGranule(i) =def

(P.nextDifferernt(i, l, LH, false) +CO 1, P.nextDifferernt(i, l, LH, true)−CO 1)
if P.Label(i) ≤LH l (Def. 3.3.20)

undefined otherwise

withinGranule(i) =def

{
true if P.Label(i) ≤LH l
false otherwise

88

Labelled Granularities with label l and label hierarchy LH iff P is a labelled partitioning
with finite labellings (Def. 3.3.21), and the ‘enclosingGranule’ function chooses partitions
labelled with l or a sub-label of l in LH as granule in the sense of Def. 3.3.23:

enclosingGranule(i) =def

{
P.nextLG(i, l, LH, true) if P.withinLG(i, l, LH)
undefined otherwise

withinGranule(i) =def P.withinLG(i, l, LH) (Def. 3.3.23)

Gap Block Granularities iff P is a labelled partitioning, and the ‘enclosingGranule’ function
chooses consecutive sequences of unlabelled partitions as granules, i.e.

enclosingGranule(i) =def

(P.nextLabelled(i, false) +CO 1, P.nextLabelled(i, true)−CO 1)
if P.Label(i) = ∅

undefined otherwise

withinGranule(i) =def

{
true if P.Label(i) = ∅
false otherwise

3.3.5 Granularity Based Time Shifts

Linguistic notions like “day” can denote partitionings and they can be used for representing
distances between time points. There is a third meaning which is unfortunately different to the
two other ones. If I say, for example, “let us meet again in 3 days”, this means a time shift.
The current point in time is shifted by a certain interval.

It turns out that the concept of time shifts is absolutely nontrivial. The following examples
illustrate the phenomena we need to deal with:

• If it is January 5th, 8:53:10 AM, what does “one month from now” mean? Does it mean
February, 5th, 8:53:10 AM, or just February 5th 12 AM, or February, 5th 8:00 AM because
it is the start of a working day?

• If it is January 20th, what does “1.5 month from now” mean? “One month from now”
obviously means February 20th, but what about the remaining 0.5 month? Does it refer
to the month length of January, February or March, or even a combination of them?

• Suppose it is January 30th. Since there is no February 30th, what does “one month from
now” mean?

• Let us consider granularities now. Take a granularity working day (Ex. 3.2.4) with granules
lasting from 8 AM until 6 PM.

– If it is 9 AM, “one working day from now” could mean 9 AM tomorrow, but also 8
AM tomorrow.

– If it is 9 AM, “0.5. working days from now” obviously means 2 PM, but what does
“0.5 working days from now” mean when it is 3 PM or, even worse, 10 PM, i.e.
outside the working hours.

89

• Consider now a working day consisting of a day shift from 8 AM until 5 PM with a one
hour lunch break at noon, and a night shift from 6 PM until 8 AM the next day (without
break). What could “0.5 working days from now” mean when it is 9 AM, 12:30 PM, 7
PM or midnight?

One can easily find more and more complex examples where it becomes less and less clear
what the desired meaning should be. The transition between “it is absolutely clear what the
desired result should be” and “there is no idea at all what it means” is gradual. PartLib takes
this into account by offering a very flexible shift function which can be parameterised in various
ways to deal with many of the above mentioned phenomena.

A first idea for defining a granularity based time shift consists of the following steps:

1. We introduce a date format, say, year/month/day hour:minute:second.

2. We represent a time point t as a date in the given date format, for example, 2008/5/3
12:25:39

3. A time shift of, say, 1 month, could be realised by incrementing the month date by 1:
2008/6/3 12:25:39.

A time shift by a fractional value, say 2.5 month, causes an iteration over the date format.

1. We increment the month date by 2: 2008/7/3 12:25:39. A further shift by 0.5 month is
necessary.

2. July has 31 days. 0.5 · 31 = 15.5. In the next step we therefore perform a shift by 15
days: 2008/7/18 12:25:39. A further shift by 0.5 days is necessary.

3. One day has 24 hours. 0.5 · 24 = 12. We shift by 12 hours: 2008/7/18 24:25:39 which
could be normalised to 2008/7/19 0:25:39.

There are a number of refinements of this basic procedure

Limited Shift Level: One can restrict the iteration through the date format. For example, a
shift of 2008/5/3 12:25:39 by 1 month up the level of days yields 2008/5/3 0:0:0. A shift
by 2.5 months up to the month level yields 2008/7.

A suitable positive integer level (level 0 = year, level 1 = month etc.) is sufficient to
stop the iteration.

Squeezed Shift: The basic procedure may produce unwanted results if the partitions have
different lengths. Consider the date 2007/1/31 (31st of January 2007) The result of a 1
month shift would be 2007/2/31 (3rd of March 2007), which might not be the intended
result. One may want to squeeze the shifted time point into February.

The 31st of January is the last day in January. A shift by 1 month could be a jump to
the last day in February. But what about the second but last day in January or the third
but last day?

A possible algorithmic approach to this problem could be as follows: let l0 be the length
the “source month” in terms of days and let l1 be the length of the “target month”, also
in terms of days. For January it is l0 = 31 and for February it is l1 = 28. The 31st

90

of January is 30 days away from the beginning of January. This yields a fraction 30/31
which can be multiplied with the length of February: (30/31) · 28 = 27.09 The rounded
number 27 is then added to the beginning of February and we get in fact 2007/2/28 as
the shifted date. The procedure shows the following behaviour for a shift from January
to February (in non-leap years): the days 1-6 are shifted to the same day in February.
The days 7-16 are shifted by -1 day in February. The days 17-26 are shifted by -2 days
and the days 27-31 are shifted by -3 days.

This procedure, which squeezes a time point which lies in a “source granule” to a cor-
responding time point in the “target granule”, is activated by the Integer parameter
jumpPosition < 0 in the shiftG function in Def. 3.3.36.

Granularities with External Gaps: We come back to the working day example (Ex. 3.2.4).
Suppose a working day is between 8 AM and 6 PM (without lunch break), from Monday
to Friday, and we want to shift by “working days”. A suitable date format could be

week/working day hour : minute : second

�- �- �- �- �- -? ?

wd 0 wd 1 wd 2 wd 3 wd 4

week 0t0 t1

Suppose a time point t0 yields the date 0/1 3:10:20 (week 0, first working day in this week,
3:10:20 hours away from the start of this working day, i.e. Monday, 11:10:20 AM.). A
shift by 1 working day yields 0/1 3:10:20. A shift by 1.8 working days could be processed
as follows:

1. A shift by 1 working day yields 0/1 3:10:20. There is a remaining shift of 0.8 working
days.

2. The length of the granule is 8 hours. 0.8 · 8 = 6.4 hours. 3 + 6 = 9, which is 1 hour
beyond the granule. Thus, we move 1 granule forward to 0:2 0:10:20. The remaining
shift of 1 hour yields 0:2 1:10:20. There is a remaining shift of 0.4 hours.

3. 0.4 hours is 24 minutes and the final result of the shift is therefore 0/2 1:34:20 (week
0, Wednesday, 9:34:20 AM).

As a second example, take the time point t1 which lies in the gap between working day 0
and working day 1. There are now two different ways to deal with the fact that t1 lies in
a gap between granules.

1. We could ignore external gaps completely and move t1 in a preliminary step to the
start of working day 1. A further shift by 1 working day would end up at the start
of working day 2. This could be a reasonable interpretation of “let us wait for 1
working day”.

2. We switch from the ‘working day’ granularity to the corresponding external gap
block granularity (Def. 3.3.34) where the granules consist of the external gaps. The
corresponding date format for the shift function would be now

week/working day gaps hour : minute : second.

This version is sensitive to the structure of the internal gaps.

91

Granularities with Internal Gaps: The situation is even more complicated when the gran-
ules have internal gaps. In the next example we have therefore a granularity ‘working
shifts’ with a day shifts and night shifts. A day shift granule lasts, say from 8 AM - 6
PM, with one hour breaks at 11 AM and 2 PM. The night shift granule lasts from 7 PM
- 7 AM the next day, with one hour breaks at 10 PM, 1 AM and 4 AM.

-� - � -

ws 0 ws 1

8 1112 2 3 6 7 10 11 1 2 4 5 7? ?

t0 t1

The date format is now

week/work shift/hour/minute/second.

A time point t0 which lies in day shift ws 0, and not in an internal gap can be shifted by
computing its distance to the start of the granule, while ignoring internal gaps.

Example: the date is 0/0 4:10:20 (week 0, ws 0, 4:10:20 hours away from the start of ws
0, i.e. 1:10:20 PM). A shift by 1 work shift jumps from ws 0 to ws 1 and there 4:10:20
hours away from the start of ws 1. We end up at 12:10:20 AM.

Now consider a time point t1 which lies in an internal gap. There are again 2 possibilities.

1. Internal gaps are ignored completely. Therefore t1 is moved to the start of the next
non-gap part of the granule before the main shift operation is performed.

2. We switch from the working shift granularity to the corresponding external gap block
granularity (Def. 3.3.34) where a granule consists of the internal gaps of the working
shift granularity. This granularity has also internal gaps, but t1 lies in a non-gap
part of the gap block granules. It can therefore be treated like t0 above.

For the granularity based time shift (Def. 3.3.36 below), we assume that each granularity G has
three additional attributes.

1. The first attribute is a sub–granularity (G.subGranularity). This is a way to define
date formats. For example, the year granularity can have the month granularity as sub–
granularity, the month granularity can have the day granularity as sub–granularity etc.
This yields a date format year/month/day/hour/minute/second. If a granularity has no
sub–granularity any more then the shiftG function below stops the recursion. PartLib
assigns default sub–granularities. They can be overridden by the user.

The mechanism with sub–granularities, however, makes it a bit cumbersome to change
date formats. For example, a user might want to do a first shift operation with a date
format year/month/day, followed by a shift with a date format year/week/day. In order
to do this, it is necessary to exchange the sub–granularity of the year granularity.

The advantage of this mechanism is that the shiftG operation need not have too many
extra control parameters.

92

2. The second attribute is the jump position (G.jumpPosition), which is -1 by default. The
jumpPosition attribute defines the position from which sub–granules within granules are
counted backwards. For example, the jump position for the month granularity (with the
day granularity as sub–granularity) may be 25. This means that from day 25 onwards, a
shift of one month is counted backwards. For example, day 24 in January (counting from
day 0) is shifted to day 24 in February, whereas day 25 in January (which is 6 days before
the end of January) is shifted to day 23 in February (6 days before the end of February
n non-leap years). If jumpPosition = −1 then the shifts are ‘squeezed’ into the target
directory (see the explanation above).

3. Finally the third attribute is the Boolean parameter useGapGranularity. If it is true then
shifts from positions inside gaps use the corresponding internal or external gap granularity
(Def. 3.3.34) instead of the original granularity. If it is false, then time points inside gaps
are moved forward/backwards (depending on whether it is a forward or backward shift)
to the next non-gap position before the actual shift is performed.

Definition 3.3.36 (A Time Shift Function for Granularities)
Let G be a granularity, t a time point, m ∈ R, and level ∈ N ∪ {−1}. (m is the amount of
G-granules to be shifted forward (if m > 0) or backwards (if m < 0) level controls the depth of
the recursion. level = −1 means recursion until there is no sub–granularity any more.)
We define a time shift function for granularities:

G.shiftG(t,m, level) =def

{
t if m = 0
G′.shiftGRec(t′, s0, e0, s1, e1,m− ⌊m⌋, level) otherwise

where

1. If G.withinExternalGap(t) then

• If G.useGapGranularity = true then
G′ =defG.externalGapGranularity() and (Def. 3.3.34)
t′ =def t

• else
G′ =defG and
t′ is the start of the next granule if m > 0 and there is a next granule (otherwise it
is the end of the previous granule -1) and
t′ is the end of the previous granule -1, if m < 0 and there is a previous granule
(otherwise it is the start of the next granule).

2. If G.withinInternalGap(t) then

• If G.useGapGranularity = true then
G′ =defG.interalGapGranularity() and (Def. 3.3.34)
t′ =def t

• else
G′ =defG and
t′ is the start of the next non-gap partition if m > 0 and
t′ is the end of the previous non-gap partition -1, if m < 0.

3. Otherwise G′ =defG and t′ =def t.

93

4. (s0, e0) =defG′.enclosingGranule(t′) and
(s1, e1) =defG′.nextGranule(s0, ⌊m⌋, true)

and G.shiftGRec(t, s0, e0, s1, e1,m, level) is defined recursively as follows:
Let P =defG.partitinoing and G′ =defG.subGranularity.
If G′ = ∅ then G.shiftGRec(t, s0, e0, s1, e1,m, level) =defP.sPa(s1).

Now we assume G′ 6= ∅
1. If G′.withinExternalGap(t) then

• If G′.useGapGranularity = true then
G′ := G′.externalGapGranularity() and
t′ =def t

• else
t′ is the start of the next G′-granule if m > 0 and there is a next granule (otherwise
it is the end of the previous granule -1) and
t′ is the end of the previous G′-granule -1, if m < 0 and there is a previous granule
(otherwise it is the start of the next granule).

2. If G′.withinInternalGap(t) then

• If G′.useGapGranularity = true then
G′ := G.interalGapGranularity() and
t′ =def t

• else
t′ is the start of the next non-gap partition if m > 0 and
t′ is the end of the previous non-gap partition -1, if m < 0.

3. Otherwise t′ =def t.

4. l0 =defG′.lengthG(P.sPa(s0), P.ePa(e0)) (Def. 3.3.32)
l1 =defG′.lengthG(P.sPa(s1), P.ePa(e1))

5. d =defG′.lengthG(P.sPa(s0), t)

6. m′ =defm · l1 +

⌊d · l1/l0⌋ if G.jumpPosition < 0
d if d ≤ G.jumpPosition ∨ l0 = l1
l1 − (l0 − d) if l0 < l1
max(jumpPos, l0 − (l1 − d)) otherwise

7. If the remaining shift m′ exceeds the G-granule boundaries we need to move forward/backwards
to the next G-granule.

while(m′ ≥ l1)
(s1, e1) := G.nextGranule(e1 +CO 1, true)
m′ := m′ − l1
l1 := G′.lengthG(P.sPa(s1), P.ePa(e1))

while(m′ < 0)
(s1, e1) := G.nextGranule(s1 −CO 1, false)
m′ := m′ +G′.lengthG(P.sPa(s1), P.ePa(e1))

94

8. (s′0, e
′
0) =defG′.enclosingGranule(t)

(s′1, e
′
1) =defG′.nextGranule(P.sPa(s1), ⌊m′⌋, true)

G.shiftGRec(t, s0, e0, s1, e1,m, level) =defG′.shiftGRec(t′, s′0, e
′
0, s
′
1, e
′
1,m

′−⌊m′⌋, level− 1).

3.3.6 Durations

The lengthG function (Def. 3.3.32) measures distances between two time points in terms of
granule length. A distance between t0 and t1 may, for example, be 2.5 working days. We now
generalise the notion of distance in terms of granules to the concept of Durations.

Definition 3.3.37 (Duration) A Duration in PartLib is a sequence
D = (d0 G0, . . . , dn−1 Gn−1) of pairs consisting of a real number di and a granularity Gi.

The inverted duration is −D =def (−dn−1 Gn−1, . . . ,−d0 G0)

1 month plus 1.5 days, for example, is represented as the sequence (1 Month, 1.5 Day)
where Month and Day are granularities. 1 working day plus 1.5 hours, for example, could be
represented in the same way (1 WD, 1.5 Hour).

A duration can also be used to specify a time shift. “Let us meet again in 3 months and
2 days”, for example, specifies a time shift in terms of a duration (3 month, 2 day). The
corresponding shift function iterates through the duration and calls the shiftG function (Def.
3.3.36) for each granularity.

Definition 3.3.38 (Time Shift Function for Durations) Let D = (d0 G0, . . . , dn Gn−1)
be a duration (Def. 3.3.37). We define a time shiftD function:

D.shiftD(time) =def tn−1 where

1. t−1 =def time

2. ti =defGi.shiftG(ti−1, di−1,−1) for 0 ≤ i < n (Def. 3.3.36).

3.3.7 Partitioning Types

The class Partitioning in PartLib is only the abstract interface for partitionings. Concrete
partitionings are defined by sub-classing this class and providing the information for mapping
partitions to partition coordinates and back. These are in particular the functions PaCo(t) and
sPa(i). For the sake of efficiency some of the other functions of Def. 3.3.11 may be redefined
as well.

3.3.8 Global and Local Reference Time, Leap Seconds

The global reference time GRT corresponds directly to UTC time. With the introduction of
a local reference time LRT for each partitioning it is possible to deal with leap seconds. The
purpose is that the algorithms for the different partitions can just use the local reference time,
and do not need to deal with leap seconds. The leap second correction can therefore be done
at a very deep level in the PartLib kernel.

95

A correction function for leap seconds is defined first. The function lsG(t) defined below
(‘G’ for ‘global’) computes the accumulated leap seconds until the global reference time point
t. The function lsL(t) (‘L’ for ‘local’) also computes the accumulated leap seconds, but until
the ‘local’ reference time point t. lsG(t) is used for the transition from GRT to LRT, whereas
lsL(t) is used for the other direction. Unfortunately, it is computationally difficult to derive
one version from the other. It is much more efficient when both functions are generated from
a table of leap second corrections. (see http://www.ptb.de/de/org/4/43/432/ssec.htm).

Definition 3.3.39 (Correction Function for Leap Seconds) If t is a time point in the
global reference time then lsG(t) computes the accumulated number of leap seconds until t.

If t is a time point in a reference time where the leap second corrections have already been
done then lsL(t) computes the accumulated number of leap seconds until t.

Example 3.3.40 (Correction Function for Leap Seconds) The first 10 leap seconds were
introduced for the last minute in 1971. The reference time for the regular end of this minute
is 63072000. Therefore lsG(t) = 0 for all t ≤ 63072000 and lsG(63072000 + n) = n for
0 ≤ n ≤ 10.

lsG(t) remains constant with value 10 from t = 63072010 until t = 94694410. lsG(94694411) =
11, because another leap second was introduced in the last minute of 1972.

lsL(t) = 0 for all t ≤ 63072000 as well, but lsL(63072001) = 10. lsL(94694400) = 10 and
lsL(94694401) = 11 etc.

-

-?

�
�

�
�

�
�

�
��	

6307201063072000

63072000 63072001

lsG

lsL

GRT

LRT

Figure 3.1: Global and Local Reference time around 31/12/1971

Definition 3.3.41 (Transition between GRT and LRT) Given the correction functions lsG
and lsL for leap seconds (Def. 3.3.39) we define

LRT (t) =def t− lsG(t).

for a global reference time t. LRT (t) computes the local reference time from the global reference
time.

The function
GRT (t) =def t+ lsL(t)

computes the global reference time from the local reference time.

The leap second corrections are automatically loaded at start time by the CTTN-system

96

3.3.8.1 Algorithmic Partitionings

These have been introduced in PartLib because there are partitionings whose details are so
complex that a sophisticated algorithm is necessary to for computing PaCo(t) and sPa(i).
Easter time is a prominent example. The algorithm which is currently in use for computing
Easter time has first been presented by Karl Friedrich Gauss. It approximates the moon cycle
to a certain degree. A pragmatic way to encode Easter time in a system like PartLib is to hard
code the Gauss algorithm in a full fledged programming language like C++ and to compile
it together with the whole PartLib–system. This is actually what happens when Algorithmic
Partitionings are used2.

It turns out that partitionings which seem so simple that they can be specified symbolically
very easily need in fact also be encoded as Algorithmic Partitionings. Not all partitions of
the day partitioning, for example, are exactly 24 hours long. When daylight savings time is
used, one day in spring is only 23 hours long and one day in autumn is 25 hours long. The
rules which control the switch from standard time to daylight savings time vary from country
to country and they have been changed several times during the last 100 years. Therefore
PartLib contains a special module which modifies the day, week and month partitionings such
that daylight savings time is properly taken into account.

Definition 3.3.42 (Specification of Algorithmic Partitionings)
Algorithmic partitionings are specified in PartLib by the components (avl, po, cf) where

1. avl is the average length of a partition, given in the finest time unit;

2. po is an offset for the partition with coordinate 0, also given in the finest time unit,

3. cf(i) is a correction function.

The correction function cf(i) computes for a partition with coordinate i the difference be-
tween the reference time of the beginning of the partition with coordinate i, and the estimated
beginning i · avl.

Definition 3.3.43 (The Function sPaP (i) for Algorithmic Partitionings)
An algorithmic partitioning specification (avl, po, cf) (Def. 3.3.42) generates the Coordinate
Based Partitioning Representations (I, sPa) (Def. 3.3.6) as follows:
1. The partition coordinates are the ordinary integers I

2. The ‘start of partition’ function is:

sPaP (i) =defGRT (i · avl + cf(i) + po).

Partitionings whose partitions have constant length in the local reference time only need a
correction function that returns the constant 0. This is the case for seconds, minutes, and
hours. It is no longer the case for days if daylight saving time regulations are taken into
account.

2Algorithmic Partitionings could be implemented in a future version of PartLib as plugins.

97

Example 3.3.44 (Basic Time Units for the Gregorian Calendar)
The specification of the basic time units as algorithmic partitionings for the Gregorian Calendar
are:

second: average length: 1, offset: 0, correction function: λ(i)0.

minute: average length: 60, offset: 0, correction function: λ(i)0.

hour: average length: 3600, offset: 0, correction function: λ(i)0.

day: average length: 86400, offset: 0, correction function: −3600 · h if the day i is during the
daylight saving time period, 0 otherwise.
The number h is usually 1 (for 1 hour). Exceptions are, for example, the year 1947 in Germany,
where in the night of 1947/5/11 the clock was set forward a second time by 1 hour such that
the offset against standard time was 2 hours.

week: average length: 604800, offset -259200, correction function: again, this function has to
return an offset of −3600 · h for the weeks during the daylight saving time periods.

month: average length: 2592000 (30 days), offset 0, correction function: this function has to
deal with the different length of the months and the daylight saving time regulations.

year: average length: 31536000 (365 days), offset 0, correction function: this function has to
deal with leap years only. The effects of daylight saving time regulations are averaged out over
the year.

The ‘partition coordinate’ function PaCo(t) maps a reference time point t to the coordinate
of the partition containing t. For algorithmic partitionings this function is more complicated
than sPaP (i) because it needs to use the correction function cf(i), which takes a coordinate
as input, and this is the coordinate which is yet to be computed. Therefore the basic idea
for the algorithm is to use a fixed point iteration which calls sPaP (i) for guessed coordinates
until the resulting time point matches the given time point. The algorithm is described rather
informally, but the key steps should become clear.

Definition 3.3.45 (The Function PaCo for Algorithmic Partitionings) Let t be a local
reference time point for the given partitioning P = (avl, po, cf). The algorithm for PaCo (see
Def. 3.3.11) starts with a first guess i =def t/avl for the coordinate of the partition containing t.
Since this guess is wrong in general, there is a first iteration which brings i closer to the correct
solution:

Starting with an initial value for i′, a fixed point iteration is performed until i′ falls under a
certain threshold3: Let r=defsPaP (i). If r ≥ t let r′=defsPaP (i− 1) and compute i′=def(r−t)/(r−r′)
to get a better estimate i =def i− i′ for the correct coordinate. If r < t, i is increased in a similar
way4.

The second phase of the algorithm is simpler: the correct coordinate is searched by just
decreasing or increasing i by 1, until sPa(i) ≤ t < sPa(i+ 1) holds. The result of the function
PaCo(t) is then the coordinate i for which this condition holds.

During the first phase, the algorithm performs big jumps to get very close to the correct
solution. In the second phase it does the fine tuning by searching in the neighbourhood of the

3The threshold in the implementation is 3. The initial value for i′ can be any number greater than the
threshold. i′ = 10 is fine.

4This version of the fixed point iteration is slightly simplified. It can happen that i′ oscillates around the
correct i. If this happens, the iteration is immediately stopped.

98

coordinate which was computed in the first phase. This phase guarantees that the result is
correct. The algorithm converges in very few (usually < 10) steps to the correct solution even
if the average length of the partitions is quite different to their individual length.

3.3.8.2 Duration Partitionings

Duration partitionings are specified by an anchor time and a sequence of Durations (Def.
3.3.37). For example, I could define ‘my weekend’ as a duration partitioning with anchor time
2004/7/23, 4 PM (Friday July, 23rd, 2004, 4 pm) and durations: (‘8 hour + 2 day’, ‘4 day
+ 16 hour’). The first interval would be labelled ‘weekend’, and the second interval would be
labelled ‘gap’.

Definition 3.3.46 (Specification of a Duration Partitioning)
A duration partitioning is specified by the tuple (tA, (D0 . . . Dn−1)) where

1. tA is the anchor time point (in the global reference time);

2. D0 . . .Dn−1 is a list of durations (Def. 3.3.37);

The coordinates for a duration partitioning are such that the first partition after the anchor
time point has coordinate 0. The next picture illustrates the situation.

-
tA tA +D0 tA +D0 +D1tA −Dn−1

0 1 2-1

The durations in the specification of a duration partitioning can be very irregular. Therefore
there is in general not much of a chance to realize a ‘start of partition’ function sPaP (i) other
than by just looping i times over D0 . . . Dn−1.

Definition 3.3.47 (The Function sPa for Duration Partitionings)
The specification (tA, (D0 . . . Dn−1)) (Def. 3.3.46) of a duration partitioning generates the
following Coordinate Based Partitioning Representation (ISI, sPa) (Def. 3.3.3):

1. The partition coordinates are the ordinary integers I

2. The‘start of partition’ function is sPa(i) =defti where ti is determined by shifting the anchor
time point tA i times:

Let t0 =def tA.

if(i ≥ 0): for j = 1, . . . , i: tj =defD(j−1)%n.shiftD(tj−1). (Def. 3.3.38)

if(i < 0): for j = 1, . . . ,−i: tj =def −D(n−j)%n.shiftD(tj−1) (Def. 3.3.38)

99

3.3.8.3 Date Partitionings

Some partitionings are determined by just giving a sequence of dates. An example could be the
dates of the Time symposium series:

1994/5/4 Time94 1994/5/5, 1995/4/26 Time95 1995/4/27, . . . , 2007/6/16 Time08 2005/6/18
There is a very easy way to deal with date partitionings: the dates are turned into partition

boundaries, and the partitioning is represented explicitly (see Def. 3.3.72 below).
It is, however, also not very difficult to turn a sequence of dates into a sequence of durations.

The distance between two subsequent dates is measured in terms of the partitionings which are
used for expressing the dates. The result is turned into a Duration. Therefore Date Partitionings
are just convenient ways to express Duration Partitionings. This way, however the originally
finitely many partitions between the first and last date are extrapolated to the infinity. This
may in fact be a desired effect, not in the case of the Time symposium series, but, for example,
for defining the seasons approximatively by giving the beginning dates in one particular year:
2000/3/21 spring 2000/6/21 summer 2000/9/23 autumn 2000/12/21 winter 2001/3/21. The
derived durations are: 3 months for spring, 3 months + 2 days for summer, 3 months + -2 days
for autumn and 1 year + -9 month for winter. Notice that these durations are correct even for
leap years. Although the period between March 2000 and March 2001 does not include a leap
day, when going backwards from 2000/3/21 by one winter season (i.e. -1 year + 9 month) we
jump over the leap day in February 2000 and end up at the correct date 1999/12/21.

All partitionings in PartLib can, however, be restricted by setting corresponding boundary
times. This can be used to restrict the “validity region” of Date Partitionings to the interval
between the first and last date.

The specification of date partitions requires a formal definition of dates in date formats. A
typical date format is year/month/day/hour/minute/second, and a typical date is 2008/5/3/10/20/30.

Definition 3.3.48 (Date Formats and Dates) A Date Format is a list DF = (G0, . . . , Gn)
of granularities.
A Date for a date format DF is a list d = (d0, . . . , dk) of integers, k ≤ n.

Notice that in this context dates are relative time shifts. Therefore they all start with the
shift number 0. The (normalised) date for the first of January 2008 is therefore 2008/0/0. This
way, a date like 2008/20/40 makes also sense. It means to shift the beginning of the year 2008
first by 20 month, and then further by 40 days.

Definition 3.3.49 (Date to Time) Given a normalised date d (Def. 3.3.48), the time asso-
ciated with the date is

T ime(d,DF) =defDd.shiftD(0)

where Dd is the associated duration (Def. 3.3.48).

Definition 3.3.50 (Time to Date) Given a date format DF = (G0, . . . , Gn−1) and a time
t, we define

Date(time,DF) =def (d0, . . . , dn−1)

where for t−1 = 0 and for 0,≤ i < n:

di =def ⌊Gi.lengthG(ti−1, time)⌋ +

{
−1 if time < 0 ∧ i = 0
0 otherwise

(Def. 3.3.32)

ti =defGi.partitioning.sPa(di)

100

Dates like 2008/40/20 can be very easily normalised by first turning it into a time point,
and then back into a date.

Definition 3.3.51 (Normalising Dates) A date d for a date format DF can be normalised
as follows:

normalise(d,DF) =defDate(T ime(d,DF), DF)

Definition 3.3.52 (Date Partitioning Specification)
A Date Partitioning Specification DPS = (DF, d0, . . . , dm) consists of a date format DF and
a number of dates di in this format.

Definition 3.3.53 (Date Differences) For two dates a = (a0, . . . , ak) and b = (b0, . . . , bk)
in a common date format DF = (G0, . . .Gn−1) we define the date difference

d0 −DF d1 =def ((a0 − b0)G0, . . . , (ak − bk)Gk)

Definition 3.3.54 (Generated Duration Partitioning) A Date Partitioning Specification
DPS = (DF, d0, . . . , dm) (Def. 3.3.52) generates the following Duration Partitioning specifica-
tion (Def. 3.3.46):

1. tA =def T ime(d0, DF0) (Def. 1.6.2)

2. Di =def di+1 −DF di for 0 ≤ i < m (Def. 3.3.53)

3.3.8.4 Intersection Partitionings

Two partitionings P1 and P2 can be joined into a new partitioning by just transferring the
partition boundaries of P1 and P2 to the new partitioning PI, the “intersection Partitioning”.

� -

� -

� -

P1

P2

PI

This idea alone may not seem very useful, but if combined with a suitable labelling scheme
one can model interesting situations.

Suppose there is a partitioning PL for “lecture times” at the university, say every Monday
from 10 AM - 12 AM labelled LM (Lecture Monday) and another one every Wednesday from
12 AM - 2 PM, labelled LW (Lecture Wednesday). The intervals between the lectures are not
labelled. If we want to implement “lecture times outside public holidays”, we need a partitioning
for the public holidays. The holiday periods may be labelled EA (Easter Holidays), SH (Summer
Holidays) and CH (Christmas Holidays). These labels may be part of a label hierarchy:

101

PH

EH SH CH

The two partitionings can now be intersected and the labels for the intersected partitioning
can be computed according to the rules

LM × gap 7→ LM
LM × PH 7→ gap
LW × gap 7→ LW
LW × PH 7→ gap

where ‘gap’ means, no label at all.
If all neighbouring gap partitions in the intersected partitioning are joined into one single

gap partition one ends up with a partitioning which is like the ‘lecture partitioning’ PL, but
the lectures during public holidays are removed.

� -

� -

� -

� -

LW LM

CH

LM LM

LM LM

gaps joined

LM

PartLib offers the possibility to define “intersection partitionings” exactly in this way. The
input consists of the two labelled component partitionings, a label hierarchy and a set of mapping
rules. The two partitionings are intersected by transferring the partition boundaries to the new
partitioning. The label of a given new partition is computed by applying the mapping rules
to the two component partitions whose intersection forms the given new partition. Optionally,
neighbouring gap partitions can be joined into one single gap partition.

Definition 3.3.55 (Label Mappings) A label mapping LM = (LH, (l0,1 × l1,1 7→ l0,2), . . .))
consists of a label hierarchy LH and an ordered list of mapping rules l0,1 × l1,1 7→ l0,2.
The lij may be the empty label as well.

Definition 3.3.56 (Apply Function for Label Mappings)
For a label mapping LM = (LH, (l0,1 × l1,1 7→ l0,2), . . .)) and two labels l0 and l1 we define:

LM.apply(l0, l1) =def

{
li,2 if i is defined
∅ otherwise

where i = min{i | l0 ≤LH li,0 ∧ l1 ≤LH li,1}

102

Definition 3.3.57 (Intersection Partition Specification) An Intersection Partitioning Spec-
ification is a tuple (P0, P1, LM, joinGaps) where the Pi are partitionings, LM is a label mapping
(Def. 3.3.55) and joinGaps is a Boolean flag.

Definition 3.3.58 (Generated Intersection Partitioning) An intersection partitioning spec-
ification (P0, P1, LM, joinGaps) generates the following labelled partitioning P = (ISP , sPa)
(Def. 3.3.4) where

1. sPa((P, lower, upper, l)) =def lower and

2. P.PaCo(time) is defined in Def. 3.3.59 below.

Definition 3.3.59 (Partition Coordinate for Intersection Partitionings)
Let P be an intersection partitioning generated by (P0, P1, LM, joinGaps) (Def. 3.3.58). We
define

P.PaCo(time) =def (P, lower, upper, l)

where

1. lower′ =defmax(P0.sPa(time), P1.sPa(time))
upper′ =defmin(P0.ePa(time), P1.ePa(time))

2. l0 =defP0.Label(P0.PaCo(time)),
l1 =defP1.Label(P1.PaCo(time)) and

l =def

{
∅ if LM = ∅
LM.apply(l0, l1) otherwise

3. lower =def

lower′ if ¬joinGaps ∨ l 6= ∅
max{t < lower′ | LM.apply(k0, k1) 6= ∅} + 1 otherwise

where k0 =defP0.Label(P0.PaCo(t)) and k1 =defP1.Label(P1.PaCo(t))

upper =def

upper′ if ¬joinGaps ∨ l 6= ∅
min{t ≥ upper′ | LM.apply(k0, k1) 6= ∅} otherwise

where k0 =defP0.Label(P0.PaCo(t)) and k1 =defP1.Label(P1.PaCo(t))

3.3.8.5 Shifted Partitionings

Suppose a bus timetable for a particular bus station has been defined by means of a Tree
Partitioning (Sect. 3.3.8.6). The bus time table for the next bus station may be such that all
time are just shifted by, say, 5 minutes. It would be very inconvenient to force a user to specify
this new timetable in the same complicated way as the first one. Moreover, if the original bus
timetable is changed, the timetables for all other stations have to be changed as well. A much
easier and safer way would be to define the other timetables by taking the first one and just
shifting it by a certain duration.

