
A3-D12

An infrastructure for Web Service-based

personalization in the Semantic Web: the

Personal Reader Framework.

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Hannover/A3-D12/D/PU/b1
Responsible editors: Nicola Henze
Reviewers: Philipp Kärger
Contributing participants: Hannover, Malta, Tekniker, Telefonica, Webxcerpt
Contributing workpackages: I2, A3
Contractual date of deliverable: February 29, 2008
Actual submission date: February 29, 2008

Abstract
In this deliverable we describe a fully functional, Web Service-based framework – the Personal
Reader Framework – for designing, developing and maintaining personalized information sys-
tems, with many realized application and demonstrators. Various Personalization Services are
available in these demonstrators, which offer personal news recommendations, personal music
recommendations, suggest study plans to students, annotate learning resources with relevant
contextual information (exercises, quizzes, examples, summaries). Privacy protection is ensured
by a centralized user modeling service. Access to user profile information is protected by user-
specified policies.

Keyword List
semantic web, reasoning, personalization, user modeling, trust, access control, policies, personal
reader

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2008.

ii

An infrastructure for Web Service-based

personalization in the Semantic Web: the

Personal Reader Framework.

Fabian Abel1, Juri Luca De Coi1, Nicola Henze1, Arne Wolf Koesling1, Daniel
Krause1, Daniel Olmedilla1

1 L3S Research Center, University of Hannover, Germany
Email: {abel,decoi,henze,koesling,krause,olmedilla}@L3S.de

February 29, 2008

Abstract
In this deliverable we describe a fully functional, Web Service-based framework – the Personal
Reader Framework – for designing, developing and maintaining personalized information sys-
tems, with many realized application and demonstrators. Various Personalization Services are
available in these demonstrators, which offer personal news recommendations, personal music
recommendations, suggest study plans to students, annotate learning resources with relevant
contextual information (exercises, quizzes, examples, summaries). Privacy protection is ensured
by a centralized user modeling service. Access to user profile information is protected by user-
specified policies.

Keyword List
semantic web, reasoning, personalization, user modeling, trust, access control, policies, personal
reader

iv

Contents

1 Introduction 1

2 Personal Reader Framework 1
2.1 Personalization Services . 2

2.1.1 Configuration Ontology . 3
2.1.2 Example: MyEar Personalization Service 5

2.2 Syndication Services . 6
2.2.1 Example: Personal Reader Agent Syndication Service 8

2.3 Connector Service . 8

3 User Modeling Service 10
3.1 UserRDF and UserQL . 11

4 Access Control for User Profiles 14
4.1 Related Approaches for RDF Access Control . 16
4.2 Access Control for RDF stores based on Query expansion 17

4.2.1 RDF Queries . 17
4.2.2 Specifying policies over RDF data . 18

4.3 Policy Evaluation and Query Expansion . 21
4.4 Policy Editor of the Personal Reader Framework 26

5 Relevance of the Personal Reader Framework 28

6 Conclusion 31

v

vi

1 Introduction

This deliverable reports about the achievements on the issue of personalized information portals,
carried on within the working group A3, with a particular attention on the Personal Reader
Framework, which has been developed during the REWERSE project.

Today, there exist various frameworks and toolkits like the Spring Framework1, Ruby on
Rails2, etc. that facilitate development of modular Web applications. On the other hand, there
are several Semantic Web frameworks like Jena3, Sesame4, etc. that enrich these Web appli-
cations with Semantic Web features. However, frameworks for developing Web information
systems that exploit Semantic Web technologies and, in addition, support enhanced personal-
ization and user adaptation functionalities are still missing. The Personal Reader Framework
closes this gap.

The Personal Reader Framework is a fully functional, Web Service-based framework for
designing, developing and maintaining personalized (Semantic) Web information systems. The
core idea of the framework, which we introduce in Section 2, is to encapsulate the functionality
of personalization of content within services. Thereby, personalization functionality can be re-
used by various applications, which has – in addition to the features of the Personal Reader
Framework – a positive effect on the development period of new applications. In Section 5
we will demonstrate this advantage on the basis of the many applications, which have been
implemented by aid of the Personal Reader Framework during the REWERSE project.

An important feature of the Personal Reader Framework is the shared user modeling com-
ponent, which is deployed as a service as well (see Section 3). User profiles are shared across
different applications, which makes privacy issues crucial. In Section 4 we therefore present an
advanced, novel mechanism to control access to RDF-based user profiles.

2 Personal Reader Framework

The Personal Reader Framework [Henze, 2005] (cf. Deliverable A3-D10) enables the creation
of modular web service based applications (Figure 1 outlines its architecture). These appli-
cations are accessed by device-adaptable user interfaces (UI for short). Syndication Services
implement the application logic and can be considered as the core of an application. By aid
of a Connector Service, Syndication Services are able to discover and access Personalization
Services dynamically, which aggregate domain-specific information in a personalized way. To
gather information, Personalization Services access and process Semantic Web data sources. An
important feature of the Personal Reader Framework is that new services can be integrated in
a plug-and-play manner, hence no centralized component has to be modified and new services
can be used immediately from all other services within the framework.

Both, Syndication and Personalization Services are able to access and store user data which
is supplied by a centralized User Modeling Service. Therewith, the actual user profiles are
also stored centrally in a shared repository which makes access control crucial and requires a
sophisticated, fine-grained approach to control the access to these user information. In Section
4 we present an approach, which is based on user-adaptable policies and which fulfills these
requirements. The Personal Reader Framework allows to model Syndications Services as state

1http://www.springframework.org
2http://www.rubyonrails.org
3http://jena.sourceforge.net
4http://www.openrdf.org

1

Syndication Services

Personalization Services

User

User Modeling

Service

Syndication

Service

GUI
Syndication

Service

UI UI ...

Syndication

Service

UI UI ...

Connector

Service

Personalization

Service

Syndication

Service

UI UI ...

MyEar Music

Recommender

Personal Publication

Reader ...

Access

Control

Personalization

Service

Personalization

Service

Personalization

Service

Publication

Personalization Service

...
News Personalization

Service

R
D

F
R

D
F

Figure 1: Personal Reader Architecture.

machines. This facilitates implementation of application logic in multiple ways. Developers just
have to implement action classes and provide an RDF description of their state machine, which
links those actions with states and events. Moreover, such formal description of application
logic eases decoupling the functionality for capturing user observations.

Several applications have been implemented with the Personal Reader Framework – as pre-
sented in Deliverable A3-D10 – like the Personal Publication Reader [Baumgartner et al., 2005],
the MyEar music recommender [Abel et al., 2006] or the Personal Reader Agent5.

2.1 Personalization Services

The core idea of the Personal Reader Framework is to encapsulate personalization of con-
tent within services that can be re-used by various applications. Therefor, we introduced the
novel concept of Personalization Services. Personalization Services are specialized on a certain
domain of knowledge. They provide personalized content as RDF. In order to provide personal-
ization features they are able to access and store user profile data that is shared accross services.
Characteristic of Personalization Services ranges from services that simply wrap non-RDF data
sources – e.g. a service that calls the Flickr API considering the user’s preferences and trans-

5http://www.personal-reader.de/agent

2

http://www.personal-reader.de/agent

forms the Flickr result into RDF using taxonomies like Dublin Core Metadata Element Set –
to services that carry out more complex tasks – e.g. a music recommender service like MyEar.
Personalization Services are described using well-known standards like OWL-S so that they can
be discovered and utilized by other services at runtime. The Personal Reader Framework allows
to describe Personalization Services semantically using a simplified vocabulary, which provides
features to describe the inputs of services and is defined in the Configuration Ontology.

2.1.1 Configuration Ontology

The Configuration Ontology defines, on the one, the vocabulary that is needed to describe the
inputs of Web Services and, on the other hand, concepts that are required for personalization
functionalities. Figure 2 illustrates the concepts of the Configuration Ontology.

1. Core Configurable Vocabulary (needed to describe a Configurable Web Ser-
vice):

Configurable An instance of this class characterizes the configurable inputs of a Person-
alization Service. Therefor, a name and a description has to be defined. Example:
(#MyEarConfigurable, name, "MyEar Configurable")
(#MyEarConfigurable, description, "Configurable things of my MyEar Music Web Service")

ConfigurableItem A Configurable consists of several ConfigurableItems. Example:
(#MyEarConfigurable, hasConfigurableItem, #DurationItem)
(#DurationItem, name, "Duration")
(#DurationItem, description, "Duration of a Song that should be taken into account by my Web Service.")

