
I2-D14
Formal Policy Analysis Techniques for Comparison and
Validation

Project number: IST-2004-506779
Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Document type: D (deliverable)
Nature of document R (report)
Dissemination level: PU (public)
Document number: IST506779/Naples/I2-D14/D/PU/a0.0
Responsible editor(s): P. A. Bonatti
Contributing participants: Naples
Contributing workpackages: I2
Contractual date of delivery: 29 Feb 2008
Actual date of delivery: 29 Feb 2008

Abstract
Policy comparison is useful for a variety of applications, including policy validation and policy-aware
service selection. While policy comparison is somewhat natural for policy languages based on descrip-
tion logics, it becomes rather difficult for rule-based policies. When the policy has recursive rules the
problem is in general undecidable. Still most policies require some form of recursion to model subject
and object hierarchies, and certificate chains. In this paper, we show how policies with recursion can
be compared by adapting query optimization techniques developed for the relational algebra. We prove
soundness and completeness of our method, discuss the compatibility of the restrictive assumptions we
need w.r.t. our reference application scenarios, and report the results of a preliminary set of experiments
to prove the practical applicability of our approach.

This work will be published in the proceedings of the IEEE POLICY Workshop 2008.

Keyword List
Rule-based policy comparison, Query containment for recursive logic programs, Containment mappings
c© REWERSE 2008.



 



Formal Policy Analysis Techniques for Comparison and
Validation

P. A. Bonatti, F. Mogavero

Università di Napoli Federico II
Email: bonatti@na.infn.it

8 April 2008

Abstract
Policy comparison is useful for a variety of applications, including policy validation and policy-aware
service selection. While policy comparison is somewhat natural for policy languages based on descrip-
tion logics, it becomes rather difficult for rule-based policies. When the policy has recursive rules the
problem is in general undecidable. Still most policies require some form of recursion to model subject
and object hierarchies, and certificate chains. In this paper, we show how policies with recursion can
be compared by adapting query optimization techniques developed for the relational algebra. We prove
soundness and completeness of our method, discuss the compatibility of the restrictive assumptions we
need w.r.t. our reference application scenarios, and report the results of a preliminary set of experiments
to prove the practical applicability of our approach.

This work will be published in the proceedings of the IEEE POLICY Workshop 2008.

Keyword List
Rule-based policy comparison, Query containment for recursive logic programs, Containment mappings



 



Contents
1 Introduction and motivations 1

2 Examples 2

3 Policy abstract syntax and semantics 5

4 Further complexity problems: reasoning by cases 5

5 Policy comparison 6

6 Experimental evaluation 9

7 Conclusion and future work 9

iii



 



1 Introduction and motivations

Rule-based policies play an important role in security and privacy. Standards such as XACML as well as
many trust negotiation frameworks and semantically enriched policy languages including TrustBuilder,
Cassandra, PeerTrust, the RT family, and Protune [14, 11, 2, 10, 5] are rule-based.

In this context, a significant body of work has been devoted to the reasoning tasks involved in policy
enforcement and trust negotiation (mainly deduction and abduction). To the best of our knowledge, the
problem of comparing rule-based policies has not yet been tackled.

Policy comparison underlies several forms of policy verification and compliance checking, for ex-
ample:

• Checking whether a policy update has strengthened or weakened the policy (by restricting or
enlarging the set of authorizations it entails).

• Checking whether a policy (e.g. published by a server) entails another policy independently con-
ceived (e.g. the privacy policy of a user). Possible applications include privacy-driven service
selection and policy compliance checking w.r.t. external regulations such as privacy laws.

Checking policy inclusion in a rule-based framework may be computationally complex. Policies are
essentially queries mapping a context (such as an XACML context or a negotiation state) to a table of
authorizations (whose schema frequently consists of three attributes: subject, object, and action). Note
that policy inclusion is not equivalent to evaluating first the two policies and then checking the difference
between their outputs, because in general the policies cannot be evaluated at comparison time: Context
information may be missing for several reasons (e.g., it may change dynamically, like the set of users
for example, it may be sensitive and hence unavailable, etc.) Therefore inclusion should hold for all
possible contexts, which makes policy containment a query containment problem that in general can be
undecidable.

