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1 Introduction and motivation

The I3 working group—Composition and Typing—has developed both composition and typing
technology for the rule-based languages developed within REWERSE. The focus has mainly
been on the XML and RDF query and transformation language Xcerpt. Typing technology has
been developed, enabling static type-checking of Xcerpt programs (see e.g. [3, 13, 14, 15]). The
developed typing technology can be used to find errors in programs, which is a great help for
query programmers. At the same time, composition technology has been made available that is
able to provide languages, such as Xcerpt, with component-oriented language extensions. That
is, equip Xcerpt programmers with the possibility to define reusable query entities. For Xcerpt
in particular, the module concept was developed, enabling the separation of query programs
into reusable and better understood parts (modules) (see [1, 2, 6, 7]). Modules are composed
statically, enabling the Xcerpt interpreter to be reused as a black-box when executing modular
Xcerpt programs.

The goal of this deliverable is to describe how the techniques developed within the I3 WG can
be used together to provide added value for Xcerpt programmers and developers. In particular,
we investigate and describe how the composition technology can take advantage of the Xcerpt
typing technology when composing Xcerpt programs (and modules). Since both the typing
and the composition techniques are static, that is, they operate on program specifications and
not during run-time, they are possible to combine. This deliverable does not provide complete
integrated tooling or complex examples and use-cases, but describes conceptually how the
mentioned added value can be realized.

The structure of this deliverable is as follows. In Section 2 we briefly introduce Xcerpt. In
Section 3 we show how types can be useful for Xcerpt. In Section 4 we introduce the module
extension to Xcerpt: Modular Xcerpt. After having introduced and exemplified the basic parts
we then, in Section 5, discuss how they can be integrated to achieve improved robustness for
Xcerpt composition. Finally in Section 6 we end the report with some concluding remarks.

2 Xcerpt: A short introduction

There are many publications on Xcerpt (see, e.g., [4, 5, 9]). Here we briefly recall the basics,
and instead of attempting an exhaustive description we try to work and explain with intuitive
examples. Xcerpt is rule-based and is a language closely related to the logic-programming
paradigm. An Xcerpt program consists of a finite set of Xcerpt rules. The rules of a program
are used to derive new (or transform) XML data from existing data (i.e. the data being
queried). In Xcerpt, two different kinds of rules are distinguished: construct rules and goal
rules. Construct rules are used to produce intermediate results and take the form: CONSTRUCT
head FROM body END. Goal rules make up the output of programs and look like: GOAL head
FROM body END. Intuitively, the rules are to be read: if body holds, then head holds. Formally,
head is a construct term and body is a set of queries joined by some logical connective (e.g. or
or and). A rule with an empty body is interpreted as a fact, i.e. the rule head always holds.

1 GOAL
authors [ all author [ var X ] ]

3 FROM
book [[ author [ var X ] ]]

5 END

7 CONSTRUCT
book [ title [ "White Mughals" ], author [ "William Dalrymple" ] ]

1



9 END

11 CONSTRUCT
book [ title [ "Stanley" ], author [ "Tim Jeal" ] ]

13 END

Listing 1: The construct rule defines some data about books and their authors and the goal
rule queries this data for authors.

An example Xcerpt program relating to books is shown in Listing 1. The second and third
rules are facts and define two books, each with a title and an author. The first rule defines the
output of the program. It queries authors of books, and constructs a list of all found authors.

While Xcerpt works directly on XML data, it has its own data format for modeling XML
documents. Xcerpt data terms model XML data and there is a one-to-one correspondence
between the two notions. While XML uses “tags”, Xcerpt data terms use a square bracket no-
tation. For example, the data term book [ title [ "White Mughals" ] ] corresponds to the
XML snippet <book><title>White Mughals</title></book>. The data term syntax makes
it easy to reference XML document structures in queries. The program in Listing 1 would result
in the output: authors [ author [ "William Dalrymple" ], author [ "Tim Jeal" ] ].