To this end a partitioning type Shifted Partitioning has been introduced. It is specified by
a given partitioning and a duration. All partitions of the new partitioning, together with their
labels, are generated by shifting the original partitions by the given duration.

103

Definition 3.3.60 (Shifted Partitioning Specification) A specification (P,D) for a shifted
partitioning consists of a partitioning P and a duration D.

Definition 3.3.61 (Generated Shifted Partitionings) A shifted partitioning specification
(P,D) generates the following Coordinate Based Partitioning Representation (P.CO, sPa) with

sPa(i) =defD.shift(P.sPa(i)).

Other important functions are:

PaCo(time) =def P.PaCo(−D.shift(time)))
sPa(time) =def sPa(PaCo(time))
sPa(i) =def D.shift(P.sPa(i))
ePa(time) =def D.shift(P.ePa(−D.shift(time)))
Label(i) =def P.Label(i)

3.3.8.6 Tree Partitionings

Many practical partitionings of the time axis can be specified as a kind of iterator. For example,
a specification of a bus timetable could be:

“In the year 2008, every week, every work day (0–4), there is a bus at 5:20 – 5.21 (2 minutes
stay at the bus stop), at 5:40 – 5:41, at 6:20 – 6:21, at 6:40 - 6:41 until 20:40 – 20:41, and at
the weekends (days 5,6) there is a bus every hour from 8 until 16 hours”.

In order to express this specification in a formal system, we need the following ingredients:

1. A date format (Def. 3.3.48) that specifies the meaning of “year , “week” etc.

2. For each level of the date format there must be a kind of iterator which expresses a se-
quence of coordinates or coordinate offsets. ‘every week’, for example must be represented
by an iterator which generates all the week numbers within a year. If ‘every working day’
means, days 0-4 within a week, then “0–4” is a specification of an iterator which repre-
sents the days 0,1,2,3,4 within a week. In this case one could also want to use instead of
numbers the corresponding labels “Monday – Friday” with the same meaning. PartLib
allows one to use both versions. “0–4” is a very simple iterator. In more complex ex-
amples, one might use iterators like “five times every second day, starting with day 3”,
which is almost like a for-loop in programming languages. PartLib provides iterators of
this kind, both for numbers and for labels.

3. The specification language must be able to distinguish different cases, e.g. “at working
days” and “at the weekend”. Therefore the specification may have a tree structure, hence
the name tree partitionings.

The tree specification of the bus timetable example could be as follows:

104

year 2008

week 0-52

day 0–4 5–6

hour 5–20 8–16

minute 20–21 40–41 0–1
bus 1 bus 2 bus 1

A characteristic feature of this example is that each leaf node specifies an interval with a
particular meaning (bus is at bus stop). The intervals between the ‘bus stop intervals’ are just
gaps. There are, however, other examples where each leaf node specifies the start of a partition
which lasts up to the start time specified by the next leaf node. An example, where this is the
case are the seasons. For the years 2008-2010 they could be specified by the following trees5:

year 2008,2009 2010

month 2 5 8 11 2 5 8 11

day 19 20 21 20 19 20 22 21
Sp Su Au Wi Sp Su Au Wi

The different meaning of the leaf nodes are controlled by a Boolean parameter “continuous”.
continuous = true means that the partition specified by a particular leaf node lasts from the
start time of this leaf node up to the start time of the next leaf node. If the leaf node has
a label, this is the label for this partition. continuous = false would be needed for the bus
timetable example. It specifies that each leaf node determines a partition, and this is labelled
by the leaf node’s label. The gaps between these partitions have no label.

The bus example and the seasons example above specify partitionings where the partitions
get newly defined labels “bus 1”, “bus 2” “Sp” etc. In other examples, it may make sense to
take the labels for the new partitions from the labels of the granularities in the date format.
Consider an iterator which enumerates the first days of each month in some years:

year 2000 - 2010

month 0 - 11

day 0

If the day partitioning is labelled “Mo”, “Tu” etc., we may want to have day labels as labels
of the new partitions. With a corresponding control parameter “granuleLabel” set to “true”,
we get a partitioning which consists of a day partition for the first day in a month, followed
by a large partition for the remaining days in the month. The day partition as label the
corresponding day name.

PartLib’s tree partitioning specification mechanism consists of the three components:

5Months and days are counted from 0.

105

1. A date format DF (Def. 3.3.48);

2. The Boolean “continuous” parameter;

3. A list of Range Trees (RT), which are trees whose n’th level correspond to the n’th
granularity in DF. Each node contains an iterator which iterates over relative granule
positions or over labels. The leaf nodes of the trees define the length of the corresponding
partitions. They can also be labelled. (In the bus timetable example the labels at the
leaf nodes could be the bus numbers). The meaning of the leaf nodes is controlled by the
“continuous” parameter (see above). The label associated with the interval specified by
the leaf node is either given explicitly or taken from the corresponding granularity in the
date format.

Definition 3.3.62 (Tree Partitioning Specification (TPS))
A Tree Partitioning Specification is a triple TPS =def (DF, subtrees, continuous) where

1. DF is a date format (Def. 3.3.48),
2. subtrees = (RT0, . . . , RTn) is a list of Range Trees (see below) and
3. continuous is a Boolean flag.

A Range Tree is tuple RT =def (RTNode, subtrees) where

1. RTNode is a Range Tree Node (see below) and
2. subtrees = (RT0, . . . , RTk−1) is a, possibly empty, list of Range Trees.

A Range Tree Node RTNode = (NPositions, label, granuleLabel) consists of a function NPositions :
Time2 ×Granularity2 7→ FiniteSet(I) a, possibly empty, label, and a Boolean parameter gran-
uleLabel. “label” and “granuleLabel” are relevant only for leaf nodes.

The depths of the Range Trees must be ≤ |DF |.

The NPositions function for Range Tree Nodes allows one to specify relative granule posi-
tions in a convenient way and to normalise the positions automatically. To this end there are
different Range Tree Node types, for which different types of NPositions functions are auto-
matically generated. One of them are the Number Range Nodes (Def. 3.3.77). All nodes in the
Tree Partitioning Specification below are of this type.

year 2008-2010

week 3-5, 10-12,forward 0-3,backwards

day 2 6 3-5

The NPositions function returns for the year node the numbers {2008, 2009, 2010}, For the
left week node it returns {3, 4, 5, 10, 11, 12}. The result for the second week node, where
weeks are counted backwards, depends on the total number of weeks in the corresponding year.
NPositions(t0, t1, Gweek, Gyear) is called where [t1, t2[is one of the years 2008, 2009 and 2010.
The length of the year determines the number of weeks in this year. If there are 52 weeks in
the year then the result of NPositions is {48, 49, 50, 51}. If there are 53 weeks in the year then
{49, 50, 51, 52} is returned.

106

The meaning of the Tree Partitioning Specification is quite obvious when the date format
consists of granularities like year/month/day etc. Date formats can, however, consists of gran-
ularities with internal and external gaps. To illustrate this, consider the specification “in the
years 2008-2010, in every week, in every second working day”. A Tree Partitioning Specification
for this could be

year 2008-2010

week 0-53,bounded

working day 2

(The parameter bounded restricts the week iteration 0-53 to the actual number of weeks within
a given year.)

Suppose, a working day lasts from 8 AM until 6 PM with a one hour lunch break at noon.
The question is now, whether the lunch break should be part of the newly defined partitions
or not. The decision in PartLib is that internal gaps are ignored for granularities at leaf node
positions in a Tree Partitioning Specification. That means in this case that the whole working
day from 8 AM until 6 PM becomes a single partition.

Internal gaps, however, are not ignored when the granularities occur at higher positions in
the Tree Partitioning Specification. To illustrate this, consider a slightly extended specification:
“in the years 2008-2010, in every week, in every second working day, in every 1st and 5th hour”.
The corresponding Tree Partitioning Specification would be

year 2008-2010

week 0-53,bounded

working day 2

hour 1 5

The question is now, how the hours are counted inside a working day. Does the lunch break
increase the hour counter or not? The decision in PartLib is that internal gaps are not counted.
That means in this example, hour 5 is between 2 PM and 3 PM, as indicated in the figure
below.

-
8 9 10 11 12 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8

Therefore “hour 1 and hour 5” within a working day are between 9 AM and 10 AM and
between 2 PM and 3 PM. Technically this counting mechanism with internal gaps is realised
in the function G.nthGranule(t, n,G′) (Def. 3.3.30) where the internal gaps of the granularity
G′ influence the counting of G-granules.

The label associated with a leaf node of a TPS is either given explicitly or taken from
the corresponding granularity of the date format. Therefore we define a function Label for an
RTNode which returns the associated label.

107

Definition 3.3.63 (Label for an RTNode)
For an RTNode RTN = (NPositions, label, granuleLabel), a time point time and a granularity
G we define the function

RTN.Label(time,G) =def

{
label if granuleLabel = false
P.Label(P.PaCo(time)) otherwise

where P =defG.partitioning.

The auxiliary function NInterval below computes for an RTNode the interval boundaries
specified by this node. For example, if at the month level, the RTNode specifies month 3-5 (in,
say, year 2008) then NInterval computes the interval from the start of month 3 up to the end
of month 5 in this year. The function is used in Def. 3.3.66.

The second function which is defined below, called NPartitioning, computes for a leaf node
a representation of a corresponding labelled partitioning as a list ((interval0, label0), . . .). The
partitioning depends on the parameter continuous. If continuous = true then the partitioning
consists of just two partitions] − ∞, a[, [a,+∞] where a is the start time of the first granule
specified by the leaf node. If continuous = false then the partitioning consists of three parti-
tions]−∞, a[, [a, b[, [b,+∞] where [a, b[is the convex hull of the granules specified by the leaf
node.

Definition 3.3.64 (NInterval and NPartitioning)
Given an RTNode RTN = (NPositions, label, granuleLabel), we define for a time interval
[t0, t1[and two granularities G, G′ a function

RTN.NInterval(t0, t1, G,G
′) =def

{
∅ if RTN.NPositions(t0, t1, G,G

′) = ∅
[a, b[otherwise

where
1. i =defmin(NPositions(t0, t1, G,G

′)) and j =defmax(NPositions(t0, t1, G,G
′)),

2. [a, c[=defG.nthGranuleI(t0, i, true,G
′) and (Def. 3.3.30)

3. [d, b[=defG.nthGranuleI(t0, j, true,G
′).

Furthermore we define a function NPartitioning which generates for a leaf node RT a corre-
sponding partitioning.

RTN.NPartitioning(t0, t1, G,G
′, continuous) =def

((] −∞,+∞[, ∅) if RTN.NPositions(t0, t1, G,G
′) = ∅

((] −∞, a[, ∅), ([a,+∞[, RTN.Label(a,G))) if continuous = true (Def. 3.3.63)
((] −∞, a[, ∅), ([a, b[, RTN.Label(a,G))), ([b,+∞[, ∅)) otherwise

where [a, b[=defRTN.NInterval(t0, t1, G,G
′)

The Semantics of Tree Partitioning Specifications. Tree Partitioning Specifications
(TPS, Def. 3.3.62) are supposed to specify labelled partitionings. Therefore there must be a
mapping from TPS to partitionings. This mapping can be defined in two steps. The first step
transforms a TPS into an Expanded Tree Partitioning Specification (ETPS) where all nodes

108

representing several granules are expanded to one node per granule, and the leaf nodes contain
concrete time intervals. The TPS at the left side below, for example, is expanded to the ETPS
at the right hand side:

year 2008

month 3-5 7
L3

day 2 4
L1 L2

[m0,m1[
L3

[d0, d1[[d2, d3[[d4, d5[[d6, d7[[d8, d9[[d10, d11[
L1 L2 L1 L2 L1 L2

where [m0,m1[is month 7 in the year 2008, [d0, d1[= day 2 in month 3 of the year 2008,
[d2, d3[= day 4 in month 3 of the year 2008, [d4, d5[= day 2 in month 4 of the year 2008, etc.

Notice that the ETPS does not distinguish between continuous TSP and non-continuous
TPS.

The second transformation, from Expanded TPS to partitionings, associates a partitioning
to each leaf node of the ETPS, and intersects the partitionings associated to sub-nodes to get
corresponding partitionings for higher level nodes. The partitioning associated with leaf node
([d0, d1[,L1) in the above example is (] −∞, d0[, ∅), ([d0, d1[,L1), ([d1,+∞[, ∅)) (continuous =
false assumed). The partitioning associated with leaf node ([d2, d3[,L2) in the above example
is (]−∞, d2[, ∅), ([d2, d3[,L2), ([d3,+∞[, ∅)). The intersected partitioning is then (]−∞, d0[, ∅),
([d0, d1[,L1), ([d1, d2[, ∅), ([d2, d3[,L2), ([d3,+∞[, ∅)).

-
L1 L2

d2 d3d1d0

By intersecting the partitionings associated with sub-nodes of a given node in an ETPS,
one finally gets the partitioning associated with the ETPS itself.

Definition 3.3.65 (Expanded Tree Partitioning Specification (ETPS))
An Expanded Tree Partitioning Specification (ETPS) is a tuple ((ERT0, . . . , ERTn), continuous)
where the ERTi are Expanded Range Trees, either of the form ERTi =def subnodes with a list of
Expanded Range Trees as sub-nodes, or as leaf nodes of the form ([a, b[, label).
‘continuous’ is a Boolean parameter.

The function E in Def. 3.3.66 below maps a TPS to an Expanded TPS.

Definition 3.3.66 (From TPS to ETPS) We define a function E which maps a Tree Parti-
tioning Specification (DF, subtrees, continuous) (Def. 3.3.62) to an Expanded Tree partitioning
Specification (Def. 3.3.65):

E((DF, subtrees, continuous)) =def (E(subtrees, 0,+∞, DF, 0), continuous)

where
E((RT0, . . . , RTn), t0, t1, DF, level) =def

{E(RTk.subtrees, a, b,DF, level+ 1) | k ∈ {0, . . . , n} with
RTk.subtrees 6= ∅, i ∈ RTk.RTNode.Npositions(t0, t1, G,G

′),
[a, b[=defG.nthGranuleI(t0, i, true,G

′)} ∪
{([a, b[, RTk.RTNode.Label(a,G)) | RTk.subtrees = ∅,

[a, b[= RTk.RTNode.NInterval(t0, t1, G,G
′) 6= ∅, k ∈ {0, . . . , n}}

109

and G =defDF [level] and G′ =def

{
DF [level− 1] if level > 0
∅ otherwise

The Expanded Tree Partitioning Specification is still a finite structure, but the number of
leaf nodes can grow exponentially with the depth of the tree, compared to the Tree Portioning
Specification itself. A simple example shows this. The TPS

year 2008

month 0-11

day 0-31

hour 0-23

expands to 1 · 12 · 32 · 24 leaf nodes which is exponential in the depth of the tree.

Proposition 3.3.67 (Exponential Size of ETPS) The number of leaf nodes of an Expanded
Tree Partitioning Specification is in the order O((n ∗m)|DF |) where n is the maximal number
of relative granule positions the NPositions function generates, and m is the maximum number
of sibling nodes in the original TPS.

The proof is obvious.

Notice that an Expanded TPS may become empty. An example where this happens is the TPS

year 2008

day holiday
L

where the day node is a Label Range Node (Def. 3.3.79) below) and there is no day with label
“holiday” at all. The corresponding partitioning consists of the entire time line as a single
partition with empty label.

The second step, the mapping from ETPS to partitionings requires to intersect two labelled
partitionings. In the corresponding definition (Def. 3.3.68 below) we exploit that the Tree Par-
titioning Specifications specify only finite partitionings with infinite (unlabelled) start partition
and infinite (unlabelled) end partition, Thus, a labelled partitioning can be described as a finite
sequence of tuples (]−∞, t0[, ∅),([t0, t1[, L1),. . . , ([tn−1, tn[, Ln), ([tn,+∞[, ∅), where the Li are,
possibly empty, labels.

Definition 3.3.68 (Intersection of Finite Labelled Partitionings) Given two finite la-
belled partitionings
P = (] −∞, a0[, ∅),([a0, a1[, L1),. . . , ([an−1, an[, Ln), ([an,+∞[, ∅) and
Q = (] −∞, b0[, ∅),([b0, b1[, N1),. . . , ([bm−1, bm[, Nm), ([bm,+∞[, ∅)
we define the intersection
P ∩Q=def (]−∞, c0[, ∅),([c0, c1[,M1),. . . , ([cn+m+1, cn+m+2[,Mn+m+2), ([cn+m+2,+∞[, ∅) where
1. c0, . . . , cn+m+2 =def sorted({a0, . . . , an, b0, . . . , bm}) and

110

2. the labels Mi are defined as follows:
Case 1 ci = aj = bk for some j ∈ {0, . . . , n} and some k ∈ {0, . . . ,m}:
Mi =def

{
Lj if Nk = ∅ ∨ (Lj 6= ∅ ∧ aj+1 − aj ≤ bk+1 − bk)
Nk otherwise

Case 2 ci = aj and bk < ci < bk+1 for some k ∈ {0, . . . ,m}:
Mi =def

{
Lj if Lj 6= ∅
Nk otherwise

Case 3 ci = bk and aj < ci < aj+1 for some j ∈ {0, . . . , n}:
Mi =def

{
Nk if Nk 6= ∅
Lj otherwise.

(Case 2 and 3 are symmetric.)

For a set {P0, . . . , Pn−1} of finite labelled partitionings we define

⋂{} =def (] −∞,+∞[, ∅)
⋂{P0} =def P0⋂{P0, . . . , Pn−1} =def P0 ∩

⋂{P1, . . . , Pn−1}

The rationale behind the rules for defining the labels for the intersected partitioning P ∩Q
can be illustrate with some examples.

Consider the example: “In the year 2008, Bill is responsible, except for the months 0 and
3, where John is responsible (for something)” This could be represented as the TPS:

year 2008 2008
Bill

month 0 3
John John

The left node yields the partitioning

-
Bill

2008

The right node yields the partitioning

-
2008

John John

The intersection yields

-
2008

John JohnBill Bill

For month 0 in the year 2008, there was a choice between label Bill and label John. The
heuristic here is: the label of the intersected partition is the one of the smallest (most specific)
partition (Case 1 in Def. 3.3.68). The same heuristic yields Bill as label for month 3.

The next example illustrates another heuristic. “In the year 2008, Bill is responsible, except
for December and the whole year 2009, where John is responsible”. This can be represented as
the TPS:

111

year 2008 2009
Bill

month -1-11
John

The corresponding component partitionings are

-2009

Bill

2008

-20092008

John

with the intersection partitioning

-20092008

JohnJohnBill

In December there was a choice between Bill and John. The heuristic here is: If we go from
past to the future and start a new partition (start of December) then the label of the newer
partition (if there is one) wins (Case 2 and 3 in Def. 3.3.68).

As a side effect, John’s partition is split into two intervals, the December 2008 and the whole
year 2009. If this is not wanted one must avoid intersecting partition, and specify, for example:

year 2008 2009

month 0-10 -1-11
Bill John

Remark 3.3.69 (Complexity of ∩) The intersection of two (or more) finite labelled parti-
tionings (Def. 3.3.68) needs to sort the lists of partition boundaries. Here we can exploit that
the lists are already sorted. Therefore joining and sorting the lists can be done in linear time
by a sweep line algorithm (a simultaneous sweep through the lists from left to right). The labels
of the intersected partitions can also be computed in the same sweep. Therefore the complexity
of the intersection procedure for finite labelled partitionings is linear in the number of partition
boundaries.

Notice that there is an element of randomness in the definition of ∩ (Def. 3.3.68) which can
destroy the commutativity of the ∩-operation for partitionings. The following TPS, which is
legal, but which makes not much sense, illustrates the phenomenon.

year 2008 2008
L1 L2

It specifies two different labels for the same year 2008. The intersection operation for the
corresponding partitionings has to choose between the labels L1 and L2. According to Def.
3.3.68 it chooses L1, just because it goes from left to right. This, however, is just by chance and
could be different in different implementations. Therefore TPS like this one should be avoided.

We can now define a mapping P from ETPS to partitionings. It generates partitionings for
the leaf nodes of an ETPS and works upwards to the roots by intersecting the partitionings
associated to the sub-nodes. The difference between continuous = true and continuous = false

112

shows up now at the leaf nodes. A leaf node ([t0, t1[, L) yields a partitioning (] − ∞, t0[, ∅),
([t0, t1[, L), ([t1,+∞[, ∅) if continuous = false and (]−∞, t0[, ∅[), ([t0,+∞[, L) if continuous =
true (the upper bound t1 is ignored).

Definition 3.3.70 (From ETPS to Partitionings)
Given a ETPS = ((ERT0, . . . , ERTn), continuous) (Def. 3.3.65) we define a mapping

P(ETPS) =def
⋂

{P(ERT0), . . . ,P(ERTn)}

where for the leaf nodes

P([t0, t1[, L) =def

{
(] −∞, t0[, ∅), ([t0,+∞[, L) if continuous = true
(] −∞, t0[, ∅), ([t0, t1[, L), ([t1,+∞[, ∅) otherwise

and for the other nodes

P((ERT0, . . . , ERTn)) =def
⋂{P(ERT0), . . . ,P(ERTn)} (Def. 3.3.68)

The two functions E and P can be combined to generate A finite labelled partitioning for a
TPS in a single operation. The recursive descent from the root nodes of a TPS down to the leaf
nodes computes the ETPS, and the ascent back to the root nodes generates the partitionings.

Definition 3.3.71 (From TPS to Partitionings) We define a function Pa which generates
from a Tree Partitioning Specification (DF, subtrees, continuous) (Def. 3.3.62) a partitioning.

Pa(DF, subtrees, continuous) =def Pa(subtrees, 0,+∞, DF, 0)

where
Pa((RT0, . . . , RTn), t0, t1, DF, level) =def

⋂{Pa(RTk.subtrees, a, b,DF, level+ 1) | k ∈ {0, . . . , n} with (Def. 3.3.68)
RTk.subtrees 6= ∅, i ∈ RTk.RTNode.Npositions(t0, t1, G,G

′),
[a, b[=defG.nthGranuleI(t0, i, true,G

′)} ∩
⋂{RTk.NPartitioning(t0, t1, G,G

′, continuous) | RTk.subtrees = ∅} (Def. 3.3.64)
and

G =defDF [level] and G′ =def

{
DF [level− 1] if level > 0
∅ otherwise

Although the number of partitions in a TPS generated partitioning (Def. 3.3.71) may be ex-
ponential (Prop. 3.3.67), it may be still small enough that it is possible to compute it explicitely
for further use.

Definition 3.3.72 (Explicitely TPS-Generated Partitionings)
The Pa-function (Def. 3.3.71) can turn a Tree Partitioning Specification into a labelled parti-
tioning

([−∞, t0[, ∅), ([t0, t1[, L0), . . . , ([tn−1, tn[, Ln−1), ([tn,+∞[, ∅)
which can be represented by two arrays:

T imes =def −∞ t0, t1, . . . , tn, +∞
Labels =def ∅ L0, L1, . . . , Ln, ∅

where

113

1. the partition coordinates are the indices into the arrays (natural numbers with 0);

2. the sPa function needs to access the T imes array: sPa(i) =def T imes[i];

3. the Label function needs to access the Labels array: Label(i) =defLabels[i], and

4. the PaCo function needs to locate for a time point t the array element PaCo(t) =def i with
T imes[i] ≤ t < T imes[i + 1]. This can be done with binary search in O(log n) time
(because the T imes array is sorted).

Computationally, the explicit representation of the TPS-generated partitioning is most ef-
ficient. The PaCo-function works in O(log n) time, and all the other key functions work in
constant time. Unfortunately, the generated partitioning may be exponential in the size of
the TPS. Therefore, for large partitionings, it may be necessary to work at the original TPS
directly.

Tree algorithms, however, are only efficient if they can focus on a very few number of
branches in the tree. Examining all branches requires in general exponential time. It turns out
that a particular property, boundedness of nodes, in a TPS is crucial for the efficiency of the
tree algorithms for TPS.

Bounded Nodes: The PaCo function has to compute for a time point t the partition con-
taining this point. This is the key function for a number of other functions and should therefore
be realised by an efficient algorithm. A tree structure as in a Tree Partitioning Specification
(Def. 3.3.62) should be an ideal basis for an efficient PaCo algorithm. For simple specifications
like the one below this is in fact the case.

year 2008

month 1 5

day 5 10 6 11

Suppose a time point t is in day 6 of month 5 in the year 2008. An efficient PaCo algorithm
would start at the root node, 2008, and check whether t is in 2008. This is easy to check and
yields true for t. One level down the algorithm checks whether t is in month 1 or in month 5.
The check for month 5 yields true, and therefore the subtree below 1 can be discarded from the
search. This is typical tree search procedure with logarithmic complexity.

Unfortunately, not all examples are so simple. A very natural Tree Partitioning Specification
for “day 3 in December 2008 and January next year” would be:

year 2008

month 11-12

day 3

114

(Month 11 is December and month 12 is January next year). One of the partitions is January
2009, which is below the year node 2008, but not in the year 2008. Therefore the simple tree
search algorithm would not find this partition.

A simple solution would be to forbid such specifications. This,however, would force the user
to split the tree:

year 2008 2009

month 11 0

day 3 3

A more user friendly solution would be to allow specifications where sub-nodes specify relative
granule positions which are outside the time intervals specified by their super-nodes. A conse-
quence is, however, that the tree search algorithm does not know which path to follow. It must
check all paths.

A compromise between efficiency and user friendliness is to mark those nodes N whose
subtrees stay within the bounds specified by N as bounded. The search algorithm can then
ignore bounded nodes if a time point does not lie within the granules specified by the bounded
nodes.

Unfortunately, the concept of boundedness of nodes in a TPS does not only depend on the
node itself and its sub-nodes. It may also depend on the path to this node. The following
example illustrates the phenomenon.

year 2008,2009

month 0-1

day 27-28

Since 2008 is a leap year, but 2009 is not, the month node is bounded only for 2008. Day 28
in February 2009 (which is the 29th of February) is outside this month. Therefore the month
node is not (globally) bounded.

Boundedness of nodes can be ensured, or at least checked in different ways:

1. The NPositions function can automatically ensure boundedness. This is always the case
for Label Range Nodes (Def. 3.3.79) and optionally for Number Range Nodes (Def. 3.3.77),
Number Iterator Nodes (Def. 3.3.78) and Label Iterator Nodes (Def. 3.3.80).

2. It can be checked with a special algorithm. This algorithm marks every node in a TPS
with an extra flag “bounded” and then runs a procedure similar to E (Def. 3.3.66) that
computes for each expanded path to a node N the reference interval generated by N and
compares it with the reference intervals generated by the sub-nodes of N . If there is a
path to N such that the reference interval generated by N is smaller than the convex
hull of the reference intervals of N”s sub-nodes, then N is marked “unbounded”. The
procedure can be illustrated with the above example:

115

year 2008,2009

month 0-1

day 27-28

The month node is marked bounded = false after the following checks:
1. year 2008, month 0 yields true because January has 31 days.
2. year 2008, month 1 yields true because February has 29 days.
3. year 2009, month 0 yields true because January has 31 days.
4. year 2009, month 1 yields false because February has 28 days, and the day node is
outside this February.

The year node, however, gets “bounded = true” because both years have more than 2
months. If, however, the day node would be, for example, ‘day 27-400’ then the year node
would also be unbounded.

Definition 3.3.73 (Boundedness Check) We define a function BC (Boundedness Check)
which marks each node in a TPS with a Boolean flag “bounded”. The algorithm may traverse
a node several times. Therefore we assume that the “bounded” flag is initially true. It may be
changed to false once and then remains false.

BC goes recursively down the tree, changes the “bounded” flags (as a side effect), and returns
the convex hull of the reference intervals for the subtrees.

BC((DF, subtrees, continuous)) =def BC(subtrees, 0,+∞, DF, 0)

where BC((RT0, . . . , RTn), t0, t1, DF, level) works as follows:

For k = 0, . . . , n:
If RTk.subtrees = ∅: let [ck, dk[=defNInterval(t0, t1, G,G

′)
If RTk.subtrees 6= ∅: for all j ∈ RTk.RTNode.NPositions(t0, t1, G,G

′)
let [ck,j , dk,j [=

defBC(RTk.subtrees, ak,j, bk,j , DF, level+ 1)
where [ak,j , bk,j [=

defG.nthGranuleI(t0, j, true,G
′).

Set RTk.bounded = false if ck,j < ak,j ∨ bk,j < dk,j

Now let ck =defmin{ck,j} and dk =defmax{dk,j}
return [min{ck},max{dk}[

We have

G =defDF [level] and G′ =def

{
DF [level− 1] if level > 0
∅ otherwise.

The key function which works at the TPS directly is the function Part (Def. 3.3.75 below)
which computes for a time point time the corresponding partition containing time, together
with the attached label. The Part function goes recursively down the TPS. For each leaf node it
computes the partition containing time, together with the label attached to it. These partitions
get intersected when the recursion goes back to the root nodes.

For a leaf node RT , we define a function RT.PLeaf, which computes the partition containing
time, together with the label for this partition.

116

Definition 3.3.74 (Partition for Leaf Nodes)
For a leaf node RTN = (NPositions, label, granuleLabel) of a TPS, a time point time, a time
interval [t0, t1[, two granularities G and G′ and a Boolean flag continuous, we define a function

RTN.PLeaf(time, t0, t1, G,G
′, continuous) =def

{
(] −∞,+∞[, ∅) if RTN.NInterval(t0, t1, G,G

′) = ∅
([a, b[, label) otherwise

where
1. [s, e[=defRTN.NInterval(t0, t1, G,G

′) (Def. 3.3.64)
2. If continuous = true then

[a, b[=def

{
] −∞, s[if time < s
[s,+∞[otherwise

and

label =def

{
∅ if time < s
RT.RTNode.Label(s,G) otherwise

3. If continuous = false then

[a, b[=def

] −∞, s[if time < s
[s, e[if s ≤ time < e
[e,+∞[otherwise

and

label =def

{
∅ if time < s ∨ e ≤ time
RT.RTNode.Label(s,G) otherwise

The recursive Part function (Def. 3.3.75 below) computes for a time point time a tuple
([a, b[, L) where [a, b[is the partition containing time and L is the corresponding label (if there
is one). At each level of the TPS, were RT0, . . . , RTn are the sibling nodes, it does the following:

1. it calls RT.PLeaf to collect the partitions for all leaf nodes among RT0, . . . , RTn;

2. it calls itself recursively for all unbounded non-leaf nodes to collect the partitions for these
nodes;

3. it goes over all bounded non-leaf nodes whose reference granules contain time and calls
itself recursively;

4. if the previous list is empty, it locates for time the neighbouring reference granules and
calls itself recursively for these ones.

The result is a list of partition-label pairs ([ai, bi[, Li), where all partitions contain time. These
are intersected to get an interval [a, b[. The “closest match” to get the corresponding label L is
computed as follows:
If [a, b[= [ai, bi[for some i then L =def Li. (If there are several such identical intervals then the
choice is random).
If a = ai for some i then the label Lj of the smallest partition [ai, bj [is chosen. (If there are
several such identical intervals then the choice is random.).

Definition 3.3.75 (The Part function) For a Tree Partitioning Specification
TPS = (DF, subtrees, continuous) and a time point time we define a function

Part(TPS, time) =defPart(subtrees, time, 0,+∞, DF, 0)

117

where

Part((RT0, . . . , RTn), time, t0, t1, DF, level) =def (([a, b[, L)

and [a, b[, and L are computed in the following steps:

1. G =defDF [level] and G′ =def

{
DF [level− 1] if level > 0
∅ otherwise

2. [si,j , ei,j [=
defG.nthGranuleI(t0, ki,j , true,G

′) where
(ki,0, . . . , ki,ni

) =defRTi.RTNode.NPositions(t0, t1, G,G
′) (Def. 3.3.64)

3. Pleaf =def {RTi.PLeaf(time, t0, t1, G,G
′, continuous) | RTi is a leaf node} (Def. 3.3.74)

4. Punbounded =def {Part(RTi.subtrees, time, si,j, ei,j , DF, level+ 1) |
RTi is an unbounded non-leaf node, j = 0, . . . , ni}

5. Pbounded,inside =def {Part(RTi.subtrees, time, si,j, ei,j , DF, level+ 1) |
RTi is a bounded non-leaf node, si,j ≤ time < ei,j}

6. Pbounded,< =def {Part(RTi.subtrees, time, si,j, ei,j, DF, level + 1) |
RTi is a bounded non-leaf node, ei,j < time ∧
¬∃ei′,j′ : ei,j < ei′,j′ < time ∧RTi′ is bounded}

7. Pbounded,> =def {Part(RTi.subtrees, time, si,j, ei,j, DF, level + 1) |
RTi is a bounded non-leaf node, time ≤ si,j ∧
¬∃si′,j′ : time ≤ si′,j′ < si,j ∧RTi′ is bounded}

8. Pbounded,outside =def

{
∅ if Pbounded,inside 6= ∅
Pbounded,< ∪ Pbounded,> otherwise

9. P =defPleaf ∪ Punbounded ∪ Pbounded,inside ∪ Pbounded,outside. (Def. 3.3.68)
Let P = {([a0, b0[, L0), . . . , ([am, bm[, Lm)}.

10. a =defmax{ai | i = 0, . . . ,m}
b =defmin{bi | i = 0, . . . ,m}.

11. If [a, b[=def[ai0 , bi0 [= . . . = [aik
, bik

[then choose L = Lij
6= ∅ at random, if there is one,

otherwise L =def ∅.
Otherwise if a = ai0 . . . = aik

then choose some L =defLij
6= ∅ at random with bij

− aij

is minimal for j = 0, . . . , k. If there is no such Lij
then let L =def ∅.