Input Every ConfigurableItem has at least one Input. We define two special Inputs: a
SelectionInput, which allows only predefined values, and a TextInput, which al-
lows arbitrary values. For an Input a type, a minNumber- and a maxNumberOfInputValues
has to be specified. Example:
(#DurationItem, input, #MinDurationInput)
(#MinDurationInput, description, "The minimum duration of a song (in minutes)")
(#MinDurationInput, type, http://www.w3.org/2001/XMLSchema#nonNegativeInteger)
(#MinDurationInput, minNumberOfInputValues, 0)
(#MinDurationInput, maxNumberOfInputValues, 1)

(#DurationItem, input, #MaxDurationInput)
...

2. User and their configured Personalization Services – concepts needed to realize
personalization functionalities:

User This concept models the users of the Personal Reader. Therefor a User is a subclass
of foaf:Person and is featured with an username, password, name, etc. and a list of
ConfiguredWebservices (hasConfiguredWebservice). To link other descriptions,
which characterize the user, we define the properties researcherURI, which points
to the corresponding instance within our Researcher Ontology6, and foafURL, which
links the FOAF7 description of the user. Example:
(#abelFabian, username, "fabian")
(#abelFabian, name, "Fabian Abel")
(#abelFabian, foafURL, "http://www.fabianabel.de/foaf.rdf")
(#abelFabian, researcherURI, http://www.personal-reader.de/rewerse#abelFabian)
(#abelFabian, hasConfiguredWebservice, #abelFabianMyEarJazzConfigWS)
(#abelFabian, hasConfiguredWebservice, #abelFabianPPRBioInformaticsConfigWS)
...

6The Researcher Ontology models the organizational structure of the REWERSE project:
http://www.personal-reader.de/rdf/ResearcherOntology.owl

7Friend of a Friend: http://www.foaf-project.org/

3

Figure 1: Configuration Ontology

4

Figure 2: Configuration Ontology for describing adjustable inputs of Personalization Services.

ConfiguredWebservice This concept is used to store configurations of Web Services
made by a user. The properties name and description allow to describe the concrete
configuration. The boolean property isPublic indicates whether a ConfiguredWebservice
can be accessed and re-used by other users than the user who configured it (isConfiguredBy).
owlsURL points to the OWL-S[OWL-S, 2004] description of the Web Service that was

4

configured by the user and configurableURL points to the Configurbale descrip-
tion. The values that belong to the concrete configuration are listed within the
ListOfConfiguredValues. Example:
(#abelFabianMyEarJazzConfigWS, name, "Jazz Music")
(#abelFabianMyEarJazzConfigWS, description, "This configuration of the MyEar Music Web

Service effects the Web Service to aggregate
podcasting items that are related with Jazz.")

(#abelFabianMyEarJazzConfigWS, isPublic, "true")
(#abelFabianMyEarJazzConfigWS, isConfiguredBy, #abelFabian)
(#abelFabianMyEarJazzConfigWS, owlsURL, "...MyEar/rdf/MyEarOWLS.owl")
(#abelFabianMyEarJazzConfigWS, configurableURL, #MyEarConfigurable)
(#abelFabianMyEarJazzConfigWS, hasListOfConfiguredValues, #abelFabianMyEarJazzValueList)

ListOfConfiguredValues This is a list of the values that are configured by a user. Each
ConfiguredValue has a value (range: typed Literals) and a reference to the Input
(inputForm) which defines what is applicable in general. Example:
(#abelFabianMyEarJazzValueList, hasConfiguredValue, #abelFabianMyEarJazzValue1)
(#abelFabianMyEarJazzValue1, value, "3")
(#abelFabianMyEarJazzValue1, inputForm, #MinDurationInput)
(#abelFabianMyEarJazzValueList, hasConfiguredValue, #abelFabianMyEarJazzValue2)
...

2.1.2 Example: MyEar Personalization Service

The MyEar Personalization Service enables users to listen to their personalized podcasting feed.
A podcasting feed is in fact a RSS 2.0 feed [RSS Advisory Board, 2002], whose items refer to
audio files. The MyEar Personalization Service searches the web for podcasting feeds that suits
to the users interest and then combines items from different feeds to present a personalized
podcasting feed to the user.

Some extracts of the Configurable description are outlined in the examples of Section 2.1.1.
In general the MyEar Configurable description consists of four ConfigurableItems:

myEarKeywordItem A keyword that should be within an item of a podcasting feed. myEarKeywordItem
is defined as followed:

(#myEarKeywordItem, input, #myEarKeyword)
(#myEarKeyword, rdf:type, #TextInput)
(#myEarKeyword, minNumberOfInputValues, 1)
(#myEarKeyword, description, "Enter at least one keyword that should be within an item of

a podcasting feed, e.g. Jazz, Classic,..")
(#myEarKeyword, type, http://www.w3.org/2001/XMLSchema#string)
...

myEarItunesCategoryItem This item refers to a SelectionInput which only permits the
selection of values that correspond to itunes:category [Apple Computer, Inc., 2006]:

(#myEarItunesCategoryItem, input, #myEarCategory)
(#myEarCategory, rdf:type, #SelectionInput)
(#myEarCategory, selectableValue, "Music")
(#myEarCategory, selectableValue, "Public Radio")
(#myEarCategory, selectableValue, "Arts")
...
(#myEarCategory, minNumberOfInputValues, 0)
(#myEarCategory, type, http://www.w3.org/2001/XMLSchema#string)
...

myEarDurationItem The duration item has two inputs which allow to specify minimum and
maximum duration of audio files that should be included into the personalized podcasting
feed:

5

(#myEarDurationItem, input, #myEarMinDuration)
(#myEarDurationItem, input, #myEarMaxDuration)
...

maxNumberOfGoogleCallsItem For the search of applicable podcasting feeds we use the
Google SOAP Search API 8. According to the Google API terms we only get 10 results
per requests and thus the MyEar Music Web Service has to call the Google Search Web
Service several times. By enabling the user to configure the maximum number of Google
calls the user can affect the runtime of the MyEar podcasting item gathering process.

Each Personalization Service has to implement the interface PService, which defines the
method invoke(). The invoke method has two parameters, the RDF data (rdfRequest), which
embodies the ListOfConfiguredValues (see last example of Section 2.1.1), and a security to-
ken, which is e.g. needed when the Personalization Service accesses the User Modeling Service,
or when another Personalization Service is called. The Personal Reader Framework provides
abstract implementations of Personalization Services and various utility classes so that imple-
mentation of Personalization Services does not require any important overhead. The following
code snippet shows how the MyEar implementation of the PService interface looks like.

public class MyEarPersonalizationService extends AbstratcPService implements PService {

public String invoke(String rdfRequest, String securityToken) {
Configuration userConfiguration = JenaConfigurationFactory.constructConfiguration(rdfRequest);
retrun MyEarLogic.getPersonalizedFeed(userConfiguration, securityToken);

}

}

The result of the MyEar Personalization Service is a personalized RDF-based RSS feed, which
is visualized by the user interface of the corresponding MyEar Syndication Service as shown in
Figure 3.

2.2 Syndication Services

Syndication Services are responsible for syndicating the results of Personalization Services and
for providing appropriate user interfaces that display the results of the syndicated results. Each
Syndication Service provides at least one user interface, which can be interpreted as a user end
point to a certain domain or task, and allows the user to benefit from many Personalization
Services simultaneously, which are selected, combined and customized according to the require-
ments of the application, which is embodied by the Syndication Service, and according to the
user needs. In general Syndication Services implement the application logic. They react to user
actions forwarded from a user interface, syndicate content from Personalization Services con-
sidering user preferences, may update user profiles and return syndicated RDF content to the
invoking user interface. Personalization Services deliver content as RDF. Hence, Syndication
Services just have to be aware of the used vocabulary in order to combine content provided by
different services.

The Personal Publication Reader [Baumgartner et al., 2005] is a good example of a Syn-
dication Service. It makes use of a Personalization Service that provides information about
publications and enriches this information with details about authors by utilizing on the one
hand an URI resolving service and on the other hand a service that delivers details about
persons.

8http://code.google.com/apis/soapsearch/

6

Figure 2: MyEar View

8

Figure 3: MyEar User Iterface.

7

The MyEar Music Syndicator is another example of such a Syndication Service. It provides
the user end point, which is shown in Figure 3, to specify requests for podcasts and to enable
the user to listen to the generated personal podcasting feed.

The Personal Reader Framework provides abstract implementations of Syndication Services
and a lot of utility classes in order to fasten and ease development of Syndication Services.
For example, the framework offers a generic state machine implementation of a Syndication
Service. Implementing a Syndication Service via the state machine mechanism requires the
developer only to implement actions that should be executed whenever a certain event occurs.
In addition, the developer has to provide an RDF description, which models possible event-
action-state sequences, and JSPs for rendering the results.