Xcerpt queries connect Xcerpt query terms via logical connectives (e.g. or or and). Query
terms are used for querying data terms and intuitively describe patterns of data terms. Query
terms are used with a pattern matching technique to match data terms.1 Query terms can be
configured to take partiality and/or ordering of the underlying data terms into account during
matching. Square brackets are used in query terms when order is of importance, otherwise
curly brackets may be used. E.g. the query term a [ b [], c [] ] matches the data term
a [ b [], c [] ] while the query term a [ c [], b [] ] does not. However, the query term
a { c [], b [] } matches a [ b [], c [] ], since ordering is said to be of no importance
in the query term. Partiality of a query term can be expressed by using double instead of single
brackets (e.g. [[ ... ]] or {{ ... }}). Query terms may also contain logic variables. If
so, successful matching with data terms results in variable bindings used by Xcerpt rules for
deriving new data terms. E.g. matching the query term book [ title [ var X ] ] with the
XML snippet above results in the variable binding {X / "White Mughals"}. Construct terms
are essentially data terms with variables. The variable bindings produced by query terms in the
body of a rule can be applied to the construct term in the head of the rule in order to derive
new data terms. In the rule head, construct terms including a variable can be prefixed with
the keyword all to group the possible variable bindings around the specific variable.

3 Types for Xcerpt

As mentioned in the introduction there has been several publications on types for XML query
languages, and Xcerpt in particular (see e.g. [3, 13, 14, 15]). The following section gives an
intuitive idea of the benefit of using typing for querying. The running example, based on an
example presented in [14], also shows interaction with the developed typechecking prototype
system XcerptT.2 The example concerns an imagined online music store. Consider the following
Xcerpt program:

1This technique is called simulation unification, please consult [10] for details.
2Can be found online at: http://www.ida.liu.se/~artwi/XcerptT.
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CONSTRUCT
result [
all entry [
var ARTIST,
all var TITLE

]
]

FROM
in { resource [ "file:cds.xml" ],
bib {{
cd [[ var TITLE, var ARTIST, "Pop" ]]

}}
}

END

The program queries the document cds.xml. It is intended to extract titles and artists of
the CDs of the pop category. Then it should produce a result with entries containing an artist
and a list of all his/her CD titles. We assume that a type of the document cds.xml and a type
of intended query results are given by the following type specification:

Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic

Result -> result[ Entry* ]
Entry -> entry[ Artist Title+ ]

Input::
resource=file:cds.xml
typename=Cds

Output::
typename=Result

As a result of typing the program we obtain the following printout:

==============================================
Type checking ... FAILED: empty result type
----------------------------------------------
Result type: 0
----------------------------------------------
----------------------------------------------
0
==============================================
Type Definition:

3



----------------------------------------------
Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic
Result -> result[ Entry* ]
Entry -> entry[ Artist Title+ ]
==============================================

The printout says that the typing of the program has failed. Formally, the program is not
incorrect w.r.t. the result type specification (as the obtained result type is a subset of the
specified type). However the obtained result type is empty. This indicates that the program
will not give any results when applied to a document of type Cd. This clearly suggests an error.
The error is a typo in the query term cd [[...]] as Pop is written with a capital letter while
the type specification requires pop.

We correct the program changing Pop into pop and run the typechecker again. The result
is:

==============================================
Type checking ... FAILED
----------------------------------------------
Result type: result (not a subset of Result)
----------------------------------------------
Variable-type mappings:
----------------------------------------------
TITLE->Artist, ARTIST->Artist
TITLE->Title, ARTIST->Artist
==============================================
Type Definition:
----------------------------------------------
result -> result[ entry+ ]
entry -> entry[ Artist (Artist|Title)+ ]
Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic
Result -> result[ Entry* ]
Entry -> entry[ Artist Title+ ]
==============================================

This time the inferred result type is not empty but type checking has failed again. This is
because the inferred result type result is not a subset of the specified result type Result, due to
type entry not being a subset of type Entry. To build data terms of type entry the program uses
the variable TITLE ; its values can be of type Title or Artist (see the “Variable-type mappings”
section of the typechecker results). However, in order for the instances of entry [all ARTIST,
all var TITLE ] to be of type Entry, the variable TITLE has to be bound to data terms of
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type Title. To correct the query rule we restrict the variable TITLE in the rule body so that it
is only bound to data terms with the main symbol title. (Thus it can be bound to any element
of type Title, and to no element of type Artist ). This is reflected by the following program:

CONSTRUCT
result [
all entry [
var ARTIST,
all var TITLE

]
]

FROM
in { resource [ "file:cds.xml" ],
bib {{
cd [[ var TITLE -> title{{}}, var ARTIST, "pop" ]]

}}
}

END

Typechecking of this program shows that it is correct wrt. the type specification:

==============================================
Type checking ... OK
----------------------------------------------
Result type: result
----------------------------------------------
Variable-type mappings:
----------------------------------------------
TITLE->Title, ARTIST->Artist
==============================================
Type Definition:
----------------------------------------------
result -> result[ entry+ ]
Cds -> bib[ Cd* ]
Cd -> cd[ Title Artist+ Category? ]
Title -> title[ Text ]
Artist -> artist[ Text ]
Category -> pop | rock | classic
Result -> result[ entry* ]
entry -> entry[ Artist Title+ ]
==============================================

The above has showed how type information and type checking can be beneficial to a query
language such as Xcerpt.

4 Modular Xcerpt

Component-based development is not only important for traditional programming languages,
but also for the languages used on the Web and on the Semantic Web. To enable component-
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based development for languages lacking such capabilities the composition framework Reuse-
ware was developed.3 One of the composition demonstrators was the extension of Xcerpt with
the module concept. This extension is referred to as “Modular Xcerpt”. Programming in Xcerpt
with modules enables separation and reuse of several important querying and transformational
aspects, such as:

1. Information extraction (e.g. querying XML-based databases or web-pages).

2. Data transformation (e.g. converting between different serialization formats of RDF).

3. Information presentation (e.g. outputting the queried and transformed data as a web-page
customized for a mobile platform, or for a regular desktop computer etc.)

Reuseware implements a composition system for composing Modular Xcerpt programs down
into plain Xcerpt. This allows for reusing any engines/interpreters developed for Xcerpt. It
should be noted that any properties that are associated with developed modules are guaranteed
to be maintained in the composed result. An example of such a property is encapsulation, that
is, it is possible to keep the content of modules completely separated, unless it is explicitly
expressed that this should not be the case (exploited for example for module communication,
that is, for their interfaces). For details please see [1].

Here we give an intuitive example of use of Xcerpt modules. Then, in Section 5, we shall
show how the typing techniques discussed and demonstrated in Section 3 can be used to improve
the robustness of the final result when composing Modular Xcerpt programs. In Section 5 we
will explain what kind of errors cannot currently be caught during composition, but which could
be found using typing techniques.

4.1 Example – Light-weight ontology reasoning

Ontologies are nowadays commonly used on the Semantic Web for modeling domain informa-
tion. A common use of such ontologies is to arrange the central concepts of the modeled domain
in a taxonomy (class hierarchy). Ontology reasoners are employed to infer implicit information
contained in such ontologies, e.g. to compute the transitive closure of the subclass-of relation-
ships. The most prominent ontology language today is the Web Ontology Language OWL [8].
Listing 2 shows an ontology in a simplified OWL syntax modeling sports equipment. The on-
tology declares that the concept TennisRacket is a subclass of the concept SportsEquipment
and that the concept WilsonTennisRacket in turn is a subclass of the concept TennisRacket.
It should be clear that due to these two facts, the concept WilsonTennisRacket is a subclass of
the concept SportsEquipment, due to the transitivity of the subclass-of relationship. However,
this information is only implicitly contained in the ontology and an ontology reasoner is needed
to infer this knowledge. However, as we shall see, an Xcerpt program can also be used to infer
such simple implicit ontology information.

1 <?xml version="1.0" ?>
<owl>

3 <class id="SportsEquipment" />
<class id="TennisRacket">

5 <subclassof about="SportsEquipment" />
</class>

7 <class id="WilsonTennisRacket">
<subclassof about="TennisRacket" />

3http://www.reuseware.org
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9 </class>
</owl>

Listing 2: An example ontology located in file file:sports.owl modeling sports equipment in
a simplified OWL syntax.

The two rules in Listing 3 shows an Xcerpt program that queries an OWL ontology (in this
case the sports.owl document shown in Listing 2) and calculates all the implicit subclass-of
relationships contained in the ontology.

GOAL
2 inferredSubClassOf [

all subClassOf [ var Subclass, var Superclass ]
4 ]
FROM

6 or {
declsubclassof [ var Subclass, var Superclass ],

8 and {
declsubclassof [ var Subclass, var Z ],

10 declsubclassof [ var Z, var Superclass ]
}

12 }
END

14

CONSTRUCT
16 declsubclassof [ var Subclass, var Superclass ]

FROM
18 in { resource { "file:sports.owl", "xml" },

owl {{
20 class {{ attributes { id { var Subclass } },

subclassof {{ attributes { about { var Superclass } } }}
22 }}

}}
24 }

END

Listing 3: An Xcerpt program querying an OWL ontology and deriving implicit subclass-of
relationships.