Definition 3.3.76 (Generated Tree Partitioning) A Tree Partitioning Specification
TPS =def(DF, subtrees, continuous) generates the following labelled partitioning P = (ISP , sPa)
(Def. 3.3.4) where

1. sPa((P, lower, upper, l)) =def lower and

2. P.PaCo(time) =def (TPS, a, b, L) where ([a, b[, L) =defPart(TPS, time) (Def. 3.3.75)

118

Range Tree Node Types. We now consider Range Tree Node types and the corresponding
NPositions function in more detail. Conceptually, Range Tree Node Types consist of a list of
relative granule positions. The tree

year 2008

month 3 4 5

day 2 8 2 8 2 8

shows a very simple example where all Range Tree Nodes contain a single relative granule
position. The tree is very redundant because all three subtrees of the month nodes are identical.
It would be much more convenient for the user if he could just specify

year 2008

month 3-5

day 2 8

where “3-5” represents the list 3,4,5. This is an example where “3-5” just saves some writing.
There are, however, examples where the relative granule positions become context dependent.
Consider the specification “in the years 2008 and 2009, in every month, in the last day of the
month”. The corresponding tree could be:

year 2008,2009

month 0-11

day 0,backwards

The flag “backwards” indicates that the relative day position is to be calculated backwards
from the end of the month. “0,backwards” means the last day of the month, which, of course,
is different for the different months and for leap years and non-leap years. It is the purpose of
the NPositions-functions to compute, possibly context dependent, from compact specifications
like “0,backwards” the corresponding relative granule positions.

The definitions 3.3.77, 3.3.78 3.3.79 3.3.80 below introduce four different kinds of Range
Tree Node types. They allow for a very convenient specification of relative granule position.
The corresponding NPositions-functions turn the convenient specifications into a list of relative
granule positions.

Number Range Nodes. The first Range Tree Node type, Number Range RTNodes, can be
used to list just intervals of relative granule positions. It has two flags, forward and bounded.
forward = true means that the granule positions are counted from past to the future, and
forward = false means that they are counted from future to past. bounded = true means
that, if the listed positions are larger that the actual number of positions in the given context,
they are automatically restricted to the allowed positions in the context. bounded = false
causes no automatic restriction. We can illustrate this with the following examples:

119

year 2008,2009

week 50-52,forward,bounded

The year 2008 has 52 weeks (week 0 - 51) and the year 2009 has 53 weeks (week 0 - 52). If
forward = true and bounded = false then 50 − 52 is expanded to 50,51,52 in both years.
The week 52 in the year 2008 is then actually the first week in 2009. If forward = true and
bounded = true then 50 − 52 is expanded to 50,51 for the year 2008 and 50,51,52 for the year
2009. If forward = false and bounded = false then 50 − 52 is counted from backwards.
Week 0, backwards, is the last week in the year. 50 − 52 is then expanded to 1,0,-1 for the
year 2008 and 2,1,0 for the year 2009. Week -1 for the year 2008 is the last week in 2007. If
forward = false and bounded = true then all negative granule positions are deleted. 50 − 52
is then expanded to 1,0 for the year 2008 and 2,1,0 for the year 2009.

Notice that bounded = true causes a restriction only in one direction. For example, week
−2 −+2 with forward = true and bounded = true expands to -2,-1,0,1,2, i.e. bounded = true
has no effect. −2 − +100 with forward = true and bounded = true, however, expands in
the year 2008 to all numbers between -2 and 51. Thus, bounded = true has an effect in the
forward direction. Week −2 − +2 with forward = false and bounded = true expands in the
year 2008 to 53,52,51,50,49. Again, bounded = true has no effect. For week −2 − +100 with
forward = false, bounded = true has the effect to restrict the numbers to 53,52,. . . ,0 in the
year 2008.

Definition 3.3.77 (Number Range RTNodes)
A Number Range RTNode NRN = ((a0, b0), . . . , (an, bn), forward, bounded) consists of a list
of pairs (ai, bi) of integers with ai ≤ bi for i = 0, . . . , n and two Boolean flags, forward
and bounded. The integers determine relative granule positions. forward = true means that
the relative granule positions are counted from past to future. forward = false means that the
relative granule positions are counted from future to past. bounded = true causes the NPositions
function (see below) to restrict the relative granule positions in counting direction to the given
time interval.

A Number Range RTNode generates the following NPositions function:

NRN.NPositions(t0, t1, G,G
′) = N ′

where
1. [t0, t1[is a non-empty time interval,
2. G and G′ are granularities (G′ is irrelevant here)
3. P =defG.partitioning
4. (s0, e0) =defG.firstGranule(t0)
5. (s1, e1) =defG.firstGranule(t1)
6. d =def ⌊G.lengthG(P.ePa(e0), P.sPa(s1))⌋ (Def. 3.3.32)

7. N =def

{
(a0, . . . , b0, . . . , an, . . . , bn) if forward
(d− a0, . . . , d− b0, . . . , d− an, . . . , d− bn) otherwise

8. N ′ =def

{i ∈ N | i ≤ d} if bounded ∧ forward
{i ∈ N | i ≥ 0} if bounded ∧ ¬forward
N otherwise

120

Number Iterator Nodes. Number Range RTNodes are no longer convenient when the
relative granule positions have a regular pattern. For example “every second week” could be
expressed with a Number Range Node, but the weeks need to be listed explicitely. The next
node type, Number Iterator RTNodes, provides ‘for-loop’ like functionality to simplify the
specification of granule positions with regular patterns. The following example illustrates this.

year 2008,2009

week 3,2,30,forward,bounded

The week node is now a Number Iterator RTNode. The 2 means, ‘every second week’, the 3
means, ‘starting from week 3’ and the 30 means, ‘30 iterations’. forward and bounded have
the same meaning as in Number Range RTNodes. If forward = true and bounded = false
then 3,2,30 is expanded to the weeks 3,5,7,. . . ,61. If forward = true and bounded = true then
3,2,30 is expanded to the weeks 3,5,7,. . . ,51 for both years, 2008 and 2009. The weeks from
53 onwards would be outside both years. They are therefore deleted. If forward = false and
bounded = false then 3,2,30 is expanded in the year 2008 to the weeks 48,46,. . . ,-10 (week 0,
backwards is week 51, therefore week 3, backwards is week 48). In 2009 it is expanded to the
weeks 49,47,. . . ,-9. If forward = false and bounded = true then 3,2,30 is expanded in the
year 2008 to the weeks 48,46,. . . ,0 and in 2009 to the weeks 49,47,. . . ,+1.

Definition 3.3.78 (Number Iterator RTNodes)
A Number Iterator RTNode NIN = (start, step, iterations, forward, bounded) consists of three
integers start, step and iterations and two Boolean flags forward and bounded. where start ≥
0, step > 0 and iterations > 0.

start, step and iterations enumerate a sequence of integers like in a for loop. The integers
determine relative granule positions. forward = true means that the relative granule positions
are counted from past to future. forward = false means that the relative granule positions
are counted from future to past. bounded = true causes the NPositions function (see below) to
restrict the relative granule positions in the direction of the iteration to the given time interval.

A Number Iterator RTNode generates the following NPositions function:

NIN.NPositions(t0, t1, G,G
′) = N ′

where
1. [t0, t1[is a non-empty time interval,
2. G and G′ are granularities (G′ is irrelevant here)
3. P =defG.partitioning
4. (s0, e0) =defG.firstGranule(t0)
5. (s1, e1) =defG.firstGranule(t1)
6. d =def ⌊G.lengthG(P.ePa(e0), P.sPa(s1))⌋
7. ai =def

{
start+ i · step if forward
d− (start + i · step) otherwise

8. N =def {a0, . . . , aiterations}

9. N ′ =def

{i ∈ N | i ≤ d} if bounded ∧ forward
{i ∈ N | i ≥ 0} if bounded ∧ ¬forward
N otherwise

121

Label Range Nodes. Sometimes it may be more convenient to specify relative granule
positions not as numbers, but as labels. As an example, suppose we have the days labelled
Mo,Tu,We,Th,Fr,Sa,Su and a label hierarchy LH , which lists the labels Mo,Tu,We,Th,Fr as
sub-labels of the label WD (working day). A specification “in the year 2008, every working day
and every Sunday” could be represented:

year 2008

day {WD,Su},LH

The day node is now a Label Range Node. It expands to the relative day positions: 0,1,2,3,5,6,7,
. . . , 365 (day 0 in 2008 is a Tuesday, day 3 is a Friday, day 5 is a Sunday, day 365 is a Wednesday
(2008 is a leap year)).

Definition 3.3.79 (Label Range RTNodes)
A Label Range RTNode LRN = (L,LH) consists of a set L of labels and a label hierarchy LH
(Def. 3.2.2). The labels determine relative granule positions of the granules labelled with some
label in the given set, or a sub-label in the label hierarchy.

A Label Range RTNode generates the following NPositions function:

LRN.NPositions(t0, t1, G,G
′) = G.granulesWithLabel(t0, t1, L, LH,G

′)

where
1. [t0, t1[is a non-empty time interval,
2. G and G′ are granularities

Label Iterator Nodes. These nodes are similar to Number Iterator Nodes (Def. 3.3.78).
Instead of numbers, however, it iterates over label occurrences. Consider again the example,
where the days are labelled Mo,Tu,We,Th,Fr,Sa,Su and the label hierarchy LH lists the labels
Mo,Tu,We,Th,Fr as sub-labels of the label WD (working day). A specification with a Label
Iterator Node could be:

year 2008

day WD,LH,3,2,30,forward,bounded

The 2 means ‘every second occurrence of a sub-label of WD’, i.e. every second working day.
The 3 means, ‘starting with occurrence number 3’. The 30 means, ‘at most 30 of them’. Notice
that there is no bounded flag because the label occurrences are automatically restricted to the
given intervals (the year 2008 in this example).

If forward = true then the day node is expanded to 3,7,9,13,. . . . Day 3 is Friday, 4th of
January. There are 3 working days before this Friday in 2008. Day 7 is the following Tuesday.
One working day is between day 3 and day 7.

If forward = false then the day node is expanded to 360,358,356,352,. . . . Day 360 is
Friday, 26th of December. There are three working days, Monday - Wednesday between this
Friday and the end of the year. Day 358 is a Wednesday, day 352 is Monday and day 352
is a Thursday. The bounded flag causes the relative granule positions to be restricted to the
reference interval (the year 2008 in this example).

122

Definition 3.3.80 (Label Iterator RTNodes)
A Label Iterator RTnode LIN = (l, LH, start, steps, iterations, forward, bounded) consists of
a label l, a label hierarchy LH, three numbers start, steps and iterations and two Boolean flags
forward and bounded.

start, step and iterations enumerate a sequence of integers like in a for loop. The integers
represent relative granule positions of the granules labelled with l or a sub-label in the hierarchy
LH. forward = true means that the relative granule positions are counted from past to future.
forward = false means that the relative granule positions are counted from future to past.
bounded = true causes the relative granule positions to be restricted to the reference interval.

A Label Iterator RTNode generates the following NPositions function:

LIN.NPositions(t0, t1, G,G
′) = N

where

1. [t0, t1[is a non-empty time interval,

2. G and G′ are granularities,

3. (s0, e0) =defG.firstGranule(t0),

4. (s1, e1) =defG.firstGranule(t1),

5. N =def (i0, . . . , in) is a sorted subset of G.granulesWithLabel(t0 − α, t1 + β, {l}, LH,G′)
with
|G.granulesWithLabel(ik, ik+1, {l}, LH,G′)| = steps− 1 for all k = 0, . . . n− 1 and
|G.granulesWithLabel(s0, i0, {l}, LH,G′)| = start if forward and
|G.granulesWithLabel(in, s1, {l}, LH,G′)| = start if ¬forward
and n ≤ iterations− 1 is maximal such that the above conditions are met, and where
α = β = 0 if bounded = true and
α = 0 and β is large enough such that |N | = iterations or there are no granule positions
beyond in with the given label, if bounded = false and forward = true, and
β = 0 and α is large enough such that |N | = iterations or there are no granule positions
before i0 with the given label, if bounded = false and forward = false.

Both, Label Range Nodes and Label Iterator Nodes, specify relative granule positions, by
referring to labels attached to partitions. This is very natural if granules and partitions are
the same, as in the ‘day’ example, above. Identifying more complex granules by a single label,
however, may be convenient, but it may also yield quite strange results. Consider our ‘working
day’ granularity again.

-

8 9 10 11 12 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8
mwh mwh mwh mwh awh awh awh awh awhlt

The specification

year 2008

working day {lt},∅

123

would enumerate all working day granularities in the year 2008 by referring to the label lt of
the lunch time. The specification

year 2008

working day {lt,mwh},∅

yields the same enumeration of all working day granularities, although one of the labels lt or
mwh is redundant here.

3.3.9 Calendar Systems

A large part of PartLib deals with the definition of calendar systems. First of all, PartLib dis-
tinguishes individual calendar systems and calendar sequences. Individual calendar systems are
ordinary calendar systems like the Gregorian calendar. Calendar sequences combine sequences
of calendar systems in one composed system. An example could be the Julian calendar system
followed in 1582 by the Gregorian system. Another calendar sequence could be the sequence of
calendar systems a traveller passes on a trip around the world.

Individual calendar systems are essentially a collection of granularities like years, months
etc. They may have one or more predefined date formats, for example, year/month/day
hour:minute:second and year/week/day hour:minute:second. They have methods for parsing
dates in different formats and generating date strings. Each of the component granularities
offers of course all the functionalities, a granularity can offer in PartLib.

Individual calendar systems can be composed of separately definable components:

• Sub-Seconds.
These can be fractions of a second, for example milliseconds, microseconds etc.

• Hour-Minute-Second,
which are the usual components, hours minutes, seconds;

• Year-Month-Week-Day.
This is a general class which can be refined with the details of various calendar systems
(see [13]).

Within the Calendar System part of PartLib there is no support for time units like decades
or centuries. These can be defined as ordinary partitionings.

There is an XML-specification for composing application specific calendar systems from the
built-in components. For example, one could define a particular calendar system consisting
of the Julian Year-Month-Week-Day component, the ordinary Hour-Minute-Second component
together with milliseconds and microseconds and place it into a particular time zone.

3.3.10 The XML-Interface

This section is yet to be included.

124

Chapter 4

GeTS– A Specification Language
for Geo-Temporal Notions

125

Abstract: This document describes the ‘Geo-Temporal’ specification language GeTS. The
objects which can be described and manipulated with this language are time points, crisp and
fuzzy time intervals and labelled partitionings of the time axis. The partitionings are used
to represent periodic temporal notions like months, semesters etc. GeTS is essentially a typed
functional language with a few imperative constructs. GeTS can be used to specify and compute
with many different kinds of temporal notions, from simple arithmetic operations on time points
up to complex fuzzy relations between fuzzy time intervals. The syntax of GeTS together with
an operational semantics is described. A parser, a compiler and an abstract machine for GeTS is
implemented. The application programming interface for GeTS is documented in the appendix.

4.1 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

1. Although the GeTS language has many features of a functional programming language, it
is not intended as a general purpose programming language. It is a specification language
for temporal notions, however, with a concrete operational semantics.

2. The parser, compiler, and in particular the underlying GeTS abstract machine are not
standalone systems. They must be embedded into a host system which provides the data
structures and algorithms for time intervals, partitionings etc., and which serves as the
interface to the application. GeTS provides a corresponding application programming
interface (API).

3. The language should be simple, intuitive, and easy to use. It should not be cluttered
with too many features which are mainly necessary for general purpose programming
languages.

4. The last aspect, but even more the point before, namely that GeTS is to be integrated
into a host system, were the main arguments against an easy solution where GeTS is only
a particular module in a functional language like SML or Haskell. The host system was
developed in C++. Linking a C++ host system to an SML or Haskell interpreter for
GeTS would be more complicated than developing GeTS in C++ directly. The drawback
is that features like sophisticated type inferencing or general purpose data structures like
lists or vectors are not available in the current version of GeTS. If it turns out that they
are useful for some applications, however, it is not a big deal to integrate them into GeTS.

5. Developing GeTS from scratch instead of using an existing functional language has also
an advantage. One can design the syntax of the language in a way which better reflects
the semantics of the language constructs. This makes it easier to understand and use. As
an example, the syntax for a time interval constructor is just [expression1, expression2].
The freedom in designing a nice syntax is, however, is limited by the available parser
technology (in the GeTS case, flex and bison). Therefore some of the language features
are compromises between intuitiveness and technical constraints.

The GeTS language is a strongly typed functional language with a few imperative constructs.
Let us get a flavour of the language, before the technical details are introduced.

Example 4.1.1 (tomorrow) The definition

126

tomorrow = partition(now(),day,1,1)

specifies ‘tomorrow’ as follows: now() yields the time point of the current point in time (Def.
4.1.25). day is the name of the day partitioning. Let i be the coordinate of the day-partition
containing now(). partition(now(),day,1,1) computes the interval [t1, t2[where t1 is the
start of the partition with coordinate i + 1 and t2 is the end of the partition with coordinate
i+ 1. Thus, [t1, t2[is in fact the interval which corresponds to ‘tomorrow’.

In a similar way, we can define

this_week(Time t) = partition(t,week,0,0).

The time point t, for which the week is to be computed, is now a parameter of the function.

Example 4.1.2 (Christmas) The definition

christmas(Time t) =

dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),

time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t in the date
format Gregorian month (year/month/day/hour/minute/second). Only the year is needed.
dLet year = ... therefore binds only the year to the integer variable year. If, for example,
in addition the month is needed one can write dLet year|month = date(....

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of December of this
year. time(year|12|27,Gregorian month) computes t2 = begin of the 27th of December of
this year. The expression [...,...] denotes the half-open interval [t1, t2[.

1 The result is
therefore the half-open interval from the beginning of the 25th of December of this year until
the end of the 26th of December of this year.

Example 4.1.3 (Point–Interval Before Relation) The function

PIRBefore(Time t, Interval I) =

if (isEmpty(I) or isInfinite(I,left)) then false

else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works also for fuzzy
intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is false, otherwise
t must be smaller than the left boundary of the support of I.

Now we define a parameterized fuzzy version of the interval–interval before relation.

Example 4.1.4 (Fuzzy Interval–Interval Before Relation) A fuzzy version of an interval–
interval before relation could be

1Crisp intervals in CTTN are always half-open intervals [. . . , . . . [. Sequences of such intervals, for example
sequences of days, can therefore be used to partition a time period. The syntactic representation of these intervals
in GeTS is [...,...] and not [...,...[because this simplifies the grammar and the parser considerably.

127

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =

case

isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left) : 0,

(point(I,right,support) <= point(J,left,support)) : 1,

isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))

else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals to intervals. B is
used to compute for the interval J an interval B(J), which represents the degree of ‘beforeness’
for the points before J.

The function first checks some trivial cases where I cannot be before J (first clause in the
case statement), or where I definitely is before J (second clause in the case statement). If I
is infinite at the left side then

∫
(I ∩ J)(x) · B(J)(x)dx/|I ∩ J | is computed to get a degree of

‘beforeness’, at least for the part where I and J intersect. If I is finite then
∫
I(x)·B(J)(x)dx/|I|

is computed. This averages the degree of a point-interval ‘beforeness’, which is given by the
product I(x) · B(J)(x), over the interval I.

The next example illustrates some procedural features of GeTS. The effect function takes two
intervals and a function F, which maps the two intervals to a fuzzy value. F could for example
be a fuzzy interval–interval relation. The first interval I is now shifted step times by the given
distance, and each time F(I,J) is computed. These values are inserted into a new interval,
which is the result of the function.

Example 4.1.5 (effect)

effect(Interval I, Interval J, (Interval*Interval)->Float F,

Time distance, Integer steps) =

Let K = [] in

while (steps >= 0) {

pushBack(K,point(I,right,kernel),F(I,J)),

I := shift(I,distance),

steps := steps - 1}

K

‘Let K = []’ creates a new empty interval and binds it to the variable K. The while loop shifts
the interval I steps times by the given distance (I := shift(I,distance)). Each time
pushBack(K,point(I,right,kernel),F(I,J)) adds the pair (x, y) consisting of x = right
boundary of the kernel of the shifted I and y = F(I,J) to the interval K.

The dashed line in the figure below shows the result of the effect function when applied
to the two intervals I and J, and a suitable interval–interval ‘before’ relation as parameter F.
The dotted figure shows the position of the shifted interval I when the F(I,J) drops down to
0.

128

-

6

R
0

1

Effect of the effect function

I J

4.1.1 Types in the GeTS Language

The GeTS language has a fixed number of basic types. They represent certain data structures
and certain keywords. So far there is no mechanism for extending the basic types. The basic
types can be combined to functional types T1 ∗ . . . ∗ Tn 7→ T .

4.1.1.1 Basic Types

There are two groups of basic types, the data structure types and the enumeration types. The
data structure types represent built in data structures.

Definition 4.1.6 (Data Structure Types)

Integer standard integers
Time very long integers
Float standard floating point numbers
String strings
Interval fuzzy intervals
Partitioning partitionings
Label labels for partitions
Duration durations
DateFormat date formats

The data structure types abstract away from the concrete implementation. The Integer

type, for example, is currently realized as 32 bit signed integer data, while the Time type is
currently realized as 64 bit signed integer data. The Float type is currently realized by a 32 bit
‘float’ data type. One should, however, not exploit this in any way.

Strings are currently just sequences of 8-bit characters. (This may change in future releases
to support Unicode).

Intervals are realized as polygons with integer coordinates. An interval is therefore a
sequence of pairs I = (x0, y0), . . . , (xn, yn). The xi are Time points and the yi are fuzzy values.
Internally the yi are realized as short integers between 0 and 1000. From the GeTS point of
view, however, the yi are Float numbers between 0 and 1. The interval I is negative infinite if
y0 6= 0. I is positive infinite if yn 6= 0. The internal representation of Interval data, however,
is completely invisible to the GeTS user. Details about the internal representation and the
algorithms can be found in [31].

129

Partitionings are complex data structures. Fortunately, this is also not visible to the
GeTS user. Partitionings are just parameters to some of the functions. They can be used
without knowing anything about the internal details.

Labels for partitions are in principle just strings. It is, however, possible to use different
strings for the same label. For example, one can label days with English names “Monday”,
“Tuesday” etc., and with German names “Montag”, “Dienstag” etc., and switch between these
versions. This is also transparent to the user. Nevertheless, it makes it necessary to consider
labels not as strings, but as data structures (see [33] for details).

Durations (Def. 3.3.37) are sequences of pairs d0 P0, . . . , dn Pn where the di are Float data
and the Pi are Partitionings.

DateFormats (Def. 3.3.48) are sequences P0/ . . . /Pn of Partitionings.

The data structure types are used as types for variables, but they can also be used explicitly
as constants, so called literals. To this end, there is a string representation of the data structure
types. These strings are parsed by the GeTS parser and mapped to the internal representation.

Remark 4.1.7 (String Representation of Data Structure Types) The data structure types
have the following string representation:

Integer: sequences of digits, optionally preceded by ‘+’ or ‘-’. Examples are 123, +4, -345.
The length of these sequences depends on the internal representation of integers.

Time: sequences of digits, optionally preceded by ‘+’ or ‘-’ and optionally followed by ‘T’.
Examples: 12345678901, 3T, -23T. The length of these sequences depend on the internal
representation of Time values.

Notice that a string of digits, which is not followed by ‘T’ is first parsed as Integer. Only
if this fails, it is parsed as Time data. Therefore the string 123 will always be mapped
to Integer data, and not to Time data. Usually this should not harm, because Integer

data are automatically casted to Time data when this becomes necessary.

Float: They have the standard representation of float or double values. Examples are -1.5,
3.4e-2, -77e+5. The length of mantissa and exponent depends on the realization of Float
values.

String: They are arbitrary sequences of characters enclosed in quotes: ”characters”. The two
characters \n are interpreted as newline command. A quote ” within the string must be
escaped with a \ character. The character sequences ”ab\”cd\”ef” is therefore parsed as
the string ab”cd”ef.

Interval: Intervals cannot be explicitly referenced within a GeTS function definition. The
only exception is the empty interval, which is represented by []. The GeTS module,
however, provides an interface function which allows one to call GeTS functions with a
string representation of the arguments. This function accepts non-negative integers as
identifiers for the intervals, together with a vector of pointers to the actual intervals. The
integer identifiers are used as indices to this vector.

Partitioning: It is assumed that all necessary partitionings are predefined, and can be iden-
tified by names. The names can be used in GeTS function definitions. The parser maps
them to the actual partitioning data structures. The names of the partitionings, which
make up the Gregorian calendar, are year, month, week, day, hour, minute, second.

130

Label: Labels must also be predefined. They are identified by their name.

Duration: The representation of a simple duration is d0 P0 + . . . + dn Pn where the di are
Integer or Float expressions and the Pi are partitioning names or variables. Repeating
patterns like ‘2 week + 1 day + 2 week + 1 day’ can be abbreviated by ‘2*(2 week + 1
day)’.

DateFormat: They need to be predefined. Date formats are accessed by their names in GeTS
specifications. Date formats in CTTN are predefined for each calendar system. The prede-
fined date formats for the Gregorian calendar are Gregorian month and Gregorian week.
Thus, GeTS invokes calendar systmes, but only implicitely via the data formats.

A number of enumeration types is predefined in GeTS. They are used to control some of the
algorithms. Their meaning therefore depends on the meaning of the built-in function where
they occur as parameters.

Definition 4.1.8 (Enumeration Types)

type name possible values
Bool true/false

Side left/right

PosNeg positive/negative

UpDown up/down

IntvRegion core/kernel/support

PointRegion core/kernel/support/maximum

Hull core/kernel/support/crisp/monotone/convex

Fuzzify linear/gaussian

Inclusion subset/overlaps/bigger part inside

SplitInclusion align/subset/overlaps/bigger part inside

Sequencing sequential/overlapping/with gaps

SDVersion Kleene/Lukasiewicz/Goedel

Notice that, for example, the keyword core occurs in the enumeration types IntvRegion,
PointRegion and Hull. Which type is meant is determined by the context where it occurs.
If the context is not clear, for example in comparisons ‘expression == keyword’, one can use
Icore (type IntvRegion), Pcore (type PointRegion), or Hcore (type Hull). The same holds
of the keywords kernel and support.

An unknown string is parsed in the following way:
1. is it an Integer value?
2. is it a Time value?
3. is it a Float value?
4. is it a keyword of one of the enumeration types?
5. is it a partitioning?
6. is it a date format?

If none of these succeed then a parse error is generated.

131

Definition 4.1.9 (Basic Types) A Basic Type in GeTS is either a data structure type (Def.
4.1.6), an enumeration type (Def. 4.1.8), or the special type Void for expressions which do not
return any values.

Automatic Type Conversion:
Automatic type conversion is done from the type Integer to the types Float and Time. That
means, the type Integer is also acceptable whenever a type Float or a type Time is required.

4.1.1.2 Compound Types

Definition 4.1.10 (Compound Type) A compound type in GeTS is an expression T1 ∗ . . .∗
Tn 7→ T where T and the Ti are either basic types or compound types.

A type expression is either a basic type or a compound type expression.

4.1.2 Language Constructs for GeTS

The GeTS language has a number of general purpose functional and imperative language com-
ponents. Additionally a number of language constructs are geared to manipulating time points,
temporal intervals, partitionings, dates etc. As already mentioned, the language is strongly
typed. This means, the type of each expression is determined by the top level function name
together with the types of its arguments.

GeTS tries to minimize the required number of parentheses in the expressions. Nevertheless,
it is usually clearer and easier to understand when enough parentheses are used.

The language has an operational semantics. It is described more or less formally when the
language constructs are introduced. The explanations should be clear enough to understand
what the language is able to do.

Some aspects of the language depend on the context where it is used. For example, GeTS
itself has no exception mechanisms. Nevertheless, exceptions are thrown and must be catched
by the host programming system.

Definition 4.1.11 (Function Definitions) A GeTS function definition has one of the forms
(1) name = expression
(2) name() = expression
(3) name(type1 var1, . . . , typen varn) = expression
(4) type : name(type1 var1, . . . , typen varn) = expression
(5) type : name(type1 var1, . . . , typen varn)

The five versions of function definitions can have a trailer: ‘explanation: any string’. The
explanation is attached at the newly defined function. It can be accessed by the host system.

Version (1) and (2) are for constant expressions, i.e. the name at the left hand side is essentially
an abbreviation for the expression at the right hand side. Version (3) is the standard function
definition. The type of the function is type1 ∗ . . . ∗ typen 7→ T where T is the type of the
expression. Version (4) declares the range type of the function explicitly. It can be used for
recursive function definitions, where the name of the newly defined function occurs already
in the body. In this case it is necessary to know the range type of the function, before the
expression can be fully parsed. The factorial function, for example, must be defined in this
way:

Integer:factorial(Integer n) = if(n == 0) then 1 else n * factorial(n-1) (4.1)

132

Finally, version (5) is a forward declaration. It must be used for mutually recursive functions.

Remark 4.1.12 (Overloading) Function definitions can be overloaded. They are distin-
guished by their argument types, not by the result type. This means, two function definitions

f(Integer n) = ... and
f(Float m) = ...

yield different functions, whereas the second definition in
Integer:f(Integer n) = ... and
Float:f(Integer n) = ...

overwrites the first one or is rejected. This depends on the global control parameter GeTS::overwrite.

Definition 4.1.13 (Literals) Literals are strings which can be interpreted as constants of a
certain type. See Remark 4.1.7 for the string representation of literals.

4.1.2.1 Arithmetic Expressions

GeTS supports the same kind of arithmetic expressions as many other programming languages.
A small difference is the Time type, which is integrated in the arithmetics of GeTS.

Definition 4.1.14 (Binary Arithmetic Expressions)
Let N be a number type (i.e. N = Integer or N = Float or N = Time).
If n and m are valid arithmetic expressions then the following binary operations are allowed:

n+m (addition) n % m (modulo)
n−m (subtraction) max(n,m) (maximum)
n ∗m (multiplication) min(n,m) (minimum)
n/m (division) pow(n, e) (ne)

The types are determined according to the following rules:
for the operators ‘+’, ‘-’, ‘*’, ‘/’, max and min:

Integer ∗ Integer 7→ Integer

Float ∗ Integer 7→ Float
Integer ∗ Float 7→ Float
Float ∗ Float 7→ Float
Integer ∗ Time 7→ Time

Time ∗ Integer 7→ Time

Time ∗ Time 7→ Time

Float ∗ Time 7→ Time

Time ∗ Float 7→ Time

The last two type patterns mean that the result of operations on mixed Float and Time values
are rounded to Time values. This makes the operations non-associative: 1.5 + 1.5 + 1T = 4,
whereas 1.5 + 1T + 1.5 = 3.

Float values are not allowed for the modulo operator %. Therefore the remaining type
patterns for % are:

Integer ∗ Integer 7→ Integer

Integer ∗ Time 7→ Time

Time ∗ Integer 7→ Time

Time ∗ Time 7→ Time

The exponentiation operator pow(n, e) is only allowed for Integer exponents and for Float or
Integer mantissas.

Integer ∗ Integer 7→ Integer

Float ∗ Integer 7→ Float.

133

Flat expressions like a + b + c + d without parentheses are allowed. The operator precedence
is -, +, /, *, i.e. * binds most. The functions min and max can also accept more than two
arguments.

Definition 4.1.15 (Unary Arithmetic Expressions) There are four unary arithmetic op-
erators in GeTS:

−n [N 7→ N] N is any number type
float(b) [Bool 7→ Float]
round(a) [Float 7→ Integer]
round(a, up/down) [Float ∗ UpDown 7→ Integer]

−n negates the number n.
n can be an expression of type N = Integer, N = Float or N = Time.

float(b) turns a boolean value b into a floating point number:
float(false) = 0.0 and float(true) = 1.0.

round(a) rounds a Float value a to the nearest integer. 1.5 is rounded to 1, 1.51 is rounded to
2. -1.5 is rounded to -1, -1.51 is rounded to -2.
round(a, up) rounds the Float value a up, and
round(a, down) rounds the Float value a down.

Definition 4.1.16 (Arithmetic Comparisons) If n and m are arithmetic expressions of
type Integer, Float or Time then

(n < m),
(n <= m),

(n > m)
(n >= m)

are the usual arithmetic comparison operators. The result is one of the boolean values true or
false. These operators compare different types, i.e. (3.9 <= 4T) yields true, as expected.

The equality and disequality predicates compare numbers in the expected way, but also every
other data type.

Definition 4.1.17 (Equality and Disequality) If n is an expression of type T and m is an
expression of type Q then

n == m and n ! = m

are expressions of type Bool.

n == m yields true iff

1. T and Q are one of the number types Integer, Float and Time, and the numbers are
equal, i.e. 4.0 == 4T yields true. (4T is the long integer in the Time type.).

2. T = Q, both are enumeration types, and n and m are the same strings. This means in
particular: if T = Hull, Q = IntvRegion, n = core and m = core then n == m yields
false (because T 6= Q).

3. T = Q = Interval and n and m are the same intervals (i.e. the same polygons).

4. T = Q = Partitioning and n and m are pointer-equal partitionings

5. T = Q = Duration and n and m are the same durations.

n ! = m yields true iff n == m yields false.

134

4.1.2.2 Boolean Expressions

GeTS has the standard Boolean connectives: negation (-), and (‘and’ or ‘&&’), or (‘or’ or ‘||’)
and exclusive or (‘xor’ or ‘̂ ’).

Definition 4.1.18 (Boolean Expressions) If a and b are Boolean expressions then

−a [Bool 7→ Bool]
a and b [Bool ∗ Bool 7→ Bool]
a or b [Bool ∗ Bool 7→ Bool]
a xor b [Bool ∗ Bool 7→ Bool]

are Boolean expressions with the corresponding meaning.

Flat Boolean expressions without parentheses are also allowed. The operator precedence is xor,
or, and, i.e. and binds most.

4.1.2.3 Control Constructs

GeTS has the obligatory ‘if-then-else’ construct. In addition there is a case construct to avoid
the need for nested if-then-elses. A ‘while’ loop is also available. Since GeTS is a functional
language, the while construct needs a return value. Therefore in addition to the while loop
body, it has a separate return expression. In the body, however, only imperative constructs
(with return type Void) are allowed.

Definition 4.1.19 (if-then-else) If c is an expression of type Bool and a and b are expres-
sions of the same type T then

if c then a else b

is an expression of type T .

Thus, the type of the if construct is in general Bool ∗ T ∗ T 7→ T .