2.2.1 Example: Personal Reader Agent Syndication Service

The Personal Reader Agent [Abel et al., 2006] is a generic Syndication Service. The Agent
is a kind of wizard that allows to select, configure and call the Personalization Services and
furthermore provides management functionality of users and their saved configurations. The
feature of configuring Personalization Services is illustrated in Figure 4. The user interface
of the Agent Syndication Service is basically just rendering the Configurable description (cf.
Section 2.1.1) of a Personalization Service and allows the user to configure such service by hand.

Users of the Personal Reader Agent additionally are enabled to

save configurations: as outlined in Section 2.1.1, the ontological model behind saved con-
figurations is the concept of a ConfiguredWebservice. At this, users can specify name,
description and isPublic on their own, owlsURL and configurableURL is set by the
Agent and the ListOfConfiguredValues arises from the configuration step which is also
performed by the users.

re-use their own configurations: in order to allow users a faster direct access to Person-
alization Services, they can call these services also with a saved configuration. Further
the Agent provides some management functionality for configured services (view, edit and
delete).

Relation within Researcher Ontology: the Researcher Ontology defines persons and
their involvements in working groups. If two persons (users) are involved in the same
working group then the Agent suggests that configurations made by User A are also
interesting for User B.

Relation within FOAF description: FOAF defines among other things the relation
(Person A, knows, Person B). This relation can be used by the Agent to list config-
urations of other persons the user knows.

2.3 Connector Service

From a technical point of view, another component is required to maintain the communication
between the Syndication Services providing the user interface, the Personalization Services, and
the User Modeling Service, which is presented in Section 3. This is the so-called Connector
Service (CService for short) which harvests Web service brokers, collects information about
detected Personalization Services (for discovery, selection, customization, and invocation), and

8

Figure 4: Personal Reader Agent: Configuration of a Personalization Service.

9

Web Service Methoden:
• UserRDF getUserData(UserQL)
• RDF setUserData(UserRDF)

Figure 5: Architecture of the User Modeling Service.

for organizing the communication between all involved parties, including requests to the User
Modeling Service.

The Connector Service decouples Personalization and Syndication Services. A service that
needs certain functionality can query the Connector Service for a list of services, which may
provide the requested functionality. Sophisticated service matchmaking is currently not imple-
mented in the Connector Service and is part of our future work.

Another task of the Connector is to ensure security and privacy concerns at the service
level, i.e. the Connector checks if a service caller is authorized to invoke a certain service. For
example, the User Modeling Service, which provides access to user profiles can only be invoked
by the Connector Service. Whenever another service wants to call the User Modeling Service
then this has to be done via the Connector. The Connector Service checks signatures of the
requests, which are sent by Personalization and Syndication Services, rejects malicious requests,
signs trustworthy requests, and passes trustworthy requests to the service callee (e.g. to the
User Modeling Service).

Another security mechanism that operates on the content level of user profiles – i.e. which
service tries to access what information – is presented in Section 4.

3 User Modeling Service

For enabling the whole personalization process, a core information provider, which derives
appropriate user profiles is essential. In our architecture, this is realized via a centralized User
Modeling Service, which provides functionality for user modeling, maintaining and protecting
information about a user on behalf of this user. The main reason for choosing a centralized

10

Konzepte: UserRDF (2)

Die 5 Segmente von UserRDF:

Daniel Plappert: UMService - RDF basierte Benutzermodellierung / 3217

Figure 6: Main building blocks of UserRDF (properties of an UserRDF statement).

approach is to make user profile information re-usable for different applications. The central
User Modeling Service receives updates from Syndication Services or Personalization Services
in different domains, and allows for cross-domain re-use of user profile information (if the user
wants that). The User Modeling Service stores and aggregates user profile data from various
Personalization and Syndication Services. Because these services, which can be integrated at
runtime and used immediately, aim on different domains, they also use different ontologies to
express their knowledge about the user. For this reason we use RDF statements to store data
domain-independently.

The architecture of the User Modeling Service is illustrated in Figure 5 and consists of
two main independent components: (Figure 5.1) the Web interface and (Figure 5.2) the user
modeling component.

The Web interface provides management functionalities for users and administrators. Ad-
ministration functionality is focussed on management of users of the Personal Reader infras-
tructure. From the user perspective, the Web interface of the User Modeling Service is the place
where users have to login in order to fully utilize Personal Reader applications (single sign on),
because Personalization and Syndication Services only have a chance to access the user profile
if the corresponding user is logged in. After having logged in successfully, a session ID is gener-
ated, which is valid globally and – cryptographically secured – passed to the applications and
services the user employs.

The user modeling component, which is deployed as a SOAP-based Web service, provides
two main methods.

setUserProfile This method allows to store User profile information – i.e. RDF statements
about a user – in the user profile database. At the moment we use Sesame as RDF repos-
itory. User profile statements may be formulated using arbitrary vocabularies. However,
in order to profit from the full power of the User Modeling Service (e.g. conflict resolution)
UserRDF, which is introduced below, has to be used as user profile vocabulary.

getUserProfile The method getUserProfile enables other services to receive user profile
information. Queries can be formulated in SeRQL [Broekstra and Kampman, 2004] or
UserQL, which is a query language that is optimized for UserRDF statements.

3.1 UserRDF and UserQL

Within the Personal Reader Framework user profiles are represented via RDF statements.
Regarding a certain statement about a user, there are different kinds of metadata, which are

11

Konzepte: User Model Ontologie (4)

Daniel Plappert: UMService - RDF basierte Benutzermodellierung / 3219Figure 7: User Modeling Ontology.

also relevant to such a statement about a user, e.g., which service generated the statement,
etc. Therefore, the User Modeling Service provides a format, which allows to enrich RDF
statements with a well-defined set of metadata attributes and is called UserRDF. Furthermore,
the user modeling component allows for advanced querying of such UserRDF statements via a
corresponding lightweight query language, which is called UserQL.

Figure 6 lists the properties of an UserRDF statement, which is defined in the User Modeling
Ontology (see Statement class within Figure 7), an ontology which is modeled on the General
User Modeling Ontology (GUMO) [Heckmann et al., 2005]. The properties can be grouped into
the following five different blocks.

Main. This building block contains the actual content of the statement, hence, the reificated
RDF statement, which is embodied within subject, predicate, and object. The other at-
tributes are used to characterize the predicate of the statement more precisely, e.g. scope
is used to characterize the range of the property more precisely. The attribute ambit
allows to categorize the UserRDF statement so that services that are not aware of the vo-
cabulary, which is used to formulate the actual RDF statement, i.e., the ambit categorizes
the property of the actual RDF statement. Ambits may be categories like hasKnowledge,
hasInterest, etc. (cf. Figure 7).

Privacy. The security module provides just the property owner, which refers to the user to
whom the statement belongs to9.

Explanation. The attributes within the explanation building block can be exploited in order
to describe who (creator) has generated the statement, how confident the creator is about

9Note that the subject of an UserRDF statement may be different from the user, e.g. if a statement about a
user is composed of different statements.

12

the correctness of the statement (confidence), etc. The property trust can be adjusted
by the user via the Web interface of the User Modeling Service and indicates the user’s
belief in the correctness of the statement.

Validity. The validity attributes allow to specify the expiration of the validity of a UserRDF
statement.

Administration. An important aspect of the User Modeling Service is that UserRDF state-
ments are never deleted. However, it is possible to mark a statement as deleted and to
refer to the statement, which is replaced by a new statement (replaces).

In the following example, the statement about the user Peter, which was created by Web-
ServiceA, is composed of three UserRDF statements. It says that Peter has a credit card, which
itself has a number and certain type (Creditcard).

<rdf:RDF
xmlns:ums="http://usermodelservice.org/#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://usermodelservice.org/Statement#1235">
<rdf:type rdf:resource="http://usermodelservice.org/#Statement">
<ums:subject rdf:resource="http://usermodelservice.org/User#Peter"/>
<ums:predicate rdf:resource="http://example.org/predicate/#has"/>
<ums:object rdf:resource="http://example.org/object/Creditcard#2345"/>
<ums:ambit rdf:resource="http://usermodelservice.org/ambit/#hasPersonalData"/>
<ums:owner rdf:resource="http://usermodelservice.org/User#Peter"/>
<ums:creator rdf:resource="http://example.org#WebServiceA"/>
<ums:confidence rdf:datatype="http://www.w3.org/2001/XMLSchema#int">100</ums:confidence>

</rdf:Description>

<rdf:Description rdf:about="http://usermodelservice.org/Statement#1236">
<rdf:type rdf:resource="http://usermodelservice.org/#Statement">
<ums:subject rdf:resource="http://example.org/object/Creditcard#2345"/>
<ums:predicate rdf:resource="http://example.org/predicate/#hasNumber"/>
<ums:object rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

1234567
</ums:object>
<ums:owner rdf:resource="http://usermodelservice.org/User#Peter"/>
<ums:creator rdf:resource="http://example.org#WebServiceA"/>
<ums:confidence rdf:datatype="http://www.w3.org/2001/XMLSchema#int">100</ums:confidence>

</rdf:Description>
...
<rdf:Description rdf:about="http://example.org/object/Creditcard#2345">

<rdf:type rdf:resource="http://example.org/object/#Creditcard">
</rdf:Description>

</rdf:RDF>

Figure 8 lists the properties of an UserQL query, which is also defined in the User Modeling
Ontology (see Query class within Figure 7). The properties can be grouped into the following
three different blocks.