To better understand the actual complexity of policy containment let us first identify the expres-
siveness of our reference rule-based policy languages. Most trust negotiation frameworks, including
Cassandra, PeerTrust, RT, and Protune, essentially encode their policies in Datalog (i.e. logic programs
without function symbols). Additional features such as atom annotations (Cassandra, PeerTrust) and
semistructured objects with attributes (Protune) are only syntactic sugar that can be translated into pure
Datalog in linear time. It is not hard to see that the non-procedural fragment of XACML can be turned
into Datalog rules, as well (hint: exploit the direct correspondences between XACML and the policy
composition algebra introduced in [4]; then apply the translation from algebraic expressions into logic
programs defined in the same paper).

Two crucial aspects in Datalog query containment (and hence policy comparison in the aforemen-
tioned frameworks) are whether recursion is allowed and how restricted it is. If unrestricted recursion is
allowed then comparison is undecidable [13]. Some restricted forms of recursion (e.g. regular path ex-
pressions) can be allowed, but the corresponding approaches to comparison require exponential or even
double exponential time [6, 3]. Moreover, specialized optimizations and heuristics for the automata-
based techniques adopted in [6] are currently not available, while the approach in [3] needs overly
restrictive assumptions on rule syntax. The only approach in NP [9] does not support union which is
extremely common and useful in policies (typically to model maximum privilege).

Therefore, in this work we will rather identify alternative restrictions on policy syntax compati-
ble with typical application scenarios, enabling simpler deduction methods, and reducing worst-case
complexity. Such restrictions, of course, mainly concern recursion.

1



First note that XACML policies cannot be recursive—syntax forbids it—however they have com-
parison operators (such as double-greater-than) which are transitively closed. Then a complete
Datalog formalization of the policy should have recursive rules for such transitive closures (we will see
later examples of valid inclusions which are not recognized if such transitive relations are not appro-
priately dealt with). The RBAC profile of XACML models inheritance over role hierarchies, which is
transitively closed as well.

In trust negotiation frameworks, recursive definitions have been used for modelling:

• authorization inheritance along subject, object and operation hierarchies;

• certificate chains;

and of course—like XACML policies—transitive arithmetic comparison predicates need to be appro-
priately taken into account during policy comparison.

Similarly, recent approaches to usable policies such as People Finder [8] make use of sets of pol-
icy rules for controlled release of the current location of a user based on conjunctive conditions over
user groups, location, and time. Groups are obviously structured in a hierarchy; locations are defined
by rectangles that may be contained into each other, thereby forming a hierarchy; time is involved in
disequations that define sets of intervals.

In this work we show how to deal simultaneously with unions and the above forms of recursion
that are special cases of regular path expressions where transitive closure can be applied only to base
relations. In this setting we show how to solve policy comparison problems by means of standard
techniques based on inclusion mappings, rather than automata techniques. Our fragment’s inherent
complexity turns out to be in NP, that is, significantly less complex than inclusion in richer decidable
fragments of recursive Datalog.

The paper is organized as follows: In Section 2 we introduce the policy language we deal with
by means of examples, and point out the limitations of the traditional approach based on containment
mappings. In Section 3 we formalize syntax and semantics of the policy language. In Section 4 we
show that the restricted syntax introduced in the previous section is not enough to obtain the results we
are aiming at. Then in Section 5 we introduce a few more restrictions compatible with our reference
scenarios, adapt the standard query containment method and prove the correctness of our approach.
Section 6 illustrates the performance of a prototype implementing our containment checking method,
and Section 7 closes the paper by summarizing our results and pointing to interesting topics for future
research.

2 Examples

As a first example we adopt an access control policy for a virtual bookshop (the same policy used in
the demo of our explanation facility Protune-X, see http://rewerse.net/i2/→ Software). The
policy is slightly simplified for the sake of readability (in particular the object oriented syntax supported
by Protune is reformulated in standard terms). We use Prolog’s convention and let capitalized identifiers
denote variables.

2



The main access control rules for regulating access to a resource Res are

allow(User, read, Res) ← public(Res). (1)

allow(User, read, Res) ← auth(User), (2)
subscription(User, Subs),
covers(Subs, Res).

allow(User, read, Res) ← id(ID), (3)
credit card(CC),
owner(ID, User),
owner(CC, User),
price(Res, P),
charged(CC, P, Res).