Exceptions are:

1. If a is of type Float, and b of type Integer, or vice versa, then the integer is casted to
Float. The type of if is in this case:
Bool ∗ Float ∗ Integer 7→ Float or Bool ∗ Integer ∗ Float 7→ Float.

Example: ‘if true then 3 else 4.0’ yields 3.0 as a Float number.

2. If a is of type Time, and b of type Integer, or vice versa, then the integer is casted to
Time. The type of if is in this case:
Bool ∗ Time ∗ Integer 7→ Time or Bool ∗ Integer ∗ Time 7→ Time.

Notice that a mix of the type Time and the type Float is not allowed in the if statement.
The definition of the factorial function (4.1) is a typical example for the use of if-then-else.

Definition 4.1.20 (case) If C1, . . . , Cn are Boolean expressions and E1, . . . En and D are
expressions of the same type T then

case C1 : E1, ..., Cn : En else D

is an expression of type T .

135

The operational semantics of this case construct is: the conditions C1, . . . , Cn are evaluated in
this sequence. If Ci is the first condition, which yields true then Ei is evaluated and its result
is returned as the result of case. If all Ci evaluate to false then the result of D is returned.

Exceptions for the requirement that E1, . . . En, D are expressions of the same type T are: if
T = Float or T = Time then some of the E1, . . . En and D may have type Integer. These
integers are automatically casted to Float or Time.
As in the ‘if-then-else’ construct, a mix of the types Time and Float is not allowed in the case

body.

Definition 4.1.21 (while) Let C be an expression of type Bool, E1, . . . , En expressions of
type Void and ‘result’ and expression of type T then

while C {E1, ..., En} result

is an expression of type T .

The operational semantics of this while construct is: as long as the evaluation of C yields true,
evaluate the expressions E1, . . . , En in this sequence. As soon as C yields false, evaluate result
and return this as value of while.
An iterative definition of the factorial function is a typical example where the while construct
is used.

factorial(Integer n) = Let f = 1 in while(n>0){f := f*n, n := n-1} f (4.2)

This example also illustrates the binding construct Let and the assignment operation.

Definition 4.1.22 (Let) The construct
Let variable = expression1 in expression2
of type
T

evaluates the expression1, binds the result to the variable and then evaluates expression2
under this binding.

T is the type of expression2.

Definition 4.1.23 (Assignment) If x is a variable of type T , and E is an expression of type
T then x := E is an expression of type Void.

This is the usual assignment operation: the result of the evaluation of E is assigned to x.

Exceptions for the requirement that x and E have the same type are: if x has type Float or
Time then E may have type Integer. The value is automatically casted to Float or Time.
Notice that the assignment operation returns no value. It can only occur in the body of the
while statement.

4.1.2.4 Functional Arguments

A function call in GeTS is an expression name(argument1, . . . , argumentn) where ‘name’ is
either the name of a built-in function, or the name of a previously defined function (or a function
with forward declaration), or a variable with suitable functional type.

136

Since variables can have functional types, and GeTS allows overloading of function defini-
tions, it needs a notation for functional arguments. A functional argument can either be just
a variable with appropriate functional type, or a function name with argument type specifica-
tions, or a lambda expression. A function name with argument type specifications is necessary
to choose among different overloaded functions.

Definition 4.1.24 (Functional Arguments) A functional argument in GeTS is either

1. a variable with the appropriate functional type,

2. an expression name[type1 ∗ . . . ∗ typen] of a previously defined function with that name
and with argument types type1 ∗ . . . ∗ typen, or

3. a lambda expression:
lambda(type1 variable1, . . . , typen variablen) expression.
If T is the type of ‘expression’ then type1 ∗ . . . ∗ typen 7→ T is the type of the lambda-
expression.
‘expression’ can contain variables which are lexically bound outside the parameter list of
lambda.

4.1.2.5 Now and Shift

Definition 4.1.25 (now) The expression now() of type Time yields the current moment in
time, i.e. the number of seconds from January, 1st 1970 until the time when the now() function
is invoked.

Notions like ‘in two weeks time’ or ‘three years from now’ etc. denote time shifts. Time
shifts are basic operations for many other temporal notions. Therefore GeTS provides a shift

function which can shift single time points as well as whole intervals by a given duration. Since
in general the absolute length of durations depends on the position of the time points at the
time axis, shifting time points by durations is no trivial operation at all.

A first specification for a shift function is to map a time point t to a time point t′ such
that t′− t is just the required duration, ‘two weeks’ or ‘three years’ in the above examples. This
is a length oriented shift function.

Example 4.1.26 (for Length Oriented Shift) The algorithm for this function can be best
understood by the following example:

-? ?

� - � -
2 6 73 4 5

t t′

f1
f2

Suppose we want to shift the time point t by 3.5 partitions. First, the relative distance f1
between t and the end of the partition containing t is measured. Suppose it is 0.75. That
means from the end of the partition we need to move forward still 2.75 partitions. We can

137

move forward 2 partitions by just adding the 2 to the coordinate 4. We end up at the start of
partition 6. From there we need to move forward f2 = 0.75 partitions, which is just 75% of the
length of partition 6.

Unfortunately the length oriented shift function does not always give intuitive results. Suppose
the time point t is noon at March, 15th, and we want to shift t by 1 month. March has 31
days. Therefore the distance to the end of March is exactly 0.5 months. Thus, we need to
move exactly 0.5 times the length of April into April. April has 30 days. 0.5 times its length is
exactly 14 days. Thus, we end up at midnight April, 14th.

This is not what one would usually expect. We would expect to shift t to the same time
of the day as we started with. With the length oriented shift this happens only by chance, or
when the partitions have the same length.

GeTS therefore provides also a date oriented shift function which avoids the above problems
and gives more intuitive results. The idea is to do the calculations not on the level of reference
time points, but on the level of dates. If, for example, t represents 2004/2/15, then ‘in one
month time’ usually means 2004/3/15. That means the reference time must be turned into
a date, the date must be manipulated, and then the manipulated date is turned back into a
reference time. This is quite straight forward if the partitioning represents a basic time unit of
a calendar system (year, month, week, day etc.), and this calendar system has a date format
where the time unit occurs. In the Gregorian calendar this is the case, even for the time unit
‘weeks’. ‘In two weeks time’ requires to turn the reference time into a date format which uses
weeks. The corresponding date format uses the counting of weeks in the year (ISO 8601). For
example, 2004/42/1 means Tuesday2 in week 42 in the year 2004. In two weeks time would
then be 2004/44/1.

A date oriented shift operation for partitionings which are not standard partitionings of a
calendar system can usually be defined by mapping it to a date oriented shift operation for
a standard partitioning. For example, if a partitioning ‘semester’ is defined as sequences of
6 months, one can reduce a shift in terms of semesters to a shift in terms of months. The
partitioning module, which underlies the GeTS language, has for each type of partitionings a
particular date oriented shift operation. For the details we must therefore refer to [33].

The next problem is to deal with fractional shifts. How can one implement, say, ‘in 3.5
months time’? The idea is as follows: suppose the date format is year/month/day/hour/minute/
second, and the reference time corresponds to, say, 2004/2/20/10/5/1. First we make a shift
by three months and we end up at 2004/5/20/10/5/1. This is a day in May. From the date
format we take the information that the next finer grained time unit is ‘day’. May has 31
days. 0.5 ∗ 31 = 15.5. Therefore we need to shift the date first by 15 days, and we end up at
2004/5/34/10/5/1. There is still a remaining shift of half a day. The next finer grained time
unit is hour. One day has 24 hours. 0.5 ∗ 24 = 12. Thus, the last date is shifted by 12 hours,
and the final date is now 2004/5/34/22/5/1. This is turned back into a time point.

The date oriented shift gives more intuitive results. The drawback is that the distance
between the shifted time point and the original time point need no longer be the given duration
when it is measured with the length function (Def. 4.1.42).

The shift function can not only shift time points by durations like 3.5 months. More
complex durations like 3.5 months - 5 days + 3 hours are also admissible for the shift function.

2According to ISO 8601, the first day in a week is Monday. In the standard notation this is day number 1.
Since we count days from 0, Monday is day 0 and Tuesday is day 1.

138

A shift by such a duration is executed as a sequence of shifts, first by 3.5 months, then by -5
days (backwards shift), and finally by 3 hours.

A statement like ‘we must move this task by three working days’ refers to a shift of time
points which is measured in granules. GeTS offers therefore a possibility to shift time points
and intervals by durations which are interpreted as granules. The basic idea for the algorithm
which shifts a time point by a number of granules is to turn the granules into partitions, and
to use the shift function for partitions. The method is illustrated with the following example:

Example 4.1.27 Suppose we want to model a working day with two shifts, a day shift from 8
am until 4 pm, with a one hour break between 12 am and 1 pm, and a night shift between 10
pm and 2 am. The labelled partitioning is hour with labels ds (for day shift) and ns (for night
shift).

-ds ds gap ds
8 10 12

ds
14 16 24 222

︸ ︷︷ ︸

granule1

︸ ︷︷ ︸

granule2

ns ns

The first granule consists of 7 non-gap partitions labelled ds. The second granule consists of 4
non-gap partitions labelled ns.

This example shows that shifts by granules yield intuitive results only in special cases. A
time point t at 9 am at day n, shifted by 2 granules, should end up at 9 am at day n+ 1. But
how can we shift t by one granule, i.e. from the day shift to the night shift? GeTS provides
shift operations for this and other cases as well. Whether they yield intuitive results, depends
on the application.

A time point t can be: (i) within a non-gap partition of a granule, (ii) within a gap partition
of a granule or (iii) within a gap partition between two granules. Suppose we want to shift t by
m = 1.5 granules. The number of partitions to be shifted is determined as follows:

Case (i): t is within a non-gap partition p of a granule g. Suppose m is positive. Let n be
the relative position of p within g (not counting internal gaps). 9 am in Example 4.1.27 is
in partition 1 of a 7-partition granule (the first partition has number 0). n = 1/7 = 0.1428.
From the start of the first granule we need to move m + n = 1.6428 granules forward, i.e. we
need to move n′ = 0.6428 into the second granule. Since this is a 4-partition granule, and
4 · 0.6428 = 2.57, the target partition is the third partition in the second granule. 9 am would
be mapped to 1 am next day in the above example.

A negative shift m is treated in a similar way. The only difference is that the relative position
of a partition within a granule is computed from the end of the granule and it is represented as
a negative number. The relative position of the second partition within a 7-partition granule
is in this case −6/7 = −0.857.

Case (ii): t is within a gap partition p of a granule g. Let t be at 12:30 am in Example 4.1.27.
If the shift m is integer, we try to move t again into a gap partition of a granule g + m. If
the granule g+m has gaps, we determined the relative position n of the gap region containing
t within g. 12:30 am is in the first gap region of a granule consisting of 2 non-gap regions.
Therefore n = 0.5. If the target granule g + m has k non-gap regions, the gap region, into
which t is to be moved is the n · kth gap region. In a second step, the relative position of the

139

gap-partition within the gap region is mapped to a relative position of a gap partition in the
target gap-area.

Negative shifts are again treated by computing relative positions as negative numbers, as in
case (i).

If the target granule has no gaps, or the shift m is not integer, internal gaps are ignored and
the algorithm of case (i) is applied.

Shifting t = 12:30 am by m = 2 granules ends up at 12:30 am next day with this method.
Shifting t = 12:30 am by m = 1 granules ends up at 0:30 am next day.

Case (iii): t is within a gap partition p between two granules g1 and g2. If the shift m is integer
then the relative position n of the gap partition p within the gap region between g1 and g2 is
mapped to a relative position of a gap partition p′ between the granules g1 +m and g2 + m.
If there are no gaps between g1 + m and g2 + m then the target partition p′ is just the first
partition of the granule g2 +m.

Example 4.1.27: let t be at 5 pm and m = 1. 5 pm is in the second gap-partition of a 6
gap-partition region. The gap-region between the night shift and the day shift consists also of
6 gap-partitions. Therefore t is shifted to the 2/6 · 6 = 2nd gap-partition, i.e. 3 am next day.

Positive fractional shifts, for example m = 1.5, are treated in a relatively simple way. Let
m′=def⌊m⌋ be the integer part of m. The target partition p′ is determined by taking the fractional
part m −m′ as the relative position of the non-gap partitions of granule g2 +m′. The exact
position of t between the two granules plays no role in this case.

Shifting t = 6 : 30 am by 1.5 granules in the above example therefore ends up at 0:30 am
next day.

Negative fractional shifts are computed by shifting the end of granule g1 +m′ the fractional
part m−m′ backwards.

Definition 4.1.28 (shift) The shift function can shift a single time point by a given dura-
tion:

shift(time, duration, asGranule, dateOriented)
is of type
Time ∗ Duration ∗ Bool ∗ Bool 7→ Time.

The shiftLength function determines the length of a shift:
shiftLength(time, duration, asGranule, dateOriented)
is of type
Time ∗ Duration ∗ Bool ∗ Bool 7→ Time.

shiftLength(time, duration, asGranule, dateOriented) is just an abbreviation for
shift(time, duration, asGranule, dateOriented)− time.

shift(time, duration, asGranule, dateOriented) shifts the time point by the given duration.
If asGranule = true then the partitionings in the duration are interpreted as granules, other-
wise as partitions. If dateOriented = true then the shift is date oriented, otherwise it is length
oriented.

4.1.2.6 Explicit Construction of Time Intervals

Fuzzy time intervals (type Interval) are one of the built-in data structures in GeTS. It is
possible to create new empty intervals and fill them up with coordinate points. There are three
ways to create new intervals in GeTS:

140

Definition 4.1.29 (New Time Intervals)

1. The expression [] stands for the empty interval.

2. The expression [t1, t2] of type Time ∗ Time 7→ Interval constructs a new crisp interval
with boundaries t1 and t2 (see Example 4.1.2).

3. The expression [(t1, y1), (t2, y2)] of type Time ∗ Float ∗ TimeFloat 7→ Interval constructs
a new fuzzy interval with the given two points.

Definition 4.1.30 (Extending Intervals) The function
pushBack(I, time, value)
of type
Interval ∗ Time ∗ Float 7→ Void

adds the point (time, value) to the end of the interval I. I must be an interval which was
constructed with newInterval() (see Def. 4.1.29). time must lie after the last point in the
interval. value must be a Float value between 0 and 1.

The pushBack(I, time, value) function can only ill up the interval I from the past to the future.
It throws an error if time is before the last time point in I.

4.1.2.7 Set Operations on Intervals

For crisp intervals there are the standard set operators: complement, intersection, union etc.
These are uniquely defined. There is no choice. Unfortunately, or fortunately, because it gives
you more flexibility, there are no such uniquely defined set operators for fuzzy intervals. Set
operators are essentially transformations of the membership functions, and there are lots of
different ones.

GeTS offers standard versions of the set operators, parameterized set operators of the
Hamacher family, and finally set operators with transformation functions for the membership
function as parameter. These allow one to customize the set operators in an arbitrary way.

Definition 4.1.31 (Complement of Intervals)
Let I be an expression of type Interval. The complement operation for intervals comes in
three versions:

(1) complement(I) Interval 7→ Interval

(2) complement(I, λ) Interval ∗ Float 7→ Interval

(3) complement(I, negation function) Interval ∗ (Float 7→ Float) 7→ Interval

Version (1) is the standard complement. Each point (x, y) of the membership function of I is
turned into (x, 1 − y).

-

6

R
0

1

Standard Complement for a Fuzzy Interval

141

Version (2) is the lambda-complement. For λ > −1, each point (x, y) of the membership function
of I is turned into (x, 1−y

1+λy). The ordinary complement is computed for λ ≤ −1.

-

6

R
0

1

λ-Complement for λ = 2
6 8

Finally, with version (3) it is possible to submit a user defined negation function. For example,
with

lambda complement(Interval I, Float lam)

= complement(I,lambda(Float y) (1-y)/(1+lam*y))

one can define the same lambda-complement with a user defined negation function.

Definition 4.1.32 (Union of Intervals) Let I and J be expressions of type Interval. The
union operation for intervals comes in three versions:

(1) union(I, J) Interval ∗ Interval 7→ Interval

(2) union(I, J, β) Interval ∗ Interval ∗ Float 7→ Interval

(3) union(I, J, co norm)
Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval

Version (1) is the standard union. Each pair (x, y1) and (x, y2) of points of the membership
function of I and J is turned into (x,max(y1 − y2)).

-

6

R
0

1

Standard Union of Fuzzy Sets

I J

I ∪ J

Version (2) is the so called Hamacher–Union. For β ≥ −1, each pair (x, y1) and (x, y2) of points

of the membership function of I and J is turned into (x, y1+y2+(β−1)y1y2

1+βy1y2
). The ordinary union

is computed for β < −1.

-

6

R
0

1

Hamacher–Union with β = 0.5

142

Finally, with version (3) of the union function it is possible to submit a user defined co-norm.3

For example, with

Hamacher Union(Interval I, Interval J, Float beta)

= union(I, J, lambda(Float y1, Float y2)

(y1+y2+((beta - 1)*y1*y2))/(1+beta*y1*y2))

one can define the same Hamacher union with a user defined co-norm.

Definition 4.1.33 (Intersection of Intervals) Let I and J be expressions of type Interval,
The intersection operation for intervals comes also in three versions:

(1) intersection(I, J) Interval ∗ Interval 7→ Interval

(2) intersection(I, J, γ) Interval ∗ Interval ∗ Float 7→ Interval

(3) intersection(I, J, norm))
Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval

Version (1) is the standard intersection. Each pair (x, y1) and (x, y2) of points of the membership
function of I and J is turned into (x,min(y1 − y2)).

-

6

R
0

1

Standard Intersection of Fuzzy Sets

i
j

Version (2) is the Hamacher–Intersection. For γ ≥ 0, each pair (x, y1) and (x, y2) of points
of the membership function of I and J is turned into (x, y1y2

γ+(1−γ)(y1+y2−y1y2)
). The ordinary

intersection is computed for γ < 0.

-

6

R
0

1

Hamacher–Intersection γ = 0.5

Finally, with version (3) it is possible to submit a user defined norm. For example, with

Hamacher_Intersection(Interval I, Interval J, Float gamma)

= intersection(I, J, lambda(Float y1, Float y2)

(y1*y2)/(gamma + (1-gamma)*(y1 + y2 -y1*y_2))

one can define the same Hamacher-Intersection with a user defined norm.

3Norms and co-norms are binary functions on membership values of fuzzy sets. They satisfy conditions which
make sure that the corresponding set operations can be considered as union and intersection [14].

143

Definition 4.1.34 (Set Difference between Intervals) Let I and J be expressions of type
Interval. The set difference operation for intervals comes also in three versions:

(1) setdifference(I, J) Interval ∗ Interval 7→ Interval

(2) setdifference(I, J, version) Interval ∗ Interval ∗ SDVersion 7→ Interval

(3) setdifference(I, J, intersection, complement)
Interval ∗ Interval ∗ (Interval ∗ Interval 7→ Interval) ∗
(Interval 7→ Interval) 7→ Interval

(1) extends the crisp correspondence: I \ J = I ∩ J ′ where J ′ is the complement of J ,
setdifference(I,J) is therefore an abbreviation for intersection(I,complement(J)) with
standard intersection and complement functions.

(2) The second version computes the set difference operator by means of a binary function on
the membership functions. The following versions are possible:

SDVersion Function
Kleene (I \ J)(x) =defmin(I(x), 1 − J(x))
Lukasiewicz (I \ J)(x) =defmax(0, I(x) − J(x))
Goedel (I \ J)(x) =def 0 if I(x) ≤ J(x) and 1 − J(x) otherwise

-

6

R
0

1

Set Difference

Kleene

Lukasiewicz

GoedelI J

(3) Finally, the third version is a generalization of the first version:

setdifference(I, J, intersection, complement) =def intersection(I, complement(J))

intersection is a user defined binary function on intervals, and complement is a user defined
unary function on intervals.

4.1.2.8 Predicates of Intervals

Fuzzy time intervals have many properties. They can be checked with suitable GeTS predicates.

Definition 4.1.35 (Predicates) GeTS provides the following predicates to check the structure
of an interval I:

(1) isCrisp(I) Interval 7→ Bool

(2) isCrisp(I, left/right) Interval ∗ Side 7→ Bool

(3) isEmpty(I) Interval 7→ Bool

(4) isConvex(I) Interval 7→ Bool

(5) isMonotone(I) Interval 7→ Bool

(6) isInfinite(I) Interval 7→ Bool

(7) isInfinite(I,left/right) Interval ∗ Side 7→ Bool

144

isCrisp(I) checks whether the interval is a, possibly non-convex, crisp interval.
isCrisp(I, left) checks whether the interval is crisp at its left end. I may be infinite at this
side, but the fuzzy value must be 1 in this case. Similar for isCrisp(I, right).

isEmpty(I) checks whether the interval is empty.

isConvex(I) checks whether the interval is convex. I can be non-convex even if I is crisp
because it may consist of several different components (Def. 2.2.10).

isMonotone(I) checks whether the membership function of the interval is monotonically rising
to a maximal value, and then monotonically falling again.

isInfinite(I) checks whether the interval is infinite.

isInfinite(I, left) checks whether the interval is infinite at the left hand side.
isInfinite(I, right) checks whether the interval is infinite at the right hand side.

The boundaries of infinite intervals are of course the infinity. Infinity has a special repre-
sentation in the Time datatype. This can be checked with the isInfinity predicate:

Definition 4.1.36 (Infinity)

isInfinity(time) Time 7→ Bool

isInfinity(time,positive/negative) Time ∗ PosNeg 7→ Bool

isInfinity(time) checks whether the time represents an infinity.
isInfinity(time,positive) checks whether the time represents the positive infinity.
isInfinity(time,negative) checks whether the time represents the negative infinity.

The next three predicates allow one to check basic relations between time points and inter-
vals, or between intervals and intervals.

Definition 4.1.37 (during, isSubset, doesOverlap)
(1) during(time, I, core/kernel/support) Time ∗ Interval ∗ IntvRegion 7→ Bool

(2) isSubset(I, J, core/kernel/support) Interval ∗ Interval ∗ IntvRegion 7→ Bool

(3) doesOverlap(I, J, core/kernel/support) Interval ∗ Interval ∗ IntvRegion 7→ Bool

(1) during(time, I, region) checks whether the time is inside the given region of the interval I.
(2) isSubset(I, J, region) checks whether the corresponding region of the interval I is a subset
of the corresponding region of the interval J .
(3) doesOverlap(I, J, region) checks whether the corresponding region of the interval I overlaps
the corresponding region of the interval J .

The point-interval during relation is one of the five point–interval relations ‘before’, ‘starts’,
‘during’, ‘finishes’ and ‘after’ for crisp intervals. Only during is built-in because it is one of
the most frequently used relations. The other relations can easily be defined in GeTS. The
point–interval before relation in Example 4.1.3 is such an example.

4.1.2.9 Other Features of Intervals

With the first function in this paragraph one can access the fuzzy membership value of a time
point within a given fuzzy interval.

145

Definition 4.1.38 (member) The function
member(time, I)
of type
Time *Interval 7→ Float

returns the value of the membership function of the interval I at time point time. The value is
a Float number between 0 and 1.

Definition 4.1.39 (Components)

1. The function components(I) of type Interval 7→ Integer yields the number of compo-
nents in the interval I.

2. The function component(I,k) of type Interval ∗ Integer 7→ Interval extracts the kth

component from the interval I.

The function size below measures an interval I or parts of it by integrating over its membership
function.

Definition 4.1.40 (size) The function size comes in three versions.

(1) size(I) Interval 7→ Time

(2) size(I, core/support/kernel) Interval ∗ IntvRegion 7→ Time

(3) size(I, t1, t2) Interval ∗ Time ∗ Time 7→ Time

size(I) measures the size of the support of I.
size(I, core/support/kernel), measures the size of the corresponding region of I.
size(I) = size(I, support).
size(I, t1, t2) measures the area of I between t1 and t2.

Definition 4.1.41 (sub and inf) Let I be an interval expression.
The function sup(I) of type Interval 7→ Float returns the supremum of the fuzzy values of
the membership function for I (usually 1).

The function inf(I) of type Interval 7→ Float returns the infimum of the fuzzy values of
the membership function for I (usually 0).

The function length measures the distance between two time points in terms of a partition.

Definition 4.1.42 (length) The function
length(t1, t2, partitioning, asGranule)
of type
Time ∗ Time ∗ Partitioning ∗ Bool 7→ Float

measures the distance between t1 and t2 in terms of the given partitioning. If asGranule = true

then the distance is measured in terms of the length of the granules of the partitioning’s labelling
(without gaps).

146

An example for determining the distance between two time points in terms of partitions is

length(now(),shift(now(),1 day),day,false)

is just 1.0.
The next example illustrates the length function in terms of granules.

Example 4.1.43 (length in terms of granules)
Consider a partitioning P with labelling a,a,gap,gap,a,gap,b,b.

� -a a gap gap a gap b b

︸ ︷︷ ︸

granule1

︸ ︷︷ ︸

granule2

0 1 2 3 4 5 6 7

The table below gives the results of length(t1,t2,P,true) where t1 is the start of partition
p1 and t2 is the start of partition p2.

t1 t2 length in terms of granules
0 1 1/3
0 2 2/3
0 3 2/3
0 4 2/3
0 5 1
0 6 1
0 7 1.5
0 8 2

The function ‘point’ below can be used to access the boundaries of the three different regions
of an interval: support, core and kernel, and the first and last maximal points.

Definition 4.1.44 (point) The function
point(I, left/right, core/support/kernel/maximum)
of type
Interval ∗ Side ∗ PointRegion 7→ Time

returns the position of the boundaries of I’s regions:
point(I, left,support) yields the position of the left support boundary
point(I, right,support) yields the position of the right support boundary
point(I, left,core) yields the position of the left core boundary
point(I, right,core) yields the position of the right core boundary
point(I, left,kernel) yields the position of the left kernel boundary
point(I, right,kernel) yields the position of the right kernel boundary.
point(I, left,maximum) yields the leftmost position of the maximal fuzzy value.
point(I, right,maximum) yields the rightmost position of the maximal fuzzy value.

If I is just a convex crisp interval [t1, t2[then
point(I, left,support) = t1 and point(I, right,support) = t2.

Center Points
The n,m-center points are used to express temporal notions like ‘the first half of the year’, or

147

‘the second quarter of the year’, or more exotic expressions like ‘the 25th 49th of the weekend’
etc. The notion of n,m-center points makes only sense for finite intervals.

Example 4.1.45 (Center Points) The 1,2-center point I1,2 of I splits I in two halfs of the
same size (integrated over the membership function). The 1,3-center point indicates a split of
I into three parts of the same size. centerPoint(I,1,3) is the boundary of the first third,
centerPoint(I,2,3) is the boundary of the second third.

-

6

R
0

1

n, 3-Center Points
I0,3 I1,3 I2,3 I3,3

-

6

R
0

1

n, 2-Center Points
I0,2 I1,2 I2,2

Definition 4.1.46 (Center Points) The function
centerPoint(I, n,m)
of type
Interval ∗ Integer ∗ Integer 7→ Time

yields the (earliest) position of the n,m-center point.

The center points are computed such that for n < m:

∫ centerPoint(n+1,m)

centerPoint(n,m)

I(x) dx = (

∫

I(x) dx)/m

4.1.2.10 Basic Manipulations of Intervals

In this paragraph we introduce some elementary transformation functions for fuzzy time inter-
vals.

Definition 4.1.47 (Shift of Time Intervals) The function
shift(I, t)
of type
Interval ∗ Time 7→ Interval

shifts the interval by the given time, i.e. shift(I, t)(x) = I(x − t)

Definition 4.1.48 (cut) The function
cut(I, t1, t2)
of type
Interval ∗ Time ∗ Time 7→ Interval

148

cuts the part of the interval I between the time points t1 and t2 out of I and returns it as a new
interval.

The hull function below is able to compute different hulls of a fuzzy time intervals.

Definition 4.1.49 (Hull Calculations) The function
hull(I, core/support/kernel/crisp/monotone/convex)
of type
Interval ∗ Hull 7→ Interval

computes a hull of the interval I. The second parameter determines which hull is to be computed.

The core, support and kernel hull compute the corresponding interval regions as crisp
intervals. The core and support hull may therefore consist of different components, whereas
the kernel hull consists of at most one single component.

There is a small problem with the support hull. Consider the following example:

-

6

R
0

1

support hull problem

I

0 20 40 60

Since I(0) = 0, the support of I is the open interval]0, 60[. The function hull(I,support),
however, calculates the interval boundaries 0 and 60, which are interpreted as the half open
interval [0, 60[. Strictly mathematical, this is not correct. In a correct implementation, however,
we would have to distinguish open and half open intervals. Since the overhead for this is
enormous, the current version of GeTS has to live with this error.

The crisp hull for crisp intervals is the usual convex hull of crisp intervals. It consists of
the smallest crisp interval which contains all the components of the interval. The crisp hull for
non-crisp intervals is the convex hull of the support of the interval. If the non-convex interval
consists of one single component only, there is no difference between the crisp and support hull.
In general we have

hull(I, crisp) = hull(hull(I, support),crisp).

The monotone hull of an interval I is the smallest monotone interval which contains I. An
interval is monotone iff its membership function rises monotonically up to a maximal point,
and then falls monotonically again.

-

6

R
0

1

Monotone Hull of a Fuzzy Interval

The convex hull of an interval I is the smallest convex interval which contains I. The notion
‘convex’, which is appropriate here, is the notion of a convex polygon. That means, if we

149

follow the membership function from left to right there are only right curves. The next figure
illustrates this.

-

6

R
0

1

Convex Hull of a Fuzzy Interval

If the interval I is crisp then the crisp, monotone and convex hull are the same.

The next function can be used to extract the gaps between components of an interval. The
invert function inverts the membership function, but only between the last maximal point
of the first component and the first maximal point of the last component. invert(I) is zero
outside these points.

Definition 4.1.50 (invert) The function invert(I) of type Interval 7→ Interval inverts
the membership function of the interval I:

invert(I)(x) =def

{
1 − I(x) if a ≤ x < b
0 otherwise.

where a is the last maximal point of the first component of I, and b is the first maximal point
of the last component of I.

Example:

-

6

R
0

1

Invert

components(invert(I)) yields the number of gaps in the interval I.

The scaleup function below multiplies the membership function of an interval I with a factor
f , such that the maximal value of I(x) ∗ f is 1.

Definition 4.1.51 (scaleup) The function scaleup(I) of type Interval 7→ Interval scales
the membership function of I such that its maximum is 1.

More general scaling functions are times and exp.

Definition 4.1.52 (times and exp)

times(I, f) Interval ∗ Float 7→ Interval

exp(I, e) Interval ∗ Float 7→ Interval

times(I, f)(x) = min(I(x) · f, 1).
exp(I, e) computes an interval such that exp(I, e)(x) = I(x)e.

150

The dashed line in the next figure indicates times(I, 2) and the dotted line indicates exp(I, 2).

-

6

R
0

1

times(I, 2) and exp(I, 2)

The rising part of a fuzzy time interval is crucial for a fuzzy point-interval before relation. The
falling part, on the other hand, is crucial for a point-interval after relation. The rising part
of an interval I can be computed by following its monotone hull up to the first maximal point,
and then extending it to the infinity. Similar with the falling part.

Definition 4.1.53 (Extend to Infinity) The function

extend(I, positive/negative)
of type
Interval ∗ PosNeg 7→ Interval

extends the interval to the infinity. extend(I, positive) raises the membership function of
the monotone hull of I to 1 after the first maximum Ifm. extend(I, negative) raises the
membership function of the monotone hull of I to 1 before the right maximum I lm.

Example:

-

6

R
0

1

extend(I,positive) and extend(I,negative)
Ifm I lm

I I

An example where the extend function is useful is the definition of the binary ‘until’ relation
between two intervals.

until(Interval I, Interval J)

= intersection(extend(I,positive),extend(J,negative))
(4.3)

computes until(I, J) as the interval which lasts from the beginning of interval I until the end
of interval J .

-

6

R
0

1

until

I J

There is a further extend function in GeTS. It lengthens or shortens an interval by a certain
time.

Definition 4.1.54 (Extend by a Certain Time) The function

151

extend(I, length, side)
of type
Interval ∗ Time ∗ Side 7→ Interval

extends the interval I by the given length.

The side parameter determines at which side the interval is extended. side = left extends it
at the left side, side = right extends it at the right side. A positive length value causes the
interval to be extended, whereas a negative length value causes the interval to be shrunken.

The algorithm for extending or shrinking a fuzzy interval works as follows: In a first step
the interval I is split into the left/right part I1 of the interval up to the first maximal point,
and the rest I2. I1 is extended to the infinity. This part is shifted. If the interval is to be
extended, then the union of the shifted I1 with I2 is computed. If the interval is to be shrinked
then the intersection of the shifted I1 with I2 is computed. The next figure illustrates this.
The dotted line shows the shifted front part of the interval. The dashed line is the result of the
union/intersection.

Example:

-

6

R
0

1

extending and shrinking an interval
by a certain duration

The extend function together with shiftLength (Def. 4.1.28) can be used to extend an
interval by a certain duration. For example,

extend(I,−shiftLength(point(I, left, support),−1 month, false, true), left)

extends the left side of the interval I by 1 month. The month length is determined by a
backwards shift of the left boundary of I’s support.

Definition 4.1.55 (integrate) The function

integrate(I, positive/negative)
of type
Interval ∗ PosNeg 7→ Interval

integrates the membership function of I and normalizes its value to 1. If the control parameter
is positive then I is integrated from left to right. If it is negative then I is integrated from
right to left.

An example where the integrate operator may be useful is the definition of party time

Example 4.1.56 (Birthday Party Time) Consider a database about, say, the institute’s
birthday parties. It may contain the entry that the birthday party for the director took place
‘from around noon until early evening’ of 20/7/2003. ‘Around noon’ is a fuzzy notion and
‘early evening’ is a fuzzy notion. Suppose, we have a formalization of ‘around noon’ and ‘early
evening’ as the following fuzzy sets:

152

-

6

R
0

1

Around Noon and Early Evening
11 12 13 20 21 2422

What is now the duration of the birthday party? It must obviously also be a fuzzy set. The
fuzzy value of the birthday party duration at a time point x is 1 if the probability that the
party started before x is 1 and the probability that the party ended after x is also 1. Therefore
the fuzzy value at point x is computed by integrating over the probabilities of the start points
and the end points. A natural definition would therefore be:

partyTime(Interval I, Interval J)

= intersection(integrate(I,positive),integrate(J,negative))
(4.4)

The resulting fuzzy set is:

-

6

R
0

1

Birthday Party Time
11 12 13 20 21 2422

I J

The dashed curve may, for example, represent the percentage of people at the party at a give
time.