The result of executing the program in Listing 3 is shown in Listing 4. It shows that the
implicit subclass-of relationship between concepts WilsonTennisRacket and SportsEquipment
was derived.

1 inferredSubClassOf [
subClassOf [

3 "TennisRacket",
"SportsEquipment"

5 ],
subClassOf [

7 "WilsonTennisRacket",
"TennisRacket"

9 ],
subClassOf [

11 "WilsonTennisRacket",
"SportsEquipment"

13 ]
]

Listing 4: Result after executing Xcerpt program shown in Listing 3.

The program in Listing 3 is surely desirable to be reused across different Xcerpt programs
whenever such simple ontology reason is desired. That is, it would be desirable to make it a
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reusable Xcerpt module. This is possible in the Xcerpt extension Modular Xcerpt. The rules in
Listing 5 describe such a reusable Xcerpt module, adapted and generalized from the program
in Listing 3. As can be seen, an Xcerpt module is essentially a set of related Xcerpt construct
rules with explicitly defined interfaces for communication with modules or programs importing
the module.

We recognize that the Xcerpt rules in Listing 5 is a module because of the used keyword
MODULE. A module is given a name, which here is subClassOf. The module shown here is
generalized from the one in Listing 3 in the sense that a specific ontology is no longer queried,
but the module instead assumes some input “format”, which can be seen in the query part of
the second rule. Each module is enforced to be separate from every other module, hence, each
module is encapsulated. This means that no two rules in different modules depend on each
other. The new keyword public is used to break the default encapsulation for the purpose
of module interfaces. The keyword may precede a top-level query or construct term. Using
the public keyword before a query expresses that data is required for the module to perform
its service, that it expects data to operate on. A rule with a public query can be seen as an
“input rule”. Using the public keyword before a construct term expresses that the module
provides some output that may be processed by a module or program importing the module in
question. Hence, we notice that the module in Listing 5 both requires and provides data. The
module requires a list of explicit subclass-of relationships and provides in addition the implicit
subclass-of relationships.

MODULE subClassOf
2

CONSTRUCT
4 public

rdfsengine [
6 output [

inferredsubclassof [
8 all subclassof [ var Subclass, var Superclass ]

]
10 ] ]

FROM
12 or {

declsubclassof [ var Subclass, var Superclass ],
14 and {

declsubclassof [ var Subclass, var Z ],
16 declsubclassof [ var Z, var Superclass ]

}
18 }

END
20

CONSTRUCT
22 declsubclassof [ var Subclass, var Superclass ]

FROM
24 public

rdfsengine [
26 input [

explicitsubclassof [ var Subclass, var Superclass ]
28 ] ]

END

Listing 5: An Xcerpt module in the file /subclassof.mxcerpt.

It should be clear that the keywords MODULE and public extend Xcerpt and are introduced
to define modules. There are also new constructs for importing (declaring) and using already
defined modules, hence reusing them. An Xcerpt program using the module defined in Listing 5
is shown in Listing 6. The program uses the module to find all super-classes of the concept
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WilsonTennisRacket. In the ontology from Listing 2, there is one explicit and one implicit
super-class to this concept. The explicit one can be found directly, but the implicit one is found
using the reasoning capabilities provided by the imported module.

1 IMPORT /subclassof.mxcerpt AS rdfs

3 GOAL
wilsonsuperclasses [ all var Super ]

5 FROM
in rdfs (

7 rdfsengine {{
output {{

9 inferredsubclassof {{
subclassof [ "WilsonTennisRacket", var Super ]

11 }}
}}

13 }}
)

15 END

17 CONSTRUCT
to rdfs (

19 rdfsengine [
input [

21 explicitsubclassof [ var Subclass, var Superclass ]
]

23 ]
)

25 FROM
in { resource { "file:sports.owl", "xml" },

27 owl {{
class {{ attributes { id { var Subclass } },

29 subclassof {{ attributes { about { var Superclass } } }}
}}

31 }}
}

33 END

Listing 6: An Xcerpt program making use of a module.