Some predicates, called extensional or state predicates, are not logically defined and are given by the
current evaluation context. Predicates such as public, subscription and covers are extensional
predicates. On the contrary, some predicates such as auth and credit card are intensional or abbre-
viation predicates, defined by further rules (a lightweight, rule-based ontology). For example, several
forms of authentication are supported. Here are the rules for credential-based authentication and a more
traditional method based on passwords:

auth(User) ← id(ID), (4)
owner(ID, User),
type(ID, Type),
isa+(Type, id type).

auth(User) ← declaration(D, login), (5)
usr(D, User),
pwd(D, Password),
correct(User, Password).

Note the transitive predicate isa+ in rule (4). This formulation presupposes a hierarchy of digital
credentials, distinguished by their types. The (simple) predicate isa encodes direct parent-child links in
the hierarchy, and the transitive closure isa+ navigates up the hierarchy. Transitive relations like isa+

constitute an elementary form of recursion, as they replace recursive rules like

isa+(X, Z)← isa+(X, Y), isa+(Y, Z) .

Similar encodings can be used for inheriting authorizations along hierarchies of users, objects, and roles.

3



Some abbreviation predicates such as credit card depend on a notion of valid credential:

valid(Cred) ← credential(Cred), (6)
public key(Cred, K),
issuer(Cred, CA),
expires(Cred, XDate),
challenge(K),
trusted CA(TCA),
certifies+(TCA, CA),
today(Date),
Date < XDate.

Here certifies(CA1, CA2) is a state predicate that holds when a certification authority CA1 certifies
the public key of CA2. The transitive closure certifies+ then corresponds to a certificate chain.

As we already pointed out, checking whether a rule-based policy entails another rule-based policy is
a query containment problem. A traditional approach to checking containment of a query Q1(~t)← B1

in Q2(~u) ← B2 consists in searching for a containment mapping from Q2 to Q1, that is, a substitution
σ such that ~uσ = ~t and B2σ ⊆ B1. Clearly, in the presence of transitive closures this approach needs
some extension or adaptation. For example, if isa+ is replaced with isa in rule (4), then a stricter
policy is obtained, however it is easy to see that no containment mapping exists between (4) and its
modified version.

Another example is inspired by a hotel reservation service. Suppose a valid credit card is required
for room reservation. This policy may be expressed with a rule like

allow(User, book, Room) ← credit card(C), (7)
expiration(C, ExpDate),
today(Now),
ExpDate > Now.

Note that predicate > is transitively closed (we should automatically replace all of its instances with
>+).

This policy may be strengthened by requiring the credit card to be valid at arrival time:

allow(User, book, Room)← (8)
credit card(C),
expiration(C, ExpDate),
today(Now),
booking(User, Room, ArrivalDate),
ExpDate > ArrivalDate),
ArrivalDate > Now).

Intuitively, this policy is contained in (7), however it is easy to verify that no containment mapping exists
between (7) and (8).

In a forthcoming section, we show how to check containment of queries with transitively closed
predicates by first pre-processing the queries and then looking for a standard containment mapping.

4



3 Policy abstract syntax and semantics

In this section we formally define unions of CT-queries, that formalize the policies we deal with in this
paper.

Let p range over predicate symbols, and~t range over vectors of terms, that is, variables and constants.
An extended atom is either a (simple) atom p(~t ) or a transitive atom p+(~t ), where p is a binary relation.

Definition 3.1 A conjunctive transitive query (CT-query for short) is an expression

Q(~t )← E1, . . . , En

where each Ei is an extended atom.

As usual we call Q(~t ) and {E1, . . . , En} the head and the body of the query, respectively. They will be
denoted by head(Q) and body(Q). The arity of Q is the arity of its head.

Recall that an instance (i.e. a context, in policy terms) is a set of (simple) atoms.

Definition 3.2 The closure of a set of (possibly nonground, possibly transitive) atoms S, denoted by
SC , is the union of S and the set of all p+(t, u) such that (t, u) is in the transitive closure of {(v, w) |
p(v, w) ∈ S or p+(v, w) ∈ S}. With a slight abuse of notation, for all queries Q(~t ) ← ~E we shall
denote by QC the query Q(~t )← ~EC .

Example 3.3 Let S = {p(X, a), q(a, b), q+(b, Y )}. Then SC = S ∪ {p+(X, a), q+(a, b), q+(a, Y )}.

Definition 3.4 The answer to a CT-query Q w.r.t. an instance I , denoted by Ans(Q, I), is the set of all
~tσ (σ a variable substitution) such that head(Q) = Q(~t ) and body(Q)σ ⊆ IC .