Fuzzification
Fuzzy time intervals could be defined by specifying the shape of the membership function in
some way. This is in general very inconvenient. Therefore GeTS provides an alternative. The
idea is to take a crisp interval and to ‘fuzzify’ the front and back end in a certain way. For
example, one may specify ‘early afternoon’ by taking the interval between 1 and 6 pm and
imposing, for example, a linear or a Gaussian shape increase from 1 to 2 pm, and a linear
or a Gaussian shape decrease from 4 to 6 pm. Technically this means multiplying a linear or
Gaussian function with the membership values.

Definition 4.1.57 (Fuzzification) There are two different versions of the fuzzify function
in GeTS. The first version allows one to specify the part of the interval I which is to be fuzzified
in terms of percents of the interval length. The second version needs absolute coordinates.

fuzzify(I, linear/gaussian,left/right, increase, offset)
of type
Interval, Fuzzify, Side,Float,Float 7→ Interval

fuzzify(I, linear/gaussian,left/right, x1, x2, offset)
of type
Interval, Fuzzify, Side, Time, Time, Time 7→ Interval

The second parameter determines whether a linear or gaussian increase is to be imposed on
the interval. The third parameter determines whether the increase is from left to right or from

153

right to left. increase is a Float number in percent. increase = 10 means that the region
to be modified consists of the first/last 10% of the kernel of the interval. offset is also a float
number in percent. offset = 20 means that the interval is to be widened by 20% of the kernel
of the interval. To this end the fuzzified part of the interval is shifted back (second parameter
= left) or forth (second parameter = right) 20% of the kernel size.

x1 and x2 in the second version of the fuzzify function allows one to determine the part of the
interval to be fuzzified in absolute coordinates. fuzzify([0, 100], linear, left, 20, 70, 0), for ex-
ample, yields a polygon [(20,0) (70,1) (100,1) (100,0)]. fuzzify([0, 100], linear, right, 20, 70, 0),
on the other hand, yields a polygon [(0,0) (0,1) (20,1) (70,0)]. The offset widens the polygon:
fuzzify([0, 100], linear, right, 20, 70, 20), yields [(0,0) (0,1) (60,1) (90,0)].

A function which fuzzifies both ends of an interval in the same way could be

f(Interval I, Float increase, Float offset)

= intersection(extend(fuzzify(I,gaussian,left,increase,offset),positive),

extend(fuzzify(I,gaussian,right,increase,offset),negative))

f(I, 20, 0) produces the following fuzzified interval.

-

6

R
0

1

Relative Gaussian Fuzzification

Notice that the obvious ‘solution’

f(Interval I, Float increase, Float offset)

= fuzzify(fuzzify(I,gaussian,right,inc,off),left,increae,offset)

yields no symmetric structure, because the inner fuzzify operation changes the kernel of the
interval, such that the absolute increase and offset of the outer fuzzify operation are different
to the absolute increase and offset of the inner fuzzify operation

The next example illustrate a potential use of the fuzzify function. We want to realize a
function beforeChristmas. It should accept a time point t and compute a fuzzy interval, whose
membership function increases for a certain time period and then stays 1.0 until Christmas.
The increase is determined by two parameters, offset and increase. offset = 50 means that
the increase should start in the middle between t and Christmas. increase = 20 means that
the duration of the actual linear increase should be 20% of the interval length.

If t = 2004/7/1 then beforeChristmas(t,50,10) yields an interval whose membership
function rises from 2004/9/28 until 2004/10/6/19/12 and then stays at 1.0 until 2004/12/25.

Example 4.1.58 (Before Christmas)

1 beforeChristmas(Time t, Float offset, Float increase) =

2 dLet year = date(t,Gregorian_month) in

3 Let christmas = time(year|12|25,Gregorian_month) in

4 case (t < christmas) :

154

5 Let days = round(length(t,christmas,day,false),down) in

6 fuzzify([time(year|12|25-days+round((days*offset/100)),

7 Gregorian_month),christmas],

8 linear,left,increase,0),

9 (t < time(year|12|27,Gregorian_month)): []

10 else

11 Let christmas1 = time(year+1|12|25,Gregorian_month) in

12 Let days = round(length(t,christmas1,day,false),down) in

13 fuzzify([time(year+1|12|25-days+round((days*offset/100)),

14 Gregorian_month),christmas1],

15 linear,left,increase,0)

The beforeChristmas function considers the three cases, namely (1) that the time point t in
the year y is before Christmas in this year, (2) that t is just on Christmas in this year, and
(3) that t is after Christmas in this year. In case (1) the rounded number of days between
t and Christmas is computed first (line 5). This number minus the offset is subtracted from
christmas to get the left boundary of the interval to be fuzzified (line 6). The right boundary
is christmas. The left part of the interval is fuzzified linearly with the given increase (line
6–8). If the time point t is just on Christmas (line 9) then the empty interval is returned. If t
is after Christmas (case 3), then next year’s Christmas is considered (line 11-15).

Integration over Pairs of Intervals
One possibility to define an interval–interval relation like ‘before(I, J)’ is, to take a point–
interval relation ‘PIRbefore(t, J)’ and average PIRbefore(t, J) over the interval I. Averaging
over an interval means integrating over its membership function. For purposes like this GeTS
provides two integration operations.

Definition 4.1.59 (Integration) GeTS has the two integration functions:
integrateSymmetric(I, J, simple) Interval ∗ Interval ∗ Bool 7→ Float and
integrateAsymmetric(I, J) Interval ∗ Interval 7→ Float

integrateAsymmetric(I, J) computes (
∫
I(x) · J(x) dx)/|I|.

integrateSymmetric(I, J, simple) computes (
∫
I(x) · J(x) dx)/N(I, J)

where N(I, J) =def

{
min(|I|, |J |) if simple = true

maxa(
∫
I(x− a) · J(x) dx) otherwise.

Example 4.1.4 shows an application of the asymmetric integrate function.
The next example shows an application of the symmetric integrate function. A fuzzy

interval–interval relation IIRMeets is defined: Besides the two intervals, it takes the transfor-
mation functions F and S and integrates the interval F (I) over S(J). F (I) should map the
interval I to a finishing section of I and S(J) should map the interval J to a starting section
of J . The integration of F (I) to S(J) yields the final result.

Example 4.1.60 (Fuzzy Interval–Interval ‘Meets’ Relation) A possible definition for a
fuzzy interval–interval meets relation is

155

IIRMeets(Interval I, Interval J, Interval->Interval F, Interval->Interval S) =

if isEmpty(I) or isEmpty(J) or isInfinite(I,right) or isInfinite(J,left)

then 0

else integrateSymmetric(F(I),S(J),false)

The figure below shows the effect of the IIRMeets relation for suitable F and S operations. The
dashed figure shows the result of IIRMeets(I, J, . . .) when the interval I is moved along the
time axis. The dotted figure shows the position of the interval I where IIRMeets(I, J, . . .) is
maximal.

-

6

R
0

1

IIRMeets for Fuzzy Intervals

I J

GeTS contains the very special purpose function MaximizeOverlap which is, so far, only
needed for implementing the fuzzy interval–interval overlaps relation. The classical relation
I overlaps J has two requirements:
1. a non-empty part I1 of I must lie before J , and
2. another non-empty part I2 of I must lie inside J .

A generalization to fuzzy intervals encodes the first condition in the factor 1 − D(I, E+(J))
where D is a during operator. E+(J) extends the rising part of J to the infinity. Therefore
D(I, E+(J)) measures the part of I which is after the front part of J . 1 −D(I, E+(J)) then
measures the part of I which is before the front part of J . This factor is multiplied with D(I, J)
which corresponds to the second condition. It measures to which degree I is contained in J .
The product is normalized with maxa((1 −D(Ia, E

+(J))) ·D(Ia, J)), where Ia(x) =def I(x − a).
This corresponds to the maximal possible overlap when I is shifted along the time axis. This
guarantees that there is a position for I where I overlaps J = 1. The normalization factor is
computed with the function MaximizeOverlap

Definition 4.1.61 (MaximizeOverlap) The function
MaximizeOverlap(I, J, EJ,D)
of type
Interval ∗ Interval ∗ Interval ∗ (Interval ∗ Interval 7→ Float) 7→ Float

computes

max
a

((1 −D(shift(I, a), EJ)) ·D(shift(I, a), J))

Notice that EJ can in principle be an arbitrary interval. For the encoding of the fuzzy overlaps
relation, it should, however, be the extension of J to the infinity.

Example 4.1.62 IIROverlaps

156

IIROverlaps(Interval I, Interval J, Interval->Interval E,

(Interval*Interval)->Float D) =

case

isEmpty(I) or isEmpty(J) or isInfinite(J,left) : 0,

isInfinite(I,right) : float(point(I,left, support) < point(J,left, support)),

isInfinite(J,right) : float(point(I,right, support) < point(J,left, support))

else

Let EJ = E(J) in

(1 - D(I,EJ))*D(I,J) / MaximizeOverlap(I,J,EJ,D)

Example 4.1.63 (IIROverlaps for Fuzzy Intervals)
This example shows the result of the IIROverlaps relation where the standard IIRDuring

operator is used (with the identity function as point–interval during operator).

-

6

R
0

1

Example: Overlaps Relation

I J

The dashed line represents the result of the overlaps relation for a time point t where the
positive end of the interval I is moved to t. The dotted figure indicates the interval I moved
to the position where IIRoverlaps(I, J) becomes maximal.

4.1.2.11 Date and Time

In examples 4.1.2 and 4.1.58 we have already seen applications of functions which convert
time points to dates and dates to time points. The dates are sequences of integers which
correspond to date formats, and these are sequences of partitionings. An example for a
date format is year/month/day/hour/minute/second in the Gregorian calendar. The sequence
2004|12|3|21|43|0 in this date format is therefore the 3rd of December 2004, 9:43 pm.

The time function converts a date in a given date format to the corresponding time point.

Definition 4.1.64 (time) The function
time(year|month|..., dateFormat)
of type
Integer ∗ . . . ∗ Integer ∗ DateFormat 7→ Time

maps a date in a given date format to the time point denoted by this date.

The tokens year, month etc. in the time function are expressions of type Integer. There can
be as many expressions as the date format has partitionings. For example, the year/month/day/
hour/minute/second date format in the Gregorian calendar has 6 partitionings. Therefore there
are in this case at most 6 Integer expressions allowed in the time function.

Examples:
time(2004,Gregorian month) = 1072915231 (1st of January 2004)

157

time(2004|1+1,Gregorian month) = 1075593631 (1st of February 2004)
time(2004|2|2,Gregorian week) = 1073347231 (6th of January 2004)
Gregorian week is the date format year/week/day/hour/minute/second. Therefore 2004|2|2 is
the second day in the second week in the year 2004.

The dLet construct in the next definition is a kind of inverse to the time function. It computes
for a given time point and a date format a date representation as a sequence of Integers and
binds the variables to these Integers in a similar way as the Let construct.

Definition 4.1.65 (dLet) The expression

dLet year|month|... = date(time, dateFormat) in expression

binds the variables year,month, . . . to the integers which correspond to the date denoted by
‘time’, in the given date format.
‘expression’ is then evaluated under this binding.
The type of date is Time∗DateFormat 7→ Integern where n ≤ maximal number of partitionings
in the date format.

Example:
‘dLet y|m|d|h = date(0, Gregorian month) in y+m+ d’ yields 1973 because the time point 0
corresponds to the first of January 1970. Therefore y = 1970, m = 1, d = 1 and h = 0.

4.1.2.12 Partitionings and Labels

GeTS has a number of functions for reckoning with time points, partitions and labels. The
partition function was already introduced in Example 4.1.1.

Definition 4.1.66 (partition) The partition function maps time points to intervals, which
represent partitions.

(1) partition(time, partitioning)
Time ∗ Partitioning 7→ Interval

(2) partition(time, partitioning, n,m)
Time ∗ Partitioning ∗ Integer ∗ Integer 7→ Interval

The first version computes the interval which corresponds to the partition containing time.
The second version computes an interval [t1, t2[as follows: If i is the coordinate of the partition
containing time then t1 is the start of partition i+ n and t2 is the end of the partition i+m.

If instead of the partition as interval, only the boundaries are needed, one can use the
partitionBoundary function.

Definition 4.1.67 (partition boundary) The function
partitionBoundary(time, partitioning, left/right)
of type
Time ∗ Partitioning ∗ Side 7→ Time

computes the left/right boundary of the partition containing time.

158

Although partitionings are in general infinite mathematical structures, their validity region may
be limited. GeTS has two functions for getting information about the boundaries of the valid
regions of a partitioning.

Definition 4.1.68 (Valid Regions of Partitionings) The function
partitioningIsBounded(P, left/right)
of type
Partitioning ∗ Side 7→ Bool

checks whether the valid region of the partitioning P is bounded at the given side.

The function
partitioningBoundary(P, left/right)
of type
Partitioning ∗ Side 7→ Time

returns the boundary of the partitioning at the given side. If there is no bound at this side then
a representation of infinity is returned.

The next function is which. It can, for example, be used to compute which week in the year
is now, or which day in the semester is now.

Definition 4.1.69 (which) The function
which(time, P,Q, inclusion, asGranule)
is of type
Time ∗ Partitioning ∗ Partitioning ∗ Inclusion ∗ Bool 7→ Time.

The function is explained for the two asGranule case:

Case asGranule = false:
Consider the following example:
which(now(),week,year,bigger part inside,false).
It computes, which week of the year is now.

The which function first computes the starting point tQ of the Q-partition containing time.
In the example, it would be the beginning of the current year. Then it determines the P -
partition for tQ. In the example, it is the first week in the year. What counts as the ‘first’
P -partition p depends on the parameter inclusion:

inclusion = subset: p is the leftmost P -partition after tQ.

inclusion = overlaps: p is the leftmost P -partition containing tQ.

inclusion = bigger part inside: p is the leftmost P -partition whose bigger part comes after
tQ. (This is suitable for counting weeks within a year).

If n is the coordinate of p and m is the coordinate of the P -partition containing time then
m− n is returned by the which function. If now() is first of January then the call
which(now(), week, year, bigger part inside, false)
returns 0 as the number of the first week in the year.

Notice that the result of the which function is of type Time. The Time datatype is in this
case just to be taken as a potentially very big integer, and not as a time point.

159

Case asGranule = true:
The partitionings P and Q are in this case interpreted as granules. tQ is the start of the Q-
granule containing time. If time is between two granules then tQ is the end of the Q-granule
before tQ.

The first P granule p depends again on the parameter inclusion:

inclusion = subset: p is the leftmost P -granule after tQ.

inclusion = overlaps: p is the leftmost P -granule containing tQ. If tQ is between two P -
granules then p is the leftmost P -granule after tQ.

inclusion = bigger part inside: p is the leftmost P -granule whose bigger part comes after
tQ.

A special case is that time lies before the start of p. In this case the which function returns
the value -1 to indicate that the counting is not possible.

In the normal case the which function counts from granule p as number 0 the P -granules
until it reaches time. If time is between two P -granules then the counting stops before time.
The value of the counter is returned.

The functions in the next definition deal with labels of partitions. Notice that labels are
not just strings. They are special data structures, such that, for example, two labels with the
same name are identical.

Definition 4.1.70 (Basic Functions for Labels) The function
label(time, partitioning)
of type
Time ∗ Partitioning 7→ Label

returns the label of the partition containing time. If there is no labelling defined, it returns a
NULL label.

The function
isLabel(label)
of type
Label 7→ Bool

checks whether the label is not the NULL label.

The function
isGap(label)
of type
Label 7→ Bool

checks whether the label is the gap label.

The function
LabelName(name)
of type
String 7→ Label

turns a string (without quotes) into a Label.

The extractLabelled function below can be used to extract from an interval all partitions
with a given label, for example all Tuesdays of a labelled day partitioning.

160

Definition 4.1.71 (extractLabelled) The function
extractLabelled(I, label, partitioning, inclusion, intersect)
of type
Interval ∗ Label ∗ Partitioning ∗ SplitInclusion ∗ Bool 7→ Interval

extracts partitions in the interval I with the given label.

The extractLabelled function maps through all partitions of the given partitioning which
are labelled with the given label, and which overlap with the interval [a, b[where a is the left
boundary of the interval and b is the right boundary of the interval. An error is thrown if a or
b are the infinity.

For each such partition p a condition is tested which depends on the parameter inclusion.

inclusion = align: the condition is always true.

inclusion = subset: p must be a subset of I’s support.

inclusion = overlaps: p must overlap with I’s support.

inclusion = bigger part inside: the bigger part of p must be a subset of I’s support.

If the parameter intersect = false then all partitions p which meet the condition are joined
into the resulting (crisp) interval.

If the parameter intersect = true then the intersection of I with all partitions p which meet
the condition are joined into the resulting interval. The result may now be a fuzzy interval.

The function below is for constructing intervals which represent granules.

Definition 4.1.72 (nextGranule) The function
nextGranule(time, partitioning, label, n, withGaps)
of type
Time ∗ Partitioning ∗ Label ∗ Integer ∗ Bool 7→ Interval

constructs a new interval which represents a granule.

The interval is constructed as follows:
Case 1: time is inside a granule with the given label.

If n = 0 then this granule is computed. Otherwise the nth next/previous (if n < 0) granule
with this label is computed.
Case 2: time lies outside a granule with the given label.

If n = 0 then the empty interval is returned. Otherwise the nth next/previous (if n < 0)
granule with this label is computed.

Finally an interval is constructed and returned which represents the granule. If withGaps =
true then this interval may be non-convex to exclude the gap partitions within a granule.

4.1.2.13 Control Constructs for Operations on Intervals

GeTS has two basic control constructs for operations on parts of intervals. The componentwise
control construct allows one to apply an operation to each component of an interval and to
combine the results of each application with a combination function.

161

Definition 4.1.73 (componentwise) The following function applies an operation to each com-
ponent of an interval and combines the results with a combination operator. It comes in two
versions, without and with an end test.

componentwise(I, initialObject, operation, combination)
of type
[Interval ∗ T ∗ (Interval 7→ T) ∗ (T ∗ T 7→ T) 7→ T]

componentwise(I, initialObject, operation, combination, endTest)
of type
[Interval ∗ T ∗ (Interval 7→ T) ∗ (T ∗ T 7→ T) ∗ (T 7→ Bool) 7→ T]

I is the interval whose components are considered.
operation is the operation which is applied to the components of I. It generates results of type
T (which is determined by the type of initialObject).
combination is the operation which is used to combine the results of the application of operation.
initialObject is the object which is returned when I is empty, and which is used to combine
it with the very first result of operation. Typically, initialObject = [] (T = Interval) or
initialObject = 0T (T = Time).
endTest is a predicate which is applied to the intermediate results. The loop is terminated and
the intermediate result is returned as soon as endTest yields true.

Examples:
componentwise(I, [], lambda(Interval J) hull(J, crisp),

lambda(Interval K, Interval L) union(K,L))

computes the crisp hull for each component of the interval I separately and then joins them
into one single crisp, possibly non-convex, interval.

componentwise(I, 0.0,
lambda(Interval J) length(point(J, left, support),

point(J, right, support), month, false)
lambda(Float n,Float m) n+m)

computes the lengths of the support of (a finite) interval I in terms of months.

split:
The split function below is in principle similar to the componentwise function. The difference
is that the interval is not taken apart into its components, but it is split into subintervals of a
given length. A function is applied to these split parts, and a combination function combines
the partial results into a final result.

Definition 4.1.74 (split) The split function also comes in two versions, without and with
an end test.

162

split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect)

is of type
Interval ∗ Duration ∗ Bool ∗ Bool ∗ T ∗ (Interval 7→ T) ∗ (Interval ∗ Interval 7→ T)∗

IntvRegion ∗ Bool ∗ SplitInclusion ∗ Sequencing ∗ Bool 7→ T

split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect, endTest)

is of type
Interval ∗ Duration ∗ Bool ∗ Bool ∗ T ∗ (Interval 7→ T) ∗ (Interval ∗ Interval 7→ T)∗

IntvRegion ∗ Bool ∗ SplitInclusion ∗ Sequencing ∗ Bool ∗ (T 7→ Bool) 7→ T.

In order to explain the split function in detail, we must introduce some auxiliary functions.
They are not part of GeTS, but used internally.

The startpoint and endpoint functions compute the starting point for the split.

Definition 4.1.75 (startpoint and endpoint) The function startpoint(t, P, inclusion, asGranule)
of type Time ∗ Partitioning ∗ SplitInclusion∗ Bool 7→ Time computes the starting point of
a forward split as follows:

Case asGranule = false:

Case inclusion = align: return t

Case inclusion = subset: return the starting point s of the leftmost P -partition such
that t ≤ s.

Case inclusion = overlaps: return the starting point of the leftmost P -partition con-
taining t.

Case inclusion = bigger part inside: return the starting point of the leftmost P -partition
p such that the bigger part of p comes after t.

Case asGranule = true:

Case inclusion = align: If t is between two granules g1 and g2 then return the starting
point of g2, otherwise return t.

Case inclusion = subset: return the starting point of the leftmost granule after t.

Case inclusion = overlaps: If t is between two granules g1 and g2 then return the start-
ing point of g2, otherwise return the starting point of the leftmost granule containing
t.

Case inclusion = bigger part inside: If t is between two granules g1 and g2 then re-
turn the starting point of g2, otherwise return the starting point of the leftmost
granule whose bigger part comes after t. Gaps within a granule are not measured.

A similar function endpoint(t, P, inclusion, asGranule) computes the starting point of a back-
wards split:

Case asGranule = false:

163

Case inclusion = align: return t

Case inclusion = subset: return the end point s of the rightmost P -partition such that
s ≤ t.

Case inclusion = overlaps: return the endpoint of the rightmost P -partition containing
t.

Case inclusion = bigger part inside: return the endpoint of the rightmost P -partition
p such that the bigger part of p comes before t.

Case asGranule = true:

Case inclusion = align: If t is between two granules then return the endpoint of the
rightmost granule before t, otherwise return t.

Case inclusion = subset: return the endpoint of the rightmost granule before t.

Case inclusion = overlaps: If t is between two granules then return the endpoint of the
rightmost granule before t, otherwise return the endpoint of the rightmost granule
containing t.

Case inclusion = bigger part inside: If t is between two granules then return the end-
point of the rightmost granule before t, otherwise return the endpoint of the right-
most granule whose bigger part comes before t. Gaps within a granule are not
measured.

The functions advance and retract below compute the start of the next split part.

Definition 4.1.76 (advance and retract) The function advance(t, P, sequencing, asGranule)
of type Time ∗ Partitioning ∗ Sequencing ∗ Bool 7→ Time computes for the end time t of a
(forward) split part the start time of the next split part:

Case asGranule = false:

Case sequencing = sequential: return t;

Case sequencing = overlapping: return the start of the P -partition containing t;

Case sequencing = with gaps: if t is the start of the P -partition containing t then return
t, otherwise return the start of the following P -partition.

Case asGranule = true:

Case sequencing = sequential: if t is between two granules then return the start of the
next granule, otherwise return t.

Case sequencing = overlapping: if t is between two granules then return the start of
the next granule, otherwise return the start of the granule containing t.

Case sequencing = with gaps: if t is between two granules then return the start of the
next granule. If t is the start of a granule then return t, otherwise return the start
of the granule which follows the granule containing t.

164

The corresponding function retract(t, P, sequencing, asGranule) computes for the start time t
of a (backward) split part the end time of the next split part:

Case asGranule = false:

Case sequencing = sequential: return t;

Case sequencing = overlapping: return the end of the P -partition containing t;

Case sequencing = with gaps: if t is the end of the P -partition containing t then return
t, otherwise return the end of the previous P -partition.

Case asGranule = true:

Case sequencing = sequential: if t is between two granules g1 and g2 then return the
end of g1, otherwise return t.

Case sequencing = overlapping: if t is between two granules g1 and g2 then return the
end of g1, otherwise return the end of the granule containing t.

Case sequencing = with gaps: if t is between two granules g1 and g2 then return the
end of g1. If t is the end of a granule then return t, otherwise return the end of the
granule which is before the granule containing t.

Back to the function
split(I, duration, asGranule, dateOriented, initialObject, operation,

combination, region, forward, inclusion, sequencing, intersect, endTest).
The parameters I, initialObject, operation and combination have the same meaning as for

the componentwise function (Def. 4.1.73).
The interval I can be split in forward direction (forward = true) or in backward direction

(forward = false).

Region to be split:
The parameter region (= core, support or kernel) determines the region [a, b[of the interval
I which is to be split. a is the leftmost point of the region and b is the rightmost point of the
region. An error is thrown if a or b is the infinity.

The split loop:
Let P0 be the first partitioning which occurs in duration. Let A = initialObject be the
accumulator for the operation.

Case forward = true:
Let t0 = startpoint(a, P0, inclusion, asGranule) be the starting point for the split. The
split command performs the following (forward) loop:

while(t0 < b){
let t1 := shift(t0, duration, asGranule, dateOriented); (Def. 4.1.28)
let J := [t0, t1[be the split part;
if intersect = true J := I ∩ J ;
A := union(A, operation(J));
if(endTest(A) = true) return A;
t0 = advance(t1, P, sequencing, asGranule); }

return A

165

Case forward = false:
Let t1 = endpoint(b, P0, inclusion, asGranule) be the starting point for the split.

The split command now performs the following (backwards) loop:

while(t1 > a){
let t0 := shift(t1, neg(duration), asGranule, dateOriented); (Def. 4.1.28)
let J := [t0, t1[be the split part;
if intersect = true J := I ∩ J ;
A := union(A, operation(J));
if(endTest(A) = true) return A;
t0 = retract(t1, P0, sequencing, asGranule); }

return A

4.2 Summary

The GeTS language is a special purpose functional specification and programming language for
temporal notions. It has a basic set of general purpose functional and imperative programming
language features. In addition there are a number of built-in data structures and functions
which are specific for this application. The most important ones are time points, fuzzy temporal
intervals and labelled partitionings of the time line.

GeTS is not a stand alone programming language. It must be part of a host system which
provides these data structures and which invokes the GeTS application programming interface.

The GeTS constructs were carefully chosen as a compromise between simplicity and easy
usage. Future applications will show whether this goal has been achieved.

166

Chapter 5

Relations Between Fuzzy Time
Intervals

167

Abstract: This paper serves two purposes. The first purpose is to introduce a new approach
for defining point–interval and interval–interval relations for fuzzy time intervals. The basic
idea for the interval–interval relations is to extend corresponding point–interval relations to
interval–interval relations by averaging (integrating) the point–interval relation over the second
interval. The new approach is compared with an existing approach by Nagypál and Motik.

The second purpose is to show how these relations can be easily defined with the GeTS–
language (GeTS stands for GeoTemporal Specifications). This is a typed functional language
with a large number of built–in data types and functions for manipulating temporal notions.
The definitions of the point–interval and interval–interval relations are therefore given directly
in the GeTS–language.

5.1 Motivation and Introduction

Time points and time intervals are the basic concepts in many formalisations of temporal
notions. In order to make basic concepts useful for practical applications, one has to define
operations on them and relations between them. If we take, for example, two time points t1
and t2 and a linear ordering of the time structure, which we assume throughout this paper,
there are the basic relations t1 < t2, t1 = t2 and t1 > t2. The relations between a time point
t and a (crisp) time interval I are slightly more complex. First of all, one needs to distinguish
whether I is convex or not. If it is not convex it consists of several unconnected subintervals.
Secondly, one can consider or ignore the underlying metric of the time axis. If the metric is
ignored and I is convex there are the usual five point–interval relations:

before

starts

during

finishes

after

I

Figure 5.1: Point–Interval Relations

These relations are well defined even if I is infinite, or if one distinguishes whether I is
closed or open at one or both sides. If I is open at the left side then t starts I may be true
even if tduring I is false. For a non-convex interval I there are some more relations: ‘t is within
the n’the component of I’, ‘t is in a gap of I’, ‘t is within the n’th gap of I’ etc.

The metric of the time axis gives rise to more relations. With a metric one can measure the
location and length of the interval. Therefore, at least for finite intervals I, it makes sense to
define ‘t is in the first half of I’, or more general, ‘t is in the n’th m’th of I’. These relations
can also be obtained in an indirect way by cutting out the first half, or, more general, the n’th
m’th of I, and evaluating point–interval relations between t and the cut out part of I. This
way one can easily define relations like ‘t is before (after, ...) the n’th m’th of I’.

168

In the next stage we can consider interval–interval relations. Allen’s interval–interval rela-
tions [1] are the basic relations between two crisp intervals (without metric).

I

I

I

I

I

I

I

..

..

J

J

I before J

I finishes J
J finished-by I

J after I

I meets J
J met-by I

I overlaps J

I starts J
J started-by I

I during J
J contains I

J overlapped-by I

I equals J

Figure 5.2: Interval–Interval Relations

Natural language has a lot more interval–interval relations They, however, usually rely on
the time metric. ‘is long before’ or ‘is close to’ are examples.

Things get a lot more complicated if we consider fuzzy time intervals instead of crisp time
intervals. Fuzzy time intervals can be used to represent fuzzy notions like ‘around noon’, ‘late
night’, ‘during sunrise’ etc. If the intervals are in fact fuzzy, one expects that the relations
‘before’, ‘during’ etc. are also no longer simple relations with a Boolean result, but binary
functions with a fuzzy value as result. Unfortunately, there are no unique and natural ways
to generalise the relations between crisp intervals to relations between fuzzy intervals. There
are many different possibilities, and it depends on the applications, which one is the most
appropriate one. A tool for representing and manipulating fuzzy intervals should therefore
provide several of these possibilities, or, even better, allow the user to define his favourite
version of the relations.

The purpose of this paper is therefore twofold:

1. a new approach for interval–interval relations between fuzzy time intervals is presented.
The idea of this new approach is to take a suitable point–interval relation and extend it
to an interval–interval relation by averaging the point–interval relation over the second
interval. The details of this approach are presented and compared to other approaches;

2. the fuzzy interval–interval relations are used as a case study for a part of the CTTN system
(Computational Treatment of Temporal Notions) [28]. The CTTN system provides data
structures and operations for various basic temporal notions. In particular it contains time
points, crisp and fuzzy time intervals [31], labelled partitionings for representing periodic
temporal notions and calendar systems [33]. In addition it has the GeTS (GeoTemporal
Specification) language for specifying and computing with application specific temporal
notions. In this paper it is shown how the GeTS–language can be used to define crisp
and fuzzy point–interval and interval–interval relations.

169

No argument is given in this paper that a particular version of the relations is good for
a particular application. Instead, we want to give evidence that the CTTN system and in
particular the GeTS–language is good for specifying even very complex relations in a simple
and intuitive way.

5.2 Point–Interval Relations

The five basic relations between a time point and a crisp interval I are before, starts, during,
finishes and after (cf. Fig. 5.1). If the intervals possess a metric, which is the case for time in-
tervals over the real numbers, there are infinitely many more point–interval relations. Examples
are ‘during the first half’ or ‘in the middle of the third quarter’.

If the metric is given in terms of time units of a calendar system there are even more complex
point–interval relations. ‘before the year 2006’, for example, can mean ‘some weeks or months
before 2006’, but not ‘1000 years before 2006’. Linguists analyse the precise meaning of such
expressions. The GeTS–language provides constructs for defining these more complex relations,
but this is not subject of this paper.

For non-convex intervals there are even more point–interval relations, for example ‘between
the components’ or ‘between the second and third component’ etc.

A point–interval relation R can also be represented as a function which maps an interval
to an interval. For example, the ‘before’ relation can be represented as the function which
maps an interval I to the interval J containing all the points before I. This formalisation of
point–interval relations as functions of type Interval 7→ Interval can now be generalised to
fuzzy intervals in a way that fuzzy point–interval relations yield fuzzy values instead of Boolean
values.

Definition 5.2.1 (Point–Interval Relations as Functions)

1. A fuzzy point–interval relation R(t, I) is a function that maps a time point t and an
interval I to a fuzzy value.

2. If I is a fuzzy interval and R′ is a function of type Interval 7→ Interval then R with
the definition:

R(t, I) =defR′(I)(t)

is the corresponding fuzzy point–interval relation.

With this definition one can turn any Interval 7→ Interval function into a fuzzy point–
interval relation. Since there are infinitely many of them, it is by no means obvious how to
characterise some of them as, for example, fuzzy ‘before’ relations, or fuzzy ‘starts’ relations
etc. One could, for example, require that an Interval 7→ Interval function B represents a
fuzzy ‘before’ relation if in the limit case where I is a crisp interval, B(I) is the ordinary crisp
‘before’ function. This, however, is a property which is not always desired. For example, it
should be possible to assign a non-zero fuzzy value to the statement ‘the movie ends before the
concert’, even if the movie ends one minute after the concert starts.

In fact, there is no clear mathematical characterisation of Interval 7→ Interval functions
which allows one to distinguish the corresponding different kinds of point–interval relations.
Now, what can we do? A pragmatic approach is to develop tools which allows the user to
specify his favourite version of fuzzy point–interval relations in an easy and intuitive way. In

170

order to make the tool more useful, it should contain some predefined versions of the different
point–interval relations, which are good enough for most applications.

Three Versions of the Point–Interval Relations

For each of the standard point–interval relations, before, starts, during, finishes and after, we
provide three different versions. All three versions are functional, i.e. they return an interval
as a result.

Version 1:
The first version is essentially a pure crisp version of the relation. The type of the function
is Interval * Region 7→ Interval. Region is one of the key words support, core, kernel,
maximum. This version takes the corresponding crisp region S(I), C(I), K(I) or M(I) of the
interval I (Def. 2.2.4) and computes the crisp relation.

Version 2:
This is the most general version. It has some extra parameters which are functions for manip-
ulating the interval in a certain way.