Match. This set of attributes corresponds to the building block Main of UserRDF. It is used
to describe the kind of UserRDF statements that should be returned. Not specifying an
attribute is equal to a wildcard.

Filter. The filter attributes can be applied in order to characterize the validity and confidence
of the requested UserRDF statements.

Control. This building block contains properties that allow to order the resulting statements
(orderBy), limit the amount of returned statements (limitResult), etc. The attribute

13

Konzepte: UserQL (2)

Die 3 Segmente von UserQL

Daniel Plappert: UMService - RDF basierte Benutzermodellierung / 3222

Figure 8: Main building blocks of UserQL (properties of an UserQL statement).

useStrategy enables the requester to specify what kind of conflict resolution strategy the
User Modeling Service should use, e.g. topKHighest would return the top k (according to
limitResult) statements, which have the highest confidence values.

The following UserQL example query would return all statements about the user Peter.

<rdf:RDF
xmlns:ums="http://usermodelservice.org/#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Descriptionrdf:about="http://usermodelservice.org/Query#3456">
<rdf:typerdf:resource="http://usermodelservice.org/#Query">
<ums:subjectrdf:resource="http://usermodelservice.org/User#Peter"/>

</rdf:Description>
</rdf:RDF>

Querying UserRDF statements can, of course, also be done via traditional RDF query
languages like SPARQL or SeRQL as UserRDF statements conform to RDF. Protection of
RDF statements about users is essential within the Personal Reader Framework, because user
profiles are shared accross different applications. A fine-grained approach to control the access
to user profile information is required. Section 4 describes the access control mechanism that
is implemented as part of the Personal Reader Framework.

4 Access Control for User Profiles

Enabling behavior and content adaptation in distributed systems (like the Personal Reader
infrastructure), in which users switch between different applications, requires the use of a shared
user profile. Such a user profile is in charge of storing semantic data from different services,
application domains, and users. As outlined in Section 3, RDF databases have been chosen to
store these (meta)data, since they provide efficient access and high flexibility: arbitrary RDF
data referring to various ontologies can be stored within the RDF database.

In service-oriented settings, which adhere to the Personal Reader architecture, different
services may store or require sensitive data from the user profile the RDF repository. In our
example (see figure 9) services store confidential contact information like email addresses or
online e-commerce account information. It is crucial for the user to be able to specify which

14

<foaf:Person rdf:ID="Bob">
<foaf:name>Bob</foaf:name>
<foaf:mbox>bob@example.com</foaf:mbox>
<foaf:phone>+49-511-123456</foaf:phone>
<foaf:knows rdf:resource="#Alice"/>

</foaf:Person>

<foaf:Person rdf:ID="Alice">
<foaf:name>Alice</foaf:name>
<foaf:holdsAccount>
<foaf:OnlineEcommerceAccount rdf:ID="aliceEC">
<foaf:accountName>
Bank Account of Alice

</foaf:accountName>
</foaf:OnlineEcommerceAccount>

</foaf:holdsAccount>
<foaf:currentProject

rdf:resource="#rewerse"/>
<foaf:knows rdf:resource="#Bob"/>
<foaf:knows>
<foaf:Person rdf:resource="#Bob">
<foaf:phone>+49-511-654321</foaf:phone>

</foaf:Person>
</foaf:knows>

</foaf:Person>

<foaf:Project rdf:ID="rewerse">
<foaf:theme rdf:resource="#SemanticWeb"/>

</foaf:Project>

<foaf:Document rdf:ID="SemanticWeb"/>

Figure 9: Example FOAF user profiles

15

(kind of) services are allowed to access and retrieve which part of the data stored in the
user profile. For example, Alice must be able to allow a recommendation service to access
information about her friends (linked via foaf:knows) but neither her private information
(e.g., address or telephone number) nor the private information of her friends. Similarly, a
means needs to be provided to allow Bob to restrict access to his online banking account data
(foaf:OnlineEcommerceAccount) only to his banking service. Banking-related data may be
defined as instances of a class Banking in some ontology, and the banking service may need to
identify itself by providing some credential.

4.1 Related Approaches for RDF Access Control

An obvious approach, post-filtering results, which a query to a RDF database returns [Cozzi et al., 2006],
is not an adequate solution, either: current RDF query languages allow to arbitrarily structure
the results, as shown in the following example10.

CONSTRUCT {CC} newNs:isOwnedBy {User}
FROM {User} ex:hasCreditCard {CC};

foaf:name {Name}
WHERE Name = ’Alice’

Post-filtering the results of a query is hence not straightforward whenever their structure is
not known in advance. It could be possible to break construct queries into a select query and
the generation of the returned graph (construct), therefore avoiding this problem. However, the
query response time may be too large since this approach cannot make use of repository opti-
mizations and policies are enforced after all data (allowed and not allowed) has been retrieved.
As an example, suppose an unauthorized requester submits a query asking for all available
triples in the store. A post-filtering approach would retrieve all triples and then filter them all
out. Especially for large result sets this would decrease performance dramatically.

Another way to address this problem is defining a priori which subsets of an RDF database
can be accessed by some requester. For example, Named Graphs [Carroll et al., 2005] can be
used to evaluate SPARQL queries [Prud’hommeaux and Seaborne, 2008]. [Dietzold and Auer, 2006]
proposes a framework which first applies all rules to the whole RDF database and afterwards ex-
ecutes the query only on the subsets of allowed RDF triples. TriQL.P [Bizer and Oldakowski, 2004]
allows the formulation of trust-policies in order to answer graph-based queries. Those queries
describe conditions under which suiting data should be considered trustworthy. Access control
based on identity could be performed if all requesters and their allowed graphs were known in
advance.

However, this is not the case in our scenario presented above and since access to data may
be granted or not depends on contextual conditions, these approaches do not apply. On the
one hand, Named Graphs cannot be statically pre-computed for each possible combination of
environmental factors, since their number would be too big; on the other, Named Graphs cannot
be created at runtime, since the creation process would excessively slow down the response time.
Furthermore, the plug-and-play nature of service-oriented architectures like the Personal Reader

10Our examples use SeRQL [Broekstra and Kampman, 2004] syntax (and for simplicity we do not include
the namespace definitions), since SeRQL is the language we exploit in our implementation. However the ideas
behind our solution are language-independent and can be applied to other RDF query languages.

16

Framework as well as the possibility that services dynamically change the RDF database itself
by adding or removing data from the user profile would significantly complicate managing such
named graphs.

[Reddivari et al., 2005] defines simple rule-based policies over the RDF database: such poli-
cies describe subgraphs on which actions like read and update can be executed: subgraphs are
identified by specifying graph patterns. Some approaches also respect RDF Schema entail-
ments [Jain and Farkas, 2006]. However, all these approaches require to instantiate the graph
patterns, i.e., to generate one graph for each policy and execute the given query on each graph,
hence leading to longer response times. Furthermore, these approaches cannot be applied to
contextual queries either.

4.2 Access Control for RDF stores based on Query expansion

As shown in the previous section, existing work on RDF data protection does not suit the
requirements of dynamic Semantic Web environments such as the Personal Reader Framework.
Available solutions do not handle contextual information in a proper way, as they either require
a large amount of memory or unacceptably increase the response time.

To address these problems we decided to enforce access control as a layer on top of RDF
stores (also making our solution store independent). Our strategy is to pre-evaluate the contex-
tual conditions of the policies, which do not depend on the content of the RDF store. Then, we
expand the queries before they are sent to the database, therefore integrating the enforcement
of the rest of (metadata) conditions with the query processing, thereby restricting the queries in
such a way that they only utilize allowed RDF statements. This way, policies can hold a greater
expressiveness and support both metadata and contextual conditions, while pushing part of its
enforcement to the highly optimized query evaluation of the RDF store. In our scenario given
a query, contextual conditions stated by the applicable policies are evaluated; if the evaluation
succeeds, further constraints involving metadata (graph pattern restrictions) are conveniently
translated and added to the query so that the underlying RDF store can enforce them in or-
der to retrieve only allowed RDF statements. This approach allows to include more complex
conditions without dramatically increasing the overhead produced by policy evaluation, and
while relying on the underlying RDF store to evaluate RDF Schema capabilities (as discussed
in [Jain and Farkas, 2006]).