Three constructs are introduced for the purpose of importing and using modules. First,
the IMPORT construct for actually importing reusable modules. Then, a to-module and an in-
module construct for communicating with imported modules. The program in Listing 6 hence,
on Line 1, imports the module from Listing 5. On Line 18 the program provides data to the
imported module, and on Line 6 the data transformed by the module is again queried.

Notice that in Listing 6, which OWL document is being queried, and the way it is queried is
directly encoded in the user program, and not in the module. First of all, this makes the module
more general since it is not directly bound to OWL subclass-of relationships. Furthermore, we
can make the example even more flexible by encapsulating how OWL in particular is queried
in yet another module, but this is not demonstrated here. The above provides an example and
conveys the idea of how modules can be used in Xcerpt. For more detail, please see [1].

5 Typing compositions

The basic motivation for investigating the role types can play in the composition framework
Reuseware4 is due to an underlying restriction in the framework. The composition framework is
based on Invasive Software Composition (ISC), which is a static, fragment-based, composition

4http://www.reuseware.org
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approach [11]. That is, entities being composed are source-code fragments of some underlying
base language. The framework provides one important guarantee on the composition result,
namely, that it is a valid sentence of the base language. This means that the composition result
will always be syntactically correct wrt. the base language. However, such guarantees are often
not enough. Syntactically valid programs often contain semantic errors which are not intended
by the programmer. In a similar way it is possible to use Reuseware to compose programs that
are valid wrt. the base language syntax, but that are semantically invalid (either wrt. the base
language or the intention of the programmer).

In Section 3 we saw how typing techniques can be used to find the errors in such semantically
ill-defined programs. In the same way, we want to employ such typing techniques to find ill-
defined compositions. This would hence improve the robustness of compositions by not only
guaranteeing syntactically correct composition results, but also covering cases that go beyond:
semantically correct compositions.

5.1 Module Contracts

An Xcerpt module can be said to encapsulate some functionality or service. To perform this
service the module may require some input (data terms), and always provides some output
(data terms). To improve robustness of module use (how input is provided to the module and
how output produced by the module is used in a module-importing program), it is desirable to
associate a contract with the module, provided by the module developer and describing how the
module is to be successfully used. The formalisms chosen to specify such contracts is Xcerpt
types. A module with a contract can look like the module in Listing 7 (comments after #).

1 MODULE moduleName

3 CONTRACT
(

5 Input: ModuleInputType
Output: ModuleOutputType

7 Types: file:type.xts
)

9

# ”module output interface” rule
11 CONSTRUCT

public outputTerm [ ... ] # annotated to provide ”outgoing” data terms
13 FROM

# query ...
15 END

17 <more Xcerpt rules>

19 # ”module input interface” rule
CONSTRUCT

21 # construct term ...
FROM

23 public inputTerm [ ... ] # annotated to accept ”incoming” data terms
END

Listing 7: An Xcerpt module with an associated contract.

A module contract, like the one showed in Listing 7, specifies:

1. A type specification (in XcerptT internal type specification format)

2. A type for the required input data terms (from the associated type specification)
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3. A type for the provided output data terms (from the associated type specification)

The above program contains two “interface rules”, one for the module output (construct
term annotated with keyword public) and one for module input (query term annotated with
keyword public). An interface rule specifies that this rule will be used in data sharing with
programs (or other modules) importing this module. In the general case a module can contain
more than one input and one output interface rule. However, in the remaining parts we consider
the specific case of a module having only one input and one output interface rule. Thus, each
module has one (and only one) rule with a public annotated construct term and one (and only
one) rule with a public annotated query term.

5.2 Verifying module definition correctness

A module is checked wrt. its contract when being developed, before it is being used (that
is, imported). As has been mentioned, a module can in many respects be seen as a normal
Xcerpt program, that is, a set of Xcerpt rules. However, with the important difference that
some rules are explicitly stated to be module input or output interface rules (using the public
keyword), and that a contract is associated with the module. This means that verifying a
module wrt. its contract is, as we shall see, very similar to type checking an Xcerpt program
as was demonstrated in Section 3.