Version 3:
Version 3 is a specialisation of version 2. The extra parameters are instantiated with suitable
concrete functions. This version is the ‘standard’ fuzzy point–interval relation.

5.2.1 Point–Interval ‘Before’ and ‘After’ Relations

The before function maps an interval I to an interval containing all the points before I.

Definition 5.2.2 (Point–Interval ‘Before’ Functions)

1. PIR::Before(Interval I, Region R) =

if isEmpty(I) then []

else Let t=point(I,left,R) in

if(isInfinity(t)) then [] else [(t,1.0),(t,0.0)]

2. PIR::Before(Interval I, Interval->Interval C, Interval->Interval E) =

if isEmpty(I) then []

else C(E(I))

3. PIR::Before(Interval I) =

if isEmpty(I) then []

else complement(extend(I,positive))

Version 1:
This version turns the interval into a crisp interval containing the points before the correspond-
ing region of the interval.

The expression Let t= point(I,left,R) causes that this value is bound to the local vari-
able t. [(t,1.0),(t,0.0)] constructs a crisp interval] −∞, t[.

171

Version 2:
This is the most general version of a ‘before’ function. Both extra parameters C and E are in
principle arbitrary (total) Interval 7→ Interval functions. The idea behind this function is
that the parameter E is a function which isolates the front part of the interval and extends it
to +∞. The parameter C must be a complement function which complements the front part.

Version 3:
is an instance of version 2 where E is the function lambda(I) extend(I,positive) and C is the
standard complement function: complement(I)(t) = 1−I(t) (Sect. 2.2.4). PIR::Before(Interval I)

is actually a shortcut for

PIR::Before(I,lambda(Interval J) complement(J),

lambda(Interval J) extend(J,positive))

We illustrate version 3 and version 2 with a few examples.

Example 5.2.3 (PIR::Before) E(I) =def
extend(I,positive) and C(I) =def

complement(I).

-

6

R
0

1

PIR::Before

I E(I)C(E(I))

J E(J)C(E(J))

The left picture shows PIR::Before(I) where I is a crisp interval. This yields the ordinary
crisp ‘before’ relation. PIR::Before(I) yields the same result as version 1, PIR::Before(I,R)
where R is any of the admissible key words.

The next examples show how the before–relation can be made fuzzy, even for crisp intervals.
The pictures are produced with the following call of the PIR::Before relation.

PIR::Before(I,lambda(J) complement(J),

lambda(J) extend(fuzzify(I,gaussian,left,50,0),positive))

Example 5.2.4 (Gaussian PIR::Before) E(I)=def
extend(fuzzify(I,gaussian,left,50,0),positive)

and C(I) =def
complement(I).

-

6

R
0

1

PIR::Before with Gaussian Fuzzification Function

I E(I)C(E(I))

0 10

J E(J)C(E(J))

80 85 90

The expression fuzzify(I,gaussian,left,50,0) (Def. 2.2.33) causes that the front 50% of I
is multiplied with a gaussian function. extend(fuzzify(I,gaussian,left,50,0),positive)
then yields the front part of the fuzzified I, extended to the infinity.

172

Notice that fuzzify(extend(I,positive),gaussian,left,50,0)does not work. The rea-
son is that extend(I,positive) produces an infinite interval, and 50% of an infinite interval
is not defined.

‘After’:
The point–interval ‘after’ functions are very analogous to the corresponding ‘before’ functions.
In particular, the general version 2 has exactly the same definition as version 2 of PIR::Before.
In order to get an acceptable result of version 2 of PIR::After, one has to pass a function like

lambda(Interval J) extend(J,negative)

as the E parameter to PIR::After. extend(J,negative) extracts the back part of J and extends
it to −∞.

173

Definition 5.2.5 (Point–Interval ‘After’ Functions)

1. PIR::After(Interval I, Region R) =

if isEmpty(I) then []

else Let t = point(I,right,R) in

if(isInfinity(t)) then [] else [(t,0.0),(t,1.0)]

2. PIR::After(Interval I, Interval->Interval C, Interval->Interval E) =

if isEmpty(I) then []

else C(E(I))

3. PIR::After(Interval I) =

if isEmpty(I) then []

else complement(extend(I,negative))

5.2.2 Point–Interval ‘Starts’ and ‘Finishes’ Relations

The standard starts-relation t starts I for crisp intervals I yields 1 if t is the starting point of I,
and 0 everywhere else. This corresponds to an almost empty fuzzy set with a single peak right
at the start of I. The generalisation of this simple definition to fuzzy intervals is version 1 in
Def. 5.2.6 below. t = point(I,left,R), where R is again one of the key words support, core,
kernel or maximum, determines the left boundary of the corresponding region as the start of
the interval. The generated interval is [t,t+1], which internally is mapped to the half open
interval [t, t + 1[. Since it is half open, its fuzzy value is 1 for the time point t and 0 for the
time point t+ 1, as expected.

Definition 5.2.6 (Starts)

1. PIR::Starts(Interval I, Region R) =

if isEmpty(I) then []

else Let t=point(I,left,R) in

if(isInfinity(t)) then [] else [t,t+1]

2. PIR::Starts(Interval I, Interval->Interval E, Interval->Interval B,

(Interval*Interval)->Interval Intersect) =

case isEmpty(I) or isInfinite(I,left): [],

isCrisp(I,left): scaleup(Intersect(E(I),shift(B(I),1)))

else scaleup(Intersect(E(I),B(I)))

3. PIR::Starts(Interval I) =

case isEmpty(I) or isInfinite(I,left): [],

isCrisp(I,left): Let t=point(I,left,support) in [t,t+1]

else scaleup(intersection(extend(I,positive),PIR::Before(I)))

174

Version 1:
This version yields a single peak even if the front part of the interval rises smoothly.

Version 2:
The more general version 2 is more fuzzy in this case. Version 2 of PIR::Starts accepts two
extra Interval -> Interval functions as arguments. The first one, E, is supposed to extract
the front part of the interval and extend it to +∞. The second one, B, should be one of the
point–interval ‘before’ functions. scaleup(Intersect(E(I),B(I))) intersects E(I) and B(I)
and scales it up such that the maximum fuzzy value of the intersection is 1.

Version 3:
This version is an instance of version 2 with E = lambda(Interval J) extend(J,positive)
and
B = lambda(Interval J) PIR::Before(J). Intersect is the standard intersection function
(Sect. 2.2.4).

Example 5.2.7 (Standard PIR::Starts-function) Version 3 of PIR::Starts generates the
following result. The dashed line indicates the scaled up intersection.

-

6

R
0

1

PIR::Starts

E(I)B(I) I

E(I) ∩ B(I)
| {z }

There is a small technical problem if we apply Intersect(E(I), B(I)) to a crisp interval.
With the choice of the E and B functions as in Example 5.2.7, the intersection of E(I) and B(I)

is empty. The second clause in version 2 of PIR::Before takes care of this by shifting B(I)

one time unit into the future. This way, however, one gets again just a single peak at the start
of I. If this peak is to be widened in order to get a more fuzzy ‘starts’ relation even for crisp
intervals, there are two possibilities. Either the definition of PIR::Before is changed for this
case, or you take other B and E functions. The following definitions

E = lambda(Interval J) extend(fuzzify(J,left,linear,30,0),positive) and

B = lambda(Interval J) complement(extend(fuzzify(J,left,linear,30,10),positive)),

for example, work for finite intervals. The next picture shows how they fuzzify the start of the
interval.

Example 5.2.8 (PIR::starts with fuzzy E and B)

-

6

R
0

1

PIR::starts

E(I)B(I) I

0 10

175

‘Finishes’:
The definition of the functions PIR::Finishes below are analogous to the definition of the
PIR::Starts functions. The difference is that the E function is expected to extract the end of
the interval and extend it to −∞. Instead of the ‘before’ function B, we need an ‘after’ function
A.

Definition 5.2.9 (Finishes)

1. PIR::Finishes(Interval I, Region R) =

if isEmpty(I) then []

else Let t=point(I,right,R) in

if(isInfinity(t)) then [] else [t,t+1]

2. PIR::Finishes(Interval I, Interval->Interval E, Interval->Interval A,

(Interval*Interval)->Interval Intersect) =

case isEmpty(I) or isInfinite(I,right): [],

isCrisp(I,right): scaleup(Intersect(shift(E(I),1),A((I))))

else scaleup(Intersect(E(I),A(I)))

3. PIR::Finishes(Interval I) =

case isEmpty(I) or isInfinite(I,right): [],

isCrisp(I,right): Let t=point(I,right,support) in [t,t+1]

else scaleup(intersection(extend(I,negative),PIR::After(I)))

5.2.3 Point–Interval ‘During’ Relations

The simplest version of the ‘during’ relation is just the identity: t during I =def I(t). This yields
0 for all t outside I and the fuzzy membership value for all t inside I. This is version 4 of
PIR::During below.

Definition 5.2.10 (PIR::During)

1. PIR::During(Interval I, Region R) = hull(I,R)

2. PIR::During(Interval I, Interval->Interval O,

(Interval*Interval)->Interval Union) =

if isEmpty(I) then []

else componentwise(I,[],O,Union)

3. PIR::During(Interval I, Float percent) =

if isEmpty(I) then []

else componentwise(I,[],

lambda(Interval J) fuzzify(J,linear,percent,percent),

lambda(Interval J, Interval K) union(J,K))

4. PIR::During(Interval I) = I

176

Version 1:
If we insist that PIR::During yields a crisp result, we can take version 1. hull(I, R) computes
S(I), C(I), K(I) or M(I) (Def. 2.2.4), depending on the parameter R.

Versions 2 and 3:
Versions 2 and 3 of PIR::During are more fuzzy versions of during. They can return non-zero
values even for crisp intervals and time points outside the interval. The basic idea of version 2
is to apply a fuzzification operator O to all components of the interval and to join the fuzzified
components with the Union operator. Version 3 makes this explicit. It uses the fuzzification
operator fuzzify(J,linear,percent,percent) which fuzzifies the (finite) interval at both
ends. The amount of fuzzification is controlled by the percent parameter. The next picture
shows an example.

Example 5.2.11 (Fuzzifying PIR::During for crisp intervals)

-

6

R
0

1

PIR::During(I,10)
5 10 30 35 45 50 60 65

5.2.4 Point–Interval Relations for Non-Convex Intervals

Non-convex crisp intervals consist of several unconnected components. In this case a time point
t can also be in any of the gaps between the components. This gives rise to a general ‘in the
gap’ point–interval relation. More specific is a ‘in the k’th gap’ relation, which determines
the particular gap containing t. The same relations can also be defined for non-convex fuzzy
intervals. Fuzzy intervals, however, can be non-convex in two ways. They can consist of several
components, i.e. their membership function drops down to 0 and rises again. This is a similar
kind of non-convexness as for crisp intervals. They can, however, also be non-convex if they
consist of a single component, but the membership function drops down and then rises again.
The definition of PIR::InTheGap below yields nontrivial results only if the interval consists of
several components.

177

Definition 5.2.12 (In The Gap)

1. PIR::InTheGap(Interval I) =

if isEmpty(I) then []

else invert(I)

2. PIR::InTheGap(Interval I, Integer k) =

if isEmpty(I) then []

else component(invert(I),k)

The invert function in the definitions above inverts the gap regions of the intervals (see Sec.
2.2.30).

5.2.5 Point–Interval Relations for Intervals with Metric

If the underlying time structure has a metric, it is possible to measure the length of the intervals
and to subdivide them into halfs or thirds etc. This gives rise to relations like ‘in the first half’
or ‘in the second third’, or, in general, ‘in the n’th m’th. The function PIR::During below cuts
out the n’th m’th of the given interval.

Once a relation like ‘in the first half’ is defined, it is very natural to define the relation ‘in
the middle of the first half’. The crisp definition 2 in Def. 5.2.13 below of this relation has just
one single peak in the middle of the first half. The version 3 in Def. 5.2.13 of PIR::InTheMiddle
widens this peak by cutting out a slice around this peak. The width of this slice is controlled
by the parameter k. The larger the k the smaller the slice.

Definition 5.2.13 (Relations with Metric)

1. PIR::During(Interval I, Integer n, Integer m) =

if(isEmpty(I) or (n < 0) or (m < 0) or (m <= n)) then []

else cut(I,centerPoint(I,n,m),centerPoint(I,n+1,m))

2. PIR::InTheMiddle(Interval I, Integer n, Integer m) =

Let t = centerPoint(I,2n+1,2m) in [t,t+1]

3. PIR::InTheMiddle(Interval I, Integer n, Integer m, Integer k) =

if(isEmpty(I) or (n < 0) or (m < 0) or (m <= n) or (k < 0)) then []

else Let k1 = pow(2,k) in

Let n1 = 2*n + 1 in

Let m1 = k1*2*m in

cut(I,centerPoint(I,k1*n1 - 1,m1),centerPoint(I,k1*n1 + 1,m1))

Crisp intervals can easily be measured by summing up the length of the components. Fuzzy
intervals can be measured by integrating over their membership functions. The function
centerPoint(I,n,m) in the definitions above computes the n,m center point of the inter-
val. For example, centerPoint(I,1,2) computes the middle point of the interval. If t =
centerPoint(I,1,2) then the integral over I up to t has the same value as the integral over I
after t.

178

-

6

R
0

1

n, 3-Center Points
cp(I,0,3) cp(I,1,3) cp(I,2,3) cp(I,3,3)

-

6

R
0

1

n, 2-Center Points
cp(I,0,2) cp(I,1,2) cp(I,2,2)

Middle Points:
The middle point between the center points centerPoint(I,n,m) and centerPoint(n+1,m)

is just centerPoint(I,2n+1,2m). For example, the middle point in the first half of I is
centerPoint(I,1,4) and the middle point in the second half is centerPoint(I,3,4). This is
exploited in the definition of PIR::InTheMiddle. The parameter k controls the size of the slice
around this middle point which is cut out of I.

5.3 Interval–Interval Relations

Allen’s seven interval relations [1] are the basic relations between two crisp intervals (cf. Fig.
5.2). The extension of these relations to fuzzy intervals is neither obvious nor unique. There is
one approach proposed by Nagypál and Motik [25], and this paper introduces a second approach.

5.3.1 Nagypál and Motik’s Interval–Interval Relations

The basic idea of Nagypál and Motik’s approach is to extend the requirements for the crisp
interval–interval relations, which are mostly conditions on the end points of the intervals, to
conditions on the starting and finishing sections of the fuzzy intervals. We summarise how these
relations work. More details are given in the original paper [25].

Definition 5.3.1 (Nagypál and Motik’s Interval–Interval Relations)
Let I and J be two fuzzy intervals.

179

before(I, J) =def supt(((1 − E−(I)) ∩ (1 − E+(J)))(t))
meets(I, J) =def min(inft((E

−(I) ∪E+(J))(t)),
inft(((1 − E−(I)) ∪ (1 − E+(J)))(t)))

overlaps(I, J) =def min(supt((E
+(I) ∩ (1 − E+(J)))(t)),

supt((E
−(I) ∩ E+(J))(t)),

supt(((1 − E−(I)) ∩ E−(J))(t)))
starts(I, J) =def min(inft(((1 − E+(I)) ∪ E+(J))(t)),

inft((E
+(I) ∪ (1 − E+(J))(t))),

supt(((1 − E−(I)) ∩ E−(J))(t)))
during(I, J) =def min(supt(((1 − E+(I)) ∩ E+(J))(t)),

supt(((1 − E−(I)) ∩ E−(J))(t)))
finishes(I, J) =def min(inft((E

−(I) ∪ (1 − E−(J))(t))),
inft(((1 − E−(I)) ∪E−(J))(t)),
supt((E

+(I) ∩ (1 − E+(J)))(t)))
equals(I, J) =def min(inft((E

−(I) ∪ (1 − E−(J))(t))),
inft(((1 − E−(I)) ∪E−(J))(t)),
inft(((1 − E+(I)) ∪ E+(J)))(t))
inft((E

+(I) ∪ (1 − E+(J)))(t)).

E+(I) stands for extend(I,positive) and E−(I) stands for extend(I,negative).

The relations give quite intuitive results for finite fuzzy intervals consisting of one component
only, and without much internal structure. The definitions work also for infinite intervals, but
the results may not be very intuitive. Nagypál and Motik’s relations behave on crisp intervals
just like Allen’s interval–interval relations. This is different to the approach which is presented
in this paper.

5.3.2 Operator Based Interval–Interval Relations

The main requirements for the ‘operator based’ version of the fuzzy interval–interval relations
are:

1. even for two crisp intervals we want a fuzzy value as result. The result should of course
be 1 if the classical relation yields true, but it should not necessarily jump to 0 when the
classical relation yields false;

2. the relations should work for fuzzy time intervals regardless if they consist of one or more
components or if they are finite or infinite.

The basic idea for the operator versions of the relations is very simple: since we have the point–
interval relations, we can extend the point to an interval in the relation by integrating over the
interval’s membership function. Thus, the operator version of the interval–interval relations are
essentially averaged point–interval relations. The functional version of a point–interval relation
is the operator which is used for the averaging process.

In the rest of this section we present the GeTS definitions of four different versions of
the interval–interval relations. Version 1 is the crisp version, where the corresponding crisp
region (support, core, kernel or maximum) is the basis for the computation. Version 2 is the
most general version where some extra functional parameters are used to compute the relation.
Version 3 is an instance of version 2 where default values are used for the extra parameters.

180

Finally, version 4 is Nagypál and Motik’s version. Version 1 has a Boolean value as result,
whereas all the others have a fuzzy value as result.

Visualisation of the Interval–Interval Relations
A fuzzy interval–interval relation between two concrete fuzzy intervals I and J yields a single
fuzzy value as a result. In order to show the effect of a particular definition for such a relation
we move the interval I in discrete steps along the time axis and compute for each shift of I
the relation to J . The resulting fuzzy values are collected in a new fuzzy interval. The GeTS
function showRelation below shifts the interval I and collects the points (t, y) in a new interval
K. t is the time coordinate of the right end of the kernel of the shifted I and y = F (I, J) is the
result of the fuzzy relation F . The figure in Example 5.3.3 shows the result of showRelation.
There are many more examples of this kind in the subsequent sections. The right end of the
kernel of the shifted interval I is, however, not always used for the time coordinate of the
generated interval. In some examples we use the middle of the kernel.

showRelation(Interval I, Interval J, (Interval*Interval)->Float F,

Time distance, Integer steps) =

Let K = [] in

while (steps >= 0) {

pushBack(K,point(I,right,kernel),F(I,J)),

I := shift(I,distance),

steps := steps - 1}

K;

5.3.3 Interval–Interval ‘before’ Relations

Four different versions of the ‘before’ relation are presented as GeTS definitions.

Definition 5.3.2 (Interval–Interval ‘before’ Relations)

1. IIR::Before(Interval I, Interval J, Region R) =

case isEmpty(I): false,

isEmpty(J): false

else (point(I,right,R) <= point(J,left,R))

2. IIR::Before(Interval I, Interval J, Interval->Interval B) =

case isEmpty(I) or isEmpty(J): 0.0,

isInfinite(I,right) or isInfinite(J,left): 0.0,

(point(I,right,support) <= point(J,left,support)): 1.0,

isInfinite(I,left):

Let K = intersection(I,J) in

if(isEmpty(K)) then 1.0 else integrateAsymmetric(K,B(J))

else integrateAsymmetric(I,B(J))

3. IIR::Before(Interval I, Interval J) = IIR::Before(I,J,PIR::Before[Interval])

4. IIR::NMBefore(Interval I, Interval J) =

case isEmpty(I) or isEmpty(J): 0.0,

181

isInfinite(I,right) or isInfinite(J,left): 0.0

else sup(intersection(complement(extend(I,negative)),

complement(extend(J,positive))))

Version 1

This is Allen’s version of the crisp before–relation. The parameter R (support, core, kernel
or maximum) determines the crisp part of the intervals which are to be compared.

The <= in the expression point(I,right,R) <= point(J,left,R) may need an explana-
tion. All intervals are interpreted as half open intervals with integer boundaries. If, for example,
I = [0, 10[and J = [10, 20[then 10 belongs to J and not to I. Therefore all points of I, including
the 10, are definitely before J . Therefore <= is appropriate here.

Version 2 and 3

Version 2 and version 3, as a special case of version 2, are the operator based before–relations.
The first three cases in version 2 of IIR::Before concern trivial cases where the result is
obvious. The last two cases are the really interesting ones.

Version 2 for Finite Intervals
The definition for finite intervals I and arbitrary intervals J is:

before(I, J) =def

∫

I(t) ·B(J)(t) dt/|I|

where B is a point–interval before-relation. The idea of this definition is to average the point–
interval before-relation over the interval I. The normalisation factor is just |I|. The rationale
behind this is the following: if J is finite at the left side then B(J)(t) = 1 if t is small enough.
If we move the interval I into the area where B(J)(t) = 1 for all t in this area then the integral
becomes

∫
I(t) · B(J)(t) dt =

∫
I(t) · 1 dt = |I|, such that before(I, J) = 1. Thus, |I| as

normalisation factor yields the right result.

The built-in function integrateAsymmetric(I, B(J)) in GeTS computes the normalised
integral

∫
I(t) ·B(J)(t) dt/|I|.

The next picture illustrates version 3 for two finite crisp intervals. B is the standard point–
interval before operator of Example 5.2.3. For this particular operator B and crisp intervals I
and J , IIR::Before(I, J) yields the percentage of points in I which are before J (in the usual
crisp sense).

Example 5.3.3 (IIR::Before for crisp intervals) The upper dashed line in the picture in-
dicates the fuzzy value at position t if the end of interval I is at this position. The fuzzy value
has dropped to 0 only if the interval I is moved completely into J . A steeper decrease can
be enforced if the result of IIR::Before(I, J) is, for example, exponentiated with an exponent
> 1. (GeTShas an exp function for this purpose.) The lower dashed line in the figure therefore
indicates IIR::Before(I, J)3.

182

-

6

R
0

1

IIR::Before(I, J) and IIR::Before(I, J)3

I J

One may argue whether it is desirable to have a ‘before’ relation where the standard parameters
force the fuzzy value down to 0 only when the interval I is completely contained in J . The
counter argument is that a smooth decrease can reveal more information about the structure
of I and J than a steep drop. A steep drop to 0 can always be achieved by exponentiating the
result with a large enough exponent.

The next picture shows the IIR::Before–relation for real fuzzy intervals.

Example 5.3.4 (IIR::Before for fuzzy intervals) The upper dashed line in the picture in-
dicates the result of the IIR::Before–relation at position t if the positive end of the interval I
is moved to t. The lower dashed line is the upper dashed line exponentiated with the exponent
10. The dotted line represents the position of the interval I when the result value is dropped to
0.

-

6

R
0

1

IIR::Before(I, J) and IIR::Before(I, J)10

I J

Version 2 for Infinite Intervals
If the interval I is positive infinite, then nothing can be after I. Therefore the relation
IIR::Before(I, J) must yield 0. If the interval J is negative infinite, then nothing can be
before J . Therefore the relation IIR::Before(I, J) must also yield 0.

If I is negative infinite and J is finite or positive infinite then IIR::Before(I, J) may well
be not false. The problem is how to measure the degree of ‘beforeness’ in this case. Since I is
infinite,

∫
I(t) · B(J)(t) dt will always be infinite. An alternative is to take instead of I only

the intersection between I and J and to measure the degree of ‘beforeness’ of I ∩ J . Since J is
not negative infinite, I ∩ J is finite. The definition is then

before(I, J) =def

∫

(I ∩ J)(t) ·B(J) dt/|I ∩ J |.

This integral is again computed with the GeTS function integrateAsymmetric(I ∩ J,B(J))

183

Example 5.3.5 (IIR::Before for infinite intervals) This picture shows the development of
IIR::Before(I, J) when I is negative infinite and its positive end is moved along the time axis.
The fuzzy value drops down, but not to 0. It remains constant after a while.

-

6

R
0

1

before for Infinite Intervals

I J

Properties of the IIR::Before–Relation for Finite Intervals:
The crisp relation on crisp sets is irreflexive: ¬before(I, I) holds for all I. IIR::Before(I, J) = 0
holds also for crisp sets. IIR::Before(I, I) = 0 means in this case that 0% of I is before I
itself. This does not longer hold if I is fuzzy. The following picture illustrates the phenomenon:

-

6

R
0

1

Counterexample for Irreflexivity

IB(I)

The intersection ofB(I) with I is to a certain degree before I. Therefore IIR::Before(I, I) > 0.

The crisp before relation is asymmetric: ∀I, J before(I, J) ⇒ ¬before(J, I). A similar prop-
erty also holds for the IIR::Before–relation on crisp sets: if a non-zero fraction of I is before
J then nothing of J can be before I. IIR::Before(I, J) > 0 ⇒ IIR::Before(J, I) = 0. This
does no longer hold for fuzzy sets.

-

6

R
0

1

Counterexample for Asymmetry

I

J

B(I)

B(I) has a non-zero intersection with J and B(J) has a non-zero intersection with I. Therefore
IIR::Before(I, J) > 0 and IIR::Before(J, I) > 0.

The fuzzy version of transitivity relates before(I, J) and before(J,K) with before(I,K) in
some way. There is such a relation for version 3 of IIR::Before and crisp sets: if IIR::Before(I, J) =
a (a ·100% of I is before J) and IIR::Before(J,K) = b (b ·100% of J is before K) then one can
show that IIR::Before(I,K) = min(1, a + (b · |I|/|J |)). Nothing of this kind holds for fuzzy
sets.

184

Version 4 (Nagypál and Motik)

The first picture shows the result of the before relation when the interval I is moved along the
time axis. A point (t, y) at the dashed and dotted curves is the result of the before relation
when the positive end of the interval I is moved to position t.

Example 5.3.6 (IIR::Before: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::Before(I, J) and IIR::NMBefore(I, J)

I J
Operator

NM

It may happen that the result is a non-zero fuzzy value even beyond the positive end of J .
This is because even if the positive end of I is behind J , there is still some part of I before J .
The next example shows that both versions can show the same phenomenon.

Example 5.3.7 (IIR::Before: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::Before(I, J) and IIR::NMBefore(I, J)

I J
Operator

NM

The last example is with a fuzzy and a crisp interval. It illustrates that in the Nagypál and
Motik version of before the structure of the right end of I is mapped directly to the structure
of the result.

Example 5.3.8 (IIR::Before: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::Before(I, J) and IIR::NMBefore(I, J)

I J
Operator

NM

The examples demonstrate that the Nagypál and Motik version of the before relation reveals
more about the fine structure of the back end of the first interval I and the front end of the

185

second interval J . The precise relation, however, is not very clear. The operator version, on
the other hand, has a more global meaning: the resulting fuzzy value stands for fraction of the
first interval which is before the second interval.

5.3.4 Interval–Interval ‘meets’ Relations

The classical meets–relation yields ‘true’ if the end of the first interval I touches the beginning
of the second interval J . This is essentially version 1 of IIR::Meets below. Version 1 has again
the region parameter R (support, core, kernel or maximum) which specifies the crisp region
of the intervals to be compared. The other three versions in Def. 5.3.9 below are the operator
definitions and Nagypál and Motik’s version.

Definition 5.3.9 (Interval–Interval ‘meets’ Relations)

1. IIR::Meets(Interval I, Interval J, Region R) =

case isEmpty(I): false,

isEmpty(J): false

else (point(I,right,R) == point(J,left,R))

2. IIR::Meets(Interval I, Interval J, Interval->Interval F,

Interval->Interval S, Bool simple) =

case isEmpty(I) or isEmpty(J): 0.0,

isInfinite(I,right) or isInfinite(J,left): 0.0

else integrateSymmetric(F(I),S(J),simple)

3. IIR::Meets(Interval I, Interval J, Bool simple) =

IIR::Meets(I,J,PIR::Finishes[Interval],PIR::Starts[Interval],simple)

4. IIR::NMMeets(Interval I, Interval J) =

case isEmpty(I) or isEmpty(J): 0.0,

isInfinite(I,right) or isInfinite(J,left): 0.0

else Let IN = extend(I,negative) in

Let JP = extend(J,positive) in

min(inf(union(IN,JP)),

inf(union(complement(IN),complement(JP))))

Version 2 and 3

The back end of I and the front end of J are relevant for evaluating meets(I, J). We can get the
back end of I in our fuzzy setting with the point–interval PIR::Finishes operator (Def. 5.2.9),
and the front end of J with the point–interval PIR::Starts operator (Def. 5.2.6, Example
5.2.7). The fuzzy meets-relation measures how many points in the back end F (I) of I are in
the front end S(J) of J and normalises the value with the maximum possible overlap between
F (I) and S(J). Notice that this works only if |F (I)| and |S(J)| are finite. The mathematical
definition is therefore meetsF,S(I, J) =def

∫
F (I)(t) · S(J)(t) dt/N(F (I), S(J)).

186

The normalisation factor N(F (I), S(J)) =def maxa

∫
F (I)(t − a) · S(J)(t) dt amounts to a

search problem where F (I) is moved along the time axis to find the position for I where the
integral becomes maximal. This guarantees that there is a position for I where meets(I, J) =
1. Although the implementation of the search procedure is quite efficient, it may be too
expensive or it may be unimportant to normalise the meets–relation to 1. Therefore ver-
sion 2 of IIR::meets has a parameter Bool simple which is passed to the built-in function
integrateSymmetric. integrateSymmetric(I, J, simple) computes

∫
I(t) · J(t) dt/N(I, J)

where N(I, J) = min(|I|, |J |) if simple = true, and N(I, J) =def maxa

∫
I(t − a) · J(t) dt if

simple = false. The effect of simple = true is that there may be no position of I relative to
J where IIR::meets(I, J, true) = 1.

Example 5.3.10 (IIR::meets for crisp intervals)
The first picture shows the IIR::meets–relation where for crisp intervals the operators F and
S have a singular peak. Consequently the IIR::meets–relation has also a singular peak when
the interval I meets J in the crisp sense.

-

6

R
0

1

Crisp IIR::Meets(I, J) for Crisp Intervals

I J

The next picture shows the result of the meets-relation when the finishes- and starts op-
erators fuzzify the crisp sets. The dotted lines show the fuzzified crisp sets (with Gaussian
fuzzification). The dashed line is again the result of meets when the endpoint of I is moved
along the time axis.

Example 5.3.11 (Fuzzy IIR::Meets for crisp intervals)

-

6

R
0

1

Fuzzy IIR::Meets for Crisp Intervals

I J

Finally we illustrate the fuzzy meets-relation with two fuzzy time intervals and the simple
point–interval finishes and starts operators of Example 5.2.7.

Example 5.3.12 (Fuzzy IIR::Meets for fuzzy intervals) The dashed line shows the re-
sults of the
IIR::Meets–relation when the interval I is moved along the time axis. The dotted figure is the
position of I where IIR::Meets is maximal.

187

-

6

R
0

1

IIR::Meets(I, J) for Fuzzy Intervals

I J

Properties of IIR::Meets
If the operators F and S have a singular peak then meets behaves for crisp relations like the
classical crisp meets–relation. Therefore the properties of the crisp meets–relation hold as well:
irreflexivity and asymmetry holds, and transitivity does not hold. If F and S widen the peaks
then nothing of this can be predicted any more.

Version 4 (Nagypál and Motik)

The next examples illustrate that the differences between the operator version of the meets–
relation and Nagypál and Motik’s version are minor. The operator version yields a smoother
curve, and the fuzzy values are normalised to 1 as peak value. This would be possible for the
Nagypál and Motik version either, but it causes a similar search problem as for the operator
version.

188

Example 5.3.13 (IIR::Meets: operator version and Nagypál and Motik’s version)

-

6

R
0

1

IIR::Meets(I, J) and IIR::NMMeets(I, J)

I J
Operator

NM

The dashed and dotted curves indicate again the resulting value of the meets relation at
coordinate t if the interval I is moved such that its positive end is at t.

-

6

R
0

1

IIR::Meets(I, J) and IIR::NMMeets(I, J)

I J
Operator

NM

5.3.5 Interval–Interval ‘overlaps’ Relations

The classical relation I overlaps J holds if two conditions are fulfilled:
1. a non-empty part I ′ of I must lie before J , and
2. the rest (I \ I ′) 6= ∅ must lie inside J .

The generalisation to non-convex intervals concerns the first condition. There are the two
possibilities: 1. I ′ consists of one or more components which lie before J , i.e. there is a gap
between the end of I ′ and the start of J ;
2. the last component of I ′ overlaps with J . This condition is realized in the current imple-
mentation of Version 1 of IIR::Overlaps below. The ‘overlaps’ test for non-convex intervals
is quite involved. Therefore it is realized as a built-in function doesOverlap in GeTS.

Definition 5.3.14 (Interval–Interval ‘overlaps’ Relations)

1. IIR::Overlaps(Interval I, Interval J, Region R) = doesOverlap(I,J,R)

2. IIR::Overlaps(Interval I, Interval J, Interval->Interval E,

(Interval*Interval)->Float D) =

case isEmpty(I) or isEmpty(J) or isInfinite(J,left) : 0.0,

isInfinite(I,right) and isInfinite(J,right):

float(doesOverlap(I,J,support))

isInfinite(I,right): 0.0,

isInfinite(J,right): float(doesOverlap(I,J,support))

else Let EJ = E(J) in

(1.0 - D(I,EJ)) * D(I,J) / NormalizeOverlaps(I,J,EJ,D)

3. IIR::Overlaps(Interval I, Interval J)

189

= IIR::Overlaps(I,J,lambda(Interval K) extend(K,positive),

IIR::During[Interval*Interval])

4. IIR::NMOverlaps(Interval I, Interval J) =

if(isEmpty(I) or isEmpty(J)) then 0.0

else Let IL = extend(I,negative) in

Let IR = extend(I,positive) in

Let JL = extend(J,negative) in

Let JR = extend(J,positive) in

min(sup(intersection(IR,complement(JR))),

sup(intersection(IL,JR)),

sup(intersection(complement(IL),JL)))

Versions 2 and 3

Version 2 needs two operators as parameters for IIR::Overlaps. The parameter E should be a
function that extracts the front part of the interval J and extends it to infinity. extend(J,positive)
is the natural choice. The operator D should be one of the during–operators.