4.2.1 RDF Queries

We assume disjoint, infinite sets I, B, and L, which denote IRIs, blank nodes and literals.
In addition, let Pred, Const and V ar be mutually disjoint sets of predicates, constants and
variables such that Const = I ∪B ∪ L. Then (using similar notation as in [Polleres, 2007]) an
RDF graph is a finite set of triples I ∪B × I × Const.

In the following we assume a query language with queries having the following structure
(§6.19 in [Aduna, 2004])11:

SELECT/CONSTRUCT RF
FROM PE

11Although our examples will use the syntax of the SeRQL query language, the results of this paper apply
also to other languages with similar structure (e.g., SPARQL [Prud’hommeaux and Seaborne, 2008]).

17

WHERE BE

where

• RF is the result form, either a set of variables (projection in select queries) or a set of
triples (construct clause in construct queries).

• PE is a path expression as defined below.

• BE is a boolean expression, that is, a string12 representing a set of constraints in the
form of (in)equality binary predicates and numerical operators such us greater than or
lower than, connected by boolean connectives (AND and OR).

and a query will be denoted as q = (RF,PE,BE). As today’s established RDF query languages
like SeRQL [Broekstra and Kampman, 2004] or SPARQL [Prud’hommeaux and Seaborne, 2008]
do not support insert or delete operations yet, we focus on common read operations. An ex-
ample query is provided in Figure 10. Without access control enforcement, this query would
return an RDF graph containing all RDF triples matching the graph pattern defined in the
FROM block, i.e., the query answer would include identifier and name of a person, her phone
number(s) and the document(s) she is interested in.

We define a path expression as a triple (s, p, o) such that s ∈ I ∪B ∪ V ar, p ∈ I ∪ V ar and
o ∈ Const∪V ar. Hereafter we will use (s, p, o) and triple(s, p, o) (triple ∈ Pred) as synonyms.
In addition, given an expression E (result form, path or boolean expression), we will denote by
vars(E) the set of all unbound variables occurring in E.

Definition – Introduction of new Variables: Given a path expression e = (s, p, o) and
a set of variable substitutions θ the function disunify(e, θ) returns the tuple (e′, BE), where
e′ is a new pattern (s′, p, o′) and BE is a set of boolean expressions such that

•

s′ = vs and bes = (vs = s) if s ∈ I ∪B
s′ = vs and bes = (vs = V alue) if s ∈ V ar, [s = V alue] ∈ θ
s′ = s and bes = ε otherwise

•

o′ = vo and beo = (vo = o) if o ∈ Const
o′ = vo and beo = (vo = V alue) if o ∈ V ar, [o = V alue] ∈ θ
o′ = o and beo = ε otherwise

where vs and vo are fresh variables and BE = {bes, beo}. Intuitively, the variable substitutions
for the subject and object of the pattern are extracted and converted into boolean expressions.

The purpose of this function is to extract variable substitutions in order to be able to reuse
path expressions in the final RDF query, even if they are specified in different policies.

4.2.2 Specifying policies over RDF data

Using policies to restrict access to RDF statements requires to be able to specify graph patterns
(path expressions and boolean expressions), such as one can do in an RDF query. In addition, it

12In the rest of the paper we also use BE to represent a set of boolean expressions. The exact meaning will
be clear from the context.

18

CONSTRUCT * FROM
{Person} foaf:name {Name};

foaf:phone {Phone};
foaf:interest {Document};
foaf:holdsAccount {Account}

Figure 10: Example RDF query

is desired to have the ability of checking contextual properties such as the ones of the requester
(possibly to be certified by credentials) or time (in case access is allowed only in a certain period
of time). Therefore, we consider a policy rule pol to be a rule of the form

pred(triple(s, p, o))←

cp1, . . . , cpn, pe1, . . . , pem, be1, . . . , bep.

where pred ∈ {allow, disallow}, triple(s, p, o) is a path expression as defined above, cpi are
contextual predicates (e.g., related to time, location, possession of credentials, etc.), pei are
path expressions and bei are boolean expressions. In the following we will refer to H(pol) to
the head of pol, HT (pol) to the triple in the head of pol and B(pol) to the (possibly empty)
body of pol.

Suppose that Alice specified the policies presented in Table 1 13. Instead of choosing a
specific language, our policies are expressed in a high level syntax, which can be mapped to
existing policy languages 14. Their intended meaning is as follows:

1. anyone can receive Alice’s phone number

2. the RecommenderService is not allowed to access the phone number(s) of members of the
REWERSE project

3. recognized trusted services (which have to provide a suitable credential) are allowed to
access the phone number(s) of people Alice knows

4. RDF statements containing name of entities different from Alice’s boss Tom can be ac-
cessed during work time

5. this policy controls access to Alice’s interests. Only interests related to her current
project(s) can be accessed

6. a service can only access Alice’s online ecommerce account if the service was invoked by
a person which is known by Alice

7. only those services are allowed to access information about a person if they can supply
the credential of this person

13Note that policies might also refer to named graphs, therefore allowing for approaches in which whole named
graphs can be given access if the policy is satisfied.

14Although the final selection of the language will have an impact in the expressiveness and power of the kind
of policies specified and contextual predicates supported

19

No. Policy
pol1 allow access to

triples (#alice, foaf:phone, Z).
pol2 deny access to

triples (X, foaf:phone, Z) IF
(X, foaf:currentProject, #rewerse) AND
Requester = ’RecommenderService’.

pol3 allow access to
triples (X, foaf:phone, Z) IF
Requester is certified by BBB AND
(#alice, foaf:knows, X).

pol4 allow access to
triples (X, Y, Z) IF
Time is the current time AND
09:00 < Time AND Time < 17:00 AND
Y = foaf:name AND X != #tom.

pol5 allow access to
triples (#alice, foaf:interest, Z) IF
(Z, rdf:type, foaf:Document) AND
(X, foaf:currentProject, P) AND
(Z, foaf:topic, T) AND (P, foaf:theme, T).

pol6 allow access to
triples (#alice OnlineEcommerceAccount X) IF

Invoker of Requester = Y AND
(#alice foaf:knows Y).

pol7 allow access to
triples (X Y Z) IF

(X rdfs:type foaf:Person) AND
credential (Requester, C) AND
issuer (C, X).

Table 1: Example of high-level policies controlling access to RDF statements

20

Many algorithms could be exploited in order to evaluate policies and to handle conflicts
which arise whenever two different policies allow and deny access to the same resource. However
such algorithms are out of the scope of this paper. Therefore, in the following we assume a
simple policy evaluation algorithm like the following one:

if a deny policy is applicable
then access to the triple is denied

else if an allow policy is applicable
then access to the triple is allowed

else access to the triple is denied
(deny by default)

More advanced algorithms exploiting priorities or default precedences [Kagal et al., 2003]
among policies could be used as well.

4.3 Policy Evaluation and Query Expansion

Given an RDF query, each RDF statement matching a pattern specified in the FROM block
is accessed and, if the policies in force allow it, returned. Our approach consists of analyzing
the set of RDF statements to be accessed and restricting it according to the policies in force.
Contextual conditions (e.g., time constraints and conditions on properties of the requester) are
evaluated by some policy engine, whereas other constraints are added to the given query and
enforced during query processing.

To illustrate the algorithm step by step we consider the Sesame query defined in Figure 10.
Definition – Policy applicability: Given a path expression e, a set of policies P and

a time-dependent state Σ [Bonatti and Olmedilla, 2005] (which in our case determines at each
instant the extension of contextual predicates), we say that a policy pol ∈ P is applicable to e
(denoted by ̂pol(e)) iff

• σ′ = mgu(e,HT (pol)), where mgu is the most general unifier

• ∃σ, σ′′ : σ = σ′σ′′ ∧ ∀cpi ∈ B(pol), P ∪ Σ |= σcpi

• if ∃bei ∈ B(pol) : ∀pei ∈ B(pol), vars(σbei)∩(vars(σpei)∪vars(σe)) = ∅ ⇒ P ∪Σ |= σbei

and its application is a function e, pol
P,Σ−→ (PE,BE) such that for all pei, disunify(pei, θ) =

(pe′
i, BE

′)

• PE = {pe′
i|pei ∈ B(pol), pe′

i 6= pei}

• B̃E = {σbei|bei ∈ B(pol) ∧ ∃pei : vars(σbei) ∩ (vars(σpei) ∪ vars(σe)) 6= ∅}

• BE = BE′ ∪ B̃E ∪ {σi|σi = [X = Y] ∧ (X ∈ Const ∨ Y ∈ Const)}

Intuitively, a policy pol is applicable to e if the triple the policy is protecting unifies with the
path expression and all the contextual predicates and bound boolean expressions (or those not
dependent of metadata expressions in the body of the policy) are satisfied. The return value
is a set with the path expressions found in the body of the policy and all extracted boolean
expressions which have not been evaluated and relate to the path expressions found.