For convenience we use the notation c ← q for construct rules and g ← q for goal rules,
where c, g are construct terms and q a query. Let us represent an arbitrary Xcerpt module M
by (1) (p for “public” and rl for a rule).

p c1
rl1←−− q1, c2

rl2←−− q2, . . . , cn
rln←−− p qn (1)

We assume the module has one public query and one public construct term (those preceded
by p). The module (1) is verified wrt. its associated contract by transforming it into Xcerpt
program M ′ in (2) (r for external resource with “file:dummy.xml” and “xml” as parameters),
where gM ′

1 = cM
1 .

g1
rl1←−− q1, c2

rl2←−− q2, . . . , cn
rln←−− in[r, qn] (2)

Since the transformed module M ′ in (2) is a plain Xcerpt program, we can reuse the Xcerpt
type checker for verifying it wrt. the M -associated contract. This is done by sending the
following typing information to the type-checker XcerptT:

<type spec> (from e.g. file:type.xts)

Input::
resource=file:dummy.xml
typename=ModuleInputType

Output::
typename=ModuleOutputType

The type specification referenced from the module contract should be inserted where it says
<type spec>, and the module input type (here: ModuleInputType) and output type (here:
ModuleOutputType) are also assumed to be the ones from the contract. If the type checker
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confirms type correctness, the module is valid wrt. its contract. A module being valid wrt. its
contract can be understood as: If module input data is of specified input type, then module
output data is of specified output type. Note that if the type checker does not confirm type
correctness, the module may be invalid wrt. its contract. In this case, the type incorrectness
cannot be guaranteed since the types are approximations (see [12] for details). Nonetheless, a
non-valid module may be a signal to the module developer that something is wrong.

Example 1 Consider the Xcerpt module in Listing 8. It is the module from Listing 5, but
augmented with a contract.
MODULE subClassOf

2

CONTRACT
4 (

Input: Rdfsin
6 Output: Rdfsout

Types: file:rdfstype.xts
8 )

10 CONSTRUCT
public

12 rdfsengine [
output [

14 inferredsubclassof [
all subclassof [ var Subclass, var Superclass ]

16 ]
] ]

18 FROM
or {

20 declsubclassof [ var Subclass, var Superclass ],
and {

22 declsubclassof [ var Subclass, var Z ],
declsubclassof [ var Z, var Superclass ]

24 }
}

26 END

28 CONSTRUCT
declsubclassof [ var Subclass, var Superclass ]

30 FROM
public

32 rdfsengine [
input [

34 explicitsubclassof [ var Subclass, var Superclass ]
] ]

36 END

Listing 8: An Xcerpt module with a contract.

The file file:rdfstype.xts contains the following type definition.

Rdfsin -> rdfsengine [ Input ]
Input -> input [ Explicit ]
Explicit -> explicitsubclassof [ Text Text ]
Rdfsout -> rdfsengine [ Output ]
Output -> output [ Inferred ]
Inferred -> inferredsubclassof [ Subclass* ]
Subclass -> subclassof [ Text Text ]

To check if the module is valid wrt. its contract, we transform the module in Listing 8 to
the module in Listing 9.
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GOAL
2 rdfsengine [

output [
4 inferredsubclassof [

all subclassof [ var Subclass, var Superclass ]
6 ]

] ]
8 FROM

or {
10 declsubclassof [ var Subclass, var Superclass ],

and {
12 declsubclassof [ var Subclass, var Z ],

declsubclassof [ var Z, var Superclass ]
14 }

}
16 END

18 CONSTRUCT
declsubclassof [ var Subclass, var Superclass ]

20 FROM
in { resource [ "file:dummy.xml", "xml" ],

22 rdfsengine [
input [

24 explicitsubclassof [ var Subclass, var Superclass ]
] ]

26 }
END

Listing 9: A plain Xcerpt program.

The transformed (plain) Xcerpt program in Listing 9 is then checked wrt. its contract, using
the type information below.

Rdfsin -> rdfsengine [ Input ]
Input -> input [ Explicit ]
Explicit -> explicitsubclassof [ Text Text ]
Rdfsout -> rdfsengine [ Output ]
Output -> output [ Inferred ]
Inferred -> inferredsubclassof [ Subclass* ]
Subclass -> subclassof [ Text Text ]

Input::
resource=file:dummy.xml
typename=Rdfsin

Output::
typename=Rdfsout

As can be seen below, the type checker confirms that the module is valid.