Versions 2 of IIR::Overlaps for Finite Intervals
The first condition, a non-empty part I1 of I must lie before J , is encoded in the factor 1 −
D(I, E(J)) D(I, E(J)) measures the part of I which is after the front part of J . 1−D(I, E(J))
then measures the part of I which is before the front part of J . This factor is multiplied with
D(I, J) which corresponds to the second condition. It measures to which degree I is contained
in J . The product is normalised with maxa((1 −D(shift(I, a), E(J))) ·D(shift(I, a), J)) The
normalisation factor corresponds to the maximal possible overlap when I is shifted along the
time axis. This guarantees that there is a position for I where IIR::Overlaps(I, J) = 1. The
normalisation factor is computed by the built-in function NormalizeOverlaps.

Example 5.3.15 (IIR::Overlaps for fuzzy intervals) This example shows the result of the
IIR::Overlaps relation where the standard during operator is used (with the identity function
as point–interval during operator).

-

6

R
0

1

IIR::Overlaps(I, J)

I J

The dashed line represents the result of the overlaps relation for a time coordinate t where the
positive end of the interval I is moved to t. The dotted figure indicates the interval I moved to
the position where IIR::Overlaps(I, J) becomes maximal.

The normalisation factor maxa((1 − D(I ′(a), E(J))) · D(I ′(a), J)) causes again a search
problem. As one can see in the above example the search space is usually very simple (if the

190

intervals are not too exotic). There is only one global maximum and no local maxima. Therefore
standard hill climbing is an efficient search method in this case.

Versions 2 of IIR::Overlaps for Infinite Intervals
If the interval J is negative infinite then there cannot be anything before J . Therefore IIR::Overlaps(I, J) =
0. In the other infinite cases we compute the crisp overlaps relation for the support of I and J .

Properties of the overlaps relation:
The crisp overlaps relation is irreflexive, asymmetric and not transitive. For version 3 of
IIR::Overlaps and finite fuzzy sets I which are crisp at the left side we have D(I, E(I)) = 1.
Therefore,

IIR::Overlaps(I, I) = (1 −D(I, E(I)) ·D(I, I)/N ′(I, J) = 0

holds. If I is fuzzy at the left side then D(I, E(I)) < 1 and D(I, I) > 0, and therefore
IIR::Overlaps(I, I) > 0.

-

6

R
0

1

IIR::Overlaps(I, I) = 0 and
IIR::Overlaps(J, J) > 0

I J

For crisp intervals I and J we have a property which corresponds to asymmetry: IIR::Overlaps(I, J) >
0 ⇒ IIR::Overlaps(J, I) = 0. This is because IIR::Overlaps(I, J) > 0 means that a part
of I is before J . Therefore no part of J can be before I. If I and J are fuzzy, we can have
IIR::Overlaps(I, J) > 0 and IIR::Overlaps(J, I) > 0.

Version 4 (Nagypál and Motik)

The first example below for the overlaps relation shows a structural similarity between the
operator version and Nagypál and Motik’s version. Again, Nagypál and Motik’s version is not
normalised.

Example 5.3.16 (IIR::Overlaps: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::Overlaps(I, J) and IIR::OverlapsNM(I, J)

I J
Operator

NM

The dashed and dotted lines show the result of IIR::Overlaps at a point t when the interval
I is shifted such that its endpoint is at t.

The next example demonstrates that Nagypál and Motik’s version of the overlaps relation
is not sensitive to the internal structure of the intervals. The interval J is treated like its crisp
hull.

191

Example 5.3.17 (IIR::Overlaps: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::Overlaps(I, J) and IIR::OverlapsNM(I, J)

I J
Operator

NM

5.3.6 Interval–Interval ‘starts’ Relations

The crisp I starts J-relation has two conditions:
1. the start point of I and the start point of J are identical, and
2. I is a subset of J .

These conditions can be generalised straightforwardly to non-convex intervals. They are
checked in version 1 of the IIR::Starts–relation below.

Definition 5.3.18 (Interval–Interval ‘starts’ Relations)

1. IIR::Starts(Interval I, Interval J, Region R) =

if(isEmpty(I) or isEmpty(J)) then false

else (point(I,left,R) == point(J,left,R)) and isSubset(I,J,R)

2. IIR::Starts(Interval I, Interval J, Interval->Interval S,

(Interval*Interval)->Float D, Bool simple) =

case isEmpty(I) or isEmpty(J) or isInfinite(J,left) or

(isInfinite(I,left) xor isInfinite(J,left)): 0.0,

isInfinite(I,left) and isInfinite(J,left) : D(I,J)

else integrateSymmetric(S(I),S(J),simple)*D(I,J)

3. IIR::Starts(Interval I, Interval J, Bool simple) =

IIR::Starts(I,J,PIR::Starts[Interval], IIR::During[Interval*Interval],simple)

4. IIR::NMStarts(Interval I, Interval J) =

if(isEmpty(I) or isEmpty(J)) then 0.0

else Let IR = extend(I,positive) in

Let JR = extend(J,positive) in

min(inf(union(complement(IR),JR)),

inf(union(IR,complement(JR))),

sup(intersection(complement(extend(I,negative)),

extend(J,negative))))

Versions 2 and 3

The two conditions for the crisp starts–relation can be reformulated for the operator version.
The conditions are turned into a product of the overlap between the two starting sections of I

192

and J , and the during(I, J)-relation:

starts(I, J) =def

∫
S(I)(t) · S(J)(t) dt

N(S(I), S(J))
·D(I, J)

The first factor checks the first condition: the starting part S(I) of I should coincide with
the starting part S(J) of J . This value is normalised to the maximal possible overlap of the
starting parts. The assumption here is that if I move I along the time axis, there should be a
position of I where I definitely starts J , and where therefore the fuzzy value should be 1. The
second factor checks whether I is a subset of J . This factor need not be 1 if I is larger than J .
Therefore the result of starts(I, J) can be < 1 regardless of the position of I.

The extreme cases are:

• if I or J are empty then starts(I, J) must be 0;

• if one of I and J is negative infinite then they can’t have the same starting point. Therefore
starts(I, J) must be 0 again;

• if both are negative infinite then we can assume that they have the same starting point,
and therefore only the second condition during(I, J) must be checked;

• it does not matter whether I or J are positive infinite because only the finite starting
sections of I and J count.

Example 5.3.19 (IIR::Starts for crisp intervals)
The first picture shows the case where the identity operator is used for D. If the front end of I
is moved along the time axis we get a single peak when it meets J . The peak, however, is only
0.5 high because I is twice as large as J .

-

6

R
0

1

IIR::Starts

I J

The next picture shows a fuzzified IIR::Starts–relation. The dashed line shows the value
of starts(I, J) for a position t where the front end of I is moved to t. The crisp intervals are
fuzzified in the same way as in Example 5.3.10. The peak is broader, but the maximum is still
at 0.5 because I is twice as large as J .

-

6

R
0

1

Fuzzified IIR::Starts–relation

I J

193

Example 5.3.20 (IIR::Starts–Relation for fuzzy intervals) The next figure shows the
application of the same IIR::Starts–relation as in the first picture of the above example to
fuzzy intervals. The dashed line is again the result of the IIR::Starts–relation. The dotted
figure shows the position of the interval I where IIR::Starts(I, J) is maximal.

-

6

R
0

1

IIR::Starts(I,J)

I J

Properties of the IIR::Starts(I,J)–relation:
The classical starts relation for crisp intervals is reflexive, antisymmetric and transitive. If
we consider only the cases IIR::Starts(I, J) = 0 or IIR::Starts(I, J) = 1 where I and J
are crisp intervals then it behaves like the classical starts relation. The same properties hold,
in particular reflexivity. For fuzzy intervals, however, we have 0 < IIR::Starts(I, I) < 1.
No kind of fuzzy antisymmetry holds for IIR::Starts on fuzzy intervals. A fuzzy version of
transitivity does also not hold. The reason is that, although the starting sections of I and J
may overlap, and the starting sections of J and K may overlap, this does not imply that the
starting sections of I and K overlap.

Version 4 (Nagypál and Motik)

This version shows close structural similarities if the left sides of the intervals are not too exotic.

Example 5.3.21 (IIR::Starts(I, J) and IIR::StartsNM(I, J))

-

6

R
0

1

IIR::Starts(I, J) and IIR::StartsNM(I, J)

I J
Operator

NM

The dashed and dotted lines in this picture show the resulting values of starts relation at a
point t if the left end of the interval I is moved to t.

The Nagypál and Motik starts–relation in the next picture has a singular peak of maximal
high for the case that the left end of the interval I coincides with the left end of the interval
J , although I is not contained in J . The operator version with standard parameters has also a
singular peak there, but its hight is only 0.55, which indicates that only 55% of I are contained
in J . The dashed line in the picture shows the results of the operator version of starts, where
the starting sections of I and J are widened by a fuzzification operator.

194

Example 5.3.22

-

6

R
0

1

IIR::Starts(I, J) and IIR::StartsNM(I, J)

I J
Operator

NM

195

5.3.7 Interval–Interval ‘finishes’ Relations

The finishes–relation is the mirror image of the starts–relation. Therefore we list only the
definitions.

Definition 5.3.23 (Interval–Interval ‘finishes’ Relations)

1. IIR::Finishes(Interval I, Interval J, Region R) =

case isEmpty(I): false,

isEmpty(J): false

else (point(I,right,R) == point(J,right,R)) and isSubset(I,J,R)

2. IIR::Finishes(Interval I, Interval J, Interval->Interval S,

(Interval*Interval)->Float D, Bool simple) =

case isEmpty(I) or isEmpty(J) or isInfinite(J,left) or

(isInfinite(I,right) xor isInfinite(J,right)): 0.0,

isInfinite(I,right) and isInfinite(J,right) : D(I,J)

else integrateSymmetric(S(I),S(J),simple)*D(I,J)

3. IIR::Finishes(Interval I, Interval J, Bool simple) =

IIR::Finishes(I,J,PIR::Finishes[Interval], IIR::During[Interval*Interval],simple)

4. IIR::NMFinishes(Interval I, Interval J) =

if (isEmpty(I) or isEmpty(J)) then 0.0

else Let IL = extend(I,negative) in

Let JL = extend(J,negative) in

min(inf(union(IL,complement(JL))),

inf(union(complement(IL),JL)),

sup(intersection(extend(I,positive),

complement(extend(J,positive)))))

5.3.8 Interval–Interval ‘during’ Relations

The crisp version of the during–relation needs only to check whether an interval I is a subset of
an interval J . If I and J are not convex, this is a non-trivial task, but can still be done in linear
time with a sweep line algorithm. Therefore it is realized by the built-in function isSubset in
version 1 of IIR::During below.

Definition 5.3.24 (Interval–Interval ‘during’ Relations)

1. IIR::During(Interval I, Interval J, Region R) = isSubset(I,J,R)

2. IIR::During(Interval I, Interval J, Interval->Interval D) =

case isEmpty(I): 1.0,

isEmpty(J): 0.0,

isInfinite(I):

Let iNeg=member(point(I,left,support),I) in

196

Let iPos=member(point(I,right,support),I) in

(iNeg * member(point(J,left,support),I) +

iPos * member(point(J,right,support),I)) /

(iNeg + iPos)

else integrateAsymmetric(I,D(J))

3. IIR::During(Interval I, Interval J) =

IIR::During(Interval I, Interval J, lambda(Interval K) K);

4. IIR::NMDuring(Interval I, Interval J) =

case isEmpty(I): 1.0,

isEmpty(J): 0.0

else min(sup(intersection(complement(extend(I,positive)),extend(J,positive))),

sup(intersection(complement(extend(I,negative)),extend(J,negative))))

Version 2 and 3

IIR::During for Finite Intervals
The operator version of during averages the point–interval during relation D by integrating over
the interval I. The basic formula is therefore

duringD(I, J) =def

∫
I(t) ·D(J)(t) dt

|I|

This is realized with a parameter D in version 2 of IIR::During, and with the identity function
for D in version 3. IIR::During(I, J) measures to what degree I is contained in J . The
normalisation factor is |I| because if I is larger than J then IIR::During(I, J) should definitely
be smaller than 1.

Example 5.3.25 (IIR::During for crisp intervals)
The dashed line in the picture below shows the result of the IIR::During-relation for a coordi-
nate t when the middle point of the interval I is moved to t.

-

6

R
0

1

IIR::During(I, J) for Crisp Intervals

I J

The interval I in the next picture is larger than J such that IIR::During(I, J) never rises
to 1.

197

-

6

R
0

1

IIR::During(I, J) for Crisp Intervals

I J

Example 5.3.26 (IIR::During for fuzzy intervals)
The dashed line shows again the result of the IIR::During-relation when the middle point of I is
moved along the time axis. The dotted figure indicates the position of I where IIR::During(I, J)
is maximal.

-

6

R
0

1

IIR::During(I, J) for Fuzzy Intervals

I J

IIR::During for Infinite Intervals
The formula

∫
I(t) ·D(J)(t) dt/|I| cannot be evaluated if I is an infinite interval. Instead one

can compute lima→∞

∫ +a

−a
I(t) · D(J)(t) dt/

∫ +a

−a
I(t) dt. If the limes is calculated analytically

we obtain (I(−∞) · J(−∞) + I(+∞) + J(+∞))/(I(−∞) · I(+∞)). This formula is used for
version 2 and 3 of IIR::During on infinite intervals I.

Version 4 (Nagypál and Motik)

The next two examples show a comparison of the during–relations. Compared to the operator
version, the Nagypál and Motik version has a much narrower graph and it is less smooth.

Example 5.3.27 (IIR::During: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::During(I, J) and IIR::NMDuring(I, J)

I J
Operator

NM

198

The dashed and dotted lines indicate the values of the during relation at coordinate t if the
middle point of the interval I is moved to t.

The interval J in the next example is treated like its crisp hull by the Nagypál and Motik
version. Therefore there is quite a difference to the operator version.

Example 5.3.28 (IIR::During: operator version versus Nagypál and Motik’s version)

-

6

R
0

1

IIR::During(I, J) and IIR::NMDuring(I, J)

I J
Operator

NM

The dashed and dotted lines indicate again the values of the during relation at coordinate t
if the middle point of the interval I is moved to t.

5.3.9 Interval–Interval ‘equals’ Relations

An interval I equals an interval J if I is a subset of J and vice versa. This is what is tested in
version 1 below.

Definition 5.3.29 (Interval–Interval ‘equals’ Relations)

1. IIR::Equals(Interval I, Interval J, Region R) =

isSubset(I,J,R) and isSubset(J,I,R)

2. IIR::Equals(Interval I, Interval J, (Interval*Interval)->Float D) =

D(I,J) * D(J,I)

3. IIR::Equals(Interval I, Interval J) = IIR::During(I,J) * IIR::During(J,I)

4. IIR::NMEquals(Interval I, Interval J) =

case isEmpty(I) : float(isEmpty(J)),

isEmpty(J) : 0.0

else Let IL = extend(I,negative) in

Let IR = extend(I,positive) in

Let JL = extend(J,negative) in

Let JR = extend(J,positive) in

min(inf(union(IL,complement(JL))),

inf(union(complement(IL),JL)),

inf(union(complement(IR),JR)),

inf(union(IR,complement(JR))))

199

Version 2 and 3

Version 2 takes an arbitrary binary interval operatorD, usually a during–operator and computes

equalsD(I, J) =defD(I, J) ·D(J, I).

Version 3 uses IIR::During for the parameter D.

Example 5.3.30 (IIR::Equals for crisp intervals)
The first picture shows the IIR::Equals–relation for similar intervals. If I is moved on top of
J then IIR::Equals(I, J) = 1

-

6

R
0

1

IIR::Equals for Similar Intervals

I J

I and J in the next figure are not equal. Therefore equals(I, J) never rises to 1.

-

6

R
0

1

IIR::Equals for Different Intervals

I J

Properties of the IIR::Equals relation:
The classical equals–relation is an equivalence relation. IIR::Equals(I, J) = 1 implies that I
and J are crisp and moreover I = J (see the corresponding remark about IIR::During(I, J) =
1). Therefore if we consider only the case IIR::Equals(I, J) = 1 then IIR::Equals is also an
equivalence relation.

Since IIR::During(I, I) > 0 we also have IIR::Equals(I, I) > 0 for non-empty fuzzy
sets. By the very definition of IIR::Equals we have IIR::Equals(I, J) = IIR::Equals(J, I),
the strongest form of fuzzy symmetry. Any form of fuzzy transitivity does not hold. It is
easy to construct examples where IIR::Equals(I, J) > 0 and IIR::Equals(J,K) > 0 and
IIR::Equals(I,K) = 0. This is because although IIR::Equals(I, J) > 0 requires an overlap
between I and J , and IIR::Equals(J,K) > 0 requires an overlap between J and K, there need
not be an overlap between I and K.

Version 4 (Nagypál and Motik)

The behaviour of the equals relations are quite similar to the behaviour of the during relations
because they essentially consist of two during relations. The two curves in the first example
below do not rise to 1, although the shapes of the two intervals are identical. This is, because

200

the relations do not compare the shapes of the intervals, but they rely on the meaning of the
during relation.

Example 5.3.31 (IIR::Equals: operator version and Nagypál and Motik’s version)

-

6

R
0

1

IIR::Equals(I, J) and IIR::Equals(I, J)

I J
Operator

NM

The Nagypál and Motik version of the equals relation in the next example has a singular peak
when the two intervals match exactly. The reason is again that the Nagypál and Motik version
treat the intervals in this case like their crisp hulls.

Example 5.3.32 (IIR::equals: operator version and Nagypál and Motik’s version)

-

6

R
0

1

IIR::Equals(I, J) and IIR::Equals(I, J)

I J

Operator

NM

5.3.10 Summary: Operator Version versus Nagypál and Motik’s Re-
lations

The resulting values of the operator version (with standard parameters) and the Nagypál and
Motik version of the different relations show a similar structure if the intervals are ‘crisp like’
intervals, i.e. if they consist of a single component which is more or less monotonic, and has no
internal structure. The Nagypál and Motik version follows the rising and falling parts of the
intervals more directly, whereas the operator version smoothes the curves. Since the operator
versions integrate over the corresponding point-interval relations, they have a more intuitive
meaning than the Nagypál and Motik version.

The differences between the two versions are more obvious for crisp intervals, where the
Nagypál and Motik versions deliberately behave like the pure crisp relations. The operator
versions can return non-trivial fuzzy values is these cases. The differences become also more
obvious when the intervals have an internal structure, or when they consist of several compo-
nents. The internal structure is completely ignored by the Nagypál and Motik versions. This
is not the case for the operator version.

Transitivity Table? Allen’s interval relations for crisp intervals are related in particular
ways. For example, if I starts J holds then I during J must hold as well. All the relationships

201

between the different interval relations can be collected in a transitivity table. The transitivity
table can then be used for constraint propagation algorithms. A systematic investigation of
the relationships between fuzzy interval–interval relations has not been done yet. The guess is
that not many relationships hold, and therefore the transitivity table may not help much for a
constraint propagation algorithm.

5.3.11 Until

The ‘Until’ operator is known from temporal logics [17]. ϕ Until ψ in a temporal logic usually
means ‘eventually ψ holds and ϕ holds until this time point. Since ‘Until’ is quite useful, we
show two GeTS versions of ‘Until’ where ϕ and ψ are not formulae, but fuzzy time intervals.
With this Until operator we can model expressions like ‘from early morning until late night’,
where ‘early morning’ and ‘late night’ are concrete fuzzy intervals. An expression like this is
ambiguous. It can be interpreted as ‘from the beginning of early morning until the end of late
night’ or ‘from the beginning of early morning until the beginning of late night’, and there are
two more possibilities. All four combinations are provided. The first version in Def. 5.3.33
below uses the concrete operators extend, complement and intersection. The second version
accepts these operators as extra parameters.

Definition 5.3.33 (Until)

1. Until(Interval I, Interval J, Side s1, Side s2) =

if (s1 == left) then

(if (s2 == left) then

intersection(extend(I,positive),complement(extend(J,positive)))

else intersection(extend(I,positive),extend(J,negative)))

else

(if (s2 == left) then

intersection(complement(extend(I,negative)),complement(extend(J,positive)))

else intersection(complement(extend(I,negative)),extend(J,negative)));

2. Until(Interval I, Interval J, Side s1, Side s2, (Interval*Interval)->Interval Ints,

Interval->Interval Ep, Interval->Interval En, Interval->Interval C) =

if (s1 == left) then

(if (s2 == left) then Ints(Ep(I),C(Ep(J)))

else Ints(Ep(I),En(J)))

else

(if (s2 == left) then Ints(C(En(I)),C(Ep(J)))

else Ints(C(En(I)),En(J)));

The next four figures show the four cases for the Until operator when two single non-
overlapping fuzzy intervals are involved.

202

-

6

R
0

1

Until(I,J,left,left)

I J

-

6

R
0

1

Until(I,J,left,right)

I J

-

6

R
0

1

Until(I,J,right,left)

I J

-

6

R
0

1

Until(I,J,right,right)

I J

The next example shows a concrete application of the second version of Until with the following
call:

Until(I, J, left, right, lambda(Interval K, Interval L) intersection(K,L),

lambda(Interval K) integrate(K,positive),

lambda(Interval K) integrate(K,negative),

lambda(Interval K) complement(K)).

Example 5.3.34 (Birthday Party Time) The Until operator can be used in more sophisti-
cated ways. Consider a database about, say, the institute’s birthday parties. It may contain the
entry that the birthday party for the director took place ‘from around noon until early evening’
of 20/7/2003. ‘Around noon’ is a fuzzy notion and ‘early evening’ is a fuzzy notion. Suppose,
we have a formalisation of ‘around noon’ and ‘early evening’ as the following fuzzy sets:

-

6

R
0

1

Around Noon and Early Evening
11 12 13 20 21 2422

203

What is now the duration of the birthday party? It must obviously also be a fuzzy set. The
fuzzy value of the birthday party duration at a time point t is 1 if the probability that the party
started before t is 1 and the probability that the party ended after t is also 1. Therefore the fuzzy
value at point t is computed by integrating over the probabilities of the start points and the end
points. The resulting fuzzy set is:

-

6

R
0

1

Birthday Party Time: Until(I, J, left, right, . . .)
11 12 13 20 21 2422

I J

The dashed curve may, for example, represent the percentage of people at the party at a give
time.

5.4 Summary

Different versions of point–interval and interval–interval relations for fuzzy intervals have been
presented in this paper. They are defined in the GeoTemporal Specification language (GeTS).
The point–interval relations are actually defined as functions which map intervals to intervals.
For example, the point–interval before function maps an interval I to the interval of all points
before I. Three different versions of interval–interval relations are defined. The first version
works like the crisp relations by taking crisp regions of the intervals. The second version, the
‘operator version’ uses suitable point–interval relations and extends the point to an interval by
averaging (integrating) over the second interval. The third version is taken from the literature
[25]. The effect of the different versions is illustrated graphically with concrete examples. The
properties of the operator versions are investigated as far as it is possible. Since the operator
version is extremely flexible and can be instantiated in many different ways, an exhaustive
investigation of its properties is almost impossible. Therefore, only a few important cases are
considered. The operator version is compared with Nagypál and Motik’s version by applying
them to typical examples. A more general theoretical comparison is not really feasible. The
definitions of the point–interval and interval–interval relations are available and can be loaded
into the CTTN system.

204

Appendix A

The FuTI–Module

205

A.1 The FuTI—interface

This is a very brief overview of the FuTI–interface. A much more detailed documentation is
available as doxygen generated html and latex files.

The FuTI–interface consists of the main classes Point, Interval, Operation and Y Function.
Additionally there are a number of auxiliary classes. The top class for all classes in the CTTN
system is FuTITop. In addition there is a namespace Service which is imported from the CTTN
system. This class contains all the general purpose functions which cannot be associated to a
particular component system. The Y Function has also a number of subclasses. The complete
class hierarchy is as follows:

FuTI::FuTITop

FuTI::Interval FuTI::Operation FuTI::Point

FuTI::YFunction

FuTI::BinaryYFunction FuTI::UnaryYFunction

FuTI::SDGoedel FuTI::SDKleene FuTI::SDLukasiewicz FuTI::TCoNorm FuTI::TNorm FuTI::NegationYFunction

FuTI::HamacherCoNorm FuTI::HamacherNorm FuTI::lambdaComplement

For the main classes we list the constructor methods, the main public methods and explain
briefly what they do. The syntax we use in this section is simplified C++ or Java. The precise
syntax is of course in the corresponding header or class files.

CX is the datatype of the x-coordinates (long long integers or multiple precision integers)
and CY is the datatype of the y-coordinates (typically unsigned short integers). CX and CY
are compiler options.

Many of the methods represent partial functions. FuTI has a DEBUG mode (compiler
option) where the necessary preconditions are checked and an error is thrown when the precon-
ditions are not met. If the DEBUG mode is turned off, only the errors which can be caused by
data and not by program errors are still caught.

A.1.1 Points

This class represents 2-dimensional points with coordinates of type CX and CY.

Constructors

Point(CX x, CY y)

constructs a point from x and y-coordinates.

Point(string s)

reconstructs a point from a string representation ”x,y”.

Predicates

bool p.leftturn(Point q, Point r)

true if p → q → r is a left turn or collinear. (Def. 2.3.4)

bool p.leftturnProper(Point q, Point r)

true if p → q → r is a proper left turn.

206

bool p.rightturn(Point q, Point r)

true if p → q → r is a right turn or collinear.

bool p.rightturnProper(Point q, Point r)

true if p → q → r is a proper right turn.

bool p.collinear(Point q, Point r)

true if p → q → r is collinear (Def. 2.3.3)

bool p.collinear(Point q, Point r, Point s)

true if the line segment (p, q) is collinear with the line segment (r, s).

bool p.between(Point q, Point r)

true if p is between q and r.

bool p.betweenProper(Point q, Point r)

true if p is between q and r, but different to q and r.

bool p.intersects(Point q, Point r, Point s)

true if the line (p, q) intersects the line (r, s).

bool p.intersectsProper(Point q, Point r, Point d)

true if the line (p, q) intersects the line (r, s), but does not only touch it. (Def. 2.3.5)

Computations

CX p.intersection(Point q, Point r, Point s)

computes the intersection point for the line segments (p, q) and (r, s). An error is
thrown if the line segments do not intersect! (Def. 2.3.6)

float p.lineY(Point q, CX x)

computes for the line crossing p and q the y-value at point x. An error is thrown if the
line is vertical. (Def. 2.3.7)

CX p.lineX(Point q, CY y)

computes for the line crossing p and q the x-value at point y. An error is thrown if the
line is horizontal. (Def. 2.3.8)

CX p.area2(Point q)

computes the area below the line segment (p, q). (Def. 2.3.9)

float p.area2(Point q, CX x1, CX x2)

computes the area below the line segment (p, q) from x1 until x2. It throws an error if
the line is vertical and x1 6= x2 (Def. 2.3.9)

CX p.area2X(Point q, float a)

computes the x-coordinate x such that the area below the line segment (p, q) from p

until x is just a. An error is thrown if there is not enough area below the line segment.
(Def. 2.3.10)

float p1.integrate(Point p2, Point q1, Point q2, CX x1, CX x2)

computes
∫ x2
x1 l1(x) · l2(x) dx where l1 is the line crossing p1 and p2 and l2 is the line

crossing q1 and q2. It throws an error if one of the lines is vertical. (Def. 2.3.12)

A.1.2 Intervals

The Interval class manages and manipulates fuzzy temporal intervals (Sec. 2.3.2). The intervals
are represented by their envelope polygons (Def. 2.3.15).

207

Constructors

Interval()

constructs an empty interval.

Interval(Point p)

constructs an interval with a single point p.

Interval(CX x, CY y)

constructs an interval with a single point (x, y).

Interval(CX a, CX b)

constructs a crisp interval [a, b[.

Interval(vector<Point> points)

constructs an interval with a vector of points.

Interval(string s)

constructs an interval from a string representation [x1, y1 x2, y2 ...[.

Adding and Removing Points.

void I.push back(Point p)

adds the point p to the end of the polygon. It throws an error if p.x is before the last
point in the polygon. (Def. 2.3.18)

void I.push back(CX x, CY y)

adds the point x, y to the end of the polygon. It throws an error if x is before the last
point in the polygon. (Def. 2.3.18)

void I.pop back()

removes the last point from the polygon. It does nothing on empty polygons.
(Def. 2.3.18)

Simple Properties of the Intervals

Point I.front()

returns the leftmost point and throws an error if I = ().

Point I.back()

returns the rightmost point and throws an error if I = ().

CX I.frontX()

returns the leftmost x-coordinate and throws an error if I = ().

CX I.backX()

returns the rightmost x-coordinate and throws an error if I = ().

CY I.frontY()

returns the leftmost y-coordinate and throws an error if I = ().

CY I.backY()

returns the rightmost y-coordinate and throws an error if I = ().

bool I.isNegInfinite()

returns true if the interval is negative infinite.

bool I.isPosInfinite()

returns true if the interval is positive infinite.

bool I.isInfinite()

returns true if the interval is infinite.

208

bool I.isEmpty()

return true if the polygon is empty.

bool I.isNonempty()

returns true if the polygon is not empty.

int I.nPoints()

returns the number of points in the polygon.

int I.isCrisp()

returns true if the polygon is non-empty, finite and crisp.

int I.isCrisp(bool front)

checks for crispness at the left/right side of the polygon.

int I.isSingleCrisp()

returns true if the polygon is a non empty convex crisp interval.

bool I.isConvex()

returns true if the polygon is convex.

bool I.isMonotone()

returns true if the polygon is monotone. (Def. 2.3.54)

bool I.isSymmetric()

returns true if the polygon is symmetric. (Def. 2.3.54)

CX I.SymmetryAxis2()

returns twice the x-coordinate of the symmetry axis and throws an error if I is not
symmetric.

int I.index(CX x)

returns the index of the rightmost polygon point that is left of x, or -1 if there is no
such point. (Def. 2.3.20)

int I.indexMax(bool front)

if front = true it returns the index of the leftmost point with maximal y-value, other-
wise it returns the index of the rightmost point with maximal y-value. If the polygon
is empty it returns -1. (Def. 2.3.20)

CY I.inf()

returns the smallest y-value of the polygon. (Def. 2.3.27)

CY I.sup()

returns the hight sup(I) of the polygon. (Def. 2.3.27)

float I.member(CX x)

returns the membership value for the x-coordinate x. (Def. 2.3.22)

CX I.size2I(int k, int l)

returns 2 * the area below the polygon from vertex k to vertex l. (Def. 2.3.28)

CX I.size2()

returns 2 * the area below the polygon. (Def. 2.3.28)

CX I.size2(CX a, CX b)

returns 2* the area below the polygon from x-coordinate a to x-coordinate b.
(Def. 2.3.28)

CX I.centrePoint(int k, int m)

returns the x-coordinates of the k, m-center point. (Def. 2.3.29)

209

int I.nComponents()

returns the number of components of the interval. (Def. 2.3.31)

Interval I.component(int k)

returns the kth component of I. It throws an error if k < 0. (Def. 2.3.32)

Region is an enumeration type with values support, core, kernel, maximum.

bool I.nextComponent(CX& x1, CX& x2, int& i1, int& i2, Region region)

enumerates the components of the corresponding region (Def. 2.3.34)

CX I.size(Region r)

returns the size of the core/support/kernel/maxRegion. (Def. 2.3.35)

Interval I.crisp(Region r)

returns the core/support/kernel/maxRegion as crisp interval. (Def. 2.3.36)

CX I.side(Region r, bool front)

returns the x-coordinate of the left/rightmost point of the
core/support/kernel/maxRegion. (Def. 2.3.37)

Hull Calculations

Interval I.crispHull()

returns the crisp hull of I. (Def. 2.3.38)

Interval I.monotoneHull()

returns the monotone hull of I. (Def. 2.3.39)

Interval I.convexHull()

returns the convex hull of I. (Def. 2.3.40)

Point–Interval Relations for Regions (Sec. 2.3.2.3)

bool I.before(CX t, Region region)

returns true if t is before the corresponding region of I.

bool I.starts(CX t, Region region)

returns true if t equals the left endpoint of the corresponding region of I.

bool I.during(CX t, Region region)

returns true if t is in the corresponding region of I.

bool I.finishes(CX t, Region region)

returns true if t equals the right endpoint of the corresponding region of I.

bool I.after(CX t, Region region)

returns true if t is after the corresponding region of I.

bool I.between(CX t, Region region)

returns true if t is in a gap between the corresponding region of I.

Relations Between Crisp Intervals and Regions of Fuzzy Intervals (Sec. 2.3.2.3)

bool I.before(CX t1, CX t2, Region region)

returns true if [t1,t2[is before the corresponding region of I.

210

bool I.meets(CX t1, CX t2, Region region)

returns true if [t1,t2[meets the corresponding region of I.

bool I.overlaps(CX t1, CX t2, Region region)

returns true if [t1,t2[overlaps the corresponding region of I.

bool I.starts(CX t1, CX t2, Region region)

returns true if [t1,t2[starts the corresponding region of I.

bool I.during(CX t1, CX t2, Region region)

returns true if [t1,t2[is during the corresponding region of I.

bool I.finishes(CX t1, CX t2, Region region)

returns true if [t1,t2[finishes the corresponding region of I.

bool I.after(CX t1, CX t2, Region region)

returns true if [t1,t2[is after the corresponding region of I.

bool I.between(CX t1, CX t2, Region region)

returns true if [t1,t2[is during a gap of the corresponding region of I.

bool I.disjoint(CX t1, CX t2, Region region)

returns true if [t1,t2[is disjoint with the corresponding region of I.

CX I.partInside(CX t1, CX t2, Region region)

returns the size of the part of [t1,t2[which is inside the corresponding region of I.

Relations Between the Regions of two Fuzzy Intervals (Sec. 2.3.2.3)

bool I.before(Interval J, Region region)

returns true if the corresponding region of I is before the corresponding region of J.

bool I.meets(Interval J, Region region)

returns true if the corresponding region of I meets the corresponding region of J.

bool I.overlaps(Interval J, Region region)

returns true if the corresponding region of I overlaps with the corresponding region of
J.

bool I.starts(Interval J, Region region)

returns true if the corresponding region of I starts the corresponding region of J.

bool I.during(Interval J, Region region)

returns true if the corresponding region of I is during the corresponding region of J.

bool I.finishes(Interval J, Region region)

returns true if the corresponding region of I finishes the corresponding region of J.

bool I.equals(Interval J, Region region)

returns true if the corresponding region of I equals the corresponding region of J.

bool I.disjoint(Interval J, Region region)

returns true if the corresponding region of I is disjoint with the corresponding region
of J.