21

Following our example query, assuming contextual predicates are satisfied, then pol4 is ap-
plicable to (Person, foaf : name,Name) and returns (∅, {[Person! = #tom]}). In addition,
pol1, pol2 and pol3 are applicable to (Person, foaf : phone, Phone) and returns ({V ar8, foaf :
currentProject, V ar9}, {[V ar8 = Person], [V ar9 = #rewerse]}), ({(V ar1, foaf : knows, V ar2)},
{[V ar1 = #alice], [V ar2 = Person]}) and (∅, [Person = #alice]) respectively.

Before we describe the query expansion algorithm, and for sake of clarity, we describe the
conditions under a query does not need to be evaluated since the result is empty. Intuitively, a
query fails if there does not exist any allowed triple to be returned according to both the query
and the applicable policies, that is if there exists a path expression for which no allowed triples
exist (disallow by default) or if there exist a path expression for which a policy (which does not
depend on path expressions) specifies that no triple is allowed (explicit disallow).

Definition – Success of a Query: Given a query q = (RF,PE,BE), a set of policy
rules P and a state Σ, we say that q fails if either of the following two conditions hold:

• ∃e ∈ PE : pol ∈ P,H(pol) = allow(T) ∧ ̂pol(e)
• ∃e ∈ PE : ∃pol ∈ P,H(pol) = disallow(T) ∧ ̂pol(e) ∧ e, pol P,Σ−→ (∅, ∅)

Let’s denote by append(BE,Conn) (resp. prefix(BE,Conn)) a function that given a set of
boolean expressions BE and a connective (e.g., AND or OR) returns a new boolean expression
in which all the elements of BE are enclosed by brackets and connected (resp. prefixed) by
Conn. The pre-filtering algorithm is defined as follows:

Input:
a query q = (RF,PE,BE),
a set of policy rules P and a state Σ

Output:
PE+

new ≡ new optional path expressions
(from allow policies)

PE−new ≡ new optional path expressions
(from disallow policies)

BE+
new ≡ conjunction of boolean expressions

(from allow policies)
BE−new ≡ conjunction of boolean expressions

(from disallow policies)

policy prefiltering(q, P):
BE+

or ≡ disjunction of boolean expressions
(from allow policies)

BE−or ≡ disjunction of boolean expressions
(from disallow policies)

Papp ≡ a set of applicable policies

01) PE+
new = PE−new = ∅

02) ∀e ∈ PE
03) BE+

or = BE−or = ∅
// check allow policies

04) Papp = {pol|pol ∈ P ∧H(pol) = allow(T) ∧ dpol(e)}
05) if Papp = ∅

return query failure // no triples matching e are allowed

22

06) if ∃pol ∈ Papp : e, pol
P,Σ−→ (∅, ∅)

// all triples matching e are allowed without restrictions
else

07) ∀pol ∈ Papp

e, pol
P,Σ−→ (PE′, BE′)

08) if PE′ = ∅
09) BE+

or∪ = append(BE′, ‘AND′)

10) else if ∃θ, gPE ∈ PE+
new : θ = mgu(gPE,PE′)

11) BE+
or∪ = append(θBE′, ‘AND′)

else
12) PE+

new∪ = PE′

13) BE+
or∪ = append(BE′, ‘AND′)

14) BE+new∪ = append(BE+
or, ‘OR

′)
// check disallow policies

15) Papp = {pol|pol ∈ P ∧H(pol) = disallow(T) ∧ dpol(e)}
16) if ∃pol ∈ Papp : e, pol

P,Σ−→ (∅, ∅)
return query failure // all triples matching e are denied

17) ∀pol ∈ Papp

18) e, pol
P,Σ−→ (PE′, BE′)

19) if PE′ = ∅
20) BE−or∪ = append(BE′, ‘AND′)

21) else if ∃θ, gPE ∈ PE−new : θ = mgu(gPE,PE′)
22) BE−or∪ = append(θBE′, ‘AND′)

else
23) PE−new∪ = PE′

24) BE−or∪ = append(BE′, ‘AND′)

25) BE−new∪ = append(BE−or, ‘OR
′)

Let copy(RF,PE) be a function that copies (replacing previous content) into RF either the
variables (for SELECT queries) or the path expressions (for CONSTRUCT queries) from PE.

Input:
a query q = (RF,PE,BE)
PE+

new ≡ new optional path expressions
(from allow policies)

PE−new ≡ new optional path expressions
(from disallow policies)

BE+
new ≡ conjunction of boolean expressions

(from allow policies)
BE−new ≡ conjunction of boolean expressions

(from disallow policies)
Output:

an expanded query
q = (RF+, PE+, BE+) MINUS (RF−, PE−, BE−)

expandQuery(q, PE+
new, PE

−
new, BE

+
new, BE

−
new)

RF+ = RF− = copy(RF,PE)
PE+ = PE ∪ prefix(PE+

new, ‘OPT
′)

23

PE− = PE ∪ prefix(PE−new, ‘OPT
′)

BE+ = BE ∪ append(BE+
new, ‘AND

′)
BE− = BE ∪ append(BE−new, ‘AND

′)

where the connective ’OPT’ represents the “optional path expression” modifier in the chosen
query language (e.g., ’[’ and ’]’ in SeRQL[Aduna, 2004]).

Briefly, the algorithm extracts the new path expressions found in the body of the policy
rules. It extracts their variable bindings in order to reuse them in case they appear in more
than one policy rule. However, if the same path expression is found in policies being applied to
different from clauses, then they cannot be reused (since conditions on different expressions are
connected conjunctively). After prefiltering each policy, a set of AND boolean expressions are
extracted. The set of all boolean expressions from applicable allow policies to one from clause
are connected by OR. The set of all boolean expressions applicable to different from clauses are
connected by AND. From that query we have to remove the triples affected by disallow policies,
which are specified in a similar fashion and added to the query using the MINUS operator.

The result of applying the above algorithm to the query in Figure 10 and the policies in
Table 1 (assuming that time is 15:00, the requester is ’RecommenderService’ and it is trusted)
is shown in Figure 11.

24

CONSTRUCT {Person} foaf:name {Name};
foaf:phone {Phone};
foaf:interest {Document}
foaf:holdsAccount {Account}

FROM {Person} foaf:name {Name};
foaf:phone {Phone};
foaf:interest {Document}
foaf:holdsAccount {Account}

[{Var1} foaf:knows {Var2}]
[{Var3} rdf:type {Var4},
{Var3} foaf:topic {Var5},
{Var6} foaf:currentProject {Var7},
{Var7} foaf:theme {Var5}]

WHERE (((Person != #tom))) AND
(((Var2 = Person) AND
(Var1 = #alice)) OR

((Person = #alice))) AND
(((Var3 = Document) AND
(Var2 = Person) AND
(Person = #alice) AND
(Var4 = foaf:Document)))

MINUS
CONSTRUCT {Person} foaf:name {Name};

foaf:phone {Phone};
foaf:interest {Document}
foaf:holdsAccount {Account}

FROM {Person} foaf:name {Name};
foaf:phone {Phone};
foaf:interest {Document}
foaf:holdsAccount {Account}

[{Var8} foaf:currentProject {Var9}]
WHERE (((Var8 = Person) AND

(Var9 = #rewerse)))

Figure 11: Expanded RDF query

25

Figure 12: Policy Editor of the Personal Reader Framework (basic view).

4.4 Policy Editor of the Personal Reader Framework

The interface that enables users to specify access policies operates on top of the access control
layer of the User Modeling Service as outlined in Figure 1 and is called Policy Editor. If a
service attempts to access user data for which there are no access policies defined yet, then the
operation of the service fails and the user is forwarded to the Policy Editor. The overview which
is then presented to the user (see Figure 12) is adapted to the context of the failed operation.
Such a context is given by the RDF statements which should be accessed by a given service.
Thus, the overview is split into a part which outlines these RDF statements, and a part which
allows the specification of corresponding access policies. RDF statements are colored according
to the effects of policies (e.g. if a statement is not affected by any policy it may be colored
yellow, green statements indicate that at least one service is allowed to access, etc.). Next to
the visualization of these effects the overview additionally alerts conflicting policies by marking
concerned policies and RDF statements.

Warnings make the user aware of critical policies: In Figure 12 the user wants to allow the
access to names of all instances of a class Contact. But as the user may not overlook which
instances are added in the future, he is explicitly prompted for validation.