Example 3.5 Let Q be Q(X) ← p(X), q+(X, Y ) and I = {p(a), p(b), q(b, c)}. Here ~t = X and the
only σ such that body(Q) ⊆ IC maps X on b and Y on c. Therefore, Ans(Q, I) = {b}.

Definition 3.6 A union of CT-queries is an expression
⋃n

i=1 Qi where each Qi is a CT-query and all
Qis have the same arity. The answer of such a union w.r.t. an instance I , denoted by Ans(

⋃n
i=1 Qi, I),

is
⋃n

i=1 Ans(Qi, I).

We shall identify
⋃1

i=1 Q1 with Q1.

Definition 3.7 Let Q̂ and Q̂′ be unions of CT-queries. We say Q̂ is contained in Q̂′, in symbols Q̂ ⊆ Q̂′,
if for all instances I , Ans(Q̂, I) ⊆ Ans(Q̂′, I). Q̂ and Q̂′ are equivalent if Q̂ ⊆ Q̂′ and Q̂′ ⊆ Q̂.

4 Further complexity problems: reasoning by cases

An important property of “traditional” conjunctive queries, from the point of view of implementations
and efficiency, is that in order to compare two query unions it suffices to compare the individual queries
in the two unions [12]. We are looking for a fragment of recursive queries enjoying the same property.
Unfortunately the language we have been dealing with so far is still too general.

5



Example 4.1 Consider the queries

Q1(X, Y ) ← p(X, Y ), q(X, Y ).
Q2(X, Y ) ← p(X, Y ), q(X, Z), q(Z,W ).
Q3(X, Y ) ← p(X, Y ), q+(X, Y ).

We have Q3 ⊆ Q1 ∪Q2, but Q3 6⊆ Q1 and Q3 6⊆ Q2.

The problem turns out to arise from those shared variables like Z that are only used to create chains
of binary relations such as q(X, Z), q(Z,W ) in the above example.

Problems arise even in comparing single queries.

Example 4.2 Consider the queries

Q1(X, Y ) ← p(X, Z), p+(Z, Y )
Q1(X, Y ) ← p+(X, Z), p(Z, Y ).

These queries are equivalent but no inclusion mapping exists between them.

Again, the problem is originated by a shared variable Z involved in a chain of binary relations.
According to our experience, policies do not include such chains per se, or just to count their length.

Usually, in the presence of a pair like q(X, Z), q(Z,W ) or p+(X, Z), p(Z, Y ), variable Z is singled
out explicitly to test further properties, that is, Z would typically occur in another predicate. We can
exploit this property to reduce union comparison to the comparison of individual CT-queries (see i-
safeness in the next section). The class of queries that can be dealt with efficiently is further extended
by exploiting good properties of variables with a single occurrence and what we call turning points, that
will be introduced in the next section.

5 Policy comparison
Our approach is based on a pretty standard notion of inclusion mapping such as those introduced for the
relational algebra [7, 1, 12].

Definition 5.1 An inclusion mapping from a query Q1(~t1)← ~E1 to a query Q2(~t2)← ~E2 is a variable
substitution σ over Q1’s variables such that ~t1σ = ~t2 and ~E1σ ⊆ ~E2.

In order to prove the completeness of single CT-query comparison for union comparison we shall
restrict our attention to what we call i-safe source queries.

Definition 5.2 We say that a union of CT-queries U is inclusion safe (i-safe for short) iff for all queries
Q in U and for all variables x occurring as arguments of a binary predicate p occurring in body(Q),
some of the following conditions hold:

1. x occurs in head(Q).

2. x occurs also as an argument of a predicate q 6= p in body(Q),

3. x has only one occurrence in body(Q),

6



4. x is a turning point, that is, in body(Q) x occurs only as an argument of p+ and always in the
same position (i.e., always as the i-th argument, for some i ∈ {1, 2}).

Note that the bookshop policy and the hotel policy are i-safe. All the rules reported in Section 2 are
i-safe by points 1 and or 2 in the above definition. Point 3 may be helpful in checking that an attribute
exists without restricting its value, such as subscriptions in

customer(C)← has subscription(C, SomeSubs) .

Singleton variables can also be used to select non-root and non-leaf nodes in a hierarchy, as in

non leaf(X)← isa(SomeY, X) .