CX I.partInside(Interval J, Region region)

yields the size of the part of the corresponding region of I which is inside the corre-
sponding region of J.

Basic Unary Transformations (Def. 2.2.30)

211

Interval I.extend(true)

returns the rising part of I. (Def. 2.3.41)

Interval I.extend(false)

returns the falling part of I. (Def. 2.3.41)

Interval I.scaleUp()

scales the y-values of the interval up to ⊤. (Def. 2.3.41)

Interval I.scaleUpD()

is the destructive version of ScaleUp.

Interval I.shift(CX a)

shifts the interval by a units. (Def. 2.3.41)

Interval I.shiftD(CX a)

is the destructive version of Shift.

Interval I.cut(CX x1, CX x2)

cuts the part of the interval between x1 and x2. (Def. 2.3.42)

Interval I.cutI(int i1, int i2)

cuts the part of the interval between the points with index i1 and i2. (Def. 2.3.42)

Interval I.times(float a)

multiplies the y-values of the interval by a. (Def. 2.3.43)

Interval I.exponentiate(float e)

exponentiates the y-values of the interval with e. (Def. 2.3.47)

Interval I.integrate(true)

computes J(x) =def
∫ x

−∞ I(y)dy/|I|. I may be infinite. (Def. 2.3.45)

Interval I.integrate(false)

computes J(x) =def
∫ +∞

x
I(y)dy/|I|. I may be infinite. (Def. 2.3.45)

Interval I.negate()

inverts the y-values. (Def. 2.2.30)

Interval I.invert()

inverts the y-values of the gaps in the interval. (Def. 2.2.30)

CY I.integrateAsymmetric(Interval J)

computes
∫
I(x) · J(x) dx/|I|. I and J may be infinite. (Def. 2.3.51)

CY I.integrateSymmetric(Interval J,bool simple)

computes
∫
I(x) · J(x) dx/N(I, J). It throws an error if both I and J are infinite.

(Def. 2.3.53)

Fuzzification

Interval I.fuzzifyLinear(bool front, CX x1, CX x2, CX offset)

linear fuzzification of the front/end part of the interval with absolute coordinates.
(Def. 2.2.33)

Interval I.fuzzifyLinear(bool front, float percent, float offset)

linear fuzzification of the front/end part of the interval with relative coordinates.
(Def. 2.2.36)

Interval I.fuzzifyLinear(float percent, float offset)

linear fuzzification of both sides of the interval with relative coordinates.

212

Interval I.fuzzifyGaussian(bool front, CX xh, CX x0, CX offset)

Gaussian fuzzification of the front/end part of the interval with absolute coordinates.
(Def. 2.2.34)

Interval I.fuzzifyGaussian(bool front, float percent, float offset)

Gaussian fuzzification of the front/end part of the interval with relative coordinates.
(Def. 2.2.36)

Interval I.fuzzifyGaussian(float percent, float offset)

Gaussian fuzzification of both sides of the interval with relative coordinates.

General Transformations

Interval I.unaryTransformation(UnaryYFunction f)

applies the unary y-function f to I. (Def. 2.3.46)

Interval I.binaryTransformation(Interval J, BinaryYFunction f)

applies the binary y-function f to I and J. (Def. 2.3.50)

A.1.3 Circular Intervals

The CircularInterval class is a subclass of the Interval class. It manages and manipulates
circular fuzzy temporal intervals (Sec. 2.4). The only change to the Interval class concerns
the constructor functions. They take as an extra parameter the xLimit. This is the largest
admissible x-coordinate. If, for example, angles between 0 and 360 are to be represented then
xLimit must be 360.

Constructors

Interval(CX xLimit)

constructs an empty circular interval.

Interval(Point p, CX xLimit)

constructs an interval with a single point p. The x-coordinate of the point is taken
modulo xLimit

Interval(CX x, CY y, CX xLimit)

constructs an interval with a single point (x moduloxLimit, y).

Interval(CX a, CX b, CX xLimit)

constructs a circular crisp interval [a modulo xLimit, b′[. b′ may be shifted by xLimit.
For example, [350, 10[yields [350, 370[.

Interval(vector<Point> points, CX xLimit)

constructs an interval with a vector of points. The x-coordinates of the points are
normalized.

Interval(string s, CX xLimit)

constructs an interval from a string representation [x1, y1 x2, y2 ...[. The x-coordinates
of the points are normalized.

A.1.4 Y-Functions

The unary and binary transformation methods (Def. 2.3.46, 2.3.50) expect a function f which
is to be applied to one or two y-coordinates. Some of these functions, however, depend on
extra parameters. For example the λ-complement (Def. 2.2.18) nλ(y) =def 1−y

1+λy depends on the

213

parameter λ. This would not be a problem in most functional programming languages. One
can define n(λ, x) and then get nλ through currying. The solution in object oriented languages
is a bit different. One defines a class “lambdaComplement” with instance variable “lambda”.
The class can be instantiated with a corresponding value for lambda. This instance can now
be used like any other data object in the language. The trick which allows one to use the
instance like a function depends on the programming language. In C++ one can define a ()
operator for this class, which realizes the function application. If the instance is bound to the
variable f , and x is another variable then f(x) is now a legal expression and yields the function
value. In Java one would define an apply-method and write f.apply(x). The class-approach has
many advantages: the parameters can be changed at any time, which is not so easy for curried
functions; a class hierarchy can structure the functions according to their semantics, and not
their types; further methods can be defined which do other kinds of computations and return
meta-information, for example whether the function is linear.

FuTI realizes y-functions with the class hierarchy in Fig. A.1.

Operation

UnaryYFunction

NegationYFunction standard negation, linear

lambdaComplement Def.2.2.18

BinaryYFunction

TNorm min, linear

HamacherNorm Ex. 2.2.23

TCoNorm max, linear

HamacherCoNorm Ex. 2.2.23

SDLukasiewicz max(0, y1 − y2), linear Def. 2.2.24

SDGoedel if(y1 ≤ y2) then 0 else ⊤− y2, linear, Def. 2.2.24

SDKleene min(x, 1 − y), linear, Def. 2.2.24

Figure A.1: Class Hierarchy for Y-Functions

The top class, ‘Operation’, manages the mapping of function names to the functions (in-
stances of the other classes). Each instance can get a name, for example ‘myFavoriteLambda-
Complement’, and one can retrieve the corresponding instance with the method
Operation::getOperation(string name). The name is optional. Instances without names
are not accessible via getOperation.

Constructors

214

NegationYFunction(string name)

constructs the standard negation function λ(y)(1 − y). (Def. 2.2.18)

lambdaComplement(float lambda, string name)

constructs the lambda complement λ(y) 1−y
1+lambda y

. (Def. 2.2.18)

TNorm(string name)

Constructs the min t-norm.

HamacherNorm(float gamma, string name)

Constructs the Hamacher t-norm λ(x, y) xy
gamma+(1−gamma)(x+y−xy) . (Def. 2.2.23)

TCoNorm(string name)

Constructs the max t-conorm

HamacherCoNorm(float beta, string name)

Constructs the Hamacher t-conorm λ(x, y)x+y+(beta−1)xy
1+beta xy

. (Def. 2.2.23)

Parameter Modification
The parameters lambda, gamma, beta can be changed with setParameter and read with
getParameter.

215

216

Appendix B

The GeTS–Language

217

B.1 Overview over the Language Constructs

The language constructs are summarized and briefly explained.

B.1.1 Types

Data Structure Types
Integer standard integers
Time very long integers
Float standard floating point numbers
String strings
Interval fuzzy intervals
Partitioning partitionings
Label labels for partitions
Duration durations
DateFormat date formats

Enumeration Types
type name possible values
Bool true/false

Side left/right

PosNeg positive/negative

UpDown up/down

IntvRegion core/kernel/support

PointRegion core/kernel/support/maximum

Hull core/kernel/support/crisp/monotone/convex

Fuzzify linear/gaussian

Inclusion subset/overlaps/bigger part inside

SplitInclusion align/subset/overlaps/bigger part inside

Sequencing sequential/overlapping/with gaps

SDVersion Kleene/Lukasiewicz/Goedel

B.1.2 Arithmetics

Binary Arithmetic Operators
The operators are + (addition), - (subtraction), * (multiplication), (division), % (modulo),
max, min, pow (exponentiation) (Def. 4.1.14).

Unary Arithmetic Operators
- (negation), float(b) (Bool 7→ Float), round(a), round(a,up/down) (Def. 4.1.15).

Comparisons
<, <=, >, >= (Def. 4.1.16).
==, != (Def. 4.1.17).

B.1.3 Boolean Operators

- (complement), and or ‘&&’ (conjunction), or or ‘||’ (disjunction), xor or ‘̂ ’ (exclusive or)
(Def. 4.1.18).

218

B.1.4 Control Constructs

if c then a else b (Def. 4.1.19).

case C1 : E1, ..., Cn : En else D (Def. 4.1.20).

while c {E1, ..., En} D (Def. 4.1.21).

Let variable = expression1 in expression2 (local binding) (Def. 4.1.22).

dLet year|month|... = date(time, dateFormat) in expression (local binding of dates) (Def.
4.1.65).

x := E (assignment) (Def. 4.1.23).

B.1.5 Time Points

now() of type Time (current moment in time) (Def. 4.1.25)

shift(time, duration, asGranule, dateOriented) of type Time∗Duration∗Bool∗Bool 7→ Time

(time shift by a duration) (Def. 4.1.28)

shiftLength(time, duration, asGranule, dateOriented) of type Time∗Duration∗Bool∗Bool 7→
Time (length of a time shift by a duration) (Def. 4.1.28)

isInfinity(time) Time 7→ Bool

isInfinity(time,positive/negative) Time ∗ PosNeg 7→ Bool (Def. 4.1.36)

length(t1, t2, partitioning, asGranule) of type Time ∗ Time ∗ Partitioning ∗ Bool 7→ Float
(length between t1 ,t2 in terms of the partitioning or granule) (Def. 4.1.42)

B.1.6 Intervals

[] of type Interval (empty interval)

[t1,t2] of type Interval (new crisp interval from t1 until t2)

pushback(I, time, value) of type Interval ∗ Time ∗ Float 7→ Void adds (time, value) to the
membership function of the interval (Def. 4.1.30).

Set Operations on Intervals
complement(I)

of type Interval 7→ Interval

complement(I, λ)
of type Interval ∗ Float 7→ Interval

complement(I, negation function)
of type Interval ∗ (Float 7→ Float) 7→ Interval (Def. 4.1.31)

union(I, J)
of type Interval ∗ Interval 7→ Interval

union(I, J, β)
of type Interval ∗ Interval ∗ Float 7→ Interval

union(I, J, co norm)
of type Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval (Def. 4.1.32)

219

intersection(I, J)
of type Interval ∗ Interval 7→ Interval

intersection(I, J, γ)
of type Interval ∗ Interval ∗ Float 7→ Interval

intersection(I, J, norm))
of type Interval ∗ Interval ∗ (Float ∗ Float 7→ Float) 7→ Interval (Def. 4.1.33)

setdifference(I, J)
of type Interval ∗ Interval 7→ Interval

setdifference(I, J, version)
of type Interval ∗ Interval ∗ SDVersion 7→ Interval

setdifference(I, J, intersection, complement)
of type Interval ∗ Interval ∗ (Interval ∗ Interval 7→ Interval)∗

(Interval 7→ Interval) 7→ Interval (Def. 4.1.34)

Predicates on Intervals
isCrisp(I) Interval 7→ Bool

isCrisp(I, left/right) Interval ∗ Side 7→ Bool

isEmpty(I) Interval 7→ Bool

isConvex(I) Interval 7→ Bool

isMonotone(I) Interval 7→ Bool

isInfinite(I) Interval 7→ Bool

isInfinite(I,left/right) Interval ∗ Side 7→ Bool (Def. 4.1.35)

during(time, I, core/kernel/support) of type Time ∗ Interval ∗ IntvRegion 7→ Bool checks
whether time is in the corresponding region of the interval I (Def. 4.1.37).

isSubset(I, J, core/kernel/support) of type Interval ∗ Interval ∗ IntvRegion 7→ Bool

checks whether the corresponding region of I is a subset of the corresponding region of J (Def.
4.1.37).

doesOverlap(I, J, core/kernel/support) of type Interval ∗ Interval ∗ IntvRegion 7→ Bool

checks whether the corresponding region of I overlaps with the corresponding region of J (Def.
4.1.37).

member(time, I) of type Time ∗ Interval 7→ Float (membership function) (Def. 4.1.38).

components(I) of type Interval 7→ Integer (number of components of I) (Def. 2.2.10).

component(I, k) of type Interval ∗ Integer 7→ Interval (kth component of I) (Def. 2.2.10).

size(I) of type Interval 7→ Time (size of the interval) (Def. 4.1.40)

size(I, region) of type Interval∗IntvRegion 7→ Time (size of the corresponding region of the
interval) (Def. 4.1.40)

size(I, t1, t2) of type Interval ∗ Time ∗ Time 7→ Time (size of the interval between t1 and t2)
(Def. 4.1.40)

sup(I) of type Interval 7→ Float (supremum of I) (Def. 4.1.41)

inf(I) of type Interval 7→ Float (infimum of I) (Def. 4.1.41)

point(I, side, region) of type Interval ∗ Side ∗ PointRegion 7→ Time (position of the corre-
sponding end of the region) (Def. 4.1.44).

centerPoint(I, n,m) of type Interval ∗ Integer ∗ Integer 7→ Time (n-m center point) (Def.
4.1.46).

220

Manipulation of Intervals
shift(I, t) of type Interval ∗ Time 7→ Interval shifts the interval by the given time (Def.
4.1.47).

cut(I, t1, t2) of type Interval∗ Time ∗ Time 7→ Interval (extracts the part of I between t1
and t2) (Def. 4.1.48).

hull(I, core/support/kernel/crisp/monotone/convex) of type Interval∗Hull 7→ Interval

(construction of the corresponding hull) (Def. 4.1.49).

invert(I) of type Interval 7→ Interval inverts the membership function (Def. 4.1.50).

scaleup(I) of type Interval 7→ Interval scales the membership function up to maximal value
1 (Def. 4.1.51).

times(I, f) of type Interval∗Float 7→ Interval multiplies the membership function of I with
f (Def. 4.1.52).

exp(I, e) of type Interval ∗ Float 7→ Interval exponentiates the membership function of I
with e (Def. 4.1.52).

extend(I, positive/negative) of type Interval∗PosNeg 7→ Interval extends I to the infinity
(Def. 4.1.53).

extend(I, length, side) of type Interval ∗ Time ∗ Side 7→ Interval extends or shrinks I (Def.
4.1.54).

integrate(I, positive/negative) of type Interval∗PosNeg 7→ Interval integrates the mem-
bership function (Def. 4.1.55).

fuzzify(I, linear/gaussian,left/right, increase, offset)
of type Interval, Fuzzify, Side,Float,Float 7→ Interval

fuzzify(I, linear/gaussian,left/right, x1, x2, offset)
of type Interval, Fuzzify, Side, Time, Time, Time 7→ Interval (Def. 4.1.57)
fuzzifies the interval at the given side with the given fuzzification function.

integrateSymmetric(I, J, simple)
of typeInterval ∗ Interval ∗ Bool 7→ Float and
integrateAsymmetric(I, J)
of type Interval ∗ Interval 7→ Float
symmetric or asymmetric integration of the membership function of I over the membership
function of J (Def. 4.1.59).

MaximizeOverlap(I, J, EJ,D) of type Interval∗Interval∗Interval∗(Interval∗Interval 7→
Float) 7→ Float (Def. 4.1.61)

B.1.7 Time and Partitions

time(year|month|..., dateFormat) of type Integer| . . . |Integer∗ DateFormat 7→ Time maps a
date in a given date format to the time point denoted by this date (Def. 4.1.64).

partition(time, partitioning) of type Time ∗ Partitioning 7→ Interval

partition(time, partitioning, n,m) of type
Time ∗ Partitioning ∗ Integer ∗ Integer 7→ Interval

compute partitions as intervals (Def. 4.1.66).

partitionBoundary(time, partitioning, left/right) of type Time ∗ Partitioning ∗ Side 7→
Time compute partition boundaries (Def. 4.1.67).

221

partitioningIsBounded(P, left/right) of type Partitioning∗Side 7→ Bool checks whether
the valid region of the partitioning is bounded (Def. 4.1.68).

partitioningBoundary(P, left/right) of type Partitioning ∗ Side 7→ Time returns the
boundaries of the valid region of the partitioning (Def. 4.1.68).

which(time, P,Q, inclusion, asGranule) of type Time∗Partitioning∗Partitioning∗Inclusion∗
Bool 7→ Time (which week in the year, for example) (Def. 4.1.69)

Labels
label(time, partitioning) of type Time ∗ Partitioning 7→ Label returns the label of the cor-
responding partition (Def. 4.1.70).

isLabel(label) of type Label 7→ Bool checks whether the label is not the NULL label (Def.
4.1.70).

isGap(label) of type Label 7→ Bool checks whether the label is the gap label (Def. 4.1.70).

LabelName(string) of type String 7→ Bool turns the string into a label (Def. 4.1.70).

extractLabelled(I, label, partitioning, inclusion, intersect) of type Interval∗Label∗Partitioning∗
SplitInclusion ∗ Bool 7→ Interval extracts partitions in the interval I with the given label
(Def. 4.1.71).

nextGranule(time, partitioning, label, n, withGaps) of type Time ∗ Partitioning ∗ Label ∗
Integer∗Bool 7→ Interval constructs a new interval which represents a granule (Def. 4.1.72).

Loops over Intervals
componentwise(I, initialObject, operation, combination) of type Interval ∗ T ∗ (Interval 7→
T) ∗ (T ∗ T 7→ T) 7→ T applies operation to all components of the interval (Def. 4.1.73).

split(I, duration, asGranule, dateOriented, initialObject, operation,
combination, region, forward, inclusion, sequencing, intersect) of type

Interval ∗ Duration ∗ Bool ∗ Bool ∗ T ∗ (Interval 7→ T) ∗ (Interval ∗ Interval 7→ T) ∗
IntvRegion ∗ Bool ∗ SplitInclusion ∗ Sequencing ∗ Bool 7→ T

splits the interval into parts and applies the operation to them (Def. 4.1.74).

B.2 The Application Programming Interface

The C++ API of the GeTS language is as follows:
GeTS functions are realized as a class Function in a namespace GeTS. They can be defined,

they can be applied to arguments, and some information about them can be retrieved.

Definition:
A new GeTS function can be created with an ordinary constructor:

fct = new Function(definition).

The definition is a string representation of the definition, optionally followed by the key-
word explanation and some text. The explanation can be retrieved just by fct->explanation.

The definition is parsed and compiled. Parsing or compilation errors can be obtained by
fct->getError(). The function fct->noError() checks whether there was a parsing or com-
pilation error.

222

Information about Functions:
The function definitions can be obtained in different versions:

fct->callString() returns the function call as string

fct->typeString() returns the function type as string

fct->definitionString() returns the function definition with line numbering as string.

fct->codeString() returns the abstract machine code as string.

Example B.2.1 (for codeString()) The code string for the function

PIRBefore(Time t, Interval I) =

if (isEmpty(I) or isInfinite(I,left)) then false

else (t < point(I,left,support))

(Example 4.1.3) is

0: I[1,Interval]

1: isEmpty(Interval->Bool)

2: ||(Bool*Bool->Bool)

3: I[1,Interval]

4: left[-1,left,Side]

5: isInfinite(Interval*Side->Bool)

6: ||(Bool*Bool->Bool)

7: IfThenElse(Bool*Bool*Bool->Bool)

8: false[-1,false,Bool]

9: IfThenElse(Bool*Bool*Bool->Bool)

10: t[0,Time]

11: I[1,Interval]

12: left[-1,left,Side]

13: support[-1,support,IntvRegion]

14: point(Interval*Side*IntvRegion->Time)

15: <(Time*Time->Bool)

16: IfThenElse(Bool*Bool*Bool->Bool)

It should be fairly obvious what this means. For example, line 0, I[1,Interval] means
that the parameter I at parameter position 1 and of type Interval is pushed to the stack. Line
1: isEmpty(Interval->Bool) means that the isEmpty predicate pops its argument from the
stack, performs the check, and pushes the result to the stack again. Line 2: ||(Bool*Bool->Bool)
is the first invocation of the or check. It checks the top of stack. If this is the Boolean value true
then this value is popped from the stack and the program counter is set to 7. The remaining
program steps are more or less self explaining.

It should be noticed that the actual computations, for example, integrating over a mem-
bership function of an interval, are done with compiled machine code. The commands of the
GeTS abstract machine are only used to control the invocation of this machine code.

Auxiliary Classes and Types:

223

The data types of GeTS are represented as a class Type in the namespace GeTS. They can be
basic data types or compound types. The most important API method for types is toString.
Most other methods are for internal use.

The data which are manipulated by a GeTS function are comprised into a union type.
Without further explanation we just list the definition.

union GeTSValue {

long long int* Time;

PartLib::Partitioning* Partitioning;

PartLib::Label* Label;

PartLib::DateFormat* DateFormat;

FuTIRe::Interval* Interval;

Function* lFunction;

int Integer;

float Float;

bool Bool;

DurationSpec* Duration;

string* String;

};

Application:
There are two application functions:

pair<Type*, GeTSValue> apply(vector<pair<Type*, GeTSValue> >& values)

can be used to apply the function to a vector of parameters. The result is a pair consisting of
the result type and the result value.

The other method

pair<Type*, GeTSValue>

apply(const string& arguments,const vector<FuTIRe::Interval*>& intervals)

can be used to apply the function to a string representation of the parameters. Intervals are
represented as non-negative integers. The integers are used as indices in the given vector of
interval pointers. The result is again a type-value pair.

224

Bibliography

[1] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

[2] T. Berners-Lee, M. Fischetti, and M. Dertouzos. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web. Harper, San Francisco, September 1999.
ISBN: 0062515861.

[3] C. Bettini and R.D.Sibi. Symbolic representation of user-defined time granularities. Annals
of Mathematics and Artificial Intelligence, 30:53–92, 2000. Kluwer Academic Publishers.

[4] Claudio Bettini, Curtis E. Dyreson, William S. Evans, Richard T. Snodgrass, and X. Sean
Wang. Temporal Databases, Rreseach and Practice, volume 1399 of LNCS, chapter A
Glossary of Time Granularity Concepts, pages 406–413. Springer Verlag, 1998.

[5] Claudio Bettini, Sushil Jajodia, and Sean X. Wang. Time Granularities in Databases,
Data Mining and Temporal Reasoning. Springer Verlag, 2000.

[6] Claudio Bettini, Sergio Mascetti, and X. Sean Wang. Mapping calendar expressions into
periodical granularities. In C. Combi and G. Ligozat, editors, Proc. of the 11th Interna-
tional Symposium on Temporal Representation and Reasoning, pages 87–95, Los Alamitos,
California, 2004. IEEE.

[7] François Bry, Frank-André Rieß, and Stephanie Spranger. CaTTS: Calendar Types and
Constraints for Web Applications. research report, PMS-FB-2004-24 PMS-FB-2004-24,
Institute for Informatics, University of Munich, 2004.

[8] François Bry, Frank-André Rieß, and Stephanie Spranger. A Reasoner for Calendric and
Temporal Data. Forschungsbericht/research report PMS-FB-2005-18, Institute for Infor-
matics, University of Munich, 2005.

[9] François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, and Stephanie Spranger. On rea-
soning on time and location on the web. In N. Henze F. Bry and J. Malusyński, editors,
Principles and Practice of Semantic Web Reasoning, volume 2901 of LNCS, pages 69–83.
Springer Verlag, 2003.

[10] Diana R. Cukierman. A Formalization of Structured Temporal Objects and Repetition.
PhD thesis, Simon Franser University, Vancouver, Canada, 2003.

[11] Diana R. Cukierman and James P. Delgrande. Expressing time intervals and repetition
within a formalization of calendars. Computational Intelligence, 14(4):563–597, 1998.

225

[12] Diana R. Cukierman and James P. Delgrande. The SOL time theory: A formalization of
structured temporal objects and repetition. In C. Combi and G. Ligozat, editors, Proc.
of the 11th International Symposium on Temporal Representation and Reasoning, pages
71–34, Los Alamitos, California, 2004. IEEE.

[13] Nachum Dershowitz and Edward M. Reingold. Calendrical Calculations. Cambridge Uni-
versity Press, 1997.

[14] Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets. Kluwer Academic
Publisher, 2000.

[15] Curtis E. Dyreson, Wikkima S. Evans, Hing Lin, and Richard T. Snodgrass. Efficiently sup-
porting temporal granularities. IEEE Transactions on Knowledge and Data Engineering,
12(4):568–587, 2000.

[16] Lavinia Egidi and Paolo Terenziani. A lattice of classes of user-defined symbolic period-
icities. In C. Combi and G. Ligozat, editors, Proc. of the 11th International Symposium
on Temporal Representation and Reasoning, pages 13–20, Los Alamitos, California, 2004.
IEEE.

[17] D. M. Gabbay, I. Hodkinson, and M Reynolds, editors. Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 1. Oxford: Clarendon Press, 1994.

[18] L. Godo and L. Vila. Possibilistic temporal reasoning based on fuzzy temporal constraints.
In Chris S. Mellish, editor, IJCAI’95: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, volume 2, pages 1916–1922. IJCAI, 1995.

[19] Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computa-
tional Geometry. CRC Press, 1997.

[20] I.A. Goralwalla, Y. Leontiev, M.T. Ozsu, D. Szafron, and C. Combi. Temporal granularity:
Completing the picture. Journal of Intelligent Information Systems, 16(1):41–63, 2001.

[21] Nick Kline, Jie Li, and Richard Snodgrass. Specifying multiple calendars, calendric systems
and field tables and functions in timeadt. Technical Report TR-41, Time Center Report,
May 1999.

[22] B. Leban, D. Mcdonald, and D.Foster. A representation for collections of temporal in-
tervals. In Proc. of the American National Conference on Artificial Intelligence (AAAI),
pages 367–371. Morgan Kaufmann, Los Altos, CA, 1986.

[23] I. Navarette M.A. Cardenas and R. Marin. Efficient resolution mechanism for fuzzy tem-
poral constraint logic. In TIME’2000: Proc. of the Seventh International Workshop on
Temporal Representation and. Reasoning, pages 39–46. IEEE Press, 2000.

[24] Roque Maŕın, M. A. Cárdenas Viedma, M. Balsa, and J. L. Sanchez. Obtaining solutions
in fuzzy constraint networks. Int. J. Approx. Reasoning, 16(3-4):261–288, 1997.

[25] Gábor Nagypál and Boris Motik. A fuzzy model for representing uncertain, subjective and
vague temporal knowledge in ontologies. In Proceedings of the International Conference on
Ontologies, Databases and Applications of Semantics, (ODBASE), volume 2888 of LNCS.
Springer-Verlag, 2003.

226

[26] M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time. In
Proc. of the first International Conference on Information and Knowledge Management,
volume 752 of Lecture Notes in Computer Science, pages 161–169. Springer Verlag, 1993.

[27] Peng Ning, X. Sean Wang, and Sushil Jajodia. An algebraic representation of calendars.
Annals of Mathematics and Artificial Intelligenc, 36(1-2):5–38, September 2002. Kluwer
Academic Publishers.

[28] Hans Jüergen Ohlbach. Computational treatement of temporal notions – the
CTTN system. In François Fages, editor, Proceedings of PPSWR 2005, Lec-
ture Notes in Computer Science, pages 137–150, 2005. see also URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-30.

[29] Hans Jürgen Ohlbach. About real time, calendar systems and temporal notions. In H. Bar-
ringer and D. Gabbay, editors, Advances in Temporal Logic, pages 319–338. Kluwer Aca-
demic Publishers, 2000.

[30] Hans Jürgen Ohlbach. Calendar logic. In I. Hodkinson D.M. Gabbay and M. Reynolds,
editors, Temporal Logic: Mathematical Foundations and Computational Aspec ts, pages
489–586. Oxford University Press, 2000.

[31] Hans Jürgen Ohlbach. Fuzzy time intervals – the FuTI-library. Research Report PMS-
FB-2005-26, Inst. für Informatik, LFE PMS, University of Munich, June 2005. URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-26.

[32] Hans Jürgen Ohlbach. GeTS – a specification language for geo-temporal notions. Research
Report PMS-FB-2005-29, Inst. für Informatik, LFE PMS, University of Munich, June 2005.
URL: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-29.

[33] Hans Jürgen Ohlbach. Modelling periodic temporal notions by labelled partitionings
– the PartLib library. In S. Artemov, H. Barringer, A. d’Avila Garces, L. C. Lamb,
and J. Woods, editors, Essays in Honour of Dov Gabbay, volume 2, pages 453–498.
College Publications, King’s College, London, 2005. ISBN 1-904987-12-5. See also
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-28.

[34] Hans Jürgen Ohlbach. Relations between fuzzy time intervals. Research Report PMS-
FB-2005-27, Inst. für Informatik, LFE PMS, University of Munich, June 2005. URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-27.

[35] Hans Jürgen Ohlbach. Periodic temporal notions as ‘tree partitionings’. Forschungs-
bericht/research report PMS-FB-2006-11, Institute for Informatics, University of Munich,
2006.

[36] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 1998.

[37] Klaus U. Schulz and Felix Weigel. Systematics and architecture for a resource representing
knowledge abo ut named entities. In Jan Maluszynski Francois Bry, Nicola Henze, editor,
Principles and Practice of Semantic Web Reasoning, pages 189–208, Berlin, 2003. Springer-
Verlag.

227

[38] Michael D. Soo and Richard T. Snodgrass. Mixed calendar query language support for
temporal constants. Technical Report TR 92-07, Dept. of Computer Science, Univ. of
Arizona, February 1992.

[39] L. Vila and L. Godo. On fuzzy temporal constraint networks. Mathware and Soft Com-
puting, 3:315–334, 1994.

[40] L. Vila and L. Godo. Query-answering in fuzzy temporal constraint networks. In Chris S.
Mellish, editor, FUZZ-IEEE’95: IEEE International Conference on Fuzzy Systems Yoko-
hama, volume 1, pages 43–48, 1995.

[41] L. A. Zadeh. Fuzzy sets. Information & Control, 8:338–353, 1965.

228

	A General Overview Over the CTTN--System
	Introduction
	Time Points and Time Intervals in the FuTI--Module
	Periodic Temporal Notions in the PartLib--Module
	Partitionings of the Time Axis
	Labelled Partitionings
	Specification of Partitionings
	Leap Seconds
	Granularities
	Calendar Systems

	The GeTS--Language
	The Web--Interface
	Notation

	Fuzzy Time Intervals -- The FuTI--Module
	Motivation and Introduction
	The Mathematics of Fuzzy Time Intervals
	Fuzzy Time Intervals
	Scalar Properties of Fuzzy Time Intervals
	Functions Operating on Fuzzy Time Intervals
	Set Operators for Fuzzy Intervals
	Hull Operators for Fuzzy Intervals
	Basic Unary Transformations

	Data Structures and Algorithms
	Points
	Fuzzy Time Intervals
	Representation and Construction
	Basic Features of Fuzzy Intervals
	Regions
	Point--Interval and Interval--Interval Relations
	Hull Operators
	Basic Unary Transformations
	Y-Function Based Unary Transformations
	Y-Function Based Binary Transformations

	Integration over Multiplied Intervals

	Circular Fuzzy Intervals
	Summary

	Periodic Temporal Notions -- The PartLib--Module
	Introduction
	Peculiarities of Real Time Systems

	Basic Concepts of PartLib: An Introduction
	Structures along the Time Axis
	Partitionings of the Time Axis
	Labels for Partitions
	granularities

	Compact Mathematical Models
	Partition Coordinates and Integer Structures
	Compact Representation of Partitionings
	Length of Intervals and Time Shifts in Terms of Partitions

	Labels Attached to Partitions
	Finite Labellings

	Partitioning Based Granularity Representations
	Granularity Based Time Shifts
	Durations
	Partitioning Types
	Global and Local Reference Time, Leap Seconds
	Algorithmic Partitionings
	Duration Partitionings
	Date Partitionings
	Intersection Partitionings
	Shifted Partitionings
	Tree Partitionings

	Calendar Systems
	The XML-Interface

	GeTS-- A Specification Language for Geo-Temporal Notions
	The GeTS Language
	Types in the GeTS Language
	Basic Types
	Compound Types

	Language Constructs for GeTS
	Arithmetic Expressions
	Boolean Expressions
	Control Constructs
	Functional Arguments
	Now and Shift
	Explicit Construction of Time Intervals
	Set Operations on Intervals
	Predicates of Intervals
	Other Features of Intervals
	Basic Manipulations of Intervals
	Date and Time
	Partitionings and Labels
	Control Constructs for Operations on Intervals

	Summary

	Relations Between Fuzzy Time Intervals
	Motivation and Introduction
	Point--Interval Relations
	Point--Interval `Before' and `After' Relations
	Point--Interval `Starts' and `Finishes' Relations
	Point--Interval `During' Relations
	Point--Interval Relations for Non-Convex Intervals
	Point--Interval Relations for Intervals with Metric

	Interval--Interval Relations
	Nagypál and Motik's Interval--Interval Relations
	Operator Based Interval--Interval Relations
	Interval--Interval `before' Relations
	Interval--Interval `meets' Relations
	Interval--Interval `overlaps' Relations
	Interval--Interval `starts' Relations
	Interval--Interval `finishes' Relations
	Interval--Interval `during' Relations
	Interval--Interval `equals' Relations
	Summary: Operator Version versus Nagypál and Motik's Relations
	Until

	Summary

	Appendix
	The FuTI--Module
	The FuTI---interface
	Points
	Intervals
	Circular Intervals
	Y-Functions

	The GeTS--Language
	Overview over the Language Constructs
	Types
	Arithmetics
	Boolean Operators
	Control Constructs
	Time Points
	Intervals
	Time and Partitions

	The Application Programming Interface