In general, policies are edited using a detailed perspective as illustrated in Figure 13. This
perspective consists of two main fragments:

1. an arrangement of forms which allows the policy definition (top frame)

2. a view which clarifies the effects of the policy dynamically (bottom frame)

Users that do not use the expert mode, which would allow to specify Protune policies straight-

26

Figure 13: Policy Editor of the Personal Reader Framework (detailed view).

forward, just have to adjust a policy template on defining a concrete policy. This template
consists of four components (see top right in Figure 13):

what The main task during creation of access policies is the specification of RDF graph pat-
terns which identify statements that should be accessible or not. The predefined forms
for defining these patterns are generated on basis of a partial RDF graph consisting of a
certain RDF statement (here: (#contact1, name, ’Daniel Krause’)) and its relation to the
user (#henze, hasContact, #contact1). To clarify this fact the RDF graph is presented
to the user on the left hand.
To determine the options within the forms schema information of domain ontologies is
utilized. In the given example the property name is part of the statement from which the
forms are adapted. As name is a subproperty of contactDetail both appear within the
opened combo box.
By clicking on add pattern or remove the user is enabled to add/remove RDF statement
patterns to/from the overall graph pattern.

allow/deny The user can either allow or deny the access to RDF statements expressly.

who The policy has to be assigned to some services or category of services. For example to
ContactInfo, the service trying to access user data, or to a category like Address Data
Services with which ContactInfo is associated.

period of validity This parameter permits the temporal restriction of the policy.

According to Figure 13 the resulting Protune policy would be (without period of validity):

27

allow(access(rdfTriple(X, contactDetail, _))) :-

requestingService(S),

rdfTriple(S, memberOf, ’#addressDataServices’),

rdfTriple(’#henze’, hasContact, X).

Thus, Address Data Services are allowed to access all statements (X, contactDetail, Y) that
match the RDF graph pattern (#henze, hasContact, X), (X, contactDetail, Y). This policy
overlaps with another policy that denies the access to statements of the form (X, privateMail,
Y) wherefore a warning is presented to the user. This warning also lists the statements affected
by this conflict: As (#henze, privateMail, ’nicola@home.com’) does not suit, the pattern spec-
ified in Figure 13 (#contact5, privateMail, ’juri@home.com’) is the only affected statement.
By clicking on “Yes, overwrite!” the deny policy would be amended with the exception: not
rdfTriple(#contact5, privateMail, ’juri@home.com’). Otherwise, by selecting “No, don’t over-
write!” both policies would overlap. But as deny policies outrank allow policies (cf. previous
sections) the affected statement would still be protected.

Next to such warnings the Policy Editor makes the user aware of how specified policies will
influence the access to RDF statements. As name, email, etc. are subproperties of contactDetail
the above policy permits access to a big part of the user’s RDF graph which is consequently
shown in green (see bottom of Figure 13).

5 Relevance of the Personal Reader Framework

The goal of the Personal Reader Framework is to ease and fasten implementation of Seman-
tic Web applications, which provide personalization and user adaptation. The benefit of the
framework is obvious if we look at the amount of applications that were developed in the period
of the REWERSE project. Figure 14 illustrates when which of the various applications was
mainly developed.

1. Framework Core (March 2004 - March 2005): Design and implementation of the core
functionality of the Personal Reader Framework.

2. PReL (Java) (April 2004 - January 2005): Development of the Personal Reader for eLearn-
ing with a Java tutorial as example. While implementing the PReL some functionality
was integrated into the Personal Reader Framework core.

3. PPR (August 2004 - May 2005): Implementation of the Personal Publication Reader
[Baumgartner et al., 2005], which was awarded at the international Semantic Web Chal-
lenge 2005.

4. PReL (SemWeb) (February 2005 - April 2005): The development of the Personal Reader
for learning Semantic Web topics was done much faster than the implementation of the
PReL (Java) as functionality of the framework was re-used.

5. Semantic Portal (November 2004 - August 2005): For the implementation of the Semantic
Portal for REWERSE (cf. [Abel and Henze, 2005]) some modules of the Personal Reader
Framework could be utilized. As the Semantic Portal for REWERSE is itself not a
Personal Reader it is marked with grey color.

6. PReL (September 2005 - November 2005): Quiz feature extension for the Personal Reader
for eLearning.

28

2004

Mar Sep

2005

JanJanMay Jul Nov Mar SepMay Jul Nov

2006

2006

Mar Sep

2007

JanJanMay Jul Nov Mar SepMay Jul Nov

2008

1. Framework Core

2. PReL (Java)

3. PPR

4. PReL
(SemWeb)

5. Semantic Portal

6. PReL

8. Framework Extension

7. PR Agent

7. PR Agent

10. MyEar

11. MyNews

9. PR Curriculum

12. User Modeling Service

13. Adaption

14. PR

Del.icio.us

15. PR

Flickr
18. PPSS

16. AC4RDF

19. Policy Editor

20. RDF
Search

21. PR Final

17. Adapt2

Figure 14: Development timeline – development of Personal Reader Framework (blue) and
Personal Reader appllications (green).

7. PR Agent (December 2005 - July 2006): Design and implementation of the Personal
Reader Agent [Abel et al., 2006].

8. Framework Extension (March 2006 - December 2006): The development of the Personal
Reader Agent gained new features that were worth to be integrated also as features
within the Personal Reader Framework. During the period of extending the Personal
Reader Framework the core functionalities of the framework were renewed.

9. PR Curriculum (June 2006 - September 2006): Design and implementation of the Personal
Curriculum Planner [Baldoni et al., 2006, Baldoni and Marengo, 2007], which is a service-
oriented personalization system, set in an educational framework, based on a semantic
annotation of courses, given at knowledge level.

10. MyEar (July 2006 - August 2006): The development of the MyEar Music Recommender

29

[Abel et al., 2006] also gained a generic Personalization Service for personalizing RSS
feeds.

11. MyNews (August 2006): The generic Personalization Service for personalizing RSS feeds
was re-used in order to realize MyNews, which enables users to browse or subscribe to
personalized news feeds.

12. User Modeling Service (December 2006 - July 2007): Design and implementation of the
User Modeling Service for the Personal Reader Framework.

13. Adaption (March 2007 - July 2007): Adaptation of Personal Reader applications was
necessary in order to benefit from the new User Modeling Service – before, user profiles
were stored in a shared RDF repository.

14. PR Deli.icio.us (April 2007): The Personal Reader for Del.icio.us15 bookmarks re-used
Personalization Services, which were originally developed in the context of the Personal
Publication Reader and the MyEar Music Recommender. Therewith, the time for devel-
oping PR Del.icio.us was minimized.

15. PR Flickr (May 2007): The Personal Reader for Flickr16 benefited from existing Person-
alization Services and the Framework infrastructure as well as the Personal Reader for
Del.icio.us.

16. AC4RDF (June 2007 - October 2007): The Access Control for RDF stores (AC4RDF)
mechanism, which was presented in Section 4, was developed in collaboration with working
group I2 during the last period of the REWERSE project.

17. Adapt2 (July 2007 - September 2007): A Personal Reader, which connects the Personal
Reader infrastructure with the Advanced Distributed Architecture for Personalized Teach-
ing & Training (ADAPT2) [Brusilovsky et al., 2005], which aims at providing personal-
ization and adaptation services for developers of otherwise not personalized content, was
developed in Summer 2007. The Personal Reader for Adapt2 made use of different Person-
alization Services that were already existent within the Personal Reader environment, e.g.
the User Mapping Service that was originally implemented for the Personal Publication
Reader.

18. PPSS (August 2007 - September 2007): Development of the Personalized Preference
Search Service17 (PPSS) [Kärger et al., 2007] in collaboration with working group I2.

19. Policy Editor (September 2007 - December 2007): Design and implementation of the
Policy Editor, which was presented in Section 4.4.

20. RDF Search (November 2007 - January 2008): Design and implementation of an RDF
(Meta) Search Engine, which extends Sindice18 [Tummarello et al., 2007] and other RDF
search engines like Watson19. The RDF (Meta) Search Engine was – as all application
listed in Figure 14 – realized by aid of the Personal Reader Framework and by utilizing
the generic Personalization Service for personalizing RSS feeds.

15http://del.icio.us
16http://flickr.com
17http://www.personal-reader.de/PreferenceQueryGUI
18http://sindice.com
19http://watson.kmi.open.ac.uk

30

Figure 15: Web usage statistics of Personal Reader website from April 2007 till March 2008.

21. PR Final (January 2008 - February 2008): Finilizing of the Personal Reader Framework.

As indicated in Figure 14 the average time for developing Personal Reader applications,
thus Semantic Web applications that provide personalization functionalities in order to enhance
exploration and reading of Web content, decreased significantly during the REWERSE project.
The reason for this decrease of development time is the Personal Reader Framework itself, which
reduces programming efforts, and the set of existing Personalization Services, which could be
re-used by different Personal Reader applications as mentioned above.