Loading type specification rdfstype.xts ...
==================================================================
Rule 1: rdfsengine
Type checking: OK
------------------------------------------------------------------
Superclass->Text, Subclass->Text
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Z->Text, Subclass->Text, Superclass->Text

==================================================================
Rule 2: declsubclassof
------------------------------------------------------------------
Superclass->Text, Subclass->Text

==================================================================
==================================================================
Type Definition:
------------------------------------------------------------------
rdfsengine -> rdfsengine[ output ]
output -> output[ inferredsubclassof ]
inferredsubclassof -> inferredsubclassof[ subclassof+ ]
declsubclassof -> declsubclassof[ Text Text ]
Rdfsin -> rdfsengine[ Input ]
Input -> input[ Explicit ]
Explicit -> explicitsubclassof[ Text Text ]
Rdfsout -> rdfsengine[ Output ]
Output -> output[ Inferred ]
Inferred -> inferredsubclassof[ subclassof* ]
subclassof -> subclassof[ Text Text ]
==================================================================

Evaluation took 0,10s

Thus, we say that the module is valid wrt. its contract.

5.3 Verifying module usage correctness

When using modules, not only can we reuse the service they provide, but we can also reuse the
contract verifications done during module definition, as explained in Section 5.2. We will here
give an example of how this can be done.

Example 2 Consider the program in Listing 6, making use of the module we just verified to be
valid wrt. its contract above. Consider the type specification below, consisting of three “parts”.
The first part is from the used module contract. The second part is the type specification for
our simplified OWL format. The last part is the specification for our desired result type.

Rdfsin -> rdfsengine [ Input ]
Input -> input [ Explicit ]
Explicit -> explicitsubclassof [ Text Text ]
Rdfsout -> rdfsengine [ Output ]
Output -> output [ Inferred ]
Inferred -> inferredsubclassof [ Subclass* ]
Subclass -> subclassof [ Text Text ]

Owl -> owl [ Class* ]
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Class -> class [ AttrId SubclassOf ]
AttrId -> attribut [ Id ]
Id -> id [ Text ]
SubclassOf -> subclassof [ AttrAbout ]
AttrAbout -> attribut [ About ]
About -> about [ Text ]

WilsonSupClasses -> wilsonsuperclasses [ Text* ]

The program in Listing 6 contains one rule using the to-module construct. Thus, it is
producing input data for the module. That rule can be transformed into the (plain) Xcerpt
program in Listing 10.5

1 GOAL
rdfsengine [

3 input [
explicitsubclassof [ var Subclass, var Superclass ]

5 ]
]

7 FROM
in { resource [ "file:sports.owl" ],

9 owl {{
class {{ attribut { id { var Subclass } },

11 subclassof {{ attribut { about { var Superclass } } }}
}}

13 }}
}

15 END

Listing 10: Transformed rule for checking that data sent to the module is of valid type.

The only difference is that we have a goal rule instead of a construct rule and that we have
removed the reference to the module. The Xcerpt program in Listing 10 can then be type
checked wrt. the type specification above using the following specification for the input and
output type:

Input::
resource=file:sports.owl
typename=Owl

Output::
typename=Rdfsin

The specified input type is the type of the data we are querying, that is, the simplified OWL
format. As for the output type we specify the input type of the used module contract. When
deploying the type checker we get the following result:

==================================================================
Rule 1: rdfsengine
Type checking: OK
------------------------------------------------------------------

5We have changed the label attributes to attribut in this example for some technical reasons due to the
type checker.
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Subclass->Text, Superclass->Text

==================================================================
==================================================================
Type Definition:
------------------------------------------------------------------
rdfsengine -> rdfsengine[ input ]
input -> input[ explicitsubclassof ]
explicitsubclassof -> explicitsubclassof[ Text Text ]
Rdfsout -> rdfsengine[ Output ]
Output -> output[ Inferred ]
Inferred -> inferredsubclassof[ Subclass* ]
Subclass -> subclassof[ Text Text ]
Owl -> owl[ Class* ]
Class -> class[ AttrId SubclassOf ]
AttrId -> attribut[ Id ]
Id -> id[ Text ]
SubclassOf -> subclassof[ AttrAbout ]
AttrAbout -> attribut[ About ]
About -> about[ Text ]
==================================================================

Evaluation took 0,20s

The result says that the rule is type correct. This means: If the OWL document we are
querying is of the specified input type, then the data produced for the module is a sub-type of
the module’s required input type. Thus, we know that it will be possible for the module to use
the data we are producing for it.