Concerning turning points, they help in reaching parts of the hierarchies that are not above or below the
current node, as in the following rule:

have same ancestor(X, Y)← isa+(X, Z), isa+(Y, Z)

where Z is the turning point (where navigation from X to Y inverts its direction).
Instead of complicating the notion of inclusion mapping to deal with transitive predicates, we prefer

to pre-process queries by normalizing one query and closing the other query under transitive conse-
quences. We shall prove that this approach is correct. Normalization is needed to handle singleton
variables (point 3 of i-safeness).

Lemma 5.3 (Normalization) Let p(t, x) (resp. p(x, t)) be an element of body(Q) such that variable x
has no other occurrences in Q. Then Q is equivalent to the query obtained by replacing p(t, x) (resp.
p(x, t)) with p+(t, x) (resp. p+(x, t)).

We shall denote by nrm(Q) the (equivalence-preserving) transformation of Q such that all p(t, x)
and p(x, t) satisfying the hypothesis of the above lemma are replaced by p+(t, x) and p+(x, t), respec-
tively.

Example 5.4 Given Q(X) ← p(X, Y ), we have nrm(Q) = Q(X) ← p+(X, Y ), because Y has one
occurrence in Q.

Clearly, the closure of a query Q is equivalent to Q, too.

Proposition 5.5 For all CT-queries Q, Q is equivalent to QC .

The next theorem proves that the combination of inclusion mappings and normalization is appropri-
ate to compare individual CT-queries by means of inclusion mappings.

Theorem 5.6 Let Q1 and Q2 be a pair of CT-queries. If Q1 is i-safe, then Q2 ⊆ Q1 iff there exists an
inclusion mapping from nrm(Q1) to QC

2 .

Proof: Here we report only the most interesting implication, corresponding to the “only if” part of the
equivalence.

By, hypothesis Q2 ⊆ Q1. By Lemmas 5.5 and 5.3, it follows that QC
2 ⊆ nrm(Q1), that is for all

instances I it holds Ans(QC
2 , I) ⊆ Ans(nrm(Q1), I).

Now, let J be the instance built as follows:

7



• J contains all simple atoms in body(QC
2 );

• for all transitive atoms q+(v1, v2) in body(QC
2 ), J contains q(v1, c) and q(c, v2), where c is a new

constant not occurring elsewhere;

• nothing else is in J .

Intuitively, by splitting transitive atoms in two atoms we prevent mappings from transitive atoms of Q1

to non-transitive atoms of Q2.
Claim 1 The atoms of JC that do not contain any new constants are exactly the atoms in body(QC

2 ).
The proof of this claim follows directly from the construction of J and is left to the reader.
Now let ~ti be the vector of terms in head(Qi) (i = 1, 2). Note that if σ is the identity function, then

body(QC
2 )σ ⊆ JC , therefore ~t2σ = ~t2 ∈ Ans(QC

2 , J) ⊆ Ans(nrm(Q1), J). By the last equality,
there must be a substitution ρJ such that body(nrm(Q1))ρJ ⊆ JC and ~t1ρJ = ~t2.

Claim 2 We can always find a ρJ satisfying the above properties and mapping no variable of Q1 on
a new constant.

To prove this claim, assume that ρJ maps some variable on some new constants. We are going to
show that ρJ can be transformed into a substitution ρ′J whose range does not contain any new constant,
and such that body(nrm(Q1))ρ′J ⊆ JC and ~t1ρ

′
J = ~t2.

Let Xρ′J = XρJ if XρJ is not a new constant. Next, let X be a variable of Q1 such that XρJ = c,
where c is one of the new constants. Clearly, X is not in the head ~t1 of Q1, since ~t1ρJ = ~t2 and the
constant c cannot appear in the head of Q2 by definition. Moreover, X cannot appear in two or more
different predicates in Q1 otherwise the inclusion body(nrm(Q1))ρJ ⊆ JC would not hold, because
by construction c occurs only in one predicate in J . If X has a single occurrence in body(Q1) then,
by the normalization of Q1, we have that the variable appears in a transitive atom q+(v1, X) (resp.
q+(X, v2)) in body(nrm(Q1)) so, by setting Xρ′J = v2 (resp. Xρ′J = v1), we have q+(v1, X) ∈ JC

(resp. q+(X, v2) ∈ JC), that is, the modified substitution ρ′J preserves the inclusion of body(nrm(Q1))
in JC . Analogously, if X is a turning point for a predicate q+ in Q1 at the position i ∈ {1, 2}, we can
set Xρ′J = vi without affecting the inclusion of body(nrm(Q1)) in JC .