Figure 15 shows the access statistics for the website of the Personal Reader framework20.
This website promotes the framework itself and the various Personal Reader applications. The
daily average of more than 180 visits (in the last year of the REWERSE project) illustrates that
people are interested in the Personal Reader applications and the Personal Reader Framework.
The big access increase in October can be partially explained by the International Semantic
Web Conference 200721, where the Personal Reader team presented a paper about access control
in RDF stores [Abel et al., 2007]. Detailed access statistics of the Personal Reader website can
be gathered from: http://www.personal-reader.de/webalizer/.

6 Conclusion

In this deliverable we describe the Personal Reader Framework, which enables design, imple-
mentation, and maintenance of personalized information systems. We focus especially on the
user modeling part and presented an advanced mechanism to control access to RDF-based user
profiles. Furthermore, we list the various applications, which were realized by aid of the Per-
sonal Reader Framework, and show how the development time of such applications decreased
during the REWERSE project as the framework provided more and more features, and the
amount of re-usable services increased.

20http://www.personal-reader.de
21http://www.iswc07.org

31

Acknowledgement

This research has been co-funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE number
506779 (cf. http://rewerse.net).

References

[Abel et al., 2006] Abel, F., Brunkhorst, I., Henze, N., Krause, D., Mushtaq, K., Nasirifar, P.,
and Tomaschweski, K. (2006). Personal reader agent: Personalized access to configurable web
services. Technical report, Distributed Systems Institute, Semantic Web Group, University
of Hannover.

[Abel et al., 2007] Abel, F., De Coi, J. L., Henze, N., Koesling, A. W., Krause, D., and
Olmedilla, D. (2007). Enabling advanced and context-dependent access control in RDF
stores. In Aberer, K., Choi, K.-S., and et al., N. N., editors, International Semantic Web
Conference 2007 (ISWC 2007) (to appear), Busan, Korea.

[Abel and Henze, 2005] Abel, F. and Henze, N. (2005). User Awareness and Personalization
in Semantic Portals. In Proceedings of 4th International Semantic Web Conference, Galway,
Ireland (6th–10th November 2005). Digital Enterprise Research Institute.

[Aduna, 2004] Aduna, B. (2004). The SeRQL query language (revision 1.2). http://www.
openrdf.org/doc/sesame/users/ch06.html.

[Apple Computer, Inc., 2006] Apple Computer, Inc. (2006). Podcasting and Itunes: Technical
Specification. http://www.apple.com/itunes/podcasts/techspecs.html.

[Baldoni et al., 2006] Baldoni, M., Baroglio, C., Brunkhorst, I., Henze, N., Marengo, E., and
Patti, V. (2006). A Personalization Service for Curriculum Planning. In Herder, E. and
Heckmann, D., editors, Proc. of the 14th Workshop on Adaptivity and User Modeling in
Interactive Systems, ABIS 2006, pages 17–20, Hildesheim, Germany.

[Baldoni and Marengo, 2007] Baldoni, M. and Marengo, E. (2007). Curriculum Model Check-
ing: Declarative Representation and Verification of Properties. In Duval, E. and Klamma,
R., editors, Proc. of EC-TEL 2007 - Second European Conference on Technology Enhanced
Learning, LNCS. Springer.

[Baumgartner et al., 2005] Baumgartner, R., Henze, N., and Herzog, M. (2005). The personal
publication reader: Illustrating web data extraction, personalization and reasoning for the
semantic web. In ESWC, pages 515–530.

[Bizer and Oldakowski, 2004] Bizer, C. and Oldakowski, R. (2004). Using context- and content-
based trust policies on the Semantic Web. In WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on Alternate track papers & posters, pages 228–
229, New York, NY, USA. ACM Press.

[Bonatti and Olmedilla, 2005] Bonatti, P. A. and Olmedilla, D. (2005). Driving and monitoring
provisional trust negotiation with metapolicies. In 6th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2005), pages 14–23, Stockholm,
Sweden. IEEE Computer Society.

32

http://rewerse.net
http://www.openrdf.org/doc/sesame/users/ch06.html
http://www.openrdf.org/doc/sesame/users/ch06.html
http://www.apple.com/itunes/podcasts/techspecs.html

[Broekstra and Kampman, 2004] Broekstra, J. and Kampman, A. (2004). SeRQL: An RDF
query and transformation language.

[Brusilovsky et al., 2005] Brusilovsky, P., Sosnovsky, S., and Yudelson, M. (2005). Ontology-
based framework for user model interoperability in distributed learning environments. In
E-Learn 2005.

[Carroll et al., 2005] Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named graphs,
provenance and trust. In WWW ’05: Proceedings of the 14th international conference on
World Wide Web, pages 613–622, New York, NY, USA. ACM Press.

[Cozzi et al., 2006] Cozzi, A., Farrell, S., Lau, T., Smith, B. A., Drews, C., Lin, J., Stachel,
B., and Moran, T. P. (2006). Activity management as a web service. IBM Systems Journal,
45(4):695–712.

[Dietzold and Auer, 2006] Dietzold, S. and Auer, S. (2006). Access control on rdf triple stores
from a semantic wiki perspective. In Scripting for the Semantic Web Workshop at 3rd
European Semantic Web Conference (ESWC).

[Heckmann et al., 2005] Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., and von
Wilamowitz-Moellendorff, M. (2005). Gumo - the general user model ontology. In Ardissono,
L., Brna, P., and Mitrovic, A., editors, User Modeling, volume 3538 of Lecture Notes in
Computer Science, pages 428–432. Springer.

[Henze, 2005] Henze, N. (2005). Personalization services for the semantic web: The personal
reader framework. In Framework 6 Project Collaboration for the Future Semantic Web Work-
shop at European Semantic Web Conference ESWC 2005, Heraklion, Greece.

[Jain and Farkas, 2006] Jain, A. and Farkas, C. (2006). Secure resource description framework:
an access control model. In SACMAT ’06: Proceedings of the eleventh ACM symposium on
Access control models and technologies, pages 121–129, New York, NY, USA. ACM Press.

[Kagal et al., 2003] Kagal, L., Finin, T. W., and Joshi, A. (2003). A policy language for a
pervasive computing environment. In 4th IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2003), 4-6 June 2003, Lake Como, Italy, pages
63–. IEEE Computer Society.

[Kärger et al., 2007] Kärger, P., Abel, F., Herder, E., Olmedilla, D., and Siberski, W. (2007).
Exploiting preference queries for searching learning resources. In Duval, E., Klamma, R., and
Wolpers, M., editors, EC-TEL, volume 4753 of Lecture Notes in Computer Science, pages
143–157. Springer.

[OWL-S, 2004] OWL-S (2004). OWL-S: Web Ontology Language for Services, W3C Submis-
sion. http://www.org/Submission/2004/07/.

[Polleres, 2007] Polleres, A. (2007). From SPARQL to rules (and back). In WWW ’07: Pro-
ceedings of the 16th international conference on World Wide Web, pages 787–796, New York,
NY, USA. ACM Press.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/.

33

http://www.w3.org/TR/rdf-sparql-query/

[Reddivari et al., 2005] Reddivari, P., Finin, T., and Joshi, A. (2005). Policy based access
control for a RDF store. In Proceedings of the Policy Management for the Web Workshop,
A WWW 2005 Workshop, pages 78–83. W3C.

[RSS Advisory Board, 2002] RSS Advisory Board (2002). Really Simple Syndication 2.0 spec-
ification. http://www.rssboard.org/rss-2-0/.

[Tummarello et al., 2007] Tummarello, G., Oren, E., and Delbru, R. (2007). Sindice.com:
Weaving the open linked data. In Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L. J. B., Golbeck, J., Mika, P., Maynard, D., Schreiber, G., and Cudr-Mauroux, P.,
editors, Proceedings of the 6th International Semantic Web Conference and 2nd Asian Se-
mantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS,
pages 547–560, Berlin, Heidelberg. Springer Verlag.

34

http://www.rssboard.org/rss-2-0/

	Introduction
	Personal Reader Framework
	Personalization Services
	Configuration Ontology
	Example: MyEar Personalization Service

	Syndication Services
	Example: Personal Reader Agent Syndication Service

	Connector Service

	User Modeling Service
	UserRDF and UserQL

	Access Control for User Profiles
	Related Approaches for RDF Access Control
	Access Control for RDF stores based on Query expansion
	RDF Queries
	Specifying policies over RDF data

	Policy Evaluation and Query Expansion
	Policy Editor of the Personal Reader Framework

	Relevance of the Personal Reader Framework
	Conclusion