Likewise, we can check if the data produced by the module is correctly used by the program
importing the module. The other rule in Listing 6, making use of the in-module construct,
queries the module. That rule can be transformed to the one in Listing 11.

1 GOAL
wilsonsuperclasses [ all var Super ]

3 FROM
in { resource [ "file:dummy.xml", "xml" ],

5 rdfsengine {{
output {{

7 inferredsubclassof {{
subclassof [ "WilsonTennisRacket", var Super ]

9 }}
}}

11 }}
}

13 END

Listing 11: Transformed rule for checking that data produced by the module and queried by
the program is of expected type.

Instead of actually querying the module with the in-module construct we query a dummy
resource (here: file:dummy.xml). We then associate the output type of the module we are
using with the dummy resource, as follows:
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Input::
resource=file:dummy.xml
typename=Rdfsout

Output::
typename=WilsonSupClasses

As output type we of course specify the desired output type. Deploying the type checker on
the rule in Listing 11, using the described type specifications, we get the following result:

==================================================================
Rule 1: wilsonsuperclasses
Type checking: OK
------------------------------------------------------------------
Super->Text

==================================================================
==================================================================
Type Definition:
------------------------------------------------------------------
wilsonsuperclasses -> wilsonsuperclasses[ Text+ ]
Rdfsin -> rdfsengine[ Input ]
Input -> input[ Explicit ]
Explicit -> explicitsubclassof[ Text Text ]
Rdfsout -> rdfsengine[ Output ]
Output -> output[ Inferred ]
Inferred -> inferredsubclassof[ Subclass* ]
Subclass -> subclassof[ Text Text ]
Owl -> owl[ Class* ]
Class -> class[ AttrId SubclassOf ]
AttrId -> attribut[ Id ]
Id -> id[ Text ]
SubclassOf -> subclassof[ AttrAbout ]
AttrAbout -> attribut[ About ]
About -> about[ Text ]
WilsonSupClasses -> wilsonsuperclasses[ Text* ]
==================================================================

Evaluation took 0,10s

The type checker shows that the program is valid wrt. is type specification. This means: If
the module produces data of the specified type, then the data produced by the program will be
of the specified type.

Notice that we have checked the correctness of Listing 6 independently of the rules in the
module. That is, we have used the assumption that the module is type correct wrt. its contract
when checking the program that uses the module.

We can now for example, statically, during module composition, find errors in how modules
are used. Consider for example misspelling a label in the rule that produces data for the module.
Then we would construct the rule in Listing 12 to be type checked.
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1 GOAL
rdfsengine2 [

3 input [
explicitsubclassof [ var Subclass, var Superclass ]

5 ]
]

7 FROM
in { resource [ "file:sports.owl" ],

9 owl {{
class {{ attribut { id { var Subclass } },

11 subclassof {{ attribut { about { var Superclass } } }}
}}

13 }}
}

15 END

Listing 12: Transformed rule for checking that data sent to the module is of valid type.

We would then receive the following result from the type checker:

==================================================================
Rule 1: rdfsengine2
Type checking: Failed (no results of type Rdfsin)
------------------------------------------------------------------
Subclass->Text, Superclass->Text

==================================================================
==================================================================
Type Definition:
------------------------------------------------------------------
rdfsengine2 -> rdfsengine2[ input ]
Rdfsin -> rdfsengine[ input ]
input -> input[ explicitsubclassof ]
explicitsubclassof -> explicitsubclassof[ Text Text ]
Rdfsout -> rdfsengine[ Output ]
Output -> output[ Inferred ]
Inferred -> inferredsubclassof[ Subclass* ]
Subclass -> subclassof[ Text Text ]
Owl -> owl[ Class* ]
Class -> class[ AttrId SubclassOf ]
AttrId -> attribut[ Id ]
Id -> id[ Text ]
SubclassOf -> subclassof[ AttrAbout ]
AttrAbout -> attribut[ About ]
About -> about[ Text ]
==================================================================

Evaluation took 0,30s

This result can be used to report to the module programmer (at composition-time) that
there is a potential error in how the module is used.
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6 Conclusions

We have in this deliverable described how it is possible to take advantage of type information
and type checking during composition of Xcerpt programs. Being able to do this helps in
finding errors in programs at composition-time, that is, statically. In the same way that type
information in general can be useful to programmers in a normal programming setting, types
can also help a composition environment to provide better feed-back to users in how components
(here: modules) are used.
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