Summarizing, ρ′J does not map any term to a new constant and body(nrm(Q1))ρ′J ∈ JC . More-
over, ρ′J agrees with ρJ on all variables that are not mapped on a new constant. These include all
variables in the head (see above), therefore ~t1ρ

′
J = ~t1ρJ = ~t2. This completes the proof of Claim 2.

Now, since we can choose a ρJ that maps no variable of Q1 on a new constant, the inclusion
body(nrm(Q1))ρJ ⊆ JC and Claim 1 imply that body(nrm(Q1))ρJ ⊆ body(QC

2 ) and hence ρJ

is an inclusion mapping from nrm(Q1) to QC
2 .

Example 5.7 This approach to query comparison deals correctly with transitive predicates. Consider
again policy rules (7) and (8). The closure of (8) contains ExpDate > Now (recall that > is always
implicitly replaced by >+). This makes it possible to find an inclusion mapping from the normalization
of (7) to the closure of (8), and the inclusion between the two policy rules is correctly discovered.

The next theorem shows how to deal with query unions. It shows that unions can be compared by
comparing their individual members, as required.

Theorem 5.8 Let
⋃m

i=1 Qi and
⋃n

j=1 Q′
i be a pair of unions of CT-queries. If

⋃n
j=1 Q′

i is i-safe, then⋃m
i=1 Qi is contained in

⋃n
j=1 Q′

i iff each Qi is contained in some Q′
j .

These theorems provide the main justification for our method: Query unions can be compared by
finding inclusion mappings between normalized and closed versions of their members.

8



Corollary 5.9 Let
⋃m

i=1 Qi and
⋃n

j=1 Q′
i be unions of CT-queries. If

⋃n
j=1 Q′

i is i-safe, then
⋃m

i=1 Qi

is contained in
⋃n

j=1 Q′
i iff for all Qi there exists some Q′

j such that an inclusion mapping exists from
nrm(Q′

j) to QC
i .

6 Experimental evaluation
In general, finding an inclusion mapping is NP-complete [7]. Therefore we conducted two series of
experiments to provide preliminary evidence of the applicability of the theoretical approach described
in the previous sections.

Safeness checking, normalization, closure, and mapping construction have been implemented in
XSB Prolog and executed on a notebook with dual core and 2GB RAM.

The first experiments are based on realistic policies, derived from the bookshop scenario. The base
policy has been compared with analogous policies obtained by relaxing and strengthening requirements
such as the possible forms of authentication and payment, the set of accepted cards, and so on. Abbrevi-
ation predicates (which are not directly supported in the formal comparison framework) are eliminated
by unfolding rules (i.e., replacing subgoals with the body of matching rules until only extensional pred-
icates remain). Even if the bookshop policies are more complex than most of the policies actually
enforced in today’s systems, their size is small in several respects: the number of CT-queries in each
union is about 10, the average number of literals in CT-query bodies is 6, and the maximum number is
14. The entire process of inclusion checking, comprising unfolding, safeness checking, normalization,
and body closure, is completed in 0.08 seconds (average time) and never exceeds 0.09 seconds.

More experiments comparing a user’s release policy and a server’s access control policy (relevant to
privacy-aware service selection) confirmed these times.

Given the small size of these policies, we conducted harder, worst case experiments. This second
set of experiments is hard (and artificial) because of the following features:

• All CT-queries have the same head (while real policies usually have different targets, which facil-
itate fast selection of relevant queries for the mapping).

• Each body is a long chain of binary predicates p(X1, X2), . . . , p(Xn−1, Xn), with opposite order
in the two queries to be compared. The implemented search strategy for inclusion mappings in
this case has no clue to focus literal matchmaking and backtracks n! times.

• Inclusion mapping search is repeated m2 times, where m is the number of CT-queries in each
union, as if the right target query for the mapping were always the last one selected by the strategy.

The results (in seconds) are reported in Figure 1. Note that despite extremely unfavourable conditions,
real time policy comparison is possible for policies whose size is significantly larger than the bookshop
policies. Policy validation (that does not pose any real time requirements) is still possible in a handful
of minutes for policies with 250 CT-queries per union and up to 50 literals per body (organized in the
artificial chains mentioned before). Realistic policies with similar size are expected to yield significantly
shorter processing times, because a predicate frequently occurs at most once in a rule body, and rarely
occurs more than twice.

7 Conclusion and future work
Rule-based policy comparison can be carried out by means of a technique (inclusion mapping) originally
introduced in the area of database query optimization and extended in this paper to support the forms

9



N rules
Body len 10 20 30 40 50 100 150 200 250

10 .05 .08 .17 .27 .39 1.44 3.22 5.57 8.64
20 .12 .33 .60 1.01 1.54 6.14 13.70 23.84 37.33
30 .25 .76 1.61 2.88 4.45 16.99 39.00 68.80 108.17
40 .43 1.59 3.47 6.10 9.32 37.46 84.36 150.98 234.45
50 .76 2.88 6.49 11.50 17.63 70.63 161.92 279.65 442.37

Figure 1: Worst case results

of recursion commonly needed in security and privacy policies. The initial experiments are encourag-
ing: A simple implementation with no particular optimizations is able to compare complex queries in
acceptable time, even under artificially hard conditions.

We proved our techniques to be formally sound and complete. Results and algorithms can be im-
mediately extended to policies written in any rule-based policy language, provided that they satisfy
i-safeness and use recursion only to compute the transitive closure of extensional binary relations. The
restrictions introduced for completeness appear to be compatible with application needs. Still there is
space for further developments.

We plan to give proper support to numeric domains with arithmetic comparison. Currently, the
system does not know—say—that 2 is smaller than 17 and 1 + 3, i.e., the comparison engine is us-
ing an incomplete formalization of the numeric domain, unaware of numeric constants and arithmetic
operators (therefore in the presence of numeric constants or arithmetic operators the current method is
incomplete). Arithmetic operators can be supported by integrating the inclusion mapping method with
a constraint solver.

We are also planning to extend the framework to support the limited form of negation commonly
adopted in security and privacy policies. Other topics for further investigations include subclasses of
queries that can be compared in polynomial time, and automata based approaches that have been proved
to be complete for richer languages. As we pointed out in the introduction, these techniques are too
complex in their generality and need to be restricted to find an acceptable tradeoff between language
expressiveness and the complexity of the comparison problem.

References
[1] A.V. Aho, Y. Sagiv, and J.D. Ullman. Equivalences among relational expressions. SIAM J. of

Computing, 8(2):218–246, 1979.

[2] M. Y. Becker and P. Sewell. Cassandra: distributed access control policies with tunable expres-
siveness. In 5th IEEE International Workshop on Policies for Distributed Systems and Networks,
Yorktown Heights, June 2004.

[3] Piero A. Bonatti. On the decidability of containment of recursive datalog queries - preliminary
report. In Alin Deutsch, editor, PODS, pages 297–306. ACM, 2004.

[4] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati. An algebra for
composing access control policies. ACM Trans. Inf. Syst. Secur., 5(1):1–35, 2002.

10



[5] Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional trust negotiation with
metapolicies. In IEEE 6th International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2005), Stockholm, Sweden, June 2005.

[6] Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Decidable containment of recursive
queries. Theor. Comput. Sci., 336(1):33–56, 2005.

[7] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational data
bases. In Proc. Ninth Annual ACM Symp. on Theory of Computing, pages 77–90, 1976.

[8] Cornwell et al. User-controllable security and privacy for pervasive computing. In The 8th IEEE
Workshop on Mobile Computinf Systems and Applications (HotMobile 2007), 2007.

[9] Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive queries with
regular expressions. In PODS, pages 139–148. ACM Press, 1998.

[10] Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent Seamons, and Marianne Winslett. No
registration needed: How to use declarative policies and negotiation to access sensitive resources
on the semantic web. In 1st First European Semantic Web Symposium, Heraklion, Greece, May
2004.

[11] N. Li, J.C. Mitchell, and W.H. Winsborough. Design of a role-based trust-management framework.
In SP ’02: Proceedings of the 2002 IEEE Symposium on Security and Privacy, page 114. IEEE
Computer Society, 2002.

[12] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the union and dif-
ference operators. JACM, 27(4):633–655, 1980.

[13] Oded Shmueli. Equivalence of datalog queries is undecidable. J. Log. Program., 15(3):231–241,
1993.

[14] T. Yu, M. Winslett, and K.E. Seamons. Interoperable strategies in automated trust negotiation. In
CCS ’01: Proceedings of the 8th ACM conference on Computer and Communications Security,
pages 146–155. ACM Press, 2001.

11


